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Abstract: We present and compare some nonparametric estimation meth-
ods (wavelet and/or spline-based) designed to recover a one-dimensional
piecewise-smooth regression function in both a fixed equidistant or not
equidistant design regression model and a random design model.

Wavelet methods are known to be very competitive in terms of denois-
ing and compression, due to the simultaneous localization property of a
function in time and frequency. However, boundary assumptions, such as
periodicity or symmetry, generate bias and artificial wiggles which degrade
overall accuracy.

Simple methods have been proposed in the literature for reducing the
bias at the boundaries. We introduce new ones based on adaptive com-
binations of two estimators. The underlying idea is to combine a highly
accurate method for non-regular functions, e.g., wavelets, with one well be-
haved at boundaries, e.g., Splines or Local Polynomial. We provide some
asymptotic optimal results supporting our approach. All the methods can
handle data with a random design. We also sketch some generalization to
the multidimensional setting.

To study the performance of the proposed approaches we have conducted
an extensive set of simulations on synthetic data. An interesting regression
analysis of two real data applications using these procedures unambiguously
demonstrates their effectiveness.

MSC 2010 subject classifications: Primary 62H12, 60K35; secondary
62G08.

32


http://projecteuclid.org/ssu
https://doi.org/10.1214/20-SS128
mailto:umberto.amato@cnr.it
mailto:Anestis.Antoniadis@univ-grenoble-alpes.fr
mailto:i.defeis@iac.cnr.it

Boundary adapted nonparametric regression 33

Keywords and phrases: Wavelets, boundary corrections, nonparametric
regression, smoothing splines, thresholding, model selection, backfitting.

Received November 2019.

Contents
1 Introduction. . . . . . . .. . .. L 33
2 Wavelets and nonparametric regression . . . . . . . .. ... ... ... 36
2.1 Wavelet series expansions and discrete wavelet transform (a review) 36
2.2 Finite interval wavelet transform . . . . . . ... ... ... ... 39
2.3 Basisexpansions . . . . . ... ... L oo 40
3 Boundary treatment in wavelet thresholding with equidistant design
data . . . .. 42
3.1 Polynomial wavelet regression (PWR) . . ... .. ... ... .. 43
3.2 Local polynomial wavelet regression (LPWR) . . . ... .. ... 43
3.3 Proposed adaptive combination of two regression estimators . . . 44
3.3.1 The adaptive estimator . . . ... ... ... ... ... 46
3.4 Some other methods: trend filtering . . . ... ... ... .... 47
4 Proposals for handling the boundary problem in the general case . . . 48
4.1 Spline-wavelet adaptive combination . . . . . ... .. ... ... 48
4.2 Spline-wavelet stacking . . . . . ... ... Lo 0oL 49
4.3 Matrix stacking regression of spline and wavelet bases . . . . . . 49
4.4 Adaptive regression mixing and aggregation . . . . . . ... ... 50
4.5 Greedy pursuit and best basis selection from multiple libraries . 52
4.6 Gaussian processes and stochastic partial differential equations . 53
5 Multidimensional problems . . . . . ... ... 0oL 54
6 Numerical experiments . . . . . . . .. ... L Lo 54
6.1 Methods . . . . . . . . L 54
6.2 Test functions . . . . . .. ... 56
6.3 Results. . . . . . . 57
6.4 Realexamples. . . . . . . ... .. ... 62
7 Conclusions . . . . . . . .. L 65
A Appendix . ... 66
Acknowledgements . . . . ... oL 67
References . . . . . . . . . . 67

1. Introduction

Suppose we are given data:
Y = f(z;) + oey, (1.1)

1 <4 < n, where z; = (i —1)/(n — 1), 0 > 0 and the ¢;’s are i.i.d. Gaussian
N(0,1) random errors. The function f is an unknown function of interest. We
wish to estimate f globally and one can measure the performance of an estimate
f by the expected global squared Ly norm risk:
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R(f.f)=E / (F(2) - f(x))?da,

the goal being to construct estimates that have “small” risk. In order to have
some meaningful estimate according to this criterion, one must assume certain
regularity conditions on the unknown function f, such as f belongs to some
Holder classes, Sobolev classes, Besov classes and so forth. When the regression
function f is sufficiently smooth, efficient smoothing methods such as kernel,
splines and basis expansions have received considerable attention in the non-
parametric literature (see, for example, Green and Silverman (1993); Eubank
(1999); Hérdle (1990); Hastie (2003) and references given therein). In contrast,
which is the case of this paper, when the unknown function f, mostly smooth, is
suspected to have few discontinuities, sharp spikes and abrupt changes, wavelet
methods are very popular. The application of wavelet theory to the field of
statistical function estimation was pioneered in Donoho and Johnstone (1995);
Donoho et al. (1995). The methodology includes a coherent set of procedures
that are spatially adaptive and near optimal over a range of function spaces
of inhomogeneous smoothness. Wavelet procedures achieve adaptivity through
thresholding of the empirical wavelet coefficients. They enjoy excellent mean
squared error properties when estimating functions that are only piecewise
smooth and have near optimal convergence rates over large function classes.
For example they attain optimal convergence rates for the Lo risk when f is in
a ball of a Besov space B, ,. for p < 2, which can not be achieved by any linear
estimator. For a thorough review of wavelet methods in statistics the reader is
referred to Antoniadis (2007).

Despite their considerable advantages, however, standard wavelet procedures
have limitations. It might be noticed that the vast majority of wavelet-based
regression estimation have been conducted within the setting that the design
points are fixed and equally spaced to enable the application of the wavelet
transform to a compactly supported signal. Moreover, equispaced design or not,
it is customary to impose some boundary assumptions, such as periodicity or
symmetry, on the regression function. Such assumptions are not always reason-
able, and certain types of bias and artificial wiggles often arise in this context,
particularly those due to edge or boundary effects, which detract from the global
performance of the estimators and whose influence should be reduced or elimi-
nated whenever possible.

To handle such boundary problems, at least in the equispaced design case,
three types of approach are used in wavelet regression: one can either impose
extra constraints on the function f, such as periodicity, symmetry or anti-
symmetry (Ogden, 1996), or construct specialized wavelets on a compact inter-
val (Cohen, Daubechies and Vial, 1993) or combine low-order polynomial terms
and wavelet basis (Oh, Naveau and Lee, 2001). In the first strategy, artificially
large wavelet coeflicients result when the extra conditions on the regression func-
tion f are not satisfied. For the second strategy, while theoretically appealing,
implementation of a modified discrete wavelet transform is considerably more
involved. In the third method called polynomial wavelet regression (PWR) the
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idea is to estimate f with the sum of a set of (Coiflets) wavelet basis functions,
fw, and a low-order (global) polynomial, fp:

few(z) = fo(@) + fw(@),

where fpw is the PWR estimate for f. The hope is that, once fp (x) is removed
from the data, the remaining signal hidden in the residuals can be well esti-
mated using wavelet regression with, for example, periodic boundary assump-
tion. The use of Coiflets allows, with appropriately chosen hyper-parameters,
to prove both analytically and empirically that polynomial wavelet regression
is superior to wavelet regression for functions of inhomogeneous smoothness.
The use of PWR for resolving boundary problems works very well if fp (x) is
able to remove the “non-periodicity” in the data. However, due to the global
nature of fp(x) for those cases when f has complex boundary conditions or
has some abrupt changing objects present near the boundaries, PWR does not
work well. Oh and Lee (2005) therefore extend the PWR method to a method
called LWPR by combining wavelet shrinkage with local polynomial regression
which is known to possess excellent boundary properties. Note however, that
no asymptotic analysis for the resulting estimator is given in their paper, but
extensive simulation results provide some strong evidence that LWPR is effec-
tive in correcting boundary bias. Because of its performance and its simplicity
we have chosen the last approach as a starting point to de-noise signals with
irregular boundaries in the equispaced design case.

A closer look at the LWPR estimate shows that it can be considered as a
linear combination of a local polynomial estimator and a wavelet regression esti-
mator with equal coefficients. Our purpose is then to adopt a different approach
by considering an adaptive combination of the two estimators, one based on
stronger smoothing assumptions on the regression function f and well behaved
at the boundaries and another one based on weaker assumptions. The adaptive
choice of the weights will also allow us to get some asymptotic optimality results
for the combined estimator.

A disadvantage of the above is that the method is limited to the simple
equispaced dyadic case. In practice, however, there are many interesting appli-
cations in statistics where the samples are not equispaced and their size is not
dyadic. It is therefore interesting to propose appropriate penalization methods
to wavelet smoothing within the setting of non-equally spaced and non-dyadic
design points that can handle efficiently the boundary problems. This will be
studied in the second part of the paper. Let us just say that the idea of adap-
tively combining different regression procedures within a collection of regression
procedures (e.g. kernel, spline, wavelet, local polynomial, etc.) will be explored
in a context of ensemble learning by mixing or aggregation and compared to
other wavelet regression procedures for random design univariate regression.

This paper is organized as follows. In Section 2 we describe the wavelet-
based regression model with the basic concept of wavelets. We also present
an aspect of wavelets described in Antoniadis and Fan (2001) crystallizing the
penalized least squares approaches to wavelet nonparametric regression showing
that they can be used to construct a set of basis functions over an arbitrary
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compact interval and that linear combinations of such basis functions are able
to estimate particular, usually jagged, regression functions better than spline
bases. A detailed description of our boundary corrections procedures and their
asymptotic properties in the equispaced case is presented in Section 3. The
random design case is studied in Section 4, and the procedures are investigated
via various simulation settings and real data application examples in Section 6.
Some concluding remarks are given in Section 7.

2. Wavelets and nonparametric regression

We consider the regression problem stated in Equation (1.1) with a non-stochas-
tic equidistant design t; = (i —1)/(n — 1), i =1,...,n of size n = 27 for some
positive integer J, noise variables ¢; that are i.i.d. Gaussian NV(0,0?) and with a
potentially nonsmooth regression function f that may present a wide range of ir-
regular effects. Wavelets provide smoothness characterization of several function
spaces. Many traditional smoothness spaces, for example Holder spaces, Sobolev
spaces and Besov spaces, can be completely characterized by the sequence of
wavelet coefficients (e.g., Meyer, 1993). In the present paper we will consider the
problem of estimating the regression function either over a range of piecewise
Holder classes or through the sequence space representation of Besov spaces. A
function in a piecewise Holder class can be regarded as the superposition of a
regular smooth function in a Hoélder class and an irregular perturbation con-
sisting of jump discontinuities. The (inhomogeneous) Besov spaces on the unit
interval (e.g., Donoho and Johnstone, 1998) B, ([0, 1]), consist of functions that
have a specific degree of smoothness in their derivatives. The parameter p can
be viewed as a degree of function’s inhomogeneity while s is a measure of its
smoothness. Roughly speaking, the (not necessarily integer) parameter s indi-
cates the number of function’s (fractional) derivatives, where their existence is
required in an LP-sense; the additional parameter r is secondary in its role, al-
lowing for additional fine tuning of the definition of the space. Assuming that
[ belongs either to piecewise Hélder class or a Besov space Bj .([0,1]) with
s+ 1/p—1/2 > 0 (this condition ensures in particular that evaluation of f at
a given point makes sense) enables to capture key characteristics of inhomo-
geneity in f and to exploit its sparse wavelet coefficients representation. Notice
that Besov spaces contain not only the standard Holder and Sobolev spaces but
also the piecewise Holder spaces with a finite number of discontinuous jumps
(Meyer, 1993).

2.1. Wavelet series expansions and discrete wavelet transform
(a review)

In this subsection, the wavelet transform and its implementation for discrete
signals are briefly reviewed. The sole purpose of this review is to describe the
tools which will be used later. We assume that we are working within an or-
thonormal basis generated by dilations and shifts of a compactly supported
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scaling function, ¢(t), and a compactly supported mother wavelet, ¥ (¢), asso-
ciated with an r-regular (r > 0) multi-resolution analysis of L?(R), the space
of square integrable functions. The wavelet theory basically considers functions
on the real line. When a finite interval [0, 1] is involved then an easy solu-
tion is to consider periodic wavelets. More precisely, let (LQ[O, 1], (-, )) be the
bpace of bquared integrable functions on [0, 1] endowed with the inner product

fo t)dt. Assuming that f is periodic, one may work with periodic
wavelet bases on [O 1] (e.g., Mallat, 2009, Section 7.5.1), letting

PE() =) bkt — 1) and GP(E) =Y (t—1), t € [0,1],

leZ lez

where ¢ (t) = 27/2¢(27t—k) and 1, (t) = 27/2¢)(27t—k). For any given primary
resolution level jo > 0, the collection

{¢P0‘3]1;7 =0,1,..., 9o —1; ]krijj();k:Oa]-v“'an_]-}

is then an orthonormal basis of L?[0,1]. The superscript “per” will be sup-
pressed from the notation for convenience. Despite the poor behaviour of peri-
odic wavelets near the boundaries, where they create high amplitude wavelet co-
efficients, they are commonly used because the numerical implementation is par-
ticularly snnple Therefore, for any f € L?[0,1], we denote by cjor = (f, ¢j0k>
k =0,1,...,27° — 1, the scaling coefficients and by djr = (f,¥;x), j > Jo,
k=0,1,..., 2J -1, thc wavelet coefficients of f for the orthonormal periodic
wavelet basis defined above; the function f is then expressed in the form

270 —1 co 29—
F&) =Y ciordion(t) + Z djrtsi(t), t € [0,1].
k=0 Jj=Jjo k=0

The approximation space spanned by the scaling functions {¢;,x, £ =0,1,...,
270 — 1} is usually denoted by Vj, while the details space at scale j, spanned by
{tjr, k=0,1,...,29 — 1}, is usually denoted by W;.

In statistical settings, we are more usually concerned with discretely sampled,
rather than continuous, functions. It is then the wavelet analogy to the discrete
Fourier transform which is of primary interest and this is referred to as the dis-
crete wavelet transform (DWT). Given a vector of real values e = (e1, ..., e,)T
the discrete wavelet transform of e is given by d = W, x,e, where d is an n x 1
vector comprising both discrete scaling coefficients, s;,x, and discrete wavelet
coeflicients, wji, and Wy, «,, is an orthogonal n x n matrix associated with the or-
thonormal periodic wavelet basis chosen. In the following we will distinguish the
blocks of W, «,, spanned by the scaling functions and the wavelets, respectively.
The empirical coefficients s;,, and w;j of e are given by

9

1 n )
Sjo.k A ﬁ Zei¢jo,k(ti), k=0,...,2° -1

Wy, k Zzw]k .:'0,...,J—1,k‘:0,...,2j—1.
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When e is a vector of function values f = (f(t1),..., f(tn))T at equally spaced
points t;, the corresponding empirical coefficients s, and wj; are related to
their continuous counterparts c;,x and d;; (with an approximation error of order
n~1) via the relationships sj,x ~ v/ncjor and wj, =~ /nd, (see for example
Lemma 2 in Cai and Brown (1998)). Note that, because of orthogonality of
Wiscn, the inverse DWT (IDWT) is simply given by f = WL, d, where WL
denotes the transpose of W,,x,. If n = 27 for some positive integer .J, the DWT
and IDWT may be performed through a computationally fast algorithm (e.g.,
Mallat, 2009, Section 7.3.1) that requires only order n operations. Hereafter, the
coarsest wavelet decomposition level jg will be chosen to be the closest integer
to log,(log(n)) + 1, as suggested in Antoniadis, Bigot and Sapatinas (2001).

Let us adopt a vector-matrix form of the nonparametric model given by
equation (1.1):

Y=Ff+¢€

for Y = (Y1,...,Y)T, f = (f(t1),..., f(t.))T and € = (e1,...,€,)T. After
applying a linear and orthogonal discrete wavelet transform W, ., the above
discretised model becomes

z=7+E, (2.1)

where z = Wy, Y, v = Wyxnf and € = W, €. The orthogonality of the
DWT matrix W, «, ensures that the transformed noise vector € is still dis-
tributed as a Gaussian white noise with variance o2I,,. Hence, the representa-
tion of the model in the wavelet domain not only allows to retain the linear
structure of the model but also to exploit in an efficient way the sparsity of the
wavelet coefficients in the representation of the nonparametric component.

A key step in classical wavelet regression is to estimate the true wavelet
coefficients v = W, «, f by thresholding the empirical wavelet coefficients z =
WixnY . It is known that such wavelet thresholding estimators are special cases
of penalized least-squares estimators (for example Antoniadis and Fan, 2001).
That is, a thresholded estimator for 4 can be obtained as the minimizer of

2z = ¥I* + pr(7),

for some suitable penalty function py with penalty parameter A. Given a penalty
function py which is a nonnegative, nondecreasing and differentiable on (0, c0),
the solution to the minimization of the above problem exists and is unique
(Antoniadis and Fan, 2001).

When pa(-) = Al - | (¢1 penalty) the corresponding estimator is obtained by
the soft-thresholding operator (Antoniadis, 2007)

|0, if Ju] <A
Osoft (15 A) = { r—sgn(u)X, if |u| > A (2.2)
Several methods exist to select an appropriate threshold value, A, such as the
SUREshrink wavelet regression procedure of Donoho et al. (1995), the cross-
validation of Nason (1996), the universal threshold A(n) = o0+/21logn of Donoho
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and Johnstone (1998) or the EbayesThresh procedure of Johnstone and Silver-
man (2005). A general review about some thresholding selection methods can
be found in Antoniadis, Bigot and Sapatinas (2001).

2.2. Finite interval wavelet transform

To be able to perform the wavelet regression in [0, 1] by the discrete wavelet
transform described above we have used periodic wavelets and scaling func-
tions, which handle the boundaries by imposing periodicity of the regression
function. When such an assumption is not satisfied artificially large wavelet co-
efficients may be created at the boundaries. A way to solve this problem is to use
a particular wavelet basis for L2[0, 1] developed by Cohen, Daubechies and Vial
(1993) which is closely connected with Daubechies’ orthonormal and compactly
supported wavelet basis of L?(R). This is accomplished by defining special scal-
ing and wavelet functions at the boundaries as linear combinations of original
scaling and wavelet functions. This approach naturally preserves regularity and
refinability of the wavelet system and maintains orthogonality, therefore an ap-
propriate Discrete Wavelet transform (DWT) algorithm can be applied. In prac-
tice if M denotes the number of vanishing moments of the wavelet system (or
equivalently M — 1 is the maximum degree of exactly reproducible polynomials
by the wavelet system), then M boundary left scaling and wavelet functions are
defined at each scale j, (b]l-’k, wfk, k=0,...,M —1, starting from the generating

OL(t) and BE(t) as ok (1) = /26 (27¢) and ¥L (1) = 2/20F (271); analogously
M boundary right wavelet and scaling functions are defined at each scale 7, ¢ﬁ€,

i, k=2 —M,...,27 — 1. Together with the 2/ — 2)M interior unaltered scal-
ing and wavelet functions ¢ (t) = 27/2¢(27t — k) and v, (t) = 27/2(27t — k),
k=M,...,272 — M — 1, they represent a full multiresolution analysis on the
finite interval. From a DWT perspective special filters are introduced at the
left and right of the interval depending on the scale j, allowing a more involved
implementation of a modified Discrete Wavelet Transform.

Under such a framework, the regression function f can be represented by
(index fi means finite interval)

M-1 290 —M—1 290 -1
fi
t) = Z Cjok%LOk(t) + Z CiokDjok (t) + Z cjokqbﬁ)k(t)
k=0 k=M k=230 —M
[e’e] M—-1 2 1
+ 2| D diwsii(®) Z o0 Z dirti(t) |
j=jo \ k=0 k=M k=2i —

(2.3)

€ [0, 1], provided that 2% > 2M so that boundary scaling and wavelet func-
tions (and corresponding filters) do not overlap.

After applying again the finite interval adapted discrete wavelet transform
the nonparametric regression problem can be written in matrix notation

wh

nxn
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as
z="+E¢, (2.4)

where z = Wi | Y, v =W  fis the vector of corresponding coefficients and
é = Wl e And once again wavelet regression estimation can be achieved by

least squares penalization, as for the periodic case.

2.3. Basis expansions

The wavelet regression methodology discussed in the previous subsections, is
designed for treating dyadic samples of equispaced data. The application of a
wavelet analysis to irregularly spaced samples, eventually random, say T,, =
(T1,...,T,)T, has been a subject of study for more than ten years. Most meth-
ods in the area work with a pre- and/or post-processing of the data in order
to translate the problem into an equispaced one. Cai and Brown (1998) decom-
pose the nonequispaced data into a warped wavelet basis and then project this
decomposition onto a regular wavelet basis. Antoniadis and Pham (1998) imple-
ment a direct discretisation of a continuous wavelet analysis on the irregular grid
to find numerical values for wavelet coefficients corresponding to regular basis
functions. Kovac and Silverman (2000) interpolate the irregular observations in
intermediate regular locations before starting the wavelet analysis. These and
other methods require user-driven preprocessing, that might become difficult or
even fail in case the data are “very” non-equidistant and are still affected by
boundary problems. The idea is then to use wavelet basis functions evaluated on
irregular grids as in Antoniadis and Fan (2001) and Wand and Ormerod (2011)
as it is done for other functional bases such as for example B-splines, using a
basis expansion based approximation for the nonparametric function f, which
provides a way of handling nonequispaced designs.

When the nonparametric function f is supposed to be smooth one may use an
approximation by its expansion on O’Sullivan splines basis functions {Bg}sen:

OO} (2.5)
=1

where m is an appropriate truncation index that is allowed to increase to infinity
with n. We assume that the By are in canonical form (e.g., Wand and Ormerod,
2008, Section 4). Under reasonable smoothness assumptions, the regression func-
tion can be well approximated by the above expansion and its estimation is
therefore equivalent to estimate the coefficient vector o = (ay, . .., )T . Using
the O’Sullivan basis construction described in Wand and Ormerod (2008) it is
easy to compute the corresponding regression n x m matrix of the O’Sullivan
basis functions evaluated at the T, irregular grid, i.e.

Bi(Ty) ... Bp(Th)
B=|
Bi(T,) ... Bm(Th)
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and adopt a vector-matrix form of the nonparametric regression model (1.1) to
get:
Y ~ Ba+e, (2.6)

for Y = (Y1,...,Y,)T and € = (e1,...,e,)T. The vector of spline coefficients a
can be estimated by minimizing an objective function of the following form:

f = argmin {1 > (Y f(T)) + AJ(f)} ) (2.7)
fewspo) | M

where the parameter A\ is a smoothing parameter that controls the trade-off
between fit and smoothness.

The standard estimation procedures assume a quadratic form in the spline
coefficients for the penalty J(f) (e.g., Silverman, 1985; Eilers and Marx, 1996;
Wood, 2006). In this case, A can be selected by minimisation of the gener-
alised cross validation (GCV) score, the generalised Akaike’s information crite-
rion (AIC), or restricted maximum likelihood (REML) estimation, to name a
few. The computational methods of Wood (2006) implemented in the R-package
mgcv are available to estimate f minimising (2.7). Morever, it can be shown,
when s > 1 (e.g., Du, Parmeter and Racine, 2013, Proposition 2.1), that under
appropriate conditions on the design when it is fixed or on its distribution when
it is random, if A ~ n~2lJ/(2Ls]+1) then the solution of (2.7) has the following
asymptotic rates:

R(f, f) = O(n—2LsJ/(2LsJ+1)).

Thus f is consistent with convergence rates similar to those obtained in the
equidistant fixed design case using local polynomials. However, other penalties
can be used to impose some sparseness constraint on the coefficients.

When the nonparametric function is not smooth one can approximate it using
instead wavelet bases, as in Antoniadis and Fan (2001) and Wand and Ormerod
(2011). More precisely, we may use its expansion on wavelet basis functions
{Wete:

K
F#) =Y vWi(t), (2.8)
=1

where K is again an appropriate truncation index that is allowed to increase to
infinity with n. Again, for f within some Besov ball, f can be well approximated
by the above expansion and the estimation is therefore equivalent to estimate
the wavelet coefficient vector v = (71, ...,vx)?. Similarly to the spline case, as
alluded to in Antoniadis and Fan (2001) and implemented in Wand and Ormerod
(2011), we can also define the design matrices containing wavelet basis functions
evaluated at T'. We will denote again by W the corresponding wavelet regression
n x K matrix of the wavelet basis functions evaluated at T' (see the Appendix
for a brief description of such a construction), i.e.,

wi(Ty) ... Wg(Th)
w=|

Wi(T,) ... Wk(T,)
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with a corresponding vector-matrix form given by
Y ~ W~ +¢, (2.9)

for Y = (Y1,...,Y,)T and € = (e1,...,6,)T. So, estimating f is equivalent to
estimate the wavelet coefficient vector v. However, the fact that f belongs to a
Besov space implies sparsity of the wavelet coefficients and therefore the wavelet
vector « is obtained by minimizing an objective function of the following form:

K

1
§||Y—W’7Hi+ZPA(|%|), (2.10)
k=1

using some efficient penalties Py in terms of estimation and model selection
consistency as the ones discussed in Antoniadis (2007).

Directly optimising (2.10) can be tricky for a given penalty function, espe-
cially when the penalty is non convex. To tackle the optimisation, it is more
convenient to use an iterative thresholding viewpoint with a thresholding func-
tion corresponding to the selected penalty (e.g., She, 2012; Daubechies, Defrise
and Mol, 2004; Bredies, Lorenz and Reiterer, 2014)). The reader may also look
in Antoniadis (2007) for a survey on the one-to-one correspondence between
threshold functions and penalty functions. It can be shown, using Theorem 2.1
of She (2012), that, provided that the spectral norm of the design matrix W
is not large, and whatever the starting value of = is, the iterated thresholding
estimates minimise (2.10). The condition on boundedness of the spectral norm
of W is easily obtained by rescaling the vector of coefficients v and the penalty
parameter .

Using the results of Bunea, Lederer and She (2014), assuming that K grows
to infinity at an appropriate rate in such a way that a compatibility condition
holds for the design matrix W rescaled by some constant Cj, assuming a finite
sparsity index less than n and a bounded entropy on the class of the irregular
nonparametric regression functions, the penalized estimation produces estimates
f that are consistent with optimal rates R(f, f) = O(n~2s/(2s+1)),

The above results on regression splines and regression wavelets, can be used
to derive some new estimation procedures that tackle the boundary problem in
a similar fashion as for the equidistant design case.

3. Boundary treatment in wavelet thresholding with equidistant
design data

As noticed in the Introduction although classical wavelet regression (assuming
periodic boundaries) provides reasonable fits far away from the boundaries, often
artificial wiggles appear at the boundaries, one reason being that the wavelet
transform filtering operations at the boundaries require values of the regression
function outside its supported range. We will therefore review in this section first
some of the existing methods to treat boundary problems in wavelet regression
with fixed equidistant design, namely polynomial wavelet regression (PWR)
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and local polynomial wavelet regression (LWPR), before proposing our adaptive
combination of local polynomial and wavelet regression estimators with sound
asymptotic properties.

3.1. Polynomial wavelet regression (PWR)

The polynomial wavelet regression estimator (PWR) was proposed by
Oh, Naveau and Lee (2001). It is based on a combination of a wavelet based
regression estimator fw and a low-order polynomial fit fp. The resulting esti-
mator of f, fpw is written as

d 270 -1 J 211
fow(®)=fe)+fw() =" Bt Y iondjor(Hy_ D ditbju(t), t € [0,1],
=0 k=0 j=jo k=0

(3.1)
where fp(t) = Z(Z:O Bet! is a polynomial estimator of degree d. The use of fpw
requires the choice of d as well as the threshold value A used for estimating the
wavelet coefficients in fyy. With appropriately chosen d and A, it is demonstrated
in Oh, Naveau and Lee (2001), both analytically and empirically, that frw is
superior to fy. For this, it is desirable to maintain the orthogonality between
the set of polynomial basis {t,...,t?} and the wavelet basis. This means that
the equations [t (t)dt = [t*¢(t)dt = 0 have to be satisfied for £ = 1,...,d.
Wavelets with such properties were constructed in Daubechies (1992) and named
Coiflets. Hence, the use of Coiflets with at least d+ 1 vanishing moments implies
that the polynomial regression term is orthogonal to the wavelet regression term.
This orthogonality property allows Oh, Naveau and Lee (2001) to obtain some
asymptotic results showing that the PWR estimators are competitive with other
nonparametric procedures retaining the asymptotic optimality of the wavelet
decomposition and reducing the edge effects.

On the practical side, several automatic methods for choosing both d and A
are proposed by Lee and Oh (2004). They are based on estimating values of
d and X that aim to minimize an estimate of the L2-risk between f and fpyw.
We only describe here one of the proposed methods. The interested reader is
referred to Lee and Oh (2004) for a description of other approaches. To choose
d a criterion similar to Mallow’s C), is used with the polynomial estimator fp.
Then the SUREshrink or the EBayesThresh wavelet regression procedure (e.g.,
Antoniadis, Bigot and Sapatinas, 2001) is applied to choose the A that aims to
minimize the risk between f — fp and fw, where fw is obtained by applying
ordinary wavelet regression to the polynomial residuals Y; — fp(¢;). Note that
due to the use of an appropriate Coiflet basis, fw is the same as the wavelet fit
obtained on the original observations Y;.

3.2. Local polynomial wavelet regression (LPWR)

The use of PWR for handling boundary problems works very well when the
polynomial fit fp is able remove the non-periodicity in the data, so the remaining
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signal can be well estimated using wavelet thresholding with periodic boundary
conditions. However, due to the global nature of fp, for those cases when f
has complex boundary conditions or has some abrupt changes present near
the boundaries, PWR does not work well. Lee and Oh (2004) proposed a new
method which will also work well under such situations. The basic idea behind
the proposed method is to introduce a local polynomial regression component
to the wavelet shrinkage. Since local polynomial regression produces excellent
boundary handling (Fan, 1992; Hastie and Loader, 1993), it is expected that
the addition of this component to wavelet shrinkage will result in equally well
boundary properties. Their local polynomial wavelet estimator can be written
as

frpwr(t) = fue(t) + fw(t). (3.2)

The LPWR estimator is computed through an iterative algorithm inspired by
a backfitting type algorithm. The following steps summarize the key points for
finding the final local polynomial wavelet regression estimate, fi,pwr-

1. Select an initial estimate f(o) for f and let prWR = f(o).
2. For j =1, 2,... iterate the following steps:

(a) Apply wavelet thresholding to the residuals Y; — fLPWR(ti) and obtain
f \%) (ti)-
(b) Estimate fﬁjp) by fitting a local polynomial regression to Y; — f\%) (t;).
3. Stop if fupwr(t) = fAI(J]P) )+ f\(;\],) (t) converges.

To use the above algorithm, one needs to choose the initial curve estimate f (0)
in Step 1 and the smoothing parameter for the local polynomial fit in Step
2(b). To do so, Oh and Lee use Friedman’s super-smoother (available as supsmu
in R), while for the smoothing parameter for computing the local polynomial
estimator, they use cross-validation. The numerical experiences they provide in
their simulation study, using their R-code hybrid.r, suggest that the above
algorithm converges very quickly.

3.3. Proposed adaptive combination of two regression estimators

Inspired by the LPWR strategy, we are now proposing an adaptive combination
of local polynomial and wavelet regression estimators with sound asymptotic
properties.

The local polynomial estimator is based on stronger assumptions on the re-
gression function than the wavelet regression one and thus, with appropriately
chosen hyper-parameters, the asymptotic rates of convergence are different. We
will adopt a linear combination of the two estimators where the weights are
estimated by Stein’s Unbiased Risk estimation (SURE) in such a way that the
adaptive estimator retains the optimal rates of convergence. The technique used
here is similar to the one adopted by Burman and Chaudhuri (2011) who com-
bined a parametric estimator (rate n~!) with a linear non-parametric estimator
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to obtain an estimator with optimal rates. The main difference is that we do
not need for one estimator to be parametric, as long as its rate is not faster
than n~!, and also in that we combine a linear estimator with a nonlinear one
in what follows.

Let us first recall also that for any s > 0, the Sobolev space W3 ([0, 1]) with
non-integer regularity index s > 1/2 is defined as the space of tempered dis-
tributions whose Fourier transforms are square integrable with respect to the
measure (1 + |z|?)* on [0,1] (Hérmandere, 1989, p. 240). When s is an integer,
it coincides with the space of functions f having continuous derivatives of or-
ders up to s — 1, and a square integrable derivative of order s. By the Sobolev
embedding results concerning Besov spaces on the interval, which can be found
in, for example, Donoho et al. (1996), we have B3 ,[0,1] C W3[0,1] C WQLSJ [0, 1]
for any s > 1/2, the inclusion being continuous.

A local polynomial estimator is linear in the data, and when the regression
function is assumed to be within a Sobolev space W51[0,1] with |s] > 2, local
polynomial regression smoothers, with an optimal choice of kernel and band-
width, have nice sampling properties and high minimax efficiency. Our attention
is focused on a fixed equidistant design. The global L2-risk of any estimator f
is then equivalent to the expected empirical risk of the estimator, that is

Ralfi )= E <Z(f(ti) - f(m))?) “EIf-FE (33)
i=1
where ||-||2 = n~Y||-||? and ||-|| is the Euclidian norm of R™. It is then known (e.g.,
Fan, 1993) that a local polynomial estimator pr with an Epanechnikov kernel
and an optimal bandwidth h, of the order n~'/(lsI+1) i optimal in terms
of rates of convergence with an optimal rate given by ri(n) := R,(f, pr) =
If one assumes that the unknown regression function belongs instead to a
Besov space B3 ,[0,1] C W3[0, 1], then the best optimal rate is n~ 741 which is
smaller than 71 (n) since 2|s|/(2]s|+1) < 2s/(2s+1). If s > |s] then this rate,
up to a logarithmic factor, can be only attained by a wavelet threshold estimator
fw. In fact if the optimal rate obtained by wavelet thresholding is denoted by
ro(n) = n~ 7 logn, we obviously have ra(n)/ri1(n) — 0, as n — oo which
implies that ||f — fuels = Op(ri(n)) and [|f — fw|2 = Op(ra(n)).
We would like now to use a combination estimator which decides on the basis
of data which estimator to use among these two. Define the hybrid estimator

fa = OéfLP +(1- a)fWa (3.4)

which can also be viewed as a smoothed version of a pretest-estimator where
we test f € B3 ,[0,1] vs. f € W2LSJ [0, 1]\ B3 5[0, 1].

In order to focus on the main issue we will assume that the noise level in the
regression problem (1.1) is known. Note that such a restriction is not too severe
because one may robustly estimate o using wavelet regression. Let us define
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6n = inf{||f — fII2: f € B35 510, 1]} which is attained at some point g € B3 5[0, 1]
since Bj 5[0,1] is in particular convex.

3.3.1. The adaptive estimator

The Euclidian empirical distance between the true regression function f and
the hybrid estimator f, is ||f — afLp + (1 — «) fw||?, which is minimized at

o* = <fLPffW’]f_fW>. (3.5)
|l fup — fwll?

The approach chosen here is to treat this as a hyper-parameter and estimate
it using Stein’s unbiased risk estimation which is an unbiased estimate of the

loss. By equation (3.3) we have R,(f,f.) = 1E (Z?:l(f(ti) - fo/(tz))Q) =
E||lf — fal? := E(Ln(a)). Now L, (a) is equal to

1 n

Lafo) = = 37 (1 + fults)? = 2£ () ult)

n <
1=1

Direct optimization of R, (f, fa) with respect to « is not feasible since the
function f is unknown in the last term of the above expression. To proceed we
need to derive an objective that substitutes for R, (f, fa), and depends only on
the noisy data. We now state a version of Stein’s lemma with Gaussian errors
that is useful in deriving an unbiased estimator of R, (f, fa) A proof may be
found for example in Blu and Luisier (2007).

L dfalti)
Lemma 3.1. Suppose that for alli=1,...,n, E (‘a—y

) < 00. Then

E (fu(t)f(t) =B (famm - ﬁ%@) .

Once the regression estimates are computed for some fixed bandwidth hy,
and some fixed threshold A, of the right order, the optimum estimator & is
computed by minimizing an unbiased estimator of E(L,,(«)) derived as follows
using Lemma 3.1:

E(C.(a)) = - 3 (Yf + falts)? = 2Yifults) + 20278%3(/?1‘)) prs
=1 )

Both 2 g‘;,(,ti) and 6@"},(,“) can be easily computed using results in Blu and Luisier
(2007). We can now state the following theorem that outlines the asymptotic

behavior of our hybrid estimator:

Theorem 3.1. Suppose that 6,, tends to zero as n tends to infinty. Then
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Op(ri(n)), if 6, > r1(n)
o L,(a*)=4¢ Op(dn), if ro(n) <6, < ri(n)
Op(ra(n)), if §, < ra(n).
o if ro(n) is slower than n=*, then ||f — fal2 = | — far I2(1 4 0p(1)).

The proof relies upon some Lemmas very similar to Lemmas 5.1, 5.2 and 5.4
in Burman and Chaudhuri (2011) and it is given in the Appendix.

Remark 3.1. The simple combination approach described above, even when
using the SURE principle to estimate the mizing coefficient, may produce poor
results in practice because it does not take into account the correlation induced by
the fact that both nonparametric estimators are estimated on the same data set.
Of course this poor behavior could be enhanced by using wavelets that are orthog-
onal to polynomials, like Coiflets. If one restricts attention to combinations that
are linear in the estimators, computing the weights that mimic the least squares
oracle weights may also be problematic in the non asymptotic sense since the re-
sulting estimated coefficients, even when using the SURE principle, may overfit
the data and therefore present a gemeralization error that can be poor. To atten-
uate this correlation problem one could use stacking regression for combining
the estimates. Stacking was first presented by Wolpert (1992), who considered
“neural networks”, and extended to statistics by Breiman (1996), who consid-
ered “stacked regression” and provided some heuristic and numerical results to
justify a method for combining estimators without suffering of the correlation
problem and the generalization error. To avoid overfitting the weights are com-
puted by minimizing a cross-validated squared error loss, where each estimator
to be combined is estimated on the training data and the prediction errors are
computed on the leaved-out test data. While this is not a problem for local poly-
nomial estimators, it may be a problem when considering wavelet regression on
nonequidistant data, since the DWT heavily relies upon equidistant data. How-
ever this idea will be pursued later in this paper, when considering regression on
non-equidistant or random designs data.

3.4. Some other methods: trend filtering

We give here a brief background of ¢; trend filtering, presented as a nonparamet-
ric regression method that uses an ¢;-type penalty, and which is able to adapt
to local differences in smoothness and achieve the minimax rate of convergence
for weakly differentiable regression functions of bounded variation (Tibshirani,
2014). An implicit assumption with trend filtering is that the design points are
evenly spaced. Assuming that ¢; < to < --- < t,, are unique and equally spaced,
for a given integer k > 0, the kth order trend filtering estimate ,é = (Bl, ceey Bn)
of (f(t1),..., f(tn)) is defined by a penalized least squares optimization problem

- 1
B = argmin S |Y — B[|3 + A D@V, (3.6)
Bern 2

where D+ ¢ Rn—k=1)xn ig the k41 order finite difference matrix and A > 0
is a tuning parameter. The constant factor n*/k! multiplying A is unimpor-
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tant, and can be absorbed into the tuning parameter A\, but it will facilitate
comparisons in future sections.

When k& =0,

-1 1

DW = o € Rn—1xn, (3.7)

and so ||[DMG|; = Z?gll |B; — Bit1|. Hence, the constant trend filtering is
the same as one-dimensional total variation denoising (e.g., Rudin, Osher and
Fatemi, 1992). When k =1

1 -2 1

D — o € R(=2xn, (3.8)

In general, as described by Tibshirani (2014), D®*+1 = D) pk),

Apart from requiring unique and equally spaced observations, (3.6) has one
parameter per data point, no intercept, and the design matrix is the identity
matrix. For a general k, the kth order trend filtering estimate has the structure of
a kth order piecewise polynomial function, evaluated across the inputs t1, ..., t,.
The knots in this piecewise polynomial are selected adaptively among t1, ..., t,,
with a higher value of the tuning parameter A (generally) corresponding to fewer
knots. Taking a A of the order n'/(?#*3) leads to an asymptotic rate faster than
the minimax rate over Sobolev spaces (Tibshirani, 2014, Theorem 1).

4. Proposals for handling the boundary problem in the general case
4.1. Spline-wavelet adaptive combination

For a fixed nonequidistant design or even a random design one may still use
the simple adaptive combination approach described in Subsection 3.3 applying
the SURE principle to estimate the mixing coefficients with similar asymptotic
results, since the rates of each estimator, based on splines or wavelet expansions
(Subsection 2.3), are similar to those evoked for local polynomial estimators
and wavelet thresholding estimators. Moreover, since no restriction is required
on the design, “stacked regression” is also a possible option for combining spline
and wavelet regression estimators without suffering of the correlation problem
between the two estimates.
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4.2. Spline-wavelet stacking

We will now describe with some extra details how stacked regression is per-
formed with the two basis expansion estimators. To simplify notation, we will
call f1 the optimal spline based estimator and f2 the optimal wavelet expan-
sion estimator. Optimality here is regarded in an asymptotic sense, that is the
regularization parameters for the splines penalty and for wavelet penalization
are fixed but of the right asymptotic order. In practice however these hyper-
parameters are chosen in a data dependent way when computing the estimates.
Stacked regression combines linearly the two estimators fj, 7 = 1,2 to obtain
fstack given by R . .

fstack(t) = ﬁlfl(t) + ﬂ2f2(t)7 te [07 1]7 (41)

where the estimator 8 = (f1, B2) of the parameters in eq. (4.1) is obtained as

B =argminy (vi- A0 - @fé‘i’(mf :
1=1

BEeR?

with f;ﬂ) (t;) the leave-one-out estimate of the j type estimator at the design
point t;.

By using the cross-validated predictions stacked regression avoids giving un-
fairly high weight to models with higher complexity. There is a close connection
between stacking and winner-takes-all model selection. If we restrict the mini-
mization to weight vectors that have one unit weight and the rest zero, this leads
to the model choice returned by the winner-takes-all based on the leave-one-out.
Rather than choose a single model, stacking combines them with estimated op-
timal weights. This will often lead to better prediction, but less interpretability
than the choice of only one of the models.

4.3. Matrix stacking regression of spline and wavelet bases

An alternative way of mixing wavelet and spline bases estimators is to stack the
corresponding matrices of the bases.

Let S be the matrix of the spline basis and W the corresponding one for the
wavelet basis (Subsection 2.3). Then the regression model writes up as

Y~a+ Sys+Wyw +e€=SW+ +g,

with SW = [1y S W] being the matrix stacking S and W (and the in-
tercept term) and v = (o, s, yw) the set of intercept and spline and wavelet
coefficients, respectively, to be estimated. As before a penalization term can be
included in the regression resulting in the minimization of the following func-

tional:
Ks+Kw+1

1
min 3 [Y — SWo| + Z Pr(|D),s

with Kg and Ky being the number of spline and wavelet coefficients, respec-
tively. Inclusion of the spline term is intended to improve accuracy at boundaries.
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4.4. Adaptive regression mixing and aggregation

In applications many more nonparametric regression procedures have been de-
veloped in the literature and studied both theoretically and through systematic
numerical investigations. Since the model noise level and the true regression
function are unknown, the task of identifying the best among several estimation
procedures is typically very difficult. Therefore, there is an advantage if one con-
siders a list of distinct nonparametric regression procedures so that at least one
of them is optimal or well-behaving for the unknown underlying data generating
process. For the goal of estimating the regression function, as is the focus in this
paper, one approach is to combine the various estimation procedures by a proper
weighting of estimates from them. An example of such an approach, when at-
tention is restricted to estimators based on regularized linear expansions of the
regression function in either spline bases or wavelet bases, is stacking regression
proposed in the previous subsection. If the combination leads to a performance
similar or close to the best method in each scenario of the underlying data gen-
eration process, the combined estimator or prediction can outperform all the
candidate procedures in repeated applications across different scenarios of the
data generation process.

Combining regression procedures has been studied and allows to prove various
interesting theoretical properties. Oracle inequalities show that properly com-
bining arbitrary regression procedures leads to a risk close to the best among
a target class of combinations of the candidate estimators/predictions plus a
minimax-rate optimal “price of combining” that reflects the largeness of the
class of allowed combinations; see Chen and Yang (2010) for a literature review.
Successes of combining different predictions in applications have prompted more
interest.

It is not our purpose here to combine all existing nonparametric procedures.
We will therefore restrict our attention to the class of regularized linear expan-
sions of the regression function in either spline bases or wavelet bases, and two
supplemental methods developed recently in the machine learning literature
that may handle regression function with heterogeneous smoothness, namely
spatially adaptive regression splines with accurate knot selection schemes and
{1 trend filtering. After briefly describing each of these procedures in the fol-
lowing, we will combine them using an aggregation method developed by Yang
(2001) and called Adaptive Regression by Mixing (ARM). Results from Yang
(2001) and Catoni (2004) show that the combined regression estimator achieves
the best performance offered by the candidates in an accumulated risk.

Spatially adaptive regression splines (SARS) Usually, good approxima-
tions of inhomogeneous functions by spline functions require a set of highly
unevenly distributed knots. Zhou and Shen (2001) proposed an adaptive spline
procedure based on a new knot selection scheme for nonparametric regression.
The proposed procedure uses certain special local properties of spline function
in knot selection and thus overcomes the knot confounding problem and high
computational complexity in adaptive estimation encountered by spline proce-
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dures based on the traditional knot addition and deletion method. To improve
computational efficiency of the knot selection, for a spatially inhomogeneous re-
gression function that is smooth in one region and nonsmooth in another region
(for example the boundaries or the vicinity of change-points), one needs to in-
sert more knots in areas where the regression function is less smooth. To achieve
this task the authors use of a guided knot search, which makes the search more
efficient. We will not describe the method further here but the interested reader
is referred to Zhou and Shen (2001) for details and properties of their estimates.
We are grateful to the authors for providing an implementation in R code of
their algorithm (SARS).

{1 trend filtering When we reviewed trend filtering we have assumed that
the design locations are implicitly evenly spaced; Ramdas and Tibshirani (2016)
developed an algorithm to extend ¢; trend filtering to irregularly spaced data
using a specialized ADMM algorithm. Fortuitously, there is little that needs to
be changed with the equidistant trend filtering problem when one moves from
equispaced design points to arbitrary ones; the only difference is that the oper-
ator D+ g replaced by D®*+1)  which is adjusted for the uneven spacings
present in the design. These adjusted difference operators are still banded with
the same structure, and are still defined recursively. Under appropriate regu-
larity conditions on the design, the resulting #; trend filtering retains the same
asymptotical optimality as for the equidistant design case.

We focus now on the adaptive regression by mixing (ARM). When the noise
is normally distributed, the ARM uses least squares as a discrepancy measure
in the core step to apportion the weights to each candidate, and leads to good
theoretical results (Yang, 2001). We apply K nonparametric regression proce-
dures on the data: procedure j yields an estimator fj. Denote the set of the
K candidate methods by I'. For simplicity, assume that n is even and that the
data are sorted. The ARM algorithm is:

Step 1. Split the data into two parts Z() = {(T},Y;),i = 1,3,...,n — 1} and
7P = (T3,Y;),i = 2,4,...,n}.

Step 2. Based on Z(M)| apply all the estimation procedures in I' to get the
regression estimates fj, j =1,..., K, and compute the mean squared
error (jj =25 oi— £i(T))? for each candidate procedure j.

Step 3. For each procedure j € I', predict Y; by fj (T;) for Z@ and compute
the overall measure of discrepancy D; = 3,0, (Y — f3(Ti))>.

Step 4. Compute the weight for procedure j as

VA[/v . dj—n/Q exp(—Dj/cij)
Ji= —n -
Zkel" dy, /2 exp(—Dy./dy.)

(4.2)

Step 5. Let
farm = Z Wi f;.

jer
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Assuming that K is finite and fixed and that each fj is asymptotically optimal
within the class of functions it is designed to estimate, the resulting estimate
is asymptotically as good as the best estimate in I' (Yang, 2003, Theorem 1).
Such a result justifies therefore to consider such an estimator for correcting the
boundary problem.

4.5. Greedy pursuit and best basis selection from multiple libraries

In this subsection we handle the boundary problems by approximating the re-
gression function f by a finite linear combination of elements of a given dic-
tionary D of functions. Here, by dictionary, we mean a union of several bases
or collections of general waveforms from L2([0,1]). One of the motivations for
utilizing general overcomplete dictionaries rather than orthonormal systems is
that it is not clear which orthonormal system, if any, is best for representing
or approximating f. Thus, dictionaries are preferred and to manage the num-
ber of computations matching pursuits algorithms will be used with the aim to
build “suboptimal yet good” finite approximations through a greedy selection
of elements within the dictionary D.

We shall focus our attention to the BSML procedure recently proposed in
Sklar et al. (2013). It selects basis functions adaptively from the union of mul-
tiple libraries, where each library consists of basis functions with similar forms
and properties. Compared to using a single library, the advantage of using mul-
tiple libraries is that only relatively few basis functions need to be selected from
each library to approximate the target function, particularly if the target func-
tion is spatially inhomogeneous and if the basis functions in different libraries
capture different inhomogeneous features found in the true function. There are
infinitely many choices of the libraries. Libraries may be selected from different
families including Fourier, spline, radial, wavelet bases and so on. They may
also be selected from different types within a family. We can have B-splines,
truncated polynomials and reproducing kernel representers for the spline fam-
ily. Within each type, we can specify different orders of basis, e.g., linear or
cubic for polynomial splines. Wavelets of different types for wavelet families.
Within each type, we can specify different filter numbers, resulting to more or
less smooth wavelets.

To briefly describe the procedure, let us say that BSML starts with a null
library Ly, which contains all the basis functions that will be included in the
model automatically. Let m = |Lo| and M be a pre-specified maximum number
of basis functions we want to select (including those in £g). The number M is
closeley related to the best rate of “suboptimal yet good” finite approximation
through the greedy selection of elements within the dictionary union of multiple
libraries. Basis functions are selected from L additional libraries that define the
dictionary D one at a time. At each step k, denote the sequentially selected basis
functions as by, for k=m+1,...,M. Let By = {by,...,bx} for k=m,..., M,
where B,, = Ly. Write “model B” for “a linear combination of the basis func-
tions in By”, and also My, for the modeling procedure that includes both basis
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functions selection and estimation steps. The BSML procedures utilize the gen-
eralized degrees of freedom (GDF) to measure the complexity of a modeling
procedure. This approach can be computationally demanding, since the GDF
needs to be estimated at every step of the forward selection process. At each
forward selection step, a greedy search for only one basis function to add to
the current model My, is performed. For more details on the procedures the
interested reader is refereed to the paper by Sklar et al. (2013).

To explore numerically the advantage of multiple libraries of basis functions
using advanced model selection methods for treating the boundary problems in
nonparametric regression for functions of heterogeneous smoothness, we have
used a collection of R functions available in the R package bsml whose source
can be downloaded from Yuedong Wang’s web site.

4.6. Gaussian processes and stochastic partial differential equations

As suggested by one of the reviewers of our work, another possibility to derive
flexible models which are practical to work with for estimating functions from
noisy data are Gaussian processes (GP) and stochastic partial differential equa-
tions (SPDE). We would like to therefore add in this subsection some minor
additional discussion concerning these two approaches.

A basic idea on how Gaussian Process models can be used for such a task is by
formulating a Bayesian framework for regression. In order for the GP techniques
to be of value in practice, one must chose between different mean and covariance
functions in the light of the data at hand, reflecting any prior knowledge about
the structure of the function of interest (a process that is referred to as training
the GP model). The interested reader is referred to the book by Rasmussen and
Williams (2005) for a comprehensive exposition to Gaussian Process regression
models. These models can also be extended to handle piecewise-smooth func-
tions with boundary constraints by adapting them for smoothing in the presence
of change-points, which may be seen as more or less abrupt changes to the prop-
erties of the observed data. The paper by Osborne, Garnett and Roberts (2010)
describes prior covariance functions for one-dimensional regression that model
change-points and faults of many different types and gives a Bayesian solution
to the smoothing of data from sources that may contain change-points and also
some MATLAB code. We prefer to not pursue this approach here since training
a GP model involves both model selection, or the discrete choice between dif-
ferent functional forms for mean and covariance functions as well as adaptation
and estimation of the hyper-parameters of these functions which could be a
disadvantage compared to the nonparametric methods discussed in our paper.

Concerning the second approach, the SPDE approach introduced by Lindgren
and Rue (2008) and implemented in the R-INLA software package (Rue, Martino
and Chopin, 2009) is also a flexible and efficient method to analyse data exhibit-
ing complicated boundary constraints. Basically, the SPDE involves applying a
differential operator D to a stochastic process, representing the structured de-
pendence among observations, but this cannot be done in the same way as when
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one applies D to a known function because the process is random and, in many
cases, realizations of it will not be suitably differentiable. Moreover, available
software implementations are difficult to customize without high-level techni-
cal knowledge, limiting application to only those models available in the soft-
ware or specially requested from software developers. We may therefore prefer
a presentation to SPDE smoothing that explicitly draw links with basis-penalty
smoothing approaches. There is a direct correspondence between smoothing and
stochastic processes, and works by Fahrmeir and Lang (2001), Lindgren and Rue
(2008) and Yue et al. (2014) show how basis-penalty smoothers in a Bayesian
framework can be interpreted within the SPDE paradigm. For practical pur-
poses, one may use the results of Miller, Glennie and Seaton (2019) and their
R-code, to better understand the implementation and theory behind the SPDE
approach. However we believe that the results obtained using such an SPDE
approach to smoothing data with typical boundary constrains addressed in our
paper compare similarly.

5. Multidimensional problems

The present paper specifically addresses unidimensional functions. However
many applications involve multidimensional problems, so that it is interesting
to briefly consider a possible generalization to this setting.

It is out of the scope of the paper to present a full theoretical treatment and
extensive experimentation. However we observe that all methods can be easily
plugged in an additive framework by relying on a backfitting procedure. On
the other side one of them is naturally suited for a multidimensional setting
without the necessity of resorting a backfitting iteration. It is the case of matrix
stacking regression (Section 4.3), where, analogously to the procedure of stacking
matrices of different bases for the same dimension of data, these stacked matrices
are further stacked across all dimensions, giving rise to a simultaneous estimate
of coefficients of the series expansion across all dimensions. In this respect we
observe that grouped penalization can also be invoked to achieve selection of
dimensions and/or regression methods.

6. Numerical experiments

The present Section introduces numerical experiments worked out on some test
functions by a selection of methods considered in the previous Section or avail-
able from the literature.

6.1. Methods

Throughout the paper, the following methods have been considered for compar-
ison (see Tab. 1 for a summary):
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SPL (Splines): the Spline expansion method discussed in Subsection 2.3 with
the Minimax Concave Penalty function (MCP) and regularization param-
eter A chosen by GCV. The degree of the Spline basis is 3 and the number
of internal knots 11 (total knots 19). Splines are claimed to be accurate
at boundaries.

WAV (Wavelets): the Wavelet expansion method discussed in Subsection 2.3
with the MCP and regularization parameter A chosen by GCV. The
Wavelet is generated from Daubechies Extremal Phase wavelets with 5
vanishing moments and maximum level 4. Due to periodicity of wavelets,
the basis is not effective at boundaries for nonperiodic functions.

CDV (CDV Wavelets): the Wavelet expansion method discussed in Subsec-
tion 2.3 with the MCP and regularization parameter A chosen by GCV,
considering the wavelet basis constructed on the finite interval wavelets
of Section 2.2. In this way the method is suited also for generally non-
equispaced and non-dyadic grids. We set the filter number to 3 and the
highest level to 4.

LPWR (Local Polynomial Wavelet Regression): the method presented in Sub-
section 3.2. It is claimed to take account of boundaries and therefore to
improve accuracy there. LPWR works only for an equispaced and dyadic
grid.

WHYBRID (Hybrid LPWR): it is an adapted version of LPWR (Subsection
3.2) where an MCP penalization term is considered for the regression of the
residuals instead of wavelet thresholding. In this way the method is suited
for not necessarily equispaced and dyadic grids. Moreover it is developed
to improve accuracy of the solution at the boundaries.

WMESH (waveMesh; Haris, Simon and Shoiaje, 2018): it is based on a wavelet
decomposition on a generally non-equispaced grid based on a linear inter-
polation scheme from wavelets on a regular grid to the actual data grid
and a penalization functional given by [y norm; in addition a proximal
gradient descent algorithm developed in Parikh (2014) is used to solve
the corresponding optimization problem. The method is suited for generic
non-equispaced grids and has no special treatment of boundary conditions.

TREND (Trend Filtering): the method described in Subsection 3.4 in its ver-
sion adapted to generic non-equispaced grid. No special treatment of
boundaries is present.

AC (Adaptive Combination): the method presented in Subsection 4.1 with
basic regressors given by SARS, Trend Filtering and Wavelet series. By
generalizing Eq. (3.4) the AC combination is obtained by unconstrained
OLS with respect to Welghts wy, we, wy in ||Y — wlfTREND - U)wa -
w3 fSARS”m with fTREND, fw and fSARS being solutions obtained by
Trend Filtering, Wavelet series and SARS, respectively. Inclusion of SARS
among the regression methods is prone to achieve a better behavior at
boundaries. The degree of the spline basis is 3. The wavelet basis is given by
Coiflets with 3 vanishing moments and a maximum level of the transform
of [logyn] — 2; MCP is used for penalization.
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TABLE 1
Methods considered for the numerical experiments. Column B indicates whether the method
is specifically suited to improve accuracy at boundaries and column M if the method is
naturally multidimensional (Y) or is strictly unidimensional (N) and can be applied to
multidimensional problems only through a backfitting procedure in an additive regression
setting. Finally the last column shows the source of the computational code.

Method Description B M Software
SPL Spline basis Y N  Code by authors
WAV Wavelet basis N N Code by authors
CDhV Wavelets on the interval Y N WAVELAB (Matlab)
LPWR Local Polynomial Wavelet Regression Y N code hybrid.R
WHYBRID Hybrid LPWR Y N  Code by authors
WMESH Wavelet basis and proximal gradient de- N N  code waveMesh.R
scent
TREND Trend Filtering N N R package glmgen
AC Adaptive Combination of Trend Filter- Y N  Code by authors
ing, SARS and Wavelet regression
SSW Stacked Splines and Wavelets Y N  Code by authors
MSR Matrix Stacking Regression Y Y Code by authors
ARM Adaptive Regression by Mixing N N R package MuMIn
BSML Basis Selection Multiple Libraries Y N R package bsml

SSW (Stacked Splines and Wavelets): the method described in Subsection 4.2.
It works for generic grids. Spline and wavelet solutions are mixed, the
former being included to improve accuracy at boundaries, see Eq. (4.1).
The number of knots for the spline basis is [N/4] with lower and upper
bounds 5 and 35, respectively. The wavelet family is Coiflet with 5 vanish-
ing moments and 2 levels of the transform. MCP is used for penalization.

MSR (Matrix Stacking Regression with Splines and Wavelets): the method
presented in Subsection 4.3, suited for generic grids and aimed at improv-
ing accuracy of the solution at the boundaries thanks to the inclusion of
splines. The same hyperparameters as SPL and WAV are used for the
spline and wavelet bases, respectively.

ARM (Adaptive Regression by Mixing): the method described in Subsection
4.4. We weight the solutions obtained by spline and wavelet basis, the
former intended to improve accuracy at boundaries.

BSML (Basis Selection Multiple Libraries): the method discussed in Section
4.5. Tt is suited for a generic grid; inclusion of a spline library is intended
to improve accuracy at the boundaries.

Several other methods and/or different variants have been included in the com-
parisons, especially mixing different regressors. They are not reported here be-
cause of poorer results. R-codes implementing the above methods as well as
the simulations and the scripts to produce plots and tables are available as
Supplementary Material.

6.2. Test functions

We consider three synthetic test functions representative of typical regularity
and/or boundary conditions to have full control of the accuracy of results. All
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functions have support in [0, 1] for simplicity. The data model is y(z;) = f(z;)+
ogi, i =1,...,n, x; € [0,1], where ¢; are i.i.d. Gaussian and o is such that the
Signal to Noise Ratio (SNR) is 3.5, with SNR being defined as SNR = var(y)/o2.
The test functions are defined as:

Sin: f(zx) = sin(1lz). It is a regular function discontinuous at boundaries

(1£(0) = fF(D = 1).

Irregular: It is a nonsmooth function with three discontinuities and 2 bumps:

f(@) = ol —2)sin <x1fg2> 1 0.4sgn (z — 0.13) +

2
+0.7sgn (x — 0.32) sgn(0.38 — ) + Z b; (1 - > ,
i=1 +
with by = 0.43, by = 0.42, [ = 0.65, [ = 0.91, w; = 0.03, wy = 0.015. The
function assumes different values at the boundaries (|f(0) — f(1)| = 7).
Heavisine: It was introduced in Buckheit and Donoho (1995) as a basic smooth
sin function with two discontinuities at x = 0.3 and x = 0.72 but with
coinciding values at the boundaries.

wj

All the functions are normalized to have standard deviation 7.

We consider two different grid designs: equispaced and random, the latter
generated by a uniform distribution in [0, 1]. Finally we choose two different
sample sizes to represent small and medium size (n = 128 and n = 512').

In order to estimate accuracy of the different methodologies we rely on the
Root Mean Square Error (RMSE) defined as

RMSE = |+ 3™ () — f(1))" (61)

i=1

with § being the estimate obtained by any method.

To evaluate in particular accuracy at the boundaries, we also computed a
specific RMSE at the boundaries (b RMSE) restricted to grid points close to the
boundaries by a maximum distance § = 0.1.

Experiments were replicated 100 times and RMSE and bRMSE were averaged
over the replicates.

6.3. Results

Tables 2 and 3, referring to the total error from experiments for the three test
functions and the two types of grid with size 128 and 512, respectively, show
that methods adapted to boundaries do improve overall accuracy of estimate.
We observe that LPWR, was not included among competitors in the case
of random grid. Moreover WHYBRID shows some instabilities for the random

IThe choice of dyadic sample size is due to the fact that LPWR is subject to this constraint,
all other methods being able to deal with any number of data points.
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grids (the more with the larger sample size) that degrade performance; therefore
it was not included in boxplots because of the corresponding high value outliers
for n = 512. On some occasions iterations diverge.

TABLE 2
Total RMSE of the selected methods for the three chosen test functions (Sin, Irregular and
Heavisine) and equispaced and random (drawn from a uniform distribution) grid of size
128. Results refer to an average of 100 replicates. Best values for each case are highlighted

in bold.
Equispaced grid Random uniform grid
Sin Irregular ~ Heavisine Sin Irregular  Heavisine
SPL 1.37 2.69 1.40 1.34 2.59 1.40
WAV 1.58 1.92 1.40 1.52 1.83 1.37
CDV 2.06 3.39 2.30 1.97 3.15 2.16
LPWR 1.09 2.26 1.27 — — —
WHYBRID  1.29 1.93 1.29 2.25 1.91 1.34
WMESH 1.73 2.53 2.00 1.76 2.13 1.91
TREND 3.69 3.16 3.68 1.82 2.21 1.90
AC 3.73 3.18 3.72 2.00 2.28 2.14
SSW 1.04 1.87 1.20 1.01 1.77 1.22
MSR 1.54 1.88 1.40 1.53 1.88 1.40
ARM 1.05 1.89 1.21 1.01 1.79 1.22
BSML 1.37 2.19 1.77 1.43 2.06 1.69
TABLE 3

Total RMSE of the selected methods for the three chosen test functions (Sin, Irregular and
Heavisine) and equispaced and random (drawn from a uniform distribution) grid of size
512. Results refer to an average of 100 replicates. Best values for each case are highlighted

in bold.
Equispaced grid Random uniform grid
Sin Irregular  Heavisine Sin Irregular ~ Heavisine

SPL 0.66 2.49 0.87 0.65 2.45 0.86
WAV 0.96 1.32 1.09 0.92 1.28 1.06
CDhV 1.69 3.19 1.94 1.65 3.13 1.89
LPWR 0.52 1.39 0.86 — — —
WHYBRID  0.74 1.35 0.85 2.15 1.31 0.95
WMESH 0.82 1.40 1.07 0.83 1.38 1.08
TREND 0.56 2.55 0.85 0.55 1.25 0.83
AC 0.75 2.83 0.99 0.72 1.22 1.02
SSW 0.54 1.46 0.83 0.53 1.41 0.82
MSR 0.76 1.42 0.92 0.74 1.37 0.93
ARM 0.54 1.46 0.83 0.53 1.41 0.82
BSML 0.77 1.51 1.13 0.78 1.44 1.11

Figures 1-2 present the corresponding boxplots that also show the variation of
the performance over the repetitions and the outliers for n = 128 and equispaced
grid and n = 512 and random uniform grid, respectively.

SSW is a clear winner among the methods because it is ranked first in 9 cases
out of 12. The closest runner is ARM, which is ranked among the best three
methods 5 times out of 12. In this respect we mention that accuracy of ARM
is very close to SSW in general. Actually both methods share common steps:
both are based on a mix of regressors (chosen the same); however ARM adopts
a 2-fold Cross Validation (without repetitions) to train the regression, while
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SSW relies on a full leave-one-out procedure. Moreover the mixing coefficients
are estimated by (constrained) linear regression in SSW, while a closed formula
(Eq. 4.2) is adopted for ARM.

WHYBRID and MSR also show quite good performances in general. All of
them outperform Splines and Wavelets, that can be considered as the prototypes
of methods for nonperiodic smooth and periodic irregular functions, respectively.

This is confirmed also when error at boundaries is considered (bRMSE, Tabs.
4 and 5).

TABLE 4
Boundary bRMSE of the selected methods for the three chosen test functions (Sin, Irregular
and Heavisine) and equispaced and random (drawn from a uniform distribution) grid of size
128. Results refer to an average of 100 replicates. Best values for each case are highlighted

in bold.
Equispaced grid Random uniform grid
Sin Irreqular ~ Heavisine Sin Irreqular  Heavisine

SPL 1.59 2.48 1.45 1.52 2.41 1.48
WAV 2.24 2.08 1.11 1.94 1.91 1.22
CDhV 2.54 3.35 2.79 2.56 3.20 2.72
LPWR 1.42 2.29 1.09 — — —
WHYBRID 1.37 1.86 1.22 2.89 1.78 1.17
WMESH 2.07 2.63 2.17 1.76 2.06 1.80
TREND 3.71 3.07 3.54 1.96 2.28 1.90
AC 3.74 3.08 3.57 2.23 2.36 2.31
SSW 1.25 1.74 1.12 1.20 1.74 1.21
MSR 1.74 1.82 1.18 1.67 1.87 1.41
ARM 1.29 1.78 1.17 1.24 1.79 1.26
BSML 1.55 2.15 1.55 1.64 2.13 1.57

TABLE 5

Boundary bRMSE of the selected methods for the three chosen test functions (Sin, Irreqular
and Heavisine) and equispaced and random (drawn from a uniform distribution) grid of size
512. Results refer to an average of 100 replicates. Best values for each case are highlighted

in bold.
Equispaced grid Random uniform grid
Sin Irreqular ~ Heavisine Sin Irregular  Heavisine

SPL 0.83 2.05 0.87 0.79 1.94 0.78
WAV 1.56 1.49 1.09 1.47 1.36 0.80
CbhV 2.28 3.33 1.94 2.30 3.23 2.57
LPWR 0.66 1.28 0.86 — — —
WHYBRID  0.73 1.35 0.85 3.62 1.39 0.75
WMESH 0.92 1.37 1.07 0.9 1.31 0.98
TREND 0.68 2.53 0.85 0.64 1.18 0.66
AC 0.96 2.81 0.99 0.90 1.21 0.98
SSW 0.69 1.28 0.83 0.63 1.24 0.69
MSR 0.88 1.34 0.92 0.84 1.28 0.79
ARM 0.70 1.29 0.83 0.65 1.24 0.69
BSML 0.93 1.57 1.13 0.93 1.48 0.94

Analyzing in greater details the results in the tables, we observe the good
behaviour of LPWR and TREND in the case of equispaced and random grid,
respectively (see in particular Figs. 1-2); both are 3rd in a virtual ranking among
methods, after SSW and ARM. If we restrict our attention to the boundaries
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(error bRMSE), we notice the good performance of LPWR (virtually ranked
2nd after SSW), that outperforms all other competitors in 3 cases out of 6.
This confirms effectiveness of the method at the boundary, but at detriment of
the performance in the middle. Finally we observe the good performances of
Splines and Wavelets on specific functions, namely Sin for Splines and Irregular
for Wavelets. In particular the latter is the first together with SSW in a virtual
ranking among the methods for this function. Actually these functions satisfy
the assumptions of the respective methods in terms of regularity and periodic
conditions.

Finally we show in Fig. 3 the average of the retrieved functions over the 100
repetitions (therefore estimating the bias of the estimators) for an equispaced
grid of size 512 and the best estimator (SSW). The estimate of the smooth
parts of the functions is very good, including boundaries. Irregular parts as
discontinuities or bumps are not satisfactory (in particular discontinuities are
not reproduced in the Heavisine function).

Summarizing we can say that conventional methods based on single regressors
and on splines or wavelets behave quite well for specific functions that meet the
assumptions they are based on. However their accuracy quickly degrades when
such requirements are not satisfied. SSW and ARM, that show some similarities
in the procedures, are the best estimators. LPWR performs well at boundaries,
for which it is designed, but not as well at the inner part of the function; in
addition it can be applied only to equispaced, dyadic grids. Its upgraded version
(WHYBRID), adapted to general grids, is degraded by some instabilities in the
case of random grids. On the contrary a mix of regressors chosen individually
with different properties and assumptions to satisfy does increase performances
of the methods. This is particularly effective at boundaries, where inclusion of a
well-behaved method there such as Splines or Local Polynomial regression is able
to greatly improve performances not only at boundaries but also everywhere.

Our experiments did not show good performances from several other methods
included in the present analysis and others not reported (PWR, CSRecSP based
on Compressive sensing (Dai and Milenkovie, 2008), SARS, several variants of
the methods introduced).

6.4. Real examples

In this Section we consider two real examples and compare the solutions ob-
tained by the two best methods (SSW and ARM) with the classical Wavelet
and Splines regression.

Motorcycle data It is the example introduced in Silverman (1985). It consists
of acceleration data (in gravity units) over time after a motorcycle crash. It is
an example of a quite smooth function (time spans a very short time, 57ms after
the impact) with boundary values that can be considered almost similar. Fig. 4
shows the fit obtained by SPL, WAV, ARM and SSW. All solutions fit the data
well, with Spline exhibiting a smoother behaviour.
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Continuous black line: synthetic function; dashed red line: average over repetitions.



U. Amato et al.

— Data -, — Data
- - Estimate - - Estimate

64

50
50

- ' e
. o .oN- - _ -
e RGN . o - - T~
s Wl i
v .,

-50
1

-100
-100

50
1

o -~ .
O e wm N L ° TN LT O N wwinT L otES L
- [ d -

-50
1

-100
-100

1.0 0.0 0.2 0.4 0.6

F1G 4. Regression of the motorcycle data by SPL (upper left panel), WAV (upper right), ARM
(lower left) and SSW (lower right). Black dots: data; red dashed line: the fit. Data of time

were normalized to [0, 1].

Wool data This example is reported in Diggle (1991). The source of data is
the Australian Wool Corporation, that recorded the price of the wool weekly
from July 1976 to June 1984. The prices are the floor price, set from the Cor-
poration, and the price actually paid for a particular grade (19um nominal
thickness in the data set), that comes out to be somewhat different. Data can
be downloaded ad the link http://lib.stat.cmu.edu/datasets/diggle. The data,
that in the time series show a seasonal trend, are complicated by a devaluation
of the Australian dollar occurred in 1983 that generated a discontinuity. A con-
sequence is that data are less regular; in addition the values at the boundaries
are completely different. Fig. 5 shows the fit obtained by SPL, WAV, ARM
and SSW. We notice incapability of a Wavelet regression to handle different
boundaries, as expected. All other methods quite well reproduce the general
behaviour of the function, with the Spline fit again being smoother and not able
to reproduce some parts showing a sharper variability.
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7. Conclusions

This paper dealt with the problem of nonparametric regression of a univariate
function when the distribution of nodes is equidistant, fixed or random. As well
known, most common and effective methods introduce artifacts at the bound-
aries when their assumptions are not satisfied by actual data (e.g., periodic
conditions). This is more pronounced with wavelets, that outperform splines
and polynomial models from the theoretical point of view when regularity of
functions is considered, but whose constraints on the boundaries are severely
tight.

The present paper introduced some ideas about how to circumvent the bound-
ary problem using as an example some of the recent and claimed most accurate
nonparametric regression methods. These include in particular mixing or ag-
gregation of models and methods based on libraries of bases. The key idea is
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to include among methods at least one accurate also for nonsmooth functions,
therefore wavelets, and one well behaved at boundaries, e.g., splines or polyno-
mial regression. As a benefit, the current methods, particularly the ones based
on wavelets, were also adapted to handle generic nodes, like nondyadic and
nonequispaced ones.

Proofs of convergence for a class of mixing methods were given in the case of
equispaced nodes. Experiments on simulated data have shown that such ideas
improve accuracy of the fit non only at boundaries but also all over the domain
of the function. Finally illustrations on two real applications were given.

The paper considered several methodologies as the basis of the ideas or simply
as a comparison. For many of them, not reported for the sake of brevity, results
came out to be poor. Among them we mention locally adaptive stacking, where
the weights assigned to the different methodologies were depending on ¢. The
idea was to weight locally the single regressions, e.g., favouring the more accurate
ones where the function is irregular or the better appropriate at boundaries. We
believe that this could be an interesting direction to investigate on.

An immediate extension of the methodologies concerns multivariate func-
tions. In this respect all the proposed methodologies can be straightforwardly
plugged in an additive framework by relying on backfitting. In addition one of
them, namely MSR, is natively ready to be applied in a multidimensional setup
without needing backfitting iterations.

Appendix A: Appendix
Proof of Theorem 3.1

First we look at the rate of convergence for the “oracle” choice a* of the hyper-
parameter «. Using a proof similar to Lemmas 5.1, 5.2 and 5.4 in Burman and
Chaudhuri (2011) it is easy to show that

1+Op((r1(n)/5n)l/2), if 0y, >’/’1(TL)
a* =< Op((6,/r1(n)'/?), if ro(n) <8, <ri(n)
Op((?"g(n)/rl(71))1/2)7 if 0,, < ra(n).

Now,
1f = Farlln = lla*(f = fup) = (1= a*)(fw = £l
< |aM(Ilf = frelln + 1= o[ fw = flin
< [a*10p (r(m)'?) + |1 = a*[{Op (ra(n)/?) + 61/}

and the first assertion of the Theorem follows from the asymptotic behavior of
a* noted above.
By construction of the oracle estimator we also have

1F = Falls = 1 = Far |17 = I far = falls = (&= @)l fre — fwll7-
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Applying the rates for both the local polynomial estimator and the SUREshrink
thresholded wavelet estimator and the derivation of & using Stein’s Lemma, it
is easy to show, under the condition on 4, stated in the Theorem, that (& —
o*)2||fup — fwl|? tends to zero as fast as || f — fo« |2 which implies the second
assertion.
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