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1. INTRODUCTION

We congratulate VanderWeele, Mathur and Chen
(VMC) for their timely and interesting contribution to
the emerging field of longitudinal designs for observa-
tional studies. Their paper provides intriguing guidelines
on evaluating robustness and sensitivity to potential un-
measured confounding in outcome-wide studies. We ex-
pand on their discussion and point out another important
application of the outcome-wide studies in developing in-
dividualized treatment strategies.

2. OVERT AND HIDDEN BIASES

The primary concern in causal inference is bias that
does not diminish as the sample size increases. In general,
there are two types of biases: overt and hidden. An overt
bias is one that can be seen in the data at hand, for exam-
ple, the imbalance of a measured pre-treatment covariate
across the treatment groups. A hidden bias is similar to
an overt bias in the sense that both are caused by the im-
balance across treatment groups but the former cannot be
seen in the available data because the required informa-
tion was not observed or recorded (Rosenbaum, 2002).
One of the core assumptions in causal inference is the no
unmeasured confounder assumption which rules out the
presence of hidden biases. But even under the no unmea-
sured confounder assumption, there is no guarantee that
the causal inference methods can produce unbiased esti-
mates, in general. Bias can still manifest itself through
certain model misspecification.

Assuming that there is no hidden bias, data adap-
tive techniques can provide powerful tools to reduce the
chance of model misspecification thereby reducing the
bias in the treatment effect estimation. However, these
methods may lead to an estimator with an unknown
asymptotic behavior because of slower rate of conver-
gence than root-n rate. For example, an inverse probabil-
ity weighting estimator is no longer asymptotically linear
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if the propensity scores are estimated using a data adap-
tive technique (e.g., random forest (Liaw, Wiener et al.,
2002)). This is because the convergence rate of the in-
verse probability weighting estimator entirely depends
on the rate of convergence of the postulated model for
the propensity score. Double robust estimators are alter-
natives that can overcome this shortcoming. Double ro-
bust estimators are based on modeling both the propen-
sity score and the outcome processes and are consis-
tent for the target parameter of interest when any one
of two models is consistently estimated. The asymptotic
linearity of the double robust estimators is guaranteed
when both nuisance parameters are consistently estimated
with convergence rate faster than n1/4 (Van der Laan
and Robins, 2003). Although double robust models fa-
cilitate the use of data-adaptive techniques for modeling
the nuisance parameters, the resulting estimator can be
irregular with large bias and slow rate of convergence
when one of the nuisance parameters is inconsistently es-
timated. Undersmoothing and targeting techniques have
been proposed to mitigate this issue (van der Laan, 2014,
Benkeser et al., 2017, van der Laan, Benkeser and Cai,
2019).

As pointed out by VMC, the analysis results can be con-
siderably biased by investigator choice after looking at the
data. This is even more of a concern when data adaptive
techniques are used for two reasons. First, these meth-
ods often involve multiple tuning parameters that have
to be specified using the data. Often, investigators decide
to set some of the tuning parameters to the default (i.e.,
prespecified) values and choose the others using cross-
validation. Second, there are many data adaptive tech-
niques that could be used and the concluding results may
depend on the method used. These can be a source of bias
if the decision is made after seeing the results. Outcome-
wide studies can mitigate this problem if the investigator
uses the same modeling and tuning approaches for all the
outcomes included in the analyses.

Ensemble learning methods (e.g., super learner) seems
to be particularly helpful in reducing the chance of bias
caused by model misspecification and researcher bias. En-
semble learning methods combine different user specified
data-adaptive techniques (e.g., random forest, generalized
additive models, support vector regression) in an optimal
way to produce a predictive model which is superior to
each individual algorithm included in the ensemble learn-
ing model (van der Laan, Polley and Hubbard, 2007).
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Specifically, they first build a predictive model for each
algorithm and then uses cross-validation to find the op-
timal weighted combination of the predicted values as a
final output. The library of the methods included in the
ensemble learning must be specified prior to seeing the
results. The size of the library of methods can grow as a
polynomial rate of the sample size and can include differ-
ent tuning parameter specifications of a certain method,
thereby resolving both concerns raised above (Van Der
Laan and Dudoit, 2003).

3. SENSITIVITY ANALYSIS FOR HIDDEN BIASES

Drawing causal inference from observational studies
based on regression or propensity score analyses rely on
the untestable assumption that there are no unmeasured
confounders. In general, because it is impossible to be
certain about this assumption, the causal interpretation of
the estimated treatment effect is questionable. There are
alternative methods that can be used to obtain unbiased
treatment effect estimates even in the presence of unmea-
sured confounders at the expense of relying on some other
untestable assumptions.

A sensitivity analysis is a specific statement about the
magnitude of hidden bias that would need to be present to
explain the associations actually observed in a particular
study. Weak associations in small (or large) studies can be
explained away by very small biases, but only a very large
bias can explain a strong association in a large study. Let
D be binary treatment variable such that D ∈ {0,1} and
X be a vector of pretreatment variables. Also, let π(x) =
Pr(D = 1 | X = x) denote the propensity score. There is
hidden bias if two units with the same observed covariates
x have different chances of assignment to treatment. Let
πj/(1 − πj ) and πk/(1 − πk) be the odds that units j and
k receive the treatment. Suppose we knew that this odds
ratio for units with the same x was at most some number
� ≥ 1,

1

�
≤ πj (1 − πk)

πk(1 − πj )

≤ � for all j and k with xj = xk.

(1)

In this formulation, � = 1 denotes a study free of hid-
den bias and � > 1 denotes a study with certain magni-
tude of hidden bias. Thus, a possibly complex unmea-
sured confounding pattern can be summarized using a
scalar value �. Rosenbaum proposed series of sensitiv-
ity analysis tools based on the odds ratio in (1) that can
be used in variety of matching techniques (Rosenbaum,
1987, 1988, 1989, 1991, 2002). To perform the sensi-
tivity analyses, one starts with � = 1 and incrementally
increases � and calculates the corresponding testing p-
values for each � until the type-I error rate is reached.

Then that particular � value represents the level of sen-
sitivity of the results to unmeasured confounding. Con-
fidence intervals corresponding to each � value can also
be constructed. A (1 − α) sensitivity interval for a causal
parameter with sensitivity parameter is a random interval
that in at least (1 − α) of studies will contain the true pa-
rameter value assuming that the true sensitivity parameter
�0 satisfies �0 < �. VMC proposed an alternative mea-
sure of sensitivity to hidden bias called the E-value. For a
binary outcome Y ,

E-value = RRobs + √
RRobs(RRobs − 1),

where RRobs = Pr(Y = 1 | D = 1,x)/Pr(Y = 1 |
D = 0,x). The E-value can be interpreted as “the mini-
mum strength of association on the risk ratio scale that an
unmeasured confounder would need to have with both the
treatment and the outcome to fully explain away a specific
treatment-outcome association, conditional on the mea-
sured covariates” (VanderWeele and Ding, 2017). One
advantage of the sensitivity analyses proposed by Rosen-
baum is that it can be done completely nonparametrically
regardless of the dimension of the measured confounders
(i.e., X). For example, we can perform matching using
rank based Mahalanobis distance and then construct a
confidence interval by inverting a rank based permuta-
tion test (Rosenbaum, 1989, 2002). The E-value results,
however, may vary as a function of the postulated condi-
tional outcome model given the treatment and measured
confounders. This can complicate the interpretation of the
E-value particularly when the dimension of X is moderate
to large. However, unlike Rosenbaum’s approach where
the sensitivity parameter � only reflects the effect of an
unmeasured confounder on the propensity score, the E-
value considers the effect an unmeasured confounder on
both the outcome and the treatment models. This sug-
gests that the E-value may carry more information about
the actual strength of an unmeasured confounder on the
estimated effect than Rosenbaum’s approach.

One important limitation of the sensitivity analysis is
that there is no guideline on what values of the sensitivity
parameter are deemed small indicating that the residual
confounding is a serious threat. In a study that researchers
are confident that they have included most of important
confounders in the analysis, a relatively small sensitivity
parameter value may be considered implausible while a
study that does not include several potentially important
confounder may be considered sensitive to hidden bias
even if the sensitivity parameter value is larger than the
former study. This highlights the importance of carefully-
designed observational studies. Indeed, sensitivity anal-
ysis is useful for quantifying how much bias would be
needed to change the conclusions of the study, but it can
never prove that there is a treatment effect because we do
not know for certain how much hidden bias there could be
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and all effect estimates are sensitive when the the bias is
sufficiently large.

Outcome-wide designs can provide valuable insight on
implausible sensitivity values for a given study. Suppose
there is an outcome known to be unaffected by the treat-
ment denoted as Y †. Then we first perform the sensitivity
analysis using the primary outcome Y and suppose we ob-
tain that sensitivity parameter value of �∗ is sufficient to
explain away the detected causal effect. Second, we test
whether the null hypothesis of no effect on Y † holds true
under the hidden bias with magnitude of �∗. If � = �∗ is
rejected, the point of greatest sensitivity to bias has been
rejected and we can conclude that �∗ is an implausible
value. If � = �∗ is not rejected, then the outcome Y † does
not help in reducing our concern about the hidden bias of
�∗ (see Section 6.2 of Rosenbaum, 2002).

4. OUTCOME-WIDE DESIGN IN INDIVIDUALIZED
TREATMENT STRATEGIES

Some treatments do not affect all the subjects the same
way. The main goal of individualized treatment strate-
gies (ITS) is to use individual patient characteristics to
inform a personalized treatment plan that leads to the best
healthcare possible for each patient (Zhang et al., 2012,
Zhao, Small and Ertefaie, 2017, Ertefaie and Strawder-
man, 2019). An optimal ITS is the one that optimizes an
outcome of interest. The current literature in ITS is mostly
focused on developing methods to estimate an optimal
ITS based on a single outcome, with some attention given
to the case of multiple outcomes (Laber, Lizotte and Fer-
guson, 2014, Fard and Pineau, 2009, Lizotte and Laber,
2016). In real life, clinical decision-making aims to bal-
ance several potentially competing outcomes (e.g., symp-
tom relief, clinician’s qualitative assessment, side effects,
costs, patient’s preference).

Outcome-wide design provides a unique opportunity to
consider multiple outcomes in developing optimal deci-
sion rules. Specifically, one can construct and report a
set of best treatment options with respect to each out-
come for a given patient using the multiple comparison
with the best method (Hsu, 1981, 1984). The set is con-
structed such that it contains the true best treatment op-
tion with certain probability (e.g., 0.95) (Ertefaie et al.,
2016). Let Kj (x) correspond to the set of best treatments
with respect to outcome Yj , j = 1,2, . . . ,K , for a patient
with baseline covariates x. For each patient, clinicians can
then aggregate the constructed sets of best treatments over
multiple outcomes to from an outcome-wide set of best
treatments denoted as B(x). If the sets overlap across all
the outcomes, then B(x) will include the intersection of
those sets. If the sets do not overlap, then we will report
the union of Kj (x) for j = 1,2, . . . ,K as the set of best
B(x) and leave the tie breaking to the physician and pa-
tient preference.

The quality of the estimated optimal ITS can be seri-
ously affected in the presence of overt biases caused by
model misspecification and hidden biases. The former can
be mitigated by using double robust estimators that lever-
age data adaptive techniques to estimate the required nui-
sance parameters (Zhang et al., 2012). Sensitivity analysis
approaches could potentially be used to assess the sensi-
tivity of the suggested optimal treatment for a given pa-
tient to different magnitude of hidden biases. Under treat-
ment effect heterogeneity, subjects may benefit from dif-
ferent treatment options depending on their baseline char-
acteristics. Also, among those who benefit from a certain
treatment, the magnitude of the treatment effect may vary.
As a result, the sensitivity level of the optimal treatment
choice may vary substantially from patient to patient. This
can potentially complicate the interpretation of the sensi-
tivity analysis results. In settings with a binary treatment
option and a single outcome, there are subjects who bene-
fit significantly from either of the treatments and there are
subjects whose treatment effect is not significantly differ-
ent across the two treatment arms. As the sensitivity pa-
rameter � increases, the number of patients in the indif-
ference zone will increase. Thus, for example, one metric
to report could be the proportion of patients who signifi-
cantly benefit from a single treatment as a function of �.
However, the sensitivity analysis can get complicated in
the outcome-wide design settings and merits further re-
search.

5. LITTLE VERSUS BIG “M” IN
MULTIPLE OUTCOMES

First, given where the statistics field is in the analysis
of massive data sets, it seems that a central question to the
analysis of multiple outcomes is how large is large in the
word “multiple”? In VMC, the authors define the vector
of multiple outcomes as (Y1, . . . , YK), and so our ques-
tion rephrased in the author’s notation is how large is K?
Methods that might be ideal for the analysis of 10 out-
comes may be unsuitable for the analysis of 10 million
outcomes. As VMC suggest in Section 8.1, the very name
’‘outcome wide” analysis is intended to draw connections
to genome wide association studies (GWAS) where inves-
tigators consider millions of genetic variants. However, in
the motivating data example, VMC analyze K = 24 out-
comes which might suggest the scale of K does not align
with GWAS studies and that other methods might be bet-
ter suited to analyze multiple outcome in the proposed set-
ting when K is moderate.

Second, while the analysis of multivariate Gaussian
outcomes serves as a principal cornerstone in the analysis
of multiple outcomes, there are now well-established sta-
tistical methods for modeling jointly multiple outcomes
of mixed types (e.g., copulas) and these other approaches
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could provide additional insight into the data that the cur-
rent outcome-wide analysis framework proposed by VMC
does not address. In addition to potential efficiency gains
that VMC state in Section 2.7, statisticians model jointly
multiple outcomes to estimate and draw inference on the
associations among those outcomes. In the motivating ex-
ample, there may be a scientific interest in the association
between measures of emotional or psychological well-
being and adverse health behaviors and possibly whether
this association is mediated by other factors. Developing
such a method may or may not be a simple combination
of existing tools but would connect the proposed frame-
work with an important aspect of the analysis of multiple
outcomes research.
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