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Abstract: State-of-the-art learning algorithms, such as random forests or
neural networks, are often qualified as “black-boxes” because of the high
number and complexity of operations involved in their prediction mecha-
nism. This lack of interpretability is a strong limitation for applications
involving critical decisions, typically the analysis of production processes
in the manufacturing industry. In such critical contexts, models have to be
interpretable, i.e., simple, stable, and predictive. To address this issue, we
design SIRUS (Stable and Interpretable RUle Set), a new classification algo-
rithm based on random forests, which takes the form of a short list of rules.
While simple models are usually unstable with respect to data perturba-
tion, SIRUS achieves a remarkable stability improvement over cutting-edge
methods. Furthermore, SIRUS inherits a predictive accuracy close to ran-
dom forests, combined with the simplicity of decision trees. These properties
are assessed both from a theoretical and empirical point of view, through
extensive numerical experiments based on our R/C++ software implementa-
tion sirus available from CRAN.
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1. Introduction

State-of-the-art learning algorithms, typically tree ensembles or neural networks,
are well-known for their remarkable predictive performance. However, this high
accuracy comes at the price of complex prediction mechanisms: a large num-
ber of operations are computed for a given prediction. Because of this com-
plexity, learning algorithms are often considered as black-boxes. This lack of
interpretability is a serious limitation for many applications involving critical
decisions, such as healthcare, criminal justice, or industrial process optimiza-
tion. This latter example is interesting to illustrate how interpretability can be
essential. Indeed, in the manufacturing industry, production processes involve
complex physical and chemical phenomena, whose control and efficiency are of
critical importance. In practice, data is collected along the manufacturing line,
describing both the production environment and its conformity. The retrieved
information enables to infer a link between the manufacturing conditions and the
resulting quality at the end of the line, and then to increase the process efficiency.
Since the quality of the produced entities is often characterized by a pass or fail
output, the problem is in fact a classification task, and state-of-the-art learning
algorithms can successfully catch patterns of these complex and nonlinear phys-
ical phenomena. However, any decision impacting the production process has
long-term and heavy consequences, and therefore cannot simply rely on a blind
stochastic modelling. As a matter of fact, a deep physical understanding of the
forces in action is required, and this makes black-box algorithms inappropriate.
In a word, models have to be interpretable, i.e., provide an understanding of
the internal mechanisms that build a relation between inputs and outputs, to
provide insights to guide the physical analysis. This is for example typically the
case in the aeronautics industry, where the manufacturing of engine parts in-
volves sensitive casting and forging processes. Interpretable models allow us to
gain knowledge on the behavior of such production processes, which can lead, for
instance, to identify or fine-tune critical parameters, improve measurement and
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control, optimize maintenance, or deepen understanding of physical phenomena.
In the following paragraphs, we deepen the discussion about the definition of
interpretability to highlight the limitations of the most popular interpretable
nonlinear models: decision trees and rule algorithms (Guidotti et al., 2018). De-
spite their high predictivity and simple structure, these methods are unstable,
which is a strong operational limitation. The goal of this article is to introduce
SIRUS (Stable and InterpretableRUle Set), an interpretable rule classification
algorithm which considerably improves stability over state-of-the-art methods,
while preserving their simple structure, accuracy, and computational complex-
ity.

As stated in Rüping (2006), Lipton (2016), Doshi-Velez and Kim (2017), or
Murdoch et al. (2019), to date, there is no agreement in statistics and machine
learning communities about a rigorous definition of interpretability. There are
multiple concepts behind it, many different types of methods, and a strong
dependence on the area of application and the audience. Here, we focus on
models intrinsically interpretable, which directly provide insights on how inputs
and outputs are related, as opposed to the post-processing of black-box models.
In that case, we argue that it is possible to define minimum requirements for
interpretability through the triptych “simplicity, stability, and predictivity”, in
line with the framework recently proposed by Yu and Kumbier (2019). Indeed,
in order to grasp how inputs and outputs are related, the structure of the model
has to be simple. The notion of simplicity is implied whenever interpretability
is invoked (e.g., Rüping, 2006; Freitas, 2014; Letham, 2015; Letham et al., 2015;
Lipton, 2016; Ribeiro, Singh and Guestrin, 2016; Murdoch et al., 2019) and
essentially refers to the model size, complexity, or the number of operations
performed in the prediction mechanism. Yu (2013) defines stability as another
fundamental requirement for interpretability: conclusions of a statistical analysis
have to be robust to small data perturbations to be meaningful. Indeed, a specific
analysis is likely to be run multiple times, eventually adding a small new batch of
data, and an interpretable algorithm should be insensitive to such modifications.
Otherwise, unstable models provide us with a partial and arbitrary analysis of
the underlying phenomena, and arouses distrust of the domain experts. Finally,
if the predictive accuracy of an interpretable model is significantly lower than the
one of a state-of-the-art black-box algorithm, it clearly misses strong patterns
in the data and will therefore be useless, as explained in Breiman (2001a). For
example, the trivial model that outputs the empirical mean of the observations
for any input is simple, stable, but brings in most cases no useful information.
Thus, we add a good predictivity as an essential requirement for interpretability.

Decision trees are a class of supervised learning algorithms that recursively
partition the input space and make local decisions in the cells of the result-
ing partition. Trees can model highly nonlinear patterns while having a simple
structure, and are therefore good candidates when interpretability is required.
However, trees are unstable to small data perturbations (Oates and Jensen,
1997; Guidotti and Ruggieri, 2019). More precisely, as explained in Breiman
(2001a): by randomly removing only 2−3% of the training data, the tree struc-
ture can be quite different, which is a strong limitation to their practical use.
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Another class of supervised learning methods that can model nonlinear pat-
terns while retaining a simple structure are the so-called rule models. As such,
a rule is defined as a conjunction of constraints on input variables, which form
a hyperrectangle in the input space where the estimated output is constant. A
collection of rules is combined to form a model. Here, the term “rule” does not
stand for “classification rule” but, as is traditional in the rule learning literature,
to a piecewise constant estimate that simply reads “if conditions on x, then re-
sponse, else default response”. Despite their simplicity and excellent predictive
skills, rule algorithms are unstable and, from this point of view, share the same
limitation as decision trees (Letham et al., 2015; Murdoch et al., 2019).

In line with the above, we design SIRUS in the present paper, a new rule clas-
sification algorithm which inherits an accuracy close to random forests and the
simplicity of decision trees, while having a stable structure. The core aggrega-
tion principle of random forests is kept, but instead of aggregating predictions,
SIRUS focuses on the probability that a given hyperrectangle (i.e., a node) is
contained in a randomized tree. The nodes with the highest probability are
robust to data perturbation and represent strong patterns. They are therefore
selected to form a stable rule ensemble model. Here, we provide a first illustra-
tion of SIRUS with a simple and real case: the Titanic dataset (Piech, 2016).
The survival status of 887 passengers are recorded, as well as various personal
characteristics: age, sex, class, number of siblings and parents aboard, and the
paid fare. SIRUS outputs the following simple set of 7 rules, which enables to
grasp at a glance the main patterns to explain passenger survival:

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

if 1st or 2nd class
& sex is female then ps = 95% else ps = 25%

if fare < 10.5£ then ps = 20% else ps = 50%

if no parents or
children aboard then ps = 35% else ps = 51%

if 2st or 3nd class
& sex is male then ps = 14% else ps = 64%

if sex is male
& age ≥ 15 then ps = 16% else ps = 72%

To generate the prediction for a new query point x, SIRUS checks for each rule
whether the conditions are satisfied to assign one of the two possible ps output
values. Let us say for example that x(sex) is female, then x satisfies the condition
of the first rule, which returns ps = 74%. Next, the 7 rule outputs are averaged
to provide the predicted probability of survival for x. The model is stable: when
a 10-fold cross-validation is run to simulate data perturbation, 5 to 6 rules are
consistent across two folds in average. The model error (1-AUC) is 0.17, close
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to the 0.13 of random forests, whereas simplicity is drastically increased: 7 rules
versus about 104 operations for a forest prediction.

First, we review the main rule algorithms and present their mechanism prin-
ciples in Section 2. Next, Section 3 is devoted to the detailed description of
SIRUS. One of the main contributions of this work is the development of a
software implementation, via the R/C++ package sirus (Benard and Wright,
2020) available from CRAN, based on ranger, a high-performance random forest
implementation (Wright and Ziegler, 2017). In Section 4, we show that the good
empirical behavior of SIRUS is theoretically understood by proving its asymp-
totic stability. Then, in Section 5, we illustrate the efficiency of our algorithm
through numerical experiments on real datasets. Finally, Section 6 summarizes
the main contributions of the article and provides directions for future research.

2. Related work

As stated in the introduction, SIRUS has two types of competitors: decision
trees and rule algorithms. More precisely, the latter can further be split into
three different kinds: classical rule algorithms based on greedy heuristics, those
built on top of frequent pattern mining algorithms, and those extracted from
tree ensembles.

Decision trees may be the most popular competitors of SIRUS because of
their simple structure. The main algorithms are CART (Breiman et al., 1984)
and C5.0 (Quinlan, 1992). However, trees are unstable as we have already high-
lighted. A widespread method to stabilize decision trees is bagging (Breiman,
1996), in which multiple trees are grown on perturbed data and aggregated
together. Random forests is an algorithm developped by Breiman (2001b) that
improves over bagging by randomizing the tree construction. Predictions are sta-
ble, accuracy is increased, but the final model is unfortunately a black box. Thus,
simplicity of trees is lost, and some post-treatment mechanisms are needed to
understand how random forests make their decisions. Nonetheless, even if they
are useful, such treatments only provide partial information and can be difficult
to operationalize for critical decisions (Rudin, 2018). For example, variable im-
portance (Breiman, 2001b, 2003a) identifies variables that have a strong impact
on the output, but not which inputs values are associated to output values of
interest. Similarly, local approximation methods such as LIME (Ribeiro, Singh
and Guestrin, 2016) or Tolomei et al. (2017) do not provide insights on the
global relation.

Rule learning originates from the influential AQ system of Michalski (1969).
Many algorithms based on greedy heuristics were subsequently developped in
the 1980’s and 1990’s, including Decision List (Rivest, 1987), CN2 (Clark and
Niblett, 1989), FOIL (First-Order Inductive Learner, Quinlan, 1990; Quinlan
and Cameron-Jones, 1995), IREP (Incremental Reduced Error Pruning,
Fürnkranz and Widmer, 1994), RIPPER (Repeated Incremental Pruning to
Produce Error Reduction, Cohen, 1995), PART (Partial Decision Trees, Frank
and Witten, 1998), SLIPPER (Simple Learner with Iterative Pruning to Pro-
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duce Error Reduction, Cohen and Singer, 1999), LRI (Leightweight Rule Induc-
tion, Weiss and Indurkhya, 2000), and ENDER (Ensemble of Decision Rules,
Dembczyński, Kot�lowski and S�lowiński, 2010). Since these methods are based
on greedy heuristics, they are computationally fast, but similarly to decision
trees, they are unstable and their accuracy is often limited.

At the end of the 1990’s a new type of rule algorithms based on frequent
pattern mining is introduced with CBA (Classification Based on Association
Rules, Liu, Hsu and Ma, 1998), then extended with CPAR (Classification based
on Predictive Association Rules, Yin and Han, 2003). Frequent pattern min-
ing is originally used to identify frequent occurrences in database mining. Since
the output Y ∈ {0, 1} is discrete and the input data can be discretized, we
can generate candidate rules for classification by identifying frequent patterns
associated with each output label. This exhaustive search for association rules
is computationally costly (exponential with the input dimension), and efficient
heuristics are used, essentially Apriori (Agrawal, Imieliński and Swami, 1993)
and Eclat (Zaki et al., 1997). The rule aggregation mechanism is specific to
each algorithm. More recently, BRL (Bayesian Rule List, Letham et al., 2015)
uses a more sophisticated Bayesian framework for the rule aggregation than the
simple approach of CBA and CPAR, while IDS (Lakkaraju, Bach and Leskovec,
2016, Interpretable Decision Sets) uses a multi-objective optimization to select
interpretable rules. Finally, CORELS (Angelino et al., 2017, Certifiably Opti-
mal RulE ListS) generates optimal rule lists for categorical data. Interestingly,
these methods exhibit quite good stability properties as we will see, higher than
decision trees, but on the other hand, their predictive accuracy is worse.

The last decade has seen a resurgence of rule models through powerful algo-
rithms based on rule extraction from tree ensembles, especially RuleFit (Fried-
man and Popescu, 2008) and Node harvest (Meinshausen, 2010). Notice that
SIRUS is also based on this principle. More specifically, RuleFit extracts all the
rules of a boosted tree ensemble (Friedman and Popescu, 2003), while Node har-
vest is based on random forests. Then, the extracted rules are linearly combined
in a sparse linear model, respectively a logistic regression with a Lasso penalty
(Tibshirani, 1996) for RuleFit, and a constraint quadratic linear program for
Node harvest. These two methods have a computational complexity compara-
ble to random forests and SIRUS, since the main step of all these algorithms
is to grow a tree ensemble with a large number of trees. However, both algo-
rithms are unstable, and both output quite complex and long lists of rules. Even
running RuleFit or Node harvest multiple times on the same dataset produces
quite different rule lists because of the randomness in the tree ensembles—see
Appendix A.1. On the other hand, SIRUS is built to have its structure converged
for the given dataset, as explained later in Section 3.

To the best of our knowledge, the signed iterative random forest method (s-
iRF, Kumbier et al., 2018) is the only procedure that tackles both rule learning
and stability. Using random forests, s-IRF manages to extract stable signed in-
teractions, i.e., feature interactions enriched with a thresholding behavior for
each variable, lower or higher, but without specific thresholding values. There-
fore, s-IRF can be difficult to operationalize since it does not provide any specific
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input thresholds, and thus no precise information about the influence of input
variables. On the other hand, an explicit rule model identifies specific regions of
interest in the input space.

3. SIRUS algorithm

Within the general framework of supervised (binary) classification, we assume to
be given an i.i.d. sample Dn = {(Xi, Yi), i = 1, . . . , n}. Each (Xi, Yi)
is distributed as the generic pair (X, Y ) independent of Dn, where X =
(X(1), . . . , X(p)) is a random vector taking values in Rp and Y ∈ {0, 1} is a
binary response. Throughout the document, the distribution of (X, Y ) is as-
sumed to be unknown and is denoted by PX,Y . For x ∈ Rp, our goal is to
accurately estimate the conditional probability η(x) = P(Y = 1|X = x) with
few simple and stable rules.

To tackle this problem, SIRUS first builds a (slightly modified) random forest.
Next, each hyperrectangle of each tree of the forest is turned into a simple
decision rule, and the collection of these elementary rules is ranked based on
their frequency of appearance in the forest. Finally, the most significant rules are
retained and are averaged together to form an ensemble model. We describe the
four steps of SIRUS algorithm in the following paragraphs: the rule generation,
rule selection, rule post-treatment, and the rule aggregation. This section ends
with a discussion of SIRUS stability.

Rule generation. SIRUS uses at its core the random forest method (Breiman,
2001b), slightly modified for our purpose. As in the original procedure, each sin-
gle tree in the forest is grown with a greedy heuristic that recursively partitions
the input space using a random variable Θ. The essential difference between
our approach and Breiman’s one is that, prior to all tree constructions, the
empirical q-quantiles of the marginal distributions over the whole dataset are
computed: in each node of each tree, the best split can be selected among these
empirical quantiles only. This constraint is critical to stabilize the forest struc-
ture and keeps almost intact the predictive accuracy, provided q is not too small
(typically of the order of 10—see the experimental Subsection 5.4). Apart from
this difference, the tree growing is similar to Breiman’s original procedure. The
tree randomization Θ is independent of the sample and has two independent
components, denoted by Θ(S) and Θ(V ), which are respectively used for the
subsampling mechanism and randomization of the split direction. Throughout

the manuscript, we let q̂
(j)
n,r be the empirical r-th q-quantile of {X(j)

1 , . . . , X
(j)
n },

with typically q = 10. The construction of the individual trees is summarized in
Algorithm 1 below.

The main step of SIRUS is to extract rules from the modified random forest.
The cornerstone of this extraction mechanism is the notion of path in a decision
tree. Indeed, a path describes the sequence of splits to go from the root of the
tree to a specific (inner or terminal) node. Since a hyperrectangle is associated
to each node, a rule can be defined as a piecewise constant estimate with this
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Algorithm 1 Tree construction
1: Parameters: Number of quantiles q, number of subsampled observations an, number of

eligible directions for splitting mtry.
2: Compute the empirical q-quantiles for each marginal distribution over the whole dataset.
3: Subsample with replacement an observations, indexed by Θ(S). Only these observations

are used to build the tree.
4: Initialize the cell H as the root of the tree.
5: Draw uniformly at random a subset Θ(V ) ⊂ {1, . . . , p} of cardinality mtry.
6: For all j ∈ Θ(V ), compute the CART-splitting criterion at all empirical q-quantiles of

X(j) that split the cell H into two non-empty cells.
7: Choose the split that maximizes the CART-splitting criterion.
8: Recursively repeat lines 5− 7 for the two resulting children cells HL and HR.

hyperrectangle as support. Therefore, to rigorously define the rule extraction,
we introduce the symbolic representation of a path in a tree. We insist that
such definition is valid for both terminal leaves and inner nodes, which are all
used by SIRUS. To begin, we follow the example shown in Figure 1 with a tree
of depth 2 partitioning the input space R2. For instance, let us consider the
node P6 defined by the sequence of two splits X

(2)
i ≥ q̂

(2)
n,4 and X

(1)
i ≥ q̂

(1)
n,7. The

first split is symbolized by the triplet (2, 4, R), whose components respectively
stand for the variable index 2, the quantile index 4, and the right side R of
the split. Similarly, for the second split we cut coordinate 1 at quantile index
7, and pass to the right. Thus, the path to the considered node is defined by
P6 = {(2, 4, R), (1, 7, R)}. Also notice that the first split already defines the
path P2 = {(2, 4, R)}, associated to the right inner node at the first level of the
tree. Of course, this generalizes to each path P of length d under the symbolic
compact form

P = {(jk, rk, sk), k = 1, . . . , d},

where, for k ∈ {1, . . . , d}, the triplet (jk, rk, sk) describes how to move from
level (k − 1) to level k, with a split using the coordinate jk ∈ {1, . . . , p}, the
index rk ∈ {1, . . . , q − 1} of the corresponding quantile, and a side sk = L if we
go the the left and sk = R if we go to the right. The set of all possible such
paths is denoted by Π. It is important to note that Π is in fact a deterministic
(that is, non random) quantity, which only depends upon the dimension p and
the order q of the quantiles. Of course, given a path P ∈ Π one can recover the
hyperrectangle (i.e., the tree node) Ĥn(P) associated with P and the entire
dataset Dn via the correspondence

Ĥn(P) =

{
x ∈ Rp :

{
x(jk) < q̂

(jk)
n,rk if sk = L

x(jk) ≥ q̂
(jk)
n,rk if sk = R

, k = 1, . . . , d

}
. (3.1)

Finally, an elementary rule ĝn,P can be defined from Ĥn(P) as a piecewise
constant estimate: ĝn,P(x) returns the empirical probability that the output Y

is of class 1 conditional on whether the query point x belongs to Ĥn(P) or not.
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x(1)

x(2)

q̂
(1)
n,7q̂

(1)
n,5

q̂
(2)
n,4

P5 = {(2, 4, R),
(1, 7, L)}

P6 = {(2, 4, R),
(1, 7, R)}

P3 = {(2, 4, L),
(1, 5, L)}

P4 = {(2, 4, L),
(1, 5, R)}

X
(2)
i < q̂

(2)
n,4 X

(2)
i ≥ q̂

(2)
n,4

P1 P2

X
(1)
i < q̂

(1)
n,7

X
(1)
i ≥ q̂

(1)
n,7

P5 P6

X
(1)
i < q̂

(1)
n,5

X
(1)
i ≥ q̂

(1)
n,5

P3 P4

Fig 1. Example of a root node R2 partitionned by a randomized tree of depth 2: the tree on
the right side, the associated paths and hyperrectangles of length d = 2 on the left side.

Thus, the rule ĝn,P associated to the path P ∈ Π is formally defined by

∀x ∈ Rp, ĝn,P(x) =

{
1

Nn(Ĥn(P))

∑n
i=1 Yi1Xi∈Ĥn(P) if x ∈ Ĥn(P)

1
n−Nn(Ĥn(P))

∑n
i=1 Yi1Xi /∈Ĥn(P) otherwise

,

using the convention 0/0 = 0, and where Nn(Ĥn(P)) is the number of ob-
servations in the node associated with P. This formal definition can be illus-
trated with the Titanic dataset presented in the introduction. For the fourth

rule, fare is the 6th variable and since q̂
(6)
n,4 = 10.5, the corresponding path is

P = {(6, 4, L)}, and the associated rule is thus

ĝn,P(x) =

{
0.20 if x(6) < 10.5

0.50 if x(6) ≥ 10.5
.

Finally, a Θ-random tree generates a collection of paths in Π, one for each
internal and terminal nodes. In the sequel, we let T (Θ,Dn) be the list of such
extracted paths, a random subset of Π.

Rule selection. Using our modified random forest algorithm, we are able to
generate a large number M of trees, randomized by Θ1, . . . ,ΘM , i.i.d. copies of
the generic variable Θ, and then to extract a large collection of rules. Since we
are interested in selecting the most important rules, i.e., those which represent
strong patterns between the inputs and the output, we select rules that are
shared by a large portion of trees. Such occurrence frequency is formally defined
by

p̂M,n(P) =
1

M

M∑
�=1

1P∈T (Θ�,Dn),
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which is the Monte-Carlo estimate of the probability that a path P belongs to
a Θ-random tree, that is

pn(P) = P(P ∈ T (Θ,Dn)|Dn).

As a general strategy, once the modified random forest has been built, we draw
the list of all paths that appear in the forest and only retain those that occur with
a frequency larger than the threshold p0 ∈ (0, 1), the only influential parameter
of SIRUS—see Subsection 5.4 for its tuning procedure. We are thus interested
in the set of the extracted paths

P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}. (3.2)

An important feature of SIRUS algorithm is to stop the growing of the forest
with an appropriate number of trees M . Although the right order of magni-
tude for M is required, no fine tuning is necessary. Indeed, the uncertainty of
the importance estimate p̂M,n(P) of each rule decreases with M , whereas the
computational cost linearly increases with M . Thus, to obtain a robust rule
extraction, M needs to be high enough to make the uncertainty of p̂M,n(P)

negligible. More precisely, M is set to get the same list of selected rules P̂M,n,p0

when SIRUS is run multiple times on the same dataset Dn. On the other hand,
M should be small enough to avoid useless computations. Therefore, the grow-
ing of the forest is automatically stopped when 95% of the selected rules would
be shared by a new run of SIRUS on Dn in average, as it is possible to derive a
simple stopping criterion based on the properties of the estimates p̂M,n(P)—all
the technical details are provided in Subsection 5.4. A random forest is usually
built with around 500 trees, as the predictive accuracy cannot be significantly
increased by adding more trees. SIRUS typically grows 10 times more trees to
obtain a robust rule extraction.

Besides, we insist that the quantile discretization is critical for the rule selec-
tion. The expected value of the rule importance is

E[p̂M,n(P)] = P(P ∈ T (Θ,Dn)),

but without the discretization, the list of extracted paths from a random tree
T (Θ,Dn) takes values in an uncountable space when at least one component
of X is a continuous random variable, and therefore the above quantity is null,
making the path selection procedure unstable with respect to data perturbation.

Rule post-treatment. By construction, there is some redundancy in the list
of rules generated by the set of distinct paths P̂M,n,p0 . The hyperrectangles
associated with the paths extracted from a Θ-random tree overlap, and so the
corresponding rules are linearly dependent. Therefore a post-treatment to filter
P̂M,n,p0 is needed to remove redundancy and obtain a compact rule model. The

general idea is straightforward: if the rule associated with the path P ∈ P̂M,n,p0

is a linear combination of rules associated with paths with a higher frequency
in the forest, then P is removed from P̂M,n,p0 .
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To illustrate the post-treatment, let the tree of Figure 1 be the Θ1-random
tree grown in the forest. Since the paths of the first level of the tree, P1 and
P2, always occur in the same trees, we have p̂M,n(P1) = p̂M,n(P2). If we
assume these quantities to be greater than p0, then P1 and P2 both belong
to P̂M,n,p0 . However, by construction, P1 and P2 are associated with the

same rule, and we therefore enforce SIRUS to keep only P1 in P̂M,n,p0 . Each
of the paths of the second level of the tree, P3, P4, P5, and P6, can occur
in many different trees, and their associated p̂M,n are distinct (except in very
specific cases). Assume for example that p̂M,n(P1) > p̂M,n(P4) > p̂M,n(P5) >
p̂M,n(P3) > p̂M,n(P6) > p0. Since ĝn,P3 is a linear combination of ĝn,P4 and
ĝn,P1 , P3 is removed. Similarly P6 is redundant with P1 and P5, and it is
therefore removed. Finally, among the six paths of the tree, only P1, P4, and
P5 are kept in the list P̂M,n,p0 .

Rule aggregation. Now, the resulting small set of rules P̂M,n,p0 is combined
to form a simple, compact, and stable rule classification model. We simply av-
erage the set of elementary rules {ĝn,P : P ∈ P̂M,n,p0} that have been selected
in the first steps of SIRUS. The aggregated estimate η̂M,n,p0(x) of η(x) is thus
defined by

η̂M,n,p0(x) =
1

|P̂M,n,p0 |
∑

P∈P̂M,n,p0

ĝn,P(x). (3.3)

Finally, the classification procedure assigns class 1 to an input x if the aggregated
estimate η̂M,n,p0(x) is above a given threshold, and class 0 otherwise. In the
introduction, we presented an example of a list of 7 rules for the Titanic dataset.
In this case, for a new input x, η̂M,n,p0(x) is simply the average of the output
probability of survival ps over the 7 selected rules.

In past works on rule ensemble models, such as RuleFit (Friedman and
Popescu, 2008) and Node harvest (Meinshausen, 2010), rules are also extracted
from a tree ensemble and then combined together through a regularized linear
model. In our case, it happens that the parameter p0 alone is enough to control
sparsity. Indeed, in our experiments, we observe that adding such linear model
in the aggregation method hardly increases the accuracy and hardly reduces the
size of the final rule set, while it can significantly reduce stability, add a set of
coefficients that makes the model less straightforward to interpret, and requires
more intensive computations. We refer to the experiments in Appendix A.3 for a
comparison between η̂M,n,p0 defined a as simple average (3.3) versus a definition
with a logistic regression.

Categorical and numerical discrete variables. For the sake of clarity, the
description of SIRUS algorithm is limited to the case of numerical continuous
variables. However, SIRUS can obviously handle numerical discrete and categor-
ical data, as it is the case for random forests. On one hand, numerical discrete
variables are left untouched since the number of possible split points is already
finite, and the rule definition introduced for continuous variables also applies.
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On the other hand, we naturally extend the rule definition for categorical vari-
ables to “if X(1) is category 1 or 2 then response else default response”—see the
Titanic dataset example in the introduction. Originally, categorical variables are
efficiently handled in trees by transformation in ordered variables. Such ordering
of categories is done with respect to the output mean for each category—see
Breiman et al. (1984); Friedman, Hastie and Tibshirani (2001), and we follow
ranger implementation. Notice that trees are likely to often cut on categori-
cal variables with a high number of categories, as highlighted in Strobl et al.
(2006). Consequently, SIRUS is likely to output irrelevant rules associated to
such categorical variables. Thus, it is best to discard categorical variables with
a high number of categories, or transform them by regrouping categories or us-
ing one-hot-encoding before running SIRUS. Finally, note that ordinal variables
(e.g. X(1) ∈ {small, medium, big}) are treated like categorical variables.

Stability. The three main properties to assess the interpretability of SIRUS
are simplicity, stability, and predictivity, as already stated. On one hand, a mea-
sure of simplicity is naturally provided by the number of rules, and predictivity
is given by the missclassification rate or the AUC. On the other hand, stability
requires a more thorough discussion. In the statistical learning theory, stability
refers to the stability of predictions (e.g., Vapnik, 1998). In particular, Rogers
and Wagner (1978), Devroye and Wagner (1979), Bousquet and Elisseeff (2002),
and Poggio et al. (2004) show that stability and predictive accuracy are closely
connected. In our case, we are more concerned by the stability of the internal
structure of the model, and, to our knowledge, no general definition exists. So,
we state the following tentative definition: a rule learning algorithm is stable if
two independent estimations based on two independent samples result in two
similar lists of rules. Thus, given a new sample D ′

n independent of Dn, we define
p̂′M,n(P) and the corresponding set of paths P̂ ′

M,n,p0
based on a modified ran-

dom forest drawn with a parameter Θ′ independent of Θ. Then, we measure the
stability of SIRUS by the proportion of rules shared by the two sets P̂M,n,p0 and
P̂ ′

M,n,p0
, selected over these two runs of SIRUS on independent samples. We

take advantage of a dissimilarity measure between two sets, the so-called Dice-
Sorensen index, often used to assess the stability of variable selection methods
(Chao et al., 2006; Zucknick, Richardson and Stronach, 2008; Boulesteix and
Slawski, 2009; He and Yu, 2010; Alelyani, Zhao and Liu, 2011). This index is
defined by

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩ P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+ ∣∣P̂ ′
M,n,p0

∣∣ (3.4)

with the convention 0/0 = 1. This is a measure of stability taking values be-
tween 0 and 1: if the intersection between P̂M,n,p0 and P̂ ′

M,n,p0
is empty, then

ŜM,n,p0 = 0, while if P̂M,n,p0 = P̂ ′
M,n,p0

, then ŜM,n,p0 = 1. Notice that it is pos-
sible to use other metrics to assess the distance between two finite sets (Zucknick,
Richardson and Stronach, 2008): the Jaccard Index is another popular exam-
ple. Although the stability values slightly vary with a different definition, both
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the asymptotic stability of SIRUS—see Section 4—and the empirical stability
comparisons between algorithms—see Section 5—are insensitive to the stability
metric choice.

4. Theoretical analysis of stability

Among the three minimum requirements for interpretability defined in Section 1,
simplicity and predictivity are quite easily met for rule models (Cohen and
Singer, 1999; Meinshausen, 2010; Letham et al., 2015). On the other hand,
as Letham et al. (2015) recall, building a stable rule ensemble is challenging.
Therefore the main goal of this section is to prove the asymptotic stability of
SIRUS, i.e., provided that the sample size is large enough, SIRUS systematically
outputs the same list of rules when run multiple times with independent samples.
On the other hand, we also argue that existing tree-based rule algorithms are
unstable by design.

In order to show the asymptotic stability of SIRUS, we first need to introduce
formal definitions of the mathematical elements involved in the empirical algo-
rithm. We additionally define the theoretical counterpart of SIRUS, an abstract
procedure which is not based on the sample Dn, but only on the unknown distri-
bution PX,Y . Next, we will prove the stochastic convergence of SIRUS towards
its theoretical counterpart. This means that the list of selected rules does not
depend on the training data Dn, but only on PX,Y , provided that the sample
size is large enough. Therefore, the same list of rules is output when SIRUS is
run multiple times on independent samples. This mathematical analysis high-
lights that the remarkable stable behavior of SIRUS in practice has theoretical
groundings, and that the discretization of the cut values with the quantiles,
as well as using random forests, are the cornerstones to stabilize rule models
extracted from tree ensembles.

Empirical algorithm. First, we define the empirical CART-splitting crite-
rion used to find the optimal split at each node of each tree of the forest. In
our context of binary classification where the output Y ∈ {0, 1}, maximizing
the so-called empirical CART-splitting criterion is equivalent to maximizing the
criterion based on Gini impurity (see, e.g., Biau and Scornet, 2016). More pre-
cisely, at node H and for a cut performed along the j-th coordinate at the

empirical r-th q-quantile q̂
(j)
n,r, this criterion reads

Ln(H, q̂(j)n,r)
def
=

1

Nn(H)

n∑
i=1

(Yi − Y H)21Xi∈H

− 1

Nn(H)

n∑
i=1

(
Yi − Y HL

1
X

(j)
i <q̂

(j)
n,r

− Y HR
1
X

(j)
i ≥q̂

(j)
n,r

)2
1Xi∈H ,

(4.1)
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where Y H is the average of the Yi’s such that Xi ∈ H, Nn(H) is the number of
data points Xi falling into H,

HL
def
= {x ∈ H : x(j) < q̂(j)n,r}, HR

def
= {x ∈ H : x(j) ≥ q̂(j)n,r},

and for r ∈ {1, . . . , q − 1} the empirical r-th q-quantile of {X(j)
1 , . . . , X

(j)
n } is

defined by

q̂(j)n,r = inf
{
x ∈ R :

1

n

n∑
i=1

1
X

(j)
i ≤x

≥ r

q

}
. (4.2)

Note that, for the ease of reading, (4.1) is defined for a tree built with the entire
dataset Dn without resampling. As it is often the case in the theoretical analysis
of random forests, we assume throughout this section that the subsampling of
an observations to build each tree is done without replacement to alleviate the
mathematical analysis.

Recall that the rule selection is based on the probability pn(P) that a Θ-
random tree of the forest contains a particular path P ∈ Π, that is,

pn(P) = P(P ∈ T (Θ,Dn)|Dn),

and that the Monte-Carlo estimate p̂M,n(P) of pn(P) is directly computed
using the random forest, and takes the form

p̂M,n(P) =
1

M

M∑
�=1

1P∈T (Θ�,Dn).

Clearly, p̂M,n(P) is a good estimate of pn(P) when M is large since, by the
law of large numbers, conditional on Dn,

lim
M→∞

p̂M,n(P) = pn(P) a.s.

We also see that p̂M,n(P) is unbiased since E[p̂M,n(P)|Dn] = pn(P).

Theoretical algorithm. Next, we define all theoretical counterparts of the
empirical quantities involved in SIRUS, which do not depend on Dn but only
on the unknown distribution PX,Y of (X, Y ). For a given integer q ≥ 2 and
r ∈ {1, . . . , q − 1}, the theoretical q-quantiles are defined by

q�(j)r = inf
{
x ∈ R : P(X(j) ≤ x) ≥ r

q

}
,

i.e., the population version of q̂
(j)
n,r defined in (4.2). Similarly, for a given hyper-

rectangle H ⊆ Rp, we let the theoretical CART-splitting criterion be

L�(H, q�(j)r ) = V[Y |X ∈ H]

− P(X(j) < q�(j)r |X ∈ H)× V[Y |X(j) < q�(j)r ,X ∈ H]

− P(X(j) ≥ q�(j)r |X ∈ H)× V[Y |X(j) ≥ q�(j)r ,X ∈ H].
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Based on this criterion, we denote by T �(Θ) the list of all paths contained
in the theoretical tree built with randomness Θ, where splits are chosen to
maximize the theoretical criterion L� instead of the empirical one Ln, defined
in (4.1). We stress again that the list T �(Θ) does not depend upon Dn but only
upon the unknown distribution of (X, Y ). Next, we let p�(P) be the theoretical
counterpart of pn(P), that is

p�(P) = P(P ∈ T �(Θ)),

and finally define the theoretical set of selected paths P�
p0

by {P ∈ Π : p�(P) >
p0} (with the same post-treatment as for the empirical procedure—see Sec-
tion 3). Notice that, in the case where multiple splits have the same value of the
theoretical CART-splitting criterion, one is randomly selected.

Consistency of the path selection. The construction of the rule ensemble
model essentially relies on the path selection and on the estimates p̂M,n(P),
P ∈ Π. Therefore, our theoretical analysis first focuses on the asymptotic prop-
erties of those estimates in Theorem 1. Our consistency results hold under con-
ditions on the subsampling rate an and the number of trees Mn, together with
some assumptions on the distribution of the random vector X. They are given
below.

(A1) The subsampling rate an satisfies lim
n→∞

an = ∞ and lim
n→∞

an

n = 0.

(A2) The number of trees Mn satisfies lim
n→∞

Mn = ∞.

(A3) X has a strictly positive density f with respect to the Lebesgue measure.
Furthermore, for all j ∈ {1, . . . , p}, the marginal density f (j) of X(j) is
continuous, bounded, and strictly positive.

We can now state the consistency of the occurrence frequency of each possible
path P ∈ Π in the modified random forest.

Theorem 1. If Assumptions (A1)-(A3) are satisfied, then, for all P ∈ Π, we
have

lim
n→∞

p̂Mn,n(P) = p�(P) in probability.

Stability. The only source of randomness in the selection of the rules lies in
the estimates p̂Mn,n(P). Since Theorem 1 states the consistency of such an
estimation, the path selection consistency follows, for all threshold values p0
that do not belong to the finite set U� = {p�(P) : P ∈ Π} of all theoretical
probabilities of appearance for each path P. Indeed, if p0 = p�(P) for some
P ∈ Π, then P(p̂Mn,n(P) > p0) does not necessarily converge to 0 and the path
selection can be inconsistent. Then, we can deduce that SIRUS is asymptotically
stable in the following Corollary 1.

Corollary 1. Assume that Assumptions (A1)-(A3) are satisfied. Then, provided
p0 ∈ [0, 1] \ U�, we have

lim
n→∞

P(P̂Mn,n,p0 = P�
p0
) = 1,
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and then
lim

n→∞
ŜMn,n,p0 = 1 in probability.

Competitors. As we will discuss further in the experimental Section 5, CART,
C5.0, RuleFit, and Node harvest are top competitors of SIRUS, which are also
based on rule extraction from trees. However, these algorithms do not include a
pre-processing step of discretization, which makes them unstable by design. To
see this, we first adapt the definition of an extracted path without discretization
as P = {(jk, zk, sk), k = 1, . . . , d}, where zk ∈ R is now the cutting value of
the k-th split. For any rule algorithm, we also define ŜM,n as the proportion of
rules shared between the output rule lists over two runs with two independent
samples. Note that M = 1 for CART and C5.0, and as already mentioned, it is
possible to define a rule algorithm from CART, by extracting its nodes, as in
C5.0. Thus, we obtain that for any tree-based rule algorithm, ŜM,n = 0 almost
surely. Indeed, since the input X takes continuous values (Assumption (A3))
and decision trees can cut at the middle of two observations in all directions,
the probability that a cutting value from the tree built with Dn and one from
the tree built with D ′

n are equal is null.
However, recall that in the experiments, we include a pre-processing dis-

cretization step to stabilize competitors and enable fair comparisons. With this
modification, they reach a value of ŜM,n > 0, but still not in par with SIRUS.
This shows that the high stability improvement of SIRUS does not only come
from the discretization, but mainly from the rule selection procedure, based on
the probability of the rule occurrence in a random tree.

Proofs. The proof of Theorem 1 is to be found in Appendix C. It is however
interesting to give a sketch of the proof here. Corollary 1 is a direct consequence
of Theorem 1, the full proof follows.

Sketch of proof of Theorem 1. The consistency is obtained by showing that
p̂Mn,n(P) is asymptotically unbiased with a null variance. The result for the
variance is quite straightforward since the variance of p̂Mn,n(P) can be broken
into two terms: the variance generated by the Monte-Carlo randomization, which
goes to 0 as the number of trees increases (Assumption (A2)), and the variance
of pn(P). Following Mentch and Hooker (2016), since pn(P) is a bagged esti-
mate it can be seen as an infinite-order U-statistic, and a classic bound on the
variance of U-statistics gives that V[pn(P)] converges to 0 if limn→∞

an

n = 0,
which is true by Assumption (A1). Next, proving that p̂Mn,n(P) is asymptot-
ically unbiased requires to dive into the internal mechanisms of the random
forest algorithm. To do this, we have to show that the CART-splitting criterion
is consistent (Lemma 3) and asymptotically normal (Lemma 4) when cuts are
limited to empirical quantiles (estimated on the same dataset) and the number
of trees grows with n. When cuts are performed on the theoretical quantiles,
the law of large numbers and the central limit theorem can be directly applied,
so that the proof of Lemmas 3 and 4 boils down to showing that the differ-
ence between the empirical CART-splitting criterion evaluated at empirical and
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theoretical quantiles converges to 0 in probability fast enough. This is done in
Lemma 2 thanks to Assumption (A3).

Proof of Corollary 1. The first result is a consequence of Theorem 1 since

P
(
P̂Mn,n,p0 	= P�

p0

)
≤

∑
P∈Π

P(p̂Mn,n(P) > p0)1p�(P)≤p0

+ P(p̂Mn,n(P) ≤ p0)1p�(P)>p0
.

Next, we have

ŜMn,n,p0 =

2
∑

P∈Π

1p̂Mn,n(P)>p0∩p̂′
Mn,n(P)>p0∑

P∈Π

1p̂Mn,n(P)>p0
+ 1p̂′

Mn,n(P)>p0

.

Since p0 /∈ U�, we deduce from Theorem 1 and the continuous mapping theorem
that, for all P ∈ Π,

lim
n→∞

1p̂Mn,n(P)>p0
= 1p�(P)>p0

in probability.

Therefore, lim
n→∞

ŜMn,n,p0 = 1 in probability.

5. Experiments

We begin this section by providing overall experimental settings. Next, we focus
on a case study to illustrate SIRUS with an industrial process example: the
semi-conductor manufacturing process SECOM data (Dua and Graff, 2017). In
particular, it shows the excellent performance of SIRUS on real data in a noisy
and high-dimensional setting. In Subsection 5.3, we use 19 UCI datasets (Dua
and Graff, 2017) to perform extensive comparisons between SIRUS and its main
competitors. We show that SIRUS produces much more stable rule lists, while
preserving a predictive accuracy and computational complexity comparable to
the top competitors. Finally, in Subsection 5.4, we detail the tuning procedure
of the single hyperparameter p0, along with a thorough discussion on the design
of SIRUS. In particular, the cut limitations to the quantiles and the number of
constraints in the selected rules are analyzed, and we also provide the stopping
criterion for the number of trees.

5.1. Experiment description

Performance metrics. We first introduce relevant metrics to assess the three
interpretability properties in the experiments. By definition, the size (i.e., the

simplicity) of the rule ensemble is the number of selected rules, i.e., |P̂M,n,p0 |. To
measure the error, 1-AUC is used and estimated by 10-fold cross-validation (re-
peated 10 times for robustness and standard deviation estimates). With respect
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Table 1

Description of UCI datasets

Dataset Sample size
Total number
of variables

Number of
categorical variables

Authentification 1372 4 0
Breast Wisconsin 699 9 9
Credit Approval 690 15 9
Credit German 1000 20 13

Diabetes 768 8 0
Haberman 306 3 0
Heart C2 303 13 7
Heart H2 294 13 7

Heart Statlog 270 13 3
Hepatitis 155 19 0
Ionosphere 351 33 0
Kr vs Kp 3196 36 36

Liver Disorders 345 6 0
Mushrooms 8124 21 21
SECOM 1567 590 0
Sonar 208 60 0

Spambase 4601 57 0
Titanic 887 6 1
Vote 435 16 16
Wilt 4339 5 0

to stability, an independent dataset is not available for real data to compute
ŜM,n,p0 as defined in (3.4) in the Section 3. Nonetheless, we can take advantage
of the cross-validation process to compute a stability metric: the proportion of
rules shared by two models built during the cross-validation, averaged over all
possible pairs (Guidotti and Ruggieri, 2019).

Datasets. We have conducted experiments on the SECOM data, as well as
19 diverse public datasets from the UCI repository (Dua and Graff, 2017; data
is described in Table 1). These experiments aim at illustrating the good behav-
ior of SIRUS over its competitors in various settings. To compare stability of
the different methods, data is discretized using the 10-empirical quantiles for
each continuous variable and the same stability metric is used for all algorithm
comparisons. For simplicity and predictivity metrics, we do not apply this pre-
processing step of discretization, unless the algorithm only handles categorical
data.

Competitors. For decision trees, we run both CART and C5.0, and trees are
pruned to maximize their performance. Notice that, to enable simplicity and
stability comparisons for CART, a list of rules is extracted from its nodes, as it
is originally possible for C5.0. For rule algorithms based on greedy heuristics,
we evalute RIPPER, PART, and FOIL. Next, for rule algorithms based on tree
ensembles, we evaluate RuleFit and Node harvest. Note that categorical features
are transformed in multiple binary variables as it is required by the two software
implementations, and RuleFit is limited to rule predictors. For RuleFit, the lasso
penalty is tuned by cross-validation as defined in Friedman and Popescu (2008).
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As advertised in Meinshausen (2010), Node harvest does not require parameter
tuning by default, but it is also possible to add a regularization term to reduce
the model size. We use the same tuning procedure as for SIRUS to maximize
accuracy with the smallest possible model—see Subsection 5.4. Finally, for rule
algorithms based on frequent pattern mining, we run the experiments for CBA
and BRL. Note that we use default settings for BRL, since modifying its pa-
rameters does not significantly improve accuracy and can hurt stability. We use
available R implementations: rpart (Therneau and Atkinson, 2019, CART),
C50 (Kuhn and Quinlan, 2020, C5.0), RWeka (Hornik, Buchta and Zeileis, 2009,
RIPPER, PART), arulesCBA (Johnson and Hahsler, 2020, FOIL, CBA), pre
(Fokkema, 2020, RuleFit), nodeHarvest (Meinshausen, 2015, Node harvest),
and sbrl (Yang, Rudin and Seltzer, 2017, BRL). We also use our R/C++ soft-
ware implementation sirus (Benard and Wright, 2020) (available from CRAN),
adapted from ranger, a fast random forest implementation (Wright and Ziegler,
2017). Besides, notice that for SIRUS experiments, we use the default settings of
random forests well known for their excellent behavior, in particular mtry = 
p

3�.
We set q = 10 quantiles and tune p0 as specified in Subsection 5.4.

5.2. Case study: manufacturing process data

SIRUS is run on a real manufacturing process of semi-conductors, the SECOM
dataset (Dua and Graff, 2017). Data is collected from sensors and process mea-
surement points to monitor the production line, resulting in 590 numeric vari-
ables. Each of the 1567 data points represents a single production entity asso-
ciated with a pass or fail output (0/1) for in-house line testing. As it is often
the case for a production process, the dataset is unbalanced and contains 104
fails, i.e., a failure rate pf of 6.6%. We proceed to a simple pre-processing of the
data: missing values (about 5% of the total) are replaced by the median.

Figure 2 shows predictivity versus the number of rules when p0 varies, with
the optimal p0 displayed. Notice that the relation between p0 and the number
of rules is monotone by construction, but also highly nonlinear. Therefore, we
use the number of rules for the x-axis of Figure 2 to improve readability. The
1-AUC value is 0.30 for SIRUS (for the optimal p0 = 0.04), 0.29 for Breiman’s
random forests, and 0.48 for a pruned CART tree. Thus, in that case, CART
tree predicts no better than the random classifier, whereas SIRUS has a similar
accuracy to random forests. The final model has 6 rules and a stability of 0.72,
i.e., in average 4 to 5 rules are shared by 2 models built in a 10-fold cross-
validation process, simulating data perturbation. By comparison, Node harvest
outputs 36 rules with a value of 0.32 for 1-AUC.

Finally, the output of SIRUS may be displayed in the simple and interpretable
form of Figure 3, the output in the R console of the package sirus for the
SECOM data. Such a rule model enables to catch immediately how the most
relevant variables impact failures. Among the 590 variables, 5 are enough to
build a model as predictive as random forests, and such a selection is robust.
Other rules alone may also be informative, but they do not add additional
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Fig 2. For the SECOM dataset, error (1-AUC) versus the number of rules when p0 varies,
estimated via 10-fold cross-validation (averaged over 10 repetitions of the cross-validation).
Errors for CART and random forests are reported for comparisons.

Fig 3. List of rules output by our software sirus in the R console for the SECOM dataset.

information to the model, since predictive accuracy is already minimal with the
6 selected rules. Then, production engineers should first focus on those 6 rules
to investigate an improved setting of the production process. We insist that
the stability of the output rule list is critical in practice. Indeed, the algorithm
may be run multiple times during the analysis, eventually with an additional
small new batch of data. The output rule list should be quite insensitive to such
perturbation: domain experts are skeptical of unstable results, which are the
symptoms of a partial and arbitrary modelling of the true phenomenon. SIRUS
is stable, but it is not the case for decision trees or existing rule algorithms, as
we show in the next subsection and illustrate in Appendix A.1.
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Fig 4. For the UCI dataset “Credit German”, 1-AUC (on the left) and stability (on the right)
versus the number of rules when p0 varies, estimated via 10-fold cross-validation (results are
averaged over 10 repetitions).

5.3. Improvement over competitors

Overall, we observe that SIRUS provides a high improvement of stability com-
pared to state-of-the-art rule algorithms, while preserving the other properties.
For the top competitors, experimental results are gathered in Table 2 for model
size, Table 3 for stability, and Table 4 for predictive accuracy. Experiments for
additional competitors are provided in Appendix A.2 in Tables 7, 8 and 9. Stan-
dard deviations are made negligible by averaging metrics over 10 repetitions of
the cross-validation and are not displayed in the tables to increase readability.

Figure 4 provides an example for the dataset “Credit German” of the depen-
dence between predictivity and the number of rules when p0 varies. In that case,
the minimum of 1-AUC is about 0.25 for SIRUS, 0.20 for Breiman’s forests, and
0.29 for CART tree. For the chosen p0, SIRUS returns a compact set of 22 rules
and its stability is 0.66. Figure 5 provides another example of the good practical
performance of SIRUS with the “Heart Statlog” dataset. Here, the predictivity
of random forests is reached with 16 rules, with a stability of 0.83, i.e., about
13 rules are consistent between two different models built in a 10-fold cross-
validation. Thus, the final models are simple, quite robust to data perturbation,
and have a predictive accuracy close to random forests.

We can draw the following conclusions from the experimental comparisons
with competitors, displayed in Tables 2, 3, and 4. SIRUS produces more stable
and predictive rule lists than decision trees, for a comparable simplicity, but
at the price of a higher computational complexity since many trees are grown.
SIRUS produces much more stable and shorter rule lists than RuleFit and Node
harvest, for a comparable accuracy and computational complexity. Classical rule
algorithms exhibit similar properties as decision trees: a smaller computational
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Fig 5. For the UCI dataset “Heart Statlog”, 1-AUC (on the left) and stability (on the right)
versus the number of rules when p0 varies, estimated via 10-fold cross-validation (results are
averaged over 10 repetitions).

complexity, but a high instability and a reduced predictivity. Finally, algorithms
based on frequent pattern mining exhibit quite good stability properties, higher
than for the other types of competitors. On the other hand, their predictive ac-
curacy is worse than decision trees. Experiments in Tables 2, 3, and 4 show that
SIRUS exhibits a high stability and predictivity improvement over these meth-
ods. Besides, simplicity varies across algorithms: CBA produces much longer
rule lists than SIRUS, whereas BRL generates shorter models.

5.4. SIRUS parameters

SIRUS relies on a single tuning hyperparameter: the selection threshold p0 in-
volved in the definition of P̂M,n,p0 to filter the most important rules, which
therefore controls the simplicity of the model, and consequently also its accu-
racy and stability. On the other hand, SIRUS is not very sensitive to the other
parameters: the number of trees, the number of quantiles, and the tree depth.
Therefore, they do not require fine tuning, and we simply set efficient default
values as explained below.

Tuning of SIRUS. This parameter p0 should be set to optimize a tradeoff
between the number of rules, stability, and accuracy. In practice, it is difficult to
settle such a criterion, and we choose to optimize p0 to maximize the predictive
accuracy with the smallest possible set of rules. To achieve this goal, we proceed
as follows. The error 1-AUC is estimated by 10-fold cross-validation for a fine
grid of p0 values, defined such that |P̂M,n,p0 | varies from 1 to 25 rules. (We let
25 be an arbitrary upper bound on the maximum number of rules, considering
that a bigger set is not readable anymore.) The randomization introduced by
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Table 2

Mean model size over a 10-fold cross-validation for UCI datasets. Results are averaged over
10 repetitions of the cross-validation.

Decision
tree

Classical
rule learning

Frequent
pattern mining

Tree ensemble

Dataset CART RIPPER CBA BRL RuleFit
Node

harvest
SIRUS

Authentification 21 7 7 17 49 30 13
Breast Wisconsin 7 12 24 7 24 32 24
Credit Approval 5 4 55 4 15 27 16
Credit German 18 3 69 4 33 33 20

Diabetes 13 3 17 6 26 31 8
Haberman 2 1 2 2 3 17 5
Heart C2 10 3 34 4 23 36 20
Heart H2 5 2 29 3 12 24 12

Heart Statlog 10 3 27 4 22 35 16
Hepatitis 2 2 14 2 8 14 12
Ionosphere 4 4 38 4 20 35 15
Kr vs Kp 16 15 29 9 18 13 24

Liver Disorders 15 3 2 3 19 33 17
Mushrooms 4 8 25 11 10 22 23

Sonar 6 4 33 2 32 83 19
Spambase 14 16 126 16 68 60 21
Titanic 13 4 4 3 19 23 6
Vote 2 2 25 NA 12 10 7
Wilt 9 5 3 10 31 19 24

the partition of the dataset in the 10 folds of the cross-validation process has a
significant impact on the variability of the size of the final model. Therefore, in
order to get a robust estimation of p0, the cross-validation is repeated multiple
times (typically 10) and results are averaged. The standard deviation of the
mean of 1-AUC is computed over these repetitions for each p0 of the grid search.
We consider that all models within 2 standard deviations of the minimum of
1-AUC are not significantly less predictive than the optimal one. Thus, among
these models, the one with the smallest number of rules is selected, i.e., the
optimal p0 is shifted towards higher values to reduce the model size without
decreasing predictivity—see Figures 4 and 5 for examples. This approach is
very similar to the tuning procedure of the Lasso (Tibshirani, 1996).

Number of trees. The accuracy, stability, and computational cost of SIRUS
increase with the number of treesM . Thus, we simply design a stopping criterion
to grow the minimum number of trees which ensures that accuracy and stability
are higher than 95% of their maximum asymptotic values with respect to M
and conditionally on Dn. We empirically observe that the stability requirement
is met for a much higher number of trees than the accuracy requirement (about
10 times). Therefore, the stopping criterion is only based on stability. More
precisely, we require that 95% of the rules are identical across two runs of SIRUS
on a given dataset Dn in average. Formally, the mean stability E[ŜM,n,p0 |Dn]
measures the expected proportion of rules shared by two fits of SIRUS on Dn,
for fixed n (sample size), p0 (threshold), and M (number of trees). Thus, the
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Table 3

Mean stability over a 10-fold cross-validation for UCI datasets. Results are averaged over 10
repetitions of the cross-validation. Values within 10% of the maximum are displayed in bold.
Algorithms are ranked with a Mann-Whitney-Wilcoxon test, the p-value with the previous

performing algorithm determines the final rank (10%-level test).

Decision
tree

Classical
rule learning

Frequent
pattern mining

Tree ensemble

Dataset CART RIPPER CBA BRL RuleFit
Node

harvest
SIRUS

Authentification 0.41 0.36 0.87 0.86 0.48 0.59 0.81
Breast Wisconsin 0.21 0.55 0.80 0.78 0.34 0.71 0.70
Credit Approval 0.52 0.32 0.43 0.52 0.25 0.23 0.75
Credit German 0.46 0.22 0.51 0.41 0.24 0.48 0.66

Diabetes 0.29 0.21 0.46 0.73 0.39 0.45 0.81
Haberman 0.83 0.09 0.79 0.50 0.46 0.52 0.65
Heart C2 0.25 0.35 0.38 0.60 0.39 0.49 0.71
Heart H2 0.46 0.27 0.52 0.73 0.29 0.29 0.65

Heart Statlog 0.30 0.41 0.41 0.75 0.35 0.48 0.83
Hepatitis 0.26 0.16 0.24 0.34 0.26 0.49 0.68
Ionosphere 0.96 0.39 0.13 0.70 0.17 0.33 0.69
Kr vs Kp 0.71 0.74 0.84 0.80 0.19 0.27 0.87

Liver Disorders 0.23 0.10 0.91 0.50 0.24 0.31 0.58
Mushrooms 1 0.84 0.98 0.80 0.69 0.48 0.86

Sonar 0.34 0.04 0.09 0.19 0.09 0.20 0.55
Spambase 0.49 0.10 0.46 0.86 0.28 0.66 0.78
Titanic 0.55 0.42 0.69 0.88 0.37 0.36 0.76
Vote 1 0.52 0.68 NA 0.21 0.30 0.75
Wilt 0.36 0.32 0.72 0.94 0.47 0.64 0.73

Average Rank 4.2 5.9 3.3 2.8 5.6 4.3 1.9
p-values 0.07 0.33 0.33 0.08 0.05 0.98

Final Rank 4 6 2 2 6 4 1

stopping criterion takes the form 1−E[ŜM,n,p0 |Dn] < α, with typically α = 0.05.
There are two obstacles to operationalize this stopping criterion: its estima-

tion and its dependence to p0. We make two approximations to overcome these
limitations and give empirical and theoretical evidence of their good practical
behavior in Appendix B. First, Theorem 2 in Appendix B.2 provides an asymp-
totic equivalent with respect to M of 1−E[ŜM,n,p0 |Dn], that we simply estimate
by

εM,n,p0 =

∑
P∈Π Φ(Mp0,M, p̂M,n(P))(1− Φ(Mp0,M, p̂M,n(P)))∑

P∈Π(1− Φ(Mp0,M, p̂M,n(P)))
,

where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter
pn(P), M trials, evaluated at Mp0. Secondly, εM,n,p0 depends on p0, whose op-
timal value is unknown in the first step of SIRUS, when trees are grown. It turns
out however that εM,n,p0 is not very sensitive to p0, as shown by the experiments
in Appendix B.1. Consequently, our strategy is to simply average εM,n,p0 over a

set V̂M,n of many possible values of p0 and use the resulting average as a gauge.

These values are chosen to scan all possible path sets P̂M,n,p0 , of size ranging
from 1 to 50 paths. When a set of 50 paths is post-treated, its size reduces to
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Table 4

Model error (1-AUC) over a 10-fold cross-validation for UCI datasets. Results are averaged
over 10 repetitions of the cross-validation. Values within 10% of the minimum are displayed
in bold, random forest is put aside. Algorithms are ranked with a Mann-Whitney-Wilcoxon

test, the p-value with the previous performing algorithm determines the final rank
(10%-level test).

Black
box

Decision
tree

Classical
rule

learning

Frequent
pattern mining

Tree ensemble

Dataset
Random
Forest

CART RIPPER CBA BRL RuleFit
Node

harvest
SIRUS

Authentification 10−4 0.02 0.02 0.14 0.009 9.10−49.10−49.10−4 0.02 0.03
Breast Wisconsin 0.009 0.06 0.07 0.05 0.02 0.01 0.01 0.01
Credit Approval 0.07 0.14 0.15 0.14 0.11 0.08 0.07 0.09
Credit German 0.20 0.29 0.38 0.40 0.33 0.23 0.26 0.25

Diabetes 0.17 0.25 0.29 0.30 0.25 0.18 0.19 0.19
Haberman 0.31 0.48 0.39 0.50 0.43 0.37 0.34 0.35
Heart C2 0.10 0.19 0.23 0.17 0.23 0.12 0.12 0.10
Heart H2 0.11 0.23 0.24 0.24 0.16 0.11 0.11 0.12

Heart Statlog 0.10 0.20 0.21 0.17 0.22 0.12 0.12 0.10
Hepatitis 0.12 0.48 0.39 0.36 0.33 0.20 0.23 0.17
Ionosphere 0.02 0.11 0.12 0.13 0.10 0.04 0.07 0.07
Kr vs Kp 9.10−4 0.02 0.009 0.05 0.01 0.009 0.04 0.04

Liver Disorders 0.23 0.33 0.35 0.48 0.44 0.27 0.30 0.35
Mushrooms 0 0.007 3.10−5 5.10−4 2.10−52.10−52.10−5 5.10−4 0.002 6.10−4

Sonar 0.07 0.27 0.26 0.25 0.44 0.12 0.16 0.2
Spambase 0.01 0.11 0.08 0.12 0.05 0.02 0.04 0.07
Titanic 0.13 0.19 0.21 0.27 0.21 0.14 0.16 0.17
Vote 0.01 0.06 0.04 0.06 NA 0.02 0.02 0.02
Wilt 0.007 0.18 0.13 0.48 0.07 0.02 0.08 0.11

Average Rank 5 4.9 5.8 4.4 1.4 2.4 2.8
p-values 0.22 0.24 0.01 6.10−3 0.01 0.34

Final Rank 4 4 7 4 1 2 2

around 25 paths (as explained in the previous paragraph, 25 is an arbitrarily
threshold on the maximum number of rules above which a rule model is not
readable anymore). In order to generate path sets of such sizes, values of p0 are
chosen halfway between two distinct consecutive p̂M,n(P),P ∈ Π, restricted to
the highest 50 values. Thus, in the experiments, we utilize the following criterion
to stop the growing of the forest, with typically α = 0.05:

argmin
M

{ 1

|V̂M,n|
∑

p0∈V̂M,n

εM,n,p0 < α
}
. (5.1)

Quantile discretization. In the modified random forest grown in the first
step of SIRUS, the split at each tree node is limited to the empirical q-quantiles
of each component ofX, as described in Section 3. Thus, we check that this mod-
ification alone of the forest has little impact on its accuracy. Using the R pack-
age ranger, 1-AUC is estimated for each dataset with 10-fold cross-validation
for q ∈ {2, 5, 10, 20}. We leave aside datasets with a majority of categorical
variables, results are averaged over 10 repetitions of the cross-validation, and
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Table 5

Accuracy, measured by 1-AUC on UCI datasets, for two algorithms: Breiman’s random
forests and random forests with splits limited to q-quantiles, for q ∈ {2, 5, 10, 20}.

Dataset Breiman’s RF q=2 q=5 q=10 q=20
Authentification 0.0002 0.08 0.002 0.0005 0.0004

Diabetes 0.17 0.23 0.18 0.18 0.18
Haberman 0.32 0.35 0.30 0.32 0.30

Heart Statlog 0.10 0.10 0.10 0.10 0.10
Hepatitis 0.13 0.15 0.14 0.14 0.13
Ionosphere 0.02 0.07 0.03 0.02 0.02

Liver Disorders 0.23 0.32 0.27 0.25 0.24
Sonar 0.07 0.09 0.07 0.07 0.07

Spambase 0.01 0.14 0.03 0.02 0.01
Titanic 0.13 0.15 0.14 0.14 0.13
Wilt 0.007 0.15 0.03 0.02 0.02

displayed in Table 5. Clearly, the decrease of accuracy generated by this dis-
cretization is small, and not very sensitive to q, provided that q is not too small.
Thus, q = 10 appears to be a good default choice from the experiments. In
fact, the small impact of the discretization on the forest error is not surprising:
with only p = 10 input variables, the input space is split in a fine grid of 1010

hyperrectangles for q = 10 quantiles, providing a high flexibility to the modified
random forest to identify local patterns.

Tree depth. When SIRUS is fit using fully grown trees, the final set of rules
P̂M,n,p0 contains almost exclusively rules made of one or two splits, and rarely
of three splits. Although this may appear surprising at first glance, this phe-
nomenon is in fact expected. Indeed, rules made of multiple splits are extracted
from deeper tree levels and are thus more sensitive to data perturbation by
construction. This results in much smaller values of p̂M,n(P) for rules with
a high number of splits, and then deletion from the final set of path through
the threshold p0: P̂M,n,p0 = {P ∈ Π : p̂M,n(P) > p0}. To illustrate this, let us
consider the following typical example with p = 100 input variables and q = 10
quantiles. There are qp = 100 × 10 = 103 possible splits at the root node of a
tree, and then 2pq = 2.103 paths of one split. Since the left and right paths of
one split at the root node are associated to the same rule, there are qp = 103

distinct rules of one split, about (2qp)2 ≈ 106 distinct rules of two splits, and
about (2qp)3 ≈ 1010 distinct rules of three splits. Using only rules of one split is
too restrictive since it generates a small model class (a thousand rules for 100
input variables) and does not handle variable interactions. On the other hand,
rules of two splits are numerous (about one million) and thus provide a large
flexibility to SIRUS. More importantly, since there are 10 billion rules of three
splits, a stable selection of a few of them is clearly a difficult task, and such
complex rules are naturally discarded by SIRUS.

In the software implementation sirus, the tree depth parameter max.depth
is a modifiable input, set to 2 by default to reduce the computational cost while
leaving the output list of rules almost untouched as explained above. We conduct
experiments where SIRUS is run with a tree depth of 1, 2, and 3, and results are



SIRUS 453

Table 6

SIRUS error (1-AUC) over a 10-fold cross-validation (averaged over 10 repetitions) when
tree depth is limited to 1, 2 or 3. Values within 10% of the minimum are displayed in bold,

except for datasets with no significant variations.

Dataset SIRUS - depth = 1 SIRUS - depth = 2 SIRUS - depth = 3
Authentification 0.07 0.03 0.03
Breast Wisconsin 0.01 0.01 0.01
Credit Approval 0.11 0.09 0.09
Credit German 0.25 0.25 0.26

Diabetes 0.19 0.19 0.19
Haberman 0.35 0.35 0.35
Heart C2 0.11 0.10 0.11
Heart H2 0.12 0.12 0.12

Heart Statlog 0.11 0.10 0.10
Hepatitis 0.15 0.17 0.18
Ionosphere 0.07 0.07 0.07
Kr vs Kp 0.05 0.04 0.06

Liver Disorders 0.38 0.35 0.35
Mushrooms 3.10−3 6.10−4 3.10−43.10−43.10−4

Sonar 0.19 0.2 0.2
Spambase 0.06 0.07 0.07
Titanic 0.19 0.17 0.16
Vote 0.02 0.02 0.02
Wilt 0.19 0.11 0.11

displayed in Table 6. Over the nineteen UCI datasets, rules of three splits appear
in SIRUS rule list in only four cases, and a significant accuracy improvement
over a tree depth of 2 occurs only once, for the ‘Mushrooms’ dataset. On the
other hand, for all datasets except two, SIRUS outputs rules of two constraints,
and predictivity is improved over a tree depth of 1 for half of the datasets. The
Titanic example shows how the rule list is drastically simplified by limiting tree
depth to 1, lowering the insights provided by SIRUS:

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

This analysis of tree depth is not new. Indeed, both RuleFit (Friedman and
Popescu, 2008) and Node harvest (Meinshausen, 2010) articles discuss the opti-
mal tree depth for the rule extraction from a tree ensemble in their experiments.
They both conclude that the optimal depth is 2. Hence, the same hard limit of
2 is used in Node harvest. RuleFit is slightly less restrictive: for each tree, its
depth is randomly sampled with an exponential distribution concentrated on 2,
but allowing few trees of depth 1, 3, and 4. We insist that they both reach such
conclusion without considering stability issues, but only focusing on accuracy.
Further considering stability properties consolidates that growing shallow trees
is optimal for rule extraction from tree ensembles.
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6. Conclusion

Interpretability of learning algorithms is required for applications involving crit-
ical decisions, for example the analysis of production processes in the manufac-
turing industry. Although interpretability does not have a precise definition, we
argued that simplicity, stability, and predictivity are minimum requirements. In
particular, decision trees and rule algorithms both combine a simple structure
and a good accuracy for nonlinear data, and are thus considered as state-of-the-
art interpretable algorithms. However, these methods are unstable with respect
to data perturbation, which is a strong operational limitation. Therefore, we pro-
posed a new rule algorithm for classification, SIRUS (Stable and Interpretable
RUle Set), which takes the form of a short list of rules. We proved that SIRUS
considerably improves stability over state-of-the-art algorithms, while preserv-
ing simplicity, accuracy, and computational complexity of top competitors. The
principle of SIRUS is to extract rules from a random forest, based on their
probability of occurrence in a random tree, and to stop the growing of the for-
est when the rule selection is converged. Thus, SIRUS inherits the computational
complexity of random forests, and has only one tuning parameter. A software
implementation, the R/C++ package sirus (Benard and Wright, 2020), is avail-
able from CRAN. Besides, we believe that the extension of SIRUS to regression
is a promising future research direction: the main challenge is the construction
of an appropriate rule aggregation framework to accurately estimate continuous
outputs without hurting stability. Furthermore, although SIRUS has the ability
to handle high-dimensional data, as illustrated with the SECOM dataset (590
inputs), specific variable selection strategies could be used to reduce the number
of possible rules and then improve SIRUS performance.
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is output over multiple repetitions with the same data, as proved in Theorem 2
in the next Section.

To illustrate this, we run each algorithm twice on the SECOM dataset, and
display the output models in Figure 6 for SIRUS, Figure 7 for Node harvest, and
Figure 8 for RuleFit. We set the regularization parameter of Node harvest and
SIRUS as explained in Subsection 5.4 of the article, to maximize accuracy with
the smallest possible model: for Node harvest λ = 4, and for SIRUS p0 = 0.04.
RuleFit is tuned as defined in Friedman and Popescu (2008). Figures 7 and 8
show that the rule lists output by RuleFit and Node harvest are quite different
across multiple runs with the exact same data, while SIRUS has the same output.

We also observe that for the same accuracy, RuleFit and Node harvest models
are longer and more complex than SIRUS. In addition, rules are aggregated
using weights to generate predictions. This is not the case for SIRUS, which
simply averages the 6 output rules. Finally, we can also mention that manually
increasing the regularization of Node harvest, to reduce the model size to 6 rules
as in SIRUS, strongly hurts accuracy, which drops to 0.39.

A.2. Additional competitors

Additional experiments are provided to compare SIRUS to other competitors:
C5.0 (Quinlan, 1992) (decision tree), PART (Frank and Witten, 1998), and
FOIL (Quinlan and Cameron-Jones, 1995) (classical rule learning algorithms).
Model size results are provided in Table 7, stability in Table 8, and error in
Table 9. The stability and accuracy improvement of SIRUS is clear.

A.3. Rule aggregation

In Section 3 of the article, η̂M,n,p0(x) (3.3) is a simple average of the set of rules,
defined as

η̂M,n,p0(x) =
1

|P̂M,n,p0 |
∑

P∈P̂M,n,p0

ĝn,P(x). (A.1)

Fig 6. The two lists of rules output by two runs of SIRUS for the SECOM dataset.
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Fig 7. The two lists of rules output by two runs of Node harvest for the SECOM dataset.
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Fig 8. The two lists of rules output by two runs of RuleFit for the SECOM dataset.

To tackle our binary classification problem, a natural approach would be to use
a logistic regression and define

ln
( η̂M,n,p0(x)

1− η̂M,n,p0(x)

)
=

∑
P∈P̂M,n,p0

βP ĝn,P(x), (A.2)

where the coefficients βP have to be estimated. To illustrate the performance
of the logistic regression (A.2), we consider again the UCI dataset, “Credit
German”. We augment the previous results from Figure 4 (in Section 5 of the
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Table 7

Mean model size over a 10-fold cross-validation for UCI datasets (averaged over 10
repetitions).

Dataset C5.0 PART FOIL SIRUS
Authentification 11 8 20 13
Breast Wisconsin 5 10 41 24
Credit Approval 9 32 40 16
Credit German 22 68 101 22

Diabetes 12 7 36 8
Haberman 2 2 4 5
Heart C2 10 20 31 20
Heart H2 4 15 29 12

Heart Statlog 10 18 28 15
Hepatitis 7 8 14 12
Ionosphere 9 6 28 15
Kr vs Kp 11 21 24 24

Liver Disorders 14 7 2 17
Mushrooms 7 9 14 23

Sonar 10 6 20 19
Spambase 29 46 73 21
Titanic 7 15 17 6
Vote 5 7 19 7
Wilt 10 8 10 24

Table 8

Mean stability over a 10-fold cross-validation for UCI datasets (averaged over 10
repetitions). Values within 10% of the maximum are displayed in bold.

Dataset C5.0 PART FOIL SIRUS
Authentification 0.44 0.43 0.81 0.81
Breast Wisconsin 0.17 0.49 0.36 0.70
Credit Approval 0.18 0.31 0.17 0.75
Credit German 0.03 0.16 0.11 0.65

Diabetes 0.07 0.15 0.18 0.81
Haberman 0.28 0.25 0.64 0.65
Heart C2 0.09 0.15 0.16 0.71
Heart H2 0.32 0.31 0.39 0.65

Heart Statlog 0.11 0.15 0.15 0.82
Hepatitis 0.10 0.15 0.05 0.68
Ionosphere 0.24 0.13 0.07 0.69
Kr vs Kp 0.65 0.51 0.85 0.87

Liver Disorders 0.05 0.07 0.69 0.58
Mushrooms 0.79 0.78 0.93 0.86

Sonar 0.06 0.06 0.04 0.55
Spambase 0.08 0.08 0.11 0.78
Titanic 0.49 0.27 0.77 0.76
Vote 0.67 0.40 0.39 0.75
Wilt 0.34 0.37 0.48 0.73

article) with the logistic regression error in Figure 9. One can observe that the
predictive accuracy is slightly improved but it comes at the price of an additional
set of coefficients that can be hard to interpret (some can be negative), and
an increased computational cost. Notice that categorical variables are one-hot-
encoded in this example.
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Table 9

Model error (1-AUC) over a 10-fold cross-validation for UCI datasets (averaged over 10
repetitions). Values within 10% of the minimum are displayed in bold.

Dataset C5.0 PART FOIL SIRUS
Authentification 0.02 0.01 0.08 0.03
Breast Wisconsin 0.06 0.07 0.08 0.01
Credit Approval 0.15 0.17 0.15 0.09
Credit German 0.37 0.36 0.41 0.25

Diabetes 0.28 0.30 0.28 0.19
Haberman 0.46 0.42 0.50 0.35
Heart C2 0.20 0.23 0.19 0.10
Heart H2 0.23 0.23 0.23 0.12

Heart Statlog 0.21 0.24 0.20 0.10
Hepatitis 0.34 0.34 0.39 0.17
Ionosphere 0.10 0.10 0.13 0.07
Kr vs Kp 0.006 0.008 0.02 0.04

Liver Disorders 0.34 0.38 0.50 0.35
Mushrooms 0.001 0 6.10−56.10−56.10−5 6.10−4

Sonar 0.26 0.26 0.26 0.2
Spambase 0.07 0.07 0.12 0.07
Titanic 0.20 0.20 0.25 0.17
Vote 0.04 0.05 0.05 0.02
Wilt 0.15 0.17 0.46 0.11

Fig 9. For the UCI dataset “Credit German”, 1-AUC versus the number of rules when p0
varies, estimated via 10-fold cross-validation (repeated 30 times) for two different methods of
rule aggregation: the rule average (A.1) in red and a logistic regression (A.2) in blue.

Appendix B: Stopping criterion for the number of trees

We recall that the definition of the stopping criterion (5.1) of the forest growing
is provided in Section 5 of the main article. First, we provide three groups of
experiments to show its good empirical efficiency. In the second subsection, we
provide theoretical properties of the stopping criterion.
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Table 10

Values of ŜM,n,p0 averaged over p0 ∈ V̂M,n when the stopping criterion (5.1) is used to set
M , for UCI datasets. Results are averaged over 10 repetitions and standard deviations are

displayed in parentheses.

Dataset Mean stability
Haberman 0.950 (0.01)
Diabetes 0.950 (0.007)

Heart Statlog 0.954 (0.007)
Liver Disorders 0.951 (0.006)

Heart C2 0.955 (0.009)
Heart H2 0.952 (0.009)

Credit German 0.950 (0.008)
Credit Approval 0.941 (0.02)

Ionosphere 0.950 (0.009)

B.1. Experiments

The following experiments on the UCI datasets show the good empirical perfor-
mance of the stopping criterion (5.1). Recall that the goal of this criterion is to
determine the minimum number of trees M ensuring that two independent fits
of SIRUS on the same dataset result in two lists of rules with an overlap of 95%
in average. This is checked with a first batch of experiments—see next para-
graph. Secondly, the stopping criterion (5.1) does not consider the optimal p0,
unknown when trees are grown in the first step of SIRUS. Then, another batch
of experiments is run to show that the stability approximation 1 − εM,n,p0 is
quite insensitive to p0. Finally, a last batch of experiments provides examples of
the number of trees grown when SIRUS is fit. Notice that for these experiments,
categorical variables are one-hot-encoded.

Experiments 1. For each dataset, the following procedure is applied. SIRUS
is run a first time using criterion (5.1) to stop the number of trees. This initial
run provides the optimal number of trees M as well as the set V̂M,n of possible
p0. Then, SIRUS is fit twice independently using the precomputed number of
trees M . For each p0 ∈ V̂M,n, the stability metric ŜM,n,p0 (with D ′

n = Dn) is

computed over the two resulting lists of rules. Finally ŜM,n,p0 is averaged across

all p0 values in V̂M,n. This procedure is repeated 10 times: results are averaged
and presented in Table 10, with standard deviations in parentheses. Across the
considered datasets, resulting values range from 0.941 to 0.955, and are thus
close to 0.95 as expected by construction of criterion (5.1).

Experiments 2. The second type of experiments illustrates that εM,n,p0 is
quite insensitive to p0 when M is set with criterion (5.1). For the “Credit Ger-
man” dataset, we fit SIRUS and then compute 1− εM,n,p0 for each p0 ∈ V̂M,n.
Results are displayed in Figure 10. 1− εM,n,p0 ranges from 0.90 to 1, where the
extreme values are reached for p0 corresponding to very small number of rules,
which are not of interest when p0 is selected to maximize predictive accuracy.
Thus, 1− εM,n,p0 is quite concentrated around 0.95 when p0 varies.
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Fig 10. For the UCI dataset “Credit German”, 1 − εM,n,p0 for a sequence of p0 ∈ V̂M,p0
corresponding to final models ranging from 1 to about 25 rules.

Table 11

Number of trees M determined by the stopping criterion (5.1) for UCI datasets. Results are
averaged over 10 repetitions and standard deviations are displayed in parentheses.

Dataset Nb of trees (sd)
Haberman 10 920 (877)
Diabetes 18 830 (1538)

Heart Statlog 7840 (994)
Liver Disorders 14 650 (1242)

Heart C2 6840 (1270)
Heart H2 4220 (529)

Credit German 7940 (672)
Credit Approval 20 650 (8460)

Ionosphere 7320 (487)

Experiments 3. Finally, we display in Table 11 the optimal number of trees
when the growing of SIRUS is stopped using criterion (5.1). It ranges from
4220 to 20 650 trees. In Breiman’s forests, the number of trees above which the
accuracy cannot be significantly improved is typically 10 times lower. However
SIRUS grows shallow trees, and is thus not computationally more demanding
than random forests overall.

B.2. Theoretical properties

We emphasize that growing more trees does not improve predictive accuracy
or stability with respect to data perturbation for a fixed sample size n. Indeed,
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the instability of the rule selection is generated by the variance of the estimates
p̂M,n(P),P ∈ Π. Upon noting that we have two sources of randomness—Θ and
Dn—, the law of total variance shows that V[p̂M,n(P)] can be broken down into
two terms: the variance generated by the Monte Carlo randomness Θ on the one
hand, and the sampling variance on the other hand. In fact, equation (C.3) in
the proof of Theorem 1 below reveals that

V[p̂M,n(P)] =
1

M
E[pn(P)](1− E[pn(P)]) + (1− 1

M
)V[pn(P)].

The stopping criterion (5.1) ensures that the first term becomes negligible as
M → ∞, so that V[p̂M,n(P)] reduces to the sampling variance V[pn(P)], which
is independent of M . Therefore, stability with respect to data perturbation
cannot be further improved by increasing the number of trees. Additionally, the
trees are only involved in the selection of the paths. For a given set of paths
P̂M,n,p0 , the construction of the final aggregated estimate η̂M,n,p0 (see Section 3
of the article) is independent of the forest. Thus, if further increasing the number
of trees does not impact the path selection, neither it improves the predictive
accuracy.

Next, Theorem 2 states that conditionally on Dn and with D ′
n = Dn,

ŜM,n,p0 should be close to 1, and also provides an asymptotic approxima-
tion of E[ŜM,n,p0 |Dn] for large values of the number of trees M , which quan-
tifies the influence of M on the mean stability, conditional on Dn. We let
Un

def
= {pn(P) : P ∈ Π} be the empirical counterpart of U�.

Theorem 2. If p0 ∈ [0, 1]\Un and D ′
n = Dn, then, conditional on Dn, we have

lim
M→∞

ŜM,n,p0 = 1 in probability.

In addition, for all p0 < max Un,

1−E[ŜM,n,p0 |Dn]

∼
M→∞

∑
P∈Π

Φ(Mp0,M, pn(P))(1− Φ
(
Mp0,M, pn(P)))

1
2

∑
P′∈Π 1pn(P′)>p0

+ 1
pn(P′)>p0−ρn(P,P′)σn(P′)

σn(P) (p0−pn(P))

,

where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter
pn(P), M trials, evaluated at Mp0, and, for all P,P ′ ∈ Π,

σn(P) =
√

pn(P)(1− pn(P)),

and

ρn(P,P ′) =
Cov(1P∈T (Θ,Dn),1P′∈T (Θ,Dn)|Dn)

σn(P)σn(P ′)
.

The proof of Theorem 2 is to be found in Section D. The equivalent provided
in Theorem 2 is defined when the sets of rules P̂M,n,p0 and P̂ ′

M,n,p0
are not

post-treated. It considerably simplifies the analysis of the asymptotic behavior
of E[ŜM,n,p0 |Dn]. Since the post-treatment is deterministic, this operation is
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not an additional source of instability. Then, if the estimation of the rule set
without post-treatment is stable, it is also the case when the post-treatment is
added. Finally, despite its apparent complexity, the asymptotic approximation
of 1−E[ŜM,n,p0 |Dn] can be easily estimated, and an efficient stopping criterion
for the number of trees is therefore derived in (5.1).

Appendix C: Proof of Theorem 1

We recall Assumptions (A1)-(A3) and Theorem 1 for the sake of clarity.

(A1) The subsampling rate an satisfies lim
n→∞

an = ∞ and lim
n→∞

an

n = 0.

(A2) The number of trees Mn satisfies lim
n→∞

Mn = ∞.

(A3) X has a strictly positive density f with respect to the Lebesgue measure.
Furthermore, for all j ∈ {1, . . . , p}, the marginal density f (j) of X(j) is
continuous, bounded, and strictly positive.

Theorem 1. If Assumptions (A1)-(A3) are satisfied, then, for all P ∈ Π, we
have

lim
n→∞

p̂Mn,n(P) = p�(P) in probability.

First, we prove Theorem 1 for a path of one split. The proof is extended for
a path of two splits in the next subsection and follows the same steps. Finally,
the proof can be easily extended to a path of any depth d ∈ N

� by recursion.

C.1. Proof of Theorem 1 for a path of one split

We consider P1 = {(j1, r1, s1)} a path of one split, where j1 ∈ {1, . . . , p},
r1 ∈ {1, . . . , q − 1}, and s1 ∈ {L,R}. We assume throughout that Assumptions
(A1)-(A3) are satisfied.

Before proving Theorem 1, we state five lemmas (Lemma 1 to Lemma 5).
Their proof can be found in the Subsection C.3. Lemma 1 is a preliminary
technical result used to state both Lemmas 2 and 4 - case (b).

Lemma 1. Let X be a random variable distributed on Rp such that Assumptions
(A1) and (A3) are satisfied. Then, for all j ∈ {1, . . . , p} and all r ∈ {1, . . . , q −
1}, we have

lim
n→∞

√
an P

(
q�(j)r ≤ X(j) < q̂(j)n,r

)
= 0

and

lim
n→∞

√
an P

(
q̂(j)n,r ≤ X(j) < q�(j)r

)
= 0.

Lemma 2 is used to prove both consistency (Lemma 3) and convergence rate
(Lemma 4) of the CART-splitting criterion when the root node of the tree is cut
at an empirical quantile. Lemma 5 is an intermediate result to prove Theorem 1.
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Lemma 2. If Assumptions (A1) and (A3) are satisfied, then for all j ∈
{1, . . . , p}, all r ∈ {1, . . . , q − 1}, and all H ⊆ Rp such that P(X ∈ H,X(j) <

q
�(j)
r ) > 0 and P(X ∈ H,X(j) ≥ q

�(j)
r ) > 0, we have

lim
n→∞

√
an

(
Lan

(
H, q̂(j)n,r

)
− Lan

(
H, q�(j)r

))
= 0 in probability.

Lemma 3. If Assumptions (A1) and (A3) are satisfied, then for all j ∈
{1, . . . , p}, all r ∈ {1, . . . , q − 1}, and all H ⊆ Rp such that P(X ∈ H,X(j) <

q
�(j)
r ) > 0 and P(X ∈ H,X(j) ≥ q

�(j)
r ) > 0, we have

lim
n→∞

Lan

(
H, q̂(j)n,r

)
= L�

(
H, q�(j)r

)
in probability.

When splitting a node, if the theoretical CART-splitting criterion has multi-
ple maxima, one is randomly selected. This random selection follows a discrete
probability law, which is not necessarily uniform and is based on PX,Y as spec-
ified in Definition 1. In order to derive the limit of the probability that a given
split occurs in a Θ-random tree in the empirical algorithm, one needs to as-
sess the convergence rate of the empirical CART-splitting criterion when it has
multiple maxima.

Lemma 4. Consider that Assumptions (A1) and (A3) are satisfied. Let C1 ⊂
{1, . . . , p}×{1, . . . , q−1} be a set of splits of cardinality c1 ≥ 2, such that, for all

(j, r) ∈ C1, L�(Rp, q
�(j)
r )

def
= L�

C1
, i.e., the theoretical CART-splitting criterion is

constant for all splits in C1. Let (j1, r1) ∈ C1 and let L
(C1)
n,P1

be a random vector
where each component is the difference between the empirical CART-splitting
criterion for the splits (j, r) ∈ C1 \ (j1, r1) and (j1, r1), that is

L
(C1)
n,P1

=
(
Lan

(
R

p, q̂(j)n,r

)
− Lan

(
R

p, q̂(j1)n,r1

))
(j,r)∈C1\(j1,r1)

.

(a) If L�
C1

> 0, then we have

√
an L

(C1)
n,P1

D−−−−→
n→∞

N (0,Σ),

where, for all (j, r), (j′, r′) ∈ C1 \ (j1, r1), each element of the covariance matrix
Σ is defined by Σ(j,r),(j′,r′) = Cov[Zj,r, Zj′,r′ ], with

Zj,r =
(
Y−E[Y |X(j1) < q�(j1)r1 ]1

X(j1)<q
�(j1)
r1

− E[Y |X(j1) ≥ q�(j1)r1 ]1
X(j1)≥q

�(j1)
r1

)2
−
(
Y − E[Y |X(j) < q�(j)r ]1

X(j)<q
�(j)
r

− E[Y |X(j) ≥ q�(j)r ]1
X(j)≥q

�(j)
r

)2
.

Besides, for all (j, r) ∈ C1, V[Zj,r] > 0.
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(b) If L�
C1

= 0, then we have

anL
(C1)
n,P1

D−−−−→
n→∞

hP1(V),

where V is a Gaussian vector of covariance matrix Cov[Z]. If C1 is explicitly
written C1 = {(jk, rk)}k=1,...,c1 , Z is defined, for k ∈ {1, . . . , c1}, by

Z2k−1 =
1

√
pL,k

(Y − E[Y ])1
X(jk)<q

�(jk)
rk

Z2k =
1

√
pR,k

(Y − E[Y ])1
X(jk)≥q

�(jk)
rk

,

where pL,k = P(X(jk) < q
�(jk)
rk ), pR,k = P(X(jk) ≥ q

�(jk)
rk ), and hP1 is a multi-

variate quadratic form defined as

hP1 :

⎛
⎜⎝ x1

...
x2c1

⎞
⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎜⎝

x2
3 + x2

4 − x2
1 − x2

2
...

x2
2k−1 + x2

2k − x2
1 − x2

2
...

x2
2c1−1 + x2

2c1 − x2
1 − x2

2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Besides, the variance of each component of hP1(V) is strictly positive.

Definition 1 (Theoretical splitting procedure). Let θ
(V )
1 be the set of eligible

variables to split the root node of a theoretical random tree. The set of best
theoretical cuts at the root node is defined as

C�
1

(
θ
(V )
1

)
= argmax

(j,r)∈θ
(V )
1 ×{1,...,q−1}

L�
(
R

p, q�(j)r

)
.

If C�
1 (θ

(V )
1 ) has multiple elements, then (j1, r1) is randomly drawn with proba-

bility

P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= Φ

θ
(V )
1 ,(j1,r1)

(0), (C.1)

where Φ
θ
(V )
1 ,(j1,r1)

is the cdf of the limit law defined in Lemma 4 for C1 =

C�
1 (θ

(V )
1 ). This definition is extended for the second split in Definition 2.

Recall that the randomness in a tree can be decomposed as Θ = (Θ(S),Θ(V )),
where Θ(S) corresponds to the subsampling and Θ(V ) is related to the variable
selection. Θ(V ) takes values in the finite set Ω(V ) = {1, . . . , p}3×mtry.

Lemma 5. If Assumptions (A1)-(A3) are satisfied, then for all θ(V ) ∈ Ω(V ),
we have

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= P

(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
.
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We are now equipped to prove Theorem 1 in the case of one single split.
Recall that

E[p̂Mn,n(P1)] = P(P1 ∈ T (Θ,Dn)). (C.2)

Since Θ(V ) takes values in the finite set Ω(V ), according to Lemma 5, we have

lim
n→∞

P(P1 ∈ T (Θ,Dn))

= lim
n→∞

∑
θ(V )∈Ω(V )

P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
PΘ(V )

(
Θ(V ) = θ(V )

)
=

∑
θ(V )∈Ω(V )

P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
PΘ(V )

(
Θ(V ) = θ(V )

)
= P(P1 ∈ T �(Θ)).

Therefore,

lim
n→∞

E[p̂Mn,n(P1)] = p�(P1).

To finish the proof, we just have to show that lim
n→∞

V[p̂Mn,n(P1)] = 0.

The law of total variance gives

V[p̂Mn,n(P1)] = E
[
V[p̂Mn,n(P1)|Dn]

]
+ V

[
E[p̂Mn,n(P1)|Dn]

]
= E

[
V

[ 1

Mn

Mn∑
�=1

1P1∈T (Θ�,Dn)|Dn

]]
+ V[pn(P1)]

=
1

Mn
E
[
V[1P1∈T (Θ1,Dn)|Dn]

]
+ V[pn(P1)]

=
1

Mn
E
[
pn(P1)− pn(P1)

2
]
+ V[pn(P1)],

=
1

Mn
E[pn(P1)](1− E[pn(P1)]) +

(
1− 1

Mn

)
V[pn(P1)].

(C.3)

Following the approach of Mentch and Hooker (2016), pn(P1) is a complete infi-
nite order U-statistic with the kernel E[1P1∈T (Θ,Dn)|Θ(S),Dn]. From Hoeffding
(1948),

V[pn(P1)] ≤
an
n
ξan,an ,

where ξan,an = V[E[1P1∈T (Θ,Dn)|Θ(S),Dn]|Θ(S)]. Since ξan,an is bounded and
lim

n→∞
an

n = 0,

lim
n→∞

V[pn(P1)] = 0.

Using equality (C.3), since pn(P1) is bounded and lim
n→∞

Mn = ∞,

lim
n→∞

V[pMn,n(P1)] = 0.
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Finally,

lim
n→∞

E
[
(p̂Mn,n(P1)− p�(P1))

2
]

= lim
n→∞

V[p̂Mn,n(P1)] +
(
E[p̂Mn,n(P1)]− p�(P1)

)2
= 0,

which concludes the proof.

C.2. Proof of Theorem 1 for a path of two split

The proof of Theorem 1 is extended for a path of two splits. We consider P1 =
{(j1, r1, s1)} a path of one split and P2 = {(jk, rk, sk), k = 1, 2} a path of two
splits, where j1, j2 ∈ {1, ..., p}, r1, r2 ∈ {1, ..., q − 1} and s1, s2 ∈ {L,R}. We
assume assumptions (A1)-(A3) are satisfied.

The path P2 = {(j1, r1, s1), (j2, r2, s2)} can occur in trees where the split at
the root node is (j1, r1) and the split of one of the child node is (j2, r2), and
in trees where the splits are made in the reversed order, (j2, r2) at the root
node and (j1, r1) at one of the child node. Since these two events are disjoint,
P
(
P2 ∈ T (Θ,Dn)

)
is the sum of the probability of these two events. Without

loss of generality, we will consider in the entire proof that the split at the root
node is (j1, r1). Lemmas 6 - 9 below extend Lemmas 2 - 5 to the case where the
tree path contains two splits.

We need to introduce additional notations, first, the theoretical hyperrectan-
gle based on a path P by

H�(P) =

{
x ∈ Rp :

{
x(jk) < q

�(jk)
rk if sk = L

x(jk) ≥ q
�(jk)
rk if sk = R

, k ∈ 1, . . . , d

}
,

with d ∈ {1, 2}, the empirical counterpart of Ĥn(P) defined in (2.3). Further-
more, since from assumption (A3), X has a strictly positive density, then for

j ∈ {1, ..., p} \ j1, and r ∈ {1, ..., q − 1}, P
(
X ∈ H�(P1), X

(j) < q
�(j)
r

)
> 0 and

P
(
X ∈ H�(P1), X

(j) ≥ q
�(j)
r

)
> 0. When j = j1, the second cut is performed

along the same direction as the first one. In that case, depending on the side s1
of the first cut and the cut positions r1 and r, one of the two child node can be
empty with probability one. For example, the hyperrectangle associated to the
path {(1, 2, L), (1, 3, R)} is empty. In SIRUS, such splits are not considered to
find the best cut for a node at the second level of the tree. Thus we define CP1

the set of possible splits for the second cut

CP1 = {(j, r), j ∈ {1, ..., p} \ j1, r ∈ {1, ..., q − 1}}
∪ {(j1, r), s.t. r < r1 if s1 = L, and r > r1 if s1 = R},

and CP1

(
θ
(V )
2

)
=

{
(j, r) ∈ CP1 s.t. j ∈ θ

(V )
2

}
when the split directions are

restricted to θ
(V )
2 ⊂ {1, ..., p}.
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Lemma 6. If Assumptions (A1) and (A3) are satisfied, then for all (j, r) ∈ CP1 ,
we have

lim
n→∞

√
an

(
Lan

(
Ĥn(P1), q̂

(j)
n,r

)
− Lan

(
H�(P1), q

�(j)
r

))
= 0 in probability.

Lemma 7. If Assumptions (A1) and (A3) are satisfied, then for all (j, r) ∈ CP1 ,
we have

lim
n→∞

Lan

(
Ĥn(P1), q̂

(j)
n,r

)
= L�

(
H�(P1), q

�(j)
r

)
in probability.

Lemma 8. Consider that Assumptions (A1) and (A3) are satisfied. Let C1 ⊂
{1, ..., p} × {1, ..., q− 1} and C2 ⊂ CP1 be two sets of splits of cardinality c1 ≥ 1
and c2 ≥ 2, such that the theoretical CART-splitting criterion is constant for all
splits in C1 on one hand, and in C2 on the other hand, i.e.,

∀l ∈ {1, 2}, ∀(j, r) ∈ Cl, L�
(
Hl, q

�(j)
r

) def
= L�

Cl
,

where H1 = Rp and H2 = H�(P1). Let (j1, r1) ∈ C1, (j2, r2) ∈ C2, and let

L
(C1,C2)
n,P2

a the random vector where each component is the difference between the
empirical CART-splitting criterion for the splits (j, r) ∈ C1 \ (j1, r1) and (j1, r1)
for the first c1−1 components, and for the splits (j, r) ∈ C2 \ (j2, r2) and (j2, r2)
for the remaining c2 − 1 components, that is

L
(C1,C2)
n,P2

=

( [
Lan

(
R

p, q̂
(j)
n,r

)
− Lan

(
R

p, q̂
(j1)
n,r1

)]
(j,r)∈C1\(j1,r1)[

Lan

(
Ĥn(P1), q̂

(j)
n,r

)
− Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)]
(j,r)∈C2\(j2,r2)

)
.

(a) If L�
C1

> 0 and L�
C2

> 0, then we have

√
anL

(C1,C2)
n,P2

D−−−−→
n→∞

N (0,Σ)

where for l, l′ ∈ {1, 2}, for all (j, r) ∈ Cl \ (jl, rl), (j′, r′) ∈ Cl′ \ (jl′ , rl′),
each element of the covariance matrix Σ is defined by Σ(j,r,l),(j′,r′,l′) =
Cov[Zj,r,l, Zj′,r′,l′ ], with

Zj,r,l =
1

P(X ∈ Hl)

(
Y − μ

(jl)
L,rl

1
X(jl)<q

�(jl)
rl

− μ
(jl)
R,rl

1
X(jl)≥q

�(jl)
rl

)2
1X∈Hl

− 1

P(X ∈ Hl)

(
Y − μ

(j)
L,r1X(j)<q

�(j)
r

− μ
(j)
R,r1X(j)≥q

�(j)
r

)2
1X∈Hl

,

μ
(j)
L,r = E

[
Y |X(j) < q

�(j)
r ,X ∈ Hl

]
, μ

(j)
R,r = E

[
Y |X(j) ≥ q

�(j)
r ,X ∈ Hl

]
. Besides,

for all l ∈ {1, 2} and for all (j, r) ∈ Cl, V[Zj,r,l] > 0.

(b) If L�
C1

= L�
C2

= 0, then we have

anL
(C1,C2)
n,P2

D−−−−→
n→∞

hP2(V),
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where V is a gaussian vector of covariance matrix Cov[Z]. If C1 and C2 are
explicitly written C1 = {(jk, rk)}k∈J1 , and C2 = {(jk, rk)}k∈J2 , with J1 =
{1, ..., c1 + 1} \ 2 and J2 = {2} ∪ {c1 + 2, ..., c1 + c2}, Z is defined, for l ∈ {1, 2}
and k ∈ Jl, by

Z2k−1 =
1√

pL,kP(X ∈ Hl)
(Y − E[Y |X ∈ Hl])1X(jk)<q

�(jk)
rk

1X∈Hl

Z2k =
1√

pR,kP(X ∈ Hl)
(Y − E[Y |X ∈ Hl])1X(jk)≥q

�(jk)
rk

1X∈Hl
,

where pL,k = P
(
X(jk) < q

�(jk)
rk ,X ∈ Hl

)
, pR,k = P

(
X(jk) ≥ q

�(jk)
rk ,X ∈ Hl

)
,

and hP2 is a multivariate quadratic form defined as

hP2 :

⎛
⎜⎝ x1

...
x2(c1+c2)

⎞
⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
5 + x2

6 − x2
1 − x2

2
...

x2
2c1+1 + x2

2c1+2 − x2
1 − x2

2

x2
2c1+3 + x2

2c1+4 − x2
3 − x2

4
...

x2
2(c1+c2)−1 + x2

2(c1+c2)
− x2

3 − x2
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Besides, the variance of each component of hP2(V) is strictly positive.

(c) If L�
C1

> 0 and L�
C2

= 0, then we have

anL
(C1,C2)
n,P2

D−−−−→
n→∞

h′
P2

(V),

where V is a gaussian vector of covariance matrix Cov[Z], and Z is defined as,
for k ∈ J1,

Z2k−1 =
(
Y − E

[
Y |X(jk) < q�(jk)rk

])2
1
X(jk)<q

�(jk)
rk

Z2k =
(
Y − E

[
Y |X(jk) ≥ q�(jk)rk

])2
1
X(jk)≥q

�(jk)
rk

,

for k ∈ J2,

Z2k−1 =
Y − E[Y |X ∈ H�(P1)]√

pL,kP(X ∈ H�(P1))
1
X(jk)<q

�(jk)
rk

,X∈H�(P1)

Z2k =
Y − E[Y |X ∈ H�(P1)]√
pR,kP(X ∈ H�(P1))

1
X(jk)≥q

�(jk)
rk

,X∈H�(P1)
,

and h′
P2

is a multivariate quadratic form defined as

h′
P2

:

⎛
⎜⎝ x1

...
x2(c1+c2)

⎞
⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 + x2 − x5 − x6

...
x1 + x2 − x2c1+1 − x2c1+2

x2
2c1+3 + x2

2c1+4 − x2
3 − x2

4
...

x2
2(c1+c2)−1 + x2

2(c1+c2)
− x2

3 − x2
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Besides, the variance of each component of h′
P2

(V) is strictly positive.

(d) L�
C1

= 0 and L�
C2

> 0. Symmetric to case (c).

Definition 2 (Theoretical splitting procedure at children nodes). Let θ(V ) =

(θ
(V )
1 , θ

(V )
2 , ·) ∈ Ω(V ) be the sets of eligible variables to split the nodes of a

theoretical random tree. The set of best theoretical cuts at the left children node

along the variables in θ
(V )
2 is defined as

C�
2

(
θ
(V )
2

)
= argmax

(j,r)∈CP1

(
θ
(V )
2

)L�
(
H�(P1), q

�(j)
r

)
.

If C�
2

(
θ
(V )
2

)
has multiple elements, then (j2, r2) is randomly drawn with proba-

bility

P
(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
=

ΦP1,θ(V ),(j2,r2)(0)

P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

) , (C.4)

where P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
is defined from Definition 1, and

ΦP1,θ(V ),(j2,r2) is the cdf of the limit law defined in Lemma 8 for C1 = C�
1

(
θ
(V )
1

)
and C2 = C�

2

(
θ
(V )
2

)
.

Lemma 9. If Assumptions (A1)-(A3) are satisfied, then for all θ(V ) ∈ Ω(V ),
we have

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= P

(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
Finally, the proof of Theorem 1 in the two-splits scenario is the same as in

the single-split scenario.

C.3. Proofs of intermediate lemmas

Proof of Lemma 1. Set j ∈ {1, ..., p}, and r ∈ {1, ..., q − 1}. We define the
marginal cumulative distribution function F (j) of X(j), F (j)(x) = P

(
X(j) < x

)
,

and F
(j)
n the empirical c.d.f.

F (j)
n (x) =

1

n

n∑
i=1

1
X

(j)
i ≤x

.

We adapt an inequality from Serfling (2009) (section 2.3.2 page 75) to bound
the following conditional probability for all ε > 0

P
(
q�(j)r ≤ X

(j)
1 < q̂(j)n,r|X

(j)
1 = q�(j)r + ε

)
= P

(
q�(j)r + ε < q̂(j)n,r|X

(j)
1 = q�(j)r + ε

)
≤ P

(
F (j)
n

(
q�(j)r + ε

)
≤ F (j)

n

(
q̂(j)n,r

)
|X(j)

1 = q�(j)r + ε
)
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≤ P

(
1 +

n∑
i=2

1
X

(j)
i ≤q

�(j)
r +ε

≤
⌈
n.r

q

⌉)

≤ P

( n∑
i=2

1
X

(j)
i ≤q

�(j)
r +ε

− (n− 1)F (j)
(
q�(j)r + ε

)
(C.5)

≤
⌈
n.r

q

⌉
− 1− (n− 1)F (j)

(
q�(j)r + ε

))
(C.6)

Since f is continuous and strictly positive, there exists three constants

c1, c2, η > 0 such that for all x ∈ [q
�(j)
r , q

�(j)
r + η], c1 ≤ f (j)(x) ≤ c2. Thus,

for all ε < η, we have

F (j)
(
q�(j)r + ε

)
− F (j)

(
q�(j)r

)
=

∫ q�(j)r +ε

q
�(j)
r

f (j)(x)dx,

which leads to

c1ε ≤ F (j)
(
q�(j)r + ε

)
− F (j)

(
q�(j)r

)
≤ c2ε.

Consequently,⌈
n.r

q

⌉
− 1−(n− 1)F (j)

(
q�(j)r + ε

)
≤

⌈
n.r

q

⌉
− 1− (n− 1)

(
c1ε+ F (j)

(
q�(j)r

))
≤

⌈
n.r

q

⌉
− 1− (n− 1)c1ε−

(n− 1).r

q

≤ 1− (n− 1)c1ε.

For n > 1 + 1
c1ε

, we can apply Hoeffding inequality to C.6,

P
(
q�(j)r ≤ X

(j)
1 < q̂(j)n,r|X

(j)
1 = q�(j)r + ε

)
≤ P

( n∑
i=2

1
X

(j)
i ≤q

�(j)
r +ε

− (n− 1)F (j)
(
q�(j)r + ε

)
≤ 1− (n− 1)c1ε

)
≤ e−

2
n

(
1−(n−1)c1ε

)2

≤ Ce−2nc21ε
2

, (C.7)

where C = e2c1η(1+2c1η). By definition, we have

P
(
q�(j)r ≤ X

(j)
1 < q̂(j)n,r) =

∫
]0,∞[

P
(
q�(j)r ≤ X

(j)
1 < q̂(j)n,r|X

(j)
1 = q�(j)r + ε

)
× f (j)

(
q�(j)r + ε

)
dε.
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To bound the previous integral, we break it down in three parts. Since f (j) is

bounded by c2 on [q
�(j)
r , q

�(j)
r + η], for n > 1 + 1

c1η
we use inequality C.7 to get

P
(
q�(j)r ≤ X

(j)
1 < q̂(j)n,r

)
≤

∫
]0, 1

(n−1)c1
]

c2dε

+

∫
] 1
(n−1)c1

,η[

c2Ce−2nc21ε
2

dε

+

∫
[η,∞[

Ce−2nc21η
2

f (j)
(
q�(j)r + ε

)
dε.

In the second integral, we introduce the following change of variable u =
√
2nc1ε∫

] 1
(n−1)c1

,η[

c2Ce−2nc21ε
2

dε =
c2C

c1
√
2n

∫
]

√
2n

(n−1)
,
√
2nc1η[

e−u2

du

≤ c2C

c1
√
2n

∫
]0,∞[

e−u2

du ≤
√
πc2C

2c1
√
2n

,

and therefore we can write

√
anP

(
q�(j)r ≤ X

(j)
1 < q̂(j)n,r

)
≤ c2

√
an

(n− 1)c1
+

√
πanc2C

2c1
√
2n

+ C
√
ane

−2nc21η
2

From Assumption (A1), lim
n→∞

an

n = 0, and then

lim
n→∞

√
an P

(
q�(j)r ≤ X

(j)
1 < q̂(j)n,r

)
= 0.

The case lim
n→∞

√
anP

(
q̂
(j)
n,r ≤ X

(j)
1 < q

�(j)
r

)
= 0 is similar.

C.3.1. Case 1: P1

Proof of Lemma 2. Let j ∈ {1, ..., p}, r ∈ {1, ..., q − 1}, and H ⊆ Rp such that

P
(
X ∈ H,X(j) < q

�(j)
r

)
> 0 and P

(
X ∈ H,X(j) ≥ q

�(j)
r

)
> 0. Let

Δ(j)
n,r =

√
an

(
Lan

(
H, q̂(j)n,r

)
− Lan

(
H, q�(j)r

))
that is

Δ(j)
n,r = −

√
an

Nn(H)

[ an∑
i=1

(
Yi − Y HL

1
X

(j)
i <q̂

(j)
n,r

− Y HR
1
X

(j)
i ≥q̂

(j)
n,r

)2
1Xi∈H

−
an∑
i=1

(
Yi − Y H�

L
1
X

(j)
i <q

�(j)
r

− Y H�
R
1
X

(j)
i ≥q

�(j)
r

)2
1Xi∈H

]
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where, for a generic hyperrectangle H, we define Nn(H) =
∑an

i=1 1Xi∈H , and

HL =
{
x ∈ H : x(j) < q̂(j)n,r

}
and Y HL

=
1

Nn(HL)

an∑
i=1

Yi1X
(j)
i <q̂

(j)
n,r

1Xi∈H ,

with the convention Y HL
= 0 if HL is empty. The theoretical quantities H�

L and
Y H�

L
are defined similarly by replacing the empirical quantile by its population

version. We define symmetrically HR, H
�
R, Y HR

, Y H�
R
.

Simple calculations show that

Δ(j)
n,r =

√
an

Nn(H)

(
Y

2

HL
Nn(HL)− Y

2

H�
L
Nn(H

�
L)

)
+

√
an

Nn(H)

(
Y

2

HR
Nn(HR)− Y

2

H�
R
Nn(H

�
R)

)
(C.8)

The first term in equation (C.8) can be rewritten as

√
an

Nn(H
) (Y 2

HL
Nn(HL)− Y

2

H�
L
Nn(H

�
L)

)
=

√
an

Nn(H)Nn(HL)Nn(H�
L)

an∑
i,k,l=1

YiYk1Xi∈H,Xk∈H

×
(
1
X

(j)
l <q

�(j)
r

1
X

(j)
i <q̂

(j)
n,r

1
X

(j)
k <q̂

(j)
n,r

− 1
X

(j)
l <q̂

(j)
n,r

1
X

(j)
i <q

�(j)
r

1
X

(j)
k <q

�(j)
r

)
.

Since Yi ∈ {0, 1}, we have the following bound

√
an

Nn(H)

∣∣Y 2

HL
Nn(HL)− Y

2

H�
L
Nn(H

�
L)

∣∣
≤

√
an

Nn(H)Nn(HL)Nn(H�
L)

an∑
i,k,l=1

∣∣1
X

(j)
l <q

�(j)
r

1
X

(j)
i <q̂

(j)
n,r

1
X

(j)
k <q̂

(j)
n,r

− 1
X

(j)
l <q̂

(j)
n,r

1
X

(j)
i <q

�(j)
r

1
X

(j)
k <q

�(j)
r

∣∣,
and finally

√
an

Nn(H)

∣∣Y 2

HL
Nn(HL)− Y

2

H�
L
Nn(H

�
L)

∣∣ ≤ a3n
Nn(H)Nn(HL)Nn(H�

L)
W (j)

n,r, (C.9)

where

W (j)
n,r =

√
an
a3n

an∑
i,k,l=1

∣∣1
X

(j)
l <q

�(j)
r

1
X

(j)
i <q̂

(j)
n,r

1
X

(j)
k <q̂

(j)
n,r

(C.10)

− 1
X

(j)
l <q̂

(j)
n,r

1
X

(j)
i <q

�(j)
r

1
X

(j)
k <q

�(j)
r

∣∣.
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A close inspection of the terms inside the sum of (C.10) reveals that

E
[
W (j)

n,r

]
≤

√
an
a3n

an∑
i,k,l=1

P
(
q̂(j)n,r ≤ X

(j)
i < q�(j)r

)
+ P

(
q̂(j)n,r ≤ X

(j)
k < q�(j)r

)
+ P

(
q�(j)r ≤ X

(j)
l < q̂(j)n,r

)
+ P

(
q�(j)r ≤ X

(j)
i < q̂(j)n,r

)
+ P

(
q�(j)r ≤ X

(j)
k < q̂(j)n,r

)
+ P

(
q̂(j)n,r ≤ X

(j)
l < q�(j)r

)
≤ 3

√
an P

(
q̂(j)n,r ≤ X

(j)
1 < q�(j)r

)
+ 3

√
an P

(
q�(j)r ≤ X

(j)
1 < q̂(j)n,r

)
,

which tends to zero, according to Lemma 1. Thus, in probability,

lim
n→∞

W (j)
n,r = 0. (C.11)

Regarding the remaining terms in inequality (C.9), by the law of large numbers,
in probability,

lim
n→∞

Nn(H)

an
= P

(
X ∈ H

)
, lim

n→∞

Nn(H
�
L)

an
= P

(
X ∈ H�

L

)
. (C.12)

Additionally,

E
[∣∣Nn(HL)

an
− Nn(H

�
L)

an

∣∣] ≤ E
[ 1

an

an∑
i=1

1
X

(j)
i ∈H

∣∣1
X

(j)
i ≤q̂

(j)
n,r

− 1
X

(j)
i ≤q

�(j)
r

∣∣]
≤ P

(
q̂(j)n,r ≤ X

(j)
1 < q�(j)r

)
+ P

(
q�(j)r ≤ X

(j)
1 < q̂(j)n,r

)
,

which tends to zero, according to Lemma 1. Therefore, in probability,

lim
n→∞

Nn(HL)

an
− Nn(H

�
L)

an
= 0. (C.13)

Since P(X ∈ H) > 0 and P(X ∈ H�
L) > 0 by assumption, we can combine

(C.11)-(C.13) to obtain, in probability,

lim
n→∞

a3n
Nn(H)Nn(HL)Nn(H�

L)
=

1

P(X ∈ H)P(X ∈ H�
L)

2
. (C.14)

Using (C.11) and (C.14) and inequality (C.9), we obtain, in probability,

lim
n→∞

√
an

Nn(H)

∣∣Y 2

HL
Nn(HL)− Y

2

H�
L
Nn(H

�
L)

∣∣ = 0.

Similar results can be derived for the other term in equation (C.8), which allows
us to conclude that, in probability,

lim
n→∞

√
an

(
Lan

(
H, q̂(j)n,r

)
− Lan

(
H, q�(j)r

))
= 0.
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Proof of Lemma 3. Let j ∈ {1, ..., p}, r ∈ {1, ..., q − 1} and H ⊆ Rp such that

P
(
X ∈ H,X(j) < q

�(j)
r

)
> 0 and P

(
X ∈ H,X(j) ≥ q

�(j)
r

)
> 0.

Lan

(
H, q̂(j)n,r

)
= Lan

(
H, q�(j)r

)
+

(
Lan

(
H, q̂(j)n,r

)
− Lan

(
H, q�(j)r

))
From the law of large number, in probability,

lim
n→∞

Lan

(
H, q�(j)r

)
= L�

(
H, q�(j)r

)
.

Thus, according to Lemma 2, in probability,

lim
n→∞

Lan

(
H, q̂(j)n,r

)
= L�

(
H, q�(j)r

)
.

Proof of Lemma 4. We consider C1, a set of splits of cardinality c1 ≥ 2 satisfy-

ing, for all (j, r) ∈ C1, L�
(
Rp, q

�(j)
r

) def
= L�

C1
. Fix (j1, r1) ∈ C1, we recall that

L
(C1)
n,P1

=
(

Lan

(
R

p, q̂
(j)
n,r

)
− Lan

(
R

p, q̂
(j1)
n,r1

) )
(j,r)∈C1\(j1,r1)

.

Case (a): L�
C1

> 0 We first consider the following decomposition for (j, r) ∈
C1,

Lan

(
Rp, q̂(j)n,r

)
= Lan

(
Rp, q�(j)r

)
+

(
Lan

(
Rp, q̂(j)n,r

)
− Lan

(
Rp, q�(j)r

))
=

1

an

an∑
i=1

(Yi − Y )2 − 1

an

an∑
i=1

(
Yi − Y

�

L1X
(j)
i <q

�(j)
r

− Y
�

R1X
(j)
i ≥q

�(j)
r

)2
+ Lan

(
Rp, q̂(j)n,r

)
− Lan

(
Rp, q�(j)r

)
,

where

N�
n,L =

an∑
i=1

1
X

(j)
i <q

�(j)
r

and Y
�

L =
1

N�
n,L

an∑
i=1

Yi1X
(j)
i <q

�(j)
r

(Y
�

R, N
�
n,R are defined symmetrically). Letting μ

(j)
L,r = E

[
Y |X(j) < q

�(j)
r

]
(and

μ
(j)
R,r symmetrically), the first two terms of the last decomposition are standard

variance estimates and we can write

Lan

(
Rp, q̂(j)n,r

)
=

1

an

an∑
i=1

(Yi − Y )2 (C.15)

− 1

an

an∑
i=1

(
Yi − μ

(j)
L,r1X

(j)
i <q

�(j)
r

− μ
(j)
R,r1X

(j)
i ≥q

�(j)
r

)2
+R(j)

n,r,

(C.16)

where

R
(j)
n,L =

N�
n,L

an

(
Y

�

L − μ
(j)
L,r

)2
+

N�
n,R

an

(
Y

�

R − μ
(j)
L,r

)2
(C.17)
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+ Lan

(
Rp, q̂(j)n,r

)
− Lan

(
Rp, q�(j)r

)
.

Using the Central limit theorem, in probability,

lim
n→∞

√
an

N�
L,r

an

(
Y

�

L,r − μ
(j)
L,r

)2
= 0. (C.18)

The same result holds for the second term of (C.17), and using Lemma 2 for
the third term of (C.17), we get that, in probability,

lim
n→∞

√
an

(
Lan

(
Rp, q̂(j)n,r

)
− Lan

(
Rp, q�(j)r

))
= 0.

Finally,

lim
n→∞

√
anR

(j)
n,r = 0, in probability.

Using Equation (C.16), each component of L
(C1)
n,P1

writes, with (j, r) ∈ C1 \
(j1, r1),

Lan

(
Rp, q̂(j)n,r

)
− Lan

(
Rp, q̂(j1)n,r1

)
=

1

an

an∑
i=1

(
Yi − μ

(j1)
L,r1

1
X

(j1)
i <q

�(j1)
r1

− μ
(j1)
R,r1

1
X

(j1)
i ≥q

�(j1)
r1

)2
−

(
Yi − μ

(j)
L,r1X

(j)
i <q

�(j)
r

− μ
(j)
R,r1X

(j)
i ≥q

�(j)
r

)2
+R(j)

n,r −R(j1)
n,r1

We can apply the multivariate Central limit theorem and Slutsky’s theorem to
obtain,

√
an L

(C1)
n,P1

D−−−−→
n→∞

N
(
0,Σ

)
where for all (j, r), (j′, r′) ∈ C1 \ (j1, r1), each element of the covariance matrix
Σ is defined by Σ(j,r),(j′,r′) = Cov[Zj,r, Zj′,r′ ], with

Zj,r =
(
Y − μ

(j1)
L,r1

1
X(j1)<q

�(j1)
r1

− μ
(j1)
R,r1

1
X(j1)≥q

�(j1)
r1

)2
−

(
Y − μ

(j)
L,r1X(j)<q

�(j)
r

− μ
(j)
R,r1X(j)≥q

�(j)
r

)2
.

Since L�
C1

> 0, we have for all (j, r) ∈ C1, μ(j)
L,r 	= μ

(j)
R,r. Besides, according to

assumption (A3), X has a strictly positive density. Consequently, the variance
of Zj,r is strictly positive. This concludes the first case.

Case (b): L�
C1

= 0 Fix (j, r) ∈ C1. Since L�
(
Rp, q

�(j)
r

)
= 0, we have

E[Y ] = E
[
Y |X(j) < q�(j)r

]
= E

[
Y |X(j) ≥ q�(j)r

] def
= μ.
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Then, simple calculations show that Lan

(
R

p, q̂
(j)
n,r

)
writes

Lan

(
R

p, q̂(j)n,r

)
= −(Y − μ)2 +

Nn,L

an
(Y L − μ)2︸ ︷︷ ︸
δL

+
Nn,R

an
(Y R − μ)2︸ ︷︷ ︸
δR

,

where

Nn,L =

an∑
i=1

1
X

(j)
i <q̂

(j)
n,r

and Y L =
1

Nn,L

an∑
i=1

Yi1X
(j)
i <q̂

(j)
n,r

(Nn,R, Y R are defined similarly for the other cell). Letting p
(j)
L,r = P

(
X(j) <

q
�(j)
r

)
and p

(j)
R,r = P

(
X(j) ≥ q

�(j)
r

)
with p

(j)
L,r, p

(j)
R,r > 0, we have

δL =
Nn,L

an
(Y L − μ)2

=
Nn,L

an
(Y

�

L − μ)2 − 2
Nn,L

an
(Y

�

L − Y L)(Y
�

L − μ) +
Nn,L

an
(Y

�

L − Y L)
2

=
1

p
(j)
L,r

( 1

an

an∑
i=1

(Yi − μ)1
X

(j)
i <q

�(j)
r

)2
+R

(j)
L,r,

where

R
(j)
L,r =

(anNn,L

N�2
n,L

− 1

pn,L

)( 1

an

an∑
i=1

(Yi − μ)1
X

(j)
i <q

�(j)
r

)2
− 2

Nn,L

an
(Y

�

L − Y L)(Y
�

L − μ) +
Nn,L

an
(Y

�

L − Y L)
2

By the law of large numbers, lim
n→∞

N�
n,L

an
= p

(j)
L,r in probability. Using Equation

(C.13) in the proof of Lemma 2, it comes that, in probability, lim
n→∞

Nn,L

an
= p

(j)
L,r,

and consequently lim
n→∞

anNn,L

N�2
n,L

= 1

p
(j)
L,r

. Since
√
an

1
an

∑an

i=1(Yi − μ)1
X

(j)
i <q

�(j)
r

converges in distribution to a normal distribution by the Central limit theorem,

lim
n→∞

an
(anNn,L

N�2
n,L

− 1

p
(j)
L,r

)( 1

an

an∑
i=1

(Yi − μ)1
X

(j)
i <q

�(j)
r

)2
= 0, in probability.

Furthermore, as for Equation (C.10) in the proof of Lemma 2,

√
an|Y

�

L − Y L|

≤ a2n
Nn,LN�

n,L

√
an
a2n

an∑
i=1,l=1

Yi

∣∣1
X

(j)
i <q

�(j)
r

1
X

(j)
l <q̂

(j)
r

− 1
X

(j)
i <q̂

(j)
r
1
X

(j)
l <q

�(j)
r

∣∣
︸ ︷︷ ︸

εL

,
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and

E[εL] ≤ 2
√
anP

(
q̂(j)r ≤ X(j) < q�(j)r

)
+ 2

√
anP

(
q�(j)r ≤ X(j) < q̂(j)r

)
.

According to Lemma 1, the right hand side term converges to 0. Then, in proba-

bility, lim
n→∞

εL = 0. Additionally, lim
n→∞

a2
n

Nn,LN�
n,L

= 1

p
(j)2
L,r

, and then, in probability,

lim
n→∞

√
an(Y

�

L − Y L) = 0. (C.19)

The second term of anR
(j)
L,r writes

−an × 2
Nn,L

an
(Y

�

L − Y L)(Y
�

L − μ)

= −2
Nn,L

an
×√

an(Y
�

L − Y L)×
√
an(Y

�

L − μ),

where in probability, lim
n→∞

2
Nn,L

an
= p

(j)
L,r, lim

n→∞
√
an(Y

�

L − Y L) = 0 according

to equation C.19, and
√
an(Y

�

L − μ) converges to a normal random variable
from the central limit theorem. By Slutsky theorem, in probability, lim

n→∞
−an ×

2
Nn,L

an
(Y

�

L − Y L)(Y
�

L − μ) = 0. Finally for the third term of anR
(j)
L,r we also use

equation C.19 to conclude that in probability

lim
n→∞

an × Nn,L

an
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�

L − Y L)
2 = lim

n→∞

Nn,L

an
[
√
an(Y

�

L − Y L)]
2 = 0

Consequently,

lim
n→∞

anR
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Symmetrically, we also have

δR =
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X

(j)
i ≥q

�(j)
r

)2
+R

(j)
R,r,

with lim
n→∞

anR
(j)
R,r = 0, in probability.

Each component of L
(C1)
n,P1

writes, with (j, r) ∈ C1 \ (j1, r1),
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)
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=

1

p
(j)
L,r

( 1

an
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r

)2
+
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.
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We explicitly write C1 = {(jk, rk)}k=1,...,c1 . Then L
(C1)
n,P1

can be decomposed
as

anL
(C1)
n,P1

= hP1(Vn) +Rn,P1 ,

where for k ∈ {1, ..., c1},

Vn,2k−1 =

√
an

p
(jk)
L,rk

1

an

an∑
i=1

(Yi − μ)1
X

(jk)

i <q
�(jk)
rk

,

Vn,2k =

√
an

p
(jk)
R,rk

1

an

an∑
i=1

(Yi − μ)1
X

(jk)

i ≥q
�(jk)
rk

.

hP1 is a multivariate quadratic form defined as

hP1 :

⎛
⎜⎝ x1

...
x2c1

⎞
⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎜⎝

x2
3 + x2

4 − x2
1 − x2

2
...

x2
2k−1 + x2

2k − x2
1 − x2

2
...

x2
2c1−1 + x2

2c1 − x2
1 − x2

2

⎞
⎟⎟⎟⎟⎟⎟⎠

and Rn,P1,k = R
(jk)
L,rk

+R
(jk)
R,rk

−R
(j1)
L,r1

−R
(j1)
R,r1

.

From the multivariate central limit theorem,Vn
D−−−−→

n→∞
V, whereV is a gaus-

sian vector of covariance matrix Cov[Z], and Z is defined as, for k ∈ {1, ..., c1},

Z2k−1 =
1

√
pL,k

(Y − E[Y ])1
X(jk)<q

�(jk)
rk

, Z2k =
1

√
pR,k

(Y − E[Y ])1
X(jk)≥q

�(jk)
rk

,

with the simplified notations pL,k = p
(jk)
L,rk

and pR,k = p
(jk)
R,rk

.
Finally, since lim

n→∞
Rn,P1 = 0 in probability, from Slutsky’s theorem and the

continuous mapping theorem, anL
(C1)
n,P1

D−−−−→
n→∞

hP1(V). Note that, since X has

a strictly positive density, each component of hP1(V) has a strictly positive
variance.

Proof of Lemma 5. Consider a path P = (j1, r1, ·). Set θ(V ) = (θ
(V )
1 , ·, ·) ∈

Ω(V ), a realization of the randomization of the split direction. Recalling that the
best split in a random tree is the one maximizing the CART-splitting criterion,
condition on Θ(V ) = θ(V ),

{P1 ∈ T (Θ,Dn)} =
⋂

(j,r)∈θ
(V )
1 ×{1,...,q−1}

\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂(j)n,r

)}
.

(C.20)
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We recall that, given θ(V ), we define the set of best theoretical cuts along the

variables in θ
(V )
1 as

C�
1

(
θ
(V )
1

)
= argmax

(j,r)∈θ
(V )
1 ×{1,...,q−1}

L�
(
R

p, q�(j)r

)
.

Obviously if (j1, r1) /∈ θ
(V )
1 × {1, ..., q − 1}, the probability to select P1 in the

empirical and theoretical tree is null. In the sequel, we assume that (j1, r1) ∈
θ
(V )
1 ×{1, ..., q−1} and distinguish between four cases: (j1, r1) is not among the

best theoretical cuts C�
1

(
θ
(V )
1

)
, is the only element in C�

1

(
θ
(V )
1

)
, is one element

of C�
1

(
θ
(V )
1

)
with a positive value of the theoretical CART-splitting criterion, or

finally, is one element of C�
1

(
θ
(V )
1

)
that all have a null value of the theoretical

CART-splitting criterion.

Case 1 We assume that (j1, r1) /∈ C�
1

(
θ
(V )
1

)
. By definition of the theoretical

random forest,

P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= 0 (C.21)

Let
(
j�, r�

)
∈ C�

1

(
θ
(V )
1

)
, thus

ε = L�
(
Rp, q

�(j�)
r�

)
− L�

(
Rp, q�(j1)r1

)
> 0.

Using equation (C.20), we have:

P
(
P1 ∈ T

(
Θ,Dn

)
|Θ(V ) = θ(V )

)
≤ P

(
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂

(j�)
n,r�

))
≤ P

(
Lan

(
Rp, q̂(j1)n,r1

)
− L�

(
Rp, q�(j1)r1

)
− ε > Lan

(
Rp, q̂

(j�)
n,r�

)
− L�

(
Rp, q

�(j�)
r�

))
≤ P

(
Lan

(
Rp, q̂(j1)n,r1

)
− L�

(
Rp, q�(j1)r1

)
−

(
Lan

(
Rp, q̂

(j�)
n,r�

)
− L�

(
Rp, q

�(j�)
r�

))
> ε

)
Therefore, according to Lemma 3,

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= 0 = P

(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
Case 2 We assume that C�

1

(
θ
(V )
1

)
=

{
(j1, r1)

}
. By definition of the theoretical

random forest,

P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= 1. (C.22)

Conditional on Θ(V ) = θ(V ),

{P1 ∈ T (Θ,Dn)}c =
⋃

(j,r)∈θ
(V )
1 ×{1,...,q−1}

\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
≤ Lan

(
Rp, q̂(j)n,r

)}
,
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which leads to

1−P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
≤

∑
(j,r)∈θ

(V )
1 ×{1,...,q−1}\(j1,r1)

P
(
Lan

(
Rp, q̂(j1)n,r1

)
≤ Lan

(
Rp, q̂(j)n,r

))
. (C.23)

From Lemma 3, for all j ∈ θ
(V )
0 , r ∈ {1, ..., q − 1} such that (j, r) 	= (j1, r1), in

probability,

lim
n→∞

Lan

(
Rp, q̂(j1)n,r1

)
− Lan

(
Rp, q̂(j)n,r

)
= L�

(
R

p, q�(j1)r1

)
− L�

(
R

p, q�(j)r

)
> 0.

(C.24)

Using inequality (C.23) and equation (C.24), we finally obtain,

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= 1 = P

(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
.

Case 3 We assume that (j1, r1) ∈ C�
1

(
θ
(V )
1

)
,

∣∣C�
1

(
θ
(V )
1

)∣∣ > 1, and

L�
(
R

p, q
�(j1)
r1

)
> 0. On one hand, conditional on Θ(V ) = θ(V ),

{P1 ∈ T (Θ,Dn)} ⊂
⋂

(j,r)∈C�
1 (θ

(V )
1 )\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂(j)n,r

)}
.

On the other hand, conditional on Θ(V ) = θ(V ),

{P1 ∈ T (Θ,Dn)}c =
⋃

(j,r)∈C�
1 (θ

(V )
1 )\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
≤ Lan

(
Rp, q̂(j)n,r

)}
⋃

(j,r)∈θ
(V )
1 ×{1,...,q−1}\C�

1 (θ
(V )
1 )

{
Lan

(
Rp, q̂(j1)n,r1

)
≤ Lan

(
Rp, q̂(j)n,r

)}
.

Combining the two previous inclusions,

0 ≤ P
( ⋂
(j,r)∈C�

1 (θ
(V )
1 )\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂(j)n,r

)})
− P

(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
≤

∑
(j,r)∈θ

(V )
1 ×{1,...,q−1}\C�

1 (θ
(V )
1 )

P
(
Lan

(
Rp, q̂(j1)n,r1

)
≤ Lan

(
Rp, q̂(j)n,r

))
.

Using the same reasoning as in Case 2, we get

lim
n→∞

P
( ⋂
(j,r)∈C�

1 (θ
(V )
1 )\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂(j)n,r

)})
− P

(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= 0.



486 C. Bénard et al.

We define the random vector L
(C�

1 )
n,P1

where each component is the difference
between the empirical CART-splitting criterion for the splits (j, r) ∈ C�

1 \(j1, r1)
and (j1, r1),

L
(C�

1 )
n,P1

=
(

Lan

(
R

p, q̂
(j)
n,r

)
− Lan

(
R

p, q̂
(j1)
n,r1

) )
(j,r)∈C�

1\(j1,r1)
,

then

P
( ⋂
(j,r)∈C�

1 (θ
(V )
1 )\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂(j)n,r

)})
= P

(
L
(C�

1 )
n,P1

< 0
)

From Lemma 4 (case (a)),

√
anL

(C�
1 )

n,P1

D−−−−→
n→∞

N
(
0,Σ

)
,

where for all (j, r), (j′, r′) ∈ C�
1 \ (j1, r1), each element of the covariance matrix

Σ is defined by

Σ(j,r),(j′,r′) = Cov[Zj,r, Zj′,r′ ],

with

Zj,r =
(
Y − μ

(j1)
L,r1

1
X(j1)<q

�(j1)
r1

− μ
(j1)
R,r1

1
X(j1)≥q

�(j1)
r1

)2
−

(
Y − μ

(j)
L,r1X(j)<q

�(j)
r

− μ
(j)
R,r1X(j)≥q

�(j)
r

)2
,

μ
(j)
L,r = E

[
Y |X(j) < q

�(j)
r

]
, μ

(j)
R,r = E

[
Y |X(j) ≥ q

�(j)
r

]
, and the variance of

Zj,r is strictly positive. If Φ
θ
(V )
1 ,(j1,r1)

is the c.d.f. of the multivariate normal

distribution of covariance matrix Σ, we can conclude

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= lim

n→∞
P
(√

anL
(C�

1 )
n,P1

< 0
)

= Φ
θ
(V )
1 ,(j1,r1)

(0),

where ∑
(j,r)∈C�

1 (θ
(V )
1 )

Φ
θ
(V )
1 ,(j,r)

(0) = 1.

According to Definition 1, in the theoretical random forest, if C�
1

(
θ
(V )
1

)
has

multiple elements, (j1, r1) is randomly drawn with probability

P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= Φ

θ
(V )
1 ,(j1,r1)

(0),

that is

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= P

(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= Φ

θ
(V )
1 ,(j1,r1)

(0).

We can notice that, in the specific case where C�
1

(
θ
(V )
1

)
has two elements, they

are both selected with equal probability 1
2 . For more than two elements, the

weights are not necessary equal, it depends on the covariance matrix Σ.
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Case 4 We assume that all candidate splits have a null value for the theoretical

CART-splitting criterion, i.e. for (j, r) ∈ θ
(V )
1 ×{1, ..., q− 1}, L�

(
R

p, q
�(j)
r

)
= 0.

Consequently C�
1 (θ

(V )
1 ) = θ

(V )
1 × {1, ..., q − 1}. By definition

P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= P

(
L
(C�

1 )
n,P1

< 0
)
.

According to Lemma 4 (case (b)),

anL
(C1)
n,P1

D−−−−→
n→∞

hP1(V),

whereV is a gaussian vector of covariance matrix Cov[Z]. If C�
1

(
θ
(V )
1

)
is explicitly

written C�
1

(
θ
(V )
1

)
= {(jk, rk)}k=1,...,c1 , Z is defined as, for k ∈ {1, ..., c1},

Z2k−1 =
1

√
pL,k

(Y − E[Y ])1
X(jk)<q

�(jk)
rk

Z2k =
1

√
pR,k

(Y − E[Y ])1
X(jk)≥q

�(jk)
rk

,

pL,k = P
(
X(jk) < q

�(jk)
rk

)
, pR,k = P

(
X(jk) ≥ q

�(jk)
rk

)
, and hP1 is a multivariate

quadratic form defined as

hP1 :

⎛
⎜⎝ x1

...
x2c1

⎞
⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎜⎝

x2
3 + x2

4 − x2
1 − x2

2
...

x2
2k−1 + x2

2k − x2
1 − x2

2
...

x2
2c1−1 + x2

2c1 − x2
1 − x2

2

⎞
⎟⎟⎟⎟⎟⎟⎠

and the variance of each component of hP1(V) is strictly positive. If Φ
θ
(V )
1 ,(j1,r1)

is the cdf of hP1(V), then as in Case 3,

lim
n→∞

P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= Φ

θ
(V )
1 ,(j1,r1)

(0)

= P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
.

C.3.2. Case 2: P2

Proof of Lemma 6. Let (j, r) ∈ CP1 .

√
an

(
Lan

(
Ĥn(P1), q̂

(j)
n,r

)
− Lan

(
H�(P1), q

�(j)
r

))
=

√
an

[
Lan

(
H�(P1), q̂

(j)
n,r

)
− Lan

(
H�(P1), q

�(j)
r

)]
+
√
an

[
Lan

(
Ĥn(P1), q̂

(j)
n,r

)
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(
H�(P1), q̂

(j)
n,r

)]
.
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Since (j, r) ∈ CP1 , P
(
X ∈ H�(P1)|X(j) < q

�(j)
r

)
> 0 and P

(
X ∈ H�(P1)|X(j) ≥

q
�(j)
r

)
> 0. Then, we can directly apply Lemma 2 to the first term of this de-

composition, which shows that, in probability

lim
n→∞

√
an

(
Lan

(
H�(P1), q̂

(j)
n,r

)
− Lan

(
H�(P1), q

�(j)
r

))
= 0.

We expand the second term
√
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(
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(
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(j)
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)
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(
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√
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1
X

(j)
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1
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+

√
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with ĤL =
{
x ∈ Ĥn(P1) : x(j) < q̂

(j)
n,r

}
, H�

L =
{
x ∈ H�(P1) : x(j) < q̂

(j)
n,r

}
,

and for all H ⊆ Rp

Nn(H) =
1

an

an∑
i=1

1Xi∈H , Y H =
1

Nn(H)

an∑
i=1

Yi1Xi∈H .

We define symmetrically ĤR and H�
R. We obtain

√
an

(
Lan

(
Ĥn(P1), q̂

(j)
n,r

)
− Lan

(
H�(P1), q̂

(j)
n,r

))
= Δn,1 +Δn,2 +Δn,3,

where

Δn,1 =
√
an

(
Y

2

H�(P1) − Y
2

Ĥn(P1)

)
,

Δn,2 =
√
an

Y
2

ĤL
Nn(ĤL)Nn(H

�(P1))− Y
2

H�
L
Nn(H

�
L)Nn(Ĥn(P1))

Nn(Ĥn(P1))Nn(H�(P1))
,

and

Δn,3 =
√
an

Y
2

ĤR
Nn(ĤR)Nn(H

�(P1))− Y
2

H�
R
Nn(H

�
R)Nn(Ĥn(P1))

Nn(Ĥn(P1))Nn(H�(P1))
.

We first consider Δn,1. Simple calculations show that

Δn,1 =

√
an

Nn(H�(P1))2Nn(Ĥn(P1))2

×
∑

i,k,l,m

YiYk

[
1Xi∈H�(P1),Xk∈H�(P1),Xl∈Ĥn(P1),Xm∈Ĥn(P1)

− 1Xi∈Ĥn(P1),Xk∈Ĥn(P1),Xl∈H�(P1),Xm∈H�(P1)

]
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We consider the case s1 = L, (s1 = R is similar). Since Yi ∈
{
0, 1

}
,

|Δn,1| ≤
√
an

Nn(H�(P1))2Nn(Ĥn(P1))2

×
∑

i,k,l,m

∣∣1
X

(j1)
i <q

�(j1)
r1

,X
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k <q
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r1

,X
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l <q̂
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n,r1

,X
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− 1
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(j1)
n,r1

,X
(j1)
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�(j1)
r1

,X
(j1)
m <q

�(j1)
r1

∣∣
As in the proof of Lemma 2, according to Lemma 1, lim

n→∞
Δn,1 = 0, in

probability. Since Δn,2 and Δn,3 are the same quantities computed on each of
the two daughter nodes, we study Δn,2 only.

Δn,2 =

√
an(Nn(ĤL)Nn(H

�
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−1

Nn(Ĥn(P1))Nn(H�(P1))

×
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]
=

√
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�
L))
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∑
i,k,l,m

YiYk1X
(j)
i <q̂
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n,r,X

(j)
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×
[
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X
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(j1)
n,r1

,X
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r1

,X
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− 1
X
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(j1)
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.

Therefore

|Δn,2| ≤
√
an(Nn(ĤL)Nn(H

�
L))

−1

Nn(Ĥn(P1))Nn(H�(P1))

×
∑

i,k,l,m

∣∣1
X

(j1)
i <q̂
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,X
(j1)
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�(j1)
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,X
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X

(j1)
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,X
(j1)
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∣∣.
As in the proof of Lemma 2, according to Lemma 1, lim

n→∞
Δn,2 = 0, in probabil-

ity, which concludes the proof, since Δn,3 can be studied in the same manner.

Proof of Lemma 7. Let (j, r) ∈ CP1 .

Lan

(
Ĥn(P1), q̂

(j)
n,r

)
=Lan

(
H�(P1), q

�(j)
r

)
+

[
Lan

(
Ĥn(P1), q̂

(j)
n,r

)
− Lan

(
H�(P1), q

�(j)
r

)]
(C.25)

According to Lemma 6, the second term in equation (C.25) converges to 0 in
probability. From the law of large numbers, in probability,

lim
n→∞

Lan

(
H�(P1), q

�(j)
r

)
= L�

(
H�(P1), q

�(j)
r

)
,

which concludes the proof.
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Proof of Lemma 8. Similar to the case with P1 (Lemma 3), where Lemma 6 is
used instead of Lemma 2.

Proof of Lemma 9. Consider a path P2 = {(j1, r1, L), (j2, r2, ·)}. Set θ(V ) =(
θ
(V )
1 , θ

(V )
2

)
, a realization of the randomization of the split directions at the

root node and its left child node. Then, θ
(V )
1 and θ

(V )
2 denote the set of el-

igible variables for respectively the first and second split. We also consider

CP1

(
θ
(V )
2

)
⊂ CP1 the set of eligible second splits.

Recalling that the best split in a random tree is the one maximizing the
CART-splitting criterion, conditional on Θ(V ) = θ(V ),

{P2 ∈ T (Θ,Dn)} =
⋂

(j,r)∈θ
(V )
1 ×{1,...,q−1}

\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
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(
Rp, q̂(j)n,r

)}
⋂

(j,r)∈CP1
(θ

(V )
2 )\(j2,r2)

{
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

(j)
n,r

)}

Recall that C�
1

(
θ
(V )
1

)
= argmax

(j,r)∈θ
(V )
1 ×{1,...,q−1}

L�
(
R

p, q
�(j)
r

)
, and similarly

C�
2

(
θ
(V )
2

)
= argmax

(j,r)∈CP1
(θ

(V )
2 )

L�
(
H�(P1), q

�(j)
r

)
.

Obviously if (j1, r1) /∈ θ
(V )
1 × {1, ..., q − 1} or (j2, r2) /∈ CP1(θ

(V )
2 ), the prob-

ability to select P2 in the empirical and theoretical tree is null. In the sequel,

we assume that (j1, r1) ∈ θ
(V )
0 × {1, ..., q − 1} and (j2, r2) ∈ CP1

(
θ
(V )
2

)
and

distinguish between cases, depending on whether (j1, r1) ∈ C�
1

(
θ
(V )
1

)
or not and

(j2, r2) ∈ C�
2

(
θ
(V )
2

)
or not, as well as the cardinality of C�

1

(
θ
(V )
1

)
and C�

2

(
θ
(V )
2

)
,

and whether the maximum of the theoretical CART-splitting criterion is null or
not.

Case 1 We assume that (j1, r1) /∈ C�
1

(
θ
(V )
1

)
. Hence, the theoretical decision

tree satisfies

P
(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= P

(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= 0.

According to Lemma 5, we have

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
≤ lim

n→∞
P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= 0

= P
(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
.
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Case 2 We assume that
(
j2, r2

)
/∈ C�

2

(
θ
(V )
2

)
. Again, for the theoretical decision

tree,
P
(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= 0.

Letting
(
j�, r�

)
∈ C�

2

(
θ
(V )
2

)
,

ε = L�
(
H�(P1), q

�(j�)
r�

)
− L�

(
H�(P1), q

�(j2)
r2

)
.

Therefore,

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
≤ P

(
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
> Lan

(
H�(P1), q̂

(j�)
n,r�

))
≤ P

(
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
− L�

(
H�(P1), q

�(j2)
r2

)
− ε

> Lan

(
Ĥn(P1), q̂

(j�)
n,r�

)
− L�

(
H�(P1), q

�(j�)
r�

))
≤ P

(
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
− L�

(
H�(P1), q

�(j2)
r2

)
−

(
Lan

(
Ĥn(P1), q̂

(j�)
n,r�

)
− L�

(
H�(P1), q

�(j�)
r�

))
> ε

)
.

Consequently, according to Lemma 7,

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= 0 = P

(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
.

Case 3 We assume that (j1, r1) ∈ C�
1

(
θ
(V )
1

)
and C�

2

(
θ
(V )
2

)
= {(j2, r2)}, i.e.

(j2, r2) is the unique maximum of the theoretical CART-splitting criterion for
the cell H�(P1). By definition of the theoretical decision tree,

P
(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= P

(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
Conditional on {Θ(V ) = θ(V )},

{P2 ∈ T (Θ,Dn)} =
{
P1 ∈ T (Θ,Dn)

}
⋂

(j,r)∈CP1
(θ

(V )
2 )\(j2,r2)

{
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

(j)
n,r

)}
.

(C.26)

Consequently,

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
≥ P

(
P1 ∈ T (Θ,Dn)

∣∣Θ(V ) = θ(V )
)

−
∑

(j,r)∈CP1
(θ

(V )
2 )\(j2,r2)

P
(
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
≤ Lan

(
Ĥn(P1), q̂

(j)
n,r

))
. (C.27)

For (j, r) ∈ CP1

(
θ
(V )
2

)
\ (j2, r2),

L�
(
H�(P1), q

�(j2)
r2

)
− L�

(
H�(P1), q

�(j)
r

)
> 0. (C.28)
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Thus, using inequalities (C.27) and (C.28), and according to Lemma 7,

lim
n→∞

P
(
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
≤ Lan

(
Ĥn(P1), q̂

(j)
n,r

))
= 0,

and thus, using (C.26) and (C.27),

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= lim

n→∞
P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= P

(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= P

(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
,

where the second inequality is a direct consequence of Lemma 5.

Case 4 For the first split, we assume (j1, r1) ∈ C�
1

(
θ
(V )
1

)
with L�

(
Rp, q

�(j1)
r1

)
>

0, and for the second split,
(
j2, r2

)
∈ C�

2

(
θ
(V )
2

)
with |C�

2

(
θ
(V )
2

)∣∣ > 1 and

L�
(
H�(P1), q

�(j2)
r2

)
> 0.

On one hand, conditional on the event {Θ(V ) = θ(V )},

{P2 ∈ T (Θ,Dn)} =
⋂

(j,r)∈θ
(V )
1 ×{1,...,q−1}

\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂(j)n,r

)}
⋂

(j,r)∈CP1
(θ

(V )
2 )\(j2,r2)

{
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

(j)
n,r

)}
.

(C.29)

Using equation (C.29) to find a subset and a superset of {P2 ∈ T (Θ,Dn)}, we
obtain

0 ≥ P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
− P

( ⋂
(j,r)∈C�

1 (θ
(V )
1 )\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂(j)n,r

)}
⋂

(j,r)∈C�
2 (θ

(V )
2 )\(j2,r2)

{
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

(j)
n,r

)})

≥
∑

(j,r)∈θ
(V )
1 ×{1,...,q−1}\C�

1 (θ
(V )
1 )

P
(
Lan

(
Rp, q̂(j1)n,r1

)
≤ Lan

(
Rp, q̂(j)n,r

))
+

∑
(j,r)∈θ

(V )
2 ×{1,...,q−1}\C�

2 (θ
(V )
2 )

P
(
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
≤ Lan

(
Ĥn(P1), q̂

(j)
n,r

))

We proved in Case 3 that the limit of the last two terms of the previous
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inequality is zero, in probability. Therefore,

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= lim

n→∞
P

( ⋂
(j,r)∈C�

1 (θ
(V )
1 )\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂(j)n,r

)}
⋂

(j,r)∈C�
2 (θ

(V )
2 )\(j2,r2)

{
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

(j)
n,r

)})
. (C.30)

We define the random vector L
(C�

1 ,C�
2 )

n,P2
(we drop θ(V ) to lighten notations)

where each component is the difference between the empirical CART-splitting
criterion for the splits (j, r) ∈ C�

1 \ (j1, r1) and (j1, r1) for the first |C�
1 | − 1

components, and for the splits (j, r) ∈ C�
2 \ (j2, r2) and (j2, r2) for the remaining

|C�
2 | − 1 components, i.e.,

L
(C�

1 ,C�
2 )

n,P2
=

( [
Lan

(
R

p, q̂
(j)
n,r

)
− Lan

(
R

p, q̂
(j1)
n,r1

)]
(j,r)∈C�

1\(j1,r1)[
Lan

(
Ĥn(P1), q̂

(j)
n,r

)
− Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)]
(j,r)∈C�

2\(j2,r2)

)
.

Then, we can write

P

( ⋂
(j,r)∈C�

1 (θ
(V )
1 )\(j1,r1)

{
Lan

(
Rp, q̂(j1)n,r1

)
> Lan

(
Rp, q̂(j)n,r

)}
⋂

(j,r)∈C�
2 (θ

(V )
2 )\(j2,r2)

{
Lan

(
Ĥn(P1), q̂

(j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

(j)
n,r

)})

= P
(
L
(C�

1 ,C�
2 )

n,2 < 0
)

(C.31)

According to Lemma 8,

√
anL

(C�
1 ,C�

2 )
n,P2

D−−−−→
n→∞

N (0,Σ)

where for l, l′ ∈ {1, 2}, for all (j, r) ∈ C�
l \ (jl, rl), (j′, r′) ∈ C�

l′ \ (jl′ , rl′),
each element of the covariance matrix Σ is defined by Σ(j,r,l),(j′,r′,l′) =
Cov[Zj,r,l, Zj′,r′,l′ ], with

Zj,r,l =
1

P(X ∈ Hl)

(
Y − μ

(jl)
L,rl

1
X(jl)<q

�(jl)
rl

− μ
(jl)
R,rl

1
X(jl)≥q

�(jl)
rl

)2
1X∈Hl

− 1

P(X ∈ Hl)

(
Y − μ

(j)
L,r1X(j)<q

�(j)
r

− μ
(j)
R,r1X(j)≥q

�(j)
r

)2
1X∈Hl

,

μ
(j)
L,r = E

[
Y |X(j) < q

�(j)
r ,X ∈ Hl

]
, μ

(j)
R,r = E

[
Y |X(j) ≥ q

�(j)
r ,X ∈ Hl

]
, and the

variance of Zj,r,l is strictly positive.
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Letting ΦP1,θ(V ),(j2,r2) be the c.d.f. of the multivariate normal distribution
with covariance matrix Σ, and using equalities (C.30) and (C.31),

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= ΦP1,θ(V ),(j2,r2)(0).

We can check that∑
(j,r)∈C�

2 (θ
(V ))

ΦP1,θ(V ),(j,r)(0) = P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
.

In the theoretical random forest, the first cut (j1, r1) is randomly selected with
probability P

(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
(see the proof of Lemma 5). For the

second cut, according to Definition 2, if C�
2

(
θ
(V )
2

)
has multiple elements, (j2, r2)

is randomly drawn with probability

ΦP1,θ(V ),(j2,r2)(0)

P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
Since the random selection at the root node of the tree and its children nodes
are independent in the theoretical algorithm, P2 is selected with probability

P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
×

ΦP1,θ(V ),(j2,r2)(0)

P
(
P1 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= ΦP1,θ(V ),(j2,r2)(0).

Ultimately,

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= P

(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= ΦP1,θ(V ),(j2,r2)

(
0
)
.

Case 5 We assume that (j1, r1) ∈ C�
1

(
θ
(V )
1

)
and (j2, r2) ∈ C�

2

(
θ
(V )
2

)
, and that

the theoretical CART-splitting criterion is null for both splits: L�
(
Rp, q

�(j1)
r1

)
= 0

and L�
(
H�(P1), q

�(j2)
r2

)
= 0.

Consequently C�
1

(
θ
(V )
1

)
= θ

(V )
1 × {1, ..., q − 1}, and C�

2

(
θ
(V )
2

)
= CP1

(
θ
(V )
2

)
.

Using the same notations defined in Case 4, we have by definition

P
(
P1 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= P

(
L
(C�

1 ,C�
2 )

n,P2
< 0

)
.

According to Lemma 8 (case (b)),

anL
(C�

1 ,C�
2 )

n,P2

D−−−−→
n→∞

hP2(V),

where V is a gaussian vector of covariance matrix Cov[Z]. If C�
1 and C�

2 are
explicitly written C�

1 = {(jk, rk)}k∈J1 , and C�
2 = {(jk, rk)}k∈J2 , with J1 =
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{1, ..., c1+1}\2 and J2 = {2}∪{c1+2, ..., c1+c2}, Z is defined as, for l ∈ {1, 2}
and k ∈ Jl,

Z2k−1 =
1√

pL,kP(X ∈ Hl)
(Y − E[Y |X ∈ Hl])1X(jk)<q

�(jk)
rk

1X∈Hl
,

Z2k =
1√

pR,kP(X ∈ Hl)
(Y − E[Y |X ∈ Hl])1X(jk)≥q

�(jk)
rk

1X∈Hl
,

pL,k = P
(
X(jk) < q

�(jk)
rk ,X ∈ Hl

)
, pR,k = P

(
X(jk) ≥ q

�(jk)
rk ,X ∈ Hl

)
. hP2 is a

multivariate quadratic form defined as

hP2 :

⎛
⎜⎝ x1

...
x2(c1+c2)

⎞
⎟⎠ →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2
5 + x2

6 − x2
1 − x2

2
...

x2
2c1+1 + x2

2c1+2 − x2
1 − x2

2

x2
2c1+3 + x2

2c1+4 − x2
3 − x2

4
...

x2
2(c1+c2)−1 + x2

2(c1+c2)
− x2

3 − x2
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the variance of each component of hP2(V) is strictly positive.
ΦP1,θ(V ),(j2,r2) is now defined as the cdf of hP2(V), and the end of the proof

is identical to Case 4. We conclude

lim
n→∞

P
(
P2 ∈ T (Θ,Dn)|Θ(V ) = θ(V )

)
= P

(
P2 ∈ T �(Θ)|Θ(V ) = θ(V )

)
= ΦP1,θ(V ),(j2,r2)(0).

Case 6 We assume (j1, r1) ∈ C�
1

(
θ
(V )
1

)
, (j2, r2) ∈ C�

2

(
θ
(V )
2

)
and

∣∣C�
2

(
θ
(V )
2

)∣∣ > 1

as in Case 4, but either L�
(
Rp, q

�(j1)
r1

)
= 0 and L�

(
H�(P1), q

�(j2)
r2

)
> 0, or

L�
(
Rp, q

�(j1)
r1

)
> 0 and L�

(
H�(P1), q

�(j2)
r2

)
= 0.

The same reasoning than for Cases 4 and 5 applies where the limit law of

L
(C�

1 ,C�
2 )

n,P2
has both gaussian and χ-square components and is given by case (c) or

case (d) of Lemma 8.

Appendix D: Proof of Theorem 2

We recall Theorem 2 for the sake of clarity.

Theorem 2. If p0 ∈ [0, 1]\Un and D ′
n = Dn, then, conditional on Dn, we have

lim
M→∞

ŜM,n,p0 = 1 in probability. (D.1)

In addition for p0 < maxUn,

1−E[ŜM,n,p0 |Dn]

∼
M→∞

∑
P∈Π

Φ(Mp0,M, pn(P))(1− Φ
(
Mp0,M, pn(P)))

1
2

∑
P′∈Π 1pn(P′)>p0

+ 1
pn(P′)>p0−ρn(P,P′)σn(P′)

σn(P)
(p0−pn(P))

,
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where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter
pn(P), M trials, evaluated at Mp0, and, for all P,P ′ ∈ Π,

σn(P) =
√

pn(P)(1− pn(P)),

and

ρn(P,P ′) =
Cov(1P∈T (Θ,Dn),1P′∈T (Θ,Dn)|Dn)

σn(P)σn(P ′)
.

Let p0 ∈ [0,max Un) \ Un and D ′
n = Dn. Before proving Theorem 2, we need

the following two lemmas.

Lemma 10. Let F be the hypergeometric function. Then, for (a, c) ∈ Z
2 and

P ∈ Π such that pn(P) > p0, we have

lim
M→∞

F (M + a, 1,M(1− p0) + c, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
= 1.

Lemma 11. Let P ′ ∈ Π. For all P ∈ Π such that pn(P) > p0, we have

lim
M→∞

P
(
p̂M,n(P

′) > p0
∣∣p̂M,n(P) > p0,Dn

)
= 1pn(P′)>p0

and

lim
M→∞

P
(
p̂M,n(P

′) > p0
∣∣p̂M,n(P) ≤ p0,Dn

)
= 1

pn(P
′)>p0−ρn(P,P′)σn(P′)

σn(P)

×(p0−pn(P))

.

Symmetrically, for all P ∈ Π such that pn(P) ≤ p0, we have

lim
M→∞

P
(
p̂M,n(P

′) > p0
∣∣p̂M,n(P) ≤ p0,Dn

)
= 1pn(P′)>p0

,

lim
M→∞

P
(
p̂M,n(P

′) > p0
∣∣p̂M,n(P) > p0,Dn

)
= 1

pn(P
′)>p0−ρn(P,P′)σn(P′)

σn(P)

×(p0−pn(P))

.

We are now in a position to prove Theorem 2.

Proof of Theorem 2. The first statement, identity (D.1), is proved similarly to
Corollary 2, using the law of large numbers instead of Theorem 1. For the second
statement, we first recall that, by definition,

ŜMn,n,p0 =

2
∑

P∈Π

1p̂Mn,n(P)>p0∩p̂′
Mn,n(P)>p0∑

P∈Π

1p̂Mn,n(P)>p0
+ 1p̂′

Mn,n(P)>p0

= 1−

∑
P∈Π

1p̂M,n(P)>p0∩p̂′
M,n(P)≤p0

+ 1p̂M,n(P)≤p0∩p̂′
M,n(P)>p0∑

P∈Π

1p̂M,n(P)>p0
+ 1p̂′

M,n(P)>p0

.
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Taking the expectation conditional on Dn gives

E
[
ŜM,n,p0

∣∣Dn

]
= 1− 2 E

[ ∑
P∈Π

1p̂M,n(P)>p0∩p̂′
M,n(P)≤p0∑

P∈Π

1p̂M,n(P)>p0
+ 1p̂′

M,n(P)>p0

∣∣∣∣∣Dn

]

= 1− 2 E

[ UM

VM + V ′
M

∣∣Dn

]
,

where UM =
∑

P∈Π

1p̂M,n(P)>p0∩p̂′
M,n(P)≤p0

, VM =
∑

P∈Π

1p̂M,n(P)>p0
, and V ′

M =∑
P∈Π

1p̂′
M,n(P)>p0

. Note that

E[VM |Dn] =
∑

P∈Π

P(p̂M,n(P) > p0|Dn) −→
M→∞

∑
P∈Π

1pn(P)>p0
,

E[UM |Dn] =
∑

P∈Π

P(p̂M,n(P) > p0|Dn)P(p̂M,n(P) ≤ p0|Dn) −→
M→∞

0.

Also,

E

[ UM

VM + V ′
M

∣∣Dn

]
=

∑
m,m′

1

m+m′E[UM |VM = m,V ′
M = m′,Dn]

× P(VM = m|Dn)P(V
′
M = m′|Dn)

=
∑
m,m′

1

m+m′E
[ ∑

P∈Π

1p̂M,n(P)>p0∩p̂′
M,n(P)≤p0

∣∣VM = m,V ′
M = m′,Dn

]
× P(VM = m|Dn)P(V

′
M = m′|Dn)

=
∑
m,m′

1

m+m′

∑
P∈Π

P(p̂M,n(P) > p0|VM = m,Dn)

×P(p̂′M,n(P) ≤ p0|V ′
M = m′,Dn)P(VM = m|Dn)P(V

′
M = m′|Dn)

then,

E

[ UM

VM + V ′
M

∣∣Dn

]
=

∑
m,m′

1

m+m′

∑
P∈Π

P(p̂M,n(P) > p0, VM = m|Dn)

× P(p̂M,n(P) ≤ p0, V
′
M = m′|Dn),

=
∑

P∈Π

P(p̂M,n(P) > p0|Dn)P(p̂M,n(P) ≤ p0|Dn)

×
[ ∑
m,m′

1

m+m′P(VM = m|p̂M,n(P) > p0,Dn)
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× P(V ′
M = m′|p̂M,n(P) ≤ p0,Dn)

]
.

For all P ∈ Π,

P(p̂M,n(P) > p0|Dn)P(p̂M,n(P) ≤ p0|Dn

)
= Φ(Mp0,M, pn(P))(1− Φ(Mp0,M, pn(P))),

where Φ is the cdf of the binomial distribution. As a direct consequence of
Lemma 11,

lim
M→∞

∑
m,m′

1

m+m′P(VM = m|p̂M,n(P) > p0,Dn)

× P(VM = m′|p̂M,n(P) ≤ p0,Dn)

=
1∑

P′∈Π

1pn(P′)>p0
+ 1

pn(P′)+ρn(P,P′)σn(P′)
σn(P)

(p0−pn(P))>p0

,

which yields

1− E[ŜM,n,p0 |Dn]

∼
M→∞

∑
P∈Π

2Φ(Mp0,M, pn(P))(1− Φ(Mp0,M, pn(P)))∑
P′∈Π

1p̂n(P′)>p0
+ 1

pn(P′)+ρn(P,P′)σn(P′)
σn(P)

(p0−pn(P))>p0

.

This is the desired result.

D.1. Proof of intermediate lemmas

Proof of lemma 10. Cvitković, Smith and Pande (2017) provides an asymptotic
expansion of the hypergeometric function F in the case where the first and third
parameters goes to infinity with a constant ratio. For a, c, z, ε ∈ R, b /∈ Z \ N,
such that ε > 1, and zε < 1, Cvitković, Smith and Pande (2017) gives in the
section 2.2.2 (end of page 10)

F (a+ ελ, b, c+ λ, z) ∼
|λ|→∞

1

(1− εz)b
.

We can then derive the limit of the following ratio

lim
|λ|→∞

F (a+ ελ, b, c+ λ, z)

F (1 + ελ, b, 1 + λ, z)
= 1 (D.2)

We use (D.2) in the specific case where b = 1, a, c ∈ Z, ε = 1
1−p0

> 1, z = 1 −
pn(P) for P ∈ Π such that pn(P) > p0 (and then zε < 1), and λ = M(1−p0),
if follows that

lim
M→∞

F (M + a, 1,M(1− p0) + c, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
= 1

Proof of lemma 11. Fix Dn. Let P ′,P ∈ Π. In what follows, when there is no
ambiguity, we will replace T (Θ,Dn) by Tn(Θ) to lighten notations.
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Case 1: pn(P) > p0

E
[
p̂M,n

(
P ′)|p̂M,n(P) ≤ p0,Dn

]
=E

[ 1

M

M∑
l=1

1P′∈Tn(Θl)

∣∣ p̂M,n(P) ≤ p0,Dn

]
=P

(
P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1), p̂M,n(P) ≤ p0,Dn

)
× P

(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
+ P

(
P ′ ∈ Tn(Θ1)|P /∈ Tn(Θ1), p̂M,n(P) ≤ p0,Dn

)
×

(
1− P

(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

))
=P

(
P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
P
(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
+ P

(
P ′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn

)
×

(
1− P

(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

))
. (D.3)

Since

P
(
P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1), p̂M,n(P) ≤ p0,Dn

)
= P

(
P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
,

because, conditional on Dn, the events P ′ ∈ Tn(Θ1), . . . ,P ′ ∈ Tn(ΘM ) are
independent. We can rewrite,

P
(
P ′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn

)
=

P
(
P ′ ∈ Tn(Θ1),P /∈ Tn(Θ1)|Dn

)
1− pn(P)

=

(
1− P

(
P ∈ Tn(Θ1)|P ′ ∈ Tn(Θ1),Dn

))
pn

(
P ′)

1− pn(P)

=
pn

(
P ′)

1− pn(P)
− pn(P)

1− pn(P)
P
(
P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
,

yielding, using equation (D.3),

E
[
p̂M,n

(
P ′)|p̂M,n(P) ≤ p0,Dn

]
(D.4)

=P
(
P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)(P(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
1− pn(P)

− pn(P)

1− pn(P)

)
+

pn
(
P ′)

1− pn(P)

(
1− P

(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

))
.

Besides, by definition of the correlation

ρn
(
P,P ′) = Cov

(
1P∈Tn(Θ),1P′∈Tn(Θ)|Dn

)
σn(P)σn

(
P ′

) ,
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simple calculations show that

P
(
P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
= pn

(
P ′)+ ρn

(
P,P ′)√pn

(
P ′

)
pn(P)

(
1− pn(P)

)(
1− pn

(
P ′

))
,

which, together with equation (D.4) leads to,

E
[
p̂M,n

(
P ′)|p̂M,n(P) ≤ p0,Dn

]
(D.5)

= pn(P
′) + ρn

(
P,P ′)σn

(
P ′)

σn(P)

(
P
(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
− pn(P)

)
.

Regarding the probability in the right-hand side of equation (D.5), we have

P
(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
= pn

(
P

)P(
p̂M,n(P) ≤ p0|P ∈ Tn(Θ1),Dn

)
P
(
p̂M,n(P) ≤ p0|Dn

)
= pn

(
P

)P(
(M − 1)p̂M−1,n(P) ≤ Mp0 − 1|Dn

)
P
(
Mp̂M,n(P) ≤ Mp0|Dn

)
= pn(P)

Φ
(
Mp0 − 1,M − 1, pn(P)

)
Φ
(
Mp0,M, pn(P)

) .

Using standard formulas, Φ can be expressed with the incomplete beta function,

Φ(k,M, p) = I1−p(M − k, k + 1) =
B1−p(M − k, k + 1)

B(M − k, k + 1)
,

and the regularized beta function is related to the hypergeometric function F ,
for a > 0, b > 0, and p ∈ [0, 1] (Olver et al., 2010),

B1−p(a, b) =
(1− p)apb

a
F (a+ b, 1, a+ 1, 1− p).

Then, we can express the cdf of the binomial distribution using the hypergeo-
metric function, and it follows

P
(
P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn

)
(D.6)

= p0
F (M, 1,M(1− p0) + 1, 1− p̂n

(
P

)
)

F (M + 1, 1,M(1− p0) + 1, 1− p̂n
(
P

)
)

According to Lemma 10,

lim
M→∞

F (M, 1,M(1− p0) + 1, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
= 1.
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Consequently,

lim
M→∞

P
(
P ∈ T (Θ1,Dn)|p̂M,n(P) ≤ p0,Dn

)
= p0, (D.7)

and using this limiting result with equation (D.5) yields,

lim
M→∞

E
[
p̂M,n

(
P ′)|p̂M,n(P) ≤ p0,Dn

]
= pn(P

′)+ρn
(
P,P ′)σn

(
P ′)

σn(P)
(D.8)

×
(
p0 − pn(P)

)
.

Regarding the conditional variance,

V
[
p̂M,n

(
P ′)|p̂M,n(P) ≤ p0,Dn

]
= V

[ 1

M

M∑
l=1

1P′∈Tn(Θl)

∣∣p̂M,n(P) ≤ p0,Dn

]

V
[
p̂M,n

(
P ′)|p̂M,n(P) ≤ p0,Dn

]
=

1

M
V
[
1P′∈T (Θ1,Dn)|p̂M,n(P) ≤ p0,Dn

]
+ (1− 1

M
)Cov(1P′∈Tn(Θ1),1P′∈Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

≤ 1

M
+ CM

where

CM = Cov(1P′∈Tn(Θ1),1P′∈Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= P(P ′ ∈ Tn(Θ1),P
′ ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P ′ ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)

× P(P ′ ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

Then, we follow the same reasoning that leads to equation (D.7). We can
fully expand CM using Bayes formula, depending whether P ∈ Tn(Θ1) or P ∈
Tn(Θ2). Note that, since all the trees are independent conditional on Dn, we can
reduce the conditioning event

{
P ∈ Tn(Θ1),P ∈ Tn(Θ2), p̂M,n(P) ≤ p0,Dn

}
to

{
P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn

}
, then

CM = P(P ′ ∈ Tn(Θ1),P
′ ∈ Tn(Θ2)|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

× P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− (P(P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

× P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn))
2

+2[P(P ′ ∈ Tn(Θ1),P
′ ∈ Tn(Θ2)|P ∈ Tn(Θ1),P /∈ Tn(Θ2),Dn)

× P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)
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− P(P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

× P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)

× P(P ′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)

× P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)]

+P(P ′ ∈ Tn(Θ1),P
′ ∈ Tn(Θ2)|P /∈ Tn(Θ1),P /∈ Tn(Θ2),Dn)

× P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− (P(P ′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)

× P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn))
2

Conditional on Dn, Tn(Θ1) and Tn(Θ2) are independent, then

P(P ′ ∈ Tn(Θ1),P
′ ∈ Tn(Θ2)|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

=
P(P ′ ∈ Tn(Θ1),P ′ ∈ Tn(Θ2),P ∈ Tn(Θ1),P ∈ Tn(Θ2)|Dn)

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|Dn)

=
P(P ′ ∈ Tn(Θ1),P ∈ Tn(Θ1)|Dn)P(P ′ ∈ Tn(Θ2),P ∈ Tn(Θ2)|Dn)

P(P ∈ Tn(Θ1)|Dn)P(P ∈ Tn(Θ2)|Dn)
,

= P(P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)P(P
′ ∈ Tn(Θ2)|P ∈ Tn(Θ2),Dn),

and since trees are iid conditionally on Dn, this can be simplified to

P(P ′ ∈ Tn(Θ1),P
′ ∈ Tn(Θ2)|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

= P(P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)
2.

Therefore, we can rewrite CM

CM = P(P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)
2 ×ΔM,1

+ 2P(P ′ ∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

× P(P ′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)×ΔM,2

+ P(P ′ ∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)
2 ×ΔM,3,

where

ΔM,1 = P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)
2,

ΔM,2 = P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)

(1− P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)),

ΔM,3 = P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)
2.

We first consider the term

ΔM,1 = P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)
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− P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)
2

Equation (D.7) directly gives,

lim
M→∞

P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)
2 = p20. (D.9)

On the other hand

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= pn(P)2
P(p̂M,n(P) ≤ p0|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

P(p̂M,n(P) ≤ p0|Dn)

= pn(P)2
Φ
(
Mp0 − 2,M − 2, pn(P)

)
Φ
(
Mp0,M, pn(P)

) .

Again, as for equation (D.6), we can express the cdf of the binomial distribution
using the hypergeometric function F

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= p20

(
1 +

p0 − 1

p0(M − 1)

)F (M − 1, 1,M(1− p0) + 1, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
,

and from Lemma 10,

lim
M→∞

F (M − 1, 1,M(1− p0) + 1, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))
= 1,

that is

lim
M→∞

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn) = p20. (D.10)

Using equations (D.9) and (D.10), we conclude

lim
M→∞

ΔM,1 = 0.

We follow the same reasoning for ΔM,3, equation (D.7) gives

lim
M→∞

P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)
2 = (1− p0)

2.

On the other hand,

P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= (1− p0)
2
(
1− p0

M − 1

)F (M − 1, 1,M(1− p0)− 11, 1− pn(P))

F (M + 1, 1,M(1− p0) + 1, 1− pn(P))

From Lemma 10,

lim
M→∞

P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn) = (1− p0)
2 (D.11)
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And finally lim
M→∞

ΔM,3 = 0. The term ΔM,2 can be treated in a similar way,

since equation (D.7) gives

lim
M→∞

P(P ∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)P(P /∈ Tn(Θ1)|p̂M,n(P) ≤ p0,Dn)

= p0(1− p0).

Simple identity shows

P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

=
1

2

(
1− P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

− P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)
)
.

Taking the limit of the previous equation and using equations (D.10) and (D.11),
we get

lim
M→∞

P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P) ≤ p0,Dn)

= p0(1− p0). (D.12)

Using (D.7) and (D.12), lim
M→∞

ΔM,2 = 0. Since ΔM,1,ΔM,2,ΔM,3 → 0, we

obtain lim
M→∞

CM = 0, that is,

lim
M→∞

V
[
p̂M,n

(
P ′)|p̂M,n(P) ≤ p0,Dn

]
= 0. (D.13)

Finally combining equations (D.8) and (D.13),

lim
M→∞

P
(
p̂M,n

(
P ′) > p0|p̂M,n(P) ≤ p0,Dn

)
= 1

pn(P′)+ρn(P,P′)σn(P′)
σn(P)

(p0−pn(P))>p0

Case 2: pn(P) ≤ p0 By the law of large numbers, lim
M→∞

p̂M,n

(
P

)
= pn(P)

in probability, and consequently lim
M→∞

P
(
p̂M,n

(
P

)
≤ p0

)
= 1. Additionally, we

can simply write

P
(
p̂M,n

(
P ′) > p0|p̂M,n(P) ≤ p0,Dn

)
=

P
(
p̂M,n

(
P ′) > p0, p̂M,n(P) ≤ p0|Dn

)
P
(
p̂M,n(P) ≤ p0,Dn

)
Again, by the law of large numbers, lim

M→∞
p̂M,n

(
P ′) = pn(P ′) in probability.

Then, if pn(P ′) > p0, lim
M→∞

P
(
p̂M,n

(
P ′) > p0

)
= 1, and it follows

that lim
M→∞

P
(
p̂M,n(P ′) > p0, p̂M,n(P) ≤ p0|Dn

)
= 1. If pn(P ′) ≤ p0,
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lim
M→∞

P
(
p̂M,n

(
P ′) > p0

)
= 0, and consequently lim

M→∞
P
(
p̂M,n

(
P ′) >

p0, p̂M,n(P) ≤ p0|Dn

)
= 0. This can be compacted under the form

lim
M→∞

P
(
p̂M,n

(
P ′) > p0|p̂M,n(P) ≤ p0,Dn

)
= 1pn(P′)>p0

.

The proof for the case P
[
p̂M,n

(
P ′) > p0|p̂M,n(P) > p0,Dn

]
is similar.
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