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Abstract: The first part of the paper is dedicated to the construction of a
γ - nonparametric confidence interval for a conditional quantile with a level
depending on the sample size. When this level tends to 0 or 1 as the sample
size increases, the conditional quantile is said to be extreme and is located
in the tail of the conditional distribution. The proposed confidence interval
is constructed by approximating the distribution of the order statistics se-
lected with a nearest neighbor approach by a Beta distribution. We show
that its coverage probability converges to the preselected probability γ and
its accuracy is illustrated on a simulation study. When the dimension of
the covariate increases, the coverage probability of the confidence interval
can be very different from γ. This is a well known consequence of the data
sparsity especially in the tail of the distribution. In a second part, a dimen-
sion reduction procedure is proposed in order to select more appropriate
nearest neighbors in the right tail of the distribution and in turn to obtain
a better coverage probability for extreme conditional quantiles. This proce-
dure is based on the Tail Conditional Independence assumption introduced
in (Gardes, Extremes, pp. 57–95, 18(3), 2018).
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1. Introduction

In a large range of applications, it is necessary to examine the effects of an
observable R

p-valued random covariate X on the distribution of a dependent
R-valued variable Y . For instance, Y can model the level of ozone in the air and
X be the vector gathering the concentration of other pollutants and weather
conditions (e.g., Han et al. [17]). The relation between X and Y is commonly
studied through the conditional expectation E(Y | X). An alternative way is
to analyze conditional quantiles of Y given X. Recall that for all x ∈ X ⊂
R

p, X being the support of X, and for α ∈ (0, 1), the (1 − α)-conditional
quantile of Y given that X = x is Q(α | x) = inf{y; S(y | x) ≤ α}, where
S(· | x) := P(Y > · | X = x) is the conditional survival function of Y given
X = x. Starting from n independent copies (X1, Y1), . . . , (Xn, Yn) of the random
vector (X,Y ), conditional quantile estimation has been investigated by several
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authors see for example Stute [27] and Yang [30] for the case of a fixed level α
and Gardes [9] and Gardes et al. [14] for an extreme level α = αn → 0. Instead of
a point estimation of Q(α | x0) where x0 is a given point in X , we are interested
here in the construction of a confidence interval for conditional quantiles. More
specifically, our goal is to find a random interval [An,γ(x0), Bn,γ(x0)] such that,

lim
n→∞

P {[An,γ(x0), Bn,γ(x0)] � Q(α | x0)} = γ, (1)

where γ ∈ (0, 1) is a preselected probability. Usually, we take γ = 0.9 or 0.95.
To allow us to make inference on the right and left tails of the conditional
distribution, we also consider the case where α = αn depends on the sample
size n and tends to 0 or 1 as the sample size increases. In the application on
ozone concentration, this can be of high interest since large ozone levels in the
air may cause serious effects on public health and on the environment.

The literature on the construction of confidence interval for conditional quan-
tiles is, up to our knowledge, only dedicated to the case where α is a fixed value
in (0, 1). Several approaches have been considered.

The first one is called direct approach and is discussed for instance in Fan and
Liu [7]). Let q(· | x0) be the first derivative of Q(· | x0) and let 0 < α1 < α2 < 1.
The construction of the confidence interval is based on the existence of a random
process Q̂n(· | x0) indexed by α ∈ [α1, α2] for which cn(Q̂n(· | x0) − Q(· | x0))
converges to a centered Gaussian process with variance q2(· | x0)σ

2(· | x0) for
some positive sequence (cn). It can be shown that the coverage probability of
the interval[

Q̂n

(
α− c−1

n u(1+γ)/2σ(α | x0) | x0

)
, Q̂n

(
α+ c−1

n u(1+γ)/2σ(α | x0) | x0

)]
,

converges to γ for any α ∈ [α1, α2] where uβ is the β-quantile of a standard
normal distribution. The main drawback of the direct approach is that in most
cases, the sequence cn depends on unknown quantities, such as the probability
density function of X, that have to be estimated.

To avoid the estimation of cn, resampling methods have been considered by
Parzen et al. [23] and Kocherginsky et al. [20]. Unfortunately, these methods
are often time consuming.

A last approach to construct confidence interval for conditional quantiles
is based on order statistics. The order statistic method has been first intro-
duced in the unconditional case, see e.g., Thompson [28], Hutson [19] and David
and Nagaraja [5]. Let us briefly recall the construction procedure. Assume
that Y1, . . . , Yn are independent and identically distributed random variables
with common survival function SY (·) and quantile function QY (·). Denoting
by Y1,n ≤ . . . ≤ Yn,n the order statistics, if SY (·) is a continuous and strictly
decreasing function, the probability integral transform ensures that

P(Yj,n < QY (α)) = P(SY (Yj,n) > α) = P(Un−j+1,n > α),

where U1,n ≤ . . . ≤ Un,n are the order statistics associated to independent stan-
dard uniform random variables. Denote by Fbeta(·; a, b) the distribution function
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of a Beta distribution with parameters a > 0 and b > 0 and let

Lγ(m,α) := max

{
j ∈ {1, . . . ,m}; Fbeta(α;m− j + 1, j) ≤ 1− γ

2

}
and

Rγ(m,α) := min

{
j ∈ {1, . . . ,m}; 1− Fbeta(α;m− j + 1, j) ≤ 1− γ

2

}
,

for γ ∈ (0, 1), m ∈ N \ {0} and α ∈ (0, 1) with the convention max{∅} = +∞
and min{∅} = −∞. Since Un−j+1,n is distributed as a Beta distribution of
parameters n− j + 1 and n, one can show that

lim
n→∞

P
{
[YLγ(n,α),n, YRγ(n,α),n] � QY (α)

}
= γ.

This method of construction has been recently adapted by Goldman and Ka-
plan [16] to the conditional case but always for a fixed quantile level α.

The first contribution of this paper is to adapt the order statistics method
to the conditional case by using a nearest neighbors approach. Instead of using
the whole sample as in the unconditional case, only the kn closest observations
to x0 are used in the order statistics method. The proposed confidence inter-
val can be used for extreme conditional quantiles i.e., when the quantile level
depends on n and tends to 0 or 1 as the sample size increases. The construc-
tion of confidence intervals for extreme conditional quantiles is more challenging
because there are fewer observations available in the tail.

The nearest neighbors method strongly depends on the (pseudo-)distance in
R

p used to select the observations around the point of interest x0. The Euclidean
distance is of course the natural choice but when p becomes large, some nearest
neighbors can be located far away from the point of interest leading to confi-
dence intervals with bad coverage probabilities. This is the well known curse of
dimensionality phenomenon. To overcome this problem, one way is to assume
the existence of a function g0 : Rp → R such that the conditional distribution
of Y given X is equal to the conditional distribution of Y given g0(X). In other
words, it is assumed that X and Y are independent conditionally on g0(X), in
symbols X |= Y | g0(X), see Basu and Pereira [1]. The dimension of the covari-
ate is thus reduced since X can be replaced by g0(X). In this case, it seems
preferable to use the pseudo-distance d0 defined for all (x, y) ∈ R

p × R
p by

d0(x, y) = |g0(x) − g0(y)| instead of the Euclidean distance in R
p. A natural

question now is how to find the true function g0 and therefore the most suit-
able distance d0? One common approach is to assume that g0 is linear i.e., that
g0(x) = b�0 x for all x ∈ R

p, where b0 is a given vector in R
p. This corresponds to

the single-index model introduced in a regression context for instance by Li [21].
This single-index structure has been considered by Zhu et al. [31] for the esti-
mation of conditional quantiles when the level α is fixed. Finding the distance
reduces to finding the direction b0. Its estimation has received much attention
in the literature; see Li [21] for the classical Sliced Inverse Regression (SIR)
method, Cook and Weisberg [3], Samarov [25] and Cook and Li [2]).

Our second contribution is the proposition of a new data driven procedure
to find an appropriate distance to use in the nearest neighbors selection process.
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This distance is then used in the nearest neighbors order statistics approach for
the construction of confidence intervals for conditional quantiles with extreme
levels α = αn → 0. To reach this goal, we start with the dimension reduction
assumption introduced in Gardes [10]. Roughly speaking, for some function
g0 : Rp → R, we suppose that S(y | x0) is equivalent, as y goes to infinity, to
a function depending on x0 only through g0(x0). Hence, inference on extreme
conditional quantiles of Y givenX can be achieved only by using the information
brought by the reduced covariate g0(X) and a good way to measure the closeness
of the data to x0 is to use the pseudo-distance defined for (x, y) ∈ R

2p by
d0(x, y) = |g0(x)−g0(y)|. This distance is estimated by assuming that g0 belongs
to a parametric family. Note an estimator of g0 has already been proposed
by Gardes [10] in the particular case of a linear function. Unfortunately, the
estimation procedure is computationally expensive.

The paper is organized as follows. The definition of the confidence interval
for conditional extreme quantiles is given in Section 2. In particular, we show
that the coverage probability of the proposed confidence interval converges to
the nominal one. This section corresponds to our first contribution. The second
contribution is handled in Section 3 where an estimator of the appropriate dis-
tance d0 is proposed and used for the construction of a confidence interval for
extreme conditional quantiles. In each section, the methods are illustrated with
simulated data. An application to Chicago air pollution data set is proposed in
Section 4. Section 5 concludes. All the proofs are postponed to Section 6.

2. Confidence interval construction

2.1. Definition and main result

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random vector (X,Y ).
It is assumed throughout the paper that the distribution of (X,Y ) is absolutely
continuous with respect to the Lebesgue measure. As mentioned in the intro-
duction, for a given x0 ∈ X where X is the support of X, our first contribution
is to propose a confidence interval for the conditional quantile

Q(α | x0) := inf{y; S(y | x0) ≤ α},

where S(· | x0) = P(Y > · | X = x0). In this paper, we assume that the quantile
level α = αn depends on the sample size n. More specifically,

lim
n→∞

αn = c ∈ [0, 1]. (2)

Condition (2) with c ∈ (0, 1) corresponds to a classical conditional quantile level.
This is the situation most frequently encountered in the literature. For instance,
if αn = 1/2, the value Q(αn | x0) is the conditional median of Y given X = x0.

When c ∈ {0, 1} in (2), the level is said to be extreme. If c = 0 (resp.
c = 1), the conditional quantile is located in the right tail (resp. left tail) of the
conditional distribution of Y given X = x0.
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The basic idea to construct a random interval [An,γ(x0), Bn,γ(x0)] satisfy-
ing (1) is to apply the order statistics method to observations close enough to x0.
In the unconditional case, the order statistics method to construct confidence
interval is described in the introduction. To select the observations, a nearest
neighbors approach is considered. More specifically, for some (pseudo-)metric d
on R

p, let

(X
(d,x0)
1 , Y

(d,x0)
1 ), . . . , (X(d,x0)

n , Y (d,x0)
n )

be the sample (X1, Y1), . . . , (Xn, Yn) rearranged in order to have d(X
(d,x0)
1 , x0) ≤

. . . ≤ d(X
(d,x0)
n , x0). For kn ∈ {1, . . . , n}, we denote by Y

(d,x0)
1,kn

≤ . . . ≤ Y
(d,x0)
kn,kn

the order statistics associated to the sample Y
(d,x0)
1 , . . . , Y

(d,x0)
kn

. For a prese-
lected probability γ ∈ (0, 1), we propose as a confidence interval for Q(αn | x0)
the following random interval

CIγ,αn(kn, d, x0) :=
[
Y

(d,x0)
Lγ(kn,αn),kn

, Y
(d,x0)
Rγ(kn,αn),kn

]
, (3)

where we recall that

Lγ(kn, αn) := max

{
j ∈ {1, . . . , kn}; Fbeta(αn; kn − j + 1, j) ≤ 1− γ

2

}
Rγ(kn, αn) := min

{
j ∈ {1, . . . , kn}; Fbeta(αn; kn − j + 1, j) ≥ 1 + γ

2

}
.

The confidence interval CIγ,αn(kn, d, x0) is defined as in the unconditional case

except that only the kn nearest neighbors random variables Y
(d,x0)
1 , . . . , Y

(d,x0)
kn

are used.
It remains to prove that the coverage probability of this interval tends to γ as

the sample size increases. The accuracy of the confidence interval CIγ,αn(kn, d, x0)
depends on the smoothness of the function x → S[Q(α | x0) | x]. For α ∈ (0, 1)
and ζ > 0, we introduce the quantity

ω(α, ζ) := sup
d(x,x0)≤ζ

(
S[Q(α | x0) | x]

α
− 1

)2

,

which is the largest deviation of the ratio S[Q(α | x0) | x]/S[Q(α | x0) | x0]
from 1 when x belongs to the ball of center x0 and radius ζ. Note that this
quantity is classically considered when dealing with conditional distribution,
see for instance Daouia et al. [4]. In the following result, the conditions required
for the convergence of the coverage probability of (3) to γ are established.

Theorem 1. Let γ ∈ (0, 1) and x0 ∈ X . Assume that kn → ∞ and let hn

such that P(d(X
(d,x0)
kn

, x0) ≤ hn) = 1. For a sequence of level αn ∈ (0, 1) satis-
fying (2), if S(· | x0) is continuous and strictly decreasing,

δ2n :=
ln2(kn)

knαn(1− αn)
→ 0, (4)
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and if

η2n :=
knαn

1− αn
ω(αn, hn) → 0, (5)

then, P [CIγ,αn(kn, d, x0) � Q(αn | x0)] = γ +O (δn) +O (ηn) → γ.

Note that, under the conditions of Theorem 1, other confidence intervals with
asymptotic coverage probability γ can be proposed as for instance the one-sided
confidence intervals

CI(L)
γ,αn

(kn, d, x0) := [Y
(d,x0)
L2γ−1(kn,αn),kn

,∞)

and CI(R)
γ,αn

(kn, d, x0) := (−∞, Y
(d,x0)
R2γ−1(kn,αn),kn

].

The proof of Theorem 1 is based on the decomposition

P[Y
(d,x0)
Lγ(kn,αn),kn

> Q(αn | x0)] = (1− γ)/2 +B1,n(Lγ(kn, αn)) +B2,n,

and on a similar one for P[Y
(d,x0)
Rγ(kn,αn),kn

≤ Q(αn | x0)]. This decomposition high-

lights two terms of error: B1,n(Lγ(kn, αn)) where for j ∈ {1, . . . , kn} B1,n(j) :=

P[Y
(d,x0)
j,kn

> Q(αn | x0)] − Fbeta(αn; kn − j + 1, j) and B2,n := Fbeta(αn; kn −
Lγ(kn, αn)+1,Lγ(kn, αn))−(1−γ)/2. The first one is due to the approximation

of the distribution of the random variable S(Y
(d,x0)
j,kn

| x0) by a Beta distribution.
We show in the proof of Theorem 1 that

max
j=1,...,kn

|B1,n(j)| = O(ηn).

Condition (5) ensures that B1,n(Lγ(kn, αn)) converges to 0. Note that this con-
dition entails that kn should be chosen not too large. In the unconditional case,
i.e., if X and Y are independent then ηn = B1,n(j) = 0 for all j and one can
take kn = n. Remark also that in the unconditional case, the accuracy of the
confidence interval does not depend on the underlying distribution.

The second term of error is related to the behavior of the distribution function
of a beta distribution. In Lemma 2, it is established that B2,n = O(δn) and thus
B2,n → 0 under condition (4). If c = 0, the rate of convergence of αn to 0
is limited by (4) (namely, αn 
 ln2(kn)/kn). Similarly, when c = 1, one can
construct an asymptotic confidence interval only if 1− αn 
 ln2(kn)/kn. Note
that condition (5) is more restrictive when αn → 1 than when αn → c ∈ [0, 1).
As shown in the simulation studies, the construction of confidence intervals in
the left tail can thus be more difficult than in the right tail. It also appears that,
as expected, the rate of convergence of the coverage probability can be very slow
for extreme conditional quantiles.

In the next result, a sequence hn such that P(d(X
(d,x0)
kn

, x0) ≤ hn) = 1
is proposed when d is the Euclidean distance given for (x, y) ∈ R

p × R
p by

de(x, y) = [(x− y)�(x− y)]1/2.
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Proposition 1. Assume that the distribution of X admits fX as a probability
density function. If kn/(ln lnn) → ∞ and n/kn → ∞ then, for

hn =

(
2

fX(x0)

kn
n

)1/p

,

one has P(de(X
(de,x0)
kn

, x0) ≤ hn) = 1 for n large enough.

It thus appears that for a given value of kn, the radius hn increases with the
dimension p. As a consequence, when p becomes large, some of the kn nearest
neighbors can be located far away from the point of interest and the confidence
interval can perform very badly. This phenomenon is well known as the “curse of
dimensionality”. In Section 3, a procedure to overcome this difficulty is proposed.

2.2. Illustration on simulated data

Let us take a look at the finite sample performance of the confidence inter-
val introduced in the previous section. Using the observations of a sample
{(X1, Y1), . . . , (Xn, Yn)} drawn from a random pair (X,Y ), our objective is to
construct a γ-confidence interval for the conditional quantile Q(αn | x0). In
the estimation procedure, the nearest neighbors are selected with the classical
Euclidean distance de. Two models for the distribution of (X,Y ) are considered:

− Model 1: The p components of the random vector X are independent
and uniformly distributed on [−5, 5]. The conditional survival function of
Y given X is given for y > 0 by

S(y | X) =
(
1 + yc(X)

)−1/τ(X)

,

where c and τ are positive functions defined for all x ∈ R
p by c(x) = ‖x‖1

and τ(x) = c(x)ξ(g0(x)). The function ξ : R → (0,∞) is defined by ξ(z) :=
5z2/36 + 1/4. Note that Model 1 is not well defined when X = 0 since
in this case S(y | 0) = 1 for all y.

In this model, the conditional distribution of Y given that X = x is a Burr
distribution. Such a distribution is said to be heavy-tailed since for all t > 0
and x ∈ X ,

lim
y→∞

S(ty | x)
S(y | x) = t−1/ξ(g0(x)).

The function ξ ◦ g0 is referred to as the conditional extreme value index. It
controls the right tail heaviness of the conditional distribution. This model is
investigated with different values for the dimension p of the covariate and dif-
ferent functions g0 : Rp → R. More specifically, 4 settings are considered:

(S1) p = 1 with for x ∈ R, g0(x) = x,
(S2) p = 2 with for x ∈ R

2, g0(x) = (1, 2)�x/
√
5,

(S3) p = 4 with for x ∈ R
4, g0(x) = (0, 1, 2, 0)�x/

√
5,



668 L. Gardes

(S4) p = 8 with for x ∈ R
8, g0(x) = (0, 1, 2, 0, 0, 0, 1, 1)�x/

√
7.

− Model 2: The p components of the random vector X are independent
and uniformly distributed on [−5, 5]. The conditional survival function of
Y given X is given for y > 0 by

S(y | X) := exp
(
−y1/ξ(g0(X))

)
,

where ξ : R → (0,∞) is defined by ξ(z) := 5z2/36 + 1/4.

The conditional distribution of Y given that X = x in Model 2 is a con-
ditional Weibull type distribution, see for instance Gardes and Girard [12] or
Gardes et al. [13] and ξ(g0(x)) is referred to as the conditional Weibull-tail in-
dex. As the conditional extreme value index, ξ(g0(x)) controls the tail heaviness
of the conditional distribution. For p and g0, we consider the 4 settings (S1)
to (S4).

To evaluate the performance of the confidence interval, we compute its cov-
erage probability P[CIγ,αn(kn, de, x0) � Q(αn | x0)]. This probability is approx-
imated numerically by a Monte-Carlo procedure. More specifically, N = 2 000
independent samples of size n were generated. For given values of kn ∈ {1, . . . , n}
and γ ∈ (0, 1), the confidence interval obtained with the r-th replication is de-

noted CI(r)γ,αn
(kn, de, x0). The coverage probability is then approximated by

1

N

N∑
r=1

I
CI

(r)
γ,αn (kn,de,x0)

(Q(αn | x0)).

This value is expected to be close to the preselected probability γ.

Selection of the number of nearest neighbors − We first take a look at
the influence of the number of nearest neighbors kn. In Figure 1, for a sample
of size n = 1000, the values of the coverage probabilities are represented as a
function of kn ∈ {10, . . . , 200} for Model 1 with the settings (S1), (S2) and
(S3) for g0 and p. Three different values for the conditional quantile level are
considered: α = 1 − 8 ln(n)/n ≈ 0.9447, α = 1/2 and α = 1 − α1,n ≈ 0.0553.
The point of interest x0 is the vector with all its components equal to 1.

It appears that when the quantile level is close to 0 or 1, only few values of
kn provide a reasonable coverage probability. It is thus relevant to propose a
data driven procedure to select the value of kn. The selected number of nearest
neighbors depends on the conditional quantile level αn, the point of interest
x0 ∈ R

p, the nominal coverage probability γ and the distance d used to collect
the nearest neighbors. First, let

C(k) :=
1

2

(
Y

(d,x0)
Lγ(k,αn),k

+ Y
(d,x0)
Rγ(k,αn),k

)
be the random variable corresponding to the center of the confidence interval
CIγ,αn(kn, d, x0).
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Fig 1. Simulated data. For Model 1, coverage probabilities as a function of kn with α ≈
0.9447 (left panels), α = 1/2 (middle panels) and α ≈ 0.0553 (right panels). Choice of p
and g0: top panels: setting (S1), center panels: setting (S2), bottom panels: setting (S3). The
horizontal full line is the nominal probability γ = 0.9 and the dashed horizontal line represents
the coverage probability obtained with the selected value of kn.

The basic idea to select a convenient number of nearest neighbors is to take k
is a stability region of the finite sequence {C(n0), . . . , C(n1)} where 1 ≤ n0 <
n1 ≤ n. More precisely, we are searching for the value

k̃(sel)n := argmin
i∈{n0,...,n1}

Var(C(i)).

Of course, the variance of C(i), and consequently the number k̃
(sel)
n , is unknown

in practice. We propose the following method to obtain an estimator of k̃
(sel)
n .

Let a ∈ (0, 1) and denote by �·� the floor function. For i ∈ {n0, . . . , n1}, the
variance of C(i) is estimated by the local estimator

V̂arn(C(i)) :=
1

�na�
∑

j∈V(i)

⎛⎝C(j)− 1

�na�
∑

�∈V(i)

C(�)

⎞⎠2

,
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where V(i) ⊂ {n0, . . . , n1} is the set of the �na� nearest neighbors of i. Finally,
for a given η ≥ 0, we propose to take the following number of nearest neighbors:

k̂(sel)n := min{i ∈ {n0, . . . , n1}; V̂arn(C(i)) ≤ η}, (6)

with the convention min{∅} = n0. Note that when η = 0, k̂
(sel)
n is the argu-

ment of the minimum of the sequence {V̂arn(n0), . . . , V̂arn(n1)}. The role of η

is to obtain a value of k̂
(sel)
n less sensitive to the fluctuations of the sequence

{V̂arn(n0), . . . , V̂arn(n1)}. To sum up, the setting parameters required to com-
pute (6) are the integers n0 and n1 delimiting the possible values for kn, the value
of a to compute the variance local estimator and the value of η. Throughout
the simulation study, these parameters are fixed to n0 = �0.05n/p�, n1 = 200,

a = 0.006 and η to the first quartile of the sequence {V̂arn(n0), . . . , V̂arn(n1)}.
In Figure 1, one can check that for the conditional median (αn = 1/2) the

coverage probability obtained with the selected value of kn is close to the best
attainable coverage probability. The choice of kn is much more difficult for
the extreme conditional quantiles of level close to 0 or 1. Note that for the
settings (S1) and (S2), the coverage probabilities are clearly better in the right
tail than in the left one. This fact can partially be explained by the condition (5)
in Theorem 1 since the factor knαn/(1−αn) approaches 0 faster when αn goes
to 0 than when αn goes to 1. However, for p and g0 as in (S3), the coverage
probabilities are better in the left tail. Indeed, in this situation, the quantity
ω(αn, hn) is very close to 0 when αn is close to 1, counteracting the bad effect
of the factor knαn/(1− αn).

Influence of the sample size − To illustrate the influence of the sample
size on the confidence intervals, we generate samples from Model 1 with dif-
ferent sample sizes n ∈ {100, 200, . . . , 2000}. The number of nearest neighbors
are given by (6). In Figure 2, the values of the coverage probabilities are rep-
resented as a function of n. Three conditional quantiles levels are considered:
αn = 1 − [n−3/10 ln(n)]3/14 (left tail), αn = 1/2 (conditional median) and
αn = [n−3/10 ln(n)]3/14 (right tail). The point of interest is the vector of ones.
Concerning the choice of p and g0 in Model 1, the settings (S1) and (S3) are
investigated.

When p = 1, the coverage probability for the conditional median (αn = 1/2)
is correct for any value of the sample size between 100 and 2000. For a conditional
quantile in the right tail, i.e., for a level close to 0, the coverage probability
converges to the preselected value γ. This is no longer the case when the level
is close to 1. This phenomenon can be explained by the difficulty to choose a
correct number kn of nearest neighbors, see Figure 1 and the corresponding
discussion.

When p = 4 and αn = [n−3/10 ln(n)]3/14 → 0, the coverage probability does
not converge to γ. This is not a surprising fact in view of the data sparsity
in the right tail of the distribution. For the conditional median, it seems that
the coverage probability getting worse when n increases. This can perhaps be
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Fig 2. Simulated data. For Model 1, coverage probabilities as a function of the sample
size n with αn = 1 − [n−3/10 ln(n)]3/14 (dotted line), αn = 1/2 (dashed line) and αn =
[n−3/10 ln(n)]3/14 (full line). Left panel: setting (S1), right panel: setting (S3). The horizontal
full line is the nominal probability γ = 0.9.

explained by a bad choice of kn, see Figure 1. Finally, a better behavior is
observed for a conditional quantile close to 1 and a large value of n.

Influence of the point of interest x0 − We generate a sample of size n =
1000 from Model 1 and we construct confidence intervals for the conditional
quantile Q(α | x0) with x0 = (t, . . . , t)� ∈ R

p, t ∈ {−45/9,−35/9, . . . , 45/9}
and α ∈ {1 − β; 1/2;β}, β = [n−3/10 ln(n)]3/14 ≈ 0.047. For p and g0, we
consider the two settings (S1) and (S3). In Figure 3, the values of the coverage
probabilities are represented as a function of x0.

It appears that the coverage probability deteriorates when x0 get closer to
the boundary of the support, i.e., when t get closer to −5 or 5. This boundary
effect is a classical source of bias for local estimators as for instance the density
kernel estimator. The coverage probability is also poor when t is close to 0.
Indeed, in this case, x0 is close to 0 and, as mentioned before, Model 1 is not
defined when the covariate X is equal to 0.

Influence of the covariate dimension − Our goal here is to assess the finite
sample performance of the confidence interval for different values of the covariate
dimension. The point of interest x0 is the vector with all its components equal
to 1 and the sample size is n = 1000. Three different levels for the conditional
quantile Q(αn | x0) are considered: α1 = 1 − 8 ln(n)/n ≈ 0.945 (left tail),
α2 = 1/2 (conditional median) and α3 = 8 ln(n)/n ≈ 0.055 (right tail). The
values of the coverage probabilities are gathered in Table 1 for Model 1 and
Table 2 for Model 2.

For the conditional median, the coverage probability is quite close to γ and
the accuracy of the confidence interval is not affected by the dimension p of the
covariate. For a right tail extreme conditional quantile, the coverage probability
is close to the nominal one when p = 1, but the precision of the confidence
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Fig 3. Simulated data. For Model 1, coverage probabilities as a function of x0 with αn =
1 − [n−3/10 ln(n)]3/14 (dotted line), αn = 1/2 (dashed line) and αn = [n−3/10 ln(n)]3/14
(full line). The sample size is n = 1000. Left panel: setting (S1), right panel: setting (S3).
The horizontal full line is the nominal probability γ = 0.9.

interval is strongly deteriorated when p increases. As discussed before, this is an
expected consequence of the data sparsity around x0 when p increases. Finally,
for a left tail extreme conditional quantile, the accuracy mostly depends on
the function g0. As mentioned before, a bad performance in the left tail can
be explained by the factor knαn/(1 − αn) in condition (5). However, for some
functions g0, the quantity ω(αn, hn) is very close to 0 leading to good coverage
probabilities.

3. Selection of the nearest neighbors for large-dimensional covariates

Without any further assumptions, the classical Euclidean distance is the natural
distance to use in order to select the nearest neighbors. Unfortunately, due to
the data sparsity when p is large, this distance selects observations that can
be located far away from the point of interest x0. The obtained confidence
intervals can then perform very badly in particular for conditional quantiles in
the tail of the distribution. This phenomenon has been illustrated in the previous
section. We propose below a data driven procedure to choose a more convenient
distance for the selection of the nearest neighbors located in the right tail of the
distribution. Our data driven procedure is based on a tail dimension reduction
model presented in the next section. The method described below is devoted to
the right tail but it can be easily adapted to the left tail.

3.1. Dimension reduction model

In the literature dedicated to dimension reduction, it is commonly assumed that
there exists a function g0 : Rp → R such that X |= Y | g0(X) or equivalently
such that the conditional distribution of Y given X is equal to the conditional
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Table 1

Values of the coverage probabilities for Model 1 with different settings.

p γ Settings α1 ≈ 0.945 α2 = 1/2 α3 ≈ 0.055

1
0.9

(S1)
0.3130 0.8770 0.9125

0.95 0.3300 0.9320 0.9410

2
0.9

(S2)
0.0900 0.8700 0.8040

0.95 0.1265 0.9385 0.8530

4
0.9

(S3)
0.8675 0.7865 0.6265

0.95 0.9110 0.8670 0.6975

8
0.9

(S4)
0.7045 0.9115 0.5215

0.95 0.7330 0.9550 0.6095

Table 2

Values of the coverage probabilities for Model 2 with different settings.

p γ Settings α1 ≈ 0.945 α2 = 1/2 α3 ≈ 0.055

1
0.9

(S1)
0.9300 0.9270 0.9350

0.95 0.9525 0.9640 0.9630

2
0.9

(S2)
0.7140 0.9280 0.8310

0.95 0.7985 0.9630 0.8930

4
0.9

(S3)
0.2885 0.9245 0.6430

0.95 0.3565 0.9640 0.7200

8
0.9

(S4)
0.3070 0.8805 0.6230

0.95 0.3785 0.9400 0.7190

distribution of Y given g0(X). The dimension of the covariate is thus reduced
since X can be replaced by g0(X) without loss of information. In this case, to
select the nearest neighbors, it seems preferable to use the pseudo-distance d0
defined for all (x, y) ∈ R

p × R
p by d0(x, y) := |g0(x) − g0(y)| instead of the

Euclidean distance in R
p. Recall that our goal is to select nearest neighbors

located in the right tail of the conditional distribution. The classical condition
X |= Y | g0(X) is thus relaxed by assuming that Y is tail conditionally indepen-
dent of X given g0(X), see Gardes [9]. More specifically, we assume that

(TCI) the right endpoint of the conditional distribution of Y given X = x is
infinite for all x ∈ X and that there exists a function ϕy : R → R such
that, as y → ∞,

P[Y > y | X]

ϕy(g0(X))

a.s.u.−→ 1.

The notation
a.s.u.−→ stands for the almost surely uniform convergence 1, see for

instance Lukács [22] or Rambaud [24, Proposition 1]. Roughly speaking un-
der (TCI), inference on extreme conditional quantiles of Y given X can be
achieved only by using the information brought by the reduced covariate g0(X).
The appropriate distance to select the nearest neighbors is thus the distance d0.

1A stochastic process (Zy, y ∈ R) converges almost surely uniformly to 1 as y → ∞ (in

symbol Zy
a.s.u.−→ 1) if for all ε > 0, there exits A such that for all y > A, P[|Zy − 1| ≤ ε] = 1.
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Note that if there exist φ : R → R, φ �= Id and g̃0 : Rp → R such that
g0 = φ ◦ g̃0 then if g0 satisfies (TCI) same holds for the function g̃0. To ensure
that g0 is the only function satisfying (TCI), we must assume that g0 ∈ G where
G is a set of functions satisfying the following property:

(P) for all g : Rp → R ∈ G, there are no functions φ : R → R (with φ �= Id)
and g̃ : Rp → R ∈ G such that g = φ ◦ g̃.

Let up = (1, . . . , 1)� ∈ R
p. A classical set satisfying (P) is the set of linear

functions given by

GL :=
{
g : Rp → R; g(x) = b�x; b ∈ Θp

}
, (7)

with Θp := {b ∈ R
p with b�b = 1 and b�up > 0}. Note that this set is the one

considered in Gardes [10]. One can also consider sets of non-linear functions (see
Section 3.3 for an example). The function g0 satisfying (TCI) is unknown and
has to be estimated. This is done in the next section. Note that in Gardes [10],
an estimator has been proposed but the procedure is computationally expensive
and can be used only for a linear function g0 ∈ GL.

3.2. Estimation of g0

To explain our estimation procedure, let us first assume that the function ϕy

involved in (TCI) is such that for all y ∈ R

argmax
z∈R

ϕy(z) = z∗, (8)

where z∗ does not depend on y. Since under (TCI), P[Y > y | X] ≈ ϕy(g0(X))
for y large enough, condition (8) entails that the largest observations of Y are
more likely to be observed when g0(X) is close to z∗. In other word, given
that Y is large, the dispersion of g0(X) around z∗ must be small. One way to
quantify such a dispersion is to consider a Gini-type dispersion measure given for
a large threshold y ∈ R by E[|g0(X)−g0(X

∗)| | min(Y, Y ∗) > y] where (X∗, Y ∗)
is an independent copy of (X,Y ). This measure is estimated by replacing the
expectation by its empirical counterpart and by taking for the threshold y the
order statistic Yn−�nβn	,n where (βn) is a sequence tending to 0 as the sample
size increases. An estimator of g0 is then obtained by solving

argmin
g∈G

1

(�nβn�)2
�nβn	−1∑
i,j=0

∣∣g(X(i))− g(X(j))
∣∣ , (9)

where X(i) is the concomitant of the order statistic Yn−i,n. This estimation
procedure is only reliable if (8) holds. This quite restrictive condition can be
weakened if for each g ∈ G we assume the existence of H ∈ N \ {0} non-
overlapping intervals S1,g, . . . ,SH,g covering the support of g(X) and such that
for all h ∈ {1, . . . , H}

argmax
z∈Sh,g

ϕy(z) = z∗h,g. (10)
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Hence, as explained above, for each h ∈ {1, . . . , H}, the Gini-type dispersion
measure

Eh,g0(y) := E
[
|g0(X)− g0(X

∗)| | min(Y, Y ∗) > y; (g0(X), g0(X
∗)) ∈ S2

h,g0

]
,

is expected to be small for a large threshold y. Let

nh,g :=

�nβn	−1∑
i=0

ISh,g
(g(X(i))),

and, if nh,g �= 0, let

Êh,g(βn) :=
1

n2
h,g

�nβn	−1∑
i,j=0

∣∣g(X(i))− g(X(j))
∣∣ ISh,g

(g(X(i)))ISh,g
(g(X(j))),

be the estimator of the Gini-type measure Eh,g(u) obtained by replacing the
expectation by its empirical counterpart and y by the order statistic Yn−�nβn	,n.
An estimator of g0 can be defined as the solution of

argmin
g∈G

∑
h∈JH,g

Êh,g(βn), (11)

where JH,g := {h ∈ {1, . . . , H}; nh,g > 0} is the set of indices h ∈ {1, . . . , H} for
which the R2 subset Sh,g×[Yn−�nβn	,n,∞) is non-empty. The obtained estimator
of g0 can be significantly improved by adding to (11) a penalty term in order to
minimize the number card(JH,g) of non-empty sets Sh,g × [Yn−�nβn	,n,∞). Our
final estimator of g0 is thus defined by

ĝn,0 := argmin
g∈G

⎧⎨⎩ ∑
h∈JH,g

Êh,g(βn) + λcard(JH,g)

⎫⎬⎭ , (12)

for some penalty coefficient λ > 0. In practice, ĝn,0 is computed by taking

the non-overlapping intervals Sh,g := [ξ̂h−1,g, ξ̂h,g] where ξ̂h,g is the (h/H)-
sample quantile of {g(Xi), i = 1, . . . , n}. When H is large enough, one can
reasonably assume that (10) is satisfied. The setting parameters of our procedure
of estimation are the sequence βn, the number H of intervals and finally the
penalty coefficient λ. In the simulation study below, these parameters are set
to βn = 5/(3

√
n), λ = 1 and H = 20. A more theoretical justification of (12) is

provided in Appendix A.

3.3. Illustration on simulated data

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random vector (X,Y )
where X is a R

p-valued random variable with p > 1 and Y is a R-valued random
variable. The goal of this section is to assess the finite sample performance of



676 L. Gardes

the confidence interval for the conditional quantiles of Y given X = x0 when
the dimension p is large. Assuming that condition (TCI) holds for some func-
tion g0, we propose the following two step procedure for the construction of the
confidence interval.

i) Estimate the function g0 by ĝn,0 = ĝ0 given in (12);
ii) Select the nearest neighbors with the estimated distance defined for (x, y) ∈

R
2p by d̂0(x, y) = |ĝ0(x)− ĝ0(y)| and construct the confidence interval (3).

We recall that the estimator of g0 is only adapted to the right tail of the condi-
tional distribution. We thus focus on extreme conditional quantiles with α close
to 0. Throughout this simulation study, the point of interest x0 is the vector
of ones and the 3 following models are considered for the distribution of the
random vector (X,Y ):

− Model 1: as defined in Section 2.2.

For the value of the dimension p and for the function g0, 4 different settings are
investigated: (S2), (S3), (S4) and

(S5) p = 4 with for x ∈ R
4, g0(x) = |(1, 0, 0, 1)�x2|1/2/16, where the compo-

nents of x2 are the square of the components of x.

It can be shown that Model 1 satisfies condition (TCI) with ϕy(z) = y−1/ξ(z).

− Model 2: as defined in Section 2.2,

with the same choices for p and for the function g0 as before. Of course, condi-
tion (TCI) also holds for Model 2 with ϕy(z) = exp(−y−1/ξ(z)).

− Model 3: The p components of the random vector X are independent
and distributed as a normal random variable with mean 1/2 and standard
deviation 1/3. The conditional quantile of Y given X is, for α ∈ (0, 1)

Q(α | X) =

[
ln

(
1

1− α

)]−ξ1(g0(x)) [
1 + ξ2(g1(x)) exp

(
− 1

α

)]−1

,

with for z ∈ R,

ξ1(z) :=
1

2
+

3

2
min

{
1;

(
exp(2z)− 1

exp(8/3)− 1

)
+

}

and ξ2(z) := exp (5min{2; (z)+}}, (·)+ being the notation for the positive
part function.

For the dimension p and the functions g0 and g1 involved in this model, the
following choices are considered:

(S∗
2 ) setting (S2) for p and g0 and g1(x) = (1, 0)�x/2,

(S∗
3 ) setting (S3) for p and g0 and g1(x) = (1, 0, 0, 1)�x/2,

(S∗
4 ) setting (S4) for p and g0 and g1(x) = (1, 0, 0, 1, 1, 1, 0, 0)�x/2,

(S∗
5 ) setting (S5) for p and g0 and g1(x) = (0, 1, 0, 1)�x/2.
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For all x ∈ X and t > 0,

lim
α→0

Q(tα | x)
Q(α | x) = t−ξ1(g0(x)),

and thus the conditional distribution in Model 3 is heavy tailed with condi-
tional extreme value index ξ1(g0(x)). Again, one can show that for this model,
condition (TCI) is satisfied with ϕy(z) = y−1/ξ1(z).

i) Estimation of g0 − Let us first take a look at the finite sample performance
of the estimator of the function g0 defined in (12). The optimization problem
is solved by using a coordinate search method, see Hooke and Jeeves [18] and
Appendix B for more details. For the settings (S1) to (S4), the function g0 is
linear i.e., g0(x) = b�0 x for x ∈ R

p. In this case, the minimization (12) is achieved
over the set G = GL given in (7). For the setting (S5), g0(x) = |b�0 x2|1/2 and
the minimization is achieved over the set

GNL :=
{
g : Rp → R

p; g(x) = |b�x2|1/2; b ∈ Θp

}
,

with Θp := {b ∈ R
p with b�b = 1 and b�up > 0}. In all cases, the function g0

only depends on a vector b0 ∈ R
p and the minimization (12) is in fine achieved

over the set Θp. We denote by b̂0 the obtained estimator of b0. The distance d0
is then estimated by

d̂0(x, y) = |ĝ0(x)− ĝ0(y)| ,
where, for the settings (S1) to (S4), ĝ0(x) = b̂�0 x and, for the setting (S5),

ĝ0(x) = |̂b�0 x2|1/2.
Our estimator of b0 is compared to the one obtained with another dimension

reduction approach: the Slice Inverse Regression (SIR) method, see Li [21]. The
assumption behind SIR is the existence of a direction bSIR ∈ R

p such that the
projection b�SIRX captures all the information on Y . In other word, the condi-
tional distribution of Y given X is supposed to be the same as the conditional
distribution of Y given b�SIRX. The estimator b̂SIR of bSIR is the eigen vector

associated to the largest eigen value of the matrix Σ̂−1Γ̂ where Σ̂ is the sample
covariance matrix of X and Γ̂ is the sample version of Cov(E(Y | X)). The SIR
method is implemented in R, see https://cran.rproject.org/package=dr.

Roughly speaking, b̂�SIRX is the linear combination providing the best available
information on Y . A natural idea is then to select the nearest neighbors with
the data driven pseudo-distance

d̂SIR(x, y) =
∣∣∣̂b�SIR(x− y)

∣∣∣ .
To measure the performance of b̂0 and b̂SIR as estimators of b0, we use the
criterion

δ(̂b, b0) := (̂b− b0)
�(̂b− b0),

where b̂ is either b̂0 or b̂SIR. We replicate N = 2 000 times the original sample of
size n = 1000 in order to compute the empirical mean and standard deviation

https://cran.rproject.org/package=dr
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of this criterion. The results are gathered in Tables 3 to 5. For the 3 models, the
estimator b̂0 obtained by our approach is more accurate than the SIR estima-
tor b̂SIR. For Model 1 and Model 3, the linear combination b�0 X captures the
information on the tail distribution of Y but not on the whole distribution. This
can explains the difficulty for SIR to estimate the vector b0. For Model 2, the
conditional distribution of Y given X is the same as the one of Y given b�0 X.
Despite of this, the performance of SIR is very poor. This is due to the fact that
in this case, E(Y | X) is a symmetric function of b�0 X and it is well known, see
e.g., Cook and Weisberg [3], that SIR fails to recover the true direction b0 in
this case. Finally, SIR is clearly not adapted to setting (S5) since g0 is a non
linear function in this case.

ii) Behavior of the confidence interval − Our goal is to assess the finite
sample performance of the confidence interval for Q(αn | x0) defined in (3) when

the estimated distance d̂0 is used to select the nearest neighbors.
First, we are interested in the influence of the number kn of nearest neigh-

bors on the coverage probability. For a sample of size n = 1000 generated
from Model 1 with settings (S2) to (S5), the coverage probabilities are repre-
sented as a function of kn ∈ {10, . . . , 200} in Figure 4. The kn nearest neighbors

are selected with 3 different distances: our data driven distance d̂0, the ideal but
unknown distance d0 and the Euclidean distance. The conditional quantile level
is fixed to α = 8 ln(n)/n ≈ 0.055. It appears that the choice of kn is really less

crucial when one use the distances d̂0 or d0. We can also check again that the
selection of kn by the procedure described in Section 2.2 provides confidence
intervals with a coverage probability close to γ.

Table 3

For Model 1, values of the empirical mean and empirical standard deviation (into

brackets) of the criterion δ(̂b, b0) for b̂ = b̂0 and b̂ = b̂SIR.

p Settings δ(̂b0, b0) δ(̂bSIR, b0)

2 (S2)
0.0163 0.8239
(0.0233) (0.7690)

4 (S3)
0.0265 1.4173
(0.0235) (0.8272)

4 (S5)
0.1047 1.3996
(0.0905) (0.7996)

8 (S4)
0.0595 1.9960
(0.0412) (0.7113)

Let us now look at the influence of the sample size n. We generate samples
from Model 1 with n ∈ {100, . . . , 2000} and under setting (S3). The coverage
probabilities for the conditional quantileQ(αn | x0) with αn = [n−3/10 ln(n)]3/14

are represented on Figure 5 as a function of n. The estimated distance d̂0 and
the Euclidean distance are considered for the selection of the nearest neighbors.
As expected, when the distance d̂0 is used, the coverage probability converges
to γ as the sample size increases. This is not the case for the Euclidean distance.
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Table 4

For Model 2, values of the empirical mean and empirical standard deviation (into

brackets) of the criterion δ(̂b, b0) for b̂ = b̂0 and b̂ = b̂SIR.

p Settings δ(̂b0, b0) δ(̂bSIR, b0)

2 (S2)
0.0113 0.8491
(0.0161) (0.7659)

4 (S3)
0.0213 1.4474
(0.0189) (0.8163)

4 (S5)
0.0869 1.3904
(0.0793) (0.8045)

8 (S4)
0.0763 1.7531
(0.1918) (0.0959)

Table 5

For Model 3, values of the empirical mean and empirical standard deviation (into

brackets) of the criterion δ(̂b, b0) for b̂ = b̂0 and b̂ = b̂SIR.

p Settings δ(̂b0, b0) δ(̂bSIR, b0)

2 (S2)
0.1293 0.3404
(0.2071) (0.1012)

4 (S3)
0.269 1.4690

(0.3925) (0.1597)

4 (S5)
0.4637 1.6310
(0.5193) (0.1455)

8 (S4)
0.4501 1.7002
(0.3996) (0.1203)

Finally, in Tables 6 to 8, we compare the coverage probabilities obtained
under the 3 models and the 4 different settings for p and g0. The value of
the sample size is fixed to n = 1000 and the conditional quantile level to
α = 8 ln(n)/n ≈ 0.055. The nearest neighbors are selected with 4 distances:

d̂0, d̂SIR, d0 and the Euclidean distance de. For settings (S2) to (S4), replacing

the Euclidean distance by the estimated distance d̂0 leads to a significant im-
provement in the coverage probability. Note that for setting (S5), the estimation
of the non linear function g0 is more challenging, especially in Model 1, but
the obtained coverage probability remains better than the one obtained with
the Euclidean distance. Of course the best results are obtained for the unknown
distance d0 but they are generally close to the ones obtained with the estimated
distance d̂0. Finally, the coverage probabilities obtained by using the distance
d̂SIR are far from the preselected probability γ except forModel 3, setting (S2).
This was expected in view of the results presented in paragraph i).

4. Chicago air pollution data set

The Chicago air pollution data set, available on the R package NMMAPS Data

Lite, gathers the daily concentrations of different pollutants (ozone (O3), par-
ticular matter with diameter smaller than 10 microns or 25 microns (PM10 or
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Table 6

For Model 1, values of the coverage probabilities for n = 1000 and α = 8 ln(n)/n ≈ 0.055.

p Settings γ d̂0 d̂SIR d0 de

2 (S2)
0.9 0.8805 0.2675 0.9255 0.8040
0.95 0.9210 0.2980 0.9550 0.8530

4 (S3)
0.9 0.8665 0.0545 0.9235 0.6225
0.95 0.9060 0.0680 0.9510 0.6975

4 (S5)
0.9 0.7965 0.0000 0.8910 0.2470
0.95 0.8370 0.0000 0.9065 0.2990

8 (S4)
0.9 0.8895 0.1385 0.9345 0.5215
0.95 0.9260 0.1755 0.9615 0.6095

Table 7

For Model 2, values of the coverage probabilities for n = 1000 and α = 8 ln(n)/n ≈ 0.055.

p Settings γ d̂0 d̂SIR d0 de

2 (S2)
0.9 0.9205 0.4160 0.9275 0.8310
0.95 0.9445 0.4660 0.9530 0.8930

4 (S3)
0.9 0.8910 0.2190 0.9280 0.6430
0.95 0.9310 0.2810 0.9515 0.7200

4 (S5)
0.9 0.8550 0.0330 0.8820 0.4940
0.95 0.8840 0.0515 0.9030 0.5775

8 (S4)
0.9 0.9025 0.2655 0.9385 0.6230
0.95 0.9270 0.2950 0.9615 0.7190

Table 8

For Model 3, values of the coverage probabilities for n = 1000 and α = 8 ln(n)/n ≈ 0.055.

p Settings γ d̂0 d̂SIR d0 de

2 (S∗
2 )

0.9 0.8400 0.8135 0.9129 0.7960
0.95 0.8735 0.8520 0.9395 0.8095

4 (S∗
3 )

0.9 0.7510 0.4480 0.9030 0.5265
0.95 0.7890 0.4880 0.9340 0.5430

4 (S∗
5 )

0.9 0.8110 0.5000 0.9305 0.6235
0.95 0.8460 0.5645 0.9545 0.6375

8 (S∗
4 )

0.9 0.8840 0.7050 0.9330 0.6550
0.95 0.9055 0.7485 0.9505 0.6555

PM25), sulphur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO),
etc.) and some meteorology and mortality variables. The data were collected
in Chicago from 1987 to 2000 during n = 4841 days. This data set has been
studied by several authors in a dimension reduction context (e.g., Scrucca [26]
and Xia [29]) and, in an extreme value context, by Gardes [10].

We are interested in the conditional distribution of Y given X = x0 where Y
corresponds to the centered and normalized concentration of O3 (in parts per
billion) and X is the covariate vector of dimension p = 4 corresponding to the
centered and normalized daily maximum concentrations of PM10, SO2, NO2

and CO. As in Gardes [10], we assume that condition (TCI) holds with g0(x) =
b�0 x for x ∈ R

4.
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Fig 4. Simulated data. For Model 1, values of the coverage probabilities as a function of kn
with n = 1000 and αn = 8 ln(n)/n ≈ 0.055. The distances used for the nearest neighbors

selection are the Euclidean distance (Full line), the estimated distance d̂0 (dashed line) and
d0 (dotted line). Top panels: settings (S2) and (S3), bottom panels: settings (S4) and (S5).
The horizontal full line is the nominal probability γ = 0.9 and the dashed horizontal line
represents the coverage probability obtained with the selected value of kn.

The first step is the estimation of the vector b0 ∈ R
4. Two estimators are

considered: b̂0 as defined in (12) and the SIR estimator b̂SIR. The obtained
estimated vector are:

b̂0 = (0.198,−0.155, 0.963, 0.093)
�

and b̂SIR = (0.327,−0.085, 0.910,−0.238)
�
.

These two vectors are quite different but both of them show that the covari-
ate NO2 bring the most important information on large values of ozone con-
centration. This point has also been noted by Scrucca [26] or Gardes [10].We
construct the confidence interval for Q(α | x0) given in (3). For the selection of
the nearest neighbors, two distances are considered:
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d̂0(x, y) = |̂b�0 (x− y)| and d̂SIR(x, y) = |̂b�SIR(x− y)|.

Fig 5. Simulated data. For Model 1 with setting (S3), values of the coverage probabilities
as a function of the sample size n with αn = [n−3/10 ln(n)]3/14. The nearest neighbors are

selected with the estimated distance d̂0 (full line) and the Euclidean distance (dashed line).
The horizontal full line is the nominal probability γ = 0.9.

About the point of interest x0, two situations are investigated. For τ ∈ (0, 1),
let xPM10

0 (τ), xSO2
0 (τ), xNO2

0 (τ) and xCO
0 (τ) be the sample quantiles of order

1− τ of the values of PM10, SO2, NO2 and CO.
Situation 1 − x0 = (xPM10

0 (0.5), xSO2
0 (0.5), xNO2

0 (0.5), xCO
0 (0.5))�. This

value of x0 is quite close to a situation observed in Chicago during the pe-
riod 1987–2000 with moderate values of the four primary pollutants.

Situation 2 − x0 = (xPM10
0 (0.5), xSO2

0 (0.25), xNO2
0 (0.05), xCO

0 (0.05))� corre-
sponding to large values for NO2 and CO.

The quantile level α is taken between 8 ln(n)/n ≈ 0.014 and 64 ln(n)/n ≈
0.112. The number of nearest neighbors is chosen by the data driven proce-
dure (6). For instance for α = 8 ln(n)/n and under situation 2, the number of
nearest neighbors is 242. The value 0.014 for the quantile level is thus close
to 0 in that sense that 242 × 0.014 ≈ 3.39. Keep in mind that condition (4) in
Theorem 1 entails that knαn → ∞. The confidence intervals with preselected
probability γ = 0.9 are represented on Figure 6 as a function of α for the 2 val-
ues of x0 and by using the two distances d̂0 and d̂SIR. It appears that for α close
to 0, the confidence intervals obtained with d̂0 and d̂SIR are different. This dif-
ference is more important for situation 2 corresponding to large values for NO2

and CO. When the distance d̂0 is used, the length of the confidence interval
increases when the quantile level α decreases. This is an expected behavior of
confidence interval for extreme conditional quantiles. This is no longer the case
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when the distance d̂SIR is considered. Since our method is dedicated to right
tail of the distribution and in view of the results presented in the simulation
study, the use of d̂0 is preferable. Note also that, as pointed out in Gardes [10]
or Han et al. [17], very important ozone concentrations are more likely to be
observed for large concentrations of NO2 and CO.

Fig 6. Real data. Confidence intervals for Q(α | x0) with nominal probability γ = 0.9 as a

function of α ∈ [0.014, 0.112]. The nearest neighbors are selected with d̂0 (full line) and d̂SIR

(dashed line). The left panel corresponds to situation 1 and the right panel to situation 2.

Fig 7. Real data. Confidence intervals for Q(α | X) (in red) with nominal probability γ = 0.9

as a function of b̂�0 X. The nearest neighbors are selected with d̂0. The points are the values

of Y versus b̂�0 X. The left panel corresponds to α = 0.02 and the right panel to α = 0.05.

Finally, the confidence intervals obtained with the distance d̂0 are represented
on Figure 7 as a function of b̂�0 X along with the concentrations Y of ozone. Two
quantile levels are consider: αn = 0.02 and αn = 0.05. Be aware that what is
represented in Figure 7 are the point wise confidence intervals and not the
confidence bands for the function x �→ Q(αn | x), see the discussion in the next
section.
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5. Concluding remarks

As illustrated in the simulation study presented in Section 2.2, the construction
of confidence intervals for extreme conditional quantiles with large-dimensional
covariates is a difficult task. The main contribution of this paper is to propose
a method to construct confidence intervals in such situations. First, based on
the condition (TCI) introduced in Gardes [10], we reduce the dimension of the
covariate. This dimension reduction method is dedicated to the right tail of the
conditional distribution. Second, a nearest neighbors version of the order statis-
tics approach is used to obtain the confidence intervals. The nearest neighbors
are selected with a distance based on the reduced covariate rather than the clas-
sical Euclidean distance. The results obtained on simulated data show that the
dimension reduction step improve substantially the performance of the confi-
dence intervals when the quantile level is close to 0. This work can be continued
in at least two directions.

1) Condition (4) in Theorem 1 entails that knαn(1 − αn) → ∞. As a con-
sequence, αn cannot tend to 0 or 1 too fast and in particular, the conditional
quantile must be located inside the range of the kn nearest neighbors. In this
situation, the endpoints of the confidence interval are order statistics that can
be seen as nonparametric estimators of the conditional quantiles Q(αn,L | x0)
and Q(αn,R | x0) with αn,L = 1−Lγ(kn, αn)/kn and αn,R = 1−Rγ(kn, αn)/kn.
For an extreme conditional quantile Q(αn | x0) located outside the data range,
i.e., when knαn(1 − αn) → c ∈ [0,∞), the endpoints of the confidence interval
can no longer be order statistics. In such a case, a possible solution to construct
confidence intervals is to assume that the conditional distribution of Y given
X = x0 belongs to a given maximum domain of attraction. The endpoints of
the confidence intervals can then be obtained by extrapolating the conditional
quantiles Q(αn,L | x0) and Q(αn,R | x0) outside the data range. Extrapolated
estimators can be found for instance in Daouia et al. [4]. The main difficulty is
to establish the convergence of the coverage probability to γ; this is a work in
progress.

2) In this paper, we focus on point wise confidence intervals since x0 is fixed.
It would also be interesting to obtain confidence bands for extreme conditional
quantiles. Here the problem is to find a collection {(An,γ(x), Bn,γ(x)), x ∈ X}
of random variables such that

lim
n→∞

P {[An,γ(x), Bn,γ(x)] � Q(αn | x), for all x ∈ X} = γ,

or equivalently

lim
n→∞

P

{
max
x∈X

(Q(αn | x)−Bn,γ(x)) < 0;min
x∈X

(An,γ(x)−Q(αn | x)) > 0

}
= γ.

Proving such a convergence result is a difficult mathematical problem. As a
departure points, one can try to adapt some elements of the proof of Theorem 1
in Gardes and Stupfler [15] where a uniform consistency result is proven in an
extreme value framework.
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6. Proofs

6.1. Preliminaries results

In this section we give two useful results on Beta distribution. The probability
density function of a Beta distribution with parameters a and b is given by

fbeta(x; a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

I[0,1](x),

where Γ is the gamma function.

Lemma 1. For all m ∈ N \ {0} and α ∈ (0, 1),

argmax
j∈{1,...,m}

fbeta(α;m− j + 1, j) = m− �mα�.

Furthermore, if mn ∈ N \ {0} and αn ∈ (0, 1) are sequences such that mn → ∞
and mn(αn ∧ (1− αn)) → ∞ as n → ∞, then for all sequence εn such that

ε2n = o

(
1− αn

mnαn

)
,

and for αn,τ := αn(1 + τεn), there exist 0 < c1 < c2 such that for n large
enough,(

αn(1− αn)

mn

)1/2

max
j∈{1,...,mn}

sup
τ∈[−1,1]

fbeta(αn,τ ;mn − j + 1, j) ∈ [c1, c2].

Proof. For m ∈ N \ {0} and α ∈ (0, 1), let

aj := fbeta(α;m− j + 1, j) =
m!

(j − 1)!(m− j)!
αm−j(1− α)j−1.

It is easy to check that for all j ∈ {1, . . . ,m− 1},

aj+1

aj
=

m− j

j

1− α

α
.

Hence, aj+1/aj ≥ 1 if and only if j ≤ m(1 − α), proving the first part of the
Lemma. To prove the second part, we start with

max
j∈{1,...,mn}

sup
τ∈[−1,1]

fbeta(αn,τ ;mn − j + 1, j)
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= sup
τ∈[−1,1]

fbeta (αn,τ ; �mnαn,τ�+ 1,mn − �mnαn,τ�) .

In order to study the factor

mn!

(�mnαn,τ�)!(mn − �mnαn,τ� − 1)!
,

appearing in the expression of fbeta (αn,τ ; �mnαn,τ�+ 1,mn − �mnαn,τ�), we
use the Stirling’s bounds given for all r ∈ N \ {0} by

√
2πrr+1/2e−r ≤ r! ≤

rr+1/2e1−r (see for instance Feller [8, Paragraph 2.9]).
First, taking r = mn leads to

√
2πm1/2+mn

n e−mn ≤ mn! ≤ m1/2+mn
n e1−mn . (13)

Next, using the Stirling’s bounds with r = �mnαn,τ� yields to
√
2πsn ≤

(�mnαn,τ�)! ≤ e× sn with

sn :=
(mnαn,τ )

�mnαn,τ	+1/2

e�mnαn,τ	

(
�mnαn,τ�
mnαn,τ

)1/2+�mnαn,τ	
.

It is easy to check that for all τ ∈ [−1, 1],

1− 1

mnαn(1− εn)
≤ �mnαn,τ�

mnαn,τ
≤ 1,

and �mnαn,τ� ≤ mnαn(1 + εn). As a consequence, one has for all τ ∈ [−1, 1]
and for n large enough that,

1

2e
≤
(
1− 1

mnαn(1− εn)

)1/2+mnαn(1+εn)

≤
(
�mnαn,τ�
mnαn,τ

)1/2+�mnαn,τ	
≤ 1.

Note that the first inequality is due to the fact that(
1− 1

mnαn(1− εn)

)1/2+mnαn(1+εn)

→ e−1,

since by assumption mnαn → ∞ and εn → 0. We finally get that for n large
enough and all τ ∈ [−1, 1],√

π

2

(mnαn,τ )
1/2+�mnαn,τ	

e�mnαn,τ	+1
≤ (�mnαn,τ�)! ≤

(mnαn,τ )
1/2+�mnαn,τ	

e�mnαn,τ	−1
. (14)

Finally, the Stirling’s bounds applied to r = mn − �mnαn,τ� − 1 leads to√
2πtn ≤ (mn − �mnαn,τ� − 1)! ≤ e× tn with

tn :=
(mn(1− αn,τ ))

mn−�mnαn,τ	−1/2

emn−�mnαn,τ	−1

(
mn − �mnαn,τ� − 1

mn(1− αn,τ )

)mn−�mnαn,τ	−1/2

.
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Remark that for all τ ∈ [−1, 1],

1− 1

mn(1− αn − αnεn)
≤ mn − �mnαn,τ� − 1

mn(1− αn,τ )
≤ 1.

Furthermore, since by assumption(
αnεn
1− αn

)2

= o

(
αn

mn(1− αn)

)
= o(1),

one has for n large enough that

1− αn − αnεn = (1− αn)

(
1− αnεn

1− αn

)
≥ 1− αn

2
.

As a consequence, we get

1− 1

2mn(1− αn)
≤ mn − �mnαn,τ� − 1

mn(1− αn,τ )
≤ 1.

Since (
1− 1

2mn(1− αn)

)mn−�mnαn,τ	−1/2

→ e−1/2,

we obtain the inequality

1

2e1/2
≤
(
mn − �mnαn,τ� − 1

mn(1− αn,τ )

)mn−�mnαn,τ	−1/2

≤ 1

leading to √
π

2

(mn(1− αn,τ ))
mn−�mnαn,τ	−1/2

emn−�mnαn,τ	−1/2
≤ (mn − �mnαn,τ� − 1)!

≤ (mn(1− αn,τ ))
mn−�mnαn,τ	−1/2

emn−�mnαn,τ	−2
. (15)

Gathering (13), (14) and (15) yields to

√
2π

e3

(
mn

αn,τ (1− αn,τ )

)1/2

≤ fbeta (αn,τ ; �mnαn,τ�+ 1,mn − �mnαn,τ�)

≤ 2

π
e3/2 ×

(
mn

αn,τ (1− αn,τ )

)1/2

.

Finally, since for all τ ∈ [−1, 1], |αn,τ/αn − 1| ≤ εn → 0 and |(1 − αn,τ )/(1 −
αn) − 1| ≤ αnεn/(1 − αn) → 0, αn(1 − αn)/2 ≤ αn,τ (1 − αn,τ ) ≤ 2αn(1 − αn)

and the proof is complete by letting c1 :=
√
π/2e−1 and c2 := 4e. �
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Lemma 2. Let mn and αn ∈ (0, 1) be two sequences such that mn → ∞ and

δ2n :=
ln2(mn)

mnαn(1− αn)
→ 0, (16)

as n → ∞. For all γ ∈ (0, 1), one has 1 ≤ Lγ(mn, αn) ≤ Rγ(mn, αn) ≤ mn.
Furthermore,

Fbeta(αn;mn − Lγ(mn, αn) + 1,Lγ(mn, αn)) =
1− γ

2
+O (δn) (17)

and Fbeta(αn;mn −Rγ(mn, αn)+ 1,Rγ(mn, αn)) = 1− 1− γ

2
+O (δn) . (18)

Proof. Remark that since mn → ∞, condition (16) entails that mn(αn ∧ (1 −
αn)) → ∞. Hence, since the function j → Fbeta(α;mn − j + 1, j) is increasing
for all α ∈ (0, 1)

max
j=1,...,mn

Fbeta(αn;n− j + 1, j) = Fbeta(αn; 1,mn) = 1− (1− αn)
mn → 1,

as n → ∞ and, using the inequality ln(x) ≤ x− 1 that holds for all x ∈ [0, 1]

min
j=1,...,mn

Fbeta(αn;n− j + 1, j) = Fbeta(αn;mn, 1) = αmn
n

= exp[mn ln(αn)] ≤ exp[−mn(1− αn)] → 0.

Hence, for n large enough,{
j ∈ {1, . . . ,mn}; Fbeta(αn;mn − j + 1, j) ≤ 1− γ

2

}
�= ∅,

and {
j ∈ {1, . . . ,mn}; Fbeta(αn;mn − j + 1, j) ≥ 1− 1− γ

2

}
�= ∅.

This conclude the first part of the proof.
We now prove (17). The proof of (18) is similar and is thus omitted. The

definition of Lγ(mn, αn) ensures that

0 ≤ 1− γ

2
− Fbeta(αn;mn − Lγ(mn, αn) + 1,Lγ(mn, αn)) ≤ Dn(Lγ(mn, αn))

where Dn(mn) := 1− Fbeta(αn; 1,mn) and for j = 1, . . . ,mn − 1,

Dn(j) := Fbeta(αn;mn − j, j + 1)− Fbeta(αn;mn − j + 1, j).

Hence to prove (17) it suffices to show that

max
j=1,...,mn

Dn(j) = O
(

ln(mn)

[mnαn(1− αn)]1/2

)
. (19)
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First, Dn(mn) = (1 − αn)
mn . Using the inequality (1 − u)ξ ≤ exp(−ξu) that

holds for all u ∈ (0, 1) and ξ > 0 and the fact that 1− αn ∈ (0, 1), we get that

Dn(mn)[mnαn(1− αn)]
1/2

ln(mn)
≤ exp(−mnαn)(mnαn)

1/2

ln(mn)
→ 0,

as n → ∞. We thus have shown that

Dn(mn) = o

(
ln(mn)

[mnαn(1− αn)]1/2

)
. (20)

Now, let U1, . . . , Umn be mn independent standard uniform random variables
and let U1,mn ≤ . . . ≤ Umn,mn be the corresponding order statistics. It is well
known that for all j ∈ {1, . . . ,mn}, the order statistic Uj,mn follows a beta
distribution with parameters j and mn − j + 1. Hence, for all j = 2, . . . ,mn

Dn(mn − j + 1) = P[Uj−1,mn ≤ αn]− P[Uj,mn ≤ αn]

≤ P

[
Uj,mn ≤ αn + max

j=2,...,mn

(Uj,mn − Uj−1,mn)

]
− P[Uj,mn ≤ αn].

Let

An :=

{
max

j=2,...,mn

(Uj,mn − Uj−1,mn) ≤ 2
ln(mn)

mn

}
and An :=

{
max

j=2,...,mn

(Uj,mn − Uj−1,mn) > 2
ln(mn)

mn

}
.

It is easy to check that

Dn(mn − j + 1) ≤ P

[{
Uj,mn ≤ αn + max

j=2,...,mn

(Uj,mn − Uj−1,mn)

}
∩An

]
− P[Uj,mn ≤ αn] + P(An)

≤ D(1)
n (mn − j + 1) + P(An), (21)

with

D(1)
n (mn − j + 1) := P

[
Uj,mn ≤ αn + 2

ln(mn)

mn

]
− P[Uj,mn ≤ αn].

Using the mean value theorem, for all j = 2, . . . ,mn, there exists θn,j ∈ (0, 1)
such that

D(1)
n (mn − j + 1) = 2

ln(mn)

mn
fbeta

(
αn + 2θn,j

ln(mn)

mn
; j,mn − j + 1

)
.

Under (16), the second part of Lemma 1 entails that

max
j=2,...,mn

D(1)
n (mn − j + 1) = O

(
ln(mn)

[mnαn(1− αn)]1/2

)
. (22)
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It remains now to deal with the probability P(An). Let E1, . . . , Emn+1 be in-
dependent standard exponential random variables. From Rényi’s representation
theorem,

P(An) = P

(
max

j=2,...,mn

Ej

E1 + . . .+ Emn+1
> 2

ln(mn)

mn

)
.

Let Tmn+1 := (E1 + . . . + Emn+1)/(mn + 1). From the law of large numbers,

Tmn+1
a.s.−→ 1 and thus, for all η ∈ (0, 1/4), there exists Nη ∈ N \ {0} such that

for all n ≥ Nη, P(Tmn+1 > 1− η) = 1. As a consequence, for n ≥ Nη

P(An) = P

({
Emn−1,mn−1 > 2

(mn + 1) ln(mn)

mn
Tmn+1

}
∩ {Tmn+1 > 1− η}

)
≤ P

(
Emn−1,mn−1 > 2(1− η)

(mn + 1) ln(mn)

mn

)
∼ m2η−1

n .

Since for η ∈ (0, 1/4),

m2η−1
n = o

(
ln(mn)

[mnαn(1− αn)]1/2

)
,

we have shown that

P(An) = O
(

ln(mn)

[mnαn(1− αn)]1/2

)
. (23)

By gathering (20), (21), (22) and (23) we get (19) and the proof is complete. �

For i = 1, . . . , n, let Vi := S(Yi | Xi) and V
(x0)
i := S(Y

(x0)
i | X(x0)

i ).

Lemma 3. i) The random variables V1, . . . , Vn are independent standard uni-
form random variables. Furthermore, they are independent from X1, . . . , Xn.

ii) The random variables V
(x0)
1 , . . . , V

(x0)
n are independent standard uniform

random variables.

Proof. i) Since the random pairs {(Xi, Yi), i = 1, . . . , n} are independent copies
of (X,Y ), the random variables V1, . . . , Vn are n independent copies of V =
S(Y | X). Now, for all t ∈ [0, 1], denoting by fX the probability density function
of X,

P(V ≤ t) =

∫
P[S(Y | x) ≤ t | X = x]fX(x)dx =

∫
S[Q(t | x) | x]fX(x)dx = t,

and thus V is a standard uniform random variable. To prove that the random
variables V1, . . . , Vn are independent form X1, . . . , Xn, it suffices to prove that
X and V are independent. Let A ∈ B(Rp) and t ∈ [0, 1],

P[{V ≤ t} ∩ {X ∈ A}] =
∫

P[{Y ≥ Q(t | x)} ∩ {x ∈ A} | X = x]fX(x)dx
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= t

∫
IA(x)fX(x)dx = tP[X ∈ A],

proving the independence.
ii) Let (t1, . . . , tn) ∈ [0, 1]n. Let Σn be the set of the permutations of {1, . . . , n}.

One has that P[{V (x0)
1 ≤ t1} ∩ . . . ∩ {V (x0)

n ≤ tn}] is equal to∑
σ∈Σn

P
[{

Vσ(1) ≤ t1, . . . , Vσ(n) ≤ tn
}
∩
{
‖Xσ(1) − x0‖ ≤ . . . ≤ ‖Xσ(n) − x0‖

}]
From i), since the standard uniform random variables V1, . . . , Vn are independent
form X1, . . . , Xn,

P[{V (x0)
1 ≤ t1} ∩ . . . ∩ {V (x0)

n ≤ tn}]
=

∑
σ∈Σn

P
[
Vσ(1) ≤ t1, . . . , Vσ(n) ≤ tn

]
P
[
‖Xσ(1) − x0‖ ≤ . . . ≤ ‖Xσ(n) − x0‖

]
= t1 . . . tn

∑
σ∈Σn

P
[
‖Xσ(1) − x0‖ ≤ . . . ≤ ‖Xσ(n) − x0‖

]
= t1 . . . tn,

and the proof is complete. �

6.2. Proofs of main results

Proof of Theorem 1. Using the notations introduced in Lemma 3, we start with

P[Y
(x0)
j,kn

≤ Q(αn | x0)] = P

[
kn∑
i=1

I(Q(αn|x0),∞)(Y
(x0)
i ) ≤ kn − j

]

= P

[
kn∑
i=1

I
(−∞,S[Q(αn|x0)|X(x0)

i ])
(V

(x0)
i ) ≤ kn − j

]

Let εn := ω1/2(αn, hn;x0). Since for all i = 1, . . . , kn,

αn(1− εn) ≤ S[Q(αn | x0) | X(x0)
i ] ≤ αn(1 + εn),

one has that

P

[
kn∑
i=1

I(−∞,αn(1+εn))(V
(x0)
i ) ≤ kn − j

]
≤ P[Y

(x0)
j,kn

≤ Q(αn | x0)]

≤ P

[
kn∑
i=1

I(−∞,αn(1−εn))(V
(x0)
i ) ≤ kn − j

]
.

Remarking that from Lemma 3, ii)

P

[
kn∑
i=1

I(−∞,αn(1±εn))(V
(x0)
i ) ≤ kn − j

]
= P

[
V

(x0)
kn−j+1,kn

> αn(1± εn)
]
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= F beta(αn(1± εn); kn − j + 1, j),

where for all a > 0 and b > 0, F beta(·; a, b) = 1− Fbeta(·; a, b), one has

F beta(αn(1 + εn); kn − j + 1, j) ≤ P[Y
(x0)
j,kn

≤ Q(αn | x0)]

≤ F beta(αn(1− εn); kn − j + 1, j).

Using the mean value theorem, for all j = 1, . . . , kn, there exists τ
(+)
n,j ∈ (0, 1)

and τ
(−)
n,j ∈ (0, 1) such that

Rn(τ
(+)
n,j ;x0) ≤ P[Y

(x0)
j,kn

≤ Q(αn | x0)]− F beta(αn; kn − j + 1, j) ≤ Rn(τ
(−)
n,j ;x0),

where Rn(τ
(±)
n,j ;x0) := ∓αnεnfbeta(αn(1±τ

(±)
n,j εn; kn−j+1, j)). Hence, Lemma 1

leads to

P[Y
(x0)
j,kn

≤ Q(αn | x0)] = F beta(αn; kn − j + 1, j) +O
(
εn

(
knαn

1− αn

)1/2
)
,

uniformly on j = 1, . . . , kn. We conclude the proof by applying Lemma 2 with
mn = kn. �
Proof of Proposition 1. Let

n∑
i=1

I(−∞,hn)(de(Xi, x0))

be the number of covariates in the ball of radius hn = (2kn/[nfX(x0)])
1/p and

center x0. To prove Proposition 1, it suffices to show that for n large enough,
P[Nn ≥ kn] = 1. From Dony and Einmahl [6, Corollary 2.1] (see also Gardes et

al. [14, Lemma 2]), since nhp
n/[ln lnn] → ∞, one as Nn/(nh

p
n)

a.s.−→ fX(x0).
Hence, for n large enough,

P

[
Nn

nhp
n
>

fX(x0)

2

]
= 1.

The end of the proof is straightforward. �
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Appendix A: Theoretical justification of ĝn,0

A.1. Main results

In this section, we give a theoretical justification for the expression of the esti-
mator of g0 defined in (12). The proofs of the results given in Section A.1 are
postponed to Section A.2. Let us first introduce the following additional condi-
tion on the function ϕy involved in (TCI). In what follows, we denote by X0 the
support of g0(X) where g0 satisfies condition (TCI).

(H1) The function ϕy is continuous. Furthermore, there exist J ∈ N \ {0}, a
collection I1, . . . , IJ of non-overlapping intervals covering X0 and y0 ∈ R,
such that for all y ≥ y0 and j ∈ {1, . . . , J}, the function ϕy admits on Ij
a unique local maximum point z∗j such that z∗j is an interior point of Ij .

This condition entails that for y large enough, the function ϕy admits a fi-
nite number of local maximum points. Assuming that (H1) holds, the following
condition on the non-overlapping intervals S1,g, . . . ,SH,g is required.
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(H2) There exists H0 ∈ N \ {0} such that for all H ≥ H0 and j ∈ {1, . . . , J},

z∗j ∈
H⋃

h=1

S̊h,g0

where I̊ is the interior of the interval I.

Hence, under (H1) and (H2) and for a sufficiently large number of intervals
Sh,g0 , the J local maximum points of ϕy belong to the interior of an interval
Sh,g0 . A supplementary condition on the distribution of (X,Y ) is also required.
Let C ⊂ X such that P(X ∈ C) > 0. For all y and t ∈ (0, 1), let py(· | C) be the
survival function of S(y | X) given X ∈ C (py(t | C) := P[S(y | X) > t | X ∈ C]).
The associated quantile function is denoted by qy(· | C) := inf{t; py(t | C) ≤ ·}.
(H3) For all (η, d) ∈ (0, 1)2,

lim
y→∞

qy(η | C)
qy(dη | C) = 0.

Condition (H3) entails that the observations of g0(X) given that Y > y and
g0(X) ∈ C are located, for y large enough, on a small probability. More specifi-
cally, we have the following result.

Lemma 4. Let g0 be a function satisfying condition (TCI). For a given inter-
val I0 ⊂ R such that P(X ∈ g−1

0 (I0)) > 0, assume that condition (H3) holds for
C0 := g−1

0 (I0) then, for all ε ∈ (0, 1),

P[g0(X) ∈ By,ε | X ∈ C0] ≤ ε

and lim
y→∞

P [g0(X) ∈ By,ε | {X ∈ C0} ∩ {Y > y}] = 1,

where By,ε := {z ∈ I0; ϕy(z) ≥ qy(ε/2 | C0)}.
Condition (H3) is satisfied for instance by conditional heavy-tailed distribu-

tions defined for all x ∈ X by S(y | x) := y−1/γ(x)L(y | x), where γ is a positive
function and for all x ∈ X , L(· | x) is a slowly varying function. This is the
object of the following result.

Lemma 5. Let us consider the random vector (X,Y ) such that for y > 0 and
x ∈ X ⊂ R

p, S(y | x) = y−1/γ(x)L(y, x), where γ is a positive function defined
on X and for all x ∈ X , L(· | x) is a slowly varying function. Let C ⊂ X with
P(X ∈ C) > 0. If the cumulative distribution of γ(X) given X ∈ C is continuous
and if

lim
y→∞

sup
x∈C

lnL(y, x)
ln y

= 0 (24)

then condition (H3) holds.

We are now in position to provide a theoretical justification of (12). As in
Section 3.2, we denote by Eh,g0(y) the Gini-type measure

E
[
|g0(X)− g0(X

∗)| | min(Y, Y ∗) > y; (g0(X), g0(X
∗)) ∈ S2

h,g0

]
,

where (X∗, Y ∗) is an independent copy of (X,Y ).
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Proposition 2. Assume that there exists a function g0 satisfying condition
(TCI) and such that g0(X) admits a density function f0. If there exists m > 0
such that f0(x) ≥ m for all x ∈ X0, if condition (H3) holds for all C = g−1

0 (I)
where I ⊂ X0 is an interval then, for all υ > 0, one has under (H1) and (H2)
that

lim
y→∞

∑
h∈JH,y(υ)

Eh,g0(y) = 0 and lim
y→∞

card(JH,y(υ)) ≤ J, (25)

where JH,y(υ) := {h ∈ {1, . . . , H}; P(g0(X) ∈ Sh,g0 | Y > y) > υ}.
The result given by (25) appears clearly as a theoretical justification of our

estimation procedure.

A.2. Proofs of the results

Proof of Lemma 4. To not overload the equations, we write in the rest of the
proof py(· | C0) =: py,0(·). The corresponding quantile function is denoted
qy,0(·) = inf{t; py,0(t) ≤ ·}. Note also that {X ∈ C0} = {g0(X) ∈ I0}.

Let us prove first that P(g0(X) ∈ By,ε | g0(X) ∈ I0) ≤ ε. We start with

P({g0(X) ∈ By,ε} ∩ {g0(X) ∈ I0})

= P

({
S(y | X) ≥ qy,0(ε/2)

S(y | X)

ϕy(g0(X))

}
∩ {X ∈ C0}

)
.

From (TCI), for all δ > 0, there exists y0 such that for all y ≥ y0,

1− δ ≤ S(y | X)

ϕy(g0(X))
≤ 1 + δ, (26)

almost surely. Hence, for y ≥ y0,

P ({S(y | X) ≥ (1 + δ)qy,0(ε/2)} ∩ {X ∈ C0})
≤ P({g0(X) ∈ By,ε} ∩ {g0(X) ∈ I0})
≤ P ({S(y | X) ≥ (1− δ)qy,0(ε/2)} ∩ {X ∈ C0}) .

Since py,0 is the survival function of S(y | X) given X ∈ C0, we have for y ≥ y0,

py,0 ((1 + δ)qy,0(ε/2)) ≤ P[g0(X) ∈ By,ε | g0(X) ∈ I0] ≤ py,0 ((1− δ)qy,0(ε/2)) .

Now, since (H2) holds with C0, there exists y1 such that for y ≥ y1,

qy,0(ε)

qy,0(ε/2)
< 1− δ and

qy,0(ε/4)

qy,0(ε/2)
> 1 + δ.

Hence, qy,0(ε) < (1− δ)qy,0(ε/2) and by applying the non-increasing and right-
continuous function py,0, one has that ε ≥ py,0 ((1 + δ)qy,0(ε/2)). In the same
way, ε/4 ≤ py,0 ((1 + δ)qy,0(ε/2)). As a consequence, for y ≥ max(y0, y1),

ε/4 ≤ P[g0(X) ∈ By,ε | g0(X) ∈ I0] ≤ ε,
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proving the first part of the lemma. Now, let us prove that πy(ε) := P(g0(X) ∈
By,ε | {g0(X) ∈ I0} ∩ {Y > y}) converges to 1 as y → ∞. It suffices to prove
that πy(ε)/πy(ε) → ∞ as y → ∞ where πy(ε) = 1 − πy(ε). First, denoting by
BC

y,ε = I0 \By,ε the complement of the set By,ε in I0,

πy(ε) =
1

P({Y > y} ∩ {g0(X) ∈ I0})

∫
X
IBC

y,ε
(g0(x))S(y | x)fX(x)dx.

Using (26) and the fact that ϕy(g0(x)) ≤ qy,0(ε/2) for g(x) ∈ BC
y,ε, one has for

y ≥ max(y0, y1) that

πy(ε) ≤
(1 + δ)(1− ε/4)

P(Y > y | g0(X) ∈ I0)
qy,0(ε/2).

Next using similar arguments and the fact that By,ε/2 ⊂ By,ε,

πy(ε) ≥ 1

P({Y > y} ∩ {g0(X) ∈ I0})

∫
X
IBy,ε/2

(g(x))S(y | x)fX(x)dx

≥ (1− δ)ε/8

P(Y > y | g0(X) ∈ I0)
qy,0(ε/4).

The proof is then complete by using condition (H2). �

Proof of Lemma 5. For all y and t ∈ (0, 1), let us introduce the set Ay(t) :=
{x ∈ X ;S(y | x) > t}. One has

Ay(t) =

{
x ∈ X ; γ(x) >

(
− ln t

ln y
+

lnL(y, x)
ln y

)−1
}
.

Condition (24) entails that for all δ > 0, there exists yδ such that for all y > yδ,
A−

y (t) ⊂ Ay(t) ⊂ A+
y (t) with

A±
y (t) :=

{
x ∈ X ; γ(x) ≥

(
− ln t

ln y
± δ

)−1
}
.

Hence, denoting by G the survival function of γ(X) given that X ∈ C, one has
for all y and t ∈ (0, 1)

G

[(
− ln t

ln y
− δ

)−1
]
≤ py(t | C) ≤ G

[(
− ln t

ln y
+ δ

)−1
]
. (27)

Let G← be the generalized inverse of G. For (η, d) ∈ (0, 1)2, replacing t by
y−1/G←(η)−δ in the first inequality leads to py(y

−1/G←(dη)−δ | C) ≥ dη. Applying
the function qy(· | C) (the inverse of py(· | C)) conducts us to the inequality

y−1/G
←

(dη)−δ ≤ qy(dη | C). Similarly, using the second inequality in (27), one
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has for η ∈ (0, 1) that y−1/G
←

(η)+δ ≥ qy(η | C). Gathering these inequalities
yields

qy(dη | C)
qy(η | C) ≤ y1/G

←(dη)−1/G←(η)+2δ.

This inequality is true for all δ > 0. Since G is continuous, one can take

0 < δ <
1

2

(
1

G←(dη)
− 1

G←(η)

)
,

to conclude the proof. �

Proof of Proposition 2. Let j ∈ {1, . . . , J} where J is defined in condition (H1)
and for y ∈ R let

Ej(y) := E
[
|g0(X)− g0(X

∗)| | min(Y, Y ∗) > y; (g0(X), g0(X
∗)) ∈ I2j

]
.

The first step of the proof consists in showing that

lim
y→∞

Ej(y) = 0. (28)

Let us introduce the following measurable sets:Ay := {Y > y};A∗
y := {Y ∗ > y};

Bj := {g0(X) ∈ Ij} and B∗
j := {g0(X∗) ∈ Ij}, where (X∗, Y ∗) is an independent

copy of (X,Y ). For all ε > 0, let By,ε = {z ∈ Ij ; ϕy(z) ≥ qy(ε/2 | Cj)} where
Cj := g−1

0 (Ij). Finally, let Bj,∈ := {g0(X) ∈ By,ε}. Before proving (28), let us
give some results on the previous defined sets. From Lemma 4,

P[Bj,∈ | Bj ] ≤ ε, (29)

and

lim
y→∞

P[Bj,∈ | Bj ∩ Ay] = 1. (30)

Since on Ij , ϕy admits a unique maximum point z∗j in the interior of Ij , By,ε

is an interval included in Ij and containing z∗j . Since f0(x) ≥ m for all x ∈ X0,
conditions (29) conducts to

m× l(By,ε) ≤
∫
By,ε

f0(x)dx ≤ εP(Bj).

As a consequence,

P

[
|g0(X)− z∗j | ≤

εP(Bj)

m

∣∣∣∣Bj,∈

]
= 1. (31)

We are now in position to prove (28). For y ∈ R,

Ej(y) =
E[|g0(X)− g0(X

∗)|IBj∩B∗
j∩Ay∩A∗

y
]

[P(Ay ∩ Bj)]2
.
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Remarking that |g0(X) − g0(X
∗)| = g0(X) + g0(X

∗) − 2min(g0(X), g0(X
∗)),

one has

Ej(y) =
2

[P(Ay ∩ Bj)]2
[T1,y − T2,y] , (32)

where

T1,y := P(Bj ∩ Ay)E[g0(X)IBj∩Ay

and T2,y := E[min(g0(X), g0(X
∗))IBj∩B∗

j∩Ay∩A∗
y
].

Let us first focus on the term T1,y. We start with

T1,y = P(Bj ∩ Ay)
[
E(g0(X)IBj,∈∩Ay ) + E(g0(X)IBj,/∈∩Ay )

]
,

where Bj,/∈ = Ij \ Bj,∈. From (31), and since Bj,∈ ⊂ Bj ,

E(g0(X)IBj,∈∩Ay ) ≤
(
z∗y +

εP(Bj)

m

)
P(Bj,∈ ∩ Ay)

≤ P(Bj ∩ Ay)

(
z∗yP(Bj,∈ | Bj ∩ Ay) +

εP(Bj)

m

)
.

From (30), for all ε > 0, there exists y1,ε ∈ R such that for all y > y1,ε,
1 − ε ≤ P[Bj,∈ | Bj ∩ Ay] ≤ 1 + ε. Furthermore, since By,ε is a closed interval,
there exists cj > 0 such that |z∗j | ≤ cj and thus, z∗jP(Bj,∈ | Bj ∩Ay) ≤ z∗j + εcj .
Hence,

E(g0(X)IBj,∈∩Ay ) ≤ P(Bj ∩ Ay)

(
z∗j + εcj +

εP(Bj)

m

)
. (33)

Moreover, for all y > y1,ε

E(g0(X)IBj,/∈∩Ay ) ≤ cjP[Bj,/∈ ∩ Ay] = cjP[Bj ∩ Ay]P[Bj,/∈ | Bj ∩ Ay]

≤ cjεP[Bj ∩ Ay] (34)

Gathering (33) and (34) yield to

T1,y ≤ [P(Bj ∩ Ay)]
2

[
z∗j + ε

(
2cj +

P(Bj)

m

)]
(35)

for all y > y1,ε. Let us now focus on the term T2,y. We start with the decompo-

sition T2,y = T
(1)
2,y + 2T

(2)
2,y + T

(3)
2,y where

T
(1)
2,y := E

[
min(g0(X), g0(X

∗))IBj,∈∩B∗
j,∈∩Ay∩A∗

y

]
,

T
(2)
2,y := E

[
min(g0(X), g0(X

∗))IBj,∈∩B∗
j,/∈∩Ay∩A∗

y

]
,

and
T

(3)
2,y := E

[
min(g0(X), g0(X

∗))IBj,/∈∩B∗
j,/∈∩Ay∩A∗

y

]
.
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First, from (31) and since Bj,∈ ⊂ Bj ,

T
(1)
2,y ≥

(
z∗j − εP(Bj)

m

)
[P(Bj,∈ ∩ Ay)]

2

≥ [P(Bj,∈ ∩ Ay)]
2

(
z∗jP(Bj,∈ | Bj ∩ Ay)−

εP(Bj)

m

)
.

Using the same arguments than those leading to (33), we obtain

T
(1)
2,y ≥ [P(Bj ∩ Ay)]

2

(
z∗j − εcj −

εP(Bj)

m

)
. (36)

Now, using (29), one has for y > y1,ε,

T
(2)
2,y ≥ −cjP(Bj,∈ ∩ Ay)P(B∗

j,/∈ ∩ A∗
y)

= −cj [P(Bj ∩ Ay)]
2
P(Bj,∈ | Bj ∩ Ay)P(Bj,/∈ | Bj ∩ Ay)

≥ cjε[P(Bj ∩ Ay)]
2. (37)

Finally, from (31), one has for y > y1,ε

T
(3)
2,y ≥ −cj [P(Bj,∈ ∩ Ay)]

2 ≥ −cjε
2[P(Bj ∩ Ay)]

2. (38)

Collecting (36), (37) and (38) yield to

T2,y ≥ [P(Bj ∩ Ay)]
2

(
z∗j − ε

P(Bj)

m
+ εcj + cjε

2

)
, (39)

for all ε > 0 and y > y1,ε. Gathering (32), (35) and (39) conduct to

Ej(y) ≤ 2ε

(
cj + 2

P(Bj)

m
− cjε

)
,

proving (28) since ε can be chosen arbitrarily small.
Let us show now that card(JH,y(υ)) ≤ J as y → ∞. Conditions (H1) and (H2)

entail that there exist h∗
1, . . . , h

∗
J such that for all j ∈ {1, . . . , J}, z∗j ∈ Sh∗

j ,g0
⊂

Ij . Furthermore, taking

ε ≤ min
j∈{1,...,J}

P(g0(X) ∈ Sh∗
j ,g0

),

conditions (29) and (30) entail that for all υ > 0, there exists y2 ∈ R such that
for all y ≥ y2 and h /∈ {h∗

1, . . . , h
∗
J},

P(g0(X) ∈ Sh,g0 | Ay) ≤ υ,

showing that card(JH,y(υ)) ≤ J .
Finally, mimicking the proof of (28), it is easy to check that Eh,g0(y) → 0 as

y → ∞ for all h ∈ {h∗
1, . . . , h

∗
J} ⊃ JH,y(υ). �
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Appendix B: Coordinate search method

We present here the coordinate search algorithm to solve the minimization prob-
lem:

min
x∈Rp

Φ(x),

where Φ : Rp → R can be any complicated function. Let D := [Ip,−Ip] be the
p × 2p matrix where Ip is the p × p identity matrix. For i ∈ {1, . . . , 2p}, we
denote by Di the ith column of D.

Initialization − Let x∗
0 ∈ R

p be an initial guess of the solution. The setting
parameters of the algorithm are: α0 > 0, 0 < αtol < α0 and ζ ∈ (0, 1). Let
k ∈ N.

Step k − If αk ≤ αtol then STOP. Else,

• if
Φ(x∗

k) ≤ min
i=1,...,2p

Φ (x∗
k + αkDi)

then x∗
k+1 = x∗

k and αk+1 = ζαk. Go to Step k + 1.
• if

Φ(x∗
k) > min

i=1,...,2p
Φ (x∗

k + αkDi)

then αk+1 = ζ−1αk and

x∗
k+1 = argmin {Φ(x); x ∈ {x∗

k + αkD1, . . . , x
∗
k + αkD2p}} .

Go to Step k + 1.

This algorithm is used to solve (12). Recall that in Section 3.3, the set of function
G is a set of parametric functions with parameter b ∈ Θp ⊂ R

p. For any b̃ ∈ R
p

let

b :=
u�b̃

|u�b̃|(b̃�b̃)1/2
b̃ ∈ Θp,

be the corresponding vector in Θp. Denoting by gb the function belonging to
G with parameter b ∈ Θp, the solution of (12) is obtained by applying the

coordinate search method to the function Φ defined for all b̃ ∈ R
p by

Φ(b̃) :=
∑
JH,gb

Êh,gb(βn) + λcard(JH,gb).

In this paper, the setting parameters of the algorithm are fixed to α0 = 5,
αtol = 0.05 and ζ = 1/2.
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