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Self-similar solutions to kinetic-type evolution
equations: beyond the boundary case
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Abstract

We study the asymptotic behavior as t → ∞ of a time-dependent family (µt)t≥0 of
probability measures onR solving the kinetic-type evolution equation ∂tµt+µt = Q(µt)

where Q is a smoothing transformation on R. This problem has been investigated
earlier, e.g. by Bassetti and Ladelli [Ann. Appl. Probab. 22(5): 1928–1961, 2012] and
Bogus, Buraczewski and Marynych [Stochastic Process. Appl. 130(2):677–693, 2020].
Combining the refined analysis of the latter paper, which provides a probabilistic
description of the solution µt as the law of a suitable random sum related to a
continuous-time branching random walk at time t, with recent advances in the analysis
of the extremal positions in the branching random walk we are able to solve the case
that has been left open until now. In the course of our work, we significantly weaken
the assumptions in the literature that guarantee the existence (and uniqueness) of a
solution to the evolution equation ∂tµt + µt = Q(µt).
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1 Introduction

Given a sequence A = (A1, A2, . . .) of non-negative random variables with N :=

max{j : Aj 6= 0} <∞ almost surely we consider the kinetic-type evolution equation

∂tµt + µt = Q(µt) (1.1)

for a time-dependent family (µt)t≥0 of probability measures on R equipped with the
Borel σ-algebra B(R) where (1.1) has to be understood in the weak sense and Q is the
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Self-similar solutions to kinetic-type evolution equations

smoothing transformation associated with A. More precisely, the smoothing transforma-
tion Q is a self-map ofM1(R), the set of probability measures on (R,B(R)), defined by
the formula

Q(µ) = L
( N∑
j=1

AjXj

)
,

where L(Y ) denotes the law of a random variable Y and X1, X2, . . . are i.i.d. and indepen-
dent of A with Xj ∼ µ, j ∈ N. On the level of the Fourier transform, (1.1) corresponds to
the Cauchy problem

∂tφt(ξ) + φt(ξ) = Q̂(φt)(ξ), t ≥ 0, ξ ∈ R (1.2)

where φ0 is the Fourier transform of a given µ0 ∈M1(R) and Q̂ is a self-map of the set
of characteristic functions of probability measures on (R,B(R)) defined by

Q̂(φ)(ξ) := E

[ N∏
j=1

φ(Ajξ)

]
, ξ ∈ R, (1.3)

for φ being the Fourier transform of some probability measure µ ∈M1(R).
Under suitable assumptions (see e.g. Theorem 1.2 below or [12, Proposition 2.5]),

given an initial law µ0, Eq. (1.1) has a unique solution, which we shall denote by (µt)t≥0

henceforth. The corresponding family of Fourier transforms will be denoted by (φt)t≥0.
The behavior of the solution to (1.1) is strongly related with the spectral function
F (θ) := Φ(θ)/θ, where

Φ(θ) := E

[ N∑
j=1

Aθj

]
− 1, θ ≥ 0. (1.4)

1.1 Motivation and related models in the literature

Let us now briefly present some models that fit into the framework of Equation
(1.1). Most of the models have a fixed number of Aj 6= 0, i.e., A = (A1, . . . , AN ) with
constant N .

The case N = 2 and A = (sinU, cosU), U being uniformly distributed on [0, 2π), was
considered by Kac [18] as a model for the behavior of a particle in a homogeneous gas,
where particles collide at random times. It is known as the 1-dimensional Kac caricature.
The distribution µt represents the law of the velocity of a randomly chosen particle
and the operator Q describes the change of velocity after collision of two particles.1

In subsequent works, the model was extended in various directions, for instance to
non-conservative kinetic models, see e.g. [23].

The kinetic evolution equation (1.1) also found applications in models for wealth
redistribution in econophysics. Loosely speaking, gas particles become agents and the
velocity of a particles becomes the agent’s wealth. More precisely, we consider a class
of models with indistinguishable agents. The agent state is characterized by his current
wealth w ≥ 0. The interaction between two agents is described by

v∗ = p1v + q1w, w∗ = q2v + p2w,

where (v, w) and (v∗, w∗) stand for the pre- and post-trade wealths of the two agents,
respectively. The coefficients pi and qi are assumed to be random representing the risk

1 Although A1, A2 are not nonnegative in the 1-dimensional Kac caricature, the model can be rephrased
in the above setup as (sinU, cosU) has the same law as (ε1| sinU |, ε2| cosU |) with independent ε1, ε2 that
are uniform on {−1, 1}. Then one can replace (sinU, cosU) by (| sinU |, | cosU |) and replace the Xj in the
definition of Q by εjXj , j = 1, 2 where (ε1, ε2) and (X1, X2) are independent, which corresponds to restricting
the smoothing transform to symmetric laws on R.
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Self-similar solutions to kinetic-type evolution equations

of the market. The idea with random coefficients is due to the fact that agents may
invest some of their money in risky assets. It is common to assume that the society’s
mean wealth is preserved on average, i.e., E[p1 + q1 + q2 + p2] = 2. In our framework it
can be represented by choosing

A = (A1, A2) := (εp1 + (1− ε)q2, εq1 + (1− ε)p2), (1.5)

where ε is an independent Bernoulli variable with success parameter 1
2 . The conservation

of mean translates to Φ(1) = 0. It has been shown [15, 22] that if Φ(r) < 0 for some r > 1

and the expectation of µ0 is finite, then µt converges to some steady state µ∞ which
has either a Pareto tail or a slim tail. On the other hand, if Φ(r) > 0 for all r > 1, then
µt

w→ δ0, where here and throughout the paper, δx denotes the Dirac measure with a
point at x. In other words, a typical agent goes bankrupt. Therefore, it is natural to
investigate the rate of decay of the wealth of a typical agent as t→∞.

We refer the reader to [4, 5, 6, 7, 11] for examples and a more comprehensive account
to the literature.

1.2 State of the art and assumptions

The following assumptions concerning A will be relevant in the paper:

(A1) P(A1, A2 . . . ∈ arZ ∪ {0}) < 1 for all r > 1 and 1 ≤ a < r;

(A2) There is ϑ > 0 such that Φ(ϑ) <∞,

ϑE

[∑
j≥1

Aϑj logAj

]
+ 1 = E

[∑
j≥1

Aϑj

]
(1.6)

and E

[∑
j≥1

Aϑj log2Aj

]
<∞. (1.7)

(A3) For R :=
∑
j≥1A

ϑ
j and R̃ :=

∑
j≥1A

ϑ
j log+Aj it holds that

E[R log2
+R] <∞ and E[R̃ log+ R̃] <∞,

where x± := max(±x, 0) for x ∈ R.

(A4) For all sufficiently small 0 < δ < 1∫ 1

1−δ

ds

t− E[tN ]
=∞.

Assumption (A1) is a non-lattice assumption, while (A4) guarantees non-explosion of
a related Markov branching process, see the discussion below (1.15). Notice that
E[N ] <∞ is sufficient for (A4).

If Φ(θ) < ∞, then F (θ) equals the tangent of the angle between the line segment
joining (0, 0) and (θ,Φ(θ)) and the positive horizontal half-axis. If Φ is defined on some
open neighborhood of ϑ, then the relation (1.6) states that Φ′(ϑ) = F (ϑ), i.e., ϑ is the
unique minimizer of F .

The asymptotic behavior of µt as t → ∞ depends on the interplay between the
minimizer ϑ and the initial distribution µ0. More precisely, in the existing literature
usually the existence of a γ ∈ (0, 2] is assumed such that

φ0(ξ) ∼ 1− c±|ξ|γ as ξ → 0± (1.8)
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(i.e., µ0 is in the domain of normal attraction of a γ-stable law). If γ > 1, it is additionally
assumed that µ0 is centered. Then the asymptotic behavior of µt as t→∞ depends on
the relation between ϑ and γ.

The vast majority of papers are treating the case where γ < ϑ. In this case

φt(e
−F (γ)tξ)→ φ∞(ξ) (1.9)

where φ∞ is the characteristic function of a non-degenerate probability distribution on
R (cf. [11] for an analytical approach and [4] for a probabilistic interpretation).

In the recent work [12] the authors establish a connection with continuous-time
branching processes which enables them to treat the boundary case γ = ϑ in which

φt(t
1
2ϑ e−F (ϑ)tξ)→ φ∞(ξ) (1.10)

again for the characteristic function φ∞ of a non-degenerate probability measure on R.
The purpose of this paper is to fill the gap in the theory of one-dimensional kinetic-

type equations by treating the remaining case ϑ < γ. We actually work in even greater
generality by considering µ0 from the classM1

γ(R) for γ > ϑ.

Definition 1.1. For γ ∈ (0, 2] by M1
γ(R) we denote the class of probability measures

with finite absolute moment of order γ, centered if γ > 1.

Indeed, notice that if 0 < γ < 2, then (1.8) implies that µ0 has finite absolute moments
of all order < γ [19, Theorem 11.3.2] whereas if γ = 2, then µ0 has finite second moment
[19, Theorem 11.2.1]. In both cases, if φ0 satisfies (1.8) with γ > ϑ, then µ0 ∈ M1

p(R)

for some ϑ < p ≤ 2. In this more general situation, we demonstrate how the asymptotic
behavior of µt can be derived from recent progress on kinetic-type equations [12] and
the extrema of branching random walks [17, 21]. Our proof works under a mild X logX-
type moment condition (cf. assumption (A3)) and for random N . We mention that the
assumptions about the coefficient sequence A1, A2, . . . in the earlier results concerning
the cases γ < ϑ or γ = ϑ may be weakened analogously.

θ

Φ(θ)

γ ϑ

(a) The case covered by Bas-
setti and Ladelli [4].

θ

Φ(θ)

ϑ

(b) The boundary case cov-
ered by Bogus et al. [12].

θ

Φ(θ)

ϑ γ

(c) The case covered by Theo-
rem 1.3.

Figure 1: The three regimes that can occur.

The key property of the classM1
γ(R) is that for a sequence (Xj)j∈N of independent

random variables with L(Xj) ∈M1
γ(R), we have

E

[∣∣∣ ∞∑
j=1

Xj

∣∣∣γ] ≤ 2

∞∑
j=1

E
[
|Xj |γ

]
, n ∈ N (1.11)

if the right-hand side is finite. In fact, for γ ≤ 1, (1.11) holds, even with 2 replaced by 1,
by the subadditivity of x 7→ |x|γ . On the other hand, for γ ∈ (1, 2], (1.11) is a consequence
of the von Bahr–Esseen inequality. We conclude that if Φ(γ) <∞, then the restriction
Q�M1

γ(R) is a well-defined mapping fromM1
γ(R) to itself.

We now state the two main results of the paper.
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Theorem 1.2. Each of the following assumptions is sufficient for the existence of a
solution (µt)t≥0 to the evolution equation (1.1):

(i) Assumption (A4) holds.

(ii) There exists a γ ∈ (0, 2] with µ0 ∈M1
γ(R) and Φ(γ) <∞.

If (i) holds, the solution is unique, if (ii) holds it is the unique solution satisfying
sup0≤s≤t

∫
|x|γ µs(dx ) <∞ for all t ≥ 0.

Theorem 1.3. Suppose that (A1) through (A3) hold with 0 < ϑ < 2. Further, assume
that the initial distribution µ0 is not concentrated at 0 and belongs to the classM1

γ(R)

for some γ ∈ (ϑ, 2]. Then there is a solution (µt)t≥0 to (1.1) and a probability measure
µ∞ on the Borel sets of R, not concentrated in a single point, such that

lim
t→∞

φt
(
t

3
2ϑ e−F (ϑ)tξ

)
= φ∞(ξ) for all ξ ∈ R,

for the characteristic function φ∞ of µ∞.
Moreover, if Z is a random variable with law µ∞, then it satisfies the following

stochastic fixed-point equation

Z law= UF (ϑ)
N∑
j=1

AjZ
(j), (1.12)

where Z(1), Z(2), . . . are independent copies of Z, U is uniformly distributed on (0, 1) and
U , A = (A1, A2, . . .) and (Z(j))j∈N are independent.

Equation (1.12) is called fixed-point equation of the smoothing transformation. A lot
of information on Z can be extracted from the fact that (the law of) Z satisfies (1.12).
More precisely, we are in the situation with nonnegative weights UF (ϑ)Aj , j ∈ N and
possibly real-valued Z. In this setup, the equation has been solved in [2]. An important
parameter for (1.12) is the characteristic index α > 0, the minimal positive solution of
the equation m(t) = 1 where

m(t) = E

[∑
j≥1

U tF (ϑ)Atj

]
=

Φ(t) + 1
t
ϑΦ(ϑ) + 1

.

Notice that m(ϑ) = 1. If Φ(t) = ∞ for all t < ϑ, then α = ϑ. If Φ(t) < ∞ for some
0 ≤ t < ϑ, then also m(t) < ∞ and, as a consequence, m is finite on [t, ϑ]. Then m is
differentiable (from the left) at t = ϑ. The derivative equals 0 at ϑ if (1.6) holds. By the
convexity of m, we again infer that α = ϑ. If m(t) <∞ for some t < ϑ, Theorems 2.1 and
2.2 of [2] imply that

Z law= W 1/ϑYϑ (1.13)

where W ≥ 0 is the limit of an associated derivative martingale (namely, that of the
branching random walk with first generation positions given by − log(UΦ(ϑ)Aϑj ), j ∈ N
with Aj > 0) and Yϑ is a strictly ϑ-stable random variable independent of W . From this
representation, one can deduce various properties of the distribution of Z. For instance,
one may deduce the tail-behavior of Z from that of W and Yϑ using the main result of
the recent paper [13]. We now briefly explain why the random variable W given by
Theorems 2.1 and 2.2 of [2] can be chosen as the limit of the derivative martingale as
stated above. The cited theorems state that W is a solution of the stochastic fixed-point
equation

W law=

N∑
j=1

UΦ(ϑ)AϑjW
(j) (1.14)
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where W (1),W (2), . . . are i.i.d. copies of W and independent of U,A1, A2, . . . . By [8,
Theorem 3], the law of W is uniquely determined by this fixed-point equation (up
to a positive scale factor). On the other hand, under the present assumptions, the
derivative martingale of a branching random walk with first generation positions given
by − log(UΦ(ϑ)Aϑj ), j = 1, . . . , N converges almost surely to some nonnegative, non-
degenerate limit by [1, Proposition A.3(iii)]. The limit of the derivative martingale is also
a solution to (1.14), see [8].

Let us demonstrate how Theorem 1.3 translates to the particular economical model
described above by the random vector (A1, A2) defined in (1.5). In this model, Φ(1) = 0

and if Φ(r) = 0 for some r < 1, then the typical agent goes bankrupt (provided the initial
wealth distribution µ0 has finite mean). In this case, the minimizer ϑ is in the interval
(r, 1) and F (ϑ) < 0. If the tail of the initial distribution is heavy enough (i.e., if γ < ϑ),
then the wealth of a typical agent behaves like eF (γ)t, which diverges for γ < r. Next, in
the boundary case γ = ϑ, the correct asymptotic is t−

1
2ϑ eF (ϑ)t. Our result deals with the

remaining case where the tail of the initial distribution is not heavy enough, i.e., γ > ϑ.
In particular, this covers the situation where the first moment exists, which seems to be
the most natural case in this context. In this case, the wealth of a typical agent decays
like t−

3
2ϑ eF (ϑ)t as t→∞.

1.3 Representation of solutions: the branching random walk connection

Given an initial distribution µ0 and the random vector A, we give a representation of
µt as the law of a continuous-time branching random walk at time t. The exact form of
representation was developed in [12], see also [4] and the references therein for earlier
results.

We write I :=
⋃
n∈N0

Nn where N0 = {∅} contains only the empty tuple ∅. For
u ∈ I, u = (u1, . . . , um), we also write u1 . . . um and if v = (v1, . . . , vn), we write uv for
(u1, . . . , um, v1, . . . , vn). Further, if k ≤ m, we set u|k := u1 . . . uk. Finally, for u ∈ I, we
use the notation |u| = n for u ∈ Nn.

Throughout the paper, we work on a fixed probability space (Ω,F ,P) on which
two independent families (A(u), E(u))u∈I and (Xu)u∈I of random vectors and random
variables, respectively, are defined such that

• the (A(u), E(u)), u ∈ I are independent and identically distributed (i.i.d.) copies of
(A,E) where A is given and E is an independent unit-mean exponential random
variable;

• the Xu, u ∈ I are i.i.d. copies of a random variable X with L(X) = µ0.

For convenience, we denote quantities related to the ancestor without the label ∅, i.e.,
(A,E) = (A(∅), E(∅)) etc.

We now recursively define a continuous-time Markov branching process (Yt)t≥0

starting with one particle, the ancestor, denoted by ∅, at time t = 0. The birth-time of
the ancestor is σ(∅) = 0. If a particle labelled u ∈ I is born at time σ(u), it lives an
exponential lifetime E(u) until σ(u) +E(u) at which time it dies and simultaneously gives
birth to new particles labelled u1, u2, . . .. For a particle u = u1 . . . um ∈ I, we write

S(u) := −
m∑
k=1

logAuk(u|k−1)

for its position on the real line. The position S(u) =∞, we consider as a ghost type: the
corresponding individual is never born. We write

It := {u ∈ I : S(u) <∞ and σ(u) ≤ t < σ(u) + E(u)}
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for the set of labels pertaining to individuals alive at time t. Finally, we write

Zt :=
∑
u∈It

δS(u)

for the continuous-time branching random walk at time t ≥ 0. Throughout the paper,
we denote by (Tn)n∈N0 the sequence of points in increasing order of a homogeneous
Poisson process with intensity 1 and a point at the origin, i.e., T0 = 0. We suppose that
(Tn)n∈N0 is independent of the (A(u), E(u)), Xu, u ∈ I. The Laplace transform at θ ≥ 0

of the intensity measure of Zt is given by

m(t, θ) := E

[ ∑
u∈It

e−θS(u)

]
= E

[∑
n≥0

∑
|u|=n

e−θS(u)1{σ(u)≤t,σ(u)+E(u)>t}

]

=
∑
n≥0

E

[ ∑
|u|=n

e−θS(u)

]
P(Tn ≤ t < Tn+1)

=
∑
n≥0

(Φ(θ) + 1)ne−t
tn

n!
= etΦ(θ). (1.15)

By classical results ([16, Theorem 9.1, p. 107] with an analytic proof or [24, Theorem 5]
for a probabilistic proof) it follows that the set It is finite almost surely for all t ≥ 0,
provided (A4) holds. In particular, the sum

Ut :=
∑
u∈It

e−S(u)Xu (1.16)

is a well-defined, finite random variable. On the other hand, if L(X) ∈ M1
θ(R) and

Φ(θ) <∞ for some 0 < θ ≤ 2, then the right hand side of (1.16) converges in Lθ by (1.11)
and (1.15).

The connection between the continuous-time branching random walk (Zt)t≥0 and the
kinetic-type evolution equation (1.1) is established in the following proposition, which
implies Theorem 1.2.

Proposition 1.4. In the situation of Theorem 1.2, each of the conditions (i) and (ii) of
the theorem implies the existence of a solution (µt)t≥0 to (1.1) given by

µt = L
(
Ut
)
, t ≥ 0. (1.17)

If (i) holds, the solution is unique. If (ii) holds, then it is the unique solution satisfying
sup0≤s≤t

∫
|x|γ µs(dx ) <∞ for all t ≥ 0.

Proof. First, we provide an equation, which is equivalent to (1.2) and easier to work
with. If φt is a solution to the kinetic-type equation (1.2), then it satisfies the integral
equation

etφt(ξ)− φ0(ξ) =

∫ t

0

esQ̂(φs)(ξ) ds, t ≥ 0, ξ ∈ R,

and vice versa. Recall that E = E(∅) is a unit-mean exponential random variable
independent of all S(u) and Xu, u ∈ I. With the convention that φt = φ0 for t ≤ 0, in
view of (1.3), the above equation can be rewritten as

φt(ξ) = e−tφ0(ξ) +

∫ t

0

e−sQ̂(φt−s)(ξ) ds = E

[ ∏
u∈I1t

φt−E(e−S(u)ξ)

]
, (1.18)
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valid for t ≥ 0 and ξ ∈ R where

Int = In,1t ∪ In,2t := {u ∈ It : |u| ≤ n} ∪ {u ∈ I : σ(u) ≤ t, |u| = n}

for any n ∈ N0. We show that the function ψt(ξ) := E[exp(iξUt)] satisfies (1.18) provided
that condition (i) or (ii) of Theorem 1.2 holds. Indeed, for any t ≥ 0,

E
[

exp(iξUt)
∣∣(A,E)

]
= 1{E>t}E

[
exp(iξX)

]
+ 1{E≤t}

∏
|u|=1

ψt−E(e−S(u)ξ),

and therefore2

ψt(ξ) = E

[
1{E>t}φ0(ξ) + 1{E≤t}

∏
|u|=1

ψt−E(e−S(u)ξ)

]
= E

[ ∏
u∈I1t

ψt−E(e−S(u)ξ)

]
.

Let us also note that if µ0 ∈M1
γ(R) and Φ(γ) <∞, then by (1.11) and (1.15) we infer

E[|Ut|γ ] ≤ 2etΦ(γ)
∫
|x|γ µ0(dx ),

which is locally bounded. Moreover, E[Ut] = 0 for all t ≥ 0 if γ > 1.
Now we prove that ψt is the only solution to (1.18). Let (φt)t≥0 be any solution with
initial condition φ0. Inductively, for any n ∈ N0, iterating (1.18) we get

φt(ξ) = E

[ ∏
u∈Int

φt−σ(u)(e
−S(u)ξ)

]

= E

[ ∏
u∈In,1t

φt−σ(u)(e
−S(u)ξ) ·

∏
u∈Int \I

n,1
t

φt−σ(u)(e
−S(u)ξ)

]
.

We show that, for fixed t ≥ 0,∏
u∈Int \I

n,1
t

φt−σ(u)(e
−S(u)ξ)→ 1 in L1 as n→∞. (1.19)

This is clear if (i) holds since then, with probability one, It is finite and hence the product
above is eventually indexed by the empty set. On the other hand, if (ii) and the additional
assumption sup0≤s≤t

∫
|x|γ µs(dx ) <∞ for all t ≥ 0 hold, using [14, Theorem 1 on p. 295]

we infer existence of a function t 7→ C(t) ≥ 0 such that

sup
0≤s≤t

|1− φs(ξ)| ≤ C(t)|ξ|γ for all ξ ∈ R.

Using this together with Int \I
n,1
t = {u ∈ I : |u| = n, S(u) +E(u) ≤ t} and the elementary

inequality |1−
∏
k zk| ≤

∑
k |1− zk|, valid for zk ∈ C with |zk| ≤ 1, we conclude∣∣∣∣1− ∏

u∈Int \I
n,1
t

φt−σ(u)(e
−S(u)ξ)

∣∣∣∣ ≤ C(t)|ξ|γ
∑
|u|=n,

σ(u)+E(u)≤t

e−γS(u).

Since

E

[ ∑
|u|=n,

σ(u)+E(u)≤t

e−γS(u)

]
≤ (Φ(γ) + 1)n

∑
k>n

e−t
tk

k!
→ 0,

2 Notice that the a. s. finiteness of Ut and N < ∞ a. s. are the only assumptions required to draw this
conclusion.
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as n goes to infinity, we conclude (1.19). Consequently, in both cases we have

φt(ξ) = lim
n→∞

E

[ ∏
u∈Int

φt−σ(u)(e
−S(u)ξ)

]
= lim
n→∞

E

[ ∏
u∈In,1t

φ0(e−S(u)ξ)

]

= lim
n→∞

E

[
exp

(
iξ
∑

u∈In,1t

e−S(u)Xu

)]
= E

[
exp(iξUt)

]
= ψt(ξ).

The above result provides an explicit form of the solution to Equation (1.1). Therefore,
in order to prove our main result we need to find an appropriate scaling of the random
sum (1.16) leading to a nontrivial limit law as t→∞. For this purpose, first applying the
Croft-Kingman lemma [20], we reduce the problem of describing convergence along any
sequence to convergence along arbitrary lattice sequences (Section 2). Finally, we show
the existence of the limit along lattice sequences (Section 3).

2 Reduction to the lattice case

The goal of this section is to prove the following lemma.

Lemma 2.1. Suppose that (A1) through (A3) holds, µ0 ∈M1
γ(R) for some γ ∈ (ϑ, 2] and

that, for any fixed δ > 0,

(nδ)
3
2ϑ e−F (ϑ)nδUnδ d→ Zδ as n→∞ (2.1)

for some non-degenerate random variable Zδ. Then

t
3
2ϑ e−F (ϑ)tUt d→ Z1 as t→∞. (2.2)

Moreover, the random variable Z := Z1 satisfies (1.12).

The lemma above is proved in several steps. First, for p > 0 and x ≥ 0, we define
fp(x) := (1 + logp+ x)x and notice that fp is superadditive, i.e., fp(x+ y) ≥ fp(x) + fp(y)

for all x, y ≥ 0. It is also subadditive up to a multiplicative constant, namely,

fp(x+ y) ≤ 2(1 + logp 2)(fp(x) + fp(y)) for all x, y ≥ 0. (2.3)

Similarly, fp is submultiplicative in the sense that

fp(xy) ≤ 2pfp(x)fp(y) for all x, y ≥ 0. (2.4)

Further, let

hp(x) :=

∫ x

0

(p
e

)p
t1[0,ep](t) + (log t)p1(ep,∞)(t) dt . (2.5)

Then hp is convex with concave derivative h′p. Further, fp and hp are asymptotically
equivalent, i.e.,

lim
x→∞

fp(x)

hp(x)
= 1. (2.6)

Consequently, since h′p(0) = 0 < 1 = f ′p(0), there is some Cp > 0 such that

hp(x) ≤ Cpfp(x) for all x ≥ 0. (2.7)

We start with a technical lemma.
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Lemma 2.2. Suppose that

E

[
fp

( ∑
|u|=1

e−S(u)

)]
<∞

for some p > 0. Then there is a constant C > 0 such that, for any t ≥ 0,

E

[∑
u∈I

fp
(
e−S(u)

)
1{σ(u)≤t}

]
≤ CeCt (2.8)

and E

[
fp

( ∑
u∈It

e−S(u)

)]
≤ CeCt. (2.9)

Proof. Throughout the proof, if some quantity depending on t ≥ 0 is bounded by CeCt

for all t ≥ 0 and some constant C > 0, then we say that the quantity grows at most
exponentially fast. Using induction on n, the superadditivity of fp and (2.4), we infer

E

[ ∑
|u|=n

fp
(
e−S(u)

)]
≤ qn, (2.10)

for some q > 1. Then

E

[∑
u∈I

fp
(
e−S(u)

)
1{σ(u)≤t}

]
=
∑
n≥0

E

[ ∑
|u|=n

fp
(
e−S(u)

)
1{σ(u)≤t}

]
(2.11)

≤
∑
n≥0

qnP(Tn ≤ t) =
qet(q−1) − 1

q − 1
<∞,

proving (2.8). Turning to the proof of (2.9), we first notice that, for every t ∈ R,∑
u∈It

e−S(u) ≤
∑
u∈I

e−S(u)1{σ(u)≤t} =: M t.

(Here, for t < 0, both sums are empty and hence have value 0.) Since fp is monotone,
it suffices to prove that E[fp(M

t)] grows at most exponentially fast. Since fp(x) ≥ x

for any x ≥ 0, we conclude from (2.8) that H(t) := E[M t] ≤ C ′eC
′t for all t ≥ 0 and an

appropriate constant C ′ > 0. Thus, by (2.3), for all t ≥ 0,

E[fp(M
t)] = E[fp(M

t −H(t) +H(t))]

≤ 2(1 + logp 2)
(
E[fp(|M t −H(t)|)] + fp(H(t))

)
≤ 2(1 + logp 2)

(
E[fp(|M t −H(t)|)] + fp(C

′eC
′t)
)
.

Therefore, it suffices to prove that E[fp(|M t −H(t)|)] grows at most exponentially fast
in t. By (2.6), there is a constant C ′′ such that

E[fp(|M t −H(t)|)] ≤ 2E[hp(|M t −H(t)|)] + C ′′ for all t ≥ 0,

so it suffices to prove that E[hp(|M t−H(t)|)] grows at most exponentially fast in t. To
this end, let ∅ = u1, u2, . . . ∈ I be a deterministic enumeration of I such that, with
I(n) = {u1, . . . , un}, the sequence (I(n))n∈N is a strictly increasing sequence of subtrees
of I, and let

FI(n) := σ((A(u), E(u)) : u ∈ I(n)).

Then M t
n := E[M t|FI(n) ], n ∈ N is a (uniformly integrable) martingale. By the martingale

convergence theorem, M t
n →M t a. s. and in L1. Consider the martingale differences

M t
n −M t

n−1 =
∑
u∈I

(
E[e−S(u)1{σ(u)≤t}|FI(n) ]− E[e−S(u)1{σ(u)≤t}|FI(n−1) ]

)
, n ∈ N.
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If u is not a strict descendant of un, i.e., if there is no v ∈ I with |v| ≥ 1 such that u = unv,
then (A(un), E(un)) is independent of the σ-algebra generated by e−S(u)1{σ(u)≤t} and
FI(n−1) , hence, E[e−S(u)|FI(n) ] = E[e−S(u)|FI(n−1) ] a. s. Hence, with

Dt
n := E

[ ∑
|v|≥1

e−S(unv)1{σ(unv)≤t}|FI(n)

]

=

N(un)∑
j=1

e−S(unj)E

[∑
v∈I

e−(S(unjv)−S(unj))1{σ(unjv)−σ(unj)≤t−σ(unj)}

∣∣∣FI(n−1)

]

=

N(un)∑
j=1

e−S(unj)H(t− σ(unj)) a. s.,

we have
M t
n −M t

n−1 = Dt
n − E[Dt

n|FI(n−1) ] a. s. (2.12)

Since hp(0) = 0, hp is increasing and convex with concave derivative, we may apply the
Topchĭı-Vatutin inequality [3] and infer

E[hp(|M t −H(t)|)] ≤ 2
∞∑
n=1

E[hp(|M t
n −M t

n−1|)]

≤ 2

∞∑
n=1

(
E[hp(D

t
n)] + E[hp(E[Dt

n|FI(n−1) ])]
)

≤ 4

∞∑
n=1

E[hp(D
t
n)] ≤ 4Cp

∞∑
n=1

E[fp(D
t
n)],

where we have applied Jensen’s inequality for conditional expectations in the next-to-last
step and (2.7) in the last step. Here, using the definition of Dt

n, H(t) ≤ C ′eC
′t1[0,∞)(t)

for all t ∈ R, and (2.4) (twice), we find

∞∑
n=1

E[fp(D
t
n)] =

∑
u∈I

E

[
fp

(N(u)∑
j=1

e−S(uj)H(t− σ(uj))

)]

≤
∑
u∈I

E

[
fp

(N(u)∑
j=1

e−S(uj)1{σ(uj)≤t}C
′eC

′t

)]

≤ 2pfp(C
′eC

′t)
∑
u∈I

E

[
fp

(N(u)∑
j=1

e−S(uj)1{σ(uj)≤t}

)]

≤ 4pfp(C
′eC

′t)
∑
u∈I

E

[
fp(e

−S(u))1{σ(u)≤t}fp

(N(u)∑
j=1

e−(S(uj)−S(u))

)]

= 4pfp(C
′eC

′t)E

[∑
u∈I

fp(e
−S(u))1{σ(u)≤t}

]
E

[
fp

( ∑
|u|=1

e−S(u)

)]
,

which is finite and grows at most exponentially fast by (2.11) and since the last expecta-
tion is finite by assumption.

Lemma 2.3. Suppose that the assumptions of Lemma 2.1 hold. Then the family (Ut)t≥0

is continuous in Lϑ, i.e., E[|Ut − Us|ϑ] → 0 as s → t. In particular, if a : [0,∞) → [0,∞)

is a deterministic nonnegative continuous function, then also (a(t)Ut)t≥0 is continuous
in Lϑ.
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Proof. Define g(t, s) := E[|Ut − Us|ϑ] for s, t ≥ 0. We first show that g(t, 0)→ 0 as t→ 0.
Notice that U0 = X∅ = X ∼ µ0. Then, with St := {E ≤ t} denoting the event that there
was a split in the interval [0, t], we have P(St) = 1− e−t. Consequently,

g(t, 0) = E[|Ut −X|ϑ1St ] ≤ 2ϑE[|Ut|ϑ1St ] + 2ϑE[|X|ϑ](1− e−t).

The second summand on the right-hand side vanishes as t→ 0, so it remains to consider
the first one. For the function h1 defined by (2.5) with p = 1 the expectation E[h1(|Ut|ϑ)]

remains bounded as t goes to 0. We postpone the proof of this fact and first show how it
implies E[|Ut|ϑ1St ]→ 0 as t→ 0. Indeed, since h1 is convex and grows superlinearly fast,
the Legendre-Fenchel transform h∗1(y) := supx≥0(xy − h1(x)) of the function h1 is finite
on the half-line [0,∞) and h∗1(y)→∞ as y →∞. From the definition of h∗1, we conclude
that xy ≤ h1(x) + h∗1(y) for all x, y ≥ 0 (a generalized version of Young’s inequality) and
h∗1(y) > 0 iff y > 0. Using these inequalities, (2.7) and (2.4), we infer, for any st > 1,

E[|Ut|ϑ1St ] ≤ E[h1(s−1
t |Ut|ϑ)] + E[h∗1(st1St)]

≤ s−1
t CE[f1(|Ut|ϑ)] + h∗1(st)P(St)

where C > 0 is an appropriate constant. Taking now st → ∞ such that h∗1(st) =

P(St)
−1/2 = (1− e−t)−1/2 → 0 as t→ 0, we conclude that the second summand tends to 0

as t→∞. Regarding the first, notice that (2.6) together with lim supt→0E[h1(|Ut|ϑ)] <∞
implies that it also tends to 0 as t→ 0.
We now turn to the proof of the fact that lim supt→0E[h1(|Ut|ϑ)] < ∞. For technical
reasons, we need to replace h1(|x|ϑ) by a function of the same order of growth with
more convenient properties. To this end, first suppose that ϑ ∈ (1, 2) and consider
g′′ϑ : [0,∞)→ [0,∞)

g′′ϑ(u) :=

{
1

e(2−ϑ) , for u ≤ e1/(2−ϑ),

uϑ−2 log u, for u ≥ e1/(2−ϑ).

The function g′′ϑ is nonnegative, continuous and non-increasing, hence gϑ : [0,∞)→ [0,∞),
defined by

gϑ(x) =

∫ x

0

∫ t

0

g′′ϑ(u) du dt , x ≥ 0,

is convex with concave derivative. Two applications of the direct half of Karamata’s
theorem [10, Proposition 1.5.8] imply that

gϑ(x) ∼ xϑ log x

ϑ(ϑ− 1)
as x→∞.

Since h1(xϑ) ∼ ϑxϑ log x as x → ∞, we have lim supt→0E[h1(|Ut|ϑ)] < ∞ if and only
if lim supt→0E[gϑ(|Ut|)] < ∞ Further, since we also have f1(xϑ) ∼ xϑ as x → 0 and
f1(xϑ) ∼ ϑxϑ log x as x → ∞, whereas gϑ(x) ∼ x2/(2e(2 − ϑ)) as x → 0, there exists a
constant Cϑ > 0 such that gϑ(x) ≤ Cϑf1(xϑ) for all x ≥ 0. A combination of this inequality,
the (conditional) Topchĭı-Vatutin inequality (recall that E[X] = 0 in this case) and (2.4)
yields

E[gϑ(|Ut|)] ≤ 2E

[ ∑
u∈It

gϑ(e−S(u)|Xu|)
]
≤ 2CϑE

[ ∑
u∈It

f1(e−ϑS(u)|Xu|ϑ)

]
≤ 4CϑE

[ ∑
u∈It

f1(e−ϑS(u))f1(|Xu|ϑ)

]
,
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which is bounded by Lemma 2.2 and E[|X|γ ] <∞. If ϑ = 1, the situation is easier and
the above argument works with gϑ(x) := h1(x), x ≥ 0 as this function is convex with
concave derivative. If ϑ < 1, then we define g′ϑ : [0,∞)→ [0,∞) via

g′ϑ(t) :=

{
tϑ−1

1−ϑ , for t ≤ e1/(1−ϑ),

tϑ−1 log t, for t ≥ e1/(1−ϑ)

and gϑ(x) :=
∫ x

0
g′ϑ(t) dt , x ≥ 0. Again by Karamata’s theorem, gϑ(x) ∼ 1

ϑx
ϑ log x as

x → ∞, i.e., gϑ(x) is of the same order of growth as f1(xϑ) as x → ∞. Similarly,
gϑ(x) = 1

ϑx
ϑ and f1(xϑ) = xϑ for small x. Consequently, again we find a constant Cϑ > 0

such that gϑ(x) ≤ f1(xϑ) for all x ≥ 0. On the other hand, as g′ϑ is non-increasing, gϑ is
subadditive and hence

E[gϑ(|Ut|)] ≤ E
[ ∑
u∈It

gϑ
(
e−S(u)|Xu|

)]
≤ 2CϑE

[ ∑
u∈It

f1

(
e−ϑS(u)

)
f1(|Xu|ϑ)

]
.

Again by Lemma 2.2, this is bounded for sufficiently small t.
Now let s, t ≥ 0. By conditioning with respect to Ft∧s, the σ-algebra containing all
information up to and including time t ∧ s, and using the Markov property, we infer

g(t, s) = E[|Ut − Us|ϑ] ≤ E
[ ∑
u∈It∧s

e−ϑS(u)g(|t− s|, 0)

]
= m(t ∧ s, ϑ) · g(|t− s|, 0)→ 0

as t is kept fixed and s→ t by the first part of the proof.

Proof of Lemma 2.1. Suppose that (2.1) holds for all fixed δ > 0. Let f : R → R be
differentiable with derivative f ′ such that both f and f ′ are continuous and bounded.
Define, for t ≥ 0,

h(t) := E
[
f
(
t

3
2ϑ e−F (ϑ)tUt

)]
.

By (2.1), we have
h(nδ)→ E[f(Zδ)] as n→∞,

for all δ > 0. If we can show that h is continuous, then the Croft-Kingman lemma [20,
Theorem 2] applies and gives that E[f(Zδ)] is independent of δ and that limt→∞ h(t) =

E[f(Z1)]. Since the bounded continuously differentiable functions with bounded deriva-
tive are convergence determining on R, this implies (2.2).
We now turn to the proof of the continuity of h. For any x, y ∈ R, we have

|f(x)− f(y)| ≤ (‖f ′‖∞ · |x− y|) ∧ (2‖f‖∞) ≤ C|x− y|ϑ∧1

for some finite constant C ≥ 0. Consequently, for any s, t ≥ 0,

|h(s)− h(t)| ≤ CE
[∣∣s 3

2ϑ e−F (ϑ)sUs − t
3
2ϑ e−F (ϑ)tUt

∣∣ϑ∧1]
.

The latter expression tends to 0 as s→ t by Lemma 2.3.
To prove the second part of the Lemma note that the process Ut satisfies the following

branching relation
Ut+s

law=
∑
u∈It

e−S(u)Us,u, (2.13)

where (Us,u)u are independent copies of Us, independent of the process up to time t.
Then (2.13) entails

Ut
law= 1{E>t}X + 1{E≤t}

N∑
k=1

AkUt−E,k
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and therefore

t
3
2ϑ e−F (ϑ)tUt

law= 1{E>t}t
3
2ϑ e−F (ϑ)tX + 1{E≤t}e

−F (ϑ)E
N∑
k=1

t
3
2ϑ e−F (ϑ)(t−E)AkUt−E,k.

Now passing with t to∞ we conclude that Z1 satisfies (1.12).

3 Convergence along lattices

Throughout the whole Section 3, we fix some δ > 0 and prove that (2.1) holds for a
non-degenerate random variable Zδ.

3.1 Properties of the skeleton branching random walk

The sequence of point processes (Znδ)n∈N0
forms a discrete-time (or skeleton) branch-

ing random walk, in which each individual produces offspring with displacement relative
to its position given by the points of an independent copy of the point process Zδ. In this
section, we shall discuss the properties of this branching random walk that are relevant
to us.

As δ is kept fixed throughout Section 3, we abbreviate m(δ, θ), defined in (1.15), by
m(θ). For n ∈ N0 and u ∈ Inδ, we define

V (u) := ϑS(u) + n logm(ϑ) = ϑS(u) + nδΦ(ϑ). (3.1)

By the definition of ϑ, we have

E

[ ∑
u∈Iδ

e−V (u)

]
= 1 and E

[ ∑
u∈Iδ

V (u)e−V (u)

]
= 0, (3.2)

i.e., the branching random walk (
∑
u∈Inδ δV (u))n∈N0 is in the boundary case.3 Indeed,

the first equation in (3.2) follows from (1.15). Regarding the second, first notice that, by
(1.6) and (1.4),

E

[ ∑
|u|=1

ϑS(u)e−ϑS(u)

]
= −ϑE

[∑
j≥1

Aϑj logAj

]
= −E

[∑
j≥1

Aϑj

]
+ 1 = −Φ(ϑ)

and hence, by the many-to-one lemma (see e.g. [8, Proposition 11]), for every n ∈ N0,

E

[ ∑
|u|=n

ϑS(u)e−ϑS(u)

]
= −nΦ(ϑ)(Φ(ϑ) + 1)n−1.

Consequently,

E

[ ∑
u∈Iδ

V (u)e−V (u)

]
= E

[ ∑
u∈Iδ

ϑS(u)e−ϑS(u)

]
e−δΦ(ϑ) + δΦ(ϑ)E

[ ∑
u∈Iδ

e−V (u)

]
= e−δΦ(ϑ)

∑
n≥0

E

[ ∑
|u|=n

ϑS(u)e−ϑS(u)1{σ(u)≤δ<σ(u)+E(u)}

]
+ δΦ(ϑ)

= −Φ(ϑ)e−δΦ(ϑ)
∑
n≥1

n(Φ(ϑ) + 1)n−1P(Tn ≤ δ < Tn+1) + δΦ(ϑ) = 0

since P(Tn ≤ δ < Tn+1) = e−δ δ
n

n! for all n ∈ N0. Moreover, the skeleton branching
random walk (Znδ)n∈N0

is non-lattice by (A1) and satisfies

E

[ ∑
u∈Iδ

V (u)2e−V (u)

]
∈ (0,∞). (3.3)

3This notion was coined by Biggins and Kyprianou in [8].
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The latter follows from Lemma 3.6 in [12]. As a corollary of Lemma 2.2, we get the
following:

Proposition 3.1. Suppose that assumptions (A2) and (A3) are fulfilled. Then for the
branching random walk defined by (3.1) it holds

E

[( ∑
u∈Iδ

e−V (u)

)
log2

+

( ∑
u∈Iδ

e−V (u)

)]
<∞ and (3.4)

E

[( ∑
u∈Iδ

e−V (u)V (u)+

)
log+

( ∑
u∈Iδ

e−V (u)V (u)+

)]
<∞. (3.5)

Proof. An application of Lemma 2.2 with V = ϑS, p = 2 and t = δ gives (3.4). For (3.5)
note that

ϑS(u)+e
−ϑS(u) ≤ e−S̃(u),

where S̃(u) :=
∑|u|
i=1 ϑ(S(ui)− S(ui−1))− log(1 + ϑ(S(ui)− S(ui−1))+). Hence the appli-

cation of Lemma 2.2 with V = S̃, p = 1 and t = δ finishes the proof.

We have now checked that the assumptions of [21, Theorem 1.1] hold and infer, with
Vn(u) := V (u)− 3

2 log(n) for u ∈ Inδ,

Z◦n :=
∑
u∈Inδ

δVn(u)
d→ Z◦∞

where Z◦∞ is a point process on R satisfying Z◦∞((−∞, 0]) < ∞ a. s. Here, the conver-
gence in distribution is in the space of locally finite point measures equipped with the
topology of vague convergence. For k ∈ N, define Pk := inf{t ∈ R : Z◦∞((−∞, t]) ≥ k},
that is, −∞ < P1 ≤ P2 ≤ P3 ≤ . . . and Z◦∞ =

∑
k∈N δPk . Then [17, Formula (5.4)] gives∑

k∈N

e−βPk <∞ P-a. s. (3.6)

for every β > 1. For simplicity of notation, suppose that Z◦∞ is defined on the probability
space (Ω,F ,P) and that it is independent of the families (A(u), E(u))u∈I and (Xu)u∈I .
In particular, (Xk)k∈N is independent of Z◦∞. We consider the following random sums

Z∗n :=

n∑
k=1

e−
Pk
ϑ Xk, n ∈ N.

Our main result, Theorem 1.3, follows directly from Lemma 2.1 and the following
proposition.

Proposition 3.2. Suppose that (A1) through (A3) hold and µ0 is not concentrated at
0 and an element of M1

r(R) for some r ∈ (ϑ, 2]. Then Z∗n
P→ Z as n → ∞ for some

non-degenerate random variable Z and

m(ϑ)−
n
ϑ (nδ)

3
2ϑ

∑
u∈Inδ

e−S(u)Xu
d→ Z,

i.e., (2.1) holds.

The bulk of the proof of this proposition can be adopted from the proof of Theorem
2.5 in [17], however at some points changes are needed. In what follows, we repeat the
major steps of the proof of the cited theorem adjusted to the situation here and point out
the changes that are required.

Define the following point processes on R2:

Z∗∞ :=
∑
k∈N

δ(Pk,Xk) and Z∗n :=
∑
|u|=n

δ(Vn(u),Xu), n ∈ N0.
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Lemma 3.3. Suppose that the assumptions of Proposition 3.2 are satisfied. Then∫
f(x, y)Z∗n(dx ,dy)→

∫
f(x)Z∗∞(dx ,dy) for all bounded continuous functions f : R2 →

R satisfying f(x, y) = 0 for all sufficiently large x.

Source. The lemma is a special case of Lemma 5.2 in [17].

Lemma 3.4. Under the assumptions of Proposition 3.2, for any δ > 0 and any measurable
h : R 7→ R satisfying 0 ≤ hK ≤ 1[K,∞), we have

lim
K→∞

lim sup
n→∞

P

(∣∣∣∣ ∑
|u|=n

e−
1
ϑVn(u)hK(Vn(u))Xu

∣∣∣∣ > δ

)
= 0.

Proof. The lemma follows from (the proof of) Lemma 5.3 in [17], except at one point in
the proof where the Topchĭı–Vatutin inequality is used (Lemma A.1 in the cited reference).
The use of the latter inequality has to be replaced by an application of (1.11) The rest of
the proof carries over without changes.

We are now ready to prove Proposition 3.2.

Proof of Proposition 3.2. Recall that 0 < ϑ < r ≤ 2. Let β0 := r
ϑ > 1. Given Z◦∞, for each

n ∈ N, the random variable Z∗n is a sum of independent random variables (centered in
the case ϑ ≥ 1). Then, for any δ > 0 and any n,m ∈ N with m ≤ n, by (1.11),

P(|Z∗n − Z∗m| > δ|Z◦∞) ≤ 2δ−rE[|X|r] ·
n∑

k=m+1

e−β0Pk

and the second term converges to zero as m,n→∞ by (3.6). Hence, conditionally given
Z◦∞, (Z∗n)n∈N0

forms a Cauchy sequence in probability and thus converges in probability.
We denote the limit in probability of the sequence (Z∗n)n∈N0

by Z. We now argue why Z is
not degenerate at a single point. Indeed, if µ0 is not concentrated in a single point, then
given Z◦∞, Z is the limit in probability of a weighted sum of i.i.d. non-degenerate random
variables and, hence, is non-degenerate. (To check this more formally, consider the
Fourier transform of Z∗n conditionally given Z◦∞ and notice that the limit of the Fourier
transform cannot have absolute value 1 everywhere on R with probability one.) If, on
the other hand, µ0 = δa ∈ M1

γ(R) for some a ∈ R, then, by assumption, a 6= 0. Since
elements of M1

γ(R) are centered if γ > 1, this forces γ ≤ 1. In particular, ϑ < γ ≤ 1.
Then Z equals a times the a. s. convergent infinite series

∑
k∈N e

−βPk , see (3.6). This
series is not a. s. constant as the points P1, P2, . . . are the points of a decorated Poisson
point process [21, Theorem 1.1].

The proof of the second part is based on the decomposition

(m(ϑ))−
n
ϑn

3
2ϑ

∑
u∈Inδ

e−S(u)Xu =
∑
u∈Inδ

e−
1
ϑVn(u)Xu

=
∑
u∈Inδ

e−
1
ϑVn(u)fK(Vn(u))Xu

+
∑
u∈Inδ

e−
1
ϑVn(u)(1− fK(Vn(u)))Xu

=: Zn,K +Rn,K ,

where fK is a continuous function such that 1(−∞,K] ≤ fK ≤ 1(−∞,K+1]. The remainder
of the proof is based on an application of Theorem 4.2 in [9]. In view of Lemma 3.4, the
cited theorem gives the assertion once we have shown the following two assertions:
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1. Zn,K d→ Z∗K as n→∞ for every fixed K > 0 where Z∗K is some finite random variable;

2. Z∗K
P→ Z as K →∞.

The first assertion is a consequence of Lemma 3.3. Indeed, the function on R2 that maps
(x, y) to e−

1
ϑxfK(x)y is continuous and vanishes for all sufficiently large x. Therefore,

Lemma 3.3 yields

Zn,K =
∑
u∈Inδ

e−
1
ϑVn(u)fK(Vn(u))Xu

=

∫
e−

1
ϑxfK(x)yZ∗n(dx ,dy) d→

∫
e−

1
ϑxfK(x)yZ∗∞(dx ,dy) =: Z∗K .

The second assertion can be proved similarly as in the proof of Theorem 2.5 in [17].
More precisely, it follows from the dominated convergence theorem once we have proved
that

P(|Z − Z∗K | > ε | Z◦∞)→ 0 a. s.

as K →∞ for every ε > 0. Now fix ε > 0 and observe that

P(|Z − Z∗K | > ε | Z◦∞) ≤ P({|Z∗n − Z∗K | > ε for infinitely many n} | Z◦∞)

= E
[

lim inf
n→∞

1{|Z∗n−Z∗K |>ε} | Z
◦
∞
]

≤ lim inf
n→∞

P(|Z∗n − Z∗K | > ε | Z◦∞)

≤ lim inf
n→∞

ε−rE[|Z∗n − Z∗K |r | Z◦∞],

where Fatou’s lemma gives the second inequality and Markov’s inequality the third. Now
given a realization P1 ≤ P2 ≤ . . . of the point process Z◦∞, we can choose n ∈ N such
that Pn > K + 1. Then

E[|Z∗n − Z∗K |r | Z◦∞] = E

[∣∣∣∣ n∑
k=1

e−
Pk
ϑ (1− fK(Pk))Xk

∣∣∣∣r ∣∣∣∣Z◦∞]

≤ 2

n∑
k=1

e−
r
ϑPk(1− fK(Pk))r E[|Xk|r],

where we have used inequality (1.11). The latter can be estimated as follows

n∑
k=1

e−
p
ϑPk(1− fK(Pk))r E[|Xk|r] ≤ E[|X1|r]

∑
k≥1:Pk>K

e−
r
ϑPk → 0 a. s.

as K →∞ by (3.6) since r
ϑ > 1.
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