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Abstract: Functional time series analysis, whether based on time or fre-
quency domain methodology, has traditionally been carried out under the
assumption of complete observation of the constituent series of curves, as-
sumed stationary. Nevertheless, as is often the case with independent func-
tional data, it may well happen that the data available to the analyst are
not the actual sequence of curves, but relatively few and noisy measure-
ments per curve, potentially at different locations in each curve’s domain.
Under this sparse sampling regime, neither the established estimators of
the time series’ dynamics nor their corresponding theoretical analysis will
apply. The subject of this paper is to tackle the problem of estimating the
dynamics and of recovering the latent process of smooth curves in the sparse
regime. Assuming smoothness of the latent curves, we construct a consis-
tent nonparametric estimator of the series’ spectral density operator and
use it to develop a frequency-domain recovery approach, that predicts the
latent curve at a given time by borrowing strength from the (estimated)
dynamic correlations in the series across time. This new methodology is
seen to comprehensively outperform a naive recovery approach that would
ignore temporal dependence and use only methodology employed in the
i.i.d. setting and hinging on the lag zero covariance. Further to predicting
the latent curves from their noisy point samples, the method fills in gaps
in the sequence (curves nowhere sampled), denoises the data, and serves as
a basis for forecasting. Means of providing corresponding confidence bands
are also investigated. A simulation study interestingly suggests that sparse
observation for a longer time period may provide better performance than
dense observation for a shorter period, in the presence of smoothness. The
methodology is further illustrated by application to an environmental data
set on fair-weather atmospheric electricity, which naturally leads to a sparse
functional time series.
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1. Introduction

Functional data analysis constitutes a collection of statistical methods to anal-
yse data comprised of ensembles of random functions: multiple occurrences of
random processes evolving continuously in time and/or space, typically over a
bounded rectangular domain [33, 11, 19, 41]. The challenges arising in func-
tional data, on the one hand, arise from their infinite-dimensional nature: this
calls upon tools and techniques from functional analysis, while standard in-
ference problems may become ill-posed. On the other hand, the data, though
continuous in nature, are seldom observed as such. Instead, finitely sampled
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versions are available to the statistician. If the sampling is sufficiently dense,
the data can often be treated as genuinely functional data, possibly after a pre-
smoothing step. The statistical estimators and procedures may be then based
on the intrinsically infinite dimensional inputs and techniques. This approach
was popularised by Ramsay and Silverman [33].

It can very well happen, though, that the data are recorded only at some
intermediate locations of their domain, possibly corrupted by measurement er-
ror. In this case, it is necessary to regard the underlying functional nature of
the data only as a latent process, and additional effort is required to construct
adequate statistical methodology. This scenario is often referred to as sparsely
observed functional data and usually occurs when the independent realisations
of the latent functional process is a longitudinal trajectory. In a key paper, Yao,
Müller and Wang [44] demonstrated how to estimate the covariance operator
of the latent functional process using kernel regression and how to estimate the
principal components of the latent process through conditional expectations. See
also Yao, Müller and Wang [45] for an application of the proposed methodology
in functional linear regression. The rate of convergence of the kernel smoother of
Yao, Müller and Wang [44] was later strengthened by Hall, Müller and Wang [12]
and Li and Hsing [24]. Other methods to deal with sparsely observed functional
data make use of minimizing a specific convex criterion function and expressing
the estimator within a reproducing kernel Hilbert space, see Cai and Yuan [7],
and Wong and Zhang [42].

Still, there are many applications where independence of the underlying
curves cannot be assumed, for instance when the functional data are naturally
ordered into a temporal sequence indexed by discrete time. We then speak of
functional time series, and these are usually analysed by assuming stationar-
ity and weak dependence across the time index. Historically, the research has
been focused mostly into generalizing linear processes into functional spaces, see
Bosq [4] and Blanke and Bosq [3] for overview publications. More recently, the
research has moved beyond the linear structure. Hörmann and Kokoszka [15]
considered the effect of weak dependence on principal component analysis and
studied the estimation of the long-run covariance operator. Horváth, Kokoszka
and Reeder [17] provided a central limit theorem for the mean of a station-
ary weak dependent sequence and considered the estimation of the long-run
covariance operator.

A step further from the estimation of isolated characteristics such as the
mean function and the said long-run covariance operator is to estimate the en-
tire second-order structure of the process, without assuming linearity. To this
aim, Panaretos and Tavakoli [28] introduced the notation of spectral density
operators and harmonic principal components, capturing the complete second-
order dynamics in the frequency domain, whereas Panaretos and Tavakoli [29]
showed how to estimate the said spectral density operators by smoothing the
operator-valued analogue of the periodogram. They formalised weak depen-
dence by cumulant-type mixing conditions, à la Brillinger [6]. In parallel work,
Hörmann, Kidziński and Hallin [14] introduced the notation of dynamic princi-
pal components, closely related to the harmonic principal components of Panare-
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tos and Tavakoli [28], and estimated the spectral density operators by the op-
erator version of Bartlett’s estimate [2].

Despite the long tradition of functional time series as a driving force behind
theoretical and methodological progress in functional data analysis more gen-
erally, a surprising fact is that the focus has been almost exclusively “densely”
observed functional time series, where it is assumed that the full functional data
are available. Indeed discrete sampling appears to be a nearly absent consider-
ation, with the exceptions (to our knowledge) being: Panaretos and Tavakoli
[29], who show the stability of their asymptotics under dense discrete observa-
tion but with measurement error of decaying magnitude; and, more recently,
Kowal, Matteson and Ruppert [22] who studied functional autoregressive mod-
els by means of Bayesian hierarchical Gaussian models. They derived a Gibbs
sampler for inference and forecasting but the paper does not examine the asymp-
totic behaviour of the method. In particular, in one of their considered sampling
regimes, which they call sparse-fixed design, posterior Bayesian concentration
would be intangible. The Bayesian modelling framework was also extended to
multivariate dynamic linear models by Kowal, Matteson and Ruppert [23] and
to dynamic function-on-scalar regression by Kowal [21]. A related problem was
studied by Paul and Peng [30], who considered correlated sparsely observed
functional data with separable covariance structure, but the focus was not on
dynamics.

In this article we address this gap (or, rather, chasm) and consider the prob-
lem of estimating the complete dynamics, and recovering the latent curves, in a
stationary functional time series that is observed sparsely, irregularly, and with
measurement errors. The number of observations per curve is assumed to be
random, almost surely finite, and not increasing to infinity. Therefore we speak
of genuine sparsity, much in the same vein as Yao, Müller and Wang [44]. As a
first step, we show how to estimate the full second-order dynamics of the func-
tional time series based on sparse noisy data using kernel regression methods.
We construct estimators of individual characteristics such as the mean function
and the lag autocovariance operators, as an aside, but the main contribution
is the kernel-based generalization of Bartlett’s estimate of the spectral density
operators. By integrating back the spectral density into the time domain we
construct a consistent estimator of the entire space-time covariance structure.

Our methodology can also be interpreted in a design context: in certain appli-
cations, it might be possible for the scientist to choose how to distribute a given
fixed budget of measurements over individual curves and over time. In this case,
one might ask how to better estimate the underlying dynamics: whether it is
better to sample a functional time series more densely over shorter time-span, or
to record fewer observations per curve but over a longer time-space. In Section
4 we perform a simulation study to examine this tradeoff, and find that under
sufficient smoothness, the sparse sampling regime over a longer period seems
preferable.

The second contribution of the article is the establishment of a functional
data recovery framework. We show how to predict the unobserved functional
data once the space-time dynamics have been estimated. The recovery of the
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functional data is done by conditioning on all observed data, borrowing strength
from the complete dynamics of the process (rather than just the marginal co-
variance). Simulations show that this approach comprehensively outperfoms a
naive approach that would ignore dependence and simply employ the method-
ology of Yao, Müller and Wang [44] using only the lag zero covariance, as one
would do in the i.i.d. case (see e.g. Table 2). When the functional time series is
Gaussian, we furthermore show how to construct confidence bands for the latent
functional data, with both pointwise and simultaneous coverage. In addition, we
show how the functional recovery methodology naturally leads to forecasting.

Functional time series methodology is often useful in analysing continuously
measured scalar time series, that can be subdivided into segments of an obvious
periodicity, usually days. A key benefit of this technique is the separation of
the intra-day variability and the temporal dependence among the consecutive
days. The approach is especially fruitful in the analysis of environmental or me-
teorological phenomena, for example, particulate matter atmospheric pollution
[15, 14, 16, 1]. Nonetheless, some meteorological variables cannot be measured
continuously and uninterruptedly. A practical motivation of this article comes
from the data on atmospheric electricity [39]. The peculiarity of this data is
that the atmospheric electricity can be reliably measured only in fair-weather
conditions. Otherwise, the physical-chemical processes behind the atmospheric
electricity are altered and thus a different kind of process is measured. Details
of this mechanism are reported in the data analysis in Section 5. Because of this
censoring protocol, the considered functional time series is genuinely sparsely
observed. We analyse such a dataset using our proposed methods, as a means
of illustration.

The rest of the article is organised as follows. In Section 2 we define the func-
tional time-series framework we work with and introduce the estimation and
prediction methodology. In Section 3 we formulate the asymptotic theory for
the suggested estimators under two different sets of assumptions: the cumulant
mixing conditions leading to suboptimal rates, and a stronger set of assumptions
including the strong mixing conditions resulting in optimal rates. Section 4 con-
tains the results of numerical experiments designed to probe the finite-sample
performance of our methodology. Section 5 illustrates the proposed method-
ology on the fair-weather atmospheric electricity time series. In Appendix A
we comment on some implementation concerns, the formal proofs are included
in Appendix B, and some additional results of the numerical experiments are
presented in Appendix C.

2. Model and estimation methodology

2.1. Functional time series framework

Functional time series is a sequence of random function defined on the inter-
val [0, 1] and is denoted as {Xt}t∈Z = {Xt(x), x ∈ [0, 1]}t∈Z. We assume that
Xt ∈ H = L2([0, 1]) and E

(
‖Xt‖2

)
< ∞. Moreover we assume that the reali-

sations (paths) of Xt are smooth functions (concrete smoothness assumptions
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will be introduced in Section 3). This space-time process will be referred to as a
functional time series. Assuming second-order stationarity in the time variable
t, we may define the (common) mean function of Xt(·) by

E (Xt(x)) = μ(x), x ∈ [0, 1],

and capture the second-order dynamics of the functional time series by its lag-h
autocovariance kernels,

Rh(x, y) = E {(Xh(x)− μ(x)(X0(y)− μ(y))} , x, y ∈ [0, 1], h ∈ Z.

Each kernel Rh(·, ·) introduces a corresponding operator Rh : L2([0, 1]) →
L2([0, 1]) defined by right integration

(Rhg)(x) =

∫ 1

0

Rh(x, y)g(y) dy, g ∈ L2([0, 1]).

In addition to the stationarity, we assume weak dependence, in that the autoco-
variance kernels are summable in the supremum norm (denoted by ‖ · ‖∞) and
the autocovariance operators summable in the nuclear norm (denoted by ‖ · ‖1)∑

h∈Z

‖Rh‖∞ =
∑
h∈Z

sup
x,y∈[0,1]

|Rh(x, y)| < ∞,
∑
h∈Z

‖Rh‖1 < ∞. (2.1)

Under these conditions, Panaretos and Tavakoli [29] showed that for each ω ∈
(−π, π), the following series converge in the supremum norm and the nuclear
norm, respectively

fω(·, ·) =
1

2π

∑
h∈Z

Rh(·, ·) exp(− iωh), Fω =
1

2π

∑
h∈Z

Rh exp(− iωh). (2.2)

The kernel fω(·, ·) and the operator Fω are called the spectral density kernel at
frequency ω and the spectral density operator at frequency ω respectively. The
lagged autocovariance kernels and operators can be recovered by the inversion
formula [29] that holds in the supremum and the nuclear norm, respectively:

Rh(·, ·) =
∫ π

−π

fω(·, ·) exp(iωh) dω, Rh =

∫ π

−π

Fω exp(iωh) dω. (2.3)

In particular, the spectral density operator Fω is a non-negative, self-adjoint
trace-class operator for all ω.

2.2. Observation scheme

We consider a sparse observation scheme with additive independent measure-
ment errors. Let Ytj be the j-th measurement on the t-th curve at spatial position
xtj ∈ [0, 1], where j = 1, . . . , Nt and Nt is the number of measurements on the
curve Xt for t = 1, . . . , T . The additive measurement errors are denoted by εtj
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and are assumed to be independent identically distributed realisations of a mean
0 and variance σ2 > 0 random variable for j = 1, . . . , Nt and t = 1, . . . , T . Fur-
thermore, the measurement errors are assumed to be independent of {Xt}t∈Z

as well as the measurement locations {xtj}. The observation model can be then
written as

Ytj = Xt(xtj) + εtj , j = 1, . . . , Nt, t = 1, ..., T. (2.4)

The spatial positions xtj as well as their number Nt are considered random and
concrete conditions for the asymptotic results are given in Section 3.

2.3. Nonparametric estimation of the model dynamics

Given the sparsely observed data {Ytj} generated by the observation scheme
(2.4), we wish to estimate the mean function μ and the lag autocovariance
kernels Rh(·, ·). Thanks to the formulae (2.2) and (2.3), the estimation of the lag
autocovariance operators is equivalent to the estimation of the spectral density
fω(·, ·).

In the first step, we estimate the common mean function μ by a local linear
smoother, see, for example, Fan and Gijbels [9]. Let K(·) be a one-dimensional
symmetric probability density function. Throughout this paper we work with
the Epanechnikov kernel K(v) = 3

4 (1 − v2) for v ∈ [−1, 1], and 0 otherwise,
but any other usual smoothing kernel would be appropriate. Let Bμ > 0 be
the bandwidth parameter. We define the estimator of μ(x) as μ̂(x) = â0 by
minimizing the weighted sum of squares:

(â0, â1) = argmin
a0,a1

T∑
t=1

Nt∑
j=1

K

(
xtj − x

Bμ

)
{Ytj − a0 − a1(xtj − x)}2 . (2.5)

Then, in a second step, we show how to estimate the second order charac-
teristics of the functional time series, namely the lag-0 covariance and the lag-h
autocovariance kernels. Since the measurement errors εtj contribute only to the
diagonal of the lag-0 autocovariance kernel, Cov(Yt+h,j , Ytk) = Rh(xt+h,j , xtk)+
σ21[h=0,j=k] where 1[h=0,j=k] = 1 if the condition in the subscript is satisfied
and zero otherwise. Therefore we consider the “raw” covariances

Gh,t(xt+h,j , xtk) = (Yt+h,j − μ̂(xt+h,j))(Ytk − μ̂(xtk)) (2.6)

where h = 0, . . . , T − 1, t = 1, . . . , T − h, j = 1, . . . , Nt+h, and k = 1, . . . , Nt.
We anticipate that E (Gh,t(xt+h,j , xtk)) ≈ Rh(xt+h,j , xtk)+σ21[h=0,j=k]. Hence,
the diagonal of the raw lag-0 covariances must be removed when estimating the
lag-0 covariance kernel.

Specifically, to estimate the lag-0 covariance kernel, we employ a local-linear
surface-smoother on [0, 1]2 applied to the raw covariances {G0,t(xtj , xtk), t =

1, . . . , T, j �= k}. Precisely, we let R̂0(x, y) = b̂0 where b̂0 is obtained by mini-
mizing the following weighted sum of squares:
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(b̂0, b̂1, b̂2) = argmin
b0,b1,b2

T∑
t=1

∑
j �=k

K

(
xtj − x

BR

)
K

(
xtk − y

BR

)
×

× {G0,t(xtj , xtk)− b0 − b1(xtj − x)− b2(xtk − y)}2 (2.7)

and BR > 0 is the bandwidth parameter.

We estimate the measurement error variance σ2 using the approach of Yao,
Müller and Wang [44]. That is, we first estimate V (x) = R0(x, x) + σ2 by
smoothing the variance on the diagonal. We assign V̂ (x) = ĉ0 where:

(ĉ0, ĉ1) = argmin
c0,c1

T∑
t=1

Nt∑
j=1

K

(
xtj − x

BV

)
{Ytj − c0 − c1(xtj − x)}2 . (2.8)

Instead of using {R̂0(x, x) : x ∈ [0, 1]} as the estimator of the diagonal of
the lag-0 covariance kernel (without the ridge contamination), Yao et al. [46],
Yao, Müller and Wang [44] opted for a local-quadratic smoother – arguing that
the covariance kernel is maximal along the diagonal, and so a local-quadratic
smoother is expected to outperform a local linear smoother. This heuristic was
also confirmed by our own simulations. Therefore, following Yao, Müller and
Wang [44], we fit a local-quadratic smoother along the direction perpendicular
to the diagonal. Concretely, the estimator is defined as R̄0(x) = c̄0 where c̄0 is
the minimizer of the following weighted sum of squares:

(c̄0, c̄1, c̄2) = argmin
c0,c1,c2

T∑
t=1

∑
j �=k

K

(
xtj − x

BR

)
K

(
xtk − x

BR

)
×

×
{
G0,t(xtj , xtk)− c0 − c1(P (xtj , xtk)− x)− c2(P (xtj , xtk)− x)2

}2
(2.9)

where P (xtj , xtk) is the first coordinate (which is the same as the second one)
of the projection of the point (xtj , xtk) onto the diagonal of [0, 1]2. The mea-
surement error variance is then estimated by

σ̂2 =

∫ 1

0

(
V̂ (x)− R̄0(x)

)
dx. (2.10)

Since the estimator (2.10) is based on smoothers, it is not guaranteed to be
a positive number. This problem was already commented on by Yao, Müller
and Wang [44]. In the theoretical part of their paper, the negative estimate is
replaced by zero and, in their code, it is replaced by a small positive number.
The replacement by a positive number can be seen as a form of regulariza-
tion.

Next, we proceed with the estimation of the lag-h autocovariance kernels

for h > 0. We define the estimator R̂h(x, y) = b̂
(h)
0 for h = 1, . . . , T − 1 by

minimizing
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(b̂
(h)
0 , b̂

(h)
1 , b̂

(h)
2 ) = argmin

b
(h)
0 ,b

(h)
1 ,b

(h)
2

T−h∑
t=1

Nt+h∑
j=1

Nt∑
k=1

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
×

×
{
Gh,t(xt+h,j , xtk)− b

(h)
0 − b

(h)
1 (xt+h,j − x)− b

(h)
2 (xtk − y)

}2

(2.11)

For h < 0 we set R̂h = R̂�
−h. Observe that we did not need to remove the

diagonal as in (2.7). Denote the corresponding estimated covariance operators

as R̂h.

2.4. Spectral density kernel estimation

To estimate the spectral density kernels fω one has to resort to smoothing or
a different sort of regularization at some point. Panaretos and Tavakoli [29]
performed kernel smoothing of the periodogram in the spectral domain whereas
Hörmann, Kidziński and Hallin [14] made use of Barlett’s estimate. Bartlett’s es-
timate involves a weighted average of the lagged autocovariances, with a choice
of weights that downweighs higher order lags. From the theoretical perspec-
tive, this approach is equivalent to kernel smoothing of the periodogram [32,
§6.2.3]. In fact, the Bartlett’s weights correspond to the Fourier coefficients of
the smoothing kernel, assumed compactly supported.

In this paper, we opt for the Barlett’s weights (or triangular window) defined
as Wh = (1−|h|/L) for |h| < L and 0 otherwise for the Barlett’s span parameter
L ∈ N as it seems to be a popular choice [15, 14]. It should be noted that other
choices of weights are possible [34] and the so-called local quadratic windows
(Parzen, Bartlett-Pristley, etc.) improve the asymptotic bias. See Priestley [32,
§7.5] for the detailed discussion in one-dimensional case. The statement seems
to be also true for functional time series [40].

If the full functional observations were available, the spectral density would
be estimated by the formula (cf. Hörmann, Kidziński and Hallin [14])

F̂ω =
1

2π

L∑
h=−L

WhR̂he
− ihω (2.12)

where R̂h are the standard empirical autocovariance operators. We could use
the formula (2.12) and plug-in the smoothed autocovariance kernels obtained in
Section 2.3 but instead, we opt to show how to directly construct a smoother-
based estimator of the spectral density kernels. Specifically, we estimate the
spectral density kernel at frequency ω ∈ (−π, π) by the local-linear surface-
smoother applied to the raw covariances multiplied by complex exponentials.
The weights for the smoother are based both on the spatial distance from the
raw covariances as well as the time lag. Specifically, we estimate the spectral
density kernel as

f̂ω(x, y) =
L

2π
d̂0 ∈ C (2.13)
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where d̂0 is obtained by minimizing the following weighted sum of squares

(d̂0, d̂1, d̂2) = argmin
(d0,d1,d2)∈C3

L∑
h=−L

1

Nh

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0∣∣Gh,t(xt+h,j , xtk)e
− ihω − d0 − d1(xtt+h,j

− x)− d2(xtk − y)
∣∣2×

×Wh
1

B2
R

K

(
xtt+h,j

− x

BR

)
K

(
xtk − y

BR

)
(2.14)

where Nh = (T − |h|)(N̄)2 for h �= 0, N0 = T (N2 − N̄), and where N̄ =

(1/n)
∑T

t=1 Nt and N2 = (1/n)
∑T

t=1 N
2
t .

It turns out that the minimizer of this complex minimization problem can
be expressed explicitly. Moreover, the minimizer depends only on a few quan-
tities that are independent of ω, and can be pre-calculated. The estimator can
be thus constructed for a given ω by multiplying these quantities by complex
exponentials and performing a handful of inexpensive arithmetic operations.
Consequently, it is computationally feasible to evaluate the estimator (2.13) on
a dense grid of frequencies. The explicit form is stated in Section B.2.

Denote the integral operator corresponding to f̂ω(·, ·) as F̂ω. We can go back
to the temporal domain by integrating the spectral density and reproduce the
estimators of the autocovariance kernels and operators by the formulae (2.3)

R̃h(·, ·) =
∫ π

−π

f̂ω(·, ·)eihω dω, R̃h =

∫ π

−π

F̂ωe
ihω dω. (2.15)

The estimators of spectral density kernels f̂ω(·, ·), ω ∈ (−π, π), are achieved
by kernel smoothing. Therefore, especially for smaller sample sizes, the operators
F̂ω, ω ∈ (−π, π), might not be strictly non-negative, and may feature some
tail negative eigenvalues of small modulus. To ensure numerical stability of the
method in the following section, it is recommended to truncate these negative
eigenvalues of F̂ω at each frequency ω ∈ (−π, π).

If dimensionality reduction is of interest, one can truncate the spectral density
operators F̂ω at each frequency ω ∈ (−π, π) to an appropriate rank. Such
dimensionality reduction is based on the Cramér-Karhunen-Loève expansion
and was proven optimal in preserving the functional time series dynamics by
Panaretos and Tavakoli [28], and independently by Hörmann, Kidziński and
Hallin [14]. Since dimension reduction is not necessary for our theory/methods
in the next section, we do not pursue it further.

2.5. Periodic behaviour identification

As discussed at the beginning of Section 2.4, the choice of Bartlett’s span pa-
rameter L is related to the bandwidth for smoothing in the frequency domain.
To achieve consistent spectral density estimation, the parameter L needs to be
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kept quite small (cf. condition (B10) and Theorem 2). However, for the pur-
pose of exploratory data analysis, it is useful to explore the data for periodic
behaviour in a similar way as a periodogram is used in the case of scalar time
series.

When the periodicity examination is indeed of interest, we propose to evaluate
the estimator (2.13) for a fairly large value of L. The selection of adequate value
of L is a question of computational power available because the computational
time to evaluate (2.13) grows linearly in L. In the data analysis Section 5 we
work with L = 1000 which is roughly half of the considered time series length.

Once the estimator (2.13) is evaluated for a given value of L we propose
to calculate the trace of the spectral density operator at frequency ω ∈ (0, π).
Peaks in this plot indicate periodic behaviour of the functional time series. The
existence of periodicity is not only a useful insight into the nature of the data
but may us prompt into approaching the periodic behaviour in a different way,
for example by modelling the periodicity in a deterministic way as we do it in
the data analysis carried out in Section 5.

2.6. Functional data recovery framework and confidence bands

We now consider the problem of recovering the latent functional data {Xt(x) :
x ∈ [0, 1]} given the sparse noisy samples {Ytj}, and provide corresponding
confidence bands.

Consider the random element XT = [X1, . . . , XT ] ∈ HT composed of “stacked”
functional data (formally, it is an element of the product Hilbert spaceHT ). Note
that

E (XT ) = MT = [μ, . . . , μ] ∈ HT , (2.16)

Var(XT ) = ST =

⎡⎢⎢⎢⎣
R0 R�

1 R�
2 . . . R�

T−1

R1 R0 R�
1 . . . R�

T−2
...

...
...

. . .
...

RT−1 RT−2 RT−3 . . . R0

⎤⎥⎥⎥⎦ ∈ L(HT ). (2.17)

Now define the stacked observables as

YT = (Y11, . . . , Y1N1 , . . . , Yt1, . . . , YtNt , . . . , YTN1 , . . . , YTNT
) ∈ RNT

1

where N T
1 =

∑T
t=1 Nt is the total number of observations up to time T . By

analogy to YT , stack the measurement errors {εtj} and denote this vector ET ∈
RNT

1 . Note that Var(ET ) = σ2INT
1
. Further define the evaluation operators

Ht : H → RNt , g �→ (g(xt1), . . . , g(xtNt)) for each t = 1, . . . , T and the stacked

censor operator HT : HT → RNT
1 , [g1, . . . , gT ] �→ [H1g1, . . . , HT gT ]. Finally

define the projection operator Pt : HT → H, [g1, . . . , gT ] �→ gt for t = 1, . . . , T .
In this notation we can rewrite the observation scheme (2.4) as

YT = HTXT + ET .
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The best linear unbiased predictor of XT given YT , which we denote by
X̂T (YT ), is given by the formula

X̂T (YT ) = MT + STH∗
T (HTSTH∗

T + σ2INT
1
)−1(YT − HTMT ) ∈ HT (2.18)

where ∗ denotes the adjoint operator. The term HTSTH∗
T is in fact a positive

semi-definite matrix. Owing to the fact that σ2 > 0, the matrix HTSTH∗
T +

σ2INT
1

is always invertible.

Now fix s ∈ {1, . . . , T}. The best linear unbiased predictor of the functional

datum Xs, which we denote by X̂s(YT ), is given by

X̂s(YT ) = PsX̂T (YT ) ∈ H. (2.19)

Hence the recovery of Xs by the formula (2.19) uses the observed data across
all t = 1, . . . , T , borrowing strength across all the observations.

In practice, however, we need to replace the unknown parameters involved
in the construction of the predictor by their estimates. Define M̂T and ŜT by
substituting μ̂ and R̃h for their theoretical counterparts in formulae (2.16) and
(2.17) respectively. Now replace MT , ST , σ

2 by M̂T , ŜT and σ̂2, respectively, in
formulae (2.18) and (2.19). The resulting predictors are denoted by

X̃T (YT ) = M̂T + ŜTH∗
T (HT ŜTH∗

T + σ2INT
1
)−1(YT − HT M̂T ) (2.20)

and
X̃s(YT ) = PsX̃T (YT ). (2.21)

In order to construct confidence bands for the unobservable paths, we work
under the Gaussian assumption:

(A1) The functional time series {Xt}t as well as the measurement errors {εtj}tj
are Gaussian processes.

Thanks to the Gaussian assumption (A1), the predictors of XT and Xs given
by formulae (2.18) and (2.19) are in fact given by conditional expectations and
are the best predictors among all predictors. Furthermore, we can calculate the
exact conditional distribution of XT given YT by the formula

XT |YT ∼ NHT (MXT |YT
,SXT |YT

) (2.22)

where

MXT |YT
= MT + STH∗

T (HTSTH∗
T + σ2INT

1
)−1(YT − HTMT ), (2.23)

SXT |YT
= ST − STH∗

T (HTSTH∗
T + σ2INT

1
)−1HTST . (2.24)

From (2.22) we can access the conditional distribution of Xs for fixed s =
1, . . . , T , by writing

Xs|YT ∼ NHT (MXs|YT
,SXs|YT

) (2.25)
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where

MXs|YT
= PsMXT |YT

, SXs|YT
= PsSXT |YT

P ∗
s . (2.26)

To construct a band for Xs with pointwise coverge, we construct a confi-
dence interval for Xs(x) at each x ∈ [0, 1] — as we will see, the endpoints
of these intervals are continuous functions of x, and so automatically define a
confidence band. In practice, one constructs bands for a dense collection of lo-
cations in [0, 1] and interpolates. Given the conditional distribution Xs(x)|YT ∼
N(MXs|YT

(x),SXs|YT
(x, x)), the (1−α)-confidence interval for fixed x ∈ [0, 1] is

constructed as

MXs|YT
(x)± Φ−1(1− α/2)

√
SXs|YT

(x, x) (2.27)

where Φ−1(1−α/2) is the (1−α/2)-quantile of the standard normal distribution.
In practice, when we do not know the true dynamics of the functional time se-

ries, we have to use the estimates of μ(·) and Rh(·, ·). We define M̂XT |YT
, ŜXT |YT

,

M̂Xs|YT
and ŜXs|YT

by replacing MT and ST with M̂T and ŜT in the formulae
(2.23), (2.24), (2.26) respectively. Therefore the asymptotic confidence interval
for Xs(x) is obtain by rewriting (2.27) using the empirical counterparts

M̂Xs|YT
(x)± Φ−1(1− α/2)

√
ŜXs|YT

(x, x). (2.28)

For the construction of the simultaneous band we use the method introduced
by Degras [8]. Fix s = 1, . . . , T . In the previous section we derived the con-
ditional distribution of Xs given YT in formula (2.25). Define the conditional
correlation kernel

ρXs|YT
(x, y) =

⎧⎨⎩
SXs|YT

(x,y)√
SXs|YT

(x,x)SXs|YT
(y,y)

, SXs|YT
(x, x) > 0, SXs|YT

(y, y) > 0,

0, otherwise.

(2.29)
Then, the collection of intervals{

MXs|YT
(x)± zα,ρ

√
SXT |YT

(x, x) : x ∈ [0, 1]
}
, (2.30)

forms a (continuous) confidence band with simultaneous coverage probabil-
ity (1 − α) over x ∈ [0, 1]. Here zα,ρ is the (1 − α)-quantile of the law of
supx∈[0,1] |Z(x)| where {Z(x), x ∈ [0, 1]} is a zero mean Gaussian process with
covariance kernel ρXT |YT

. The definition of a quantile specifically requires that
P (supx∈[0,1] |Z(x)| ≤ zα,ρ) = 1 − α. Degras [8] explains how to calculate this
quantile numerically.

In practice, we replace the population level quantities in (2.30) by their es-
timated counterparts and define the asymptotic simultaneous confidence band
as {

M̂Xs|YT
(x)± zα,ρ̂

√
ŜXT |YT

(x, x) : x ∈ [0, 1]

}
, (2.31)
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where M̂Xs|YT
(x) and ŜXT |YT

(x, x) are as above and the quantile zα,ρ̂ is calcu-
lated for the correlation structure ρ̂Xs|YT

defined as the empirical counterpart
to (2.29).

Note that Φ−1(1 − α/2) < zα,ρ for any correlation kernel ρ [8]. Therefore,
as expected, the pointwise confidence bands are enveloped by the simultaneous
band. Once again, in practice, one evaluates the band limits defining (2.31) on
a dense grid of [0, 1] and interpolates.

The functional recovery framework proposed in this section can be easily
extended into forecasting, i.e. prediction of functional curves beyond the time
horizon T . For the details, see Section A.4.

3. Asymptotic results

3.1. On the choice of mixing conditions

In Sections 3.2 and 3.3 we develop asymptotic theory for our methodology under
two different sets of assumptions.

Firstly, in Section 3.2 we prove the asymptotic behaviour of the estimators
under Brillinger-type cumulant mixing conditions. The corresponding Theorems
1 and 2 are in a sense canonical, in that their proofs rely on generalisations of the
techniques by Yao, Müller and Wang [44]. Nevertheless, the yielded convergence
rates for one dimensional smoothing and surface smoothing are OP(1/(

√
TBμ))

and OP(1/(
√
TB2

R)), respectively, which are not optimal.
The optimal rates for one dimensional smoothing and surface smoothing are

known to be OP(
√

log T/(TBμ)) and OP(
√

log T/(TB2
R)) respectively. Recover-

ing such rates using local-regression methods for time-series data relies heavily
on the employed measure of weak dependence, namely strong mixing conditions,
[13, 25, 26], [10, Thm 6.5], geometric strong mixing conditions [5, Thm. 2.2 and
Cor. 2.2], and ρ-mixing conditions [31]. In Section 3.3 and Theorems 3, 4 we
make use of techniques developed by Hansen [13] to obtain the optimal rates
under strong mixing.

Since these two sets of rates rest on qualitatively different conditions, we have
chosen to include both results into the article.

3.2. Asymptotic results under cumulant mixing conditions

In order to establish the consistency and the convergence rate of the estimators
introduced in Section 2, we will make use of the following further assumptions
on the model (2.4):

(B1) The number of measurements Nt in time t are independent random vari-
ables with law Nt ∼ N where N ≥ 0, E (N) < ∞ and P(N > 1) > 0.

(B2) The measurement locations xtj , j = 1, . . . , Nt, t = 1, . . . , T are indepen-
dent random variables generated from the density g(·) and are independent
of the number of measurements (Nt)t=1,...,T . The density g(·) is assumed
to be twice continuously differentiable and strictly positive on [0, 1].
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We allow the event {Nt = 0} to potentially have positive probability. This
corresponds to the situation where no measurements are available at time t, for
example when we additionally have missing data at random. We also need to
impose smoothness conditions on the unknown functional parameters

(B3) The common mean function, μ(·), is twice continuously differentiable on
[0, 1].

(B4) The autocovariance kernels, Rh(·, ·), are twice continuously differentiable
on [0, 1]2 for each h ∈ Z. Moreover,

sup
x,y∈[0,1]

∣∣∣∣ ∂2

∂yα1∂xα2
Rh(y, x)

∣∣∣∣
is uniformly bounded in h for all combinations of α1, α2 ∈ N0 where
α1 + α2 = 2.

To prove the consistency of autocovariance kernels estimators R̂h(·, ·) we need
to further assume some mixing conditions in the time domain. The smooth-
ing estimators are essentially moment-based, therefore it is natural to consider
cumulant-type summability conditions. For the introduction to the cumulants
of real random variables see Rosenblatt [37] and for the definitions and proper-
ties of the cumulant kernels and cumulant operators see Panaretos and Tavakoli
[29].

(B5) Denote the 4-th order cumulant kernel of {Xt} as cum(Xt1 , Xt2 , Xt3 , Xt4)
(·, ·, ·, ·). Assume the summability in the supremum norm

∞∑
h1,h2,h3=−∞

sup
x1,x2,x3,x4∈[0,1]

|cum(Xh1 , Xh2 , Xh3 , X0)(x1, x2, x3, x4)| < ∞.

We will also need to strengthen the summability assumption (2.1).

(B6) Assume
∞∑

h=−∞
|h| sup

x,y∈[0,1]

|Rh(x, y)| < ∞.

The last two conditions correspond to conditionsC′(1,2) andC′(0,4) in Panare-
tos and Tavakoli [29], respectively. Finally, we impose the following assumptions
on the decay rate of the bandwidth parameters and the growing rate of the
Bartlett’s span parameter L

(B7) Bμ → 0, TB4
μ → ∞,

(B8) BR → 0, TB6
R → ∞,

(B9) BV → 0, TB4
V → ∞,

(B10) L → ∞, L = o(
√
TB2

R), L = o(B−2
R ).

We may now state our asymptotic results on uniform consistency and conver-
gence rates:
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Theorem 1. Under the assumptions (B1) — (B3) and (B7):

sup
x∈[0,1]

|μ̂(x)− μ(x)| = OP

(
1√
TBμ

+B2
μ

)
. (3.1)

Under the assumptions (B1) — (B5) and (B7) — (B9), for for fixed lag h ∈ Z:

sup
x,y∈[0,1]

|R̂h(x, y)−Rh(x, y)| = OP

(
1√
TB2

R

+B2
R

)
, (3.2)

σ̂2 = σ2 +OP

{
1√
T

(
1

BV
+

1

B2
R

)
+B2

μ +B2
R

}
. (3.3)

Theorem 2. Under the assumptions (B1) — (B5) and (B7) — (B10), the
spectral density is estimated consistently:

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣∣f̂ω(x, y)− fω(x, y)
∣∣∣ = oP(1). (3.4)

If we further assume condition (B6), we can additionally obtain the convergence
rate:

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣∣f̂ω(x, y)− fω(x, y)
∣∣∣ = OP

(
L

1√
T

1

B2
R

+ LB2
R

)
.

As a consequence of Theorem 2 we obtain the consistency and the convergence
rate of the entire space-time covariance structure (2.15), i.e. rates uniform in
both time index and spatial argument:

Corollary 1. Under the assumptions (B1) — (B5) and (B7) — (B10):

sup
h∈Z

sup
x,y∈[0,1]

|R̃h(x, y)−Rh(x, y)| = oP(1) (3.5)

and assuming further (B6):

sup
h∈Z

sup
x,y∈[0,1]

|R̃h(x, y)−Rh(x, y)| = OP

(
L

1√
T

1

B2
R

+ LB2
R

)
. (3.6)

3.3. Asymptotic results under strong mixing conditions

We begin by listing the assumptions leading to the optimal convergence rates.
Besides imposing the key assumption of the strong mixing we need to strengthen
some of the other assumptions as well. We require some additional regularity
conditions on the smoothing kernel K(·) which until now was assumed only
to be a bounded probability density function. The condition is formulated for
a generic k(·) multivariate kernel because we will require more than just the
smoothing kernel K(·) to satisfy this condition.
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(C1) The function k : Rd → R is bounded and integrable

|k(u)| ≤ k̄ < ∞,

∫
Rd

|k(u)| du < ∞,

and for some Λ1 < ∞ and L < ∞, either k(u) = 0 for |u| > L̃ and

|k(u)− k(u′)| ≤ Λ1‖u− u′‖, u, u′ ∈ R,

or k(·) is differentiable, |(∂/∂)uk(u)| ≤ Λ1, and for some ν > 1,
|(∂/∂)uk(u)| ≤ Λ1‖u‖−ν for ‖u‖ > L̃.

The following conditions impose more conditions on the functional time series
model.

(D1) The functional time series {Xt}t∈Z is strictly stationary and strong mixing
with mixing coefficients αm that satisfy

α(m) ≤ Am−β ,

for A < ∞ and for some s > 2

E|Xt(x)|s ≤ B1 < ∞, x ∈ [0, 1].

(D2) The number of measurement locations Nt in time t are independent ran-
dom variables with law Nt ∼ N where N ∈ {0, 1, . . . , Nmax} for some
Nmax ∈ N and such that P(N > 1) > 0.

(D3) The measurement errors {εtj} are independent identically-distributed zero-
mean random variables satisfying

E|εtj |s < ∞.

Moreover, {εtj} are independent of the functional time series {Xt(·)}.
(D4) The marginal density of the observation location g(·) satisfies

0 < B2 ≤ inf
x∈[0,1]

g(x) ≤ sup
x∈[0,1]

g(x) ≤ B3 < ∞.

For the estimation of the mean function μ(·) the following assumptions are
required:

(D5) The functional time series {Xt(·)} satisfies

sup
h∈Z

sup
x,y∈[0,1]

E|Xh(x)X0(y)| < ∞.

(D6) The smoothing kernel K(·) satisfies
∫
|u|4K(u) du < ∞ and the functions

u �→ K(u), u �→ uK(u), u �→ u2K(u) satisfy the assumption (C1).
(D7) The coefficients β and s from the Assumption (D1) satisfy

β >
2s− 1

s− 2
.
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(D8) The bandwidth parameter Bμ satisfies

log T

T θμBμ
= o(1), T → ∞,

with

θμ =
β − 2− (1 + β)/(s− 1)

β + 1− (1 + β)/(s− 1)
.

(D9) The functions g(·) and g(·)μ(·) are twice continuously differentiable on
[0, 1].

The rates for the lag-h autocovariance kernel estomator(s) will require the fol-
lowing set of assumptions:

(D10) The functional time series {Xt(·)} satisfies

sup
h∈Z

sup
x,y∈[0,1]

E |Xh(x)X0(y)|2 < ∞

and

sup
h,h′∈Z

sup
x,y,x′,y′∈[0,1]

E |Xh(x)X0(y)Xh′(x′)Xh+h′(y′)| < ∞.

(D11) The smoothing kernel K(·) satisfies
∫∫

|uv|4K(u)K(v) du dv < ∞ and
the functions (u, v) �→ upvqK(u)K(v) satisfy the assumption (C1) for
p, q ∈ N0, 0 ≤ p+ q ≤ 2.

(D12) The bandwidth parameter B2
R satisfies

log T

T θRBR
= o(1), T → ∞,

with

θR =
β − 3− (1 + β)/(s− 1)

β + 1− (1 + β)/(s− 1)
.

(D13) The functions g(x)g(y) and g(x)g(y)Rh(x, y) are twice continuously dif-
ferentiable and

sup
x,y∈[0,1]

∣∣∣∣ ∂2

∂xα1∂yα2
Rh(x, y)

∣∣∣∣
is uniformly bounded in h for all combinations of α1, α2 ∈ N0 where
α1 + α2 = 2.

The following conditions will be required for the rates concerning spectral den-
sity estimation.

(D14) Assume the summability in the supremum norm of the 4-th order cumu-
lant kernel of {Xt},

∞∑
h1,h2,h3=−∞

sup
x1,x2,x3,x4∈[0,1]

|cum(Xh1 , Xh2 , Xh3 , X0)(x1, x2, x3, x4)| < ∞.
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(D15) The Bartlett span parameter L satisfies

L = o

⎛⎝(√
log T

TB2
R

)− s−2
s−1

⎞⎠
(D16) The bandwidth parameter B2

R satisfies

log T

T θFBR
= o(1), T → ∞,

with

θF =
β(s− 2)− 4s+ 4

β(s− 2)

and
LB2

R = o(1).

We can now state the main consistency and convergence results under the
strong mixing conditions.

Theorem 3. Under the assumptions (D1) — (D9),

sup
x∈[0,1]

|μ̂(x)− μ(x)| = OP

(√
log T

TBμ
+B2

μ

)
.

For fixed h ∈ Z, under the assumptions (D1) — (D13),

sup
x,y∈[0,1]

∣∣∣R̂h(x, y)−Rh(x, y)
∣∣∣ = OP

(√
log T

TB2
R

+B2
R

)
.

Theorem 4. Under the assumption (D1) — (D11) and (D13) — (D16),

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣∣f̂ω(x, y)− fω(x, y)
∣∣∣ = oP(1) (3.7)

and assuming further (B6),

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣∣f̂ω(x, y)− fω(x, y)
∣∣∣ = OP

(
L

√
log T

TB2
R

+ LB2
R

)
. (3.8)

3.4. Functional data recovery and confidence bands

In this section we turn our attention to developing asymptotic theory for the
recovered functional data and the associated confidence bands, in particular,
the asymptotic behaviour of the plug-in estimator (2.21) vis-à-vis its theoretical
counterpart (2.19).
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First of all, we need to clarify what asymptotic result we can hope to ac-
complish. Before venturing into functional time series, let us comment on the
asymptotic results for independent identically distributed functional data [44].
As the number of sparsely observed functional data grows to infinity, one can
consistently estimate the second-order structure of the stochastic process (which
in this case consists of the zero-lag autocovariance, due to independence). This
is then used in the plug-in prediction of a given functional datum, say Xs(·),
given the sparse measurements on this datum. In the limit, this prediction is as
good as if we knew the true lag zero covariance of the stochastic process [44,
Theorem 3]. Because the predictor uses the estimate of the lag zero covariance
based on all the observed data, Yao, Müller and Wang [44] call this trait as
borrowing strength from the entire sample.

In the time series setting of the current paper, one can expand the concept of
borrowing strength from the entire sample. As the number of sparsely observed
functional data (i.e. the time horizon T ) grows to infinity, one can not only
estimate the dynamics of the functional time series consistently (Theorem 2
and Corollary 1), but also further exploit the fact that neighbouring data are
correlated to further improve the recovery. Because of the weak dependence,
the influence of the observations decreases as we part away from the time s.
Therefore we fix a span of times 1, . . . , S where s < S ∈ N and we will be
interested in the prediction of Xs given the data in this span. To be precise, we
are going to prove that the prediction of Xs from the data in the local span and
based on the estimated dynamics from complete data is, in the limit, as good as
the prediction based on the true (unknown) dynamics. Therefore, in our case,
we are borrowing strength across the sample in a twofold sense – firstly for the
estimation of the functional time series dynamics, and then for prediction of the
functional datum Xs.

The span S can in principle be chosen to be as large as one wishes, but is held
fixed with respect to T . This is justified by the weak dependence assumption.
In practice, one must also entertain numerical considerations and not choose S
to be exceedingly large, since the evaluation of the predictors (2.19) and (2.21)
based on longer spans requires the inversion of a big matrix.

We formulate Theorems 5 and 6 under the cumulant mixing conditions re-
quired for Theorems 1 and 2. Nevertheless, the conclusions also hold also under
the strong mixing condition regime of Theorems 3 and 4 since, as is apparent
from the proofs, the only requirement coming into play is the consistency of the
spectral density operator estimators in the sense of (3.4) or (3.7).

Theorem 5. Under the assumptions (B1) — (B5) and (B7) — (B10), for fixed
s ∈ N, s < S,

sup
x∈[0,1]

∣∣∣X̃s(YS)(x)− X̂s(YS)(x)
∣∣∣ = oP(1).

In the following theorem we verify the asymptotic coverage probability of
the pointwise and simultaneous confidence bands (2.28) and (2.31) under the
Gaussian assumption (A1).
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Theorem 6. Under the assumptions (A1), (B1) — (B5) and (B7) — (B10),
for fixed s ∈ N, s ≤ S:

• Asymptotic coverage of the pointwise confidence band for fixed x ∈ [0, 1]:

lim
T→∞

P

{∣∣∣X̃s(YS)(x)−Xs(x)
∣∣∣ ≤ Φ−1 (1− α/2)

√
ŜXT |YT

(x, x)

}
= 1− α.

• Asymptotic coverage of the simultaneous confidence band:

lim
T→∞

P

{
∀x ∈ [0, 1] :

∣∣∣X̃s(YS)(x)−Xs(x)
∣∣∣ ≤ zα,ρ̂

√
ŜXT |YT

(x, x)

}
= 1−α.

4. Numerical experiments

4.1. Simulation setting

In this section, we present a simulation study in order to prove the finite-sample
performance of our methodology. To this aim, we simulate realisations of func-
tional linear processes, namely functional moving average processes and func-
tional autoregressive processes. These provide a good framework to investigate
our methods since their spectral density operators can be explicitly calculated
in closed form. Specifically, we consider:

• Functional moving average process
The (Gaussian) functional moving average process of order q is given by
the formula [4]

Xt = μ+ Et + B1Et−1 + B2Et−2 + · · ·+ BqEt−q (4.1)

where μ ∈ H is the mean function, Bj , j = 1, . . . , q are bounded linear
operators in H, and {Et} is zero-mean Gaussian noise with a trace-class
covariance operator S. The functional moving average process is a sta-
tionary linear process [4] and clearly satisfies the assumption (2.1) in the
nuclear norm and thus admits the spectral density in the operator sense.
Though the calculation of the spectral density of the functional moving
average process is straightforward, we are not aware of it having been
considered before in its functional form elsewhere.

Proposition 1. The functional moving average process defined above ad-
mits the spectral density

Fω =
1

2π

(
I + B1e

− iω + · · ·+ Bqe
− iωq

)
S
(
I + B∗

1e
iω + · · ·+ B∗

qe
iωq

)
,

ω ∈ (−π, π), (4.2)

in the operator sense (2.2). Moreover, if the kernels corresponding to the
operators B1, . . . ,Bq are smooth, the spectral density exists also in the
kernel sense (2.2) and the process satisfies the assumptions (B4), (B5),
(B6). If the mean function μ(·) is smooth, the process satisfies also (B3).
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We set again the mean function as μ(x) = 4 sin(1.5πx). The covariance ker-
nel S(x, y) of the driving noise is set to be S(x, y) = 1.4 sin(2πx) sin(2πy)+
0.6 cos(2πx) cos(2πy). Next we define B1, . . . ,B8 as integral operators with
kernels B1(x, y) = B5(x, y) = 5 exp(−(x2 + y2)), B2(x, y) = B6(x, y) =
5 exp(−((1−x)2+y2)), B3(x, y) = B7(x, y) = 5 exp(−(x2+(1−y)2)), and
B4(x, y) = B8(x, y) = 5 exp(−((1−x)2+(1−y)2)) respectively. We denote
these functional moving average processes as FMA(q) for q = 2, 4, 8.

• Functional autoregressive process
The (Gaussian) functional autoregressive process of order 1, well reviewed
in Bosq [4], is defined by the iteration

(Xt+1 − μ) = A(Xt − μ) + Et (4.3)

where {Xt} is a functional time series in the Hilbert space H = L2([0, 1]),
μ ∈ H is the mean function, A is a bounded linear operator on H, and
{Et} is zero-mean Gaussian noise with a trace-class covariance operator
S. Bosq [4] showed that if the transition operator A satisfies ‖A‖ < 1
(the operator norm on H) then there exists a unique Gaussian stationary
solution to the equation (4.3). The formula for the spectral density of
the functional autoregressive process has a form analogous to the finite-
dimensional vector autoregression case (cf. Priestley [32, §9.4]), but its
extension to the functional case appears to be a novel contribution:

Proposition 2. The functional autoregressive process of order 1 solving
the equation (4.3) with ‖A‖ < 1 satisfies the assumption (2.1) in the
operator sense, and admits the spectral density

Fω =
1

2π
(I −Ae− iω)−1S(I −A∗eiω)−1, ω ∈ (−π, π) (4.4)

in the operator sense (2.2). Moreover, if the kernels corresponding to the
operators A and S are smooth, the spectral density exists also in the kernel
sense (2.2) and the process satisfies the assumptions (B4), (B5), (B6). If
the mean function μ(·) is smooth, the process satisfies also (B3).

For our simulations we choose μ(x) = 4 sin(1.5πx). The autoregressive op-
erator A = Ac is the integral operator with kernel Ac(x, y) =
κc exp

(
−(x+ 2y)2

)
where the scaling constant κc is chosen so that ‖Ac‖ =

c. We vary c to control the degree of temporal dependence and let c ∈
{0.7, 0.9}. The covariance operator S is the integral operator with ker-
nel S(x, y) = 1.4 sin(2πx) sin(2πy) + 0.6 cos(2πx) cos(2πy). In the simu-
lation results we denote the resulting two processes as FAR(1)0.7 and
FAR(1)0.9 for c = 0.7 and c = 0.9 respectively.

We simulate the functional moving average processes FMA(2), FMA(4),
FMA(8), and the functional autoregressive processes FAR(1)0.7, FAR(1)0.9,
over temporal periods of varying length, specifically T ∈ {150, 300, 450, 600, 900,
1200}. The simulation is started from the stationary distribution of the respec-
tive processes.
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The simulations must be obviously performed in a finite dimension. We per-
formed the simulation in the third-order B-spline basis created by equidistantly
placing 20 knots on the interval [0, 1]. Hence the basis admits 21 elements. The
B-spline basis is efficient in expressing smooth functions [33].

The sparse observations are then obtained by the following process. We set
a maximum number of locations to be sampled Nmax ∈ {5, 10, 20, 30, 40}. For
each t = 1, . . . , T , a random integer Nt is independently drawn from the uniform
distribution on 0, 1, . . . , Nmax. Next, for each t = 1, . . . , T , we independently
draw Nt random locations xtj , j = 1, . . . , Nt from the uniform distribution on
[0, 1]. At each location, an independent identically distributed Gaussian mea-
surement error εtj ∼ N(0, σ2) is added and the ensemble Ytj = Xt(xtj)+εtj , j =
1, . . . , Nt, t = 1, . . . , T is used as the dataset for the estimation procedure. There-
fore the observation protocol satisfies the assumptions (B1) and (B2).

The measurement error variance is chosen in the way that the ratio tr(R0)/σ
2,

which we interpret as a basic signal-to-noise ratio metric, is 20. The same signal-
to-noise ratio was used in the simulation study by Yao, Müller and Wang [44].
Further simulation results of ours not reported here indicate that moderate
variations of the signal-to-noise ratio do not change the conclusions of this sim-
ulation study.

4.2. Estimation of the spectral density

In this subsection we quantify the estimation error of the spectral density es-
timator (2.13) in our simulation setting. In particular, we want to explore the
dependence of the estimation error on the length T of the time series and the
number Nmax impacting the average number of measurements per curve.

For each of the considered process and for each pair of the sample size pa-
rameters T ∈ {150, 300, 450, 600, 900, 1200} and Nmax ∈ {5, 10, 20, 30, 40} we
simulated 100 independent realisations. We have run the estimation procedure
introduced in Sections 2.3 and 2.4. In each case, the tuning parameters Bμ, BR,
and BV are selected by the K-fold cross-validation as explained in Section A.1.
The selection of Bartlett’s span parameter are discussed in Section A.2. Based
on the results of the simulation study, we introduce a simple selection rule that
works well for spectral density estimation. The optimal L depends clearly on
the (unknown) dynamics of the functional time series. As a compromise across
the simulated processes we propose to use the following selection rule

L = �T 1/3
(
N̄
)1/4� (4.5)

where N̄ is the average number of measurements per curve and �·� is the in-
teger part of a given real number. The selection rule (4.5) was hand-picked
for the considered range of variables T and Nmax and should not be used for
extrapolation, especially not for dense observation schemes.

We measure the quality of the spectral density estimation by the relative
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Table 1

Average relative mean square errors (defined in (4.6)) of the spectral density estimators for
the above defined functional moving average process of order 4 (FMA(4)) and varying

sample sizes. The numbers in parentheses are the standard deviations of the relative mean
square error. Each cell of the table (each error and its standard deviation) is the result of

100 independent simulations. The Bartlett’s span parameter L was selected by the rule (4.5)

T\Nmax 5 10 20 30 40

150 0.312 (0.060) 0.225 (0.063) 0.184 (0.060) 0.170 (0.049) 0.165 (0.050)
300 0.206 (0.040) 0.157 (0.042) 0.124 (0.028) 0.115 (0.030) 0.110 (0.033)
450 0.167 (0.033) 0.126 (0.034) 0.097 (0.022) 0.092 (0.027) 0.081 (0.021)
600 0.137 (0.027) 0.107 (0.027) 0.083 (0.017) 0.077 (0.023) 0.071 (0.017)
900 0.115 (0.020) 0.082 (0.015) 0.067 (0.016) 0.061 (0.015) 0.056 (0.016)
1200 0.096 (0.019) 0.072 (0.015) 0.056 (0.013) 0.050 (0.012) 0.047 (0.012)

mean square error defined as

RMSE =

∫ π

−π

∫ 1

0

∫ 1

0
|f̂ω(x, y)− fω(x, y)|2 dxdy dω∫ π

−π

∫ 1

0

∫ 1

0
|fω(x, y)|2 dxdy dω

(4.6)

where f̂ω(·, ·) and fω(·, ·) are respectively the estimated and the true spectral
density kernels at the frequency ω ∈ (−π, π). Due to space constraints, we
present in Table 1 the results only for the functional moving average process
of order 4, FMA(4). The results for the remaining considered processes are
reported in Section C.

Concerning the results of Table 1, one can raise an interesting design question:

Provided one has a fixed budget for the total number of measurements to be
made, should opt to record fewer spatial measurements over a longer time in-
terval (lengthy but sparsely observed time series), or rather record dense spatial
measurements over a shorter time period (short but densely observed time se-
ries)?

In order to answer this question we define a simple linear model to asses
the dependence of the relative mean square error on the considered sample size
parameters T and Nmax. For each of the considered processes we fit the linear
model

log(RMSE(Nmax, T )) = β0 + β1 log(N
max) + β2 log(T ) + e (4.7)

where RMSE(Nmax, T ) is the average relative mean square error for the con-
sidered parameters T and Nmax, (β0, β1, β2) are the regression parameters, and
e is a homoskedastic model error.

The least square estimate of (4.7) yields (β̂0, β̂1, β̂2) = (1.98,−0.32,−0.57).

The coefficient β̂2 is larger than β̂1 in absolute value, therefore the relative in-
crease of the time-length T has a stronger effect in reducing the relative mean
square error of the estimated spectral density than the same relative increase in
the number of points per curve. The apparent conclusion is that, in order to esti-
mate the spectral density of a smooth functional time series, the better strategy
is to invest in longer time-horizon T rather than denser sampling regime.
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Fig 1. The dependence of spectral density estimation relative mean square error (red points
with labels of the magnitude of this error) on the sample size parameters T and Nmax. The
blue plane is the estimated regression surface in model (4.7).

4.3. Recovery of functional data from sparse observations

In this section, we examine the performance of the functional recovery procedure
proposed in Section 2.6. We compare the recovery performance of our dynamic
predictor (2.21), in the following denoted as the dynamic recovery, with its static
version that relies only on the lag-zero covariance and hence does not exploit
the temporal dependence. In the following, we call this predictor the static
recovery. This static recovery is in fact the predictor (2.21) with the Bartlett’s
span parameter L set to 1.

We simulate 100 independent realisations for each of the considered func-
tional moving average processes FMA(2), FMA(4), FMA(8), and the con-
sidered functional autoregressive processes FAR(1)0.7, FAR(1)0.9, (their def-
initions in Section 4.2) and each combination of the sample size parameters
T ∈ {150, 300, 450, 600, 900, 1200} and Nmax ∈ {5, 10, 20, 30, 40}. Again, due to
space constraints, we state here the results only for the functional moving aver-
age process of order 4, FMA(4). The results for the other considered processes
are stated in Section C.

For each dataset we run the estimation procedure from Sections 2.3 and 2.4.
The tuning parameters Bμ, BR, and BV are selected by K-fold cross-validation
as explained in Section A.1. The parameter L is selected again by the rule (4.5).

We define the functional recovery (either dynamic or static) relative mean
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Table 2

Relative gain (4.9) between median relative mean square error of dynamic recovery and
median relative mean square error of static recovery. Positive percentage signifies that
dynamic recovery has smaller error. Simulations from the functional moving average of
order 4, FMA(4). Each cell of the table is the result of 100 independent simulations

T\Nmax 5 10 20 30 40

150 67 % 38 % 38 % 23 % 30 %
300 53 % 39 % 33 % 31 % 26 %
450 52 % 45 % 38 % 30 % 24 %
600 45 % 41 % 32 % 26 % 24 %
900 54 % 41 % 37 % 30 % 22 %
1200 54 % 45 % 34 % 26 % 21 %

square error as

RMSE =
1

T

T∑
t=1

∫ 1

0

(
X̂t(x)−Xt(x)

)2

dx

trR0
(4.8)

where X̂t is the recovered functional curve at t = 1, . . . , T , either dynamically
or statically, and Xt is the true (unobserved) functional datum.

The key factor contributing to the quality of the functional recovery is the
estimate σ̂2 of the additive measurement error variance parameter σ2. A very
small value of the estimated σ̂2 can lead to an ill-conditioned matrix needed
to be inverted in (2.20), thus resulting in a defective recovery of the functional
data. Because this circumstance affects the relative mean square error metric,
we opt to calculate the median of the relative mean square errors as a better
indicator of the typical recovery error instead.

We calculate the relative gain as

Relative gain =

(
RMSE(static)

RMSE(dynamic)
− 1

)
∗ 100% (4.9)

where RMSE(static) is the median relative mean square error of the static
recovery and RMSE(dynamic) is the median mean square error of the dynamic
recovery.

Table 2 summarizes the relative gains of dynamic recovery over the static
recovery. Unsurprisingly, the relative gain is strikingly large for sparser designs.
This can be explained by the fact that in sparse designs there is not sufficient
information to interpolate the functional curves themselves, and the observed
data in neighbouring curves are crucial for the recovery of the curves. That being
said, it is observed that even when the number of points sampled per curve are
as many as 40, the improvement remains substantial, demonstrating that the
new methodology should be preferred over methods designed for the i.i.d. case
when dependence is present.



Sparsely observed functional time series 1163

5. Data analysis: fair-weather athmospheric electricity

The atmosphere is weakly conductive due to the ionization of molecules and this
conductivity can be continuously measured by a variable called atmospheric elec-
tricity [39]. The ionization is the outcome of complicated physical-chemical pro-
cesses that are subject to the current weather conditions. Since unfair weather
conditions affect and alter these processes [20], climatologists are interested in
analysing the atmospheric electricity variable only under fair weather conditions
(the definition of fair weather is given later). The analyses under fair weather
conditions are of particular interest because the fair-weather electricity variable
is a valuable source of information in global climate research [39] as well as with
regards to air pollution [20].

Tammet [39] published an open-access database of atmospheric electricity
time series accompanied by some meteorological variables. Most of the data
come from weather stations across the former Soviet Union states and their
data quality is assessed as high [39]. In this article, we analyse the time series
of one weather station, namely that measured at the station near Tashkent,
Uzbekistan. The atmospheric electricity was recorded between the years 1989
and 1993 in the form of hourly averages. Besides the atmospheric electricity, a
number of other meteorological variables were measured, of which we use two:
the wind speed and the total cloudiness.

The definition of the fair-weather criteria is not simple and can often be
relatively subjective [43]. Inspired by criteria in climatology research [43, 20],
we define the weather conditions as fair if the particular hourly measurement
satisfies all of the following conditions:

• the wind speed is less than 20 km/h,
• the sky is clear (the total cloudiness variable is equal to 0),
• the atmospheric electricity E satisfies 0 < E < 250V/m.

Because of the above stated fair-weather criteria (and some genuinely miss-
ing data in the database), the resulting fair-weather electricity time series is,
in fact, unevenly sampled time series. Nevertheless, we assume there exists an
underlying continuous truth, corresponding to the atmospheric electricity if the
weather was fair. The latent process of fair-weather atmospheric electricity is
considered smooth and its values are observed only under the fair-weather con-
ditions, possibly with a deviation from the truth (noise). Based on the above
discussed natural mechanisms, we justify the assumption that the censoring
protocol is independent of the underlying fair-weather atmospheric electricity
process.

The underlying fair-weather atmospheric electricity process is a continuous
scalar time series. Previous research [15, 14, 16, 1] has demonstrated the useful-
ness of segmenting a continuous scalar time series into segments of an obvious
periodicity, usually days, and thus constructing a functional time series. A key
benefit of this practice is the separation of intra-day variability and the temporal
dependence across the days while preserving a fully non-parametric model.
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Fig 2. Overview of the fair-weather atmospheric electricity time series measured in Tashkent,
Uzbekistan. All fair-weather hourly measurements (blue line) accompanied by monthly means
(brown crosses, brown dotted line) and yearly means (yellow crosses, yellow solid line).

Fig 3. Example of atmospheric electricity profiles over 4 consecutive days. The fair-weather
atmospheric electricity measurements are highlighted as red points. The unfair-weather mea-
surements (blue crosses) are not used for the analysis.

We use the same approach in our analysis as well. We segment the (latent)
continuous time series into days and consider each day us an unobserved (la-
tent) functional datum defined on [0, 24]. We place the hourly observations in
the middle of the hour interval, i.e. 0.5, 1.5, 2.5, . . . , 23.5. Because of the above
fair-weather criteria, the constructed fair-weather atmospheric electricity time
series falls into the sparsely observed functional time series framework defined
in Section 2.2.

Figure 2 presents an overview of the considered fair-weather atmospheric elec-
tricity time series accompanied by monthly and yearly means. Figure 3 provides
a zoomed-in perspective into a stretch of data in 4 consecutive days.

In summary, the fair-weather atmospheric electricity functional time series
has the following features:

• the data are recorded over 5 years, therefore the time horizon of the func-
tional time series is T = 1826 (days),

• there are 1118 days have at least 1 fair-weather measurement (61 %),
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Fig 4. Left: The periodicity identification plot with L = 1000. The labels at first 4 peaks
convert the frequency into the corresponding periodicity. Right: Zoom-in into low frequencies.

• there are 251 gaps in time series (we define a gap as a stretch of days
where there is no measurement within these days) with the average length
of 2.8 days,

• there are 12997 fair-weather measurements in total, i.e. 7.1 on average
per day, or 11.6 on average per day among the days with at least one
measurement.

The statistical question raised is the following. Benefiting from the separation
of intra-day variability and temporal dependence across the days, can we fit an
interpretable model of the process dynamics? Additionally, we aim to recover
the latent functional data, fill in the gaps in the data, remove the noise, and
construct confidence bands.

We analyse the fair-weather atmospheric electricity data by the means of
Section 2. Initially, after removing the intra-day dependence by subtracting the
estimate μ̂(·) we inspect the periodicity identification chart introduced in Section
2.5. Specifically, we construct the said chart with L = 1000 and plot the trace
of the estimated spectral density operator against frequencies ω ∈ (0, π). We
identify the peaks of this plot as suggesting the presence of periodicities in the
corresponding frequencies.

The largest peak in Fig. 4 clearly corresponds to yearly periodicity together
with a half-year harmonic. The peak is not entirely at 365 days because of
the combination of the following factors: discretisation of the frequency grid,
numerical rounding, and most likely the slight smoothing by L = 1000.

Once the yearly periodicity is discovered, we opt to model it deterministically,
as is usual in (scalar) time series. Thus we propose the model

Ytj = μ(xtj) + st +Xt(xtj) + εtj (5.1)

where Ytj are the observed measurements at locations xtj , μ(·) is the intra-day
mean, st is yearly seasonality adjustment, and the “residual” process Xt(·) is a
zero-mean stationary weakly-dependent functional time series. The assumptions
of an additive relation of μ(·) and st as well as the stationarity of Xt(·) were
justified by exploratory analysis.

We fit the model (5.1) in the following order. First, we estimate μ(·) by a
local-linear smoother. Nevertheless, we expect the mean function to be periodic
and assume μ(0) = μ(24). Thus we modify the estimator (2.5) to measure
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Fig 5. Left: The estimated intra-day mean μ̂(·). Right: the estimated yearly seasonality ad-
justment ŝt.

Fig 6. Top-left: R̂0(·, ·), the estimated lag-0 covariance kernel R0(·, ·) (surface), the ridge con-
tamination by the measurement error (red) Top-right: the correlation kernel corresponding to

R̂0(·, ·). Bottom-left: R̂1(·, ·), the estimated lag-0 covariance kernel R1(·, ·). Bottom-right:

the correlation kernel corresponding to R̂1(·, ·).

the distance between x and xtj as if the endpoints of the interval [0, 24] were
connected. Having estimated μ̂(·), we estimate the yearly periodic seasonality
adjustment st again by a local-linear smoother, again by assuming continuity
between first day and last day of the year. The smoothing parameter was chosen
by leave-one-year-out cross-validation. Figure 5 presents the estimates μ̂(·) and
ŝt. We observe that the intraday mean exhibits two peaks at around 4 a.m. and
3 p.m. The yearly seasonality is almost sinusoidal with low values in the spring
and summer and high values in the autumn and winter.

Once the first-order structure given by μ(·) and st is estimated, we calculate
the raw covariance (2.6) by subtracting both μ̂(x) and ŝt. The lag-0 covari-
ance kernel R0(·, ·) is estimated by (2.7). For the estimation of the components
of (2.10), namely V̂ (·) and R̄0(·), we use the same periodicity adjustment as
for μ̂(·) because we expect the marginal variance (with and without the ridge
contamination) to be continuous across midnight. For illustration and inter-
pretation purposes we estimate also the lag-1 autocovariance R1(·, ·) by (2.11).
Figure 6 shows the surface plots of these estimates. An interesting element of
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Fig 7. Top-left: the traces of estimated spectral density operators with the highlighted frequen-
cies considered in the next plots. Top-right: the estimated spectral density at frequency ω = 0
(it is a real-valued kernel for ω = 0). Bottom-left and bottom-right: the modulus of the
complex-valued estimated spectral density at frequencies ω = 0.63 and ω = 1.88 respectively.

the estimated lag-0 covariance kernel is the peak at afternoon hours signify-
ing higher marginal variance of the fair-weather atmospheric electricity in the
afternoon hours. The estimated lag-0 correlation kernel demonstrates that the
observations measured close to each other are highly correlated and the correla-
tion diminishes as the distance grows. The estimated lag-1 autocovariance and
autocorrelation kernels show that the correlation between two consecutive days
is positive. The lag-1 autocorrelation kernel features a lifted-up surface up to
correlation 1 in the eastern corner of the surface plot. The clear interpretation is
that the late hours of one day are strongly correlated with early morning hours
of the following day.

In order to estimate the spectral density consistently, we need to select a
moderate value of Bartlett’s span parameter L. Plugging in the size of the
dataset into the formula (4.5) we set L = 19. Figure 7 presents a few views on
the estimated spectral density kernels.

Once the spectral density is estimated, we apply the functional recovery
method of Section 2.6 and estimate the unobserved functional data. The method
produces estimates of intra-day profiles of fair-weather atmospheric electricity
that can be interpreted as predicted atmospheric electricity if the weather was
fair at given time, without the modelled noise. As a by-product, the method
fills in the gaps in the data (the stretches of days without any measurement).
Another output is the construction of confidence bands (under the Gaussianity
assumption). Figure 8 presents 4 consecutive days with estimated (noiseless)
fair-weather atmospheric electricity together with 95%-simultaneous confidence
bands. It is important to note that these bands are supposed to cover the as-
sumed smooth underlying functional data, not the observed data produced by
adding measurement errors to the smooth underlying process.
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Fig 8. Fair-weather atmospheric electricity hourly measurements (red points) over 4 consecu-
tive days; functional recovery of the latent smooth fair-weather atmospheric electricity process
(blue); 95%-simultaneous confidence bands for the functional data of the said latent process
(yellow).

Appendix A: Practical implementation concerns

A.1. Selection of bandwidths Bμ, BR, and BV

Our estimation methodology involves three bandwidth parameters Bμ, BR, BV

that need to be selected based on some data-driven criterion. To reduce the
computational cost we choose to perform the selection of the parameters in
successive fashion.

The selection of a bandwidth parameter in kernel smoothing has been ex-
tensively studied in literature for the case of locally polynomial regression. The
classical selector by Ruppert, Sheather and Wand [38] calculates the asymp-
totic mean square error and plugs-in some estimated quantities. However, their
methodology applies to the independent case which is distinctly different from
the setting of this paper and hence we opt for a cross-validation selection proce-
dure. The selection of the smoothing parameters by cross-validation has already
been implemented by Yao, Müller and Wang [44]. Here we use a similar ap-
proach.

To further reduce the computational requirements we opt for a K-fold cross-
validation strategy instead of the leave-one-curve-out cross-validation originally
suggested by Rice and Silverman [35]. For the K-fold cross-validation, we work
with K = 10 partitions, as follows. We randomly split the functional curves
into K partitions and denote the time indices sets as T1, . . . , TK . For each

k ∈ {1, . . . ,K}, denote μ̂(−k),B0
μ the estimate of the common mean function

μ calculated by the smoother (2.5) from data without the partition k and using
the candidate smoothing parameter B0

μ. We select the smoothing parameter Bμ

by minimizing the following loss:

Bμ = argmin
B0

μ

1

K

K∑
k=1

∑
t∈Tk

Nt∑
j=1

{
Ytj − μ̂(−k),B0

μ(xtj)
}2

. (A.1)

Once the smoothing parameter Bμ is chosen we estimate the function μ̂ from
all data and use it in the second step to select BR and BV for smoothing the
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covariance kernels. We choose these smoothing parameters only while smoothing
the lag-zero covariance. The reason behind this is that we expect the same
smoothness for higher order lags and the selection of the parameters on only
one covariance kernel reduces the computational cost, which would otherwise

become substantial. We again employ K-fold cross-validation. Denote R̂0
(−k),B0

R

the estimate of R0 obtained by the smoother (2.7) calculated from the data
without the partition k and using the candidate smoothing parameter B0

R. The
smoothing parameters BR is selected by minimizing the following loss:

BR = argmin
B0

R

1

K

K∑
k=1

∑
t∈Tk

Nt∑
i,j=1

{
(Yti − μ̂(xti)) (Ytj − μ̂(xtj))−

− R̂0
(−k),B0

R
(xti, xtj)

}2

. (A.2)

To select the smoothing parameter BV , we denote V̂ (−k),B0
V the estimate

of the diagonal of R0(·, ·) including the ridge contamination, from the data
except the partition k and using the candidate smoothing parameter B0

V . The
parameter BV is selected by minimizing the following loss:

BV = argmin
B0

V

1

K

K∑
k=1

∑
t∈Tk

Nt∑
i=1

{
(Yti − μ̂(xti))

2 − V̂ (xti)
(−k),B0

V

}2

(A.3)

Once the minimizers BR and BV have been found, we construct the estimate

of the lag-zero covariance kernel R̂0 and the measurement error σ̂2 from the full
data. The bandwidth parameter BR will be used for estimation of the spectral
density because we expect the same degree of spatial smoothness for spectral
density kernels over all frequencies.

To numerically solve the optimization problems (A.1), (A.2), and (A.3) we use
MATLAB’s implementation of the Bayesian optimisation algorithm (BayesOpt).
A review of this algorithm can be found for example in Mockus [27].

A.2. Selection of Bartlett’s span parameter L

The selection of the parameter L, i.e. the number of lags taken into account when
estimating the dynamics, is a challenging problem in general. Selection rules
for the bandwidth parameter for smoothing in the frequency domain, which is
equivalent to Bartlett’s estimate as explained in Subsection 2.4, is reviewed in
Fan and Yao [10] for the case of one-dimensional time-series. The selection of
the parameter L, or equivalently the bandwidth parameter for frequency domain
smoothing, has nevertheless not been explored for the case of functional time-
series. Neither Panaretos and Tavakoli [29] nor Hörmann, Kidziński and Hallin
[14] provide data-dependent criteria, but instead rely on a prior choices based
on asymptotic considerations.
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The selection of the tuning parameter L is better studied in a related problem
— the estimation of the long-run covariance, which is in fact the value of the
spectral density at frequency ω = 0. The long-run covariance can be estimated
by the Bartlett’s formula (2.12) for frequency ω = 0. Data adaptive selection
procedures for the tuning parameter L have been suggested in this context by
Rice and Shang [34] and Horváth, Rice and Whipple [18].

However, it is unclear how to incorporate the sparse sampling scheme to
the above-cited rules. To address this issue, we run a number of numerical
experiments, simulating datasets from a couple of smooth functional time-series,
and estimating the spectral density with a varying value of the parameter L.
By investigating the estimation error, we propose guidelines on selecting L in
the form of a rule of thumb. The details on the simulation study are reported
in Section 4.2, the results are recorded in Section C.1, and the proposed rule of
thumb is stated in formula (4.5).

A.3. Representation of functional data

In the classical functional data analysis, one typically works with the functional
data expressed with respect to a given finite (but possibly large) fixed basis.
The usual choice is B-splines, Fourier basis, or wavelets. Throughout this article
(in simulations and the data analysis) we choose to work with the B-spline basis
of order 3 because B-splines are efficient in expressing smooth functions [33].

A useful feature of the B-spline basis is the interpolation capability [33] which
we benefit from. The smoother based estimators introduced in Sections 2.3 and
2.4 require to perform the smoothing at every point of [0, 1] or [0, 1]2. Therefore
one has to choose a grid where the smoother is to be calculated. To mitigate the
computational time, we want to avoid executing the smoother on a very dense
grid. Therefore we evaluate the smoother on a grid with a moderate number of
points. Specifically, we operate with the equidistant grid with 21 and 21 × 21
points for functions and 2-dimensional kernels respectively. Once the smoothing
estimator is realized on this grid, the functional counterparts as functions on
[0, 1] and kernels on [0, 1]2 are retrieved by the B-spline interpolation. This
technique is in contrast to Yao, Müller and Wang [44] who evaluate the smoother
on the equidistant grid of size 51 × 51 and treat the covariance kernel as a
51×51 matrix and the functional data as vectors. Our simulations (not reported
here) suggest that these two approaches have essentially the same statistical
performance for smooth functional data. Indeed the stochastic estimation error
dominates the numerical approximation error of the fully functional quantities.
From the implementation point of view, the B-spline interpolation approach
shortens the computational time, reduces the dimension of the data to be stored,
and directly expresses the functional quantities with respect to a basis.

Once the smoother-based estimates of the model dynamics expressed in the B-
spline basis, we assume that the functional data themselves are expressed within
the fixed finite B-spline basis. Of course, the functional data are not directly
observed and thus we treat the unknown basis coefficient as latent variables
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to be retrieved. Using the calculus for functions and operators expressed with
respect to a basis [33], the functional recovery formulae of Section 2.6 can be
rewritten and their evaluation is based on vector and matrix manipulations,
albeit in a much lower dimensional setting.

A.4. Forecasting

A natural next step to consider, and indeed one of the main reasons why one
may be interested in recovering the functional time-series dynamics, is that of
forecasting. In this section, we comment on how the forecasting problem natu-
rally fits into the functional data recovery framework introduced in Section 2.6.

Assume that we are given sparse data {Ytj : 1 ≤ j ≤ Nt, 1 ≤ t ≤ T}
and we wish to forecast the functional datum XT+r for r ∈ N as well as to
quantify the uncertainty of the forecast. We define the random element XT+r =
[X1, . . . , XT , XT+1, . . . , XT+r] ∈ HT+r. If the forecasts for the intermediate
data XT+1, . . . , XT+r−1 are not of interest, we may delete these elements and
naturally alter the explained method below. Nevertheless, we opt to explain the
approach for forecasting up to the time T + r simultaneously.

We utilize the notation introduced in Subsection 2.6. By extending the for-
mulae (2.16) and (2.17) for t = 1, . . . , T + r we obtain the law of XT+r, i.e. the
joint law of X1, . . . , XT+r, and can calculate their conditional distribution given
the observed data YT . In particular, by taking s = T +r in the equations (2.19),
(2.27), and (2.30) we obtain the forecast, the pointwise confidence band, and
the simultaneous confidence band respectively for the functional datum XT+r.
In practice, we substitute the unknown population level quantities by their em-
pirical estimators. Therefore, by taking s = T +r in the equations (2.21), (2.28),
and (2.31) we obtain the forecast, the (asymptotic) pointwise confidence band,
and the (asymptotic) simultaneous confidence band for XT+r.

Appendix B: Proofs of formal statements

B.1. Proof of Theorem 1

We start with the smoother for the common mean function μ(·). Its estimator
μ̂(x), the minimizer of (2.5), explicitly:

μ̂(x) =
Q0S2 −Q1S1

S0S2 − S2
1

, (B.1)

where

Sr =
1

T

T∑
t=1

Nt∑
j=1

(
xtj − x

Bμ

)r
1

Bμ
K

(
xtj − x

Bμ

)
, r = 0, 1, 2,

Qr =
1

T

T∑
t=1

Nt∑
j=1

(
xtj − x

Bμ

)r

Ytj
1

Bμ
K

(
xtj − x

Bμ

)
, r = 0, 1.



1172 T. Rub́ın and V. M. Panaretos

All of the above quantities are functions of x ∈ [0, 1] and all of the operations are
to be understood in the pointwise sense, and this includes the division operation.
In Lemma 1 and Lemma 2 we determine the asymptotic behaviour of Sr and
Qr, respectively.

Lemma 1. Under (B1), (B2) and (B7), for r = 0, 1, 2

sup
x∈[0,1]

∣∣Sr −M[Sr]

∣∣ = OP

(
1√
TBμ

+B2
μ

)

where M[S0] = E (N) g(x),M[S1] = 0,M[S2] = E (N)σ2
Kg(x) and σ2

K =∫
v2K(v) dv.

Proof. We have the usual bias-variance decomposition

E

(
sup

x∈[0,1]

∣∣Sr −M[Sr]

∣∣) ≤ sup
x∈[0,1]

∣∣E (Sr)−M[Sr]

∣∣+ E

(
sup

x∈[0,1]

|E (Sr)− Sr|
)
.

For the bias term, by using the Taylor expansion to order 2 it is easy to show
the formulae for M[Sr], r = 0, 1, 2 as well as that E (Sr) = M[Sr] +O(B2

μ) where
the remainder of the Taylor expansion is uniform in x ∈ [0, 1]. Hence

sup
x∈[0,1]

∣∣E (Sr)−M[Sr]

∣∣ = O(B2
μ). (B.2)

For the stochastic term, it will be useful to employ the Fourier transform. The
inverse Furrier transform of the function u �→ K(u)ur is defined as ζr(t) =∫
e− iutK(u)ur du. Therefore we may write

wtj

(
xtj − x

Bμ

)r

=
1

2πBμ

∫
eiu(xtj−x)/huμ

(
xtj − x

Bμ

)r

ζr(u) du =

=
1

2π

∫
ei v(xtj−x)(xtj − x)rζr(vBμ) dv.

Define

φr(v) =
1

T

T∑
t=1

Nt∑
j=1

ei vxtj (xtj − x)r (B.3)

and thus we can write

Sr(x) =
1

2π

∫
φr(v)e

− i xvζr(vBμ) dv.

Thanks to the independence of {Nt} and {xtj} we can bound the variance of
φSr(x)

Var(φSr (x)) ≤
1

T
Var

⎧⎨⎩
N1∑
j=1

ei vx1j(x1j−x)r

⎫⎬⎭ ≤
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≤ 1

T
E

⎛⎜⎝E

⎡⎢⎣
⎧⎨⎩

N1∑
j=1

ei vx1j (x1j − x)r

⎫⎬⎭
2

| N1

⎤⎥⎦
⎞⎟⎠ ≤

≤ 1

T
E

⎛⎝E

⎡⎣⎧⎨⎩
N1∑
j=1

∣∣ei vx1j
∣∣2⎫⎬⎭

⎧⎨⎩
N1∑
j=1

(x1j − x)2r

⎫⎬⎭ | N1

⎤⎦⎞⎠ ≤

≤ 1

T
E

⎡⎣E (N)E

⎧⎨⎩
N1∑
j=1

(x1j − x)2r

⎫⎬⎭ | N1

⎤⎦ ≤

≤ E (N)

T
E
[
(x11 − x)2r

]
≤ E (N)

T
.

Thus

E

{
sup
x

|Sr(x)− E (Sr(x))|
}

≤ 1

2π

∫
E (|φr(v)− EφSr(v)|) |ζr(vBμ)| dv ≤

≤ 1

2π

∫ √
Var(φr(x))|ζr(vBμ)| dv ≤

∫
|ζr(u)| du

2π

E (N)√
TBμ

= O

(
1√
TBμ

)
.

(B.4)

The proof is concluded by combining (B.2) and (B.4), and by the observation
that E (|Zn|) = O(an) implies Zn = OP(an) for an arbitrary sequence of random
variables Zn and a sequence of constants an.

Lemma 2. Under (B1) — (B3) and (B7), for r = 0, 1

sup
x∈[0,1]

∣∣Qr −M[Qr]

∣∣ = OP

(
1√
TBμ

+B2
μ

)

where M[Q0] = E (N)μ(x)g(x) and M[Q1] = 0.

Proof. The proof of Lemma 2 follows the same ideas as that of Lemma 1. We use
the bias variance decomposition and a Taylor expansion to order 2 to derive the
analogous results as in (B.2) as well as the formulae for M[Q0](x) and M[Q1](x).
We then define

ϕr(v) =
1

T

T∑
t=1

Nt∑
j=1

ei vxtj (xtj − x)rYtj (B.5)

in analogy to (B.3). Thus we can write

Qr(x) =
1

2π

∫
ϕr(v)e

− i xvζr(vBμ) dv.

It remains to bound the variance of (B.5). However, the temporal dependence
among Ytj must be now taken into account. First of all remark that for an
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arbitrary stationary time-series {Zt} with a summable autocovariance function
ρZ(·), one has:

Var

(
1

T

T∑
t=1

Zt

)
=

1

T

T−1∑
h=−T+1

ρZ(h)

(
1− |h|

T

)
≤ 1

T

∞∑
h=−∞

|ρZ(h)|. (B.6)

Define Zt =
∑Nt

j=1 e
i vxtj (xtj − x)rYtj . This sequence of real random variables

constitutes a stationary time-series. By conditioning on Nt and xtj , and apply-
ing the law of total covariance, we can bound the autocovariance of {Zt} by
|ρZ(h)| ≤ maxx,y |Rh(x, y)| for h �= 0. For h = 0, the bound is augmented by
σ2 due to the measurement error but this changes nothing on the summability.
The autocovariance function is summable thanks to the assumption (2.1) and
we conclude that Varϕr(v) = O(1/T ). By repeating the same steps as in (B.4)
we obtain

E

{
sup

x∈[0,1]

|Sr(x)− E (Sr(x))|
}

= O

(
1√
TBμ

)
which completes the proof.

Proof of the first part of Theorem 1. By combining Lemma 1, Lemma 2, the
formula (B.1), and the uniform version of Slutsky’s theorem, we obtain the
rate (3.1).

Now we turn our attention to the estimation of the lag-0 covariance and lag-h
autocovariance kernels. We include the proof only for h �= 0. For h = 0 one has to
exclude the diagonal to evade the measurement errors but the proof is essentially
the same. It is possible to explicitly express the minimizer to (2.11) (cf. Li and
Hsing [24]). The general principles of the explicit formula deviation are also
commented on for the case of spectral density estimation in Section B.2, which
uses similar deviation steps as the estimator of lagged autocovariance kernels.
The explicit formula yields

R̂h(x, y) =
(
A

(h)
1 Q

(h)
00 − A

(h)
2 Q

(h)
10 − A

(h)
3 Q

(h)
01

)(
B(h)

)−1

, (B.7)

where |h| < T and

A
(h)
1 = S

(h)
20 S

(h)
02 −

(
S
(h)
11

)2

, A
(h)
2 = S

(h)
10 S

(h)
02 − S

(h)
01 S

(h)
11 ,

A
(h)
3 = S

(h)
01 S

(h)
20 − S

(h)
10 S

(h)
11 , B(h) = A

(h)
1 S

(h)
00 − A

(h)
2 S

(h)
10 − A

(h)
3 S

(h)
01 ,

S(h)
pq =

1

T − |h|

max(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

(
xt+h,j − x

BR

)p (
xtk − y

BR

)q

×

× 1

B2
R

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
,



Sparsely observed functional time series 1175

Q(h)
pq =

1

T − |h|

max(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

Gh,t(xt+h,j , xtk)×

×
(
xt+h,j − x

BR

)p (
xtk − y

BR

)q
1

B2
R

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
.

All of the above terms are functions of (x, y) ∈ [0, 1]2 and all operations are

understood the pointwise sense, including the pointwise inversion of
(
B(h)

)−1
=(

B(h)(x, y)
)−1

.

We asses the uniform asymptotic behaviour of S
(h)
pq and Q

(h)
pq in Lemma 3

and Lemma 4.

Lemma 3. Under (B1), (B2), (B7) and (B8),

E

(
sup

x,y∈[0,1]

∣∣∣S(h)
pq − ES(h)

pq

∣∣∣) ≤ U
1√

T − |h|
1

B2
R

(B.8)

sup
x,y∈[0,1]

∣∣∣ES(h)
pq −M[Spq ]

∣∣∣ = O
(
B2

R

)
(B.9)

where the constant U is uniform for 0 ≤ p+ q ≤ 2, T ∈ N, |h| < T , and

M
[S

(h)
00 ]

= chg(x)g(y), M
[S

(h)
01 ]

= M
[S

(h)
10 ]

= M
[S

(h)
11 ]

= 0,

M
[S

(h)
20 ]

= M
[S

(h)
02 ]

= chg(x)g(y)σ
2
K , σ2

K =

∫
v2K(v) dv,

(B.10)

where ch = (EN)2 for h �= 0 and c0 = E{N(N − 1)}. Moreover, the convergence
(B.9) is uniform in h.

Proof. Note the bias-variance decomposition of the estimation error

E

(
sup

x,y∈[0,1]

∣∣∣S(h)
pq −M

[S
(h)
pq ]

∣∣∣) ≤ E

(
sup

x,y∈[0,1]

∣∣∣S(h)
pq − E

(
S(h)
pq

)∣∣∣)+

+ sup
x,y∈[0,1]

∣∣∣E(
S(h)
pq

)
−M

[S
(h)
pq ]

∣∣∣ (B.11)

Considering a Taylor expansion of order 2, it is easy to show that the formulae
(B.10) and that the second term of (B.8) is of order O(B2

R) uniformly in h and
T .

Taking the analogous steps as in the proof of Lemma 1 while using the Fourier
transform of the function (u, v) �→ K(u)K(v)upvq, one can prove that the first
term on the right-hand side of (B.11) are bounded by 1/(T − |h|).
Now assume that the common mean function μ(·) is known for the moment.
Thus formally define
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Q̃(h)
pq =

1

T − |h|

max(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

G̃h,t(xt+h,j , xtk)×

×
(
xt+h,j − x

BR

)p (
xtk − y

BR

)q
1

B2
R

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
where

G̃h,t(xt+h,j , xtk) = (Yt+h,j − μ(xt+h,j))(Ytk − μ(xtk)). (B.12)

We analyse the asymptotics of Q̃
(h)
pq in Lemma 4.

Lemma 4. Under (B1) — (B5) and (B8)

E

(
sup

x,y∈[0,1]

∣∣∣Q̃(h)
pq − EQ̃(h)

pq

∣∣∣) ≤ U
1√

T − |h|
1

B2
R

(B.13)

sup
x,y∈[0,1]

∣∣∣EQ̃(h)
pq −M

[Q
(h)
pq ]

∣∣∣ = O
(
B2

R

)
(B.14)

where the constant U is uniform for 0 ≤ p+ q ≤ 2, T ∈ N, |h| < T , and

M
[Q

(h)
00 ]

= chRh(x, y)g(x)g(y), M
[Q

(h)
01 ]

= M
[Q

(h)
10 ]

= 0, (B.15)

where ch = (EN)2 for h �= 0 and c0 = E{N(N − 1)}. Moreover, the convergence
(B.14) is uniform in h.

Proof. Again, the bias-variance decomposition yields

E

(
sup

x,y∈[0,1]

∣∣∣Q̃(h)
pq −M

[Q
(h)
pq ]

∣∣∣) ≤ E

(
sup

x,y∈[0,1]

∣∣∣Q̃(h)
pq − E

(
Q̃(h)

pq

)∣∣∣)+

+ sup
x,y∈[0,1]

∣∣∣E(
Q̃(h)

pq

)
−M

[Q
(h)
pq ]

∣∣∣
By taking a Taylor expansion of order 2, it is again straightforward to show
that the formulae (B.15) and that the second term of (B.13) is of order O(B2

R)
uniformly in h and T .

To treat the first term on the right-hand side of (B.13), we define the Fourier
transform of the function (α, β) �→ K(α)αK(β)β as

ζpq(u, v) =

∫∫
e− i(uα+vβ)K(α)αpK(β)βqdαdβ.

Thus we may write(
xt+h,j − x

BR

)p (
xtk − y

BR

)q
1

B2
R

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
=

=
1

(2π)2B2
R

∫∫
exp

{
i

(
xt+h,j − x

BR

)
u

}
exp

{
i

(
xtk − y

BR

)
v

}
ζpq(u, v) du dv =
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=
1

(2π)2

∫∫
ei(xt+h,j−y)ũei(xtk−y)ṽζpq(BRũ, BRṽ)dũdṽ

Define

ϕ(h)
pq = ϕ(h)

pq (u, v, x, y) =

=
1

T − |h|

max(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

ei(xt+h,j−x)uei(xtk−y)v

× G̃h,t(xt+h,j , xtk)

and write

Q̃(h)
pq =

1

(2π)2

∫∫
ϕ(h)
pq ζpq(BRu,BRv) du dv

Analogously to (B.4), it now remains to analyse the variance of ϕ
(h)
pq . Define the

following stationary time-series

Z
(h)
t =

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

ei(xt+h,j−x)uei(xtk−y)vG̃h,t(xt+h,j , xtk).

As in the proof of Lemma 2 we want to bound the sum of the autocovariance
function

∑
ξ∈Z |ρZ(h)(ξ)| but the bound must be uniform in h. By conditioning

on Nt and xtj , and applying the law of total covariance, the ξ-lag autocovariance
ρZ(h)(ξ) can be bounded by

|ρZ(h)(ξ)| = |Cov(Zt+ξ, Zt)| ≤

≤ (E (N))2 sup
x1,x2,x3,x4∈[0,1]

∣∣∣Cov{(Xt+ξ+h(x1)− μ(x1))(Xt+ξ(x2)− μ(x2))×

× (Xt+h(x3)− μ(x3))(Xt(x4)− μ(x4))
}∣∣∣ =

= (E (N))2 sup
x1,x2,x3,x4∈[0,1]

∣∣∣Cov{(Xξ+h(x1)− μ(x1))(Xξ(x2)− μ(x2))×

× (Xh(x3)− μ(x3))(X0(x4)− μ(x4))
}∣∣∣ (B.16)

for ξ /∈ {−h, 0, h}. For ξ ∈ {−h, 0, h}, the bound is augmented by σ2 but this
changes nothing as to the summability with respect to ξ ∈ Z.

Using the formula for the 4-th order cumulant of centred random variables
[37, p. 36], we express the covariance on the right-hand side of (B.16) as

Cov
(
(Xξ+h(x1)− μ(x1))(Xξ(x2)− μ(x2)),

(Xh(x3)− μ(x1))(X0(x4)− μ(x1))
)
=
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= cum (Xξ+h(x1)− μ(x1), Xξ(x2)− μ(x2), Xh(x3)− μ(x3), X0(x4)− μ(x4), )

+Rξ(x1, x3)Rξ(x2, x4) +Rξ+h(x1, x4)Rξ−h(x2, x3). (B.17)

Taking the absolute value and the supremum, the sum of (B.16) with respect
to ξ is bounded thanks to the fact that the cumulant on the right-hand side of
(B.17) is summable by (B5) and the autocovariances are summable by (2.1).
Moreover the sum is bounded uniformly in h.

Therefore

Var
(
Q(h)

pq

)
≤ 1

T − h

∑
ξ∈Z

|ρZ(h)(ξ)| ≤ U
1

T − h

where the constant U is independent of h. Observing that
∫∫

ζpq(BRu,BRv) du dv
= O(B2

R) concludes the proof of the bound (B.13).

In the following lemma we modify the previous result for the raw covariances
Gh,t instead of G̃h,t.

Lemma 5. Under (B1) — (B5), (B7) and (B8), for h ∈ Z and 0 ≤ p + q ≤
2; p, q ∈ N0

Q(h)
pq = M[Qpq] +OP

(
1√
T

1

B2
R

+B2
R

)
uniformly in x, y ∈ [0, 1].

Proof. We follow the lines of the discussion at the end of the proof of Yao,
Müller and Wang [44, Theorem 1]. Consider a generic raw covariance and its
counterpart

Gh,t(x, y) = (Xt+h(x)− μ̂(x)) (Xt(y)− μ̂(y)) ,

G̃h,t(x, y) = (Xt+h(x)− μ(x)) (Xt(y)− μ(y)) .

They can be related to each other by the expansion:

Gh,t(x, y) = G̃h,t(x, y) + (Xt+h(x)− μ(x)) (μ(y)− μ̂(y))+

+ (μ(x)− μ̂(x)) (Xt(y)− μ(y)) + (μ(x)− μ̂(x)) (μ(y)− μ̂(y)) .

By (3.1), the difference of Gh,t(x, y) and G̃h,t(x, y) is of order OP

(
1√
T

1
Bμ

)
which

is negligible with respect to the rate OP

(
1√
T

1
B2

R

)
from Lemma 4.

Proof of the second part of Theorem 1. Combining the results of Lemma 2 and
Lemma 5, we obtain the following uniform convergence rates:

A
(h)
1 =

[
chg(x)g(y)σ

2
K

]2
+OP

(
1√
T

1

B2
R

+B2
R

)
,

A
(h)
2 = OP

(
1√
T

1

B2
R

+B2
R

)
,

A
(h)
3 = OP

(
1√
T

1

B2
R

+B2
R

)
,
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B(h) = [chg(x)g(y)]
3 (

σ2
K

)2
+OP

(
1√
T

1

B2
R

+B2
R

)
.

The numerator of the ratio (B.7) exhibits the following uniform convergence

A
(h)
1 Q

(h)
00 − A

(h)
2 Q

(h)
10 − A

(h)
3 Q

(h)
01 =

= [chg(x)g(y)]
3 (

σ2
K

)2
Rh(x, y) +OP

(
1√
T

1

B2
R

+B2
R

)
(B.18)

and therefore we have proven the convergence rate for the autocovariance kernel
estimator

R̂h(x, y) = Rh(x, y) +OP

(
1√
T

1

B2
R

+B2
R

)
uniformly in x, y ∈ [0, 1].

Finally we turn to the estimation of the measurement error variance σ2. The
minimizer of the local quadratic smoother (2.9) can be expressed explicitly as

(B.19)

R̄0(x) =
(
Ā1Q̄0 − Ā2Q̄1 − Ā3Q̄2

)
B̄−1

where

Ā1 = S̄2S̄4 −
(
S̄3

)2
, Ā2 = S̄1S̄4 − S̄2S̄3, Ā3 = S̄2S̄2 − S̄1S̄3,

B̄ = Ā1S̄0 − Ā2S̄1 − Ā3S̄2,

S̄r =
1

T

T∑
t=1

∑
j �=k

(
P (xtj , xtk)− x

BR

)r
1

B2
R

K

(
xtj − x

BR

)
K

(
xtk − x

BR

)
,

Q̄r =
1

T

T∑
t=1

∑
j �=k

G0,t(xtj , xtk)

(
P (xtj , xtk)− x

BR

)r
1

B2
R

K

(
xtj − x

BR

)

×K

(
xtk − x

BR

)
.

All of the above quantities are understood as functions of x ∈ [0, 1] and all
operations are considered pointwise, including the pointwise inversion B̄−1 =
(B̄(x))−1.

Lemma 6. Under (B1), (B2) and (B7), for r ∈ 0, 1, 2, 3, 4

S̄r(x) = M[S̄r](x) +OP

(
1√
TB2

V

+B2
V

)

uniformly in x ∈ [0, 1] where

M[S̄0] = c0g(x)
2, M[S̄1] = M[S̄3] = 0,
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M[S̄2] =
1

2
c0g(x)

2σ2
K , σ2

K =

∫
v2K(v) dv,

M[S̄4] =
1

8
c0g(x)

2
(
μ
(K)
4 + 3σ2

K

)
, μ

(K)
4 =

∫
v4K(v) dv.

Proof. The proof of Lemma 6 follows in the footsteps of that of Lemma 3, and
the details are omitted.

Lemma 7. Under (B1) — (B5) and (B7) — (B9), for r ∈ 0, 1, 2

Q̄r(x) = M[Q̄r](x) +OP

(
1√
TB2

V

+B2
V

)

uniformly in x ∈ [0, 1] where

M[Q̄0] = c0R0(x, x)g(x)
2, M[Q̄1] = 0,

M[Q̄2] =
1

2
c0R0(x, x)g(x)

2σ2
K , σ2

K =

∫
v2K(v) dv.

Proof. The proof of Lemma 7 is analogous to the proofs of Lemma 4 and
Lemma 5.

The following corollary is a direct consequence of Lemma 6 and Lemma 7,
and the formula (B.19).

Corollary 2. Under (B1) — (B5) and (B7) — (B9),

R̄0(x) = R0(x, x) +OP

(
1√
TB2

V

+B2
V

)

uniformly in x ∈ [0, 1].

Now we turn our attention to the linear smoother on the diagonal (2.8).

Lemma 8. Under (B1) — (B5) and (B7) — (B9),

V̂ (x) = R0(x, x) + σ2 +OP

(
1√
TBV

+B2
V

)
uniformly in x ∈ [0, 1].

Proof. The proof is similar to the proofs of the above lemmas. An explicit for-
mula for the minimizer of (2.8) can be found analogously.

Proof of the last part of the Theorem 1. Combining Lemma 6, Lemma 7, and
Lemma 8 yields the rate (3.3). See also the proof of Li and Hsing [24, Theorem
3.4] where the proof with the local-linear smoothing of the diagonal is written
out in detail.
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B.2. Proof of Theorem 2

Firstly we comment that the minimizer to (2.14) and hence the estimator can
be expressed explicitly (2.13) as

f̂ω(x, y) =
1

2π
(A1Q

ω
00 − A2Q

ω
10 − A3Q

ω
01)B−1, (B.20)

where

A1 = S20S02 − S2
11, A2 = S10S02 − S01S11, A3 = S01S20 − S10S11,

B = A1S00 − A2S10 − A3S01,

Spq =
1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

(
xt+h,j − x

BR

)p

×

×
(
xtk − y

BR

)q
1

B2
R

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
,

Qω
pq =

L∑
h=−L

Whe
− ihω

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

Gh,t(xt+h,j , xtk)×

×
(
xt+h,j − x

BR

)p (
xtk − y

BR

)q
1

B2
R

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
.

All of the above quantities are understood as functions of (x, y) ∈ [0, 1]2 and all
operations are considered in a pointwise sense, including the pointwise inversion
B−1 = (B(x, y))−1.

To see why the minimizer has the form (B.20) we simplify the notation of
the complex minimisation problem (2.14) to the following:

min
d0,d1,d2

J∑
j=1

|Aj − d0 − d1(xj − x)− d2(yj − y)|2 vj

where Aj ∈ C represents the raw covariances multiplied by the complex expo-
nential, and vj ≥ 0 are the spatial and Barlett’s weights. The sum of squares
can be rewritten in the matrix notation as

min
d0,d1,d2

(A− Xd)† V (A− Xd)

where † denotes the complex conjugate, A = (A1, . . . , AJ)
� ∈ CJ , d =

(d0, d1, d3) ∈ C3,V = diag(v1, . . . , vJ) ∈ RJ×J and

X =

⎛⎜⎝1 x1 − x y1 − y
...

...
...

1 xJ − x yJ − y

⎞⎟⎠ ∈ RJ×3.
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Thanks to X and V being real, the real and imaginary parts of the minimisation
can be separated:

d̂ = argmin
d

(A− Xd)† V (A− Xd) =

=

(
argmin


d
(�A− X�d)� V (�A− X�d)

)
︸ ︷︷ ︸


d̂

+

+ i

(
argmin

�d
(�A− X�d)� V (�A− X�d)

)
.︸ ︷︷ ︸

�d̂

We solve the above minimisation problems by the classical normal equations
formula for the weighted least squares problem and obtain

d̂ = �d̂+ i�d̂ =
(
X�VX

)−1
X�V�A+ i

(
X�VX

)−1
X�V�A

=
(
X�VX

)−1
X�VA.

We can calculate the first element of
(
X�VX

)−1
X�VA by Cramér’s rule. After

switching back to the quadruple summation (2.14) we arrive at the formula
(B.20).

To investigate the asymptotic behaviour of the estimator (2.13), we need to
analyse the asymptotics of the terms in the formula (B.20). We now assess the
asymptotic behaviour of Spq and Qω

pq.

Lemma 9. Under the assumptions(B1), (B2), and (B8), for any p, q ∈ N0,
such that 0 ≤ p+ q ≤ 2:

Spq = M[Spq ] +OP

(
1√
T

1

B2
R

+B2
R

)
uniformly in x, y ∈ [0, 1] and where

M[S00] = g(x)g(y), M[S01] = M[S10] = M[S11] = 0,

M[S20] = M[S02] = g(x)g(y)σ2
K , σ2

K =

∫
v2K(v) dv.

Proof. Denote

S(pq)
htjk =

(
xt+h,j − x

BR

)p (
xtk − y

BR

)q
1

B2
R

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
,

for h = −L, . . . , L, t = 1, . . . , T − h, j = 1, . . . , Nt+h, k = 1, . . . , Nt for j �= k if
h = 0.

Because L = o(T ) we may assume (and we do) in the entire proof that

L ≤ T/2. Noting that L−1
∑L

h=−L Wh = 1 we start with the decomposition
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1

L

L∑
h=−L

⎛⎜⎜⎝Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

S(pq)
htjk

⎞⎟⎟⎠−M[Spq ]

∣∣∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣∣∣
1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

(
S(pq)
htjk −M[Spq]

)∣∣∣∣∣∣∣∣+
+

∣∣∣∣∣ 1L
L∑

h=−L

WhM[Spq ]

(
1− Nh

N̂h

)∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣∣∣
1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

(
S(pq)
htjk −M[Spq]

)∣∣∣∣∣∣∣∣+
+

∣∣∣∣ 1LM[Spq]

(
1− N′

N̂0

)∣∣∣∣+
+

∣∣∣∣∣∣ 1L
L∑

h=−L,h �=0

WhM[Spq]

(
1− Nh

(T − |h|)(EN)2

)∣∣∣∣∣∣+
+

∣∣∣∣∣∣ 1L
L∑

h=−L,h �=0

WhM[Spq]
Nh

T − |h|

(
1

(N̄)2
− 1

(EN)2

)∣∣∣∣∣∣ (B.21)

where Nh =
∑max(T,T−h)

t=min(1,1−h) Nt+hNt for h �= 0 and N0 =
∑T

t=1 Nt(Nt − 1). The

second term on the right-hand side of (B.21) is of order OP(L). The third term
is bounded by bounding the variance Nt ≤ UT for |h| ≤ T/2 where the constant
U is independent of T and h but may depend on the distribution of N . Thus
the third term is of order OP(T

−1/2) thanks to∣∣∣∣∣∣ 1L
L∑

h=−L,h �=0

E

(
1− Nh

(T − |h|)(EN)2

)∣∣∣∣∣∣ ≤
≤ 1

L

L∑
h=−L,h �=0

{
Var

(
Nh

(T − |h|)(EN)2

)}1/2

= O(T−1/2).

The fourth term on the right hand side of order OP(T
−1/2) because N̄ = EN +

OP(T
−1/2).

The first term on the right-hand side of (B.21) is decomposed as∣∣∣∣∣∣∣∣
1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

(
S(pq)
htjk −M[Spq ]

)∣∣∣∣∣∣∣∣ ≤
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≤ 1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

∣∣∣S(pq)
htjk − ES(pq)

htjk

∣∣∣+

+
1

L

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

∣∣∣ES(pq)
htjk −M[Spq]

∣∣∣ . (B.22)

The second term on the right hand side of (B.22) is of order OP(B
2
R) because∣∣∣ES(pq)

htjk −M[Spq]

∣∣∣ = OP(B
2
R) uniformly. The first term on the right hand side of

(B.22) is treated using similar steps as in the proof of Lemma 3, therefore for a
constant U independent of BR, T and |h| < T/2,

E

⎛⎜⎜⎝ min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

sup
x,y∈[0,1]

∣∣∣S(pq)
htjk − ES(pq)

htjk

∣∣∣ |N1, . . . , NT

⎞⎟⎟⎠
≤ U

√
Nh

B2
R

.

The observation that

1

L

L∑
h=−L

√
Nh

N̂h

= OP(T
−1/2)

now establishes that the first term on the right hand side of (B.22) is of order
OP(

1√
T

1
B2

R
+B2

R).

Lemma 10. For p, q ∈ N0, be such that 0 ≤ p+ q ≤ 2, we have

1. under (B1) — (B5), (B7), (B8) and (B10)

Q̃ω
pq = M[Qω

pq ]
+ oP (1) ,

Qω
pq = M[Qω

pq ]
+ oP (1) ,

2. under (B1) — (B8) and (B10)

Q̃ω
pq = M[Qω

pq ]
+OP

(
L

1√
T

1

B2
R

+ LB2
R

)
,

Qω
pq = M[Qω

pq ]
+OP

(
L

1√
T

1

B2
R

+ LB2
R

)
,

where all convergences are uniformly in ω ∈ [−π, π] and x, y ∈ [0, 1] and

M[Qω
00]

= 2πg(x)g(y)fω(x, y), M[Qω
10]

= M[Qω
01]

= 0.
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Proof. Analogously to Lemma 4, we first assume that μ(·) is known. Hence we
define

Q̃ω
pq =

L∑
h=−L

Whe
− ihω

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

G̃h,t(xt+h,j , xtk)×

×
(
xt+h,j − x

BR

)p (
xtk − y

BR

)q
1

B2
R

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
.

Denote M[Q00,h](x, y) = g(x)g(y)Rh(x, y) and M[Q10,h](x, y) = M[Qω
01,h]

(x, y)

= 0. Further denote

Q(pq)
htjk = G̃h,t(xt+h,j , xtk)

(
xt+h,j − x

BR

)p (
xtk − y

BR

)q

×

× 1

B2
R

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
h = −L, . . . , L, t = 1, . . . , T − h, j = 1, . . . , Nt+h, k = 1, . . . , Nt for j �= k if
h = 0, we can write∣∣∣Q̃ω

pq −M[Qω
pq ]

∣∣∣ ≤
≤

∣∣∣∣∣∣∣∣
L∑

h=−L

Whe
− ihω

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

[j �=k if h=0]

Q̃(pq)
htjk −

∞∑
h=−∞

M[Qpq,h]e
− ihω

∣∣∣∣∣∣∣∣ ≤

≤
L∑

h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

[j �=k if h=0]

∣∣∣Q̃(pq)
htjk −M[Qpq,h]

∣∣∣+
+

1

L

L∑
h=−L

|h|
∣∣∣M[Qω

pq,h]

∣∣∣+ ∑
|h|>L

∣∣M[Qpq,h]

∣∣ (B.23)

Under the assumption (B5), the second and the third term on the right-hand
side of (B.23) converge to zero uniformly in x, y ∈ [0, 1] by Kronecker’s lemma.
Assuming further the assumption (B6), these terms are in fact of order O(L−1)
uniformly in x, y ∈ [0, 1].

The first term on the right-hand side of (B.23) is treated similarly as in the
proof of Lemma 5.

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

∣∣∣Q̃(pq)
htjk −M[Qpq,h]

∣∣∣ ≤
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≤
L∑

h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

∣∣∣Q̃(pq)
htjk − EQ̃(pq)

htjk

∣∣∣+

+

L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

∣∣∣EQ̃(pq)
htjk −M[Qpq,h]

∣∣∣ (B.24)

The second term on the right-hand side of (B.24) is of order O(LB2
R) uniformly

in x, y ∈ [0, 1]. The first term on the right-hand side of (B.24) is treated analo-
gously as in the proof of Lemma 5, thus there exists a constant U independent
of BR, T and |h| < T/2 such that

E

⎛⎜⎜⎝ L∑
h=−L

Wh

N̂h

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

sup
x,y∈[0,1]

∣∣∣Q̃(pq)
htjk − EQ̃(pq)

htjk

∣∣∣ |N1, . . . , Nt

⎞⎟⎟⎠ ≤

≤ U

√
Nh

B2
R

.

Observing that
L∑

h=−L

√
Nh

N̂h

= OP(LT
−1/2)

concludes the rates oP(1), and OP(LT
−1/2B−2

R ) under the assumption (B6).
The proof is completed by the repetition of the steps in the proof of Lemma

5, switching to the OP notation and noting that the difference between Q̃ω
pq and

Qω
pq is asymptotically negligible.

Proof of Theorem 2. Combining the above derived results in lemmas 9 and 10
we are ready to establish the asymptotic behaviour of the terms that enter the
formula (B.20).

A1 =
[
g(x)g(y)σ2

K

]2
+OP

(
1√
T

1

B2
R

+B2
R

)
,

A2 = OP

(
1√
T

1

B2
R

+B2
R

)
,

A3 = OP

(
1√
T

1

B2
R

+B2
R

)
,

B = [g(x)g(y)]
3 (

σ2
K

)2
+OP

(
1√
T

1

B2
R

+B2
R

)
,

Q00 = 2πg(x)g(y)fω(x, y) + oP (1) ,

Q10 = oP (1) ,

Q01 = oP (1)
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uniformly in ω ∈ [−π, π] and x, y ∈ [0, 1]. Finally, the numerator of (B.20) is

A1Q
ω
00 − A2Q

ω
10 − A3Q

ω
01 = 2πfω(x, y) [g(x)g(y)]

3 (
σ2
K

)2
+ oP(1)

uniformly in ω ∈ [−π, π] and x, y ∈ [0, 1] which completes the proof of consis-
tency. Under the assumption (B6) we replace oP(1) by OP(L/(

√
TB2

R) +LB2
R).

B.3. Proof of Corollary 1

Proof of Corollary 1. Note that for h ∈ Z and x, y ∈ [0, 1]:

R̃h(x, y)−Rh(x, y) =

∫ π

−π

{
f̃ω(x, y)− fω(x, y)

}
eihω dω.

Therefore

sup
h∈Z

sup
x,y∈[0,1]

∣∣∣R̃h(x, y)−Rh(x, y)
∣∣∣ ≤

≤ 2π sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣∣f̃ω(x, y)− fω(x, y)
∣∣∣ = oP(1).

Assuming further (B6), proving the statement (3.6) is analogous to the previous
line.

B.4. Proof of Theorem 3

Proof of Theorem 3 . We begin with the estimation of the mean function μ(·).
We are going to make use of the result in Hansen [13, Thm 10]. Define the
two-dimensional time-series {Ỹi, X̃i}i composed of the sparse observations and
their observation locations according to the observation scheme (2.4)(

Ỹ1, Ỹ2, . . .
)
= (Y1,1, . . . , Y1,N1 , Y2,1, . . . , Y2,N2 , Y3,1, . . . ) ,(

X̃1, X̃2, . . .
)
= (x1,1, . . . , x1,N1 , x2,1, . . . , x2,N2 , x3,1, . . . ) .

Under the assumptions (D1) — (D9), the time-series {Ỹi, X̃i}i is strictly station-
ary and strongly mixing, with mixing coefficients α̃(m) ≤ Ãm−β , and satisfies
the conditions (2) — (7) of Hansen [13]. Indeed:

(3)
E|Ỹ1|s ≤ 2s (E|X1(x11)|s + E|ε1,1|s) < ∞

(6)

sup
x∈[0,1]

E
(
|Ỹ1|s|X̃ = x

)
g(x) ≤ B1B3 < ∞
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(7)

sup
x,x′∈[0,1]

E
(
|Ỹ1Ỹj ||X̃1 = x, X̃j = x′

)
g(x)g(x′) ≤

≤
{
sup
h∈Z

sup
x,x′∈[0,1]

[E |Xh(x)X0(x
′)|] + 2 sup

x∈[0,1]

[E|X0(x)|E|ε1,1|] + σ2

}
×

× g(x)g(x′) < ∞

The conditions (10) — (13) of Hansen [13] are also satisfied taking q = ∞ and
cn = 1. Therefore all conditions of Hansen [13, Thm 10] are satisfied. Noting
that the length n = n(T ) of the time-series {Ỹi, X̃i}i is asymptotically of the
same order as T of the functional time series {Xt(·)}, formally n = n(T ) �
T, T → ∞, yields

sup
x∈[0,1]

|μ̂(x)− μ(x)| = OP

(√
log T

TBμ
+B2

μ

)
.

Next we turn to the estimation of the lag-h autocovariance kernels Rh(·, ·). Fix
h ∈ Z. For simplicity consider h �= 0. The proof for h = 0 is essentially the
same, only the diagonal “raw” covariances must be removed. For the moment
assume that the mean function μ(·) is known and we shall work with the “raw”
covariances G̃h,t(xt+h,j , xtk) as defined in (B.12). Similarly as in the first part

of this proof, define now the three dimensional time-series {Ỹi, X̃i}i composed
of the “raw” covariances and their locations(

Ỹ1, Ỹ2, . . .
)
=

(
G̃h,1(x1+h,1, x1,1), . . . , G̃h,1(x1+h,N1+h

, x1,Nt),

G̃2,1(x2+h,1, x2,1), . . .
)
,(

X̃1, X̃2, . . .
)
=

([
x1+h,1

x1,1

]
, . . . ,

[
x1+h,Nt+h

x1,Nt

]
,

[
x2+h,1

x2,1

]
, . . .

)
.

We are again going to make us of Hansen [13, Thm 10]. Under the assump-
tions (D1) — (D13) it is easy to verify (analogously as in the first part of this
proof) that the time series {Ỹi, X̃i}i satisfies the conditions (2) — (7) of Hansen
[13]. The conditions (10) — (13) also follow directly from our assumptions. It
remains to repeat the discussion as in the proof of Lemma 5 to conclude that
the difference between G̃h,t(xt+h,j , xtk) and Gh,t(xt+h,j , xtk) is asymptotically
negligible with respect to the rate bellow.

Therefore by Hansen [13, Thm 10], for fixed h ∈ Z,

sup
x,y∈[0,1]

∣∣∣R̂h(x, y)−Rh(x, y)
∣∣∣ = OP

(√
log T

TB2
R

+B2
R

)
.
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B.5. Proof of Theorem 4

The proof of Theorem 4 is more involved. Rather than make direct use of, we
shall need to modify the proof techniques of Hansen [13] in order to construct
our proof. We express the spectral density kernel estimator (2.13) in a similar
way as in the proof of Theorem 2.

f̂ω(x, y) =
1

2π
(A1Q

ω
00 − A2Q

ω
10 − A3Q

ω
01)B−1, (B.25)

where

A1 = S20S02 − S2
11, A2 = S10S02 − S01S11, A3 = S01S20 − S10S11,

B = A1S00 − A2S10 − A3S01,

Spq =
1

L

L∑
h=−L

WhNh

N̂h

S(h)
pq ,

S(h)
pq =

1

NhB2
R

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

(
xt+h,j − x

BR

)p (
xtk − y

BR

)q

×

×K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
,

Qω
pq =

L∑
h=−L

Whe
− ihωNh

N̂h

Q(h)
pq ,

Q(h)
pq =

1

NhB2
R

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

G̃h,t(xt+h,j , xtk)×

×
(
xt+h,j − x

BR

)p (
xtk − y

BR

)q

K

(
xt+h,j − x

BR

)
K

(
xtk − y

BR

)
.

All of the above quantities are understood as functions of (x, y) ∈ [0, 1]2 and all
operations are considered in a pointwise sense, including the pointwise inversion
B−1 = (B(x, y))−1.

Similarly as in the proof of Theorem 3 define for h ∈ Z,(
Ỹ h,r
1 , Ỹ h,r

2 , . . .
)
=

({
G̃h,1(x1+h,1, x1,1)

}r

, . . . ,
{
G̃h,1(x1+h,N1+h

, x1,Nt)
}r

,{
G̃2,1(x2+h,1, x2,1)

}r

, . . .
)
,(

X̃h
1 , X̃

h
2 , . . .

)
=

([
x1+h,1

x1,1

]
, . . . ,

[
x1+h,Nt+h

x1,Nt

]
,

[
x2+h,1

x2,1

]
, . . .

)
.
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Let k(·) : R2 → R be a function satisfying the assumption (C1) and denote
for r = 0, 1 and h ∈ Z define

Ψ̂h,r(x, y) =
1

NhB2
R

min(T,T−h)∑
t=max(1,1−h)

Nt+h∑
j=1

Nt∑
k=1

j �=k if h=0

{
G̃h,t(xt+h,j , xtk)

}r

× (B.26)

× k

(
xt+h,j − x

BR
,
xtk − y

BR

)
(B.27)

=
1

NhB2
R

Nh∑
i=1

Ỹ h,r
i k

(
X̃h

i − (x, y)

BR

)
(B.28)

=
1

NhB2
R

Nh∑
i=1

Zh,r
i (x, y) (B.29)

where we are denoting

Zh,r
i (x, y) = Ỹik

((
X̃h,r

i − (x, y)
)
/BR

)
. (B.30)

Lemma 11. Under the assumptions (D1) — (D13),

Var(Ψ̂h,r(x, y)|Nh) ≤
Θ

NhB2
R

for Nh > 0 and where the constant Θ is uniform in h ∈ Z, x, y ∈ [0, 1], r = 0, 1.

Proof. Note that the sequence {Zh,r
i (x, y)}i is a stationary scalar time-series

and denote its autocovariance function as ρZh,r
i (x,y)(ξ) for lag ξ. Therefore we

have the bound (B.6). Conditioning on Nh yields

Var

(
1

Nh

Nh∑
i=1

Zh,r
i (x, y)|Nh

)
≤ 1

Nh

∞∑
ξ=−∞

∣∣∣ρZh,r
i (x,y)(ξ)

∣∣∣ . (B.31)

The sum on the right hand side of (B.31) can be bounded by

∞∑
ξ=−∞

∣∣∣ρZh,r
i (x,y)(ξ)

∣∣∣ ≤
≤ (Nmax)

2
∞∑

ξ=−∞
sup

x1,x2,x3,x4∈[0,1]

∣∣∣∣∣ cum (Xξ+h(x1), Xξ(x2), Xh(x3), X0(x4))+

+Rξ(x1, x2)Rξ(x3, x4) +Rξ+h(x1, x4)Rξ−h(x2, x3)

∣∣∣∣∣. (B.32)

The bound (B.32) is uniform in h and constitutes the constant Θ in the state-
ment of Lemma 11.
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The key tool for our proof is an exponential-type inequality for strongly
mixing random sequences. This inequality was given by Liebscher [25, Thm
2.1], whose result was derived from Rio [36, Thm 5].

Lemma 12 (Liebscher/Rio). Let Zi be a stationary zero-mean real-valued pro-
cess such that |Zi| ≤ b, with strong mixing coefficients αm. Then for each positive
integer m ≤ n and ε such that m < εb/4

P

(∣∣∣∣∣
n∑

i=1

Zi

∣∣∣∣∣ > ε

)
≤ 4 exp

(
− ε2

64
nσ2

m

m + 8
3εmb

)
+ 4

n

m
αm,

where σ2
m = E (

∑m
i=1 Zi)

2

Lemma 13. Under the assumptions (D1) — (D11) and (D13) — (D16)

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣∣Qω
pq −M[Qω

pq ]

∣∣∣ = oP(1), (B.33)

and assuming further assumption (B6),

sup
ω∈[−π,π]

sup
x,y∈[0,1]

∣∣∣Qω
pq −M[Qω

pq]

∣∣∣ = OP

(
L

√
log T

TB2
R

+B2
R

)
(B.34)

where

M[Qω
00]

= 2πg(x)g(y)fω(x, y), M[Qω
10]

= M[Qω
01]

= 0.

Proof. Denote

M[Q00,h](x, y) = g(x)g(y)Rh(x, y),

M[Q10,h](x, y) = M[Qω
01,h]

(x, y) = 0.

Similarly as in the proof of Lemma 10, decompose

∣∣∣Qω
pq −M[Qω

pq ]

∣∣∣ ≤ ∣∣∣∣∣
L∑

h=−L

Whe
− ihωNh

N̂h

Q(h)
pq −

∞∑
h=−∞

M[Qpq,h]e
− ihω

∣∣∣∣∣ ≤
≤

L∑
h=−L

Wh

∣∣∣Q(h)
pq

∣∣∣ ∣∣∣∣Nh

N̂h

− 1

∣∣∣∣+ L∑
h=−L

Wh

∣∣∣Q(h)
pq − EQ(h)

pq

∣∣∣+
+

L∑
h=−L

Wh

∣∣∣EQ(h)
pq −M[Qpq,h]

∣∣∣+ 1

L

L∑
h=−L

|h|
∣∣M[Qpq,h]

∣∣+ ∑
|h|≥L

∣∣M[Qpq,h]

∣∣ .
(B.35)

Under the assumption (D14), the last two terms on the right-hand side of (B.35)
converge to zero uniformly in x, y ∈ [0, 1] by Kronecker’s lemma. Assuming



1192 T. Rub́ın and V. M. Panaretos

further the assumption (B6), these terms are in fact of order O(L−1) uniformly
in x, y ∈ [0, 1]. The first term on the right-hand side of (B.35) is of order
OP(LT

−1/2) uniformly in x, y ∈ [0, 1]. The bias term, third term on the right-
hand side of (B.35), is of order OP(LB

2
R) which is shown exactly as in the proof

of Lemma 4.

It remains to treat the second term on the right-hand side of (B.35), for
which we start with the observation

sup
ω∈[−π,π]

sup
x,y∈[0,1]

L∑
h=−L

Wh

∣∣∣Q(h)
pq − EQ(h)

pq

∣∣∣ ≤ L∑
h=−L

sup
x,y∈[0,1]

∣∣∣Q(h)
pq − EQ(h)

pq

∣∣∣ .
(B.36)

Denote aT =
(
log T/(TB2

R)
)−1/2

. To show the order OP(LaT ) of the right-hand
side of (B.36) we investigate the probabilities for some M > 0

P

(
L∑

h=−L

sup
x,y∈[0,1]

∣∣∣Q(h)
pq − EQ(h)

pq

∣∣∣ > MLaT

)
≤

leq

L∑
h=−L

P

(
sup

x,y∈[0,1]

∣∣∣Q(h)
pq − EQ(h)

pq

∣∣∣ > MLaT
2L+ 1

)
≤

≤
L∑

h=−L

P

(
sup

x,y∈[0,1]

∣∣∣Q(h)
pq − EQ(h)

pq

∣∣∣ > 1

3
MaT

)
(B.37)

We bound the probabilities on the right-hand side of (B.37) using the proof
techniques presented in Hansen [13, Thm 2]. For the simplification of the nota-
tion and the proof we shall assume that the numbers of observation locations
are deterministic and constant,

N1 = · · · = NT = Nmax ≡ N ≥ 2. (B.38)

Without this assumption, all bounds must be conditioned on these counts and
the unconditional statements follow from the fact that (1/T )Nh = (EN)2 +
OP(T

−1/2) for h �= 0 and (1/T )N0 = (E{N(N − 1)}) + OP(T
−1/2) where the

convergences are uniform in |h| < T/3. Under the technical assumption (B.38),
Nh = (T − |h|)N2 for h �= 0 and N0 = TN(N − 1).

From the assumption (D15) we may take T to be sufficiently large so that

L ≤ 1

2

√
log T

TB2
R

− s−2
s−1

. (B.39)

Our proof follows essentially the same steps Hansen [13, Thm 2], the only
difference is that we need to keep track of the uniformity in h and adjust the
convergence rate for the growing L.



Sparsely observed functional time series 1193

Using the notation (B.26), (B.28), and (B.29) rewrite Q
(h)
pq as

Q(h)
pq (x̃) =

1

NhB2
R

Nh∑
i=1

Ỹ h,1
i k

(
X̃h

i − x̃

BR

)

=
1

NhB2
R

Nh∑
i=1

Z̃h,1
i (x̃)

where k(u, v) = upvqK(u)K(v).

The proof consists of three steps. Firstly we replace Ỹ h,r
i with the truncated

process Ỹ h,r
i 1[|Ỹ h,r

i |≤τT ] where τT = a
−1/(s−1)
T . Secondly, we replace the supre-

mum over x̃ ≡ (x, y) ∈ [0, 1] with a maximisation over a finite Ng-point grid.
And finally, with the help of the exponential inequality from Lemma 12 we
bound the remainder.

Define

Rh,r(x̃) = Ψ̂h,r(x̃)− 1

NhB2
R

Nh∑
i=1

Zh,r
i (x̃)1[Ỹi≤τT ].

Following the same steps as in the proof of Hansen [13, Thm 2], we bound∣∣E (
Rh,r(x̃)

)∣∣ = OP

(
τ
−(s−1)
T

)
= OP(aT )

uniformly in |h| < T/3.
Thus replacing Ỹi with Ỹi1[|Ỹi|≤τT ] yields only an error of order OP(aT ) and

we therefore assume for the rest of the proof that Ỹi ≤ τT .
The second step of the proof introduces a discretization of the square [0, 1]2

which can be covered by a regular grid of Ng = 2B−2
R a−2

T points such that
for each (x, y) ∈ [0, 1]2, the closest grid point x̃j ≡ (xj , yj) is at a distance
of at most BRaT distance. Denote this discretization as Aj ⊂ [0, 1]2, j =
1, . . . , Ng.

Thanks to the assumption (D11), for all x̃1, x̃2 ∈ [0, 1]2 satisfying ‖x̃1− x̃2‖ ≤
δ ≤ L̃, we have the bound

|k(x̃1)− k(x̃2)| ≤ δk∗(x̃1) (B.40)

where k∗ : R2 → R is a bounded integrable function. Indeed, if k(·) satisfies the
compact support condition of (C1) and is Lipschitz then k∗(u) = Λ11[‖u‖≤2L̃].

If on the other hand k(u) satisfies the differentiability condition of (C1), then
we may put k∗(u) = Λ11[‖u‖≤2L̃] + ‖u− L̃‖−η.

The inequality (B.40) implies that if aT ≤ L̃ then for x̃ ∈ Aj we have

‖x̃− x̃j‖/BR ≤ aT and, for T large enough such that aT ≤ L̃,∣∣∣∣∣k
(
x̃− X̃h

i

BR

)
− k

(
x̃j − X̃h

i

BR

)∣∣∣∣∣ ≤ aT k
∗
(
x̃j −Xi

BR

)
.
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Define

Ψ̃h,r(x̃) =
1

NhB2
R

Nh∑
i=1

Ỹ h,r
i k∗

(
x̃− X̃h

i

BR

)
,

that is, a modification of Ψ̂h,r where k(·) is replaced by k∗(·). Note that by the

assumptions (D4) and (D10), E
∣∣∣Ψ̃h,r(x̃)

∣∣∣ is bounded uniformly in h ∈ Z and

r = 0, 1. Following the steps in the proof of Hansen [13, Thm 2], we conclude
that

sup
x̃∈Aj

∣∣∣Ψ̂h,r(x̃)− EΨ̂h,r(x̃)
∣∣∣ ≤

≤
∣∣∣Ψ̂h,r(x̃j)− EΨ̂h,r(x̃j)

∣∣∣+ ∣∣∣Ψ̃h,r(x̃j)− EΨ̃h,r(x̃j)
∣∣∣+ 2aTM,

for M > E|Ψ̃h,r(x̃)|, and

P

(
sup

x̃∈[0,1]2

∣∣∣Ψ̂h,r(x)− EΨ̂h,r(x)
∣∣∣ > 3MaT

)
≤

≤ Ng max
j=1,...,Ng

P
(∣∣∣|Ψ̂h,r(x̃j)− EΨ̂h,r(x̃j)|

∣∣∣ > MaT

)
+ (B.41)

+Ng max
j=1,...,Ng

P
(∣∣∣|Ψ̃h,r(x̃j)− EΨ̃h,r(x̃j)|

∣∣∣ > MaT

)
(B.42)

The terms (B.41) and (B.42) are bounded likewise because the only difference
between them is the presence of k(·) and k∗(·). Next we show how to bound
(B.41).

By the definition (B.30) of Zh,r
i (x̃) we notice that |Zh,r

i (x̃)| ≤ τT K̄ ≡ bT

because |Ỹ h,r
i | ≤ τT and

∣∣∣k((x̃− X̃h
i )/BR)

∣∣∣ ≤ k̄ where k̄ is the upper bound of

the bounded function k(·). Therefore, by Lemma 11, for m sufficiently large we
have, uniformly in |h| < m/3,

sup
x̃∈[0,1]2

E

(
m∑
i=1

Zh,r
i (x̃)

)2

≤ ΘmB2
R.

Put m = (aT τT )
−1 and we conclude that m < T and m < εbT /4 for

ε = MaTTB
2
R for T sufficiently large. Therefore by Lemma 12 for any x̃ ∈

[0, 1]

P
(∣∣∣Ψ̂h,r(x̃)− EΨ̂h,r(x̃)

∣∣∣ > MaT

)
= P

(∣∣∣∣∣
Nh∑
i=1

Zh,r
i (x̃)

∣∣∣∣∣ > MaTNhB
2
R

)
≤

≤ 4 exp

(
− M2a2TT

2B2
R

64ΘNhB2
R + 6k̄MTB2

R

)
+ 4

Nh

m
αm ≤
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≤ 4 exp

(
− M2 log T

64 (Nmax)
2
Θ+ 6k̄M

)
+

+ 4 (Nmax)
2
TÃ(m− |h|)−βm−1 ≤

≤ 4T−M/(64(Nmax)2+k̄) + 4 (Nmax)
2
ÃT

(
1

2
m

)−β

m−1 ≤

≤ 4T−M/(64(Nmax)2+k̄) + 4(2β) (Nmax)
2
ÃTa1+β

T τ1+β
T

where the second inequality comes from the fact that the time-series {Zh,r
i (x̃)} is

strong mixing with coefficients αm ≤ Ã(m−|h|)−β form ≥ |h|, the third inequal-
ity is due to (B.39), and the final one by taking M > Θ. Since Ng ≤ 2B−2

R a−2
T

we have from the above inequality and (B.41) and (B.42) that

P

(
sup

x̃∈[0,1]2

∣∣∣Ψ̂h,r(x̃)− EΨ̂h,r(x̃)
∣∣∣ > 3MaT

)
≤ O (C1,T ) +O (C2,T ) (B.43)

where

C1,T = B−2
R a−2

T T−M/(64+6k̄)

C2,T = B−2
R Ta−1+β

T τ1+β
T .

Returning to the inequalities (B.36) and (B.37), we conclude that

P

(
L∑

h=−L

sup
x,y∈[0,1]

∣∣∣Q(h)
pq − EQ(h)

pq

∣∣∣ > MLaT

)
≤ L [O(C1,T ) +O(C2,T )] (B.44)

Assumption (D12) implies that (log T )B−2
R = o(T θ) and therefore also B−2

R =
o
(
T θ

)
and aT = ((log T )B−2

R T−1)1/2 = o(T−(1−θ)/2). For M sufficiently large
and by the assumptions (D15) and (D16)

LC1,n = o
(
T θF+(1−θF )−M/(64(Nmax)2+6k̄)+(1−θF )(s−2)/(s−1)/2

)
= o(1),

LC2,n = o
(
T θF+1−(1−θF )[1+β−2−(1+β)/(s−1)−(s−2)/(s−1)]/2

)
= o(1).

Thus (B.44) is of order o(1) and we conclude, together with the rates of the
other terms of (B.35), the rates (B.33) and (B.34).

Lemma 14. Under the assumptions (D1) — (D11) and (D13) — (D16),

sup
x,y∈[0,1]

∣∣Spq −M[Spq]

∣∣ = OP

(√
log T

TB2
R

+B2
R

)
. (B.45)
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Proof. We decompose the estimation error as follows:

∣∣Spq −M[Spq]

∣∣ =
∣∣∣∣∣∣ 1L

∑
|h|<L

Wh

(
Nh

N̂h

S(h)
pq −M[Spq ]

)∣∣∣∣∣∣ ≤
≤ 1

L

∑
|h|<L

Wh

∣∣∣∣(Nh

N̂h

− 1

)
S(h)
pq

∣∣∣∣+ 1

L

∑
|h|<L

Wh

∣∣∣S(h)
pq − ES(h)

pq

∣∣∣+
+

1

L

∑
|h|<L

Wh

∣∣∣ES(h)
pq −M[Spq]

∣∣∣ (B.46)

The first term on the right hand side of (B.46) is of order O(T−1/2), uniformly
in x, y ∈ [0, 1], because (1/T )Nh = ch + OP(T

−1/2) and (1/T )N̂h = ch +
OP(T

−1/2) uniformly in |h| ≤ L.
The third term on the right hand side of (B.46) is of order O(B2

R), uniformly
in x, y ∈ [0, 1]. This is shown identically as in the proof of Lemma 3.

The second term on the right hand side of order

Spq = ESpq +OP

(√
log T

TB2
R

)

uniformly in x, y ∈ [0, 1] and |h| < L. This is shown analogously as the proof of
Lemma 13. The difference is that the normalising factor 1/L improves the rate
to (log T/(TB2

R))
1/2 as opposed to L(log T/(TB2

R))
1/2 as in Lemma 13.

Proof of Theorem 4. We start with assuming that the mean function μ(·) is
known. Combining the results of Lemmas 13 and 14, and the formula (B.25)
provides the rate (3.7), and the rate (3.8) if (B6) is assumed.

The proof is completed by the discussion that the difference between the
“raw” covariances with and without μ(·) is negligible.

B.6. Proof of Theorem 5

The following lemma ensures the convergence of M̂Xs|YS
and ŜXs|YS

to their
population level counterparts (2.26). We investigate the convergence without
the Gaussianity assumption.

Lemma 15. Under the assumptions (B1) — (B5) and (B7) — (B10),

sup
x∈[0,1]

∣∣∣M̂Xs|YS
(x)− MXs|YS

(x)
∣∣∣ = oP(1) as T → ∞,

sup
x,y∈[0,1]

∣∣∣ŜXs|YS
(x, y)− SXs|YS

(x, y)
∣∣∣ = oP(1) as T → ∞.
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Proof. We start with M̂Xs|YS
. Decompose the difference as∣∣∣M̂Xs|YS

− MXs|YS

∣∣∣ ≤ |μ̂(x)− μ(x)|︸ ︷︷ ︸
J1

+

+

∣∣∣∣[PsŜSH∗
S

{(
HSŜSH∗

S + σ̂2INT
1

)−1

−
(
HSSSH∗

S +σ2INT
1

)−1
}(

YS − HSM̂S

)]
(x)

∣∣∣∣︸ ︷︷ ︸
J2

+

∣∣∣∣{(
PsŜSH∗

S − PsSSH∗
S

)(
HSSSH∗

S + σ2INT
1

)−1 (
YS − HSM̂S

)}
(x)

∣∣∣∣︸ ︷︷ ︸
J3

.

(B.47)

The first term J1 on the right-hand side of (B.47) tends to zero, uniformly
in x, as T → ∞ by Theorem 1. The second term J2 and the third term J3 can
be rewritten as

J2 =

∣∣∣∣∣
[
PsŜSH∗

S

{(
HSŜSH∗

S + σ̂2INT
1

)−1

−

−
(
HSSSH∗

S + σ2INT
1

)−1
}(

YS − HSM̂S

)]
(x)

∣∣∣∣∣ =
=

∣∣∣Ĉov(Xs(x),YS)
∗
(
Var(YS)

−1 − V̂ar(YS)
−1

)(
YS − HSM̂S

)∣∣∣
J3 =

∣∣∣∣{(
PsŜSH∗

S − PsSSH∗
S

)(
HSSSH∗

S + σ2INT
1

)−1 (
YS − HSM̂S

)}
(x)

∣∣∣∣ =
=

∣∣∣{Ĉov(Xs(x),YS)− Cov(Xs(x),YS)
}∗ (

Var(YS)
−1

) (
YS − HSM̂S

)∣∣∣
where Cov(Xs(x),YS) is a random vector in RNS

1 whose elements are of the
form {Rhk

(x, xtk,jk)}NS

k=1 for some lags hk and locations xtk,jk and Var(YS) is

a random matrix in RNS
1 ×NS

1 whose elements are of the form {Rtk′−tk(xtk,jk ,

xtk′ ,jk′ )}
NS

1

k,k′=1. The terms Ĉov(Xs(x),YS) and V̂ar(YS)
−1 are defined using the

estimated autocovariance kernels.
To treat the term J2 note that V̂ar(YS)

−1 − Var(YS)
−1 → 0 as T → ∞ by

Corollary 1. The term
(
YS − HSM̂S

)
is bounded as T → ∞ thanks to the con-

vergence μ̂ → μ. The term Ĉov(Xs(x),YS) is bounded uniformly in x due to its
convergence to Cov(Xs(x),YS), uniformly in x, by Corollary 1.

The term J3 is treated similarly. Ĉov(Xs(x),YS)−Cov(Xs(x),YS) → 0, uni-
formly in x, by Corollary 1. The formula for the variance ŜXs|YS

(x, y) can be
written as

ŜXs|YS
(x, y) = R̂0(x, y)− Ĉov(Xs(x),YS)

∗V̂ar(YS)
−1Ĉov(Xs(y),YS).
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Its convergence, uniform in (x, y) ∈ [0, 1]2, is treated similarly as above by
Corollary 1.

Proof of Theorem 5. The first statement of Lemma 15 is the statement of The-
orem 5.

B.7. Proof of Theorem 6

Proof of Theorem 6 . We start with the pointwise confidence band. Fix x ∈
[0, 1]. From (A1) and the conditional distribution

Xs(x)− MXs|YS
(x)√

SXs|YS
(x, x)

∼ N(0, 1).

Therefore

P
{∣∣Xs(x)− MXs|YS

(x)
∣∣ ≤ Φ−1 (1− α/2)

√
SXs|YS

(x, x)
}
= 1− α.

By Lemma 15,
Xs(x)− M̂Xs|YS

(x)√
ŜXs|YS

(x, x)

d→ N(0, 1)

and thus

P

{∣∣∣Xs(x)− M̂Xs|YS
(x)

∣∣∣ ≤ Φ−1 (1− α/2)

√
ŜXs|YS

(x, x)

}
→ 1− α.

Now we turn our attention to the simultaneous confidence band. By the
definition of the conditional distribution

Xs − MXs|YS
∼ N(0,SXs|YS

).

By the definition of the simultaneous confidence bands [8], which was reviewed
in Section 2.6,

P
{
∀x ∈ [0, 1] :

∣∣Xs(x)− MXs|YS
(x)

∣∣ ≤ zα,ρ

√
SXs|YS

(x, x)
}
= 1− α.

Define the correlation kernel ρXs|YT
(x, y) as in (2.29). Assume for simplicity of

the proof that ρXs|YT
(x, x) > 0 for all x ∈ [0, 1]. Then

Xs(·)− MXs|YS
(·)√

SXs|YS
(·, ·)

∼ N
(
0, ρXs|YT

)
where the square root and the division is understood pointwise. Denote Wρ the
law of supx∈[0,1] |Zρ| where Zρ ∼ N(0, ρ). Then

sup
x∈[0,1]

∣∣∣∣∣Xs(x)− MXs|YS
(x)√

SXs|YS
(x, x)

∣∣∣∣∣ ∼ WρXs|YT
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By Lemma 15,

sup
x∈[0,1]

∣∣∣∣∣∣Xs(x)− M̂Xs|YS
(x)√

ŜXs|YS
(x, x)

∣∣∣∣∣∣ d→ WρXs|YT
.

Note also that if ρn → ρ uniformly then N(0, ρn) → N(0, ρ) weakly, Wρn →
Wρ weakly and therefore zα,ρn → zα,ρ.

P

⎧⎨⎩ sup
x∈[0,1]

∣∣∣∣∣∣Xs(x)− M̂Xs|YS
(x)√

ŜXs|YS
(x, x)

∣∣∣∣∣∣ ≤ zα,ρ̂

⎫⎬⎭ =

= P

⎧⎨⎩ sup
x∈[0,1]

∣∣∣∣∣∣Xs(x)− M̂Xs|YS
(x)√

ŜXs|YS
(x, x)

∣∣∣∣∣∣ zα,ρzα,ρ̂
≤ zα,ρ

⎫⎬⎭ → 1− α.

B.8. Proof of Proposition 1 and Proposition 2

Proof of Proposition 1. The formula (4.2) is verified by calculating the autoco-
variance operators of the functional moving average process, which are non-zero
only for a finite number of lags.

The assumptions (B3), (B4), (B5), (B6) are easily verified by the smoothness
of the kernels and the exponential decay of the norm of the autocovariance op-
erators. Verifying the condition (2.1) in the supremum sense yields the existence
of the spectral density in the kernel sense (2.2).

Proof of Proposition 2. The existence, the uniqueness, and the stationarity is
treated by Bosq [4]. The Gaussianity is also immediate. We now verify the
formula (4.4). We can write the inversions on the right-hand side of (4.4) as a
Neumann series:

(I −Ae− iω)−1S(I −A�eiω)−1 =

⎛⎝ ∞∑
j=0

Aje− iωj

⎞⎠S

⎛⎝ ∞∑
j=0

(
Aj

)�
eiωj

⎞⎠ .

(B.48)
Fix h ≥ 0. Expanding the sums on the right-hand side of (B.48), in order to
obtain the term with e− iωh one has to sum up∑

j=0

Ah+jS
(
Aj

)�
e− iωh = AhR0e

− iωh = Rhe
− iωh (B.49)

where R0 =
∑∞

j=0 AjS
(
Aj

)�
is the lag-0 covariance operator of the process

[4]. Checking the analogue of (B.49) for h < 0 yields the formula (4.4). The
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Table 3

The best L to minimize the relative mean square error (4.6) of the spectral density
estimation for the functional moving average processes FMA(2), FMA(4), and FMA(8),
and the functional autoregressive processes FAR(1)0.7 and FAR(1)0.9. The table in the

bottom-right corner presents the output of the selection rule (4.5)

Best L for FMA(2) Best L for FAR(1)0.7

Nmax\T 5 10 20 30 40 Nmax\T 5 10 20 30 40

150 5 5 6 6 6 150 4 5 6 7 7
300 5 6 7 7 7 300 5 7 8 8 8
450 6 7 8 8 8 450 7 8 8 10 10
600 6 7 8 9 9 600 7 8 10 10 11
900 7 8 9 10 10 900 8 10 11 11 13
1200 7 9 10 10 11 1200 9 11 12 12 13

Best L for FMA(4) Best L for FAR(1)0.9

Nmax\T 5 10 20 30 40 Nmax\T 5 10 20 30 40

150 7 8 8 9 9 150 19 21 23 20 20
300 9 10 11 12 12 300 21 23 25 27 29
450 9 11 11 12 13 450 26 31 36 30 30
600 10 12 12 13 14 600 30 34 33 37 39
900 12 13 15 15 16 900 33 35 41 43 40
1200 13 14 16 17 17 1200 40 42 40 44 48

Best L for FMA(8) Selected L by (4.5)

Nmax\T 5 10 20 30 40 Nmax\T 5 10 20 30 40

150 13 14 14 14 13 150 6 7 9 10 11
300 14 16 17 18 20 300 8 10 11 13 14
450 16 18 19 19 21 450 9 11 13 15 16
600 19 20 20 21 22 600 10 12 14 16 17
900 19 23 24 25 24 900 12 14 17 19 20
1200 21 25 26 27 25 1200 13 15 18 20 22

discussion of the assumptions is analogous to the functional moving average
process.

Appendix C: Supplementary results of numerical experiments

C.1. Determination of the optimal parameter L

We run a simulation study across the considered functional moving average
processes FMA(2), FMA(4), and FMA(8), and the functional autoregressive
processes FAR(1)0.7 and FAR(1)0.9. For their definitions refer to Subsection
4.1. We simulated 25 independent realizations of each of the process for each
pair of the considered sample size parameters T ∈ {150, 300, 450, 600, 900, 1200}
and Nmax ∈ {5, 10, 20, 30, 40}. For each realization we selected the bandwidth
parameters Bμ, BR, and BV for smoothing estimators by the K-fold cross-
validation suggested in Section A.1. Then we estimated the spectral density
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Table 4

Average relative mean square errors (defined in (4.6)) of the spectral density estimators for
the considered functional time-series. The numbers in parentheses are the standard

deviations of the relative mean square error. Each cell of the table (each error and its
standard deviation) is the result of 100 independent simulations. The Bartlett’s span

parameter L was selected by the rule (4.5)

T \Nmax 5 10 20 30 40

F
M

A
(2

)

150 0.313 (0.076) 0.235 (0.061) 0.205 (0.053) 0.173 (0.036) 0.172 (0.049)

300 0.211 (0.048) 0.162 (0.031) 0.134 (0.030) 0.124 (0.029) 0.119 (0.026)

450 0.179 (0.038) 0.131 (0.023) 0.102 (0.020) 0.098 (0.020) 0.095 (0.021)

600 0.157 (0.029) 0.113 (0.023) 0.088 (0.016) 0.083 (0.018) 0.077 (0.016)

900 0.121 (0.019) 0.088 (0.014) 0.071 (0.012) 0.065 (0.011) 0.062 (0.010)

1200 0.108 (0.020) 0.079 (0.012) 0.063 (0.011) 0.056 (0.010) 0.054 (0.009)

F
M

A
(4

)

150 0.312 (0.060) 0.225 (0.063) 0.184 (0.060) 0.170 (0.049) 0.165 (0.050)

300 0.206 (0.040) 0.157 (0.042) 0.124 (0.028) 0.115 (0.030) 0.110 (0.033)

450 0.167 (0.033) 0.126 (0.034) 0.097 (0.022) 0.092 (0.027) 0.081 (0.021)

600 0.137 (0.027) 0.107 (0.027) 0.083 (0.017) 0.077 (0.023) 0.071 (0.017)

900 0.115 (0.020) 0.082 (0.015) 0.067 (0.016) 0.061 (0.015) 0.056 (0.016)

1200 0.096 (0.019) 0.072 (0.015) 0.056 (0.013) 0.050 (0.012) 0.047 (0.012)

F
M

A
(8

)

150 0.352 (0.071) 0.263 (0.064) 0.213 (0.064) 0.188 (0.074) 0.178 (0.069)

300 0.253 (0.055) 0.170 (0.043) 0.143 (0.050) 0.129 (0.053) 0.127 (0.053)

450 0.176 (0.048) 0.148 (0.049) 0.114 (0.044) 0.091 (0.031) 0.086 (0.043)

600 0.159 (0.041) 0.123 (0.039) 0.093 (0.036) 0.080 (0.031) 0.081 (0.036)

900 0.128 (0.030) 0.098 (0.030) 0.074 (0.029) 0.062 (0.023) 0.060 (0.026)

1200 0.101 (0.026) 0.071 (0.023) 0.055 (0.020) 0.049 (0.017) 0.051 (0.018)

F
A
R
(1

) 0
.7

150 0.359 (0.082) 0.289 (0.070) 0.232 (0.069) 0.211 (0.064) 0.213 (0.066)

300 0.257 (0.067) 0.195 (0.048) 0.154 (0.044) 0.142 (0.042) 0.138 (0.042)

450 0.212 (0.041) 0.155 (0.037) 0.123 (0.032) 0.114 (0.031) 0.111 (0.030)

600 0.187 (0.047) 0.129 (0.029) 0.108 (0.024) 0.100 (0.026) 0.090 (0.025)

900 0.147 (0.031) 0.107 (0.022) 0.084 (0.019) 0.075 (0.018) 0.069 (0.020)

1200 0.125 (0.022) 0.094 (0.019) 0.073 (0.018) 0.063 (0.015) 0.060 (0.015)

F
A
R
(1

) 0
.9

150 0.564 (0.097) 0.466 (0.112) 0.460 (0.117) 0.454 (0.149) 0.399 (0.135)

300 0.433 (0.075) 0.372 (0.102) 0.334 (0.101) 0.272 (0.098) 0.291 (0.113)

450 0.374 (0.074) 0.324 (0.078) 0.283 (0.092) 0.239 (0.081) 0.216 (0.077)

600 0.305 (0.068) 0.272 (0.062) 0.216 (0.074) 0.216 (0.083) 0.192 (0.073)

900 0.282 (0.054) 0.227 (0.068) 0.179 (0.061) 0.165 (0.072) 0.146 (0.061)

1200 0.241 (0.061) 0.194 (0.058) 0.152 (0.059) 0.137 (0.059) 0.125 (0.059)

by the estimator (2.13) with varying value of Bartlett’s span parameter L to
identify what value is the optimal for the estimation of the spectral density
with respect to the relative mean square error (4.6). First five parts of Table 3
presents the optimal values of L for the considered processes and the considered
sample sizes.

The optimal value of L depends on the dynamics of the functional time-
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Fig 9. The dependence of spectral density estimation relative mean square error (red points)
of FAR(1)0.9 on the sample size parameters T and Nmax. The blue plane is the estimated
regression surface in model (4.7).

series quite substantially. Especially striking is the case of the autoregressive
process FAR(1)0.9 which features a higher degree of temporal dependence than
the other processes. Observing the results in the first five parts of Table 3
we suggested the selection rule (4.5) as a compromise among the considered
processes.

The bottom-right part of Table 3 presents the evaluations of the rule (4.5) for
the considered sample sizes. For the evaluation we consider the average number
of points per curve N̄ to be set to the expectation of the number of points
Nmax/2.

C.2. Spectral density estimation

Table 4 states the average relative mean square error (4.6) for the considered
functional moving average processes FMA(2), FMA(4), FMA(8), and the
functional autoregressive processes FAR(1)0.7, FAR(1)0.9. The results for the
functional moving average process of order 4, FMA(4), were already stated
in Table 1 in Section 4.2 without the standard deviations. Figure 9 displays
the fitted regression surface for the model (4.7) for the functional moving aver-
age processes FMA(2), FMA(4), FMA(8), and the functional autoregressive
processes FAR(1)0.7, FAR(1)0.9.
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Table 5

Median relative mean square error (4.8) of the dynamic and static recovery and the relative
gain (4.9) between them. Each row of the table is result of 100 independent simulations of

the functional moving average process FMA(2)

T Nmax Median dynamic recovery
relative mean square error
(inter-quartile range)

Median static recovery rel-
ative mean square error
(inter-quartile range)

Relative
gain

5 0.323 (0.067) 0.514 (0.067) 59 %

10 0.193 (0.054) 0.263 (0.054) 37 %

150 20 0.105 (0.041) 0.140 (0.041) 34 %

30 0.076 (0.034) 0.091 (0.034) 19 %

40 0.055 (0.025) 0.072 (0.025) 31 %

5 0.289 (0.042) 0.440 (0.042) 52 %

10 0.167 (0.034) 0.240 (0.034) 44 %

300 20 0.094 (0.031) 0.124 (0.031) 32 %

30 0.068 (0.016) 0.081 (0.016) 20 %

40 0.054 (0.015) 0.064 (0.015) 18 %

5 0.274 (0.038) 0.426 (0.038) 55 %

10 0.161 (0.029) 0.226 (0.029) 40 %

450 20 0.090 (0.024) 0.118 (0.024) 31 %

30 0.062 (0.015) 0.076 (0.015) 23 %

40 0.051 (0.010) 0.062 (0.010) 21 %

5 0.274 (0.035) 0.395 (0.035) 44 %

10 0.153 (0.030) 0.217 (0.030) 41 %

600 20 0.085 (0.013) 0.111 (0.013) 31 %

30 0.062 (0.011) 0.076 (0.011) 24 %

40 0.049 (0.010) 0.059 (0.010) 20 %

5 0.259 (0.029) 0.376 (0.029) 45 %

10 0.147 (0.023) 0.206 (0.023) 41 %

900 20 0.084 (0.017) 0.110 (0.017) 31 %

30 0.061 (0.008) 0.074 (0.008) 22 %

40 0.048 (0.006) 0.057 (0.006) 20 %

5 0.251 (0.024) 0.368 (0.024) 46 %

10 0.142 (0.016) 0.199 (0.016) 40 %

1200 20 0.083 (0.012) 0.107 (0.012) 29 %

30 0.059 (0.008) 0.073 (0.008) 24 %

40 0.047 (0.007) 0.055 (0.007) 17 %

The fitted regression surfaces have coefficients (β̂0, β̂1, β̂2) are (1.85,−0.31,
−0.54), (2.37,−0.34,−0.61), (2.12,−0.32,−0.56), and (2.26,−0.24,−0.49) for
the functional moving average processes FMA(2), FMA(8), and the func-
tional autoregressive processes FAR(1)0.7, FAR(1)0.9 respectively. Therefore
the conclusion of higher time-length preference of Section 4.2 remains valid.
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Table 6

Median relative mean square error (4.8) of the dynamic and static recovery and the relative
gain (4.9) between them. Each row of the table is result of 100 independent simulations of

the functional moving average process FMA(4)

T Nmax Median dynamic recovery
relative mean square error
(inter-quartile range)

Median static recovery rel-
ative mean square error
(inter-quartile range)

Relative
gain

5 0.321 (0.089) 0.537 (0.089) 67 %

10 0.190 (0.053) 0.263 (0.053) 38 %

150 20 0.101 (0.034) 0.139 (0.034) 38 %

30 0.075 (0.035) 0.092 (0.035) 23 %

40 0.051 (0.017) 0.067 (0.017) 30 %

5 0.284 (0.058) 0.435 (0.058) 53 %

10 0.169 (0.038) 0.235 (0.038) 39 %

300 20 0.091 (0.026) 0.120 (0.026) 33 %

30 0.063 (0.019) 0.082 (0.019) 31 %

40 0.049 (0.014) 0.062 (0.014) 26 %

5 0.267 (0.040) 0.405 (0.040) 52 %

10 0.157 (0.040) 0.228 (0.040) 45 %

450 20 0.083 (0.018) 0.115 (0.018) 38 %

30 0.060 (0.012) 0.078 (0.012) 30 %

40 0.047 (0.011) 0.059 (0.011) 24 %

5 0.260 (0.041) 0.378 (0.041) 45 %

10 0.149 (0.030) 0.211 (0.030) 41 %

600 20 0.084 (0.018) 0.110 (0.018) 32 %

30 0.060 (0.011) 0.076 (0.011) 26 %

40 0.048 (0.009) 0.059 (0.009) 24 %

5 0.239 (0.031) 0.367 (0.031) 54 %

10 0.141 (0.018) 0.199 (0.018) 41 %

900 20 0.077 (0.011) 0.105 (0.011) 37 %

30 0.058 (0.011) 0.075 (0.011) 30 %

40 0.047 (0.007) 0.057 (0.007) 22 %

5 0.232 (0.022) 0.357 (0.022) 54 %

10 0.135 (0.013) 0.195 (0.013) 45 %

1200 20 0.079 (0.009) 0.105 (0.009) 34 %

30 0.057 (0.008) 0.071 (0.008) 26 %

40 0.046 (0.006) 0.055 (0.006) 21 %

C.3. Functional data recovery

Table 5, Table 6, Table 7, Table 8, and Table 9 summarize the performance of
dynamic and static recovery methods. Because of the reasons explain in Sec-
tion 4.3, the relative means square error is sensitive to poor estimation of the
measurement error variance parameter σ2. Therefore we take into account only
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Table 7

Median relative mean square error (4.8) of the dynamic and static recovery and the relative
gain (4.9) between them. Each row of the table is result of 100 independent simulations of

the functional moving average process FMA(8)

T Nmax Median dynamic recovery
relative mean square error
(inter-quartile range)

Median static recovery rel-
ative mean square error
(inter-quartile range)

Relative
gain

5 0.294 (0.072) 0.454 (0.072) 55 %

10 0.182 (0.083) 0.248 (0.083) 36 %

150 20 0.094 (0.050) 0.126 (0.050) 34 %

30 0.064 (0.026) 0.086 (0.026) 34 %

40 0.050 (0.021) 0.063 (0.021) 26 %

5 0.264 (0.060) 0.393 (0.060) 49 %

10 0.145 (0.043) 0.210 (0.043) 45 %

300 20 0.086 (0.026) 0.111 (0.026) 30 %

30 0.059 (0.017) 0.075 (0.017) 28 %

40 0.048 (0.017) 0.056 (0.017) 18 %

5 0.241 (0.056) 0.365 (0.056) 51 %

10 0.137 (0.028) 0.188 (0.028) 37 %

450 20 0.080 (0.016) 0.104 (0.016) 31 %

30 0.058 (0.014) 0.071 (0.014) 22 %

40 0.046 (0.011) 0.054 (0.011) 20 %

5 0.220 (0.037) 0.341 (0.037) 55 %

10 0.132 (0.023) 0.191 (0.023) 45 %

600 20 0.076 (0.014) 0.103 (0.014) 35 %

30 0.057 (0.013) 0.068 (0.013) 19 %

40 0.044 (0.010) 0.052 (0.010) 19 %

5 0.205 (0.029) 0.320 (0.029) 56 %

10 0.126 (0.025) 0.185 (0.025) 47 %

900 20 0.073 (0.011) 0.097 (0.011) 34 %

30 0.053 (0.012) 0.067 (0.012) 26 %

40 0.042 (0.008) 0.051 (0.008) 22 %

5 0.204 (0.024) 0.316 (0.024) 54 %

10 0.122 (0.011) 0.175 (0.011) 44 %

1200 20 0.072 (0.009) 0.093 (0.009) 31 %

30 0.052 (0.009) 0.065 (0.009) 24 %

40 0.040 (0.005) 0.050 (0.005) 24 %

those simulations where σ̂ > 0.05 and calculate the median relative mean square
error and the corresponding inter-quartile range instead of the mean of the errors
and their standard deviation.

The column Relative gain of Table 6 for the functional moving average process
of order 4, FMA(4), corresponds to the data in Table 2.
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Table 8

Median relative mean square error (4.8) of the dynamic and static recovery and the relative
gain (4.9) between them. Each row of the table is result of 100 independent simulations of

the functional autoregressive process FAR(1)0.7

T Nmax Median dynamic recovery
relative mean square error
(inter-quartile range)

Median static recovery rel-
ative mean square error
(inter-quartile range)

Relative
gain

5 0.318 (0.072) 0.480 (0.072) 51 %

10 0.185 (0.046) 0.256 (0.046) 39 %

150 20 0.107 (0.037) 0.122 (0.037) 14 %

30 0.073 (0.028) 0.084 (0.028) 16 %

40 0.056 (0.023) 0.059 (0.023) 4 %

5 0.282 (0.049) 0.403 (0.049) 43 %

10 0.163 (0.030) 0.209 (0.030) 29 %

300 20 0.092 (0.029) 0.111 (0.029) 21 %

30 0.065 (0.021) 0.069 (0.021) 6 %

40 0.052 (0.013) 0.054 (0.013) 4 %

5 0.265 (0.044) 0.368 (0.044) 39 %

10 0.157 (0.027) 0.200 (0.027) 28 %

450 20 0.088 (0.018) 0.104 (0.018) 18 %

30 0.065 (0.016) 0.070 (0.016) 7 %

40 0.049 (0.012) 0.051 (0.012) 4 %

5 0.257 (0.031) 0.350 (0.031) 36 %

10 0.141 (0.027) 0.184 (0.027) 30 %

600 20 0.089 (0.020) 0.100 (0.020) 12 %

30 0.061 (0.011) 0.066 (0.011) 7 %

40 0.050 (0.009) 0.052 (0.009) 5 %

5 0.245 (0.032) 0.335 (0.032) 37 %

10 0.142 (0.022) 0.181 (0.022) 27 %

900 20 0.081 (0.013) 0.093 (0.013) 15 %

30 0.060 (0.013) 0.064 (0.013) 8 %

40 0.047 (0.008) 0.049 (0.008) 5 %

5 0.238 (0.025) 0.321 (0.025) 35 %

10 0.139 (0.018) 0.178 (0.018) 28 %

1200 20 0.080 (0.010) 0.093 (0.010) 17 %

30 0.059 (0.008) 0.064 (0.008) 8 %

40 0.047 (0.006) 0.048 (0.006) 3 %
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Table 9

Median relative mean square error (4.8) of the dynamic and static recovery and the relative
gain (4.9) between them. Each row of the table is result of 100 independent simulations of

the functional autoregressive process FAR(1)0.9

T Nmax Median dynamic recovery
relative mean square error
(inter-quartile range)

Median static recovery rel-
ative mean square error
(inter-quartile range)

Relative
gain

5 0.297 (0.098) 0.514 (0.098) 73 %

10 0.181 (0.047) 0.266 (0.047) 47 %

150 20 0.089 (0.029) 0.129 (0.029) 46 %

30 0.062 (0.022) 0.083 (0.022) 34 %

40 0.052 (0.026) 0.064 (0.026) 23 %

5 0.255 (0.056) 0.434 (0.056) 70 %

10 0.162 (0.040) 0.231 (0.040) 43 %

300 20 0.086 (0.025) 0.118 (0.025) 37 %

30 0.061 (0.019) 0.079 (0.019) 30 %

40 0.050 (0.014) 0.057 (0.014) 15 %

5 0.242 (0.049) 0.402 (0.049) 66 %

10 0.146 (0.032) 0.212 (0.032) 45 %

450 20 0.083 (0.021) 0.109 (0.021) 32 %

30 0.060 (0.015) 0.069 (0.015) 16 %

40 0.046 (0.010) 0.055 (0.010) 18 %

5 0.239 (0.035) 0.380 (0.035) 59 %

10 0.142 (0.033) 0.205 (0.033) 45 %

600 20 0.083 (0.018) 0.104 (0.018) 25 %

30 0.056 (0.011) 0.068 (0.011) 22 %

40 0.045 (0.009) 0.053 (0.009) 18 %

5 0.226 (0.028) 0.362 (0.028) 60 %

10 0.133 (0.023) 0.191 (0.023) 43 %

900 20 0.077 (0.017) 0.100 (0.017) 29 %

30 0.056 (0.009) 0.066 (0.009) 18 %

40 0.045 (0.009) 0.052 (0.009) 15 %

5 0.218 (0.018) 0.346 (0.018) 59 %

10 0.131 (0.021) 0.188 (0.021) 44 %

1200 20 0.075 (0.009) 0.097 (0.009) 29 %

30 0.054 (0.007) 0.067 (0.007) 24 %

40 0.044 (0.006) 0.051 (0.006) 16 %
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[17] Horváth, L., Kokoszka, P. and Reeder, R. (2013). Estimation of the
mean of functional time series and a two-sample problem. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 75 103–122.
MR3008273

[18] Horváth, L., Rice, G. and Whipple, S. (2016). Adaptive bandwidth
selection in the long run covariance estimator of functional time series.
Computational Statistics & Data Analysis 100 676–693. MR3505826

[19] Hsing, T. and Eubank, R. (2015). Theoretical Foundations of Functional
Data Analysis, with an Introduction to Linear Operators. John Wiley &
Sons. MR3379106

http://www.ams.org/mathscinet-getitem?mr=0035934
http://www.ams.org/mathscinet-getitem?mr=2364006
http://www.ams.org/mathscinet-getitem?mr=1783138
http://www.ams.org/mathscinet-getitem?mr=1441072
http://www.ams.org/mathscinet-getitem?mr=1853554
http://www.ams.org/mathscinet-getitem?mr=2895997
http://www.ams.org/mathscinet-getitem?mr=1383587
http://www.ams.org/mathscinet-getitem?mr=1964455
http://www.ams.org/mathscinet-getitem?mr=2229687
http://www.ams.org/mathscinet-getitem?mr=2278365
http://www.ams.org/mathscinet-getitem?mr=2409261
http://www.ams.org/mathscinet-getitem?mr=3310529
http://www.ams.org/mathscinet-getitem?mr=2662361
https://arxiv.org/abs/1607.02017
http://www.ams.org/mathscinet-getitem?mr=3851761
http://www.ams.org/mathscinet-getitem?mr=3008273
http://www.ams.org/mathscinet-getitem?mr=3505826
http://www.ams.org/mathscinet-getitem?mr=3379106


Sparsely observed functional time series 1209

[20] Israelsson, S. and Tammet, H. (2001). Variation of fair weather atmo-
spheric electricity at Marsta Observatory, Sweden, 1993–1998. Journal of
atmospheric and solar-terrestrial physics 63 1693–1703.

[21] Kowal, D. R. (2018). Dynamic Function-on-Scalars Regression. arXiv
preprint arXiv:1806.01460.

[22] Kowal, D. R., Matteson, D. S. and Ruppert, D. (2017a). Functional
autoregression for sparsely sampled data. Journal of Business & Economic
Statistics 1–13. MR3910228

[23] Kowal, D. R., Matteson, D. S. and Ruppert, D. (2017b). A Bayesian
Multivariate Functional Dynamic Linear Model. Journal of the American
Statistical Association 112 733–744. MR3671766

[24] Li, Y. and Hsing, T. (2010). Uniform convergence rates for nonparamet-
ric regression and principal component analysis in functional/longitudinal
data. The Annals of Statistics 38 3321–3351. MR2766854

[25] Liebscher, E. (1996). Strong convergence of sums of α-mixing random
variables with applications to density estimation. Stochastic Processes and
Their Applications 65 69–80. MR1422880

[26] Masry, E. (1996). Multivariate local polynomial regression for time series:
uniform strong consistency and rates. Journal of Time Series Analysis 17
571–599. MR1424907

[27] Mockus, J. (2012). Bayesian Approach to Global Optimization: Theory
and Applications 37. Springer Science & Business Media. MR1111483

[28] Panaretos, V. M. and Tavakoli, S. (2013a). Cramér–Karhunen–Loève
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