
Electronic Journal of Statistics
Vol. 14 (2020) 801–834
ISSN: 1935-7524
https://doi.org/10.1214/20-EJS1677

The bias of isotonic regression

Ran Dai

Department of statistics, University of Chicago, USA
e-mail: randai@uchicago.edu

Hyebin Song

Department of statistics, University of Wisconsin-Madison, USA
e-mail: hb.song@wisc.edu

Rina Foygel Barber∗

Department of statistics, University of Chicago, USA
e-mail: rina@uchicago.edu

and

Garvesh Raskutti

Department of statistics, University of Wisconsin-Madison, USA
e-mail: raskutti@stat.wisc.edu

Abstract: We study the bias of the isotonic regression estimator. While
there is extensive work characterizing the mean squared error of the iso-
tonic regression estimator, relatively little is known about the bias. In this
paper, we provide a sharp characterization, proving that the bias scales as
O(n−β/3) up to log factors, where 1 ≤ β ≤ 2 is the exponent correspond-
ing to Hölder smoothness of the underlying mean. Importantly, this result
only requires a strictly monotone mean and that the noise distribution has
subexponential tails, without relying on symmetric noise or other restrictive
assumptions.
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1. Introduction

Isotonic regression involves solving a regression problem under monotonicity
constraints. In particular, suppose that we observe data Y ∈ R

n with E [Y ] = μ,
where the mean μ satisfies a monotonicity constraint,

μ1 ≤ · · · ≤ μn.

To recover the mean vector μ, the least-squares isotonic regression estimator is
given by

μ̂ = iso(Y ),
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where y �→ iso(y) is the projection to the monotonicity constraint, defined on
y ∈ R

n as

iso(y) = arg min
x∈Rn

{
‖y − x‖22 : x1 ≤ · · · ≤ xn

}
. (1)

Since this constraint defines a convex region in R
n (in fact, a convex cone), the

resulting optimization problem is convex, and can be solved efficiently with the
“pool adjacent violators” (PAVA) algorithm [Barlow et al., 1972].

There is a large literature on isotonic regression dating back to the work
of Bartholomew [1959a,b], Brunk [1955], Miles [1959]; for further background
see, e.g., Barlow et al. [1972], Robertson et al. [1988]. Isotonic regression also
appears in the problem of estimating a monotone density estimation, namely,
in the Grenander estimator [Grenander, 1956].

Recently, there has been renewed interest in isotonic regression as one of the
most widely-used examples of regression under shape constraints—for example,
the work of de Leeuw et al. [2009], Chatterjee et al. [2015], Gao et al. [2017],
Han et al. [2017], Guntuboyina and Sen [2018], Banerjee et al. [2019]. Given the
significance of isotonic regression, understanding its statistical properties is of
fundamental importance. In this paper, we provide a sharp characterization of
the bias of the isotonic regression estimator.

1.1. Bias and variance

It is well known that the estimation error μ̂ − μ of isotonic regression decays
at a slower rate than for parametric regression, generally with a dependence on
n that scales as |μ̂i − μi| � n−1/3, rather than the rate n−1/2 that we would
expect for parametric problems.

To make this more precise, suppose that the mean vector μ is Lipschitz,
satisfying |μi − μi+1| ≤ L1/n, and that the noise Z = Y − μ has independent
entries Zi with E [Zi] = 0 and with each Zi assumed to be λ-subgaussian, that

is, E
[
etZi

]
≤ et

2λ2/2 for any t ∈ R. In this setting, many works including Brunk

[1970], Cator [2011], Chatterjee et al. [2015] establish the n−1/3 bound on the
root-mean-square error of isotonic regression; this scaling can be proved to hold
pointwise at each index i (an analogous n−1/3 rate is established by Durot et al.
[2012] for the Grenander estimator of a monotone density). For instance, Yang
and Barber [2018] prove that, for any δ > 0.

P

⎧⎨⎩ max
i0≤i≤n+1−i0

∣∣μ̂i − μi| ≤
3

√
8L1λ2 log

(
n2+n

δ

)
n

⎫⎬⎭ ≥ 1− δ, (2)

where

i0 =

⎛⎝λn
√
log

(
n2+n

δ

)
L1

⎞⎠2/3

.

Furthermore, Chatterjee et al. [2015] establish that this error scaling attains
the minimax rate, meaning that we cannot improve on the n−1/3 error rate
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obtained by fitting μ̂ via least-squares isotonic regression. However, in certain
special cases, such as when the mean vector μ is piecewise constant, the error
of μ̂ achieves the parametric n−1/2 rate.

While these results summarized above give a fairly complete picture of the
tail behavior of the error μ̂− μ in isotonic regression, relatively little is known
about its expected value E [μ̂] − μ, i.e., the bias of the least-squares estimator.
Banerjee et al. [2019] establish an asymptotic result under certain smoothness
and strict monotonicity conditions on μ, proving that the bias is at most∣∣E [μ̂i]− μi

∣∣ � n−7/15.

In the special case where the variance of the noise is constant across the data,
with Var (Zi) = σ2 for all i, Durot [2002] prove an improved bound of∣∣E [μ̂i]− μi

∣∣ � n−1/2.

However, as Banerjee et al. [2019] point out, in many settings we would prefer
to avoid the assumption of constant variance—for example, if the data is binary
with Yi ∼ Bernoulli(μi), the variance of the Zi’s will certainly be nonconstant.
Furthermore, in the prior literature, it is not clear if n−1/2 is the correct scaling
for the bias (whether in the constant-variance or general case), or if this scaling
might be possible to improve.

1.2. Contributions

In this work, we examine the question of bias more closely, and prove that∣∣E [μ̂]− μ
∣∣ � polylog n

n2/3
, (3)

with no assumption of constant variance, when the underlying mean μ is Lip-
schitz, strictly increasing, and smooth. This is a faster scaling than what was
previously known for both constant and non-constant variance settings. We
furthermore establish weaker bounds when μ satisfies only Hölder smoothness,
with ∣∣E [μ̂]− μ

∣∣ �
(
logn

n

)β/3

(4)

when μ is Hölder smooth with exponent β, for some 1 ≤ β < 2. (β = 2 corre-
sponds to the smooth case.) Matching lower bounds show that, up to log factors,
our results are tight.

In particular, if we only assume μ to be Lipschitz but without smoothness,
this corresponds to Hölder smoothness with β = 1. In this case, the bias is lower
bounded as n−1/3 up to log factors. Since it is known that the error |μ̂i − μi| is
bounded on the order of n−1/3 (up to logs) with high probability, we see that
without a smoothness assumption, it may be the case that the bias is on the
same order as the error itself—that is, bias does not vanish relative to variance.
At the other extreme, under smoothness (β = 2), error scales as n−1/3 while
bias is bounded as n−2/3 (up to logs), meaning that the bias is vanishing.
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2. Main results

We begin with some definitions and conditions on the distribution of the data.
We assume that the mean vector μ is Lipschitz,

|μj − μi| ≤ L1 ·
j − i

n
for all 1 ≤ i ≤ j ≤ n (5)

for some L1, and is monotonic,

μj − μi ≥ L0 ·
j − i

n
for all 1 ≤ i ≤ j ≤ n (6)

for some L0 ≥ 0 (note that L0 > 0 corresponds to a strictly increasing con-
dition). The significance of the strictly increasing assumption is illustrated in
Theorem 3. In many settings, we might think of the mean values μi as evalua-
tions of an underlying function at a sequence of values—for example an evenly
spaced grid, i.e., μi = f(i/n) for i = 1, . . . , n. In this case, the constants L0, L1

are lower and upper bounds on the gradient of the underlying function f .
Next, we will also assume that μ is Hölder smooth, satisfying∣∣∣∣μj −

(
k − j

k − i
· μi +

j − i

k − i
· μk

)∣∣∣∣ ≤ M

4
·
(
k − i

n

)β

for all 1 ≤ i ≤ j ≤ k ≤ n,

(7)
for some M and some exponent β with 1 ≤ β ≤ 2. As before, if μi = f(i/n) for
some underlying function f defining the signal, then (β,M)-Hölder smoothness
of the function f , defined as the property that

|f ′(t0)− f ′(t1)| ≤ M |t0 − t1|β−1 for all t0, t1, (8)

is sufficient to ensure that the vector of mean values μ satisfies this assumption.
The exponent β in assumption (7) controls the smoothness, with β = 2

corresponding to a bounded second derivative (or a Lipschitz gradient) while
β < 2 denotes a weaker smoothness assumption. In particular, if we were to
take β = 1, then this assumption does not in fact imply any smoothness, as it
is trivially satisfied with M = L1 for any signal μ that is L1-Lipschitz as in our
condition (5).

Next we turn to our assumptions on the noise Z. We assume independent
noise with subexponential tails:

The Zi’s are independent, with E [Zi] = 0

and E
[
etZi

]
≤ et

2λ2/2 for all |t| ≤ τ and all i = 1, . . . , n. (9)

We will also require that the variances σ2
i are bounded from below and are

Lipschitz along the sequence i = 1, . . . , n, satisfying

Var (Zi) = σ2
i ≥ σ2

min > 0 and |σi − σj | ≤ Lσ · j − i

n
for all 1 ≤ i ≤ j ≤ n.

(10)
(Note that we must have σ2

i ≤ λ2 by the subexponential tails assumption (9).)
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2.1. An upper bound for smooth signals

We now present our upper bound on the bias of isotonic regression.

Theorem 1. Let Y = μ + Z, where the signal μ and noise Z satisfy assump-
tions (5), (6), (7), (9), (10), with parameters 0 < L0 ≤ L1, M , β ∈ [1, 2], λ > 0,
τ > 0, Lσ > 0, σmin > 0. Then μ̂ = iso(Y ) satisfies

∣∣E [μ̂i]− μi

∣∣ ≤
⎧⎪⎨⎪⎩C

(
logn
n

)β/3

, if 1 ≤ β < 2,

C
(

(logn)5

n

)2/3

, if β = 2,

for all i with

C ′(log n)1/3n2/3 ≤ i ≤ n+ 1− C ′(logn)1/3n2/3,

where C,C ′ depend only on the parameters in our assumptions, and not on n.

We remark that in the case of Gaussian noise, the upper bound can be tight-

ened to C
(

logn
n

)β/3

for any β ∈ [1, 2], i.e., the extra power of the log term

for the case β = 2 no longer appears (in the non-Gaussian case, it is likely an
artifact of the proof).

To better understand the result of this theorem, consider the extreme case
where we take β = 1 (which, as mentioned above, simply reduces to the Lipschitz
assumption). In this case, the upper bound of Theorem 1 results in the bias
bound

max
i0≤i≤n+1−i0

∣∣E [μ̂i]− μi

∣∣ � 3

√
logn

n
,

which is, up to a constant, the same as the bound (2) proved by Yang and Barber
[2018] to hold with high probability on the maximum entrywise error

∣∣μ̂i − μi

∣∣.
In other words, this suggests that the bias may be as large as the (square root)
variance.

On the other hand, if β = 2, then the bias scales as (polylog n/n)
2/3

while the

high probability bound on the error is still (logn/n)
1/3

—the bias is vanishing
relative to the error of any one draw of the data.

2.1.1. Simulation

To explore this scaling, we conduct a simple simulation1 to compare the case
β = 2 with β = 1. For these two cases, Theorem 1 establishes that, at each index
i (bounded away from the endpoints 1 and n), bias is bounded as � n−2/3 and
� n−1/3, respectively, up to log factors. We will see that this scaling is achieved
by our simple examples.

1Code available at http://www.stat.uchicago.edu/∼rina/code/iso bias simulation

code.R

http://www.stat.uchicago.edu/~rina/code/iso_bias_simulation_code.R
http://www.stat.uchicago.edu/~rina/code/iso_bias_simulation_code.R
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Fig 1. Top: illustration of the mean vectors for the simulation, for the case n = 10000. The
indices for which we measure the bias are indicated in each plot.
Bottom: simulation results, plotting bias against n (each on the log scale), for the smooth and
non-smooth case. The line and slope in each plot are the least-squares regression line (for
log(|bias|) regressed on log(n)).

The two mean vectors, μs for the smooth case and μns for the non-smooth
case, are illustrated in the top two panels of Figure 1. The smooth mean is
defined with a sine wave function, while the non-smooth mean is a piecewise
linear “hinge” shape:

μs
i = (i/n) + sin(4π · i/n)/16, μns

i =

{
0.1(i/n), i ≤ n/2,

1.9(i/n)− 0.9, i > n/2.

For both the smooth and non-smooth mean, writing μ to denote either μs or
μns as appropriate, we generate a signal Y = μ + N (0, σ2In) for σ = 0.1, and
compute iso(Y ). Our final result is the magnitude of the bias at the midpoint
for the non-smooth case,

bias =
∣∣E [iso(Y )i]− μi

∣∣ for i = n/2,

or averaged over several points for the smooth case,

bias = Mean
{∣∣E [iso(Y )i]− μi

∣∣ : i = 0.1n, 0.15n, 0.2n, . . . , 0.9n
}
,
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where E [iso(Y )] is estimated by averaging 500,000 trials. We run the same
procedure for each n = 10000, 12000, . . . , 20000. Our simulation results, shown
in the bottom panels of Figure 1, verify that the bias at the selected points
indeed appears to scale as � n−2/3 for the smooth case, and as � n−1/3 for
the non-smooth case. We next turn to the question of establishing these lower
bounds theoretically.

2.2. A matching lower bound for smoothness

We next show that, as suggested by our simulations, our dependence on the
smoothness assumption is tight—up to constants and log factors, we cannot
improve our dependence on the Hölder exponent β (i.e., the power of n, n−β/3,
appearing in our upper bound, Theorem 1). While our simulated example only
verifies this at a constant number of indices i, here we show a stronger result—
the lower bound is attained by a constant fraction of the indices i = 1, . . . , n.

Theorem 2. Fix any parameters L1 > L0 > 0, M > 0, 1 ≤ β ≤ 2, and σ2 > 0.
Then for any n ≥ C, there exists some μ ∈ R

n that is L1-Lipschitz (5), L0-
strictly increasing (6), and (β,M)-smooth (7), such that, for Y ∼ N (μ, σ2In)
and μ̂ = iso(Y ), the bias satisfies∣∣E [μ̂i]− μi

∣∣ ≥ C ′n−β/3(logn)−5β/3

for at least C ′′n many indices i ∈ {1, . . . , n}, where C,C ′, C ′′ depend only on
the parameters in our assumptions, and not on n.

Note that this noise distribution, i.e. Zi
iid∼ N (0, σ2), trivially satisfies the

assumptions (9) and (10) that we require in our upper bound. In other words,
the lower bound result shows that our upper bound is tight for all 1 ≤ β ≤ 2,
up to log factors.

2.3. Necessity of the strictly increasing mean

Finally, we study the role of the strictly increasing assumption for the mean
μ (6). Wright [1981] studied this problem in a different context, considering a
signal μi = f(i/n) where the function f is monotone nondecreasing and satisfies

|f(t)− f(t0)| � |t− t0|α as t → t0 (11)

at some point t0 ∈ (0, 1), for some α ≥ 1. For example, if α is an integer,
this is satisfied if f is required to have f (k)(t0) = 0 for all k = 1, . . . , α − 1,
and f (α)(t0) > 0, where f (k) denotes the kth derivative of f . In this setting,
writing t0 = i0/n, Wright [1981, Theorem 1] establishes that the rescaled error
nα/(2α+1)

(
μ̂i0 − μi0

)
converges to some fixed distribution. In other words, the

error
∣∣μ̂i0 − μi0

∣∣ is on the scale n−α/(2α+1).
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Remark 1 (Smoothness condition versus Wright’s condition). The Hölder
smoothness condition (8) and Wright’s condition (11) on functions f : [0, 1] →
R appear very similar initially, but have different implications. Consider the
case α = β = 2. If the function f is twice differentiable, the Hölder smoothness
condition (8) is equivalent to requiring that |f ′′(t)| is bounded (for all t), while
Wright’s condition (11) instead requires that |f ′′(t0)| is bounded and addition-
ally f ′(t0) = 0. In other words, the Hölder condition requires that f is smooth,
while Wright’s condition requires that f is both smooth and flat.

Our next result establishes that, in the worst case, the bias of the isotonic
regression estimator is on the same order up to log factors—that is, for any
α ≥ 1, we construct a signal μ satisfying Wright [1981]’s condition (11) such
that

∣∣E [μ̂i0 ]− μi0

∣∣ scales as n−α/(2α+1) up to log factors.

Theorem 3. Fix any parameters L1 > 0, M > 0, and σ2 > 0. Then for any
n ≥ C, α ≥ 1, there exists some μ ∈ R

n that is L1-Lipschitz (5), monotone
nondecreasing (i.e., L0-increasing (6) with L0 = 0), and is equal to μi = f(i/n)
for some function f satisfying the condition (11) at t0 = 0.5, such that, for
Y ∼ N (μ, σ2In) and μ̂ = iso(Y ), the bias satisfies∣∣E [μ̂i0 ]− μi0

∣∣ ≥ C ′(n(log n)2)−
α

2α+1

at the index i0 = n/2, i.e., the index satisfying t0 = i0/n. (Here C,C ′ depend
only on the parameters in our assumptions, and not on n.)

Up to constants and log factors, this result matches the upper bound proved
by Wright [1981].

We remark that, for α ≥ 2, the signal μ constructed in the proof of the
theorem is (β,M)-smooth with β = 2. (For α < 2, the signal μ constructed in
the proof is instead (β,M)-smooth with β = α.) Setting α = 2, for example, we
obtain a lower bound on bias that scales as n−2/5, while as α → ∞ the scaling
approaches n−1/2 (up to log factors). We can compare this to our results in
Theorems 1 and 2, where we establish a faster scaling n−2/3 for the worst-case
bias (up to log factors) for signals μ with Hölder exponent β = 2 that are also
assumed to be strictly increasing. The gap between these powers of n highlights
the role of the strict monotonicity condition in the isotonic regression problem.

3. Proofs of main results

3.1. Properties of isotonic regression

Before we proceed with our proofs, it will be useful to recall some well-known
properties of the isotonic projection, y �→ iso(y) (for background see, e.g., Barlow
et al. [1972, Chapter 1]).

First, the individual entries of iso(y) can be expressed with the useful “min-
max” formula [Barlow et al., 1972, (1.9)]: for any y ∈ R

n and any index i,

iso(y)i = max
1≤j≤i

min
i≤k≤n

yj:k, (12)
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where

yj:k =
1

k − j + 1

k∑
�=j

y�

is the average of the subvector (yj , . . . , yk) of y, and the max and min are
attained at j = ji(y) and k = ki(y) where

ji(y) = min{j : iso(y)j = iso(y)i} and ki(y) = max{k : iso(y)k = iso(y)i},
(13)

the endpoints of the constant interval of iso(y) containing index i.
Second, using the min-max definition in (12), it is trivial to see that isotonic

regression commutes with shifts in location and scale: for any y ∈ R
n, any a ∈ R,

and any b > 0, it holds that [Barlow et al., 1972, (1.14)+(1.15)]

iso(a · 1n + b · y) = a · 1n + b · iso(y). (14)

Next, if we run isotonic regression on a subvector (ya, . . . , yb) of y, this can
only add breakpoints relative to y. Specifically, for any y ∈ R

n, and any indices
1 ≤ a ≤ i ≤ b ≤ n, define

ỹ = y[a:b] =
(
ya, ya+1, . . . , yb

)
∈ R

b−a+1.

Then
iso(ỹ)i−a+1 = iso(ỹ)i−a+2 ⇒ iso(y)i = iso(y)i+1. (15)

(Note that indices i − a + 1, i − a + 2 in the subvector ỹ correspond to indices
i, i+ 1 in the full vector y.) Finally, on the same subvector ỹ = (ya, . . . , yb), for
any index i with a ≤ i ≤ b,

If iso(y)a−1 �= iso(y)i (or a = 1) and iso(y)i �= iso(y)b+1 (or b = n),

then iso(y)i = iso(ỹ)i−a+1. (16)

That is, truncating the sequence y at a breakpoint of iso(y) will not affect
the estimated values. These last two properties (15) and (16) follow from the
definition of the “pool adjacent violators” (PAVA) algorithm for computing
iso(y) [Barlow et al., 1972, pg. 13–15].

3.2. Breakpoint lemma

Before proving our theorems, we first present a result bounding the probabil-
ity of a breakpoint occurring at any particular location in a Gaussian isotonic
regression problem. We will use this lemma to prove both our upper and lower
bounds.

Lemma 1 (Breakpoint lemma). Let Y ∼ N
(
(μ1, . . . , μn), diag{σ2

1 , . . . , σ
2
n}

)
.

Fix any integer m ≥ 2 and any index i with m ≤ i ≤ n−m. Define

μ̄ =
1

2m

i+m∑
j=i−m+1

μj and σ̄2 =
1

2m

i+m∑
j=i−m+1

σ2
j ,
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and assume that

i+m∑
j=i−m+1

(
μj − μ̄

σ̄

)2

≤ C1

logm
and max

i−m+1≤j≤i+m

∣∣∣∣∣σ2
j − σ̄2

σ̄2

∣∣∣∣∣ ≤ C2√
m logm

.

(17)
Then

P {iso(Y )i �= iso(Y )i+1} ≤ C3 logm

m
,

where C3 depends only on C1, C2 and not on m or n.

In other words, if the means μj and variances σ2
j are approximately constant

near index i, then the probability of a breakpoint at index i is low. To gain
intuition for the consequences of this lemma, consider a simple setting where
the mean μ is L1-Lipschitz (5), and the variances are constant, σ2

i = σ2 > 0.
In this case, the conditions (17) are satisfied for m � n2/3/(logn)1/3, and the
probability of a breakpoint at a given index i with m ≤ i ≤ n−m is therefore
� (log n)4/3/n2/3. We can then expect constant segments of iso(Y ) to have
length � n2/3/(log n)4/3. If instead the mean is constant with μ1 = · · · = μn

(and the variance is again constant), then the conditions (17) are satisfied for
m � n; in this case we can expect iso(Y ) to have constant segments of length
� n/(log n).

In order to prove this result, we first consider the case that Y is standard
Gaussian. We will use the following classical result:

Lemma 2 ([Andersen, 1954]). Let W ∼ N (0m, Im) for any m ≥ 1. Then
the number of piecewise constant segments of iso(W ), denoted by N(W ), is
distributed as

N(W )
d
= I1 + · · ·+ Im,

where I1, . . . , Im are independent Bernoulli random variables with P {Ij = 1} =
1/j.

This result allows us to prove the breakpoint lemma for a standard Gaussian:

Lemma 3. Let Y ∼ N
(
02m, I2m

)
for m ≥ 2. Then P {iso(Y )m < iso(Y )m+1} ≤

logm
m−1 .

Proof of Lemma 3. From Lemma 2, for a sequence W ∼ N (0m, Im), the ex-
pected number of breakpoints in iso(W ) is given by

E

[
m−1∑
i=1

1 {iso(W )i < iso(W )i+1}
]

= E [N(W )− 1] ≤
(
1 + · · ·+ 1

m

)
− 1 ≤ log(m).

Therefore, there must be some i ∈ {1, . . . ,m − 1} such that P{iso(W )i <
iso(W )i+1} ≤ logm

m−1 . Next, we let Ỹ = (Ỹ1, . . . , Ỹm) be a subvector of Y with

Ỹj = Ym−i+j for j = 1, . . . ,m, which again has the distribution Ỹ ∼ N (0m, Im).
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Fig 2. Illustration of the proof idea for Lemma 3. A break between indices i and i+ 1 in the
isotonic regression of Ỹ , corresponds to a break between indices m and m+ 1 for Y .

The relationship between Y and Ỹ is illustrated in Figure 2. By the property (15)
of isotonic regression, we know that

iso(Y )m < iso(Y )m+1 ⇒ iso(Ỹ )m < iso(Ỹ )m+1,

which concludes the proof.

Finally, the proof of Lemma 1 for the general case is established by comparing
the distribution of Y to the distribution of a standard Gaussian random vector,
using our assumptions on the low variability in the μj ’s and σj ’s near the index
i. The proof is given in Appendix A.1.

3.3. Proof of upper bound (Theorem 1)

The proof of our upper bound will follow these steps to bound the bias of iso(Y )i:

• Step 1: We replace the random vector Y with a Gaussian random vector
Ỹ whose entries have the same means and variances, and bound the change
in the bias at index i.

• Step 2: From the Gaussian random vector Ỹ , we extract a subvector of
length � n2/3(log n)1/3 centered at index i, and bound the change in the
bias at index i.

• Step 3: We take an approximation to the new subvector, with linearly
increasing means and with constant variance, and bound the change in
the bias at index i. We will also see that the new approximation has zero
bias due to symmetry.

3.3.1. Step 1: reduce to the Gaussian case

We will first reduce the general problem to a Gaussian approximation, using the
following lemma:

Lemma 4. Fix n ≥ 2, and suppose Y ∈ R
n is a random vector satisfying

assumptions (5), (9), and (10) with parameters L1 > 0, λ > 0, τ > 0, Lσ > 0,
and σmin > 0. Then there exists a coupling between Y and

Ỹ ∼ N
(
(μ1, . . . , μn), diag{σ2

1 , . . . , σ
2
n}

)



812 R. Dai et al.

satisfying

E

[∣∣iso(Y )i − iso(Ỹ )i
∣∣] ≤ C1(logn)

10/3

n2/3

for all i with
C2n

2/3

(logn)1/3
≤ i ≤ n− C2n

2/3

(logn)1/3
,

where C1, C2 depend only on L1, λ, τ, Lσ, σmin, and not on n.

This result is proved in Appendix A.2, using the Gaussian coupling theorem
of Sakhanenko [1985, Theorem 1] along with our breakpoint lemma (Lemma 1).

Now define Ỹ ∼ N
(
(μ1, . . . , μn), diag{σ2

1 , . . . , σ
2
n}

)
. Applying Lemma 4 to-

gether with the triangle inequality, we see that

|E [iso(Y )i]− μi| ≤
∣∣∣E [

iso(Ỹ )i

]
− μi

∣∣∣+ C1(log n)
10/3

n2/3
(18)

for all i with
C2n

2/3

(logn)1/3
≤ i ≤ n− C2n

2/3

(logn)1/3
, (19)

for some C1, C2 depending on L1, λ, τ, Lσ, σmin.
From this point on, then, it suffices to bound the first term in this upper

bound—that is, we need to prove the main result, Theorem 1, in the special
case that the noise terms Zi are Gaussian. From this point on, we will work
with Ỹ = μ+ Z̃ where Z̃i ∼ N (0, σ2

i ).

3.3.2. Step 2: extract a subvector

Next, let

m =

⎡⎢⎢⎢
(
18λn

√
L1 logn

L
3/2
0

)2/3
⎤⎥⎥⎥− 1

and assume that m ≤ i ≤ n+1−m. We will see that E
[
iso(Ỹ )i

]
is not changed

substantially if we instead calculate the isotonic regression of

Ỹ (i) = (Ỹi−m, . . . , Ỹi, . . . , Ỹi+m) ∈ R
2m+1.

Note that index m + 1 in the subvector Ỹ (i) corresponds to index i in the full
vector Ỹ .

Now we bound the bias of iso(Ỹ )i in terms of the subvector. We can write∣∣∣E [
iso(Ỹ )i

]
− E

[
iso(Ỹ (i))m+1

]∣∣∣
≤ E

[∣∣∣iso(Ỹ )i − iso(Ỹ (i))m+1

∣∣∣]
= E

[∣∣∣iso(Ỹ )i − iso(Ỹ (i))m+1

∣∣∣ · 1{
iso(Ỹ )i �= iso(Ỹ (i))m+1

}]
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≤
√

E

[(
iso(Ỹ )i − iso(Ỹ (i))m+1

)2
]
·
√

P

{
iso(Ỹ )i �= iso(Ỹ (i))m+1

}
.

Deterministically, we have∣∣∣iso(Ỹ )i − iso(Ỹ (i))m+1

∣∣∣ ≤ max
1≤j≤n

Ỹ
(i)
j − min

1≤j≤n
Ỹ

(i)
j

≤
(

max
1≤j≤n

μ
(i)
j − min

1≤j≤n
μ
(i)
j

)
+

(
max
1≤j≤n

Z̃
(i)
j − min

1≤j≤n
Z̃

(i)
j

)
≤ L1+2 max

1≤j≤n
|Z̃(i)

j |,

and therefore,

E

[(
iso(Ỹ )i − iso(Ỹ (i))m+1

)2
]
≤ 2L2

1 + 8E

[
max
1≤j≤n

|Z̃(i)
j |2

]
≤ 2L2

1 + 32λ2 log n,

since the Z̃
(i)
j ’s are Gaussian with variances bounded by λ2, and the expected

maximum of n χ2
1’s is bounded by 4 logn for any n ≥ 4.

Next we bound P

{
iso(Ỹ )i �= iso(Ỹ (i))m+1

}
. By the property (16) of iso-

tonic regression, if iso(Ỹ )i �= iso(Ỹ (i))m+1 then it must be the case that either
iso(Ỹ )i = iso(Ỹ )i−m−1 or iso(Ỹ )i = iso(Ỹ )i+m+1. Now, since μ is L0-strictly
increasing (6)), we have ∣∣μi − μi−m−1

∣∣ ≥ L0(m+ 1)

n

and so, by the triangle inequality, if iso(Ỹ )i = iso(Ỹ )i−m−1 then

max
{∣∣iso(Ỹ )i − μi

∣∣, ∣∣iso(Ỹ )i−m−1 − μi−m−1

∣∣} ≥ L0(m+ 1)

2n
>

3

√
40L1λ2 logn

n
,

where the last step holds by our definition of m. Applying the same reasoning
to the second case (i.e., iso(Ỹ )i = iso(Ỹ )i+m+1) and combining the two cases,
this yields

P

{
iso(Ỹ )i �= iso(Ỹ (i))m+1

}
≤ P

{
max

j∈{i−m−1,i,i+m+1}

∣∣iso(Ỹ )j − μj

∣∣ > 3

√
40L1λ2 logn

n

}
. (20)

Now, we recall Yang and Barber [2018]’s result (2)—since Ỹ is L1-Lipschitz with
λ-subgaussian noise, choosing probability δ = 1/n2 we have

P

{
max

j0≤j≤n+1−j0

∣∣iso(Ỹ )j − μ
(i)
j | ≤ 3

√
40L1λ2 logn

n

}
≥ 1− 1/n2, (21)

where j0 =
(

λn
√
5 logn
L1

)2/3

. In order to apply this to bound (20), we need to

ensure that j0 ≤ i−m−1 and i+m+1 ≤ n+1− j0. Plugging in our definition
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Fig 3. Illustration of the linear approximation (Step 3 of the proof of Theorem 1, with the
distribution of Ỹ (i) shown in black, and Y̌ (i) in red. The means μj and μ̌j are drawn as solid

black and red lines, respectively, while the standard deviations of Z̃j and Žj are represented
by the black and red shaded regions.

of m, this is equivalent to

min{i, n+ 1− i} ≥

⎡⎢⎢⎢
(
18λn

√
L1 logn

L
3/2
0

)2/3
⎤⎥⎥⎥+

(
λn

√
5 logn

L1

)2/3

. (22)

Combining (21) with (20) we have P
{
iso(Ỹ )i �= iso(Ỹ (i))m+1

}
≤ 1/n2. Return-

ing to our work above, therefore, we obtain∣∣∣E [
iso(Ỹ )i

]
− E

[
iso(Ỹ (i))m+1

]∣∣∣ ≤ √
2L2

1 + 32λ2 logn

n
. (23)

3.3.3. Step 3: take a linear approximation

Finally, we will see that E

[
iso(Ỹ (i))m+1

]
is not changed substantially if we

replace it with a random vector that has linear means and has constant variance.
Define

μ̌j =
(i+m)− j

2m
· μi−m +

j − (i−m)

2m
· μi+m, i−m ≤ j ≤ i+m

and
Žj =

σi

σj
Z̃j , i−m ≤ j ≤ i+m,

and finally let

Y̌ (i) = (μ̌i−m + Ži−m, . . . , μ̌i + Ži, . . . , μ̌i+m + Ži+m).

This construction is illustrated in Figure 3.

We will now show that E

[∣∣∣iso(Ỹ (i))m+1 − iso(Y̌ (i))i

∣∣∣] is small, so that we

can use Y̌ (i) to bound the bias of iso(Ỹ )i. Using the “min-max” formulation of
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isotonic regression (12),

iso(Ỹ (i))m+1 = max
1≤j≤m+1

min
m+1≤k≤2m+1

Ỹ (i)
j:k

≤ max
1≤j≤m+1

min
m+1≤k≤2m+1

Y̌ (i)
j:k

+ max
1≤j≤m+1≤k≤2m+1

(
Ỹ (i)

j:k − Y̌ (i)
j:k

)
= iso(Y̌ (i))m+1 + max

1≤j≤m+1≤k≤2m+1

(
Ỹ (i)

j:k − Y̌ (i)
j:k

)
.

An analogous lower bound holds similarly, and so∣∣∣E [
iso(Ỹ (i))m+1

]
− E

[
iso(Y̌ (i))m+1

]∣∣∣
≤ E

[
max

1≤j≤m+1≤k≤2m+1

∣∣∣Ỹ (i)
j:k − Y̌ (i)

j:k

∣∣∣]
= E

[
max

i−m≤j≤i≤k≤i+m

∣∣∣(μ+ Z̃)j:k − (μ̌+ Ž)j:k

∣∣∣] by definition of Ỹ (i) and Y̌ (i)

≤ max
i−m≤j≤i≤k≤i+m

∣∣μj:k − μ̌j:k

∣∣+ E

[
max

i−m≤j≤i≤k≤i+m

∣∣∣Z̃j:k − Žj:k

∣∣∣]
≤ max

i−m≤j≤i+m
|μj − μ̌j |+ E

[
max

i−m≤j≤i≤k≤i+m

∣∣∣Z̃j:k − Žj:k

∣∣∣] .
Next, since the random vector Y̌ (i) is Gaussian with a linear mean and with
constant variance, by symmetry we can see that it has zero bias at its midpoint,
i.e.,

E

[
iso(Y̌ (i))m+1

]
= μ̌i.

Therefore, by the triangle inequality,∣∣∣E [
iso(Ỹ (i))m+1

]
− μi

∣∣∣
≤ 2 max

i−m≤j≤i+m
|μj − μ̌j |+ E

[
max

i−m≤j≤i≤k≤i+m

∣∣∣Z̃j:k − Žj:k

∣∣∣] .
By definition of μ̌ and the smoothness assumption (7), we have

max
i−m≤j≤i+m

∣∣μj − μ̌j

∣∣
= max

i−m≤j≤i+m

∣∣∣∣μj −
(
(i+m)− j

2m
· μi−m +

j − (i−m)

2m
· μi+m

)∣∣∣∣ ≤ M

4

(
2m

n

)β

,

and therefore∣∣∣E [
iso(Ỹ (i))m+1

]
− μi

∣∣∣ ≤ M

2

(
2m

n

)β

+ E

[
max

i−m≤j≤i≤k≤i+m

∣∣∣Z̃j:k − Žj:k

∣∣∣] .
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Finally, to bound the last term, we have

max
i−m≤j≤i≤k≤i+m

∣∣∣Z̃j:k − Žj:k

∣∣∣ = max
i−m≤j≤i≤k≤i+m

∣∣∣∣∣∣ 1

k − j + 1

k∑
�=j

Z̃� ·
(
1− σi

σ�

)∣∣∣∣∣∣ .
Since the Z̃j ’s are independent zero-mean Gaussians, for each pair of indices j, k,

we see that 1
k−j+1

∑k
�=j Z̃� ·

(
1− σi

σ�

)
is a zero-mean Gaussian with standard

deviation

1

k − j + 1

√√√√ k∑
�=j

σ2
�

(
1− σi

σ�

)2

≤ 1

k − j + 1

√√√√ k∑
�=j

(
Lσ|
− i|

n

)2

≤ Lσ
√
m

n
,

and so

E

[
max

i−m≤j≤i≤k≤i+m

∣∣∣Z̃j:k − Žj:k

∣∣∣] ≤ 2Lσ

√
m logn

n
,

since there are at most n2/2 many choices of j, k. Combining everything, then,∣∣∣E [
iso(Ỹ (i))m+1

]
− μi

∣∣∣ ≤ M

2

(
2m

n

)β

+
2Lσ

√
m logn

n
.

Plugging in our choice of m, this simplifies to∣∣∣E [
iso(Ỹ (i))m+1

]
− μi

∣∣∣ ≤ C3

[(
logn

n

)β/3

+

(
logn

n

)2/3
]
, (24)

for appropriately chosen C3.

3.3.4. Combining everything

Combining our three steps, we see that the bounds (18), (23), (24) combine to
prove that

∣∣E [iso(Y )i]− μi

∣∣ ≤ Cmax

{(
logn

n

)β/3

,

(
logn

n

)2/3

,
(logn)10/3

n2/3
,

√
logn

n

}
,

for C chosen appropriately as a function of all the assumption parameters.

Since β ≤ 2, the dominant term is
(

log n
n

)β/3

for β < 2 or (logn)10/3

n2/3 for β = 2.

Examining the assumptions (19) and (22) on the index i, we see that this holds
for all i satisfying

C ′(logn)1/3n2/3 ≤ i ≤ n+ 1− C ′(log n)1/3n2/3,

with C ′ chosen appropriately as a function of all the assumption parameters.
This completes the proof of the theorem.
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We remark that, if the noise is Gaussian, then Step 1 is not needed, and so

the term (logn)10/3

n2/3 does not appear in the upper bound. This means that the

upper bound scales as
(

logn
n

)β/3

both for the case 1 ≤ β < 2 and the case

β = 2, under Gaussian noise.

3.4. Proof of lower bound for smoothness (Theorem 2)

Fix any L1 > L0 > 0, M > 0, β ∈ [1, 2]. Consider a linear mean vector μlin,
with entries

μlin
i = an · i

n
,

and a mean vector μ that adds an oscillation,

μ = μlin + bnΔ where Δi = sin

(
cn · i

n

)
.

This construction is illustrated in Figure 4.
We will specify the parameters an, bn, cn ≥ 0 later on, but for the moment

we assume that

bncn ≤ an and C1 ≤ cn ≤ C2n and
C3√
n log n

≤ an ≤ C4(cn)
3/2

(logn)2
√
n
, (25)

where C1, C2, C3, C4 will not depend on n and will be specified later on. The first
condition, an ≥ bncn, ensures that μ is monotone nondecreasing. The second
condition, essentially requiring that 1 � cn � n, ensures that the oscillations
of Δ are visible on the discrete points i = 1, . . . , n—that is, the sine wave
completes many full cycles over the points i = 1, . . . , n, and each cycle contains
many indices i. The third condition will be necessary for some calculations later
on.

Now let Z ∼ N
(
0n, σ

2In
)
for some σ2 > 0, and define Y = μ + Z and

Y lin = μlin +Z. We will see that the nonlinear oscillations in Y cannot be fully
recovered by isotonic regression—while the gap between Y and Y lin is equal
to ±bn at the positive and negative peaks of the oscillation term Δ, the gap
between iso(Y ) and iso(Y lin) at these points will typically be smaller. This is
because iso(Y )i and iso(Y lin)i are calculated via local averages (according to
the min-max formula (12)), and the oscillations of Δ are therefore smoothed
out, shrinking the difference between the two vectors towards zero. The bias at
or near the peaks of Δ will therefore be of order bn, achieving a lower bound.

The remainder of the proof will follow these steps:

• Step 1: We will show that

μi ≥ μlin
i + 0.8bn for at least C5n many indices i, (26)

where C5 will be specified later.
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Fig 4. Illustration of the construction for the lower bound result for smoothness (Theorem 2).
The figure on the left illustrates the linear mean μlin, while the figure on the right illustrates
the oscillating mean μ = μlin + bnΔ.

• Step 2: We will show that, for all indices i,

iso(Y )i ≤ iso(Y lin)i + bn.

• Step 3: We will show that, for all indices i,

If ki(Y
lin) ≥ i+

C6n

cn
then iso(Y )i ≤ iso(Y lin)i + 0.2bn,

where C6 will be specified later.
• Step 4: We will show that

P

{
ki(Y

lin) ≥ i+
C6n

cn

}
≥ 0.5 for at least (1− 0.5C5)n many indices i.

Combining Steps 2, 3, and 4, we see that

E [iso(Y )i] ≤ E
[
iso(Y lin)i

]
+ 0.6bn for at least (1− 0.5C5)n many indices i.

(27)
Combining this with Step 1, therefore, there must be at least 0.5C5n many
indices i for which the bounds (26) and (27) both hold. Applying the triangle
inequality, we then have∣∣E [iso(Y )i]− μi

∣∣+ ∣∣E [
iso(Y lin)i

]
− μlin

i

∣∣ ≥ 0.2bn

for all such i. This means that, for either Y or Y lin, it holds that the bias satisfies
the lower bound 0.1bn for at least 0.25C5n many indices i. By choosing an, bn, cn
appropriately, this will establish the lower bounds that we need.

We next give the details for the choice of an, bn, cn to complete the proof of
Theorem 2, and then return to proving the bounds in Steps 1, 2, 3, 4 above. We
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will choose

an =
L1 + L0

2
, bn = min

{
M

2
,
L1 − L0

2

}
·
(
n(log n)5

)−β/3
, cn = n1/3(log n)5/3.

First we check that the choices of an, bn, cn satisfy the requirements (25) for the
steps of the proof, which is trivial to verify.

Next, it’s clear that μ, μlin are both L1-Lipschitz (5) and L0-strictly increas-
ing (6). Finally we verify the Hölder smoothness condition (7). For μlin this is
trivial since it is a linear mean. For μ, we can write

μi = f(i/n) where f(t) = an · t+ bn · sin(cnt),

for which we have

|f ′(t0)− f ′(t1)| = bncn · | cos(cnt0)− cos(cnt1)| ≤ bncn ·min{cn|t0 − t1|, 2}.

Now we check that this is bounded by M |t0 − t1|β−1. If the first term in the
minimum is larger, i.e., |t0 − t1| ≥ 2/cn, then

M |t0 − t1|β−1 ≥ M(2/cn)
β−1 ≥ 2bncn,

by our choice of bn, cn. If instead the second term in the minimum is larger, i.e.,
|t0 − t1| ≤ 2/cn, then

M |t0 − t1|β−1 =
M |t0 − t1|
|t0 − t1|2−β

≥ M |t0 − t1|
(2/cn)2−β

≥ bn(cn)
2|t0 − t1|,

by our choice of bn, cn. Therefore the function f is (β,M)-Hölder smooth, and
so this property is inherited by the vector μ. This verifies that μ, μlin each satisfy
the assumptions needed for the theorem.

Applying the calculations above, we see that the bias of either Y or Y lin

satisfies the lower bound 0.1bn for at least 0.25C5n many indices i. Since bn

scales as
(
n(log n)5

)−β/3
, this proves the desired result.

3.4.1. Proof of Step 1

The sine wave Δ, given by Δi = sin(cn · i/n), has period � n/cn, and we recall
that we have assumed that C1 ≤ cn ≤ C2n. This means that, for any c ∈ (0, 1),
we can trivially show that, if n is sufficiently large,

Δi ≥ 1− c for at least c′n many indices i ∈ {1, . . . , n}

for some c′ > 0 that only depends on c, C1, C2 and not on n or cn. Choosing
c = 0.2, we then set C5 = c′ to establish Step 1.
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3.4.2. Proof of Step 2

By definition, we have∣∣Yi − Y lin
i

∣∣ = ∣∣μi − μlin
i

∣∣ = bn|Δi| ≤ bn

for all i, and therefore, it holds deterministically that∣∣iso(Y )i − iso(Y lin)i
∣∣ ≤ bn

for all i (this holds since ‖iso(y)− iso(y′)‖∞ ≤ ‖y− y′‖∞ for any y, y′ ∈ R
n, by

Yang and Barber [2018, Lemma 1]).

3.4.3. Proof of Step 3

Next, we fix any index i, and consider the min-max formulation of isotonic
regression as in (12) and (13):

iso(Y )i = max
j≤i

min
k≥i

Y j:k

= min
k≥i

Y ji(Y ):k

= min
k≥i

(
Y lin

ji(Y ):k + bnΔji(Y ):k

)
≤ Y lin

ji(Y ):ki(Y lin) + bnΔji(Y ):ki(Y lin)

≤ max
j≤i

Y lin
j:ki(Y lin) + bnΔji(Y ):ki(Y lin)

= iso(Y lin)i + bnΔji(Y ):ki(Y lin).

Therefore, it suffices to show that, for an appropriately chosen C6,

If ki(Y
lin) ≥ i+ C6n/cn then Δji(Y ):ki(Y lin) ≤ 0.2.

Since ji(Y ) ≤ i by definition, we can weaken this to the statement

Δj:k ≤ 0.2 for all indices j, k ∈ {1, . . . , n} with k ≥ j + C6n/cn.

To see why this is true, observe that Δ is a sine wave with period � n/cn. Since
the mean of the sine wave over one full cycle is zero, and the mean over any
partial cycle is bounded by 1, this means that the bound above will hold for
sufficiently large C6 depending only on C1, C2 and not on n or cn.

3.4.4. Proof of Step 4

For this step we will use the breakpoint lemma. We have

�+m∑
j=�−m+1

(μlin
j − μlin

� )2 ≤ 2m
(anm

n

)2
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for any m ≥ 1 and any 
 with m ≤ 
 ≤ n −m. Choose m =

⌈(
n

an

√
logn

)2/3
⌉
,

and note that m ≥ logn
C2(C4)2/3

by our assumptions (25), which satisfies m ≥ 2

for sufficiently large n. Applying Lemma 1 combined with the property (15) of
isotonic regression, we have

P
{
iso(Y lin)� �= iso(Y lin)�+1

}
≤ C8 logn

m
,

where C8 depends only on σ2. This implies that

P

{
ki(Y

lin) < i+
m

3C8 logn

}
= P

{
iso(Y lin)� �= iso(Y lin)�+1 for some i ≤ 
 ≤ i+

m

3C8 logn

}
≤

(
m

3C8 log n
+ 1

)
· C8 logn

m
≤ 1

3
+ C2(C4)

2/3C8 ≤ 0.5,

as long as i satisfies

m ≤ i ≤ n−m− m

3C8 logn

and the constant C4 in our assumption (25) is chosen to be sufficiently small.
This completes Step 4 as long as

C6n

cn
≤ m

3C8 logn
=

1

C8 log n

⌈(
n

an
√
logn

)2/3
⌉

and

2m+
m

3C8 logn
=

(
2 +

1

3 + C8 logn

)⌈(
n

an
√
logn

)2/3
⌉
≤ 0.5C5n.

These conditions both hold for an, cn selected as in the proofs of the two theo-
rems above (recalling condition (25), with C3 chosen to be sufficiently large and
C4 sufficiently small).

3.5. Proof of lower bound for strict monotonicity (Theorem 3)

Our argument for the proof of Theorem 3 is similar to that for the smoothness
result, Theorem 2. Define function f0, f1 : [0, 1] → [0, 1] as follows. Let cn, εn > 0
be parameters that we will specify later on. First let g : [0, 1] → [0, 1] be defined
as

g(t) =

{
0.5(2t)α, 0 ≤ t ≤ 0.5,

1− 0.5(2− 2t)α, 0.5 ≤ t ≤ 1,
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and then define

f0(t) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ t ≤ 0.5− εn,

cng
(

t−(0.5−εn)
εn

)
, 0.5− εn ≤ t ≤ 0.5,

cn, 0.5 ≤ t ≤ 1,

and similarly

f1(t) =

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ t ≤ 0.5,

cng
(

t−0.5
εn

)
, 0.5 ≤ t ≤ 0.5 + εn,

cn, 0.5 + εn ≤ t ≤ 1.

Define μ
(�)
i = f�(i/n) for each 
 = 0, 1 and each i = 1, . . . , n. This construction

is illustrated in Figure 5.
We will now choose

cn = C1(n(logn)
2)−α/(2α+1) and εn = C2(n(log n)

2)−1/(2α+1),

where C1, C2 are constants depending only on the parameters L1,M, α. We can
verify that f0, f1 are both monotone nondecreasing, L1-Lipschitz, and (β,M)-
smooth with β = min{2, α}, as long as C1, C2 are chosen appropriately; these
properties are therefore inherited by the mean vectors μ(0) and μ(1). Further-
more, f0, f1 both satisfy Wright [1981]’s condition (11) at t0 = 0.5, specifically,

|f�(t)− f�(0.5)| ≤
cn2

α−1

εαn
|t− 0.5|α ≤ C3|t− 0.5|α for each 
 = 0, 1,

where C3 depends only on C1, C2, α.
Now let Z ∼ N

(
0n, σ

2In
)
for some σ2 > 0, and define Y (�) = μ(�) + Z for

each 
 = 0, 1.
We will see that the difference between Y (0) and Y (1) around the index

i0 = n/2 cannot be fully recovered by isotonic regression. The intuition for
this phenomenon is the same as in the proof of Theorem 2; since iso(Y (0))i0
and iso(Y (1))i0 are calculated via local averages near i0 (according to the min-
max formula (12)), while the difference between the vectors Y (0) and Y (1) is
constrained to a vanishing region (they are equal everywhere except for indices
i ∈ i0±nεn), isotonic regression will often shrink the difference between the two
signals at the index i0—this will happen whenever the local average is taken over

a sufficiently wide range, i.e., in the min-max formula (12), iso(Y (�))i0 = Y (�)
j:k

for k − j sufficiently large. The bias at index i0 will therefore be of order cn,
achieving a lower bound.

The remainder of the proof will follow these steps:

• Step 1: We will show that, deterministically,

iso(Y (0))i0 ≤ iso(Y (1))i0 + cn.



The bias of isotonic regression 823

Fig 5. Illustration of the construction for the lower bound result for strict monotonicity
(Theorem 3). The figure illustrates the two different signal vectors μ(0) and μ(1) used in the
construction for the proof.

• Step 2: We will show that

If ki0(Y
(1)) ≥ i0 + 10nεn then iso(Y (0))i0 ≤ iso(Y (1))i0 + 0.2cn.

• Step 3: We will show that

P

{
ki0(Y

(1)) ≥ i0 + 10nεn

}
≥ 0.5.

Combining these steps, we see that

E

[
iso(Y (0))i0

]
≤ E

[
iso(Y (1))i0

]
+ 0.6cn.

Applying the triangle inequality, we then have∣∣E [
iso(Y (0))i0

]
− μ

(0)
i0

∣∣+ ∣∣E [
iso(Y (1))i0

]
− μ

(1)
i0

∣∣ ≥ 0.4cn

since μ
(0)
i0

= μ
(1)
i0

+ cn. This means that, for either Y (0) or Y (1), it holds that
the bias at i0 satisfies the lower bound 0.2cn. With cn as specified above, this
completes the proof of Theorem 3.

Now we turn to proving the bounds in Steps 1, 2, 3 above.

3.5.1. Proof of Step 1

By definition, we have ∣∣Y (0)
i − Y

(1)
i

∣∣ = ∣∣μ(0)
i − μ

(1)
i

∣∣ ≤ cn

for all i, and therefore, it holds deterministically that∣∣iso(Y (0))i − iso(Y (1))i
∣∣ ≤ cn

for all i (this holds since ‖iso(y)− iso(y′)‖∞ ≤ ‖y− y′‖∞ for any y, y′ ∈ R
n, by

Yang and Barber [2018, Lemma 1]).
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3.5.2. Proof of Step 2

Next, we define

Δ =
μ(0) − μ(1)

cn
,

and consider the min-max formulation of isotonic regression as in (12) and (13):

iso(Y (0))i0 = max
j≤i0

min
k≥i0

Y (0)
j:k

= min
k≥i0

Y ji0 (Y
(0)):k

= min
k≥i0

(
Y (1)

ji0 (Y
(0)):k + cnΔji0 (Y

(0)):k

)
≤ Y (1)

ji0 (Y
(0)):ki0 (Y

(1)) + cnΔji0 (Y
(0)):ki0 (Y

(1))

≤ max
j≤i

Y (1)
j:ki0 (Y

(1)) + cnΔji0 (Y
(0)):ki0 (Y

(1))

= iso(Y (1))i0 + cnΔji0 (Y
(0)):ki0 (Y

(1)).

Therefore, it suffices to show that

If ki0(Y
(1)) ≥ i0 + 10nεn then Δji0 (Y

(0)):ki0 (Y
(1)) ≤ 0.2.

Since ji0(Y
(0)) ≤ i0 by definition, we can weaken this to the statement

Δj:k ≤ 0.2 for all indices j, k ∈ {1, . . . , n} with j ≤ i0 and k ≥ i0 + 10nεn.

This is true simply because, by definition of Δ, we have Δi ≤ 1 for all i and
Δi = 0 for all |i− i0| ≥ nεn.

3.5.3. Proof of Step 3

For this step we will use the breakpoint lemma. We have

�+m∑
j=�−m+1

(μ
(1)
j − μ

(1)
� )2 ≤ 2mc2n

for any m ≥ 1 and any 
 with m ≤ 
 ≤ n − m. Choose m =
⌈

C4

c2n logn

⌉
which

satisfies m ≥ 2 for sufficiently large n. Applying Lemma 1, we have

P

{
iso(Y (1))� �= iso(Y (1))�+1

}
≤ C5 logn

m
,

where C5 depends only on σ2, C4. This implies that

P

{
ki0(Y

(1)) < i0 + 10nεn

}
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= P

{
iso(Y (1))� �= iso(Y (1))�+1 for some i0 ≤ 
 ≤ i0 + 10nεn

}
≤ (10nεn + 1) · C5 logn

m
,

as long as i0 satisfies

m ≤ i0 ≤ n−m− 10nεn.

By definition of cn, εn,m, as long as C1, C2, C4 are chosen appropriately, we
therefore have

P

{
ki0(Y

(1)) < i0 + 10nεn

}
≤ 0.5,

which completes the proof of Step 3.

4. Discussion

In this work, we develop a sharp bound on the bias of isotonic regression in one
dimension for strictly increasing signals, establishing (up to log factors) that the
bias is no larger than n−2/3 for smooth signals, but may be as large as n−1/3

in the non-smooth case. Many important open questions remain, for instance,
whether these bounds on the bias may be extended to the multidimensional
setting, or to settings such as the Grenander estimator for a monotone density
function.
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Appendix A: Additional proofs

A.1. Proof of breakpoint lemma (Lemma 1)

In Section 3.2, we proved Lemma 3, which establishes the desired result for the
case of a standard Gaussian. We now need to reduce to this case.

First, we reduce to a shorter subvector of length 2m. Define

Ỹ =
(
Yi−m+1, Yi−m+2, . . . , Yi+m

)
.

The property (15) of isotonic regression implies that

P {iso(Y )i �= iso(Y )i+1} ≤ P

{
iso(Ỹ )m �= iso(Ỹ )m+1

}
,

so we now only need to bound this last probability.
Next we show that, since the means μj and variances σ2

j are nearly constant
over j = i − m + 1, . . . , i + m, we can reduce to a standard Gaussian where
the means and variances are constant. We first state a trivial result comparing
multivariate Gaussians, which we prove in Appendix A.3:

Lemma 5. Fix any integer k ≥ 2, and any a1, . . . , ak ∈ R and b1, . . . , bk > 0.
Let

V ∼ N
(
(a1, . . . , ak), diag{b21, . . . , b2k}

)
and W ∼ N

(
ā1k, b̄

2Ik
)
,

where

ā =
1

k

k∑
i=1

ai and b̄2 =
1

k

k∑
i=1

b2i .

Suppose that

k∑
i=1

(
ai − ā

b̄

)2

≤ C ′
1

log k
and max

i=1,...,k

∣∣∣∣b2ib̄2 − 1

∣∣∣∣ ≤ C ′
2√

k log k
.

Then, for any c > 0 and any measurable A ⊆ R
k,

P {V ∈ A} ≤ C ′
3 ·

(
P {W ∈ A}+ k−c

)
,

where C ′
3 depends only on c, C ′

1, C
′
2 and not on k.

Now we apply this result to Ỹ . Let Y̌ ∼ N
(
μ̄12m, σ̄2I2m

)
, with μ̄, σ̄ defined

as in the statement of Lemma 1. Then applying Lemma 5 with k = 2m, c = 1,
and with the set A defined as

A =
{
y ∈ R

2m : iso(y)m �= iso(y)m+1

}
,

http://www.ams.org/mathscinet-getitem?mr=3914177
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we see that the conditions of Lemma 5 are satisfied for some C ′
1, C

′
2 depending

only on the values C1, C2 in the statement of Lemma 1. So, we have

P

{
iso(Ỹ )m �= iso(Ỹ )m+1

}
≤ C ′

3

(
P
{
iso(Y̌ )m �= iso(Y̌ )m+1

}
+

1

m

)
,

where C ′
3 depends only on C1, C2.

Finally, consider a standard multivariate Gaussian, Z ∼ N
(
02m, I2m

)
. Clearly

we can write Y̌ = μ̄12m + σ̄Z, and so iso(Y̌ ) = μ̄12m + σ̄ · iso(Z) by the prop-
erty (14) of isotonic regression. This implies that

P
{
iso(Y̌ )m �= iso(Y̌ )m+1

}
= P {iso(Z)m �= iso(Z)m+1} ≤ logm

m− 1
,

where the last step applies Lemma 3.
We have therefore proved that

P

{
iso(Ỹ )i �= iso(Ỹ )i+1

}
≤ C ′

3

(
logm

m− 1
+

1

m

)
,

which completes the proof of Lemma 1 with C3 chosen appropriately.

A.2. Proof of Gaussian coupling lemma (Lemma 4)

Our lemma is a consequence of Sakhanenko [1985]’s Gaussian coupling result:

Theorem 4 (Sakhanenko [1985, Theorem 1]). Suppose that Z1, . . . , Zn are in-
dependent random variables with E [Zj ] = 0 and Var (Zj) = σ2

j , and that for
some ν > 0, each Zj satisfies

E

[
ν|Zj |3eν|Zj |

]
≤ σ2

j .

Then there exists a coupling between (Z1, . . . , Zn) and (Z̃1, . . . , Z̃n) ∼
N

(
0, diag{σ2

1 , . . . , σ
2
n}

)
that satisfies

E

[
exp

{
cν max

1≤j≤n

∣∣∣∣∣
j∑

k=1

Zk −
j∑

k=1

Z̃k

∣∣∣∣∣
}]

≤ 1 + ν

√√√√ n∑
j=1

σ2
j ,

where c > 0 is a universal constant.

Now define Zj = Yj − μj for j = 1, . . . , n. To apply Theorem 4, we will first
work with the sequence Zi, Zi+1, . . . , Zn instead of Z1, . . . , Zn, i.e. we begin
at the index i. Since each Zj is (λ, τ)-subexponential, it therefore satisfies the
assumption E

[
ν|Zj |3eν|Zj |

]
≤ σ2

min ≤ σ2
j when we choose ν as an appropriate

function of λ, τ , and σmin. By Theorem 4, then, we have a coupling between
(Zi, . . . , Zn) and (Z̃i, . . . , Z̃n) ∼ N

(
0, diag{σ2

i , . . . , σ
2
n}

)
such that

E

[
exp

{
cν max

i≤j≤n

∣∣∣∣∣
j∑

k=i

Zk −
j∑

k=i

Z̃k

∣∣∣∣∣
}]

≤ 1 + ν

√√√√ n∑
j=i

σ2
j ≤ 1 + νλ

√
n
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(where we recall that maxj σj ≤ λ by the subexponential tails assumption (9)
on the original noise terms Zj). In particular, this implies that

P

{
max
i≤j≤n

∣∣∣∣∣
j∑

k=i

Zk −
j∑

k=i

Z̃k

∣∣∣∣∣ ≤ C log(n/δ)

}
≥ 1− δ (28)

for all δ > 0, when C is chosen appropriately as a function of λ, τ, σmin.
Following an identical argument on the sequence Zi−1, Zi−2, . . . , Z1, we can
construct a coupling of (Z1, . . . , Zi−1) to a Gaussian vector (Z̃1, . . . , Z̃i−1) ∼
N

(
0, diag{σ2

1 , . . . , σ
2
i−1})

)
such that

P

⎧⎨⎩ max
1≤j≤i−1

∣∣∣∣∣∣
i−1∑
k=j

Zk −
i−1∑
k=j

Z̃k

∣∣∣∣∣∣ ≤ C log(n/δ)

⎫⎬⎭ ≥ 1− δ. (29)

Finally, since (Z1, . . . , Zi−1) and (Zi, . . . , Zn) are independent, we can also take
(Z̃1, . . . , Z̃i−1) and (Z̃i, . . . , Z̃n) to be independent, and thus we have a coupling
between Z and a Gaussian random vector Z̃ ∼ N

(
0, diag{σ2

1 , . . . , σ
2
n}

)
such

that both (28) and (29) hold, which implies that

P

⎧⎨⎩ max
1≤j≤i≤k≤n

∣∣∣∣∣∣
k∑

�=j

Z� −
k∑

�=j

Z̃�

∣∣∣∣∣∣ ≤ 2C log(n/δ)

⎫⎬⎭ ≥ 1− 2δ. (30)

Let Δ = Z − Z̃ denote the error in the coupling constructed above, and

Ỹ = μ + Z̃. We therefore have Y j:k = Ỹ j:k +Δj:k for all indices j, k. Now, for
each i, let

ji(Ỹ ) = min{j : iso(Ỹ )j = iso(Ỹ )i} and ki(Ỹ ) = max{k : iso(Ỹ )k = iso(Ỹ )i}

as in (13), which are the endpoints of the constant segment of the isotonic
projection iso(Ỹ ) containing index i. Using the definition of isotonic regression,
we calculate

iso(Y )i = max
j≤i

min
k≥i

Y j:k ≤ max
j≤i

Y j:ki(Ỹ ) ≤ max
j≤i

Ỹ j:ki(Ỹ ) +max
j≤i

Δj:ki(Ỹ )

= iso(Ỹ )i +max
j≤i

Δj:ki(Ỹ ) ≤ iso(Ỹ )i +
1

ki(Ỹ )− i+ 1
· max
1≤j≤i≤k≤n

∣∣∣ k∑
�=j

Δ�

∣∣∣.
Similarly we can show that

iso(Y )i ≥ iso(Ỹ )i −
1

i− ji(Ỹ ) + 1
· max
1≤j≤i≤k≤n

∣∣∣ k∑
�=j

Δ�

∣∣∣.
Therefore,
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E

[∣∣∣iso(Y )i − iso(Ỹ )i

∣∣∣]
≤ E

⎡⎣max

{
1

i− ji(Ỹ ) + 1
,

1

ki(Ỹ )− i+ 1

}
· max
1≤j≤i≤k≤n

∣∣∣ k∑
�=j

Δ�

∣∣∣
⎤⎦

≤ c′ logn

(
E

[
1

i− ji(Ỹ ) + 1

]
+ E

[
1

ki(Ỹ )− i+ 1

])

+ E

⎡⎣⎛⎝ max
1≤j≤i≤k≤n

∣∣∣ k∑
�=j

Δ�

∣∣∣− c′ log n

⎞⎠
+

⎤⎦
for any c′ > 0. We can further calculate

E

⎡⎣⎛⎝ max
1≤j≤i≤k≤n

∣∣∣ k∑
�=j

Δ�

∣∣∣− c′ logn

⎞⎠
+

⎤⎦
≤

∫
t≥c′ log n

P

⎧⎨⎩ max
1≤j≤i≤k≤n

∣∣∣ k∑
�=j

Δ�

∣∣∣ > t

⎫⎬⎭ dt

by (30)

≤
∫
t≥c′ logn

2ne−t/2C dt = 4Cne−(c′ log n)/2C ≤ 1

n
,

when c′ is chosen as an appropriate function of C. Combining what we have so
far, then,

E

[∣∣∣iso(Y )i − iso(Ỹ )i

∣∣∣] ≤ c′ logn

(
E

[
1

i− ji(Ỹ ) + 1

]
+ E

[
1

ki(Ỹ )− i+ 1

])
+
1

n
.

We will now bound these expected values.
For any 
 ≥ 1 with i+ 
 ≤ n, it is trivial to see that

P

{
ki(Ỹ )− i+ 1 = 


}
= P

{
ki(Ỹ ) = 
+ i− 1

}
≤ P

{
iso(Ỹ )�+i−1 �= iso(Ỹ )�+i

}
.

Therefore, for any 
max ≥ 1 with i+ 
max ≤ n,

E

[
1

ki(Ỹ )− i+ 1

]
≤

�max∑
�=1

P

{
ki(Ỹ )− i+ 1 = 


}



+
1


max

≤
�max∑
�=1

P

{
iso(Ỹ )�+i−1 �= iso(Ỹ )�+i

}



+
1


max
.

Next, we will use the breakpoint lemma (Lemma 1) to bound these probabilities.
Fix

m = 
max =

⌈
n2/3

(log n)1/3

⌉
.
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We apply the lemma at the index i′(
) = 
 + i − 1 in place of i. Since we’ve

assumed that C2n
2/3

(logn)1/3
≤ i ≤ n − C2n

2/3

(logn)1/3
, it’s trivial to check that m ≤

i′(
) ≤ n − m for an appropriate choice of C2. Next, since the means μj are
L1-Lipschitz (5) and the standard deviations σj are Lσ-Lipschitz (10), we can
verify that the assumptions (17) are satisfied for C1, C2 depending only on L1, Lσ

(and not on n). Therefore

P

{
iso(Ỹ )i′(�) �= iso(Ỹ )i′(�)+1

}
≤ C3(logn)

4/3

n2/3

for all 
 = 1, . . . , 
max, where C3 depends only on C1, C2. Returning to the work
above, then,

E

[
1

ki(Ỹ )− i+ 1

]
≤

�max∑
�=1

C(logn)4/3

n2/3



+

1


max
≤ C ′(logn)7/3

n2/3
,

where C ′ is chosen appropriately as a function of C3. An identical argument

holds for bounding E

[
1

i−ji(Ỹ )+1

]
. Combining everything, we see that

E

[∣∣∣iso(Y )i − iso(Ỹ )i

∣∣∣] ≤ c′ · C ′ · (logn)10/3
n2/3

+
1

n
,

which proves the coupling lemma for an appropriately chosen C1.

A.3. Proof of Lemma 5

First we define likelihoods,

fV (x) =
1

(2π)k/2
∏k

i=1 bi
exp

{
−

k∑
i=1

(xi − ai)
2/2b2i

}

and

fW (x) =
1

(2π)k/2b̄k
exp

{
−

k∑
i=1

(xi − ā)2/2b̄2

}
.

Define the set

B =
{
x ∈ R

k : fV (x) > C ′
3 · fW (x)

}
,

where C ′
3 will be defined below. Then

P {V ∈ A} ≤ P {V ∈ B}+ P {V ∈ A\B} ,

and

P {V ∈ A\B} =

∫
x∈Rk

1 {x ∈ A\B} · fV (x) dx
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=

∫
x∈Rk

1 {x ∈ A\B} · fV (x)
fW (x)

· fW (x) dx

≤
∫
x∈Rk

1 {x ∈ A\B} · C ′
3 · fW (x) dx

= C ′
3 · P {W ∈ A\B}

≤ C ′
3 · P {W ∈ A} ,

where the first inequality holds by definition of B. Therefore, we now only need
to bound P {V ∈ B}. We calculate

fV (V )

fW (V )
=

1

(2π)k/2
∏k

i=1 bi
exp

{
−

∑k
i=1(Vi − ai)

2/2b2i

}
1

(2π)k/2 b̄k
exp

{
−

∑k
i=1(Vi − ā)2/2b̄2

}
=

(
k∏

i=1

b̄

bi

)
︸ ︷︷ ︸

Term 1

· exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2

k∑
i=1

(
Vi − ai

bi

)2

·
(
b2i
b̄2

− 1

)
︸ ︷︷ ︸

Term 2

+

k∑
i=1

Vi − ai

bi
· ai − ā

b̄2/bi︸ ︷︷ ︸
Term 3

+
1

2

k∑
i=1

(ai − ā

b̄

)2

︸ ︷︷ ︸
Term 4

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Next we will bound each term separately.

For Term 1, first note that we can assume
C′

2√
k log k

≤ 1
2 (because if this does

not hold then k is bounded by a constant, and so the conclusion of the lemma
holds trivially; i.e., by setting C ′

3 appropriately, the claim reduces to bounding
a probability by 1). Therefore,

Term 1 =

k∏
i=1

b̄

bi
= exp

{
−1

2

k∑
i=1

log(b2i /b̄
2)

}

≤ exp

{
−1

2

k∑
i=1

[(
b2i /b̄

2 − 1
)
− 2

(
b2i /b̄

2 − 1
)2]}

since |b2i /b̄2 − 1| ≤ C ′
2√

k log k
≤ 1

2

= exp

{
k∑

i=1

(
b2i /b̄

2 − 1
)2}

by definition of b̄2

≤ exp

{
k

(
max

i=1,...,k

∣∣∣∣b2ib̄2 − 1

∣∣∣∣)2
}

≤ exp
{
C ′

2
2/ log 2

}
,

since k ≥ 2.

Next, for Term 2, note that
(

Vi−ai

bi

)2 iid∼ χ2
1. Define

r+i = max

{
0,

(
b2i
b̄2

− 1

)}
and r−i = max

{
0,−

(
b2i
b̄2

− 1

)}
.
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By Laurent and Massart [2000, Lemma 1], we have

P

{
k∑

i=1

(
Vi − ai

bi

)2

· r+i ≤
k∑

i=1

r+i + max
i=1,...,k

r+i ·
(
2
√
kc log k + 2c log k

)}
≥ 1−k−c

and

P

{
k∑

i=1

(
Vi − ai

bi

)2

· r−i ≥
k∑

i=1

r−i − max
i=1,...,k

r−i · 2
√

kc log k

}
≥ 1− k−c.

Combining the two, and using the fact that
∑k

i=1 r
+
i − r−i = 0 by definition of

b̄, this simplifies to

P

{
Term 2 ≤ max

i=1,...,k

∣∣∣∣b2ib̄2 − 1

∣∣∣∣ · (4√kc log k + 2c log k
)}

≥ 1− 2k−c.

Since log k ≤
√
k log k for all integers k ≥ 2, we thus have

P
{
Term 2 ≤ C ′

2(4
√
c+ 2c)

}
≥ 1− 2k−c.

Turning to Term 3, since Vi−ai

bi

iid∼ N (0, 1), we have

Term 3 =

k∑
i=1

Vi − ai
bi

· ai − ā

b̄2/bi
∼ N

(
0,

k∑
i=1

(
ai − ā

b̄2/bi

)2
)
,

and so

P

⎧⎨⎩Term 3 ≤

√√√√ k∑
i=1

(
ai − ā

b̄2/bi

)2

·
√
2c log k

⎫⎬⎭ ≥ 1− k−c.

We can weaken this to

P

⎧⎨⎩Term 3 ≤
√
1 + max

i=1,...,k

∣∣∣∣b2ib̄2 − 1

∣∣∣∣
√√√√ k∑

i=1

(
ai − ā

b̄

)2

·
√

2c log k

⎫⎬⎭ ≥ 1− k−c.

Plugging in our definitions of C ′
1, C

′
2, and using k ≥ 2, we then have

P

{
Term 3 ≤

√
1 +

C ′
2√

2 log 2
·
√

2cC ′
1

}
≥ 1− k−c.

Finally, for the last term we can calculate

Term 4 =
k∑

i=1

(
ai − ā

b̄

)2

≤ C ′
1

log k
≤ C ′

1

log 2
.



834 R. Dai et al.

Combining everything and simplifying, with probability at least 1−3k−c, we
have

fV (V )

fW (V )
≤ exp

{
C ′

2
2

log 2
+ C ′

2(2
√
c+ c) +

√
1 +

C ′
2√

2 log 2
·
√
2cC ′

1 +
C ′

1

2 log 2

}
.

Defining

C ′
3 = max

{
3, exp

{
C ′

2
2

log 2
+ C ′

2(2
√
c+ c) +

√
1 +

C ′
2√

2 log 2
·
√

2cC ′
1 +

C ′
1

2 log 2

}}
,

we therefore have

P {V ∈ B} = P

{
fV (V )

fW (V )
> C ′

3

}
≤ 3k−c ≤ C ′

3k
−c,

as desired.
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