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Faces in random great hypersphere tessellations
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Abstract

The concept of typical and weighted typical spherical faces for tessellations of the
d-dimensional unit sphere, generated by n independent random great hyperspheres
distributed according to a non-degenerate directional distribution, is introduced and
studied. Probabilistic interpretations for such spherical faces are given and their
directional distributions are determined. Explicit formulas for the expected f -vector,
the expected spherical Quermaßintegrals and the expected spherical intrinsic volumes
are found in the isotropic case. Their limiting behaviour as n → ∞ is discussed
and compared to the corresponding notions and results in the Euclidean case. The
expected statistical dimension and a problem related to intersection probabilities of
spherical random polytopes is investigated.
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1 Introduction

The analysis of random tessellations in Rd and the resulting random polytopes has a
long tradition in stochastic geometry. Particularly attractive, at least from a mathematical
point of view, is the class of Poisson hyperplane tessellations for which many explicit
results are available, see e.g. [24, 26, 31] for representative overviews. This class of
models has recently found also interesting applications in compressed sensing [5, 7].
This paper deals with the natural analogue of such tessellations in spherical spaces of
constant positive curvature +1. More precisely, we are dealing with random tessellations
of the d-dimensional unit sphere Sd ⊂ Rd+1 generated by n ∈ N independent random
great hyperspheres. Such tessellations were previously investigated in [3, 8, 16, 27].
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Faces in random great hypersphere tessellations

These works deal with mean value relations for geometric characteristics of these
tessellations as well as with their so-called typical and, occasionally, also with their
weighted typical cells. These cells arise as follows. The typical cell is a random cell
which is selected uniformly from the (almost surely finite) collection of all cells, while
the weighted typical cell is its size biased version, where size is measured by the d-
dimensional spherical Lebesgue measure. In contrast to these previous works we are not
only interested in the cells of random great hypersphere tessellations, but also in their
lower-dimensional faces. This gives rise to new questions, mainly related to the notion of
direction, which in the spherical set-up typically have different answers compared to their
Euclidean counterparts. Motivated by the approach in [29], which deals with Poisson
hyperplane tessellations in Rd, for any k ∈ {0, 1, . . . , d} we introduce two different
types of random k-dimensional spherical faces associated with a great hypersphere
tessellation, the k-dimensional typical spherical face and the k-dimensional weighted
typical spherical face. In the equivalent language of conical random tessellations, the
typical spherical k-face generalizes to lower dimensions the concept of the Schläfli
random cone studied in [8, 16, 20]. We investigate the relation between and provide
probabilistic interpretations of these lower-dimensional spherical random polytopes. In
particular, we determine explicitly several of their key characteristic quantities in the
isotropic case, that is, if the distribution of the underlying great hyperspheres is the
uniform distribution on the space of great hyperspheres. This is essentially based on the
connection of weighted typical spherical k-faces by spherical polarity to random convex
hulls on half-spheres, which in turn can be analysed using the language of random beta
polytopes, see [18, 19, 22, 23]. To be precise, for each k ∈ {0, 1, . . . , d}, we determine
explicitly the expected number of `-dimensional spherical faces, ` ∈ {0, 1, . . . , k − 1},
of the typical and the weighted typical k-dimensional spherical face. We also provide
fully explicit formulas for the expected spherical Quermaßintegrals and the expected
spherical intrinsic volumes. We also deal with the expected statistical dimension and
study a problem from geometric probability, dealing with intersection probabilities of
spherical random polytopes.

Our paper continues and adds to a recent active line of research on random ge-
ometric systems in non-Euclidean spaces. Recent works directly linked with this
text are the articles [6, 18, 23] on spherical convex hulls on half-spheres, the papers
[9, 10, 11, 14, 16, 17] dealing with different types of hyperplane or splitting tessella-
tions in spherical (and hyperbolic) spaces or the publications [14, 21] about Voronoi
tessellations on the sphere. Let us also mention here the work [30], which studies
intersection probabilities for deterministic and random cones, and [12], where random
tessellations of the 2-dimensional sphere generated by a gravitational allocation scheme
are investigated.

The remaining parts of this text are structured as follows. In Section 2 we recall
some preliminaries, introduce random great hypersphere tessellations and formally
define the notions of typical and weighted typical spherical k-faces. Probabilistic inter-
pretations of such faces in terms of intersections are provided in Section 3. We also
show there that the weighted typical spherical k-face is the size biased version of the
typical spherical k-face. The directional distribution of both types of faces as well as
the distribution of faces with given direction are determined in Section 4, whereas in
Section 5 we concentrate (mainly) on the isotropic case. Especially, we provide there
explicit formulas for the expected f -vector, the expected spherical Quermaßintegrals
and the expected spherical intrinsic volumes of typical and weighted typical spherical
k-faces. We also study their asymptotic behaviour, determine their statistical dimen-
sion and analyse a question related to intersection probabilities of spherical random
polytopes.
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Figure 1: Two realizations of great hypersphere tessellation of S2 with different direc-
tional distributions κ. In the left picture κ is the uniform distribution on Gs(2, 1), while
in the right picture the great hyperspheres are concentrated close to the equator.

2 Great hypersphere tessellations and typical spherical faces

2.1 Preliminaries

Spaces of subspheres and polytopes We fix a space dimension d ≥ 1 and consider
the d-dimensional unit sphere Sd ⊂ Rd+1. For k ∈ {0, 1, . . . , d} we denote by Gs(d, k)

the spherical Grassmannian of k-dimensional great subspheres of Sd and refer to the
elements of Gs(d, d− 1) as great hyperspheres. Also observe that Gs(d, d) = {Sd}. Each
of the spaces Gs(d, k) carries a unique rotation invariant Haar probability measure, νk,
see [31, Chapter 6.5]. Following the convention in [31], we also define the constant

ωk+1 = H k(S) =
2πk/2

Γ(k2 )
,

where S ∈ Gs(d, k) is arbitrary and H k( · ) denotes the k-dimensional Hausdorff measure.
We write Ks(d) for the space of spherical convex subsets of Sd, where we recall

that a subset of Sd is convex if it is the intersection of Sd with a closed convex cone in
Rd+1 different from {0}. Moreover, we use the symbol Ps(d) to indicate the space of
spherical polytopes in Sd. By such a polytope we understand the intersection of Sd with
a polyhedral cone in Rd+1. The intersection of Sd with an (`+ 1)-dimensional face of the
polyhedral cone generating a spherical polytope P ∈ Ps(d) is called an `-dimensional
spherical face of P , ` ∈ {0, 1, . . . , k}.

The Borel σ-fields on Ks(d) and Ps(d) generated by the spherical Hausdorff distance
are denoted by B(Ks(d)) and B(Ps(d)), respectively. More generally, if E is a topological
space then B(E) will denote the Borel σ-field on E generated by the given topology.

Great hypersphere tessellations In this paper, κ◦ will denote an even probability
measure on Sd with the property that κ◦(S) = 0 for any great hypersphere S ∈ Gs(d, d−1).
The image measure of κ◦ under the orthogonal complement map⊥: Sd → Gs(d, d−1), u 7→
u⊥ ∩ Sd is denoted by κ. It is a probability measure on the space Gs(d, d − 1) of great
hyperspheres of Sd. We let n ∈ N and consider a binomial point process ξn on Gs(d, d− 1)

with intensity measure nκ. That is,

ξn = {S1, . . . , Sn}
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with independent random great hyperspheres S1, . . . , Sn all having distribution κ. We
assume that all random elements we consider are defined on a probability space (Ω,A,P)

and denote by E expectation (integration) with respect to P. We note that our assumption
on κ (or κ◦) implies that κ is non-degenerate in the sense that with probability one the
great hyperspheres S1, . . . , Sn are in general position, which means that with probability
one for any 1 ≤ i1 < . . . < id−k ≤ n, k ∈ {1, . . . , d}, we have that Si1∩ . . .∩Sid−k ∈ Gs(d, k).
The great hyperspheres from ξn partition Sd into a random collection of d-dimensional
spherical polytopes, which are referred to as cells in the sequel. By a classical result of
Steiner (for S2) and Schläfli (for general Sd) the random collection almost surely consists
of

C(n, d) = 2

d∑
r=0

(
n− 1

r

)
(2.1)

d-dimensional spherical random polytopes P1, . . . , PC(n,d), say. We call

Tn,d = Td(S1, . . . , Sn) = {P1, . . . , PC(n,d)}

a random great hypersphere tessellation of Sd with intensity n and directional distribu-
tion κ. Let us remark that in this generality the model has previously been considered
in [16], while the works [3, 27] only deal with the special case where κ is the uniform
distribution νd−1 on Gs(d, d− 1) (or, equivalently, κ◦ is the uniform distribution on Sd).
We refer to the latter situation as the isotropic case, which we will intensively study in
Section 5.

For a spherical polytope P ∈ Ps(d) and k ∈ {0, 1, . . . , d} we write Fk(P ) for the set of
its k-dimensional spherical faces, called spherical k-faces for short. The cardinality of
Fk(P ) is denoted by fk(P ) = |Fk(P )|. We also write

Fk(Tn,d) = Fk(S1, . . . , Sn) =
⋃

P∈Tn,d

Fk(P )

for the set of spherical k-faces of Tn,d, which is generated by S1, . . . , Sn. Using the
non-degeneracy property of κ it easily follows that almost surely

|Fk(Tn,d)| =
(

n

d− k

)
C(n− d+ k, k) =: C(n, d, k), (2.2)

see [16, Equation (16)].

Remark 2.1. We would like to emphasize that although we are using the same notation
as in [16, 31], we are working on Sd, while in [16, 31] the (d− 1)-dimensional unit sphere
Sd−1 is considered. In particular, this implies that the sum in the definition (2.1) of
constants C(n, d) runs up to d in our case and not to d− 1 as in [16, 31]. This should be
kept in mind when our results are compared to those in the literature.

2.2 Typical and weighted typical spherical faces

We assume the same set-up as in the previous section and fix k ∈ {0, 1, . . . , d}. In
order to avoid the discussion of degenerate cases, we assume that the number n of great
hyperspheres satisfies n ≥ d− k.

To obtain the typical spherical k-face Z(k)
n,d of the great hypersphere tessellation Tn,d

we choose uniformly at random one of the C(n, d, k) spherical k-faces of Tn,d (note that

by our assumption on n we have that Fk(Tn,d) 6= ∅). The distribution of Z(k)
n,d is formally

given by

P(Z
(k)
n,d ∈ A) =

∫
Gs(d,d−1)n

1

C(n, d, k)

∑
F∈Fk(S1,...,Sn)

1{F ∈ A}κn(d(S1, . . . , Sn)), (2.3)
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where A ∈ B(Ks(d)). In this and some other formulae we use the notation S1, . . . , Sn to
denote integration variables even though the same notation has been used before for
random hyperspheres. This should not lead to no confusion. We also use the convention
to drop the upper index if k = d, that is, we write Zn,d instead of Z(d)

n,d for the typical cell
of Tn,d.

Remark 2.2. Taking k = d in the previous definition we get back the spherical random
polytope whose conical version was studied in [16, 20] under the name Schäfli random
cone.

To introduce the weighted typical spherical k-face of Tn,d one considers the k-skeleton
skelk(Tn,d) of Tn,d, by which we mean the random closed set on Sd (in the sense of [31,
Chapter 2]) consisting of the union of all spherical k-faces of cells of Tn,d, that is,

skelk(Tn,d) =
⋃

P∈Tn,d

⋃
F∈Fk(P )

F. (2.4)

By our assumption on n, skelk(Tn,d) 6= ∅ and it is easy to verify that the non-degeneracy
assumption on κ implies that almost surely H k(skelk(Tn,d)) =

(
n
d−k
)
ωk+1 ∈ (0,∞).

We can thus choose a random point v on skelk(Tn,d) according to the normalized k-
dimensional Hausdorff measure. This point almost surely lies in the relative interior
of a unique spherical k-face Fv = Fv(Tn,d) of Tn,d (for ease of notation we suppress the
dependence on k here). By definition, this is what we mean by the weighted typical
spherical k-face W (k)

n,d of Tn,d, where the term ‘weight’ always refers to the Hausdorff

measure H k. Its distribution is formally given by

P(W
(k)
n,d ∈ A)

=

∫
Gs(d,d−1)n

1

H k(skelk(Tn,d))

∫
skelk(Tn,d)

1{Fv ∈ A}H k(dv)κn(d(S1, . . . , Sn)),
(2.5)

where A ∈ B(Ks(d)). As above, we use the convention to drop the upper index if k = d,

that is, we write Wn,d instead of W (d)
n,d for the weighted typical cell of Tn,d.

Remark 2.3. In the special case k = d we just have skeld(Tn,d) = Sd and W (d)
n,d is thus the

almost surely uniquely determined cell of Tn,d which contains a uniform random point
on the sphere Sd. The conical versions of such cells appeared in [16, Section 5] in the
isotropic case.

The notion of typical spherical k-faces and weighted typical spherical k-faces parallels
in spirit the concepts known from the Euclidean case (see [29] and [15]). However, a
stationary random tessellation in Rd has with probability one infinitely many cells, so
that Palm distributions need to be used to introduce the corresponding notions. The
compactness of the spherical space Sd allows a much more direct approach, since the
number of k-faces of Tn,d is almost surely finite. In addition, it should be noted that the
common stationarity assumption in the Euclidean case would translate naturally into
an isotropy assumption for random tessellations on Sd, see [3, 27]. In our set-up we
work, however, with a general directional distribution, which is is not compatible with
the invariance assumption required for Palm calculus. This is the reason why we do not
work with Palm distributions for random measures on the sphere in order to define Z(k)

n,d

and W (k)
n,d .
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3 Probabilistic interpretation of typical spherical faces

3.1 Interpretation of W (k)
n,d and Z

(k)
n,d via intersections

In this section we consider a great hypersphere tessellation Tn,d of Sd of intensity
n ≥ d − k and with non-degenerate directional distribution κ, which is driven by a
binomial point process ξn on Gs(d, d− 1) with intensity measure nκ. By Z(k)

n,d and W (k)
n,d we

denote the typical and the weighted typical spherical k-face of Tn,d, respectively, where
k ∈ {0, 1, . . . , d} is a fixed dimension parameter.

Our first result is a description of the weighted typical spherical k-face W (k)
n,d as the

intersection of the weighted typical cell of Tn−d+k,d with a k-dimensional random great
subsphere. This can be seen as the spherical analogue of [29, Theorem 1]. Below, we also
derive a similar description for the typical spherical k-face as well. Before we present
the result, we introduce for k ∈ {0, 1, . . . , d− 1} the measure κk on Gs(d, k) by putting

κk(C) =

∫
Gs(d,d−1)d−k

1{S1 ∩ . . . ∩ Sd−k ∈ C}κd−k(d(S1, . . . , Sd−k)) (3.1)

for sets C ∈ B(Gs(d, k)). It can be interpreted as 1/
(
n
d−k
)

times the intensity of the k-th
intersection process of ξn, which arises by taking intersections of all (d − k)-tuples of
great hyperspheres from ξn. Clearly, κd−1 = κ.

Theorem 3.1. Let d ≥ 1, k ∈ {0, 1, . . . , d} and consider a great hypersphere tessellation
of Sd with non-degenerate directional distribution κ and intensity n ≥ d − k. Let
h : Ks(d)→ R be a non-negative measurable function. Then

Eh(W
(k)
n,d) =

1

ωk+1

∫
Gs(d,k)

∫
S

Eh(Zv(Tn−d+k,d) ∩ S) H k(dv)κk(dS),

where Zv(Tn−d+k,d) stands for the almost surely unique cell of Tn−d+k,d containing v in
its relative interior.

Proof. We start by recalling the definition (2.4) of the k-skeleton of Tn,d. By construction
of Tn,d we have that

skelk(Tn,d) =
⋃

1≤i1<...<id−k≤n

Si1 ∩ . . . ∩ Sid−k . (3.2)

Since all great hyperspheres S1, . . . , Sn generating Tn,d are identically distributed and

almost surely in general position, this together with the definition (2.5) of W (k)
n,d yields

Eh(W
(k)
n,d)

=

∫
Gs(d,d−1)n

1

H k(skelk(Tn,d))

∫
skelk(Tn,d)

h(Fv(Tn,d)) H k(dv)κn(d(S1, . . . , Sn))

=

∫
Gs(d,d−1)n

1∑
1≤i1<...<id−k≤n

H k(Si1 ∩ . . . ∩ Sid−k)

×
∑

1≤i1<...<id−k≤n

∫
Si1∩...∩Sid−k

h(Fv(Tn,d)) H k(dv)κn(d(S1, . . . , Sn))

=

∫
Gs(d,d−1)d−k

1

ωk+1

∫
S1∩...∩Sd−k

∫
Gs(d,d−1)n−d+k

h(Fv(Tn,d))

× κn−d+k(d(Sd−k+1, . . . , Sn))H k(dv)κd−k(d(S1, . . . , Sd−k))

=

∫
Gs(d,d−1)d−k

1

ωk+1

∫
S1∩...∩Sd−k

∫
Gs(d,d−1)n−d+k

h(Fv(Tn−d+k,d ∩ (S1 ∩ . . . ∩ Sd−k)))

× κn−d+k(d(Sd−k+1, . . . , Sn))H k(dv)κd−k(d(S1, . . . , Sd−k)),
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Tn−d+k,d

S

Figure 2: Construction of Z(k)
n,d or W (k)

n,d by intersection of Tn−d+k,d with a random great
subsphere S.

where Tn−d+k,d = Td(Sd−k+1, . . . , Sn) is the tessellation of Sd generated by the n− d+ k

great hyperspheres Sd−k+1, . . . , Sn and Tn−d+k,d ∩ (S1 ∩ . . . ∩ Sd−k) is our notation for
the sectional tessellation arising by as the intersection of each cell of Tn−d+k,d with
S1 ∩ . . . ∩ Sd−k. Applying now the definition of the measure κk yields

Eh(W
(k)
n,d) =

1

ωk+1

∫
Gs(d,k)

∫
S

Eh(Fv(Tn−d+k,d ∩ S) H k(dv)κk(dS).

The result follows now by observing that Fv(Tn−d+k,d ∩ S) = Zv(Tn−d+k,d) ∩ S.

We also note the following corollary in the isotropic case. To present it, we define the
k-dimensional great subsphere Ek = Sd ∩ Ek, where Ek is the (k + 1)-dimensional linear
subspace spanned by the last k + 1 vectors of the standard orthonormal basis of Rd+1.
Moreover, we let e = (0, . . . , 0, 1) be the north pole of Sd. Clearly, e ∈ Ek.

Corollary 3.2. Let d ≥ 1, k ∈ {0, 1, . . . , d} and consider an isotropic great hypersphere
tessellation of Sd with intensity n ≥ d − k. Let h : Ks(d) → R be a rotation invariant,
non-negative measurable function. Then

Eh(W
(k)
n,d) = Eh(Ze(Tn−d+k,d) ∩ Ek) = Eh(Wn−d+k,k).

Proof. From Theorem 3.1 it follows that

Eh(W
(k)
n,d) =

1

ωk+1

∫
Gs(d,k)

∫
S

Eh(Zv(Tn−d+k,d) ∩ S) H k(dv)κk(dS). (3.3)

For fixed S ∈ Gs(d, k) and v ∈ S we choose a rotation % ∈ SO(d+ 1) satisfying %Ek = S

and %e = v (which is possible because of e ∈ Ek). Using now the assumed rotation
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invariance of Tn−d+k,d and that of h, for S ∈ Gs(d, k) and v ∈ S we obtain

Eh(Zv(Tn−d+k,d) ∩ S) = Eh(%−1(Zv(Tn−d+k,d) ∩ S))

= Eh(Z%−1v(%
−1Tn−d+k,d) ∩ %−1S)

= Eh(Ze(%
−1Tn−d+k,d) ∩ Ek)

= Eh(Ze(Tn−d+k,d) ∩ Ek).

Plugging this back into (3.3) and using that the last expression does not depend on S

and v, we deduce that

Eh(W
(k)
n,d) = Eh(Ze(Tn−d+k,d) ∩ Ek).

This proves the claim.

Next, we derive the analogue of Theorem 3.1 for the typical spherical k-face Z(k)
n,d of

Tn,d. The result is, however, slightly different, since the typical cell of Tn−d+k,d is not
necessarily hit by an independent random great subsphere S ∈ Gs(d, k) with distribution
κk. Instead, we have to consider the typical cell of the spherical sectional tessellation
Tn−d+k,S = Tn−d+k,d ∩ S within the great subsphere S.

Theorem 3.3. Let d ≥ 1, k ∈ {0, 1, . . . , d} and consider a great hypersphere tessellation
of Sd with non-degenerate directional distribution κ and intensity n ≥ d − k. Let
h : Ks(d)→ R be a non-negative measurable function. Then

Eh(Z
(k)
n,d) =

∫
Gs(d,k)

Eh(Zn−d+k,S)κk(dS),

where Zn−d+k,S stands for the typical cell of Tn−d+k,S .

Proof. Using the definition (2.3) of Z(k)
n,d and the construction of Tn,d, we see that

Eh(Z
(k)
n,d) =

∫
Gs(d,d−1)n

1

C(n, d, k)

∑
F∈Fk(S1,...,Sn)

h(F )κn(d(S1, . . . , Sn))

=

∫
Gs(d,d−1)n

1

C(n, d, k)

∑
1≤i1<...<id−k≤n

∑
F∈Fk(S1,...,Sn)

F⊆Si1∩...∩Sid−k

h(F )κn(d(S1, . . . , Sn)).

Since the great hyperspheres S1, . . . , Sn generating Tn,d are all distributed according to
the same probability measure κ, we obtain

Eh(Z
(k)
n,d) =

∫
Gs(d,d−1)d−k

(
n
d−k
)

C(n, d, k)

∫
Gs(d,d−1)n−d+k

∑
F∈Fk(Tn−d+k,S1∩...∩Sd−k )

h(F )

× κn−d+k(d(Sd−k+1, . . . , Sn))κd−k(d(S1, . . . , Sd−k)),

where
Tn−d+k,S1∩...∩Sd−k = Td(Sd−k+1, . . . , Sn) ∩ (S1 ∩ . . . ∩ Sd−k)

is the spherical sectional random tessellation within S1∩ . . .∩Sd−k arising by intersecting
S1∩. . .∩Sd−k with the n−d+k independent great hyperspheres Sd−k+1, . . . , Sn. Recalling
(2.2) we see that (

n
d−k
)

C(n, d, k)
=

1

C(n− d+ k, k)
.

Moreover, for κn-almost all (S1, . . . , Sn), C(n − d + k, k) is the number of cells of
Tn−d+k,S1∩...∩Sd−k , since κ is non-degenerate. So, using once again the definition (2.3),
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but this time applied to Tn−d+k,S1∩...∩Sd−k , as well as the definition of the measure κk,
this leads to

Eh(Z
(k)
n,d) =

∫
Gs(d,k)

1

C(n− d+ k, k)

∫
Gs(d,d−1)n−d+k

∑
F∈Fk(Tn−d+k,S)

h(F )

× κn−d+k(d(Sd−k+1, . . . , Sn))κk(dS)

=

∫
Gs(d,k)

Eh(Zn−d+k,S)κk(dS).

The proof is thus complete.

In the isotropic case we have the following corollary, which is the analogue of
Corollary 3.2 for the typical spherical k-face. For this, recall the definition of the great
subsphere Ek.

Corollary 3.4. Let d ≥ 1, k ∈ {0, 1, . . . , d} and consider an isotropic great hypersphere
tessellation of Sd with intensity n ≥ d − k. Let h : Ks(d) → R be rotation invariant,
non-negative measurable function. Then

Eh(Z
(k)
n,d) = Eh(Zn−d+k,k),

where Zn−d+k,k = Zn−d+k,Ek .

Proof. We conclude from Theorem 3.3 that

Eh(Z
(k)
n,d) =

∫
Gs(d,k)

Eh(Zn−d+k,S)κk(dS). (3.4)

Now, for S ∈ Gs(d, k) there is a rotation % ∈ SO(d + 1) satisfying %Ek = S. Using
this together with the isotropy of the great hypersphere tessellation and the rotation
invariance of h, we obtain

Eh(Zn−d+k,S) = Eh(%−1Zn−d+k,S) = Eh(Zn−d+k,%−1S) = Eh(Zn−d+k,Ek).

Plugging this back into (3.4) and using that κk is a probability measure completes the
argument.

3.2 Interpretation of W (k)
n,d via size biasing

Our next result describes the relation between Z
(k)
n,d and W

(k)
n,d . It shows that the

weighted typical spherical k-face W (k)
n,d is the size biased version of the typical spherical

k-face Z(k)
n,d, where size is measured by the k-dimensional Hausdorff measure. This can

be regarded as the spherical analogue of [29, Equation (10)], which in turn generalizes
[31, Theorem 10.4.1].

Theorem 3.5. Let d ≥ 1, k ∈ {0, 1, . . . , d} and consider a great hypersphere tessellation
of Sd with non-degenerate directional distribution κ and intensity n ≥ d − k. For non-
negative measurable functions h : Ks(d)→ R one has that

Eh(W
(k)
n,d) =

1

EH k(Z
(k)
n,d)

E[h(Z
(k)
n,d)H

k(Z
(k)
n,d)].

Proof. We start by using the definition (2.3) of Z(k)
n,d to see that

E[h(Z
(k)
n,d)H

k(Z
(k)
n,d)]

=

∫
Gs(d,d−1)n

1

C(n, d, k)

∑
F∈Fk(S1,...,Sn)

h(F )H k(F )κn(d(S1, . . . , Sn)).
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Splitting the integral, arguing as above and using Fubini’s theorem, this is equal to(
n
d−k
)

C(n, d, k)

∫
Gs(d,d−1)d−k

∫
Gs(d,d−1)n−d+k

∑
F∈Fk(Tn−d+k,S1∩...∩Sd−k )

h(F )H k(F )

× κn−d+k(d(Sd−k+1, . . . , Sn))κd−k(d(S1, . . . , Sd−k))

=

(
n
d−k
)

C(n, d, k)

∫
Gs(d,d−1)d−k

∫
Gs(d,d−1)n−d+k

∑
F∈Fk(Tn−d+k,S1∩...∩Sd−k )

∫
F

h(F )

× 1{v ∈ F}H k(dv)κn−d+k(d(Sd−k+1, . . . , Sn))κd−k(d(S1, . . . , Sd−k))

=

(
n
d−k
)

C(n, d, k)

∫
Gs(d,d−1)d−k

∫
S1∩...∩Sd−k

∫
Gs(d,d−1)n−d+k

∑
F∈Fk(Tn−d+k,S1∩...∩Sd−k )

h(F )

× 1{v ∈ F}κn−d+k(d(Sd−k+1, . . . , Sn))H k(dv)κd−k(d(S1, . . . , Sd−k)),

where we recall that

Tn−d+k,S1∩...∩Sd−k = Td(Sd−k+1, . . . , Sn) ∩ (S1 ∩ . . . ∩ Sd−k)

is the spherical sectional random tessellation within S1∩ . . .∩Sd−k arising by intersecting
S1 ∩ . . . ∩ Sd−k with the n− d+ k independent great hyperspheres Sd−k+1, . . . , Sn.

Next, we need to observe that for κd−k-almost all (S1, . . . , Sd−k) and κn−d+k-almost
all (Sd−k+1, . . . , Sn) we can only have 1{v ∈ F} = 1 for exactly one element from the set
Fk(Tn−d+k,S1∩...∩Sd−k), which we denote by Fv = Fv(S1, . . . , Sn). This yields

E[h(Z
(k)
n,d)H

k(Z
(k)
n,d)]

=

(
n
d−k
)

C(n, d, k)

∫
Gs(d,d−1)d−k

∫
S1∩...∩Sd−k

∫
Gs(d,d−1)n−d+k

h(Fv)

× κn−d+k(d(Sd−k+1, . . . , Sn))H k(dv)κd−k(d(S1, . . . , Sd−k)).

(3.5)

In particular, using this identity with h ≡ 1 leads to

EH k(Z
(k)
n,d) =

ωk+1

C(n, d, k)

(
n

d− k

)
, (3.6)

independently of κ. Division by EH k(Z
(k)
n,d) on both sides of (3.5) leads in view of (3.6)

and the representations (2.4) and (3.2) of the k-skeleton skelk(Tn,d) to

1

EH k(Z
(k)
n,d)

E[h(Z
(k)
n,d)H

k(Z
(k)
n,d)]

=

∫
Gs(d,d−1)d−k

1

ωk+1

∫
S1∩...∩Sd−k

∫
Gs(d,d−1)n−d+k

h(Fv)

× κn−d+k(d(Sd−k+1, . . . , Sn))H k(dv)κd−k(d(S1, . . . , Sd−k))

=

∫
Gs(d,d−1)n

1

H k(skelk(Tn,d))

∫
skelk(Tn,d)

h(Fv) H k(dv)κn(d(S1, . . . , Sn))

= Eh(W
(k)
n,d),

where in the last step we used the definition (2.5) of W (k)
n,d . This completes the argu-

ment.
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4 Directional distributions and spherical faces with given direc-
tions

In this section we consider the distribution of the direction of the typical and the
weighted typical spherical k-face of Tn,d. While these distributions are fundamentally
different in the Euclidean case (see [15]), we will see the new phenomenon that in the
spherical case these distributions coincide. The reason behind this behaviour is that
the sum of the weights of all spherical k-faces of the tessellation lying in a common
k-dimensional subsphere is some constant, which is independent of the given subsphere.
Since this is true for the sum of the constant weights 1 and also for the sum of the
k-dimensional Hausdorff measures, the directional distributions coincide. This is in
contrast to the Euclidean case, where instead of the sum over all spherical k-faces lying
in a common k-dimensional subspace one considers the corresponding intensities. These
intensities strongly depend on the direction of the subspace, which leads to different
results, see [15] and [31, Chapter 10.3].

For K ∈ Ks(d) with dim lin(K) = k + 1 for some k ∈ {0, 1, . . . , d − 1} (here, lin( · )
stands for the linear hull of the argument set taken with respect to Rd+1) we write

D(K) = lin(K) ∩ Sd ∈ Gs(d, k)

for the direction of a k-dimensional spherical convex set K. Moreover, recall the
definition of the measure κk from (3.1).

Theorem 4.1. Let d ≥ 1, k ∈ {0, 1, . . . , d− 1} and consider a great hypersphere tessel-
lation of Sd with non-degenerate directional distribution κ and intensity n ≥ d− k. For
C ∈ B(Gs(d, k)) one has that

P(D(Z
(k)
n,d) ∈ C) = P(D(W

(k)
n,d) ∈ C) = κk(C).

Proof. We use Theorem 3.1 with h(P ) = 1{D(P ) ∈ C} to see that

P(D(W
(k)
n,d) ∈ C) =

1

ωk+1

∫
Gs(d,k)

∫
S

P(D(Zv(Tn−d+k,d) ∩ S) ∈ C) H k(dv)κk(dS).

Since D(Zv(Tn−d+k) ∩ S) = S this yields

P(D(W
(k)
n,d) ∈ C) =

1

ωk+1

∫
Gs(d,k)

∫
S

1{S ∈ C}H k(dv)κk(dS) = κk(C).

Similarly, for the typical spherical k-face Z(k) we use Theorem 3.3 to see that

P(D(Z
(k)
n,d) ∈ C) =

∫
Gs(d,k)

P(D(Zn−d+k,S) ∈ C)κk(dS)

=

∫
Gs(d,k)

1{S ∈ C}κk(dS) = κk(C),

since D(Zn−d+k,S) = S. This completes the argument.

Since Ks(d) is a Polish space (with respect to the topology generated by the spherical

Hausdorff distance) the regular conditional distribution of W (k)
n,d , given the direction

D(W
(k)
n,d) = S is well defined for S ∈ Gs(d, k). We will denote this conditional distribution

by
P(W

(k)
n,d ∈ A |D(W

(k)
n,d) = S), A ∈ B(Ks(d)), S ∈ Gs(d, k).

The next result yields an interpretation of this distribution as the distribution of the cell
in the spherical sectional tessellation Tn−d+k,S that contains a uniform random point.
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Corollary 4.2. Let d ≥ 1, k ∈ {0, 1, . . . , d− 1} and consider a great hypersphere tessel-
lation of Sd with non-degenerate directional distribution κ and intensity n ≥ d− k. For
κk-almost all S ∈ Gs(d, k) and A ∈ B(Ks(d)) one has that

P(W
(k)
n,d ∈ A |D(W

(k)
n,d) = S) = P(ZU (Tn−d+k,S) ∈ A),

where U is a uniform random point in S, which is independent of Tn−d+k,S .

Proof. From Theorem 3.1 it follows that, for any C ∈ B(Gs(d, k)),

P(W
(k)
n,d ∈ A,D(W

(k)
n,d) ∈ C)

=
1

ωk+1

∫
Gs(d,k)

∫
S

P(Zv(Tn−d+k,S) ∈ A,D(Zv(Tn−d+k,S)) ∈ C) H k(dv)κk(dS)

=
1

ωk+1

∫
C

∫
S

P(Zv(Tn−d+k,S) ∈ A) H k(dv)κk(dS),

(4.1)

where we used that D(Zv(Tn−d+k,S)) = S. Moreover, since by Theorem 4.1 the distribu-

tion of D(W
(k)
n,d) is given by κk, we have that

P(W
(k)
n,d ∈ A,D(W

(k)
n,d) ∈ C) =

∫
C

P(W
(k)
n,d ∈ A |D(W

(k)
n,d) = S)κk(dS) (4.2)

Combining (4.1) and (4.2) yields that, for κk- almost all S ∈ Gs(d, k),

P(W
(k)
n,d ∈ A|D(W

(k)
n,d) = S) =

1

ωk+1

∫
S

P(Zv(Tn−d+k,S) ∈ A) H k(dv)

= P(ZU (Tn−d+k,S) ∈ A),

where the last step follows from the definition and the independence of U .

A similar result also holds for the typical spherical k-face with a given direction. As
above, we denote this distribution by

P(Z
(k)
n,d ∈ A |D(Z

(k)
n,d) = S), A ∈ B(Ks(d)), S ∈ Gs(d, k).

Corollary 4.3. Let d ≥ 1, k ∈ {0, 1, . . . , d− 1} and consider a great hypersphere tessel-
lation of Sd with non-degenerate directional distribution κ and intensity n ≥ d− k. For
κk-almost all S ∈ Gs(d, k) and A ∈ B(Ks(d)) one has that

P(Z
(k)
n,d ∈ A |D(Z

(k)
n,d) = S) = P(Z(Tn−d+k,S) ∈ A).

Proof. Using Theorem 4.1 for the typical spherical k-face we see that for any C ∈
B(Gs(d, k)),

P(Z
(k)
n,d ∈ A,D(Z

(k)
n,d) ∈ C) =

∫
C

P(Z
(k)
n,d ∈ A |D(Z

(k)
n,d) = S)κk(dS)

and from Theorem 3.3 we have that

P(Z
(k)
n,d ∈ A,D(Z

(k)
n,d) ∈ C) =

∫
Gs(d,k)

P(Z(Tn−d+k,S) ∈ A,D(Z(Tn−d+k,S)) ∈ C)κk(dS)

=

∫
C

P(Z(Tn−d+k,S) ∈ A)κk(dS),

since D(Z(Tn−d+k,S)) = S. Combination of both identities yields that, for κk- almost all
S ∈ Gs(d, k),

P(Z
(k)
n,d ∈ A |D(Z

(k)
n,d) = S) = P(Z(Tn−d+k,S) ∈ A).

The argument is thus complete.
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5 Explicit results in the isotropic case

In this section, if not otherwise stated, we assume that the spherical random great
hypersphere tessellation Tn,d is isotropic, which means that κ is the uniform distribution
on Gs(d, d− 1).

5.1 The f-vector of typical and weighted typical spherical faces

To present an explicit formula for the expected number Ef`(W
(k)
n,d) of `-dimensional

spherical faces of the weighted typical spherical k-face of a great hypersphere tessella-
tion Tn,d we need to introduce some notation taken from [18]. If [x`]P (x) denotes the
coefficient of x` in a polynomial (or, more generally, a Laurent series) P (x), we define
the quantity

A[m, `] =


[x`]Qm(x) : ` even

[x`]
(

tanh
(
π
2x

)
Qm(x)

)
: ` odd,m even

[x`]
(
cotanh

(
π
2x

)
Qm(x)

)
: ` odd,m odd

(5.1)

for m ∈ {0, 1, 2, . . .} and ` ∈ Z, where Qm(x) is defined as Q0(x) = Q1(x) = 1 and

Qm(x) = (1 + (m− 1)2x2)(1 + (m− 3)2x2)(1 + (m− 5)2x2) · · ·

for m ∈ {2, 3, . . .}, and the last factor in this product is either 1 + x2 or 1 + 22x2. Note
that A[m, `] = 0 whenever ` > m. Furthermore, let B{m, `} be given by

B{m, `} =
1

(`− 1)!(m− `)!

∫ π

0

(sinx)`−1xm−` dx (5.2)

for m ∈ N and ` ∈ {1, . . . ,m}. Following [18, Equation (3.16)] we also put B{m, 0} = πm

m!

and B{m, `} = 0 for m ∈ N and ` ∈ {m + 1,m + 2, . . .}. This allows us to state the

following result, which yields an explicit formula for Ef`(W
(k)
n,d). Some particular values

for small d and n are collected in Appendix A, see also Figure 3.

Theorem 5.1. Let d ≥ 1, k ∈ {0, 1, . . . , d} and consider an isotropic great hypersphere
tessellation of Sd with intensity n ≥ d+ 1. For ` ∈ {0, 1, . . . , k − 1} the expected number
of spherical `-faces of the weighted typical spherical k-face is given by

Ef`(W
(k)
n,d) =

(n− d+ k)!πd−`−n

(k − `)!

×
b `2 c∑
s=0

B{n− d+ k, k − 2s}(k − 2s− 1)2A[k − 2s− 2, k − `− 2],

where the term 02A[−1,−1] has to be interpreted as 2/π, if it appears.

Proof. From Corollary 3.2 (applied twice) it follows that for all ` ∈ {0, . . . , k},

Ef`(W
(k)
n,d) = Ef`(Ze(Tn−d+k,k)) = Ef`(Wn−d+k,k),

where Ze(Tn−d+k,k) is the north pole cell of the isotropic great hypersphere tessellation
Tn−d+k,k in Sk, and Wn−d+k,k is the weighted typical cell of the same tessellation.

To proceed, let Y1, . . . , Yn be independent and uniformly distributed random points on
the lower half-sphere Sd− = {x = (x1, . . . , xd+1) ∈ Sd : xd+1 < 0}. The spherical random

polytope Dn,d = pos(Y1, . . . , Yn) ∩ Sd is connected to the weighted cell Wn,d = W
(d)
n,d of

the spherical random tessellation Tn,d by spherical polarity. In particular, this implies
that

Ef`(Wn,d) = Efd−`−1(Dn,d)
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Figure 3: Normalized expected spherical face numbers Ef`( · )/107 of Zn,d (left) and Wn,d

(right) as a function of ` for d = 19 and n = 40 (blue dots), n = 60 (orange squares) and
n = 80 (green diamonds).

for all ` ∈ {0, 1, . . . , d− 1}, see [21, Remark 1.8]. Altogether, we have

Ef`(W
(k)
n,d) = Ef`(Wn−d+k,k) = Efk−`−1(Dn−d+k,k)

for all ` ∈ {0, 1, . . . , k − 1}. The quantities on the right hand side of this identity were
explicitly determined in [18, Theorem 2.2] as follows:

Efk(Dn,d) =
n!πk+1−n

(k + 1)!

∑
s=0,1,...
d−2s≥k+1

B{n, d− 2s}(d− 2s− 1)2A[d− 2s− 2, k − 1] (5.3)

for all d ≥ 1, n ≥ d + 1, and all k ∈ {0, . . . , d − 1}. The term 02A[−1,−1], if it appears,
has to be interpreted as 2/π according to Remark 2.3 in [18]. Applying this result to
Efk−`−1(Dn−d+k,k), which requires to replace d by k, n by n− d + k and k by k − `− 1

in (5.3), yields the desired formula.

Using Theorem 3.3 together with the explicit formula for the f -vector of a Schläfli
random cone from [8] (see also [16]), we can derive an explicit formula for Ef`(Z

(k)
n,d). In

contrast to the previous result, this formula is available for arbitrary non-degenerate
directional distributions κ and is of purely combinatorial nature.

Theorem 5.2. Let d ≥ 1, k ∈ {0, 1, . . . , d} and consider a great hypersphere tessellation
of Sd with non-degenerate directional distribution κ and intensity n ≥ d − k. For
` ∈ {0, 1, . . . , k− 1} the expected number of `-faces of the typical spherical k-face is given
by

Ef`(Z
(k)
n,d) =

2k−`
(
n−d+k
k−`

)
C(n− d+ `, `)

C(n− d+ k, k)
.

Proof. Theorem 3.3 yields that

Ef`(Z
(k)
n,d) =

∫
Gs(d,k)

Ef`(Z(Tn−d+k,S))κk(dS).

Following the terminology in [16], the k-dimensional spherical random polytope
Z(Tn−d+k,S) in S is the spherical version of the (κ, n − d + k)-Schläfli random cone
in S. Its f -vector is explicitly known from [8] or [16, Corollary 4.1]. From this it follows
that, independently of S,

Ef`(Z(Tn−d+k,S)) =
2k−`

(
n−d+k
k−`

)
C(n− d+ `, `)

C(n− d+ k, k)
.

Since κk is a probability measure, the result follows.
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From the particular values for Ef`(W
(k)
n,d) and Ef`(Z

(k)
n,d) one can verify numerically

that Ef`(W
(k)
d+1,d) = Ef`(Z

(k)
d+1,d), whereas Ef`(W

(k)
n,d) > Ef`(Z

(k)
n,d) whenever n ≥ d+2 (see

Appendix A). While we were not able to prove such an inequality in full generality, we
show a weaker inequality for the expected vertex numbers. Since the argument requires
tools we only develop in the next section, we postpone the proof. We remark that the
corresponding inequality for the expected vertex number of the typical and the weighted
typical k-face of a Poisson hyperplane tessellation in the Euclidean space Rd is trivial,
since the expected vertex number of the typical k-face is a lower bound for that of the
weighted typical k-face, see [29, Theorem 2].

Proposition 5.3. Let d ≥ 1, k ∈ {1, . . . , d} and consider an isotropic great hypersphere
tessellation of Sd with intensity n ≥ d+ 1. Then

Ef0(W
(k)
d+1,d) = Ef0(Z

(k)
d+1,d) and Ef0(W

(k)
n,d) ≥ C(n− d+ k, k)

2kC(n− d, k)
Ef0(Z

(k)
n,d)

for all n ≥ d+ 2.

Remark 5.4. It can be checked that the prefactor C(n−d+k,k)
2kC(n−d,k)

in Proposition 5.3 is always
strictly less than 1 and tends to zero, as n→∞, for any fixed d and k.

5.2 An Efron-type identity and spherical Quermaßintegrals

Let K ⊂ Rd be a convex body with volume one. For n ≥ d+ 1 let Kn be the convex
hull of n uniformly distributed random points in K and write V (Kn) for the volume
(d-dimensional Lebesgue measure) and f0(Kn) for the number of vertices of Kn. Efron’s
identity relates these two quantities as follows:

EV (Kn) = 1− Ef0(Kn+1)

n+ 1
,

see [31, Equation (8.12)]. While this equality does not admit an extension to relationships
for the number of k-dimensional faces of Kn+1 for k ∈ {1, . . . , d− 1}, such identities were
established in [29, Section 5] for the volume-weighted cell of a stationary and isotropic
Poisson hyperplane tessellation in Rd (see also [13] for generalizations). In this case the
expected number of k-dimensional faces is linked to the expected (d− k)th Euclidean

intrinsic volume or Euclidean Quermaßintegral. For the H d-weighted cell Wn,d = W
(d)
n,d

of an isotropic great hyperspheres tessellation Tn,d a similar relationship was established
in [16, p. 414] (see also [23, Theorem 2.7]). It says that, for any ` ∈ {0, 1, . . . , d} one has
that

Efd−`(Wn,d) = 2

(
n

`

)
EU`(Wn−`,d). (5.4)

Here, the functionals U` are the spherical analogues of the Euclidean Quermaßintegrals
mentioned above and given by

U`(P ) =
1

2

∫
Gs(d,d−`)

1{P ∩ S} νd−`(dS),

whenever P ∈ Ps(d) is not a great subsphere of Sd (if S ∈ Gs(d, k) then U`(S) = 1 if
k − ` ≥ 0 and even, and U`(S) = 0 if k − ` < 0 or odd). Our next result generalizes the
Efron-type identity (5.4) to weighted spherical k-faces.

Theorem 5.5. For d ≥ 1 consider an isotropic great hypersphere tessellation Tn,d of Sd

with n ≥ d+ 1. Then, for all k ∈ {0, 1, . . . , d} and ` ∈ {0, 1, . . . , k} it holds that

Efk−`(W
(k)
n,d) = 2

(
n− d+ k

`

)
EU`(W

(k)
n−`,d).
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Figure 4: The expected spherical Quermaßintegrals EU`( · ) of Zn,d (left) and Wn,d (right)
as a function of ` for d = 19 and n = 20 (blue dots), n = 40 (orange squares) and n = 60

(green diamonds).

Proof. We apply Corollary 3.2 to the rotation invariant function h(P ) = fk−`(P ). This
yields

Efk−`(W
(k)
n,d) = Efk−`(Ze(Tn−d+k,d) ∩ Ek) = Efk−`(Wn−d+k,k),

where we recall that Wn−d+k,k stands for the weighted typical cell of Tn−d+k,k. Applying
now (5.4) to this cell leads to

Efk−`(Wn−d+k,k) = 2

(
n− d+ k

`

)
EU`(Wn−d+k−`,k).

Finally, we apply again Corollary 3.2 to the rotation invariant function h(P ) = U`(P )

(which only depends on P and not on the dimension of the ambient space) to conclude
that

EU`(Wn−d+k−`,k) = EU`(W
(k)
n−`,d).

Putting together these three identities yields the result.

A combination of Theorem 5.5 with Theorem 5.1 also yields explicit formulas for the
expected spherical Quermaßintegrals EU`(W

(k)
n,d) of W (k)

n,d . These quantities can also be
determined for the typical spherical k-face even for a general directional distribution (for
k = d this is known from [16]). Note that always EU0(W

(k)
n,d) = 1/2 and EU0(Z

(k)
n,d) = 1/2

even almost surely without the expectations. Some particular values for small d and n
are collected in Appendix B, see also Figure 4.

Corollary 5.6. Let d ≥ 1, k ∈ {0, 1, . . . , d} and consider a great hypersphere tessellation
of Sd with non-degenerate directional distribution κ and intensity n ≥ d − k. For
` ∈ {0, 1, . . . , k} one has that

EU`(Z
(k)
n,d) =

C(n− d+ k, k − `)
2C(n− d+ k, k)

. (5.5)

In the isotropic case, that is, if κ is the uniform distribution on Gs(d, d−1), and if n ≥ d+1

then also

EU`(W
(k)
n,d) =

(n− d+ k)!πd−n−k

2

×
b k−`2 c∑
s=0

B{n+ `− d+ k, k − 2s}(k − 2s− 1)2A[k − 2s− 2, `− 2].
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Proof. The result for the typical spherical k-face Z(k)
n,d can be concluded by combining

Theorem 3.3 with [16, Corollary 4.2]. In fact,

EU`(Z
(k)
n,d) = EU`(Zn−d+k,k) =

C(n− d+ k, k − `)
2C(n− d+ k, k)

For the weighted typical spherical k-face W (k)
n,d we use Theorem 5.5 and Theorem 5.1 and

obtain

EU`(W
(k)
n,d) =

1

2

(
n− d+ k + `

`

)−1

Efk−`(W
(k)
n+`,d)

=
1

2

(
n− d+ k + `

`

)−1
(n+ `− d+ k)!πd−n−k

`!

×
b k−`2 c∑
s=0

B{n+ `− d+ k, k − 2s}(k − 2s− 1)2A[k − 2s− 2, `− 2]

=
(n− d+ k)!πd−n−k

2

×
b k−`2 c∑
s=0

B{n+ `− d+ k, k − 2s}(k − 2s− 1)2A[k − 2s− 2, `− 2].

The proof is thus complete.

Given the relation between the expected number of vertices and the expected kth
spherical Quermaßintegral of W (k)

n,d , we are now prepared to give a proof of Proposi-
tion 5.3.

Proof of Proposition 5.3. Since the equality for n = d+ 1 is clear, we concentrate on the
case that n ≥ d+ 2.

Since W (k)
n,d is the size (H k-) biased version of Z(k)

n,d, H k(W
(k)
n,d) has the size biased

distribution of H k(Z
(k)
n,d) and we thus have the stochastic monotonicity

P(H k(W
(k)
n,d) ≤ x) ≤ P(H k(Z

(k)
n,d) ≤ x)

for all 0 ≤ x ≤ ωk+1, see [4, Section 2.2.4]. In particular, this implies monotonicity for all

moments of H k(W
(k)
n,d) and H k(Z

(k)
n,d). Especially

EUk(W
(k)
n,d) ≥ EUk(Z

(k)
n,d), (5.6)

where we used additionally the definition of Uk and its relation to H k. Next, the
Efron-type identity in Theorem 5.5 yields that

EUk(W
(k)
n,d) =

1

2

(
n− d+ 2k

k

)−1

Ef0(W
(k)
n+k,d). (5.7)

Moreover, combining Theorem 5.2 with Corollary 5.6 leads to

EUk(Z
(k)
n,d) =

C(n− d+ 2k, k)

2k+1
(
n−d+2k

k

)
C(n− d+ k, k)

Ef0(Z
(k)
n+k,d). (5.8)

Plugging (5.7) and (5.8) into (5.6) we arrive at

Ef0(W
(k)
n+k,d) ≥

C(n− d+ 2k, k)

2kC(n− d+ k, k)
Ef0(Z

(k)
n+k,d),
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which is equivalent to

Ef0(W
(k)
n,d) ≥ C(n− d+ k, k)

2kC(n− d, k)
Ef0(Z

(k)
n,d).

This completes the argument.

In the context of Proposition 5.3 we also note the following implication, which shows
that an inequality between the expected number of (k − `)-dimensional spherical faces

of W (k)
n+`,d and Z

(k)
n+`,d is stronger than the corresponding inequality for the expected

spherical Quermaßintegrals of order `.

Proposition 5.7. Let d ≥ 1, k ∈ {1, . . . , d}, ` ∈ {1, . . . , k} and consider an isotropic great
hypersphere tessellation of Sd with intensity n ≥ d+ 1. Then

Efk−`(W
(k)
n+`,d) ≥ Efk−`(Z

(k)
n+`,d) implies that EU`(W

(k)
n,d) ≥ EU`(Z

(k)
n,d).

Proof. First, we start by noting that Theorem 5.5 yields that

EU`(W
(k)
n,d) =

1

2

(
n− d+ k + `

`

)−1

Efk−`(W
(k)
n+`,d).

Similarly, combining Theorem 5.2 with Corollary 5.6 we conclude that

EU`(Z
(k)
n,d) =

C(n− d+ k + `)

2`+1C(n− d+ k, k)

(
n− d+ k + `

`

)−1

Efk−`(Z
(k)
n+`,d).

Using these two identities, our assumption that Efk−`(W
(k)
n+`,d) ≥ Efk−`(Z

(k)
n+`,d) is equiv-

alent to

2

(
n− d+ k + `

`

)
EU`(W

(k)
n,d) ≥ 2`+1C(n− d+ k, k)

C(n− d+ k + `, k)

(
n− d+ k + `

`

)
EU`(Z

(k)
n,d),

which in turn can be rewritten as

EU`(W
(k)
n,d) ≥ 2`C(n− d+ k, k)

C(n− d+ k + `, k)
EU`(Z

(k)
n,d).

From the geometric interpretation of the constant C(n, d) (recall (2.1)), it is evident that
C(n− d+ k, k) ≤ C(n− d+ k + `, k), which implies the result.

Remark 5.8. The proof of Proposition 5.7 actually shows that under the same conditions

Efk−`(W
(k)
n+`,d)≥Efk−`(Z

(k)
n+`,d) implies the inequality EU`(W

(k)
n,d)≥ 2`C(n−d+k,k)

C(n−d+k+`,k)EU`(Z
(k)
n,d).

5.3 Spherical intrinsic volumes

From the two formulas presented in the previous section for the spherical Quer-
maßintegrals also the expected so-called spherical intrinsic volumes of W (k)

n,d and Z
(k)
n,d

can be determined explicitly. To introduce them, for a spherical convex set K ∈ Ks(d)

and 0 ≤ r < π/2 we define the r-parallel set Kr = {x ∈ Sd : 0 < dg(K,x) ≤ r}, where
dg( · , · ) denotes the geodesic distance on Sd and dg(K,x) = min{dg(y, x) : y ∈ K} stands
for the geodesic distance of x to K. The spherical Steiner formula (a special case of [31,
Theorem 6.5.1]) says that

H d(Kr) =

d−1∑
`=0

v`(K)ω`+1ωd−`

∫ r

0

cos` ϕ sind−`−1 ϕdϕ.
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Figure 5: The expected spherical intrinsic volumes Ev`( · ) of Zn,d (left) and Wn,d (right)
as a function of ` for d = 19 and n = 20 (blue dots), n = 40 (orange squares) and n = 60

(green diamonds).

The coefficients v0(K), v1(K), . . . , vd−1(K) are the spherical intrinsic volumes of K and it
is convenient to complement them by putting vd(K) = ω−1

d+1H
d(K) and v−1(K) = vd(K

◦).

However, since
∑d
i=−1 vi(K) = 1 by [31, Theorem 6.5.5], v−1(K) is determined once

v0(K), v1(K), . . . , vd(K) are known. If P ∈ Ps(d) is a spherical polytope the spherical
intrinsic volumes admit the representation

v`(P ) =
1

ω`+1

∑
F∈F`(P )

H `(F )γ(F, P ), ` ∈ {0, 1, . . . , d− 1}, (5.9)

where γ(F, P ) stands for the external angle of P at F , see [31, page 250].
We remark that the spherical intrinsic volumes are closely related to the notion

of conical intrinsic volumes v̆0(C), v̆1(C), . . . , v̆d+1(C) associated with a convex cone
C ⊂ Rd+1. In fact, one has that

v`(C ∩ Sd) = v̆`+1(C) for ` ∈ {0, 1, . . . , d}, (5.10)

see [2, 25]. In this paper we prefer to work with the spherical intrinsic volumes.
The spherical (or conical) intrinsic volumes are related to the spherical Quermaßinte-

grals U`(K) by

vd(K) = Ud(K), vd−1(K) = Ud−1(K), v`(K) = U`(K)− U`+2(K) (5.11)

for ` ∈ {0, 1, . . . , d − 2}, see [16, Equation (7)]. This leads to the following formulas of
which the first one is known from [16, Corollary 4.3] for k = d, the second one is new
even in this case. Some particular values for small d and n are collected in Appendix C,
see also Figure 5.

Corollary 5.9. Let d ≥ 1, k ∈ {0, 1, . . . , d} and consider a great hypersphere tessellation
of Sd with non-degenerate directional distribution κ and intensity n ≥ d − k. For
` ∈ {0, 1, . . . , k} one has that

Ev`(Z
(k)
n,d) =

(
n−d+k
k−`

)
C(n− d+ k, k)

.

In the isotropic case, that is, if κ is the uniform distribution on Gs(d, d−1), and if n ≥ d+1

and ` ∈ {0, 1, . . . , k} then also

Ev`(W
(k)
n,d) =

(n− d+ k)!

2πn−d+k
B{n− d+ k + `, k}A[k, `].
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Proof. We apply twice Corollary 5.6 with k = d, and use (5.11) and (2.1) to see that

Ev`(Zn,d) = EU`(Zn,d)−EU`+2(Zn,d)

=
C(n, d− `)− C(n, d− `− 2)

2C(n, d)

=

(
n−1
d−`
)

+
(
n−1
d−`−1

)
C(n, d)

=

(
n
d−`
)

C(n, d)

(we use here that formally EUd+1(Zn,d) = EUd+2(Zn,d) = 0). Moreover, from Corol-
lary 3.4 we conclude that, for k ∈ {0, 1, . . . , d},

Ev`(Z
(k)
n,d) = Ev`(Zn−d+k,k) =

(
n−d+k
k−`

)
C(n− d+ k, k)

.

For the case of weighted faces, we first choose again k = d and make use of the following
two recurrence relations from [18, Equations (1.8) and (1.10)]:

A[n+ 2, k]−A[n, k] = (n+ 1)2A[n, k − 2], n ≥ 0, k ∈ Z, (5.12)

B{n, k − 2} −B{n, k} = (k − 1)2B{n+ 2, k}, n ≥ 1, k ≥ 2. (5.13)

Using Corollary 5.6 and applying (5.13) to EU`(Wn,d) we first have that

EU`(Wn,d) =
n!

2πn

∑
s≥0

B{n+ `, d− 2s}(A[d− 2s, `]−A[d− 2s− 2, `]),

where we use here and below that summation over all s ≥ 0 is possible, since the other
terms appearing in the representation for EU`(Wn,d) and EU`+2(Wn,d) in Corollary 5.6
vanish. Applying now (5.12) to EU`+2(Wn,d) we obtain

EU`+2(Wn,d) =
n!

2πn

∑
s≥0

(B{n+ `, d− 2s− 2} −B{n+ `, d− 2s})A[d− 2s− 2, `].

Subtracting both expressions from each other we get

Ev`(Wn,d) = EU`(Wn,d)−EU`+2(Wn,d)

=
n!

2πn

∑
s≥0

(
B{n+ `, d− 2s}A[d− 2s, `]

−B{n+ `, d− 2s− 2}A[d− 2s− 2, `]
)

=
n!

2πn
B{n+ `, d}A[d, `].

Finally, we make use of Corollary 3.2 to conclude that

Ev`(W
(k)
n,d) = Ev`(Wn−d+k,k) =

(n− d+ k)!

2πn−d+k
B{n− d+ k + `, k}A[k, `].

This completes the argument.

Remark 5.10. Note that Corollary 5.9 does not provide a formula for Ev−1(W
(k)
n,d). To

derive a formula for this quantity, observe first that Ev−1(W
(k)
n,d) = Ev−1(Wn−d+k,k) by

Corollary 3.2. Up to rotations, Wn−d+k,k can be identified with the north pole cell in the
great hypersphere tessellation Tn−d+k,k. The polar spherical convex body of this cell
can be identified with the spherical convex hull Dn−d+k,k of n − d + k random points
sampled independently and uniformly on the k-dimensional lower half-sphere Sk−. Since
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v−1(Wn−d+k,k) is defined as vd of the polar convex body (or just as the solid angle of the
corresponding cone), Theorem 2.5 of [18] yields

Ev−1(W
(k)
n,d) = Ev−1(Wn−d+k,k)

=
(n− d+ k)!

2πn−d+k

∑
m∈{k+2,...,n−d+k+1}

m−k is even

B{n− d+ k + 1,m}(m− 1)2A[m− 2,−1].

5.4 The Euclidean case as the limit for n→∞
In this section we analyse the asymptotic behaviour of the (suitably rescaled) expected

spherical intrinsic volumes of the typical and the weighted typical spherical k-faces of a
great hypersphere tessellation in Sd, as n → ∞. It will turn out that the limits can be
identified with the expected Euclidean intrinsic volumes of the typical and the weighted
typical k-face of a Poisson hyperplane tessellation in the d-dimensional Euclidean space
Rd. We denote by V0(K), V1(K), . . . , Vd(K) the Euclidean intrinsic volumes of a convex
set K ⊂ Rd, which, similarly to the spherical case, may formally be defined as the
coefficients of the Steiner formula, see [31, Equation (14.5)]. In particular, if P ⊂ Rd is a
polytope, then

V`(P ) =
∑

F∈F`(P )

H `(F )γ(F, P ), ` ∈ {0, 1, . . . , d}, (5.14)

according to [31, Equation (14.14)], where, as in the spherical case, we use the symbol
F`(P ) for the set of `-dimensional face of P and γ(P, F ) to denote the external angle of
P at F .

Consider a stationary and isotropic Poisson hyperplane tessellation in Rd, d ≥ 1

generated by a stationary and isotropic Poisson point process on the space of hyperplanes
in Rd with intensity γ > 0 as in [31, Chapter 10.3]. By Z(k)

γ,d, k ∈ {0, 1, . . . , d}, we denote

its typical k-face and by W (k)
γ,d its weighted typical k-face, where the weight is given by

the k-dimensional Hausdorff measure. Formally, Z(k)
γ,d and W (k)

γ,d are defined by means of
Palm distributions as in [29]. It is well known that

EV`(Z
(k)
γ,d) =

( 2

γ

)`(Γ(d+1
2 )

Γ(d2 )

)`
Γ
( `

2
+ 1
)(k

`

)
(5.15)

for ` ∈ {0, 1, . . . , k}, see [31, p. 490]. Our next goal is to derive a similar formula for the
weighted typical k-face, which has not been stated in the existing literature (but see [31,
Theorem 10.4.9] for the case d = k = `, which will turn out to be the “simplest” possible
case).

Theorem 5.11. For all d ≥ 1, k ∈ {0, 1, . . . , d}, ` ∈ {0, 1, . . . , k} and γ > 0 the expected `-
th Euclidean intrinsic volume of the weighted typical k-cell of the stationary and isotropic
Poisson hyperplane tessellation in Rd is given by

EV`(W
(k)
γ,d ) =

(2π

γ

)`(Γ(d+1
2 )

Γ(d2 )

)` Γ( `2 + 1)

`!
A[k, `]. (5.16)

Proof. Using [29, Theorem 1] we first have, since we are concerned with a stationary and
isotropic Poisson hyperplane tessellation, that there is a random isometry g : Rd → Rd

such that gW (k)
γ,d has the same distribution as the almost surely uniquely determined cell

containing the origin (the so-called zero cell) of a stationary isotropic Poisson hyperplane
tessellation in Rk ⊂ Rd. Together with the Efron-type identity for the zero cell from [29,
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Section 5] and the rotation invariance of fk−` and V` we conclude that

Efk−`(W
(k)
γ,d ) = κ`

(γκd−1

dκd

)`
EV`(W

(k)
γ,d ) (5.17)

for ` ∈ {0, 1, . . . , k}, where κ` = π`/2

Γ(1+`/2) is the volume of the `-dimensional Euclidean

unit ball. On the other hand, in [18, Theorem 1.1] the values for Efk−`(W
(d)
γ,d) have been

computed explicitly in terms of the constants A[m, `] defined at (5.1). In combination
with [29, Theorem 1] again this leads to

Efk−`(W
(k)
γ,d ) =

π`

`!
A[k, `]. (5.18)

Plugging (5.18) into (5.17) we conclude that

EV`(W
(k)
γ,d ) =

( dκd
γκd−1

)` π`
`!κ`

A[k, `].

Using the definition of κ` and simplifying the resulting constants, the result follows.

Remark 5.12. In the special case when k = ` = d, taking into account that by [18,

Proposition 1.2], A[d, d] = (d!)2

2dΓ( d2 +1)2 , one can easily verify that

EVd(W
(d)
γ,d) = d!κd

( dκd
2γκd−1

)d
in accordance with [31, Theorem 10.4.9]. It is also interesting to compare the result of
Theorem 5.11 with (5.15).

We can now present the announced limit relation for the expected spherical intrinsic
volumes for the typical and the weighted typical spherical k-face. After the proof we
explain the geometric reason behind the rescaling with the factor n`ω`+1.

Theorem 5.13. Let d ≥ 1, k ∈ {0, . . . , d}, ` ∈ {0, . . . , k} and consider an isotropic great
hypersphere tessellation of Sd with intensity n ≥ d+ 1. Then

lim
n→∞

n`ω`+1Ev`(Z
(k)
n,d) = EV`(Z

(k)
γ,d) and lim

n→∞
n`ω`+1Ev`(W

(k)
n,d) = EV`(W

(k)
γ,d )

with γ = 1√
π

Γ( d+1
2 )

Γ( d2 )
.

Proof. From Corollary 5.9 we have that

Ev`(Z
(k)
n,d) =

(
n−d+k
k−`

)
C(n− d+ k, k)

.

Now, we need to observe that, as n→∞,
(
n−d+k
k−`

)
is asymptotically equivalent to nk−`

(k−`)!

and that C(n− d+ k, k) is asymptotically equivalent to 2nk

k! , recall (2.1). This shows that

lim
n→∞

n`ω`+1Ev`(Z
(k)
n,d) = ω`+1

`!

2

(
k

`

)
.

Using (5.15) with the intensity γ as in the statement of the proposition we see that

EV`(Z
(k)
γ,d) = (2

√
π)`Γ

( `
2

+ 1
)(k

`

)
.
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However, from the definition of ω`+1 and Legendre’s duplication formula for the gamma
function we have that

ω`+1
`!

2
= `π

`+1
2

Γ(`)

Γ( `+1
2 )

= `π
`+1

2
2`−1Γ( `2 )
√
π

= (2
√
π)`Γ

( `
2

+ 1
)
. (5.19)

This proves the first claim. The second one follows similarly. In fact, from Corollary 5.9
we have that

lim
n→∞

n`ω`+1Ev`(W
(k)
n,d) = lim

n→∞
n`ω`+1

(n− d+ k)!

2πn−d+k
B{n− d+ k + `, k}A[k, `],

and from [18, page 8] it follows that B{n− d+ k + `, k} is asymptotically equivalent to
πn−d+k+`

(n−d+k+`)! , as n→∞. Thus,

lim
n→∞

n`ω`+1Ev`(W
(k)
n,d) =

ω`+1π
`

2
A[k, `].

On the other hand, using (5.16) with the intensity γ as in the statement of the theorem
we see that

EV`(Z
(k)
γ,d) = (2π3/2)`

Γ( `2 + 1)

Γ(`+ 1)
A[k, `].

Applying once more the definition of ω`+1 and Legendre’s duplication formula for the
gamma function, we finally see that the right-hand sides of the two last expressions are
identical:

(2π3/2)`
Γ( `2 + 1)

Γ(`+ 1)
=

(2π3/2)`

2

Γ( `2 )

Γ(`)
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(2π3/2)`
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√
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2`−1Γ( `+1
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=
π
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2

Γ( `+1
2 )

=
ω`+1π

`

2
.

This proves the second claim as well.

Let us now give a non-rigorous explanation of the rescaling that appeared in Theo-
rem 5.13. The idea is that the sphere Sd, on small scales, is almost flat, and that in a
small window, the great hypersphere tessellation looks essentially like the Euclidean
Poisson hyperplane tessellation in the appropriate tangent space, which is identified
with Rd. For simplicity we consider here only the full-dimensional cells in what follows,
that is, we put k = d. If n is large, then both the typical cell Zn,d and the weighted typical
cell Wn,d become “small” spherical polytopes (this will be made precise also in the next
section when we study the statistical dimension). Since the spherical content of Sd is
ωd+1 and since the total number of cells in the spherical tessellation is C(n, d) ∼ 2nd/d!,
the number of cells per unit spherical volume is ∼ 2/(d!ωd+1)nd, where we write ∼ for
asymptotic equivalence as n→∞. Since “small” spherical polytopes are essentially flat,
we can multiply Zn,d and Wn,d by n to obtain flat polytopes which are close in distribution

to the cells Zγ,d = Z
(d)
γ,d and Wγ,d = W

(d)
γ,d of the Euclidean Poisson hyperplane tessellation

with a parameter γ that has to be chosen so that the following condition is satisfied. The
mean number of cells per unit volume in the Euclidean Poisson hyperplane tessellation
should match the spherical case, i.e., it should be 2/(d!ωd+1). According to (5.15) with
` = d, this yields the condition( 2

γ

)d(Γ(d+1
2 )

Γ(d2 )

)d
Γ
(d

2
+ 1
)

=
1

2
d!ωd+1.

Using (5.19) with ` replaced by d it is easy to check that the condition is satisfied for the
value of γ given in Theorem 5.13. Thus, in the large n limit, the typical and the weighted
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Figure 6: Expected statistical dimensions of W̆ (k)
n,d (blue dots) and Z̆(k)

n,d (orange squares)
with d = k = 2 (left panel), d = 10 and k = 5 (middle panel) and d = 20 and k = 10 (right
panel) for n ∈ {d+ 1, . . . , d+ 20}.

spherical cells “look like” the corresponding Euclidean ones (with the above choice of γ)
divided by n. In fact, it is possible to state and prove such results rigorously, see [20].

Now, consider a small spherical polytope Pn (for example, Zn,d or Wn,d) which is close
to 1

nP , where P is fixed Euclidean polytope. It remains to understand the asymptotics of
the spherical intrinsic volumes v`(Pn), as n→∞. By the representation (5.9) of v` we
have that

v`(Pn) =
1

ω`+1

∑
Fn∈F`(Pn)

H `(Fn)γ(F, Pn).

In the large n limit, Fn ∈ F`(Pn) is approximated by 1
nF with some F ∈ F`(P ), implying

that H `(Fn) ∼ n−`V`(F ), while the external angle converges to its Euclidean counterpart.
Comparing this to (5.14), it follows that, as n→∞,

v`(Pn) ∼ V`(P )

n`ω`+1

for all ` ∈ {0, . . . , d}. Specifying this to the case when Pn is either Zn,d or Wn,d, explains
the rescaling used in Theorem 5.13.

5.5 Statistical dimension of typical and weighted typical spherical faces

The statistical dimension δ(C) of a convex cone C ⊂ Rd+1 is a highly important
quantity in conical optimization or high dimensional probability. In a sense, it measures
the ‘true’ dimension or size of C. It is also closely related to the widely used notion
of Gaussian width and to concentration phenomena for conical intrinsic volumes, see
[1, 2, 25]. By definition, δ(C) equals E‖ΠCg‖2, where ΠC denotes the metric projection
(or nearest-point map) to C and g is a standard Gaussian random vector in Rd+1. For
example, if C ⊂ Rd+1 is a k-dimensional linear subspace, then δ(C) = k. On the other
hand, if C = pos(u) for some u ∈ Sd is a ray, one has δ(C) = 1/2. In this section we study
the expected statistical dimension of the random cones generated by the typical and the
weighted typical spherical k-face of the great hypersphere tessellation Tn,d. Formally,
for k ∈ {0, 1, . . . , d} we define the random polyhedral cones

Z̆
(k)
n,d := pos(Z

(k)
n,d) ⊂ R

d+1 and W̆
(k)
n,d := pos(W

(k)
n,d) ⊂ Rd+1.

Using the representation (5.10) of conical intrinsic volumes via spherical intrinsic vol-
umes, their expected statistical dimensions can be expressed as

Eδ(Z̆
(k)
n,d) =

k+1∑
j=1

jEv̆j(Z̆
(k)
n,d) =

k∑
j=0

(j + 1)Evj(Z
(k)
n,d)
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and

Eδ(W̆
(k)
n,d) =

k+1∑
j=1

jEv̆j(W̆
(k)
n,d) =

k∑
j=0

(j + 1)Evj(W
(k)
n,d),

respectively. Unfortunately, there are no simple closed form expressions for Eδ(Z̆
(k)
n,d)

and Eδ(W̆
(k)
n,d). However, we note the following special cases of Eδ(Z̆(k)

n,d) for d = k ∈
{2, 3, 4, 5}:

Eδ(Z̆
(2)
n,2) =

n2 + 3n+ 6

2n2 − 2n+ 4
, Eδ(Z̆

(3)
n,3) =

n3 + 3n2 + 14n+ 24

2n3 − 6n2 + 16n

Eδ(Z̆
(4)
n,4) =
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, Eδ(Z̆

(5)
n,5) =

n5 + 35n3 + 120n2 + 444n+ 720

2n5 − 20n4 + 110n3 − 220n2 + 368n
.

The corresponding formulas for Eδ(W̆
(k)
n,d) are even more involved. For example, if

d = k = 2 we claim that

Eδ(W̆
(2)
n,2) =

1

2
+

n!

2πn

( ∑
k∈{0,...,n}
n−k is even

(−1)
n−k

2
k + 2

k!
πk

+ 2(−1)n/21{n is even} + π(−1)
n−1

2 1{n is odd}

)
.

(5.20)

This formula can be derived as follows. By the definition of the statistical dimension and
by Corollary 5.9, we have

Eδ(W̆
(2)
n,2) = Ev0(W

(2)
n,2) + 2Ev1(W

(2)
n,2) + 3Ev2(W

(2)
n,2)

=
n!

2πn
(B{n, 2}+ πB{n+ 1, 2}+ 3B{n+ 2, 2}) ,

(5.21)

where we also used the values A[2, 0] = 1, A[2, 1] = π/2 and A[2, 2] = 1. Using the
definition of B{n, 2} given in (5.2), we obtain

B{n, 2} =
1

(n− 2)!

∫ π

0

(sinx)xn−2 dx = −
∑

k∈{0,...,n−2}
n−k is even

(−1)
n−k

2
πk

k!
− (−1)n/21{n is even}

for n ≥ 2; see Entries 4,5,6 in Section 1.5.40 of [28] for the value of the integral.
Inserting this formula three times into (5.21) and performing straightforward but lengthy
transformations, we arrive at (5.20). Similarly, one can obtain an explicit expression for

Eδ(W̆
(3)
n,3) = Ev0(W

(3)
n,3) + 2Ev1(W

(3)
n,3) + 3Ev2(W

(3)
n,3) + 4Ev3(W

(3)
n,3)

=
n!

2πn

(
B{n, 3}+

( 4

π
+

4π

3

)
B{n+ 1, 3}+ 12B{n+ 2, 3}+

32

π
B{n+ 3, 3}

)
,

using the formula

B{n, 3} = −
∑

k∈{0,...,n−2}
n−k is even

(−1)
n−k

2
πk

k!2n−k
+

(−1)n/2

2n
1{n is even}, n ≥ 3,

which follows from (5.2) and Entry 12 in Section 1.5.40 of [28].
Note that since EU`(Z

(k)
n,d)→ 0 and EU`(W

(k)
n,d)→ 0 for ` ∈ {1, . . . , k} and n→∞, and

since almost surely U0(Z
(k)
n,d) = U0(W

(k)
n,d) = 1/2, the limit relations

lim
n→∞

Eδ(Z̆
(k)
n,d) =

1

2
and lim

n→∞
Eδ(W̆

(k)
n,d) =

1

2
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Wn,d

Vn,d

Vn,d

Figure 7: Illustration of the two different intersection situations for a realization of Wn,d

and two different realizations of Vm,d with d = 2.

follow from (5.11). This is consistent with the observation that, as n→∞, Z̆(k)
n,d and W̆ (k)

n,d

asymptotically behave like rays emanating from the origin, whose statistical dimension
equals 1/2.

5.6 Intersection probabilities for weighted typical cells

Intersection probabilities for random cones have recently moved into the focus of
attention in stochastic geometry because of their relevance in conical optimization
problems, see [1, 2, 25]. In particular, it is of interest in these works to evaluate the
probability that a fixed cone and a randomly rotated cone share a common ray. However,
we note that randomness enters in this problem only via a random rotation. The natural
question now arises whether there are mathematically tractable models for cones having
a random shape that allow an exact determination of intersection probabilities. In
this context, the following question has been studied in [30], which we rephrase in
our equivalent spherical set-up. For fixed d ≥ 1 and n,m ∈ N let Pn,d be a spherical
random polytope with the same distribution as the typical cell Zn,d of Tm,d and Qm,d be a
spherical random polytope with the same distribution as the typical cell Zm,d of Tm,d, and
assume that Pn,d and Qm,d are independent. What is the probability P(Pn,d ∩Qm,d 6= ∅)

that Pn,d and Qm,d have a non-empty intersection? Using the spherical (or conical)
kinematic formula and the explicitly known values for the expected spherical (or conical)
intrinsic volumes of Pn,d and Qm,d this probability was explicitly determined in [30,
Theorem 1.4]. For example, for d = 2 and d = 3 one has that

P(Pn,2 ∩Qm,2 6= ∅) =
m2 + 2mn−m+ n2 − n+ 2

(m2 −m+ 2) (n2 − n+ 2)
,

P(Pn,3 ∩Qm,3 6= ∅) =
3(m+ n)

(
m2 + 2mn− 3m+ n2 − 3n+ 8

)
m (m2 − 3m+ 8)n (n2 − 3n+ 8)

.
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Figure 8: Intersection probabilities P(Wn,d ∩ Vn,d 6= ∅) and P(Pn,d ∩Qn,d 6= ∅) for the
weighted typical cell (blue dots) and typical cell (orange squares) for d ∈ {2, 5, 10} and
n ∈ {d+ 1, . . . , d+ 20}.

Our goal is to complement the result in [30] by studying the corresponding intersection
probability for weighted typical cells. Passing to their conical versions, this adds another
tractable model to the question addressed above. However, in contrast to the model
studied in [30] we would like to point out that the intersection probability for weighted
typical cells is not just a purely combinatorial quantity.

Theorem 5.14. For d ≥ 1 and n,m > d consider two independent isotropic great
hypersphere tessellations Tn,d and T̃m,d of Sd. Let Wn,d be the weighted typical cell of

Tn,d and Vm,d be the weighted typical cell of T̃m,d. Then

P(Wn,d ∩ Vm,d 6= ∅)=
n!m!

2πn+m

b d2 c∑
k=0

d∑
i=2k

B{n+ d− i+ 2k, d}B{m+ i, d}A[d, d− i+ 2k]A[d, i].

Proof. We use the isotropy assumption and Fubini’s theorem to see that

P(Wn,d ∩ Vm,d 6= ∅) = E1{Wn,d ∩ Vm,d 6= ∅}

=

∫
SO(d+1)

E1{%Wn,d ∩ Vm,d 6= ∅} ν(d%)

= E

∫
SO(d+1)

1{%Wn,d ∩ Vm,d 6= ∅} ν(d%),

where we denote by ν the rotation invariant Haar probability measure on SO(d+ 1). To
the last expression we apply the spherical principal kinematic formula, see [31, p. 261].
In our case it says that, for almost all given realizations of Wn,d and Vm,d,∫

SO(d+1)

1{%Wn,d ∩ Vm,d 6= ∅} ν(d%) = 2

b d2 c∑
k=0

d∑
i=2k

vd−i+2k(Wn,d) vi(Vm,d).

The result now follows by taking expectations, using the independence of Wn,d and Vm,d
and finally Corollary 5.9.

Using the previous result it is in principle possible to obtain a fully explicit formula
for the intersection probability P(Wn,d ∩ Vm,d 6= ∅) by combining Corollary 5.6 with
(5.11). For example, if we denote by pFq(a1, . . . , ap; b1, . . . , bq; z) the usual hypergeometric
function, then P(Wn,2 ∩ Vm,2 6= ∅) can be expressed as

π2
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for m,n ≥ 3. However, since such formulas become rather involved in general, we refrain
from presenting them. Instead, we collect some particular values for small n, m and d in
Appendix E and compare in Figure 8 the intersection probabilities P(Wn,d ∩ Vn,d 6= ∅)

for the weighted typical cell with those for the typical cell for d ∈ {2, 5, 10}.
Remark 5.15. It is also possible to determine the intersection probability P(P ∩Wn,d 6=
∅), where P ∈ Ps(d) is now a fixed spherical polytope. In fact, repeating the proof of
Theorem 5.14, one shows that for d ≥ 1 and n ≥ d+ 1,

P(P ∩Wn,d 6= ∅) =
n!

πn

b d2 c∑
k=0

d∑
i=2k

B{n+ d− 2 + 2k}A[d, d− i+ 2k] vi(P ).
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A Expected spherical face numbers
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B Expected spherical Quermaßintegrals
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C Expected spherical intrinsic volumes
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E Intersection probabilities
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