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Comment: Automated Analyses: Because We
Can, Does It Mean We Should?
Susan M. Shortreed and Erica E. M. Moodie

1. INTRODUCTORY REMARKS

We commend Benkeser, Cai and van der Laan (2020)
for their interesting proposal and efforts to further auto-
mate the machinery of collaborative targeted minimum
loss estimation (TMLE). Reducing human impact on an
analysis, that is, to circumvent the need for analysts to
“select an increasingly complex sequence of estimators
[...] and implement each of these” is an important goal
that could bring us closer to reproducible and transpar-
ent research. We agree that striving for estimators which
have stable properties is a benefit, and practical positivity
violations can render many estimators “erratic” or “non-
robust.” In the examples, the authors showcase success
in constructing data-specific robust estimators with well-
behaved properties.

Petersen et al. (2012) describe TMLE as “an explicit
trade-off [that is ideally] made in a systematic way rather
than on an ad hoc basis at the discretion of the investi-
gator.” No statistical or machine learning-based approach
is exempt from human-made decisions. For example, in
ensemble-based machine learning methods, often used in
conjunction with TMLE, the analyst must choose which
methods to include in the ensemble learner, select hy-
perparameter values (e.g., random forests minimum node
size), and select the number of folds for cross-validation.
The question then arises as to whether it does, or should,
trouble the scientific community that TMLE is less auto-
mated than we might think.

Here, we wish to probe two fundamental questions:
Should automation and data-driven analyses be preferred
when inferential, rather than predictive, analyses are un-
dertaken? For example, is a data-adaptive estimand or an
a priori human-defined estimand preferred? What do we
lose by automating an increasing number of steps of sci-
entific discovery?
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2. REDUCING THE IMPACT OF HUMAN DECISIONS
ON SCIENCE: AUTOMATION IN CAUSAL INFERENCE

Recent method developments mean statisticians have
several tools to reduce confounding bias in treatment ef-
fects estimated from observational or nonexperimental
data. However, this can result in an analyst at the com-
puter choosing which variables to include as confounders,
which approach to use to account for confounding, and
which participants to include in the analytic data set. This
scenario is ripe for honest mistakes and, in the worst case,
can result in data dredging to find any “statistically signif-
icant” (i.e., publishable) results.

Human fallibility is not a new concept, though its role
in statistical analyses has only recently been fully appreci-
ated (Veldkamp, 2017). Focus on replicability and repro-
ducibility in science (Peng, 2015, Baker, 2016) has led
to improvements in documentation and open access shar-
ing, particularly in the statistical sciences, where many
journals insist that manuscripts are accompanied by code
implementing the method or analysis. Documentation
and sharing of data and code does not remove human-
decisions from analyses, but it does, hopefully, reduce the
negative impact human-made decisions can have on sci-
ence through transparency.

In inferential statistics, various approaches have been
proposed to minimize the impact of human decisions
on study results. A long-standing approach, common
in randomized trials, is prespecifying scientific ques-
tions and analytic plans. There is a growing movement
to publish planned analyses for all inferential studies,
including observational studies (Williams et al., 2010,
Loder, Groves and Macauley, 2010, Lancet Editors, 2010,
Hernán and Robins, 2016), but this is hardly ubiquitous.
An alternative approach is to conduct as much of the anal-
ysis as possible blinded to study outcomes, making it dif-
ficult to skew study results with analytic decisions made
along the way (Rubin, 2001, 2008). This approach has
strengths, but has been shown to have reduced statistical
efficiency compared to approaches that utilize outcome
information in the entire analytic process (Greenland,
2008, Rotnitzky, Li and Li, 2010, Shortreed and Erte-
faie, 2017, Ju, Benkeser and van der Laan, 2019). Re-
cently, Schuemie et al. (2018) proposed a new paradigm
for analyzing large clinical databases that analyzes multi-
ple questions at once and requires the inclusion of “neg-
ative controls” (i.e., effects widely believed to be null) so
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the operating characteristics of the analytic approach are
better characterized.

Automation, common in machine learning, is another
approach to removing human bias from an analysis. Ma-
chine learning tools were originally developed, and con-
tinue to be attractive, for their tremendous predictive abil-
ities. Early in the development of these approaches, over-
fitting to the training data was recognized as a concern.
Standard practice evolved such that tuning parameter se-
lection is now made through cross-validation or similar
approaches using an objective measure. It is also standard
to use an independent validation or test set to accurately
quantify the algorithm’s performance. If only one data
set is available for training and estimating model perfor-
mance, approaches exist to address optimism in estimated
model performance (Efron, 1983, Efron and Tibshirani,
1993, Smith et al., 2014).

TMLE is a method for estimating and making infer-
ence about treatment effects. This heavy statistical ma-
chinery targets a specific parameter of interest and lever-
ages data to estimate this parameter efficiently. Applica-
tions of TMLE often make use of machine learning meth-
ods, specifically ensemble approaches, for flexible esti-
mation of necessary models. Super learning was initially
used for both outcome and treatment models in TMLE;
only recently has it been discovered that exceptional pre-
diction in the treatment model is not only unnecessary but
potentially harmful (Alam, Moodie and Stephens, 2019,
Pirracchio and Carone, 2018). This is not true for the out-
come model, where flexibility and minimal-error predic-
tion is desirable, underscoring that the goals of prediction
and causal inference can differ, and may require different
tools.

Biased treatment effect estimation, often in the direc-
tion of a type I error, is to inference, what unrealistic op-
timism of model performance is to prediction. Statistical
efficiency can be improved by accounting for chance im-
balances that occur in a particular study (Rotnitzky, Li and
Li, 2010); yet allowing scientists to iteratively alter analy-
ses after looking at study results changes the (already po-
tentially problematic) meaning of p-values and can lead
to publication of chance findings rather than generaliz-
able results. Statisticians have long balanced the tension
between bias and variance; we must also balance the ten-
sion between protecting against type 1 errors and improv-
ing statistical efficiency/robustness.

3. MOVING THE GOALPOSTS, OR JUST BEING
PRACTICAL?

Human input has traditionally driven the definition of
the population of interest, which in turn defined the an-
alytic sample. The positivity, or experimental treatment
assignment, assumption is central to estimating treatment
effects from observational data (Rosenbaum and Rubin,

1983, Little and Rubin, 2000). Petersen et al. (2012) put
a focused lens on the positivity assumption, and pro-
posed a straightforward bootstrap-based diagnostic to as-
sess it. The authors also laid out several approaches to
dealing with positivity violations. One such approach was
to change the variables included in the confounder set,
thereby possibly trading bias for a reduction in the vi-
olation of the assumption. Another approach was to ex-
clude from the sample individuals who, based on co-
variate values, might “always” receive only one of the
treatment choices. Lastly, Petersen et al. (2012) propose
choosing from among a family of estimands based on em-
pirical evaluation of bias, noting that “researchers may be
happy to settle for a better estimate of a less interesting
parameter”—a data-adaptive approach that is similar in
principle to that of Benkeser, Cai and van der Laan (2020).
We support careful and introspective thought from the
statistical community on how to best improve the repro-
ducibility and reliability of science, and avoid erratic or
unstable estimates. Nevertheless, questions remain about
whether a wholesale move toward automation may under-
mine the process of scientific inquiry by shifting not only
the answering of questions to the machine, but also the
asking of them.

As statisticians, we wonder how to assess the replicabil-
ity of scientific findings based on data-adaptive choices
in the parameter of interest. It is unclear which is more
valid: an unstable estimate of an estimand that is the same
across samples or a more stable estimate for an estimand
that changes across samples. We appreciate the desire to
automate procedures to reduce human impact, but should
we allow the data to drive the scientific question, that
is, the choice of estimand, rather than the converse? Are
we moving the goalposts and choosing to provide an esti-
mate we can using the data we have, rather than seeking
novel methods or different data to answer the question we
want?

4. HUMAN MISTAKES, MACHINE MISTAKES;
NEITHER ARE INFALLIBLE BOTH ARE USEFUL

While humans are indeed fallible and biased, computer-
based algorithms have also made their fair share of “mis-
takes.” The now infamous failure of Google Flu Trends
to predict the 2009 H1N1 pandemic, followed by the
gross overprediction of patient visits for flu-like symp-
toms in 2013, has called into question the value of au-
tomated algorithms over more traditional approaches that
better account for the data structure (Lazer et al., 2014).
The Apollo landing is another well-known example of
where human intervention, working to counteract automa-
tion, saved the day: Armstrong and Aldrin had to find and
manually land at an alternate landing spot when the lunar
module was pushed off course (O’Neill).
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Machine learning algorithms can also propagate dispar-
ities, where the original hope was they would reduce or
remove said biases. A recent simulation study highlighted
predictive policing using models that did not include race
can still result in policing strategies that disproportion-
ately affect nonwhites (Lum and Isaac, 2016). This arose
because the algorithms were trained on historical data af-
fected by existing biases in policing patterns. Biases in
machine learning algorithms have been demonstrated in
a variety of settings, including health care (Obermeyer
et al., 2019). Especially when working with big data re-
sources, data anomalies can lead to erroneous study re-
sults. For example, a study team examined health plan
disenrollment (i.e., losing or changing health insurance)
and risk of suicide death. They observed a strong relation-
ship even after controlling for a number of confounders.
After some data sleuthing, it was discovered that in this
database, time of health plan disenrollment was often ret-
rospectively assigned to the beginning of the month that a
death occurred; thus, the data were not suited to estimate
this relationship (G Simon personal communication).

Errors in automation often stem from a lack of full un-
derstanding and encoding of the entire data generating
process when estimating the procedure. Human input is
essential to ensure both methods and data are used appro-
priately to address not only confounding but other poten-
tial biases arising from the processes of data collection
and measurement, including nonrandom selection of the
study sample, measurement error and covariate-informed
measurements, visits and drop-out. Automating analyses
can produce reliable results; it can also lead us to overlook
important details of the analytic sample. It is important to
ask how automation should best be used to create repro-
ducible and replicable research and to consider how both
the analysis and the data on which it relies (data generat-
ing process) impact study results.

5. CONCLUDING THOUGHTS

Advances in computing power and predictive ability
have transformed what is possible in statistical analyses
of both big and small data. Building on these strengths
to automate analyses to ensure reproducibility is a noble
goal. Reducing the impact of human-bias is paramount to
good science. However, not all of science (or analysis)
lends itself to automation, nor does automation always
circumvent human-bias. The question of what we should
automate and why is as important as how it should be
done (i.e., the methods selected). We applaud Benkeser,
Cai and van der Laan (2020) for proposing an interesting
method that offers robustness and stability, two important
statistical properties. We would like to also encourage the
authors and the wider scientific community to discuss the
question: When we should automate? Human impact in
any real-world data analysis is unavoidable; sometimes

this human impact can prevent an automated algorithm
from going astray and sometimes automation can stop hu-
mans from impacting results in way that compromises sci-
entific integrity.
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