n b
Electr® 8biljty

Electron. J. Probab. 25 (2020), article no. 106, 1-66.
ISSN: 1083-6489 https://doi.org/10.1214/20-EJP507

On the boundary local time measure of
super-Brownian motion

Jieliang Hong"

Abstract

In [9] the Hausdorff dimension, dy, of OR, the topological boundary of the range of
super-Brownian motion for dimensions d = 2,3 was found; dy =4 — 2v/2if d = 2, and
ds = (9 —/17)/2 if d = 3. We will refine these dimension estimates in a number of
ways.

If L” is the total occupation local time of d-dimensional super-Brownian motion, X,
for d = 2 and d = 3, we construct a random measure £, called the boundary local time
measure, as a rescaling of L% " dx as A — oo, thus confirming a conjecture of [19]
and further show that the support of £ equals OR. This latter result uses a second
construction of a boundary local time L given in terms of exit measures and we prove
that £ = £ a.s. for some constant ¢ > 0. We derive reasonably explicit first and
second moment measures for £ in terms of negative dimensional Bessel processes and
use them with the energy method to give a more direct proof of the lower bound of the
Hausdorff dimension of R in [9]. The construction requires a refinement of the L2
upper bounds in [19] and [9] to exact L? asymptotics. The methods also refine the left
tail bounds for L” in [19] to exact asymptotics. We conjecture that the d;-dimensional
Minkowski content of OR is equal to the total mass of the boundary local time £ up to
some constant.
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1 Introduction and main results

1.1 Introduction

Let My = Mr(R?) be the space of finite measures on (R?, B(R%)) equipped with the
topology of weak convergence of measures. A super-Brownian motion (SBM) (X;,¢ > 0)
starting at Xy, € Mp is a continuous M pg-valued strong Markov process defined on some
filtered probability space (2, F, F;, P) described below and we let Px, denotes any
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probability under which X is as above. We write p(¢) = [ ¢(z)u(dz) for any measure
1 and take our branching rate to be one so that for any non-negative bounded Borel
functions ¢, f on RY,

Ex, (exp(—Xt(gb) — /Ot Xs(f)ds>) — exp ( — Xo(Vt(qﬁ,f))). (1.1)

Here Vi(z) = Vi(¢, f)(x) is the unique solution of the mild form of

WV AV, VP B

that is,

v, Pt<¢>+/0tps(f VQ‘S) ds.

In the above (FP;) is the semigroup of standard d-dimensional Brownian motion. See
Chapter II of [20] for the above and further properties.

It is known that the extinction time of X is a.s. finite (see, e.g., Chp II.5 in [20]). The
total occupation time measure of X is the (a.s. finite) measure defined as

I(A) = /0  X.(A)ds.

Let S(p1) = Supp() denote the closed support of a measure p. We define the range, R,
of X to be R = Supp(J). In dimensions d < 3, the occupation measure I has a density,
L*, which is called (total) local time of X, that is,

I(f) = / Xs(f)ds = f(x)L” dzx for all non-negative measurable f.
0 Rd

Moreover, = — L7 is lower semicontinuous, is continuous on S(X)¢, and for d = 1 is
globally continuous (see Theorems 2 and 3 of [23]). Thus one can see that in dimensions
d<3,

R ={z:L* >0},

and R is a closed set of positive Lebesgue measure. In dimensions d > 4, R is a Lebesgue
null set of Hausdorff dimension 4 for SBM starting from ¢, (see Theorem 1.4 of [2]),
which explains our restriction to d < 3 in this work.

We will largely be considering the case when Xy = ;. The Hausdorff dimensions
of the boundaries of SBM have been studied in [19] and [9]. Let OR be the topological
boundary of the range R and define F' to be the boundary of the set where the local
time is positive, i.e. F:= d{z : L* > 0}. Let dim denote the Hausdorff dimension and
introduce:

3 if d =1 , (3 ifd=1
p=p(d)=4{2v2 ifd=2 andazz_;d: V2-1 ifd=2 (1.3)
AT g =3, T3 if g = 3,

Theorem 1.1 ([19], [9]). With Ps,-probability one,

0 ifd=1
dim(F) = dim(0R) =dj :=d+2—-p={4—-2/2~ 117 ifd=2
OVIT 244 ifd=3.
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It is also natural to consider SBM under the canonical measure IN,,. Recall from
Section II.7 in [20] that IN,, is a o-finite measure on C([0, o), MF), which is the space
of continuous M F(]Rd)-valued paths furnished with the compact-open topology, such
that if we let = = ), _; 6,+ be a Poisson point process on C([0,00), M) with intensity
Nx,(dv) = [ N, (dv)Xo(dz), then

X, = Zy;' = /ut Z(dv), t >0, (1.4)

has the law, Px,, of a super-Brownian motion X starting from X,. In this way, IN,,
describes the contribution of a cluster from a single ancestor at xy, and the super-
Brownian motion is then obtained by a Poisson superposition of such clusters. We refer
the readers to Theorem I1.7.3(c) in [20] for more details. The existence of the local
time L* under N, will follow from this decomposition and the existence under Ps, .
Therefore the local time L* under PP x, may be decomposed as

L*=> L") = /L'”(y)E(du). (1.5)
il
The global continuity of local times L* under IN,, is given in Theorem 1.2 of [6]. It is not
surprising that Theorem 1.1 continues to hold under the canonical measure.

Theorem 1.2 ([19], [9]). Ny-a.e. dim(F) = dim(9R) = d;.

The definition of F' is natural from an analytical perspective but the topological
boundary OR is a more natural random set from a geometrical point of view. One can
check that

JOR C F. (1.6)

In d = 1, it has been shown in Theorem 1.7 in [19] and Theorem 1.4 in [7] that there
exist random variables L and R such that

F =0R ={L,R} where L <0< R, Ng-a.e.and Ps,-a.s. (1.7)

Whether or not /' = R remains open in d = 2 and d = 3. Given the simple nature of F’
and OR in d = 1, we largely will focus on d = 2 and d = 3 in what follows.

Our main goal in this paper is to construct a random measure on OR or F. Recall a
from (1.3). For any A > 0, under P;, and IN; we define a random measure L£> on R? by

dLMx) = ANFeLme M dr. (1.8)

The two authors in [19] conjecture that as A\ — oo, £* converges in probability in the
space My (RR%) to a finite measure £ which necessarily is supported on F. In this paper,
we confirm this conjecture and further show that the support of £ is precisely OR.

Convention on functions and constants Constants whose value is unimportant and
may change from line to line are denoted C, ¢, ¢4, 1, c2, . . ., while constants whose values
will be referred to later and appear initially in say, Lemma i.j are denoted ¢; j, or ¢, ;
or Czy

Notation Let My be equipped with any complete metric dy inducing the weak topology

and let {u:,t € T} be a collection of Mp-valued random vectors. We use p K t, @s
t — to to denote the convergence in probability under Py, if for any ¢ > 0, we have

Px,(do(pse, pity) >€) — 0 as t — to. We slightly abuse the notation and use p; it Lty
as t — tp to denote the convergence in measure under INx, if for any ¢ > 0, we
have Wx, ({do(ust, pt,) >} NA) —0 as t — to where A is any measurable set with
]NXO (A) < 00.
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1.2 Main results
Theorem 1.3. Let d = 2 or 3. Under both Ny and Ps,, there exists a random measure

L € Mp(R?), supported on OR, such that £* 5 £ as A — oo and there is a sequence
A, — oo such that L* — £ a.s. as n — .

In Corollary 1.7 below we show that the support of £ is exactly OR and so £ # 0
INy-a.e. and Ps,-a.s. A different problem is studied in [11] where a random measure is
constructed on the boundary of the zero set of the density X (¢, z) for any fixed ¢ > 0 in
d=1.

Next we consider the case under Ny, and P x, for general initial condition X,. Since
the above theorem holds under IN, for any = by translation invariance of SBM, and
Nx, () = [ IN,(-)Xo(dz), it is easy to see that the above result continues to hold under
INx, for any X,. However, the case under P x, is somehow more delicate-instantaneous
extinction at time ¢ = 0 will make the behavior of 9R N S(Xy) quite different from that
under Ps, and INy; see Proposition 1.6 and Remark 1.8(b) of [19] for such examples.
Therefore under Py, we will restrict our interest to S(Xy)¢. For any A > 0, under Py,
we define a random measure £* supported on S(X)¢ by

dLMN(z) = AFeL%e M 1 (z € S(Xo)%)d. (1.9)

Notation For any § > 0 and any set K, we let KZ° = {z : d(x,K) > §} where
d(z, K) = inf{|z — y| : y € K}. Similarly we define K>°, K=° and K <°. For any measure
w and any set K, we use u|x(-) = p(- N K) to denote the restriction of y to K.

Theorem 1.4. Let d = 2 or 3 and let X, € Mp(R?). Under Py, there exists a o-finite
random measure L, supported on OR N S(Xy)¢, such that for any k > 1, we have

£ S(Xo)21/k 5 L|g(x,)z1/& @ A — oo and there is a sequence \, — oo such that
L2 g(xgyz1/0 = Llg(xg)z1/m, VE > 1 as.

Remark 1.5. (a) The behavior of 9R on the boundary of S(Xj) depend largely on the
mass distribution of X and is still quite different from that under INy and P;,. In the
proof we first give the existence of a finite measure [/, by restricting our interest to
S(X()Z'/* for any k > 1 and then construct a o-finite measure £ supported on S(Xp)°
by defining E\S(XO)Zl/k = [, for any k£ > 1. In most cases we will only be considering the
properties of £ on sets with positive distance away from S(Xj) and the above theorem
suffices for our purposes.

(b) One sufficient condition on X, to give the a.s finiteness of £(1) goes back to the
renormalization of local times in d = 2 or 3 (see [6]). For example in d = 2, if we have
inf,es(xy) S log¥ (1/|y — x|)Xo(dy) = oo, then Theorem 1.11 of [6] will imply that IPx,-a.s.
there is some § > 0 so that S(X;)<° C Int(R), and therefore S(X,)<° is not in the support
of L. Hence L = L|g(x,)>s and the a.s. finiteness of £L(1) follows.

Theorem 1.6. Px,-a.s. and Nx, -a.e. for any open set U C S(Xy)¢,

UNOR #0= L{U) > 0. (1.10)
In particular we have Px,-a.s. that Supp(L) = S(Xy)° N OR and

S(Xo)NOR #D= L > 0. (1.11)

Note under P x, we will be working on the space S(Xy)¢ and so the set S(X()°NIR
will be a closed set in S(X()°. The hypothesis in (1.11) is necessary-an example is given
in Proposition 1.5 of [19] where it fails with positive probability.

Let B(xg,¢) = Be(xo) = {z : |x — xo| < €} and set B. = B(e) = B.(0).
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Corollary 1.7. Ps,-a.s. and INy-a.e. for any open set U,
UNOR#D= L(U) > 0. (1.12)
In particular, Supp(L) = OR and L > 0, Ps,-a.s. and INy-a.e.

Proof. We know from the proof of Corollary 1.4 and Theorem 1.5 of [9] that IP;,-a.s. and
INy-a.e. there exists some ¢ > 0 such that L” > 0 for all || < ¢ and so 0 ¢ OR, which
implies
UNOR # 0= (U\{0}) NOR # 0.

Then we may apply Theorem 1.6 with U\{0} in place of U to complete the proof
of (1.12). Next for any « € OR, take U = B(z,¢) for any € > 0 and use the above to get
OR C Supp(L). Together with Theorem 1.3 we conclude Supp(L) = IR, Ps,-a.s. and
INy-a.e. By (1.12), it follows immediately that £ > 0, Ps,-a.s. and INp-a.e. |

Now we proceed to the first and second moment measures of £. Define

—1/2 ifd=1 7/2 ifd=1
p=1<0 ifd=2 andv=+/p2+4(4—d)={2v/2 ifd=2 (1.13)
1/2  ifd =3, V17/2  ifd =3,

so that (recall (1.3)) d = 2+ 2pandp = pu+ v. Let }5322_2") denote the law of the
d-dimensional process {Y; : ¢t > 0} such that

_ > ty Y
{Yt—x—l-Bt—i—fO( v /A)‘Yﬁlgds7 t <719, (1.14)

Y;ZO, tZT().

Here 79 = inf{t > 0 : |Y;| = 0} and B is a standard d-dimensional Brownian motion

starting from x under ]5352_2”). Remark 1.9(b) below shows why ]5352_2”) is well-defined.
Let V°(z) := No(L* > 0) for all « # 0. For any x1 # z2, we let ¥ = (z1, 22) and define
for all z # x1, xo,

Vo) (2 > 0 (2 > 1), 119

For i = 1,2 we define

UR (@) = e B (exp (- /Om(V&’ﬂ(’@”i)V°°(Y*>>d8)>’ (1.16)

- | — x;|P

and set
o 2 t
U ) =B [ T[v e (- [ vEi@ads)d),  aan
0 =1 0

where B is a d-dimensional Brownian motion starting from z under P,.

Theorem 1.8. (a) There is some constant K, g > 0 such that for any nonnegative
measurable ¢ : R — R, we have

lNo(/qb(w)dﬁ(w)) = Kl_g/lx\*%(x)d:c. (1.18)

(b) For any nonnegative measurable h : R? x R —» R, we have
]NO<(£ x C)(h)) = K12_8/h(xl,mg)(—Ufg’i(O))dxldxg. (1.19)
EJP 25 (2020), paper 106. https://www.imstat.org/ejp
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Moreover, there is some constant ¢, g > 0 such that

]No(/h(xl,xg)d/l(xl)dﬁ(a:g))
S K%_S/Cl.g(‘iﬂl‘i‘n + |I2|7p)‘f£1 - .IQ‘Qiph(l'17l'2)dI1dl’2. (120)

Remark 1.9. (a) The superscript 2 — 2rv < 0 on ]5952_2”) is used to indicate the fact that

{|Ys|,s > 0} under P2 is a stopped Bessel process of dimension 2 — 2v starting
from |z| > 0 (see, e.g., (7.9)), thus giving the connection between the moment measures
of £ and Bessel process of negative dimension. We refer the reader to [5] for more
information on Bessel process of negative dimensions. See also [17] where a connection
is made in d = 1 between the left-most point in the range of SBM and the Bessel process
of dimension 2 — 2v = —5 where v = 7/2 as in (1.13) for d = 1.

(b) Under P{*®), we have 7 is the hitting time of 0 of a (2 — 2v)-dimensional Bessel
process and so with P£2_2”)-probability one, 1o < oo (see, e.g., Exercise (1.33) in Chp. XI
of [21]). For any € > 0, we have the drift in (1.14) is bounded for all 0 < ¢ < 7. and hence
the uniqueness of solutions to (1.14) holds for all 0 < ¢ < 7. (see also (7.13)). It then
follows by continuity that the uniqueness of solutions to (1.14) will hold for all 0 < ¢ < 7.

Theorem 1.10. (a) For any nonnegative measurable ¢ : R* — R, we have

Ex,(L()) = KI.S/ p(a)e o VTEN Xy (o — | 7P)da. (1.21)
S(Xo)*

(b) For any nonnegative measurable h : R¢ x R® — R, we have

By, ((€x O0) =2 [ hlar,)
(8(Xo0)°)?
X (X (UF ) Xo(UST) = Xo(UTST) )dardea. (1.22)

Moreover,

Ex, ((cx0)0) < K, [

h(z1,x2) <X0(|5€1 — ") Xo(Jz2 —|77)
(S(Xo)e)?

+ecig (X0(|x1 — ™)+ Xo(Jzo — ~|_p)) |z — a:22_p> dzdzs. (1.23)

Now that we have Supp(£) = IR a.s. under Ny and Ps,, one immediate application
with the above moment measures would be to use the energy method (see, e.g., Theorem
4.27 of [18]) to find the lower bound of the Hausdorff dimension of OR.

Theorem 1.11. For any n > 0, we have forallk > 1,
(Z) INO(/1{k*1§\x1\,|x2|§k}|x1 — 5(72|_(d+2_p_n)£(d.’)31)£(d$2)) < 00,
(Z’L) IP50(/1{k—15‘11‘7|m2|§k}|$1 — xg|_(d+2_p_n)[,(d.%‘1)£(d$2)) < 00.

In particular, dim(OR) > d + 2 — p, Ny-a.e. and P;,-a.s.
Proof. For any k > 1 and n > 0 small, we apply Theorems 1.8(b) and 1.10(b) with

h(w1,w2) = |21 — o] TPV < | < K)U(RT < fao| < )

EJP 25 (2020), paper 106. https://www.imstat.org/ejp
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to get (i) and (ii). Take a countable union of null sets to get INy-a.e. and P;,-a.s. that
/1{k*1§\11|,|m2|§k}|1‘1 — 1‘2|7(d+27p7n)£(d131)£(d1’2) < OO,V]C 2 1. (124)

By the compactness of the range of SBM (see, e.g., Corollary II1.1.7 of [20] and Theorem
IV.7(iii) of [16]) and that L” is strictly positive for x near 0 (see the proof of Corollary 1.7),
we can conclude INy-a.e. and Ps,-a.s. that Supp(£) = OR C {z : k~! < |z| < k} for k
large enough. Therefore it follows from Theorem 4.27 of [18] that INy-a.e. and P;,-a.s.
dim(0R) > d+ 2 —p—1n. Let n | 0 to get the desired result. |

Now we say a few words on the ideas underlying Theorem 1.3. For any point x near
F and OR, its local time L* will either be zero or small and positive, and hence the
asymptotics of P, (0 < L” < ¢) as ¢ | 0 will be useful in studying F' and OR. The Laplace
transform of L* derived in Lemma 2.2 of [19] is given by

Ex,(e ") = exp ( — /]Ny(l - e_’\Lm)Xo(dy)) = exp ( - /V)‘(x - y)XO(dy)), (1.25)

where V* is the unique solution (see Section 2 of [19] and the references given there) to

AVY (V)

2 2

— Mo, V*>0onR% (1.26)

Recall V*°(z) = No(L® > 0). Let A 1 oo in (1.25) and (1.26) to see that V*(x) 1 V>°(z)
and

Py, (L% = 0) = exp ( - /]Ny(L”” > O)Xo(dy)) = exp ( - /V°°(:r - y)XO(dy)). (1.27)

It is explicitly known that (see, e.g., (2.17) in [19])

_204-4d

e} . —2
Ve(z) = i Adlz|™2, (1.28)
and in particular V> solves
AV Voe)2
AV fore 20 (1.29)

Write f(t) ~ g(t) ast | 0iff f(¢)/g(t) is bounded below and above by constants ¢, ¢’ > 0
for small positive ¢, and similarly for f(t) ~ g(t) as ¢ — oo. By an application of Tauberian
theorem, it is shown in Theorem 1.3 of [19] that for any = # 0,

1
P, (0 < L < X) ~ Vo (z) = VMz) ~ |z TPA™Y as A — oo. (1.30)

The above bounds justify our explicit construction of £* in some way-one can check that
as \ is getting larger and larger, £* will concentrate more and more on the set of points
x whose local time L* is approximately 1/\ and this probability is of order A~* by (1.30).
In the end as A — oo the limiting measure will be supported on F' or OR.

In fact we can refine the above bounds in (1.30) to exact asymptotics.

Proposition 1.12. There is some constant ¢; 12 > 0 so that for all x # 0, we have
(Z) lim /\aIN(J(O <L* < 1/)\) = 61,12|$|_p.
A—00
(i) ,\hm AP, (0 < LT < 1/X) = cppo|a| Pe™V ™ @),
— 00
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The above exact asymptotic results may allow us to get an insight of the Minkowski
content of OR.

Conjecture 1. There is some constant ¢; = cl,qué > 0 such that

A 1o<cre<1ynyde L c1L as A — oo under Ny and P, . (1.31)

Recall @ = (p — 2)/(4 — d). By an application of the improved 4 — d — n Holder continuity
of L”® for x near OR for any n > 0 (see [7]), we further conjecture that

Conjecture 2. There is some constant ¢, > 0 such that
N2 e om) <127 d% 2 oL as A — oo under Ny and P, (1.32)
which gives our conjecture on the Minkowski content of OR:
Conjecture 3.
Contgio-p(0R) = c2L(1), Ny-a.e. and Ps,-a.s. (1.33)

Here Conts(A) is the §-dimensional Minkowski content of any compact set A C R?
defined by Conts(A) = lim,_,, (49| A=Y/7|, provided the limit exists. Here we use | - |
to denote the d-dimensional volume (Lebesgue measure) in R,

1.3 An alternate model

While it is easy to derive from the definition of £* that the limiting measure £ will
be supported on F, it is not obvious that its support is actually on the smaller set OR.
To handle this issue we will construct another random measure E(m) supported on R
for any « > 0 by utilizing exit measures and show that there is some constant ¢(x) > 0
such that £ = ¢(k)L(k) a.s., thus proving that £ indeed lives on 9R. We also feel that the
construction of E(Iﬁ:) may be of independent interest, given the central role exit measures
have played in the study of the boundaries of the range. We first introduce the definition
of exit measure. For Ki, Ky non-empty, set d(K1, Ko) = inf{|lz —y| : v € K1,y € Ka}.
Define

Ox, ={D: D is an open set of R such that d(D°, S(Xy)) > 0 and that, with probability
one, a Brownian path starting from any « € 9D will exit D immediately}.

(1.34)

In what follows we always assume that G € Ox,. The exit measure of SBM X from an
open set G under Px, and INx, is denoted by X (see Chp. V of [16] for the construction
of the exit measure). Intuitively X is a random finite measure supported on 0G, which
corresponds to the mass started at X,y which is stopped at the instant it leaves G. What
follows may be found in Chp. V of [16] (see also Section 1 of [9]). The Laplace functional
of X is given by

Ey, (exp(—XG(g))) - exp(—]NXo (1- e—XG<9>)) = exp ( - XO(U")), (1.35)

where g : 9G — [0, 00) is continuous and U9 > 0 is the unique continuous function on G
which is C? on G and solves

AUY = (U%)?on G, UY =gondG. (1.36)

Define G¥° = G¢(x9) = {x : |z — 20| > £} and set G. = G.(0). Fore > 0 and A > 0, we let
U*¢ denote the unique continuous function on {|z| > €} such that (cf. (1.36))

AU = (UM*)? for |z| > ¢, and UM (z) =\ for |z| = e. (1.37)
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Uniqueness of solutions implies the scaling property (see (3.3) of [19])
UM (x) = 5*2U’\€2’1(x/5) for all |z| > ¢, (1.38)

and also shows U** is radially symmetric, thus allowing us to write U*#(|z|) for the
value at x € R%. By (1.35) we have for any X, € Mp(R9) satisfying S(X,) C G.,

Ex, (exp(—/\XGE(l))> = exp(—lNX0 (1-— e*AXGs(l))) = exp ( — XO(U/\’E)). (1.39)

Let A\ 1 oo in the above to see that U»¢ 1+ U< on G, and

Px,(Xq. (1) = 0) = exp(—Xo(U)). (1.40)
Proposition V.9(iii) of [16] readily implies (see also (3.5) and (3.6) of [19])
U>¢is C? and AU = (U°*¢)? on G, (1.41)
U (x) = 400, lim U**(x)=0.
|z|—e,|x|>e |z|—o00

Theorem 1.1 of [8] gives a construction of the local time L* in terms of the local
asymptotic behavior of the exit measures at . If ¢(c) = 7 'logt(1/¢) in d = 2 and
to(e) = 1/(2me) in d = 3, then for any = # 0, we have

Xaz(1)3o(e) — L” in measure under Ny and Ps, as € | 0. (1.42)

Motivated by the above, for any «, e > 0, under Ps, and IN, we define a measure £ (k)¢ by

AL () (o) = 2 exp(—nixii(l)

= N (Xa=

e/2

=0)1(|z| > )dx. (1.43)

It is easy to derive from the definition of X (1) (see Proposition V.1 and Lemma V.2 of
[16]) that for any fixed € > 0, (w, ) = X¢=(1)(w) is F x B(R?) measurable and so L(k)®
is well defined and F-measurable.

We can deduce from (1.42) that E(KJ)E is closely related to £ (as in (1.8)): for example
in d = 3, we have ¥(¢) = 1/(27¢) and so X¢g:=(1) ~ ¢L” as ¢ | 0 by (1.42). Hence if

A=re L,

Xeg=(1 Xeg=(1 ire .77
Cj;p( )exp(fn G;Q( )) -~ Elpr:vefns L ~ A1+aLwefx\L (144)

as € | 0, where in the last approximation we have used the fact that « = p —2in d = 3.
In (1.43), the indicator function 1(|z| > ¢) is to ensure that X¢- is well defined and the
extra indicator 1(X¢= = 0) is to ensure that the limiting measures will be supported on
OR rather than F. We will show below that they indeed differ only up to some constant.

Theorem 1.13. Let d = 2 or 3. For any « > 0, under both Ny and P;,, there exists a

random measureNL',N(/i) € ME(]Rd)such that £(k) £ L(k) as e | 0 and there is a sequence
en 4 0 such that L(k)°" — L(k) a.s. as n — co. Moreover, there is some positive constant

61,13(/6) such that ,C(,‘i) = Cl,lg(ﬁ)ﬁ a.s.

Turning to the Py, case, again we will restrict our interest in S(Xo)¢ as in (1.9). For
any k,¢ > 0, under Py, we define a measure £(x)® supported on S(Xy)¢ by
~ Xeg:(1) ( Xg=(1)

exp(—k

AL(w)* (@) = = =

)1(X(;:/2 = 0)1(IGS(X0)>E)d-75- (1.45)

Theorem 1.14. Let d = 2 or 3 and Xy € Mp. For any x > 0, under Px, there exists a
o-finite random measure L()such that for any k > 1, Z(K})E|S(XO)21/]¢ 5 Z(n)|S(XO)21/k as
€ | 0 and there is a sequence ¢, | 0 such that L(k)*"|g(x,)21/x = L(K)|g(x,)21/%, Yk > 1
a.s. as n — co. Moreover, we have L(x) = ¢1.13(k)L a.s.
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Organization of the paper In Section?2 we give preliminary results on super-Brownian
motion, the Brownian snake, exit measures and their special Markov property. In Sec-
tion 3 we establish the convergence of the mean measures of £* and E(/i)a and give
the proof of Proposition 1.12. In Section 4 the second moment convergence results
will be given in Propositions 4.1, 4.2 and 4.3 while we defer their proofs to Sections 8
and 9. Assuming the results from Section 4, we will finish the proofs of our main results
Theorems 1.3 and 1.13 under INy and Ps, in Section 5, while we include the similar proof
of Theorems 1.4 and 1.14 under P x, for general initial conditions Xy in the Appendix A.
In Section 5 we also give the proof for the first and second moment measures of £
(Theorems 1.8 and 1.10). In Section 6 the proof of Theorem 1.6 will be finished by
utilizing the shrinking ball arguments from [9]. In Section 7 a key proposition in terms
of a change of measure method is given and finally in Sections 8 and 9 we finish the
essential proofs of Propositions 4.1, 4.2 and 4.3.

2 Exit measures and the special Markov property

We will use Le Gall’s Brownian snake construction of a SBM X, with initial condition
Xo € Mp(R?Y). Set W = U;>oC([0,t],R?) with the natural metric (see page 54 of
[16]), and let ((w) = t be the lifetime of w € C([0,¢], RY) C W. The Brownian snake
W = (Wy,t > 0) is a W-valued continuous strong Markov process and, abusing notation
slightly, let IN, denote its excursion measure starting from the path at z € R? with
lifetime zero. As usual we let W (t) = Wy(C(W;)) denote the tip of the snake at time
t, and o(W) > 0 denote the length of the excursion path. We refer the reader to
Ch. IV of [16] for the precise definitions. The construction of super-Brownian motion,
X = X (W) under IN,, and Px,, may be found in Ch. IV of [16]. The “law” of X (W) under
IN, is the canonical measure of SBM starting at x described in the last Section (and
also denoted by IN,.). If = = ZjEJ dw, is a Poisson point process on ¥ with intensity
Nx,(dW) = [ IN,(dW)Xo(dz), then by Theorem 4 of Ch. IV of [16] (cf. (1.4))

X,() =3 X, = / X, (W)Z(dW) for t > 0 @.1)
jeJ

defines a SBM with initial measure X,. We will refer to this as the standard set-up for X
under Px,. It follows that the total local time L* under P x, may also be decomposed as

L* =Y L"(W;) = /Lx(W)E(dW). (2.2)

jeJ

Recall R = {z : L* > 0} is the range of the SBM X under Py, and Nx,. Under INx,
we have (see (8) on p. 69 of [16])

R ={W(s):sel0,0]}. (2.3)
Let G € Ox, as in (1.34). Then
X is a finite random measure supported on R N 9G a.s. (2.4)

Under INx, this follows from the definition of X on p. 77 of [16] and the ensuing
discussion, and (2.3). Although [16] works under IN, for x € G the above extends
immediately to P x, because as in (2.23) of [19],

Xo =) Xa(W;) = /XG(W)dE(W), (2.5)

jeJ
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where = is a Poisson point process on ¥V with intensity INx, .
Working under INx, and following [15], we define

Sa(Wa) = inf{t < Cu : Wa(t) ¢ G} (inf 0 = o0),

nC(W) = inf{t / 1(Cu < Sa(W)) du > s},

&g =0(W,a,s >0)V{Nx, — null sets}, (2.6)

where s — W, ¢ is continuous (see p. 401 of [15]). Write the open set {u : S¢(Wy) < (u}
as countable union of disjoint open intervals, U;c;(a;, b;). Clearly Sq(W,,) = S& < oo for
all u € [a;, b;] and we may define

W) = Wiaitsynb: (S + 1) for 0 < t < (g, 4500 — S

Therefore for i € I, W' € C(R, ) are the excursions of W outside G. Proposition 2.3
of [15] implies X is £g-measurable and Corollary 2.8 of the same reference implies

{ Conditional on &g, the point measure ), _; dy: is a Poisson @.7)

point measure with intensity Nx,,.

If D is an open set in Oy, such that G C D and d(D¢,G) > 0, then the definition (and
existence) of Xp (W) applies equally well to each X (W*) and it is easy to check that

Xp(W)=>_ Xp(W?"). (2.8)
i€l

If U is an open subset of S(Xy)¢, then Ly, the restriction of the local time L* to U, is
in C(U) which is the set of continuous functions on U.

Proposition 2.1. Let X, € Mp(R?).
(i) Let G be an open set in Ox,. Let 1y be a bounded measurable function on C(G°),

n > 1 and ®, be a bounded measurable function on MF(]Rd)”. Let D; be open sets in
Ox,, such that G C D; and d(D¢,G) > 0, V1 < i < n. Then

Ny, (wo(Lac)CI)l(XD“ s X)) EG> = Ex, (z/;O(Lac)@l(XDl, . ,XDH)).

(i) Let G1, G4 be open sets in Ox, such that G; C Gy and d(GS,G1) > 0. If s : K — R is
Borel measurable, then we have

NX(J (77[}2(7?' N Gg)‘gcl) = EXGI (7/}2(7?’ N G;))a

where K is the space of compact subsets of R? equipped with the Hausdorff metric (see,
e.g., Section 2 of [9]).

(iii) Let G1,G> be open sets in Ox, such that G; C Gy and d(G5,G1) > 0. If 3 : R — R
is Borel measurable, then for any A > 0 we have

Nx, (¢3(LN(G5))|€6,) = Exq, (¥3(L1(GS)))-

Proof. (ii) follows immediately from Proposition 2.2 in [9]. (i) and (iii) will follow in a
similar way as Proposition 2.6(b) of [19]. [ |

We will need a version of the above under P x, as well, which is Proposition 2.3 in [9].
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Proposition 2.2. Let X, € Mp(R?).

(i) Let G be an open set in Ox,. Let ¢, be a bounded measurable function on C(éc),
n > 1 and ®; be a bounded measurable function on MF(]Rd)”. Let D; be open sets in
Ox,, such that G C D; and d(D¢,G) > 0, V1 < i < n. Then

€6) = Exq (vo(Lg)®1(Xp,..... Xp,)).

(ii) Let G1, G2 be open sets in Ox, such that G C Gy and d(GS,G1) > 0. If iy : K — R is
Borel measurable, then we have

Ex, (¥2(RNG3)[€q,) = Exg, ($2(RNGY)).

Ex, (@/JO(LE")CIH(XDU .., Xp,)

3 Convergence of the mean measure and proof of Proposition
1.12

_ In this section we will give the convergence of first moment measures of £* and
L(k)¢ and finish the proof of Proposition 1.12.

3.1 Mean measure for local time

Recall V*(z) = No(1 — e *t") as in (1.25) and V* is also the solution to (1.26).
Uniqueness of solutions implies the scaling property (see (2.13) of [19])

VM) =r 2V Y (2/r) forallz £ 0,r >0, (3.1)

and also shows V* is radially symmetric, thus allowing us to write V*(|z|) for the value at
x € R?. The monotone convergence theorem and the convexity of e~ for a,z > 0 allow
us to differentiate V*(z) = INo(1 — e~ ") with respect to A > 0 through the expectation
so that for any A > 0, we can define

8 x
VMz) = aVA(:C) = INo (L™ M"Y, v # 0. (3.2)
By differentiating both sides of (3.1) with respect to A > 0, we obtain

47dL;E/T

Vl)‘(x) — T—QVI)\T“’d(x/,,,),,A—d — ,,,—QINO(TZL—de/re—Ar )’ (3.3)

which is also a consequence of the scaling of Brownian snake under Ny (see, e.g., the
proof of Proposition V.9 (i) of [16]). Before turning to the calculation of the mean measure
of £*, we recall « as in (1.3) and give the following result from Proposition 5.5 of [19].

Lemma 3.1. There is some constant c3.; > 0, depending on d so that
Voo (x) — VM) < czalx|PATY, Vo # 0, A > 0.

The following is an easy consequence of the above lemma.

Proposition 3.2. There is some constant c3 » > 0, depending on d so that
No ()\H‘*Lwe—AL“”) = AV (@) < es.0]z] 7P, Ve £ 0, > 0. (3.4)

Proof. The first equality is immediate by definition (3.2). One can also conclude
from (3.2) that A — V) () is monotone decreasing and so for any \ > 0,

2 (N , 2
W@ <3 [ R @ =107 - 1)
< ;(V"O(x) —VM%(z)) < 203_1|$|7p)\*°‘2a, (3.5)

where the last inequality is from Lemma 3.1. Let ¢35 = 2'7®c3 1 to finish the proof. W
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Let (B;) denote a d-dimentional Brownian motion starting from x under P,. Define
7. =1inf{t > 0:|By| <r} forany r > 0 and let r) = )\O)ﬁﬁ where )y will be chosen to
be some fixed large constant below. In what follows we will always assume 0 < r) < |z|.

Lemma 3.3. Let A > 0 and |z| > r) > 0. For anyt > 0, we have

t/\TTA
Vi) = B (VABE A ew (~ [V B)).
0
Proof. It follows in a similar way to that of Lemma 9.4 in [19]. [ |

For v € R, we let (p;) denote a y-dimensional Bessel process starting from » > 0
under PT(”’) and let (F}) denote the right-continuous filtration generated by the Bessel
process. We slightly abuse the notation and define 7z = 7, = inf{t > 0 : p, < R} for
R > 0. The following results (i) and (ii) are from Lemmas 5.2 and 5.3 of [19] and the last
one follows from (ii) and a simple application of the Cauchy-Schwartz inequality.

Lemma 3.4. Assume 0 < 2y < v? and ¢ > 2. Then

(i)
E§2+2”) (exp(/ 12 ds) ‘7‘1 < oo) =7’V ”2_277%‘ > 1.
0 Ps
(i)
T1
sup E§2+2y) (exp(/ lq ds) ‘71 < oo) < Cs.4(q,v) < 0.
r>1 0 Ps
(iii)

T1
1r>1f1 E2+2) (exp(—/ % ds) ‘71 < oo) > c3.4(q,v) > 0.
r> 0 H

Lemma 3.5. Letr) = )\O)fﬁ. There is some constant c3 5 > 0 such that for all \y > c3.5,
0 < v < 2, there is some constant C3 5(\g, v,7) > 0 so that for all x # 0,

Tra
sup El(jl—i_z ) (cxp (”y/ (Ve — V)‘)(ps)ds)
A>0 0

Try < oo)

= lim El(flﬂu) (exp (’Y/O ” (V> = V*)(ps)ds)

= C3.5(Ao,v,7) < 0. (3.6)

Try < oo)

Proof. The scalings of Bessel process p, and VV>°, V* give us that

B2 (e (3 [0 = pis)

=BG (e (v /OH(VOO = VI (p)ds )| < o0)

Try < oo)

:El(jf;f:’) (eXp <7 /OTl(VOO - V’\gid)(ps)ds) ’Tl < oo)7 (3.7)
where we have used r) = AUA*ﬁ in the last line. For any r» > 1, we let
f(r) ::E£2+2”)(exp (7 /OTl(VOo - V)‘é_d)(ps)ds) ’7'1 < oo)
:E§2+2”>(exp (’y /On(wo - VAg_d)(ps)ds)l(ﬁ < oo))rz”, (3.8)
where the second line is by P{*™")(rz < 00) = (R/r)? for any r > R > 0. By (3.7) and

the definition of r), it suffices to show that there is some constant C5 5(\g,v,7) > 0 so
that sup,.~, f(r) = lim,_ f(r) = C3.5(Xo, 1, 7).
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Let r > R > 1 and apply the strong Markov property in (3.8) to get
f(r) = B2+) (exp (7 /OTR(VOO _ V*é_d)(ps)ds)l(m < OO))
Eg+2y) (exp (fy /OTI(VC>O — V)‘gid)(ps)ds)l(ﬁ < oo))rz”
= B2+ (exp <fy /OTR(VOO - ngid)(ps)ds) ’TR < oo)

B (exp (7 /On (V> — Vhé’d)(ps)ds) ‘n < oo) > f(R), (3.9

and it follows that r — f(r) is monotone increasing for » > 1. By using Lemma 3.1 and
Lemma 3.4 (ii), we have

sup f(r) <sup BT (eXp (/ 63‘17/\6(”72),0;%8) )n < 00) < o0,

r>1 r>1 0
if we choose \g large enough so that 2703_1)\0_@_2) < 403_1)\5@_2) < v?. Hence we
conclude sup,; f(r) = lim, o f(r) = C3.5(Ao, v, ) for some constant C3 5(Ao,v,7) > 0
and the proof is complete as noted above. |

We also state a result on the application of Girsanov’s theorem on Bessel process
from [24] (see also Proposition 2.5 of [19]).

Lemma 3.6. Let A > 0, u € R,r > 0 and v = /A2 + p?. If &, > 0 is F/-adapted, then for
all R < r, we have

)\2 tATR 1
E£2+2“) (q)t/\TR exp ( -5 / ;ds)) = T"_“E£2+2y) ((Pt/\m)_y—wq)mm)-
0 s

The following result is an easy application of the above lemma and is proved in
Proposition 4.3 of [8].

Proposition 3.7. Let + € R?\{0} and 0 < ¢ < |z|. For any Borel measurable function
g :(0,00) — R that is bounded on any compact subset of (0,c0), we have

B, (1(r < oo)exp (- /0 9(/B:))ds))

= <rlal B (exp (- [ (000 - V(o))

where B is a d-dimensional Brownian motion under P, for d < 3 and v is as in (1.13).

< oo), (3.10)

Proposition 3.8. There is some constant c3 s = c3s(d) > 0 such that
lim No ()\”‘IL%*ALI) = lim A*FOVA(2) = ey slz] 7P, Vo £ 0.
A—00 A—00

Proof. Recall 7 = Ao\~ 7-7. We use Lemma 3.3, and the facts that VMz) = 0as |z| — oo
and V(B ATTA) is uniformly bounded for all ¢ > 0 by Proposition 3.2, to see that

t/\ﬂ,A
ATV (@) = NF Tim B, (vatw)exp(— /0 vNBs)ds))
=N, (107, < 0)VA (B, ) exp (- / VA(B,)ds) )
0

= NFVM (13 By (17, < 00) exp (- /Om VAIB.ds))

1 A SCITY) e A
= ATV ) E (exp (/ (Ve -V )(ps)ds) Try < oo)7
0

‘m|P |z
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where the third equality is by the radial symmetry of V* and V;}. The last equality
follows from Proposition 3.7 with g = V*. Use the scaling of V;* from (3.3) to see that
the right-hand side of the above equals

4-d p Tr
/\1+ar§—dvl)\u\ (1) ") E(2+2ll) (exp (/ o (Voo _ V)\)(pé)ds)
0

fol 7

Ty < oo)

Try < oo)7

||

4—d Tr
= \xl_”/\’o’”_de“ (1)E(2+2”) (exp (/ i (V> — VA)(pS)dS)
0

where we have used the definition of ), and « in the last equality. Choose \g > ¢35 and
then apply Lemma 3.5 with v = 1 to conclude

4—d
lim AV @) = AT (1)Cs (o, v Dl (3.11)
and so the proof is complete. |

Corollary 3.9. For any = € S(X()¢ we have
Ah_{f;o EXO ()\1+aLm€_>‘Lm) — e fVm(y_z)Xo(dy)C&S / |y _ .I|_pX0(dy).

Proof. For any z € S(Xy)¢ we have d(x, S(Xp)) > 0. The monotone convergence theorem
and the convexity of e=?* for a,z > 0 allow us to differentiate (1.39) to get

Ex, (L%**”) - /Vf‘(y — 2) Xo(dy)e~ IV =) Xo(dy) (3.12)

By Proposition 3.2 we have MtV (y — z) < c30|y — 2|7P,Vy # z,A > 0, and so by
Proposition 3.8 we may apply the dominated convergence theorem to get

lim [ AV y — 2)Xo(dy) = /03_8|y — x| 7P Xo(dy). (3.13)

A—00

Then it follows easily from (3.12), (3.13) and the monotone convergence theorem. ]

3.2 Left tail of the local time

Proof of Proposition 1.12. First recall VA and V*° from (1.25) and (1.27) to see that for
all |z| > 0, we have

A*IN, (e*AL‘H(Lm > 0)) = X*(V®(z) — V(). (3.14)
Let d*(z) = V>°(z) — V*(z) and r) be as in Lemma 3.3. By the Feyman-Kac formula for

d* (as in (5.2) of [19]), we get for |z| > 7y >0,

e (V‘>°+—V’\)(Bs)ds)) (3.15)

dNz) = d(ry)E, (1{Tﬁ<oc} exp ( - /0 5
By the scaling of V* and V*>° and the definition of 7y, we have
M (r3) = (V= = VA)(ra) = r 2 (V2(1) = VA (1) = r % (1),
Use the above and (3.15) to see that

QAN ya,—2 gaimd ™ (V> +V)(Bs)
AN (z) = A7y 2d (1)Ew(1{m<oo} eXp( /0 ; ds))

o, —2 A4 d - v T (Vo — V) (ps
=\ 2dY  (1)rh)|z| pE‘(j|+2 )(exp</0 = =V, 5 I )ds)

d—d Tr o _ /A
=|z|~Pd* (l)Agsz‘@lH”)(exp (/ P V22V )(ps)ds)

Try < oo)

Try < oo),
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where the second equality is by Proposition 3.7 and in the last equality we have used the
definitions of r) and a. Choose Ay > ¢35 so that we can apply Lemma 3.5 with v = 1/2 to
get

lim A*dMa) = [ 7Pd*  (1)AE2C5.5( N0, v, 1/2). (3.16)

Recalling (3.14), we apply Tauberian theorem (see, e.g., Theorem 5.1 and 5.3 of Chp.
XIIT of [3]) to get

Jlim AN (0 <I%< 1/>\> = c112l2| 7, (3.17)
—00

where ¢35 = ([(a + 1))~1d* “(1)AL"2C5.5(\o, v, 1/2) and the proof of (i) is complete.
Turning to (ii) for Ps,, we note that for all || > 0, by (1.25) and (1.27) we have

A Es, ((27)‘Lm 1(L:E>O))

=22 (e V@) _ mVT@)) = N V@) (VI @) -VAE) _ )

N e*VOO(fL’)\x|’pd’\3_d(1))\87203.50\0, v,1/2) as A — oo,

where the last line follows from (3.16). Apply Tauberian theorem again to get (ii) and
the proof is complete. |

3.3 Mean measure for exit measure

Now we will turn to the alternate model using exit measures. Recall from (1.39) that

Xee(1
GE;( ))),vm > e (3.18)

-2

U (2) = N (1 —exp(—A

Similar to (3.2), we can differentiate the above with respect to A > 0 through the
expectation so that for any A > 0 and for all |z| > ¢, we have

Z e »5(33):]1\10<%()exp(—)\ ng( ))) (3.19)

oA

By using Proposition 2.1(i), for any |z| > ¢ > 0 we have (more details can be found in
the derivation of (4.2) in [8])

Xez (1)
(=%

-2

U{\Eﬁ’s(m) =

Xg=(1)

INg
2

exp(—k N(Xee,, = 0))
:INO(XCji(l) eXp(—(H + 4U°O’1(2))X%2(1)))' (3.20)

The following result on the convergence of the mean measure of E(n) is proved in
Theorem 1.3 of [8].

Proposition 3.10. For any « > 0, there is some constant C319(x) > 0 such that for all
x#0,
: Xee (1) Xa:(1) _
Eﬁmo(jexp(% S (X, = 0)) = Caow)le] ™,

and for any = € S(Xy)¢,

limIE
el0 Xo

Xg=(1) Xe: (1) _
(FE = exp(-n=5)1(Xe, = 0)

— o= S V= (=) Xo(dy) /03.10(,@-)|y —z| 7P Xo(dy).

Moreover, for any k > 0 and = # 0, we have

X (1 Xa=(1
]No(iGE( )exp(fﬁ; GE( )
ep g2

N(Xge, = 0)) < |z|7P, Y0 < € < |z. (3.21)

/2
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4 Second moment convergence

One important step in proving the existence of the limiting measure in Theorems 1.3,
1.4 and Theorems 1.13, 1.14 is the exact convergence of the second moment measures,
that is to say for any x; # x9, the limits

lim, oo AN, (L L2 exp (= S22, ML)
X,mi (1)

. 2 el Gl (4‘1)
lime, -, 0 N, ( [T, —5— exp ( S )1(XGM - 0))

exist for all « # x1, 9. Similarly for any z1, 22 € S(X()¢, the existence of the following
limits is required for IP5, and PP x, case:

iy, xgs00 AFONTOE (Lwlez exp ( -2 /\Lf”))

X 11(1) X 11(1)
—)1(Xgr, =0).

. , (4.2)
hm61~,€2¢0EX0(Hi Lo eXP( i

We first introduce some notations. For 1 # xo, we let & = (21, z2) and )= (A1, A2) €
[0,00)2\{(0,0)}. Define V}¥ > 0 to be

2
VA (z) =N, (1 — exp ( - Z )\iL‘”>>, Vo # x1, T2, (4.3)
i=1
so that for any X, € My with d(z;, S(Xo)) > 0,i = 1,2,

<exp ( Z)\ L”C)) = exp ( - XO(VX”E)), (4.4)

where (4.4) follows by (2.2) (see also Lemma 9.1 of [19]). Pick 1,62 > 0 smﬁall enough so
that B(z1,e1) N B(za,e2) = 0. Let £= (£1,¢2) and G = G¥: N G2, Define UM% > 0 to be

yrae (x) (I—Hexp(

so that for any Xy € My with d(S(Xy),G¢) >0

et (1)) (X e

£;/2

- 0)), vz € G, (4.5)

Z

e (Teow (3750105, =0) e (- 00529, as)

The proof of (4.6) follows easily from the monotone convergence theorem:

o ([Tow (- XG“‘”) )
nlgn Exo(exp< Z/\ ZnXGE i (1) ))
:nli)rr;o exp ( - /]Nz (1 — exp ( - i )\ij%z; - Z:nXG:;/Z(l)))XO(dJ:))

i=1

=exp (= Xo(UXT9)),

where the second equality follows from the Poisson decomposition (2.5).
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The monotone convergence theorem and the convexity of e~** for a,x > 0 allow us to
differentiate (4.5) with respect to A; > 0 and then further differentiate with respect to
As_; > 0 to get

dX;
Xegzi(1) £ Xera (1) ,
- ]Nl( : j:1eXp ( _ AJ??)NXG:/Q - 0)), i=1,2, 4.7)
and
- . d2 - .
U)\,ac,s _ U)\,z,e
2 X (1) Xgo (1)
GEi _ ) Gai . _
_ _mz(iﬂl ——ew ( N )1(XGEZ/2 - 0)). (4.8)
Similarly we can differentiate (4.3) to get
- d o 2
VA (2) o= VA (@) = Ng (L% exp (= Y NL™) ), i= 1,2, (4.9)
(1cm (- 3o 087)
and
>, d2 %3 2
) - T - _ T1 [ T2 _ T T
V@) = g V@) ]NI(L L exp( ;)\ZL )) (4.10)

For the general initial condition case, we can also differentiate (4.4) and (4.6) to get

X e (1) X (1)
I e S ICT)
—exp = Xo(UF)) (XO(Uf’f’E)XO(UQX’f’ ) — Xo(UNF ) (4.11)
and
Ey, (L“L“ exp ( - 22: )\L””))
=1
—exp ( - XO(VX’f)) (XO(Vf’f)Xo(VQX’f) - Xo(vff)). (4.12)

Hence one can see that it suffices to consider the convergence of U?’f’g(x), VM (2),
i=1,2and Uﬁ’f’g(x), Vl’?f(m) for the proofs of (4.1) and (4.2).
Proposition 4.1. Fix any z1 # x».
(i) There exists some constant K, 1 > 0 so that for all x # x1, 2,
. T+at, NE . 2,7 .
Al,l)\lgrrih)o ATV (@) = Kaa U (), i=1,2,
where UZ&”E isasin (1.16). Moreover, K, 1 = c3.35.

(ii) For any A1, A2 > 0, there exist some constants Cy1(A1),C4.1(A2) > 0 such that for all
x # x1,x2, we have

lim ! 5 UXig(x) = CatN)USF(2),i = 1,2

€1,2]0 5f7 v

Moreover, the multiplicative constant c¢; 13(x) in Theorem 1.13 is C4,1(K)K;11.
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Proposition 4.2. Fix any x; # xo. For all © # x1, x5, we have

(i) lim ATV (2) = KL (<UD ().

A1 ,)\2—>OO

N 1 1 NZ,E 0,7
(Zl) hIIlO =2 p=2 (—U1)\7’2 ’ (l‘)) = 04_1()\1)04_1()\2)(—[]172’ (33))
e,e280 g7 7 gy

Here Uf‘éf is as in (1.17) and there is some universal constant c4 5 > 0 such that for all
z # T1,T2,

0< U™ (z) < caslle — 21| 7P + |z — 22| 7P) |21 — 227, (4.13)

The proofs of Propositions 4.1 and 4.2 are long and involved and will be deferred to

Sections 8 and 9. B
In order to prove that £(k) = ¢1.15(k)L a.s., we implement ideas from the above: For

any z; # 2, A, A2 > 0and 0 < & < |zo — x1|/4, we define WA > 0 for all  # z; and
| — xo| > € by

ﬁ X (1
WX (z) = N, (1 e M oy ( - Ag%())l(XG:?Q - 0)), (4.14)

so that for any X, € My with d(z1,S(Xp)) > 0 and B(xz,e) C S(Xo)°,

Ex, <exp ( — ML — AQX%;(D)MXG:?Z - 0)) = exp ( - XO(WX’E’E)), (4.15)

where (4.15) follows as in (4.6). Similar to (4.7) and (4.8), we can differentiate (4.14)
with respect to A; > 0 and then further differentiate with respect to A5_; > 0 to get

X~f,6 N,Z\E (o
W% () == d%f\lW)" ()
= X zo (1
=N, (Lxle_”\lL " exp ( — A2 oz ))1(XG12 = 0))7

X.ie A . /2 (4.16)
W3 (z) = Ve ()
X xo (1 X zq (1 £
= ( o2 )exp(— PPl ))1(XG% = 0)e ML),
and
- d2 -
W)\@;E _ A\ Z,e
1,2 (z) dAdNs (z)
2y X2 (1 X e (1

_— (Lzle—le 1157;()@(1) ( _ >\2G§7;()>1(XG:§2 — 0)), (4.17)

For the general initial condition case, we can differentiate (4.15) to get

o1 e Xgz2 (1) Xg= (1)
EXO (L le AL 1Texp ( — )\QT)I(XGZ% = 0))

= exp ( - XO(W’\’”?’E)) (XO(WI\’”?’E)XO(WQA’“) - XO(WLf"E)) (4.18)
We will also need the following mixture of Propositions 4.1 and 4.2.

Proposition 4.3. Fix any x1 # x2. For all x # ©1,x2, we have
(Z) Hm)‘lﬁoo,eio )‘%+QW1/\)£7E($) = K4~1U106)f($)7
WM 00,010 s Wi P% (2) = Cua (M) Us™ " ().
1+a

1
(i)  lim Al

M 3o0.e10 2 (_Wl)\zfs(x)) = K4.1C4.1(A2)(—Uﬁ’f(x)).

The proof of Proposition 4.3 follows in a similar way to the proofs of Proposition 4.1
and Proposition 4.2 and is deferred to Section 8 and Section 9. We will first proceed to
the proof of our main results.
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5 Proofs of Theorems 1.3 and 1.13 and Theorems 1.8 and 1.10

In this section, we will finish the proofs of Theorems 1.3, 1.13 and Theorems 1.8, 1.10
assuming Propositions 4.1, 4.2 and 4.3.

5.1 Preliminaries

Recall from last section the definitions of VA%, UM and WA and their first and
second derivatives and recall V= from (1.15). Fix 2 # xo. It is not hard to check that
(see Lemma 8.1) for all = # x1, xo,

lim UY¥(z)= lim VM(2)= lim W ¢(z) = V=7F(g). (5.1)

€1,6240 A1,A2—00 A1 —00,e,/0

Recall (4.9) and use Proposition 3.2 to get for all Ay, A2 > 0 and x # x1, z2,
NPV () < N, (AL exp(-NL™) ) S cgalo —mi| Ti=12. (5.2)

Recall (4.7). Similarly we can get for all £1,£9, A1, A2 > 0 and for all = so that |z — z;| > ¢,
fori=1,2,

X (1) Xgei (1)
UM (z) <N, (Gi exp(— A —= )1 (X e = 0)) <lz—x]7",  (5.3)

i & €i/2

where the last equality is by (3.21). Recall Wi’\’f’a(:c)J = 1,2 from (4.16). It follows that
for any A1, Ao, e > 0 and for all « with « # z; and |z — 22| > ¢, we have

/\i+aW5’f’E(m) < /\}'H”]Nx (Lml exp ( — )qul)) < cgalr —x|7P, (5.4)
and
1 i Xg=(1) Xgz2 (1) _

The proof of Proposition 6.1 of [19] readily implies that (note U X7 s used there to

denote our Vl’}f here) for all x1 # o, if |z — 1| A |x — 22| > £o for some gy > 0, then there
is some constant C'(gg) > 0 so that

0 < ATFONT (=175 (2)) < Cleo) (1 + |z — 22)*7P), VAL > L. (5.6)

Similarly one can show that (see Lemma 9.5) for all 1,2 > 0 small,

1 1 NEE -
0< 555 (-ULE (@) < Cleo) (1 + for = w2f*7), (5.7)
1 2

and for all \; > 1 large and ¢ > 0 small,

0 < AT (W4 () < Cleo)(1+ |21 — aa[27P). (5.8)

ep—2

Theorem 5.1. For any bounded Borel function h : R x R? — R supported on {(x1,x5) :
0 < |m1], |zo| < ey'} for some g¢ > 0, we have

(@), lim N (£ x L)) = K3, / W1, 22)(~USS% (0)) darydirs,

)\1,/\2—>OO

(b) lim 1NO((Z(H)€1 X E(n)‘”)(h)) = Oy (k) / h(z1,22)(~US5 (0))dr dacs.
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Proof. It suffices to consider nonnegative bounded Borel function h. By an application
of Fubini’s theorem, we have

JNO((cM X w)(h))

— *1 2
:/ 1h(xl,xg)mo(xﬁaxyawwe MI™ g=sL )dmldxg
eo<|z1]s|ze|<eq

_ / h(z1, 22) AN (VAT (0))diy dars,
o<z l,|wz|<egt 7

where the second equality is by (4.10). Since h is bounded, in view of (5.6) we can see
that the integrand has an integrable bound and so (a) will follow immediately by the
dominated convergence theorem using Proposition 4.2(i). Similarly (b) will follow from
Proposition 4.2(ii) and (5.7). |

Corollary 5.2. For any bounded Borel function ¢ on R? and for any k > 1, we have
L ¢ - 1(k~1 < || < k)) converges in L?(INy) as A — oo and L(k)(¢- 1(k~L < || < k))
converges in L?(INg) as € | 0.

Proof. For any bounded Borel function ¢ we let
(1, x2) = ¢la) (k™" < |21 < k) - @la) LK™ < |xa| < k), (5.9)

and apply Theorem 5.1(b) with the above h to get

tim No( (Z(w)7 (6167 < || < k)~ £ (0 1057 < |- < k)

£1,6200
= _lim No((£(x)" x £(x)™) (k) — 2N ((£(m)™ x L(r))(h)
+ 1NO((Z(K>62 x E(/@)EQ)(h)) ~0.

Therefore {£(k)(¢- 1(k~! <|-| < k)) : ¢ > 0} is a Cauchy sequence in L2(INy) as ¢ | 0
and so converges in L?(INy). The case for £* is similar. |

Corollary 5.3. For any bounded Borel function ¢ on R? and for any k > 1, we have
Caa(R)LMD - (1<) <k)) — Ka1L(K)* (¢ 1(4-1<|.|<k)) converges to 0 in L?(INg) as A — oo
ande | 0.

Proof. It suffices to prove for nonnegative ¢ > 0. Let h(x1,22) be as in (5.9) and use
Fubini’s theorem to get

N (ﬁAW' Le-1<|i<k)) X L(r)*(¢- 1(k—1§|»|§k))>

- X » 1 XGJ,‘z(l)
:/h(zl,mg)lN0<)\1+aLI167>\L 1 LHB—HJJ 1{X s :0})d$1d$2
ep GE/2
1 v
h(zy, 22) AN —— (=W (0))dzy ds,

= )
~/"~'_1§|I1|~,$2§k7w17ﬁw2 ep

where X = (M, k). Now apply Proposition 4.3(ii), (5.8) and the dominated convergence
theorem to conclude

lim IN() (E)\(¢ . 1(k*1§|~|§k)) X E(KJ)E(¢ . 1(k*1§|-|§k)))

A—00,el0
- K4,1C4,1(m)/ h(z1, 22)(~U7"(0))dw1dzs. (5.10)

k=i<|z ] |we | <k,x1#x2
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Therefore
. A ~ € 2
AJ$5¢0NO((C4'1(K)£ (@ Lk-1<)<k)) — K41 L(K) (- 1(k*1§|~\§k))) )

—  lim (74_1(@211\10((5A x ﬁ)(h)) n KfJ]NO((E(F;)E x E(/{)E)(h))

A—00,e/0

—2K41Cy1(k)Ng (ﬁ’\(¢' Le-1<|i<k)) X L5(¢- l(k*1§|-\§k))) =0,

where we have used Theorem 5.1 and (5.10) in the last equality. |

We continue to accommodate Px, for the general initial condition case.

Theorem 5.4. For any bounded Borel function h : R¢ x R* — R supported on the set
{(x1,2) : 2 € S(X0)>% N B(ey'),i = 1,2} for some ¢y > 0, we have

lima, o By ((£3 5 £22)(1) ) = K3y [ hos,2)
—XO(V"”)(X (UET) X (UST) = Xo(UST) )dmldmg,

hmghmoExo(( () x £(x)2)(h)) = Cur(k)? [ hlw1,22)
e~ Xo(VE )(XO( O?”B) (U;Bf — Xo(U OOI )d:z:ldrg.

(5.11)

Proof. It suffices to prove for nonnegative h. By Fubini’s theorem and (4.12), we have

EXO((EM X 5*2)(11)) = h(wy, 2)

/acl,xQEB(sol)ﬂS(Xo)>Eo
e MoV (PPN X (V) Xo (V) = ATFAT Xo(V)Y) ) dadas.
The result follows by an application of the dominated convergence theorem using

Propositign 4.1(i), Proposition 4.2(i), (5.1), (5.2), (5.6), and the assumption on h. The
case for £(k)¢ follows in a similar way. [ |

Corollary 5.5. For any bounded Borel function ¢ on R? and for any k > 1, we have

LN¢ - 1{p.ns(xg)>1/5}) converges in L*(Px,) as A\ — oo and L(k)(¢ - L Buns(x0)>1/+})
converges in L?(Py,) ase | 0.

Proof. For any bounded Borel function ¢ we let

h(w1,2) = ¢(21) 1, As(x0)>1/03 (1) - G(T2) Ly B, A5 (x0)>1/k} (T2)-

Then the proof follows in a similar way to that of Corollary 5.2 by applying Theorem 5.4
with the above h. |

Corollary 5.6. For any bounded Borel function ¢ on R? and for any k > 1, we have

O4_1(KZ)£)\(¢ . 1{BkﬂS(Xo)>1/k}) — K4.1Z(K,)E(¢ . I{BkﬁS’(Xo)>1/k}) converges to 0 in L2(]PX0)
as A —ooande | 0.

Proof. The proof is similar to that of Corollary 5.3 by using (4.18), (5.1), (5.4), (5.5), (5.8),
Proposition 4.3 and Theorem 5.4. |
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5.2 Proofs of Theorems 1.3 and 1.13

Propgsition 5.7. For any k > 1 and any sequence e, 1 0, we have INy-a.e. and Px,-a.s.
that L(k)*"(R) = 0 for all &, > 0 and L(x)*"(R>Y/*¥) =0 forall 0 < &,, < 1/k.

Proof. First for any € > 0,

No (E(K)s(R)) < INO( / Xiip(l) exp ( _ HXCfZ(l))1(XG:/2:0)1($€R)dm)

:/]NO(Xc:s;(l) exp ( — KX%Q(]-)>1(XG§/2:0)1(I€R))dx

Xa:(1) Xa: (1)
:/]NO< P ( TP )1<XG?/2:O)PXG§/2 (e R))dm =0

where the first equality is by Fubini’s theorem and the second equality uses Proposi-
tion 2.1(ii). Hence £(x)5(R) = 0, No-a.e.

Next for all z € R>Y/* and 0 < ¢ < 1/k, we have B_(z) C R and (2.4) will then imply
Xge(1) =0. Thus if 0 < e < 1/k,

Ng (E(H)E(R>1/k)> < ]No</ Xii(l) exp ( - “XLQ(I)> 1mcncdm)

3

= /]NO(XGEJU exp ( — mXigé<1)>1mcRc>dx =0.

Take a countable union of null sets to see that Np-a.e. L(r)*"(R) = 0 for all &, > 0 and
L(k)*"(R>Y*) =0 forall 0 < &, < 1/k and so the proof for IN; is complete. The proof for
P x, follows in a similar way. u

Proof of Theorems 1.3 and 1.13. We first give the convergence of £* to £ and £(x)* to
Z(n) and then find some constant ¢; 13(x) > 0 so that Z(n) = ¢1.13(k)L a.s. Next we show
that the support of Z(n) is contained in OR and it follows that the support of £ will also
be on JR, thus finishing both proofs of Theorem 1.3 and Theorem 1.13. Since the proof
for the convergence of £* and Lw(m)E are similar, we will only give the proof for the latter.

We first deal with INy. Let {¢,,}°_; be a countable determining class for Mp(R¢)
consisting of bounded, continuous functions and we take ¢; = 1. Consider

C={Ymk: Vmk = GmXk,m>1k>1},
where Yy is defined by

1, if k=1 < |z| <k,
xk(7) = 10, if |z < (2k)"'or|z| > k+1 (5.12)
continuous, on (2k)"!' <|z| <k landk < |v|<k+ 1.

Corollary 5.2 implies that for any ¢,, » € C, we have £(k)° (¢, ) converges in L2(INg) to

some (¢, 1) in L?(INg) and by taking a subsequence we get almost sure convergence.
Define subsequences iteratively and take a diagonal subsequence ¢,, | 0 (we may assume
foralln > 1that0 < ¢, < 1) to get

LK) (Ym k) = W thm k) as ep 4 0, for all m, k > 1, Nyp-a.e. (5.13)

Fix w outside a null set such that (5.13) hold. Choose m = 1 in (5.13) to see that

L(r)* (xx) — l(xx) for all k > 1. Note we have [(y;) < oo by the choice of w and so
INy-a.e. we have

sup L(r)™ ({z 1 k=1 < |z| < k}) < sup L(k)*" (xx) < 00,Vk > 1. (5.14)
en>0 £n>0
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The proof of Theorem 1.5 in [9] implies that INp-a.e. L” is positive for x near 0, and hence
we have Ny-a.e. that {z : |x| < k~'} C R for k > 1 large. Proposition 5.7 will then imply
INyp-a.e. for k£ > 1 large,

L) ({z: |z| <k™'}) < L(k)*(R) =0 forall g, > 0. (5.15)

On the other hand, we know that the range of SBM X is compact INy-a.e. by (2.3) and
hence by Proposition 5.7 we have INy-a.e. that

for k > 1large, sup L£(k)" ({z : |z| > k}) < sup L(r)*(R>!) = 0. (5.16)
en>0 en>0

Combining (5.14), (5.15) and (5.16), we get

sup Z(K)E”(l) < 00, Ng-a.e. (5.17)
en>0

Note (5.16) also implies the tightness of {£(x)"} and together with (5.17), we get the
relative compactness of {/3(/{)5"} by Prohorov’s theorem (see, e.g., Theorem 7.8.7 of [1]).
By the relative compactness of {Z(H)E" }, any subsequence admits a further sequence
along which the measures converge to some E(n) in the weak topology. It remains to
check all limit point coincide which is easy to see by (5.13) since C is a determining class
on Mr(R%). In conclusion, for any sequence ¢, | 0, we can find a subsequence ¢, | 0
such that No-a.e. £(k)%* — L(k), which easily implies that £(x)® £ L(x) under INy. The
case for £* 5 £ under INy is similar.

After establishing the existence of £ and E(n), we continue to show that they differ
only up to some constant. It is easy to check that for any €, A > 0 and any ¥, 1 € C,

No ((Kaa£5)(@ms) ~ Cua (L)) )

< 4050 ( (K Z5) W) ~ Ko E(5)* (o)) )

440 (K Z0) (i) — Caa (W)L W) )

4N ((Car(R)E W 1) — Cor (L (W) ). (5.18)

By letting A — oo and ¢ | 0, we conclude by Corollary 5.2 and Corollary 5.3 that each
term on the right-hand side of (5.18) converges to 0 and hence

Ki 1 LK) @mk) = Cu1 (8)L(%m 1), No-a.e.

Take a countable uniozl of null sets to conclude that ]NO;a.e. for all m,k > 1, we have
C4.1(’£)£(wm7k) = K4,1£,(Ii) (’l/mek) and so 04.1(/€)£ = K4‘1£(Ii). Let 01,13(#;) = C41(I€)K;11
to see that Ny-a.e. we have £(k) = ¢1.13(k)L.

Finally we will show that E(n) (and hence £) is supported on OR. Let {¢,,},,>1 be any
sequence such that Ny-a.e. L(r)* — L(k). By Proposition 5.7 we can fix w outside a null

set such that £(k)*» — L(x) and L(x)*"(R) — 0 hold. It follows that

L(x)(Int(R)) < liminf £(x)*" (Int(R)) < liminf £(x)*" (R) = 0, (5.19)

end0 end0

where the first inequality is by £(x)* — L (k).
Next by Proposition 5.7 we can take a countable union of null sets and fix w outside
a null set such that £(k)*" — L(k) and L(x)**(R>'/*) — 0 holds for all k¥ > 1. Then we
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have

oo

L(k)(Re) =£(s) (| R7*) < i,c (R>1/%)

k=1 k=1

8

1m¢151f£ (k)F(RZYVFY =0,
k=1 "

where the second inequality is by £(x)" — L(x). Therefore we conclude the support of
L(k) is on R under Ny.

Turning to the case under Ps,, the above arguments work in an exactly same way as
INy and so we omit the details. |

5.3 On the moments of the boundary local time measure

In view of Theorems 5.1, 5.4 and Corollaries 5.2, 5.5, we can get the moment measure
formulas for £ and £(x) and finish the proof of Theorems 1.8 and 1.10.

Proof of Theorem 1.8. (a) Let )\, be the sequence from Theorem 1.3 such that
L — L, Ny-a.e. For any bounded continuous function ¢ > 0 and any k£ > 1, we have
LA (¢ xx) — L(¢-xk), No-a.e., where yy, is as in (5.12). Corollary 5.2 will then give that
L (¢ - x1) converges in L2(INg) to £(¢ - xx). In particular, by working with the finite
measure No(- N {R N G141, # 0}), we have L (¢ - x) converges in L'(INy) to L(¢ - xx)
and so

No(£(6-xx)) = Jim No(£ (0 xe)) (5.20)

= lim [ $(a)xi(@)No(ALTL7e ™ E )dr = ey s / 2|7 ()xi ()de,
where the second equality is by Fubini’s theorem and in the last equality we have used
the dominated convergence theorem with Proposition 3.2 and Proposition 3.8. Let
k — oo and apply the monotone class theorem to extend (5.20) to any Borel measurable
function ¢ and the proof follows by K41 = c3.5.

(b) By (4.13), (1.20) follows immediately from (1.19). For the proof of (1.19), we let
An be the sequence such that £*» — £, Ny-a.e. For any bounded continuous function
h > 0 and any k£ > 1, we have INy-a.e. that

(1) limpoeo £ (xk) = L(Xk)-
(i1) limp—oo [ h(z1, 22)xk (1) XK (T2)dL  (21)dL M (22) (5.21)
= [ hl@1, w2)xu(@1)xn(v2)dL(x1)dL(x2).

Note i < ||h||o and so
‘/h(ﬂflvfcz)Xk(wl)Xk(fﬂz)dﬁA”(xl)dﬁA”(xz) < Blloo (£ (xk))*- (5.22)

Use Corollary 5.2 and (5.21)(i) to get £* (%) converges in L?(INy) to £(x) and thus we
get No((£* (xx))?) converges to No((£(xx))?). Use (5.21)(i) again and work under the
finite measure No(- N {R N G4, # 0}) to get {(L* (xx))?,n > 1} is uniformly integrable.
By (5.22), the left-hand side term of (5.21)(ii) is also uniformly integrable and hence we
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conclude
No( [ e 2o v (ea)dL (et es) )

= lim 1N / e 2) s (0) s (22) AL (1) AL () )

n—oo

=K, / h(y, @2)xr (1) Xk (@2) (—Ur 5 (0))da dzs, (5.23)

where the last equality is by Theorem 5.1. Let k¥ — oo and apply the monotone class
theorem to extend (5.23) to any Borel measurable function. [ |

Proof of Theorem 1.10. The proof of (1.21) and (1.22) follows in a similar way to the
above proof of Theorem 1.8 by using Corollary 3.9, Theorem 5.4, Corollary 5.5. (1.23)
follows immediately from (1.22), (4.13) and the definitions of U;”*"* from (1.16). [ ]

6 Exit measures and zero-one law

In this section we will give the proof of Theorem 1.6. Our approach to Theorem 1.6 is
similar to the proof of Theorem 1.2 in [9]; we utilize exit measures, which will be easy
consequences of the following two results. The first result is proved below.

Proposition 6.1. Let z; € R¢ and r > 0 satisfy Ba,,(71) C S(Xo)¢. If0 < ry < 1o, then
Nx,-a.e.

Xan (1) =0 and Xan (1) > 0 imply

L(B.(x1)) >0 for every r > 11 s.t. Xgz1 (1) > 0.

Corollary 6.2. Let z; € R? and ry > 0 satisfy Ba,,(r1) C S(Xo)¢. If0 < 71 < 70, then
Px,-a.s.
X (1) = 0 and X1 (1) > 0 imply £(Br, (1)) > 0.

Proof. It follows in a similar way to the proof of Proposition 1.6 assuming Proposition
1.7 in [9] by replacing dim(9R N B,) > dy with £(B,) > 0. [ |

Proof of Theorem 1.6. By using Proposition 6.1 and Corollary 6.2, the proof of (1.10)
follows in a same way as the proof of Theorem 1.2 of [9]. (1.11) is immediate from (1.10).
To see that with P x,-probability one, Supp(£) = S(Xy)° N IR, we pick any = € S(X()° N
OR. There is some ¢ > 0 so that B(z,r) C S(X()¢ and B(z,7) NOR # P forall 0 < r < e.
Apply (1.10) with U = B(x,r) to see that L(B(z,r)) > 0 for all 0 < r < ¢ and so conclude
x € Supp(L), giving S(Xp)¢ N IR C Supp(L). Together with Theorem 1.4 we have
Supp(£L) = S(Xp)° N IR, Px,-a.s. and the proof is complete. [ |

Now it remains to prove Proposition 6.1. We first state a result that plays the role of
Lemma 5.4 in [9].

Lemma 6.3. There is a constant gs3 > 0 so that if X, € Mp(R?) is supported on
{|z| =7} and § = X/(1) satisfies 0 < § < r?, then

P (£(B(0.r = 22)) > 0) = goa

Proof. Define Xé‘s)(A) = 071X} (V/5A), so that Xég) is supported on {|z| = r/+/§} and has
total mass one. By scaling properties of SBM, we may conclude that

Py (6(B(0r =) >0) =Py (£(B(0. 0=~ 1)) >0). @)
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Now work in our standard set-up for SBM with initial law Xéé) so that
Xi =2 e5 Xe(W;) = [ Xy(W)E(dW) for all t > 0, where = is a Poisson point process
with intensity IN | (. For r > V6 define

0

7,(Wj) = inf{t > 0 [W;(¢)] < p},

Up(W;) = inf{t > 0 [W;(t) = W;(0)| = p},

and N1 =Y 17, y5)— (12 (Wy) < 00) := #(I5).
jeJ

Here as usual inf ) = co. Then N; is Poisson with mean

My 5 1= ]NX(S‘S)(T(T/\/S)—(IQ) < OO) < ]NXE()E)(UI/Q(W> < OO) (6.2)
= ]NO(U1/2(W) < OO) =m < oo,

where Xo(ﬁ)(l) =1 and translation invariance are used in the equality, and the finiteness
of m follows from Theorem 1 of [13]. We may assume (by additional randomization)
that conditional on I, 5, {W; : j € I, s} are iid with law ]NX(E@ (W e '|T(7,/\/g)_(1/2) < 00).
Therefore the right-hand side of (6.1) is at least

ey 0 (250025 1)l <)
- mfrfjamx (E(B (0, % - %)) > 0), (6.3)

where z¢ = (%)61 and e; is the first unit basis vector. We also have used the facts
that spherical symmetry shows we could have taken any zy on the sphere of radius
r/+/$ and L(B(0, 75 —3)) = 0if T+ 1 = o0 by the fact that Supp(£) = IR, N;,-a.e.
from Corollary 1.7 and translation variance. Now again use translation invariance and
spherical symmetry to see that the right side of (6.3) equals

B\ (E(B(:co, o] — 1)) > 0) > ¢ TN, (E(B(el, 1/2)) > 0)

2
(o (£(B(er.1/2)))”
]NO<(L‘(B(61, 1/2)))2)

—m

) (6.4)

where the first inequality follows by (6.2) and B(e1,1/2) C B(zo,|zo| — %) since
xo = |xoler and |zo| > 1, and the last follows by the second moment method.

Now apply Theorem 1.8 (a) with ¢(x) = 1p(,, 1/2)(z) and Theorem 1.8 (b) with
h(z1,22) = 1B(e;,1/2) (1)1 B(e,,1/2) (72) to get

No (,C(B(el, 1/2))) - K4.1/ || Pdz > K4_1(g)*p|B(O, 1/2)| > 0

|lx—e1|<1/2

and

2
No((£(Bler,1/2)))") < Kf_l/ c12(2° +27) |21 — @[> Pdardrs < oo.

|z —e1],|za—e1]|<1/2
Thus we have shown that the right-hand side of (6.4) has some lower bound e~™¢ > 0

for some universal constant ¢ > 0, and so have proved the lemma with ¢gg53 =e¢ c. B
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Now we proceed to the proof of Proposition 6.1. Using the setting from Proposi-
tion 6.1, by translation invariance we may assume x; = 0 and fix o > 0 such that

BQTO - S(Xo)c (6.5)

Notation. We define Y,.(-) = X¢,, () and & = &g, V{Nx, —null sets} for 0 < r < ro.
It is not hard to show that &, is non-decreasing in r (see Section 6 of [9]). Intuitively &,
is the o-field generated by the excursions of W in G,,_,. By Proposition 2.3 of [15], Y
is (£,)-adapted. Let & = &, denote the associated right-continuous filtration. Note
Proposition 6.2(b) in [9] gives a cadlag version of Y;.(1) which has no negative jumps and
is an (€,7)-supermartingale. In what follows we always work with this cadlag version of
Yo (1).

In addition to INx,, we will also work under the probability Qx,(-) = Nx, (-|Yo(1) > 0),
where (6.5) ensures that Nx, (Y5(1) > 0) < co. Note that

for any r.v. Z >0, and any r > 0, Qx,(Z|&,) = Nx,(Z|&) Qx,-a.s. (6.6)

because {Yy(1) > 0} € &. When conditioning on &, under Q)x,, we are adding the
slightly larger class of @) x,-null sets to &,, but will not record this distinction in our
notation. We write @, for Qs, as usual.

Let W denote a generic Brownian snake under INx, and () x, with the associated “tip
process” W (t) and excursion length o. Define

To(W) = inf{r € [0,79) : Y;-(1) =0} € [0, 0], where inf () = rg,
and
To(W) = inf{|W(t)| : 0 < t < 0} = inf{|z| : z € R},

where the last equality holds INx, by (2.3). Clearly we have Qx,(-) = Nx,(-|7o > 0). By
Lemma 7.1 of [9], we have

Nx, —a.e. {Ty >0} = {To <19}, and on this set Ty = 1o — To. (6.7)
Define a sequence of (£;7)-stopping times by
T,-1 = inf{r € [0,79) : Y;-(1) < 1/n} (inf® = ro).

Then
on {0 < Ty} (and so Qx,-a.s.) T,-1+ T Tp and T,,-1 < T, (6.8)

where the last inequality holds since Y;(1) has no negative jumps. So under Qx,, Tp is a
predictable stopping time which is announced by {7,,-1} and so (see (12.9)(ii) in Chapter
VI of [22])

Ef_ = Vn&f .

Lemma 6.4. If X, = §,, where |zo| > 2ro, then L(B,,) € £ .
0

Proof. Note Theorem 1.3 implies there is some \,, — oo such that £} — £, N, -a.e. by
translation invariance. On the other hand, by Theorem 1.8 we have N, (£(9B,,)) =0
and so N, -a.e., £L(By,) = limy, 00 LA (Byry). As is shown in the proof of Lemma 7.3 in [9],
we have (W) € 5;;_ for any Borel map v on C(R*, ). Then it follows that L* € 5;5_

0

for any = € B,, and so L*"(B,,) € £f_ for any ), > 0, thus proving £(B,,) € &7_. W
0 0
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Proof of Proposition 6.1. Clearly it suffices to fix zy € S(Xy) and prove the result with
IN,, in place of Nx,. By translation invariance we may assume z; = 0, and so |zg| > 2ry.
Fix 0 < r1 < rp. Assume 0 < r < rg and n € N is large enough so that r + n=! < r.
Recall that conditional expectations with respect to &,, under IN,,, and Q,,,, agree @,,-a.s.
Therefore up to Q,,-null sets, on {4n=2? < Y, (1) < (rg — r)?}(€ &) we have

€) 2Quy (£(Bryyn1) > 0[E,)

>Qus (hzn sup L3 (B, —n1) > 0 &)
—00

= lim Qg <limsup LY (Bypy—pp-1) >m ™

m—r00 k—00

Qus (£(By,) >0

&), (6.9)

where the second inequality is by £** — £ in My with the {)\;} from Theorem 1.3. The
last equality uses the monotone convergence theorem. For each m > 1 we have

gr)
&)

= liminf Py, (L*k (Byyyon-1) > m*l)

k— o0

Qu, <lim sup LM (B _p_p-1) > m™ !

k—o0

> lim inf Q,, (LM(BTU_T_W) >m~1
k— o0

> Py, (likm inf LY (B, _p_p-1) > m_l) (by Fatou’s Lemma)
— 00

> Py, (L(Bro,r,nfl) > m*l) (by £ |5 Ll ) (6.10)

where we have used Proposition 2.1(iii) in the equality and the last inequality is
by Theorem 1.4 and by replacing {\;} with a further subsequence which is still de-
noted by {\;}. Combining (6.9) and (6.10), we get up to Q,,-null sets, on the event

{4n=2 <Y, (1) < (ro — r)?} (which is in &,), we have

gr) > liminf Py, (L(BTO,T,W) > m*l) (6.11)

m—r oo

Quy (£(By,) > 0

:]PYr (‘C(Brg—r—nfl) > 0) > IPYT (E(Bro—r—(\/T(l)/Q)) > O) > 6.3,

where Lemma 6.3 and the assumed upper bounds on Y,.(1) are used in the last inequality,
and the assumed lower bound on Y,.(1) is used in the next to last inequality. Let n — oo
and take limits from above in r € Q4 (recall Y;.(1) is cadlag) to conclude that @, -a.s.
Vr e QN (0,7o),

M, = Q. (L(By,) > 0|&T) > gs.3 on {0 < Y,.(1) < (ro — )} (6.12)

Here M, is a cadlag version of the bounded martingale on the left-hand side. Using
right-continuity one can strengthen (6.12) to Q,,-a.s. ¥r € (0,rg),

M, = Quy(L(By,) > 0|ET) > g6.3 on {0 < Y,.(1) < (ro — r)?}. (6.13)

On {0 < Ty < rg —r1}, by (6.8) and the lack of negative jumps for ¥,.(1), we have Q,,-a.s.
that

for n large, T),-1 € (0,70 —71) and Y7 _, (1) = n~t < (rg — Tl/n)Q. (6.14)

By Corollary (17.10) in Chapter VI of [22], (6.13), and (6.14), we have (),,-a.s. on
{0<Ty<rog—ri} € 5;50,,

Quo(L(Br,) > 0|84, _) = lim M(T,-1) > ge.3. (6.15)

n—roo
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Multiplying the above by 1({0 < Tp < 9 — 71}), we see from Lemma 6.4 that (),,-a.s.,
1{L(Br,) >0} N{0<To <19 —11}) > q6.31({0 < Tp < 1o —11}),
and therefore by (6.7),
r < Ty <ro implies £(By,) >0 Qg,-a.s.

This remains true if we replace ¢ by any r € (r1,ro] since we still have B, C S(Xj)°.
Therefore we may fix w outside a @Q,,-null set so that for any r € (r1,7] N Q, r1 < Ty <r
implies £(B,) > 0. By monotonicity of the conclusion in r this means that {r; < Ty < 7}
implies £L(B,) > 0 for all r > TO. This gives Proposition 6.1 under @),,. The result under
IN,,, is now immediate from the definition of Q,,, and {Yy(1) > 0} = {Tj < ro} N, -a.e.
by (6.7). [ ]

7 Change of measure

Before turning to the proofs of Propositions 4.1, 4.2 and 4.3, we state a result on the
change of measure that plays a central role in the proofs. This result is a generalization
of Proposition 3.7 where only radially symmetric functions are considered. We implement
the ideas there and prove stronger results to deal with non-radial functions.

Let Y = (Y,,s > 0) denote the coordinate variables on C([0,00), R?) and set ();) to
be the right continuous filtration generated by Y. Under the law P, (Wiener measure),
Y is a standard d-dimensional Brownian motion starting from x. Recall u, v as in (1.13)
and recall P£272”) is the law under which, Y is the unique solution of

{Y’t:x—l—ét—l—fg(—y—u)zspd& t <719, (7.1)

}/t:()a t > 1o,

where 7. = 77 = inf{t > 0 : |V;| < ¢} and B is a standard d-dimensional Brownian
motion under 15;2_2”). The upper index 2 — 2v < 0 on 15952_2") is to remind us that under
PP~ the radial process {|Ys], s > 0}, as we will show later, is a (2 — 2v)-dimensional
Bessel process stopped at 0. Now we proceed to the key proposition for proving the
convergence of the second moments.

Proposition 7.1. Let v € RY\{0} and 0 < ¢ < |z|. If ®; > 0 is J;-adapted, then for any
Borel measurable function g : R? — R such that P,-a.s. fOTE lg(Ys)|ds < oo, we have

B (1072 < o) exp (~ [ g(v2)as))

= &P|g| PEZ) <<I>TE exp (— /TE (9(Ys) — VOC(Y;))CZS)>. (7.2)
0

Proof. By the monotone convergence theorem we have
1:=E, (1(7'5 < 00)®_exp (— / g(Ys)ds))
Jo

= lim F, (1(7’6 <t)®, exp(— /OTE g(Ys)ds))

t—o00
Te At
= lim B, (1(75 <7 A)Drppexp ( —/ g(Ys)ds)). (7.3)
— 00 0
Use Ito’s lemma to see that under P,
Te AL Te AL
€ Y. 1 MNd—2
log |Y:_ a¢| = log |Yo| —|—/ = - dYs + 7/ ——=ds,Vt > 0. (7.4)
0 |Y5[? 2 Jo Y52
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Recall p, v as in (1.13) and consider

tATe Y'S 1 tAT: (V— )
M. (t) —exp(/o (V—M)W -dYs — 5/0 VA ds) (7.5)

As one can easily check, M, is a martingale under P,. Moreover by using (7.4) we can
get

_ Y M 2(4 - d)
Mg(t) = W exp ( — A st) (76)

An application of Girsanov’s theorem (see, e.g., Chapter IV.4 of [12]) implies there is a
unique probability Ps(,z_fz") on C(]0, ), R?) so that for any ¢ > 0,

~ Yo eV M A9 (4 — d)
gperw)|  end”" ( - / 7ds) dP,| (7.7)
o T TR TP TP :
and under 155(?z+2”), Y is the unique solution of
N Te Nt Y.
Y,=x+ B, + / (v— u)ﬁds, (7.8)
0 s

(so the drift is stopped when Y hits the ball B(0,¢)). Here B is a standard d dimensional
Brownian motion with respect to P( F2Y) The upper index 2+ 2v on P(2+ is to indicate
that the radial process {|Y;a-.|, s > 0} is a (2v + 2)-dimensional Bessel process stopped
when it hits € > 0:

Te At
15 —~ YS
Yy el = |z +/ 2Y, - (dBs + (v — p) ds) +d(1. A t)
0

|Ys[?
Te Nt
:|x\2+/ 2|Y|Z| : dBf + (2v +2) (7 A1)
0
Te Nt .
—laP+ [ AVdB + 2+ D A0, (7.9)
0

where the last equality follows since Bt = Zle %Eg is a one-dimensional Brownian

motion under P(2+2”) Therefore {|Yr-.|?, s > 0} satisfies the SDE of a stopped square

Bessel process of dimension 2+42v and so {|Y;a-.|, s > 0} is a stopped (2+2v)-dimensional
Bessel process (see Chp. XI of [21] for the definition of square Bessel process and its
connection with Bessel process). It follows that

2v
P (7, < x0) = |;2V (7.10)
Now apply (7.7) to see that (7.3) becomes
Te Nt n—v
_ F22v) oo Yo at
1= lim BE2 (1 <o @ piexp (- / (9(s) = V>*(Y:))ds) = ) .11
EC+2) T oo Yo [H 7
= lim E( ( (r. < £)®,. exp(— (g(Ys) =V (Ys))ds)si)
tooo T 0 |x‘/¢_’/

|j|u_ B (1r < 00)0r, exp (- /0 (9(Y,) = V=(Y,))ds ) )
EC ) (<I>T€ exp ( = /0 E(g(Ys) — VOO(YS))dS)

where we have used the monotone convergence theorem in the next to last equality and
the last equality follows from (7.10) and p = u + v.
We interrupt the proof of the proposition for another auxiliary result.

|I|p Te < oo),
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Lemma 7.2. For any ¢ > 0 and |z| > ¢, we have the law of {Y;r..,s > 0} conditioning
on {7. < oo} under P( ) s equal to the law of {Ysnr., s > 0} under PQEQ_Z") defined as

in (7.1).

Proof. Forany 0 < t; < --- < t,, and any bounded Borel functions ¢; : R = R,1 < i < n,
we use (7.10) to get

St (T St (T |
J = B2 (] |1 6:(Yiunr. )| < 00) = EE2) ‘I_Il O Vine)lrao)) gy (712)
=(242v) H p2+2y) > =(242v) H >
= Ee,x ( ¢z }/t /\7'5 5 YiAre ( Te < OO)) . 5211 = Ee,af: ( (,ZSz t; /\Ts |Y;5 R |2V)

where the second last equality is by the strong Markov property of Y. Similar to the
derivation of (7.7) using (7.4), (7.5) and (7.6), by replacing v with —v in (7.5) and (7.6),

another application of Girsanov’s theorem implies there is a unique probability Pg(i 2v)

on C([0,00), R?) so that for any ¢ > 0,

. YotV TH A 2(4—d)
ape—ow)| = e 70 (f/ 7ds)dPT , (7.13
g,T v, ‘x|_l,_u p 0 |}/S|2 T Y, )
and under P(2 ) , Y is the unique solution of
. Te At Y
Yt:erBtJr/ (fyf,u)—sgds, (7.14)
0 Y5 ]

(so again the drift is stopped when Y hits the ball B(0,¢)). Here B is a standard d-
dimensional Brownian motion with respect to P(2 ) . Combining (7.7) and (7.13), we
can get

_ |z|* p2+2v)
Vi |YTE/\t|2V =

Now apply (7.15) in (7.12) to see that

7= B ([ es(Vinn)) = B2 ([[6:¥inn):
i=1 1=1

where the last equality follows since one can easily check that {Y;s,.,t > 0} under
135(,2,{2”) is equal in law to that under P27 (see (7.1) and (7.14)). So the proof is
complete. |

p8(729721/)

) (7.15)
Ve

Returning to the proof of Proposition 7.1, we apply the above lemma in (7.11) to
conclude

I = & E(2 2v) ((I) exp ( = /TE (g(Ys) = V(Y. ))ds)) (7.16)
|zfp " " 0 '
and the proof is complete. |

One can show (as for (7.9)) that the radial process {|Y;ar,|, s > 0} under ]3352_2”) isa

(2 — 2v)-dimensional Bessel process stopped at 0. By applying Lemma 7.2 to the radial
process {|Y;ar.|, s > 0}, we can get following “well-known” result on Bessel process (see
Corollary 2.3 of Lawler [14]).

Corollary 7.3. For§ € R, let (p;) denote a 6-dimensional Bessel process starting from
r > 0 under P(‘s). For any v > 0 and any € > 0 such that r > ¢, we have the law of

{psar.,s > 0} conditioning on {7. < oo} under P js equal to the law of {psnr.,s > 0}
under P>~V
EJP 25 (2020), paper 106. https://www.imstat.org/ejp
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8 Proofs of Proposition 4.1 and Proposition 4.3(i)

In this section we will give the proof of Proposition 4.1 and Proposition 4.3(i). Recall
the definitions of UM%¢, VA% and WA%¢ from Section 4. .

Throughout the rest of this paper, we note when dealing with U*%<, we will fix
A1, A2 > 0 and let €1, &5 converge to 0. For VA% we will let Ay, A2 converge to infinity; for
WHr%¢ we will fix A\, > 0 and let \; converge to infinity and ¢ converge to 0.

8.1 Preliminaries

Lemma 8.1. For any 1 # x5 and x # x1, x2, we have

lim Ux’f’g(x) = lim Vx’i(x) = lim Wx’f’a(x) = Vi (),

€1,6240 A1,A2—00 A1 —00,e/0
where V% (z) is as in (1.15).

Proof. This result follows intuitively from (1.42) and more details for the proof can be
found in Appendix B. |

Usel—ab < (1—-a)+ (1—0>)forall0 < a,b < 1 to see that for all = so that
|z — 2| >e,i=1,2,

Ui,f,g(x) <i]NI (1 — exp ( — )\iXb(f:;(l))l(XG::ﬂ = 0))

= .22:]1\13,c (1 — exp ( - (N + 4Uoo’1(2))7;

zlea;z’El(x—xl) +UX28;2’82(x—x2), (8.1)

where the first equality follows in a similar way to the derivation of (3.20) and the last is
by (3.18) and by letting

o= A +AUN(2),0 = 1,2 (8.2)

Next we apply 1 —ab > (1 —a) vV (1 =), VO < a,b < 1 to see that for all = so that
| — 2| > e, =1,2,

Ux’i’g(x) > leslﬁ’81 (x—x1) V szg’f"” (x — z2). (8.3)
Similar to the above derivations, one can also show that for all x # z1, xs,
VM (2 —21) VV2(z —x5) < Vx’f(gc) < VM (z —21) + V2 (2 — x0), (8.4)
and for all z # z; and |z — z2| > ¢,

{Wx,f,s(x) < {72! (.’£ _ 1.1) + UX26_2,E(1’ — .TQ), (8.5)

W)‘vf@(ac) > V)\l (.’E _ 5151) \Vi UXQE?Q’E({E — {,CQ).

By (4.1) of [9] we have 4U°>1(2) > 4V>°(2) = )\, and so Xz > \g. Then it follows from
(4.17) of [8] that

UNET e (1) > Vo(x), forall |z] > ¢; fori = 1,2. (8.6)
Together with (8.3), we have for all x so that |z — ;| > ¢;,i = 1,2,

UM () 2 VoS — 1) V V( — 2), &.7)
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and by (8.5) we have for all x # 7 and |z — x2| > ¢,

WA (2) > VA (x — x1) VV®(z — x2). (8.8)

Fix x1 # x9 and x # x1,x2. Let (B;) denote a d-dimentional Brownian motion starting
1

from z under P,. Let ry, = Ao\, *~?,i = 1,2, where )¢ will be chosen to be some fixed
large constant below. Set T, =T, AT} where T} =inf{t >0:|B; — x| <1y} for
1 =1,2. Let A1, A2 > 0 be large so that

0 <4(ry Vry,) <min{|lz — zq|, |z — 22|, |21 — 22|} (8.9)

The following result is from Lemma 9.4 of [19].

Lemma 8.2. For anyt > 0, we have fori = 1,2,

VM) = B (VB AT, ) exp (- /OMTM VAE(B,)ds))

7

Lemma 8.3. Let G = G' N G%2. Then UN®< is a C2 function on G and solves
AU = (UAE)2 on G. (8.10)

Proof. The proof follows in a similar way to that of Lemma S.1.1 of [10] and will be given
in Appendix B. u

Set Ty, =inf{t >0:|B; — ;| < 2e},i=1,2and T. = TJ_ AT5. . Letey,e2 > 0 be
small so that 0 < 4(e; V e3) < min{|x; — x|, |x2 — x|, |21 — 2|}

Lemma 8.4. For anyt > 0, we have fori =1,2,

Uf’f’g(x) -, (U,Xaff(B(t AT.))exp (— /OMTE U ’5(Bs)ds)).

?
Proof. By using Lemma 8.3, the proof is similar to the derivation of Lemma 8.2. ]

Lemma 8.5. Let G = {x : © # 21} N G*2. Then WX js a C? function on G and solves

AW REe — (WH%)2 on G. (8.11)

Proof. It follows in a similar manner to the proof of Lemma 8.3. |

__1
Let ry, = AoA; *~¢ where )\ will be chosen to be some fixed large constant below.
Set T, . = T, AT5 where T, =inf{t > 0: [B; — 21| <y} and T3, = inf{t > 0 :
|B; — x2] < 2¢}. Let Ay > 0 large and € > 0 small such that

0 <4(rx, Ve) < min{|z; — x|, |z2 — x|, |21 — 22|}

Lemma 8.6. For anyt > 0, we have fori = 1,2,

WX,aE’,E _ X,:ﬂa AT e X,f:,e
f (x) = B, (W] (B(t ATy, .c))exp ( — ; %% (Bs)ds) :

K2

Proof. By using Lemma 8.5, the proof follows in a similar way to that of Lemma 8.2. W
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8.2 Proofs of Proposition 4.1 and Proposition 4.3(i)

Given the similarities of the proofs of Propositions 4.1(i), 4.1(ii) and 4.3(i), we will only
give the proof of Proposition 4.1(ii) here and other proofs can be found in Appendix C.

Proof of Proposition 4.1(ii). By symmetry it suffices to consider the case ¢« = 1. Recall
Lemma 8.4 to get

L o Xae, L o X8 SR
72U e) = g Jim (U (BEAT)) exp (~ v (B.)ds)),
where T, = T, A T3, and Ty, = inf{t > 0: |B; — x;| < 2¢;} for i = 1,2. By (5.3), we

have Uf’f’g(ac) — 0 as |z| — oo and Uf’f’g(B(t AT.)) is uniformly bounded for all ¢ > 0.
Apply the dominated convergence theorem to see that

1 Xzz i Tt Sz
= ZEx (1{T2isi<oo}1{T2iEi<T3—i i}gijl o (B(TZ&)) exp ( - /0 U>H ’ (Bs)ds))
- ~1

2e3_

We first deal with /5. Note in the integrand of I; we may assume that |B(T5.) — z2| = 2¢;
and so for e; > 0 small we have |z, — B(T%.,)| > A/2 where A = |z1 — 22|. Apply (5.3)
with z = B(T3,,) to get

2 UM S(B(TE,)) < |B(TZ,) — a1| 7 < A™P2P, (8.13)
1

Let 7, = inf{¢t > 0 : |B,| < r} and use the above and (8.7) to see that I, becomes

TQZE: AN
<rp yexp (- / ’ UA’“(BS)ds)) (8.14)
0

T2eq
S QPA_pEw—Iz (1{7'252 <00} eXp ( - /O VOO(BS)dS))

= QPA_p(252/‘.T —l‘2|)p —0asey |0,

I < PAE, (L <oy lirs
€2

2eg

where in the last equality we have used Proposition 7.1 with g = VV*°.

Now we will turn to I;. Let (Y;,¢ > 0) be the d-dimensional coordinate process under
Wiener measure, P,. By slightly abusing the notation, we set 7. = 7,¥ = inf{t > 0: |Y;| <
r} for any r > 0, and set

Ty, = Toor =inf{t > 0:[V; — (x2 — 21)| < 26} (8.15)

13

Then use translation invariance of Y to get

1 RN T2eq - .
I, = Ezle (1{7—251<oo}1{7'251 <Téa2}PU1)"m’E(YT251 + 1’1) exXp (_ / UA’JE’E(YS + 1’1)d8))
1 0
Recall that P;EQ*”) is the law of Y starting from x such that Y satisfies the SDE as
EJP 25 (2020), paper 106. https://www.imstat.org/ejp
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in (7.1). Apply Proposition 7.1 with g(-) = UM(- + 2) in the above to get

(261 ~2—2) 1 Xze
|x—z1\PEx*“"1 (1{7251<T552}511772U1 (e, F )

coxp (= [T WREAY. o) - v )s))

I =

2P (2—2v) X,f,g
:mEm—an ([1{7—251<T2’E2}] X [&‘%Ul (YTzsl +.731)]
<o (= [T @AW ) BT 1)
0
X {QXP(_/O (U)\N;‘f 781(}/8)_‘/00(}/5))(18)})
o))
T Jall 8.16
|-T—I‘1‘p T—x1 ([Jl][ 2][J3][J4]), ( )

where Xl is as in (8.2) and we have ordered the fours terms in square brackets as
Ji, ..., Jy.
We first consider J,. Recall (4.7) and use translation invariance to get

2 X (1)
Ge!
J2 :]NYWE1 4z (XG';ll (].) I | exp ( — AlT)l(szl/g = 0))
i=1 B

?

Xa., (1)
=Ny, (XGE1 (1) exp ( - Algié) 1(Xq,, ,, =0)
1

X exp ( - )\2?)1()(6?22;;1 = O) .

By the scaling of Brownian snake and its exit measure under the excursion measure IN,,
(see, e.g., the proof of Proposition V.9 in [16]), we have

o =Ny, e, (anGl (1) exp ( M Xe, (1)) 1(Xg,,, = 0)

XG(l'Q/*l'l)/El (1)
X e — 20 V1 (X s ey = 0)
exp ( 2 (52/51)2 G222/2511)/

vy (XGl (1 exp (=2 Xa, (1) 1(Xa, , =0)

XG(wz/*h)/El (1)
x Y L)l(X vaer)e :0) , 8.17
exp ( 2 (o)1) Gl /e (8.17)

where the last equality is by the scaling of Y. Note for any K > 0, we have

To9 — X € To — x1|/2
‘g‘ _2> lz2 = :1|/2 > K for 1, e, small enough,

€1 e1 &1

and so by (2.3) and (2.4) we conclude ]NyT2 -a.e.

X @a—e/e1 (1) = X ya—a1)/e; (1) = 0 for €1, €2 small enough.

ea/e1 e2/2e1
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Therefore an application of the dominated convergence theorem will give us

lim Ny, (Xgl(l)exp ( - AlXG1(1)>1(XG1/2 = 0)

£1,e210
X gteaerrre (1)
X €xp ( _ )\2(262;—51)2)1(XG$2/;:?>/51 — 0))
(Xa, (e ¥ D1(Xe, , = 0))
— Ny, (XG1(1)6*A1XG1<1>1(XGI/2 - 0)) —UMt(2), (8.18)

where the next to last equality is by spherical symmetry and e; is the first unit basis
vector. In the last equality we have used (3.20), (3.19) with € = 1, x = 2¢; and (8.2). In
view of (8.17) and (8.18), we have proved

Jo = €3 UPTE(Yy,., +a1) — U (2) in distribution as 1, £2 | 0.

Since U§1’1(2) is a constant, we conclude that under 1535,2_;?"),
Ty = 2 UMTE(Y,,. + 1) — UpY(2) in probability as &1, &5 | 0. (8.19)
We continue to show that with ngz;?u)-probability one,
Ji =1, <1y ) = Laser,es L0, (8.20)

and
Js = exp (— / (OXEEY, 4 ) — DR (1) )ds)
0
—exp (- / (VE (Y, +a1) — V°(Ys))ds) as e1,e2 | 0. (8.21)
0

Since the drift of {Y;,¢ > 0} as in (7.1) is bounded up to time 7. for any ¢ > 0 and
since Brownian motion in d > 2 does not hit points, we conclude by Girsanov’s theorem
(recall (7.13)) that {Y;,t > 0} does not hit the point 1 — x2 # 0 and so with [:’752_;?”)
probability one,

36(w) > 0 so that |Y; — (2 —x1)| > 6 forall 0 < s < 79, (8.22)
which implies (recall (8.15))

Ty, = oo forall 0 < e < §(w)/2, PP, °"-as. (8.23)

r—T1

Since 7y under ]3922_;?”) is the hitting time 7y of a (2 — 2v)-dimensional Bessel process, it

follows that with Piiﬁy)-probability one (see, e.g., Exercise (1.33) in Chp. XI of [21])
70 <00, PP .as. (8.24)

Therefore by (8.23) we have (8.20).
Fix w outside a null set such that both (8.22) and (8.24) hold. For all 0 < 1,62 <
0(w)/2, we have

|Y5| > 2e7 and |Y5 — (1’2 — 1’1)| >0 > 2e9, forall 0 < s < T2y - (8.25)

EJP 25 (2020), paper 106. https://www.imstat.org/ejp
Page 37/66


https://doi.org/10.1214/20-EJP507
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Boundary local time measure of super-Brownian motion

Now apply (8.1) with Y; 4+ z; in place of = to get
(UA7£’5(1/3 + 1'1) - U)\IE; = (YS))I{O<S<7251}
< [7rees e (Ys = (z2 — 1)) 1{0<s<m., } < [hees e (0)1g0<s<rots (8.26)

where in the last inequality we have wused (8.25) and the fact that
r + UM4(r) is decreasing from Lemma 3.2(b) of [19]. Corollary 4.3 of [9] gives us

Urd(z) < U (z) < 3(4 — d)|z| "2, V|z| > 1 large.
By scaling of U from (1.38), we have for 5 > 0 small,
Uree"22(5) = 652U (6 /e2) < 3(4 — d)5~2 < 652, (8.27)
Combining (8.26) and (8.27), we have for g5 > 0 small,
(UMY, 4 21) — UM (V) Locacn,.. ) < 65 2Locacn)- (8.28)

Since we have 79(w) < oo by (8.24), we conclude the left-hand side term of (8.28) is
bounded by an integrable bound. By (4.38) of [8] we have

limn U "5 (z) = V>°(x),Va £ 0, for any A > 0. (8.29)

Now use the dominated convergence theorem with Lemma 8.1, (8.28) and (8.29) to see
that with P(2 21')-probablhty one,
T2e - . ~ _ To Lo
lim ' (UNE(Y, + 21) — UMEL2(Y,))ds = / (VE(Y, + x1) — V(Yy))ds,
€1,624.0 0 0

thus proving (8.21) holds.
Combine (8.19), (8.20) and (8.21) to see that under P(2 ) , we have

T—x1

~ T0 Lo
Tada U @ exp (= [V 4 ) = V() ds)
0
in probability as €1,¢2 | 0. (8.30)
Recall (5.3) to see that

_ 2 X@',e
J2 - ElUl (YT251

+x1) <efYa,, TP =277, (8.31)

and together with (8.3) we have 0 < JyJoJ3 < 27P P(2 ?”)-a.s. Recalling J; as in (8.16),

we have 0 < J; < 1 by (8.6). By (1.27) and the deﬁmtlon of V% as in (1.15), we have
VRE(2) > V®(x —21) VV®(x — x3), Vo #x1, 0. (8.32)

Now use (8.30) and the bounded convergence theorem to see that

‘Eiz DO Jadsdy) — B (U{\l’l(Q)

T0 Lo
x exp (— / (VOI(Y, 4 21) — V®(Yy))ds) x J4> ‘
0
70
< BE2)(|nads - U2 @) exo (- / (VEI(Y, 4 1) = VE(Y,))ds)])
0

— 0aseg, ezl 0.
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In view of (8.16), we conclude

UM (2)

lim Il =
€1,6240 |£E — x1|P
A~ To - =
x lim Egi;ﬁ”(exp(—/ (VR (Y, + 1) — V(Y;))ds) x J4), (8.33)
€1,e240 0

provided we can show the limit on the right-hand side exists. We claim that there is
some constant C'(\;) > 0 such that

lim EAS__TZ:) (exp (- / (VE (Y, + 21) — Vo (Y5))ds) x J4>
€1i0 0

= COWEZ (eXp (— / (VE(Y, 4+ 21) — VOO(YS))ds)). (8.34)
0
It will then follow from (8.12), (8.14), (8.33) and (8.34) that

lim —— UM () = 22001 (2)C ()

€1,e240 5?7

o= [ (exp (= [ (VR —VE())as)).

and the proof is complete by letting Cy1(\) = 2”U§1’1(2)C(X1).
It remains to prove (8.34). First by the monotone convergence theorem and (8.32),
we have

tim B2 (exp (= [ (VEEY ) - V()
0
—exp (— / O(V&%f(n +21) — VOO(YS))ds)) = 0. (8.35)
0

Since 0 < J4 < 1 for any 1 > 0, it follows from monotonicity and (8.32) that
Ts
~(2—2v %)
’Ea(;—wl )(exp(—/ (Ve
0

~ 7o RN
~ B2 (exp (- / (VHYs 4 ) = V2 (¥)ds) x )|
0

81

(Ve + 21) — VE(Y,))ds) x J4) (8.36)

<BE2 (exp (-~ /075 (VA + 21) — VO(Y))ds)
—exp (- /m(v@vf(ys + 1) — vw(y;))ds)) —~0asdlo
0

uniformly for all £; > 0 by (8.35). Fixing any § > 0, we will show that

A T(s - =
lim Ea(f__fl”) (exp (- / (V2 (Y + @1) — VUYS))ds) x J4>
€1$0 0

— COWER) (exp (- /Té(V&”f(Ys ) — V°°(Ys))ds)>. (8.37)

T—T1 0

Then one can easily conclude from (8.35), (8.36) and (8.37) that (8.34) holds.

It remains to prove (8.37). Recall (ps) is a y-dimensional Bessel process starting from
r > 0 under PT('Y) and let 7. = 72 = inf{t > 0: p; < e}. Lemma 4.5 of [8] implies that for
any A > 0, there is some constant 0 < Cs 35(\) < oo so that for all = # 0,

T2e _
lim B2 <exp ( - / (U VOO)(pS)ds> ’Tza < oo) = Cs3s(\). (8.38)
€ 0
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For 0 < g1 < 0/2 we apply the strong Markov property of (Y;,s > 0) to get
rh(2—2v " X, F 0o
B (e (= [ (VY ) V(L))
T2eq X _a
X exp ( - / (UAMe1 751 (Yy) — V°°(YS))ds))
0
(2—2v ” R, T 0o
:Ef_fl ) <exp ( — / (V ’ (Yg + 1‘1) -V (Yq))ds)
0

< exp ( B /07'5 (UX16;2761 (Y;) R S (YS))ds)

5

% E}(f*z”)(exp ( _/ 2e1 (Uilsfz,sl(ys) — Voo(yg))ds))). (8.39)
0

For the last term on the right-hand side of (8.39), we can use the fact that under
pE), {IYsar,., |, 5 > 0} is a stopped (2 — 2v)-dimensional Bessel process and then use
Corollary 7.3 to get

~(2—2v) T2 Xier2e oo
By (exp (- /0 (U (Y) =V (l@))ds))
- E|(}2/;2IV)(exp ( — /O (UX1€1_2)51 (Ps) o Vm(ps))ds))

_ E§2+2V) (exp ( o /0 (U/\161_t E1 (Ps) _y> (ps))dS) ‘7_251 < OO)
— Cs.38(A1) as ey L0, (8.40)

where the last is by (8.38). Next since § > 0 is fixed, by (8.29) it follows that with

Pﬁ;?")-probability one,
Ts - _
;irj%exp ( —/ (UM 51(Y,) — VO Yy))ds) = 1. (8.41)
1 0

In view of (8.32) and (8.6), with P*~2")

r—T1

-probability one, for any €; > 0 we have

exp /O T VREY, ) — VO(Y.))ds)

coxp ([N - vE(v)as)

x E$;2”><exp (- /O%(lefﬂfl(ys) - V°°(YS))ds)> <1 (8.42)
Combine (8.40), (8.41) and (8.42) to see that the integrand in (8.39) converges pointwise

a.s. as €1 | 0 and is bounded by 1. Therefore we apply the bounded convergence theorem
to conclude

A T{S - =
lim Ef__fly)(exp (- / (V=F(Y, + a1) — V(Y2))ds) x J4)
€1¢0 0

—Coas B (o0 (= [ (VSR ) - vE(r)s)),

and the proof of (8.37) is complete. ]

9 Convergence of the second moments

In this section we will give the proofs of Proposition 4.2 and Proposition 4.3(ii).
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9.1 Preliminaries

Lemma 9.1. For any A1, A2, €1,€2,€ > 0, we have the following holds for all x so that
|33‘—$1‘ /\|JJ—$2‘ > (61\/52\/8).’

—Uljg(x)<m1n{2)\2 |z — xq| Pl 2, 2/\1_1|I’7I2|7p€}2772},
—V7% (x) < min{2); ez 2] (e A 2/\1_1632)\7(1+a)|$ z2| 7P},

-wy #(z) < min{2X\; ez 0] (1+a) |z — 21|77, 2M\[ |z — zo| PeP2}.

H
= She st

Proof. Similar to the derivation of Lemma S.1.2 in [10], it is easy to conclude from the
definition (see (4.8)) that —Uﬁf’g(:c) is strictly decreasing in X € (0,0)2. So we can use
this monotonicity and Uz’\’f’g > 0 (see (4.7)) to get

—U”%) L2 Mg Ui EE g < EU(Al/Q,Ag),i’,s( ) < zlx | el ?
1,2 =\ 8)\/ =772 2 ’
1A /2 1

where the last inequality is by (5.3). The result for —Ul’\fg follows by symmetry.

The proofs for —V1 5 and Wl’\; ** will follow in a similar way by using (5.2), (5.4)
and (5.5). ]

Fix 1 # x2 and = # x1,x2. Let P, denote the law of d-dimensional Brownian motion
B starting from x. Recall r,,, ), and T, as in Lemma 8.2. The following result is from
Lemma 9.5 of [19].

Lemma 9.2. For all \{, Ay > 0 large,

Vi () = ( /0 " z’ljlvf’f(Bt) exp (- /O t VAE(B,)ds ) dt)

Ty

+ By (exp (= [ VIHBIAS) T, < 00)(- V5 (Br,,))).

0

Lemma 9.3. For all 1,5 > 0 small, we have
AN T t N
UM / H UME(B,) exp ( / UA’”’E(BS)ds)dt)
0

T. e
B (o (= [ UN BT < o) (-0 (Br))),
0
where T is as in Lemma 8.4.

Proof. In view of Lemma 8.4, it follows in a similar manner to the proof of Lemma 9.2. W

Lemma 9.4. For all A\; > 0 large and ¢ > 0 small,

B Taye 2 t
W / HW “(By) exp( /0 W’\jfg(Bs)ds)dt)

where T}, . is as in Lemma 8.6.

Proof. In view of Lemma 8.6, it follows in a similar manner to the proof of Lemma 9.2. W
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Lemma 9.5. For any z1 # x2, if |x — 21| A |z — 22| > € for some ¢y > 0, then there is
some constant Cy 5(cg) > 0 so that for all e1,e2 > 0 small,

1 1 NE.E _
0< 555 (U (@) < Cosle0)(1 + |1 — 22*7P), (9.1)
1 2

and for all \; > 1 large and ¢ > 0 small,

/\1+o¢ B
0< == W5 (2))) < Cossleo)(1+ a1 — 22>77). (9.2)
Proof. In view of Lemma 9.3 and Lemma 9.4, it follows in a similar manner to the proof
of Proposition 6.1 of [19] and Proposition 5.1 of [9]. |

9.2 Proofs of Proposition 4.2 and 4.3(ii)

Given the similarities of the proofs of Propositions 4.2(i), 4.2(ii) and 4.3(ii), we will
only give the proof of 4.2(ii) here and other proofs can be found in Appendix D.

Proof of Proposition 4.2(ii). For any x; # x2, we fix any « # z1,2,. In order to find the

limit of &, [ (p_2)(7U1A,’25’5(x)) as €1,¢2 | 0, by Lemma 9.3, it suffices to calculate the
limits of followmg as e1,69 | 0.

11 T2 5 t Sas
K1+K2—€,1)_2€g_2EL( /0 [[v “(Boyesp (- /O UAEE(B,)ds) dt

UNE(B)ds ) 1r, <o) (~U25 “(Br))).  (9.3)

Recall T. = T4 ATi.' where T3, = inf{t > 0:|B,| < 2¢;},i = 1,2. Let e1,e2 > 0 be
small so that 0 < 4(g1 V e3) < |21 — x2].
We first consider K». On {7. < oo}, by considering T. = T4, < T5.' we may set

Br, = By sothat [By; — ;| = 2¢; and [z3-; — By, | > A/2 ‘where A = |z — 22|
Lemma 9. 1 and the above 1mp1y

2
; SATPPEE T2 < cATPEE
251’ A’L Z

This shows that

2 Tgsi NZE
Ka < b 22 cATPeRT ( {Ti.. <oo} {Ti_ <T3;3'ii}eXP(—/0 U ’z’E(Bs)dé’))-

1=1
From (8.14) we have fori =1, 2,

Toey o
1590(1{%1.%_@0}1”g s }eXp(—/O UA’”“E(BS)ds)) < (26i)P|z — ] 7P,

2e3_

and so (9.4) becomes

2
1 1 _ ) _
K2 < 555 cA™ Zgg—i (280)P|z — 2|77
1 &2 i=1
2
SCA"’(&%—&—E%)Z\%‘—xJ‘p—)OaS 1,82 4 0. (9.5)
i=1
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Turning to K7, we first recall

[e'e] 1 1 S ze S ze t -
K :// — s U (BT, ’E(Bt)exp(—/ UNE(B,)ds ) <. dtdP,. (9.6)
0 &1 &y 0

We know T, — oo as €1,e2 | 0 since Brownian motion in d > 2 doesn’t hit points. By
Proposition 4.1 and Lemma 8.1, for Leb x P,-a.e. (t,w), we have

1 Sae o Sms too
lim —— —— U (B U3 (By) exp ( - / U’\’E’E(Bs)ds)l(t <T)
e1,e2d0e] 7 g 0

t
= (M) C1 M) U (BOUS (By) exp ( 7/ v (Bs)ds). 9.7)
0
Recall the definition of Uf‘;’f(a:) as in (1.17). If we can find an integrable bound for the
left-hand side term of (9.7), by the dominated convergence theorem we can conclude
from (9.6) and (9.7) that

shaH{LOKl = 04.1()\1)04,1()\2)(—[]10.;’55(,%)), (9.8)

and the proof will be finished by Lemma 9.3, (9.3), (9.5) and (9.8).
It suffices to find an integrable bound for the left-hand side term of (9.7). Recall (5.3)
and (8.7) to see that

1 1 Sze X7, f S
s U (BT ’E(Bt)exp<—/ UNE(B,)ds ) 1(t < T2 9.9)
€1 &2 0

t 3 —_ =
<|B, — 21| P|B; — 22| P exp ( - / U ’S(Bs)ds)l(t <T)
0

2 t
< Z | Bt — 23| 7P| By — x3—| P1(| By — | < |Br — x3_;|) exp ( - / V> (Bs — xi)ds>
0

i=1
2

t
§2pZ|Bt—xi|_p(|Bt—xi|_p/\A_p)exp(—/ VOO(BS—xZ-)ds),
0

i=1
where in the last inequality we have used |B; — 23_;| > (|B; — z;| V (A/2)) on the set
{|B: — @i| < [Br — ws-il}.

It remains to show that fori =1, 2,

(oo}
Ii::// 1By — ;| P(|By — 2| P A A7P)
0
t

exp ( - / Ve (B, — xi)ds)dthm < . (9.10)
0

Let r. = 2e. For ¢ = 1,2, by translation invariance and the monotone convergence
theorem we have
t

I _Ex_xi(/oooBt|p(|Bt”/\A”)exp(—/ VOO(BS)ds)dt>

0
Tre t
— 13 -p -p -p _ o
hngx,m(/o B[ (|B,| " A A )exp( /OV (Bs)ds)dt). (9.11)

By (S.18) and (S.20) of [10], we have

Tre ¢ QPDA(2)€p72
—p —p —p I S

to4—d
exp ( — / (72)ds)dt) < CAQ_p|x —x;|7P,Ve > 0 small, (9.12)
0 |Bs‘
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where D*(2) = U>-1(2) — UM1(2) with A > 0 large. Therefore we conclude from (9.11)
and (9.12) that I; < oo and the proof of (9.10) is complete. It remains to prove (4.13).
Recall the definition of (—Uf%f(x)) as in (1.17). By (1.16), (8.32) and (9.9), it follows
immediately from (9.11) and (9.12). |

A Proofs of Theorems 1.4 and 1.14 under Py,

We deal with the case Px, for the general initial condition X, and recall S(Xy)
is the closed support of X,. Recall S(X()Z° = {z : d(x,S(X,)) > §} for any § > 0,
where d(x, S(Xy)) = inf{|z — y| : y € S(Xo)}. Similarly we define S(X()>?, S(X,)=° and
S(Xo)<°.

We first give the convergence of £* to £ and L(k)° to £(x) and then find some
constant ¢1 13(k) > 0 so that £(k) = ¢;.13(k)L a.s. Next we show that the support of
L(k) is contained in R N S(X,)° and it follows that the support of £ will also be on
OR N S(Xo)¢, thus finishing both proofs of Theorem 1.4 and Theorem 1.14. Since the
proof for the convergence of £* and Z(n)s are similar, we will only give the proof for the
latter.

Let {¢m}°_; be a countable determining class for Mp(R¢) consisting of bounded,
continuous functions and we take ¢; = 1. Define

X X X
CXo = {wm?k: m?k :d)m'XkO,mZ 1,k > 1}7

, if z € B, N S(Xo)> /¥,
xoo(z) =<0, if d(z, S(Xo)) < (2k) "L or |z| > k+1 (A.1)
continuous, on (2k)~! <d(z,S(Xo)) <k land k < |z| <k + 1.

Corollary 5.5 implies that for any lﬁf’k € Cx,, we have Z(Ii)s(lbﬁ?k) converges in L?(Px,)
to some lN(z/Jiok) and by taking a subsequence we get almost sure convergence. Define
subsequences iteratively and take a diagonal subsequence ¢, | 0 (we may assume
0<ep,<l1foralln>1)toget

L(K)F (o) = 1) as g, L0, forall m,k > 1, Px,-a.s. (A.2)

For any fixed 0 < 6 < 1 we will consider the restriction of {L(r)="} to S(X()Z* and
we write L(k)5" = L(K)""[g(x,)zs (recall p[x () = pu(- N K)).

First we use Corollary II1.1.5 of [20] to see that with P x -probability one there is
some f’'(w) € (0,1] such that for all 0 < ¢ < f, the closed support of X, is within
the region {x : d(x, S(Xo)) < 3(tlog(1/t))'/?}. Pick 0 < B < f’ small enough so that
3(Blog(1/8))*/? < § and hence

RNS(X0)2° C U Supp(Xy).
t>p

By Corollary II1.1.7 of [20] we conclude from the above that for any 6 > 0,
RN S(XO)Z‘s is bounded, Px,-a.s. (A.3)

Next we claim that for any 0 < § < 1 and any ¢, | 0, with Px, -probability one we
have

sup LK) ((R NS(X0)2%)>n S(X0)25> = 0. (A.4)
0<en<d/2
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To see this, we fix ¢ < §/2 < 1. For all z € (R N S(X()2%/2)>1, we have

B:(z) € (RN S(X0)="2)".
Next for all 2 € S(X)2%, we have B.(x) C S(X;)>%/? and in particular
B.(x) C (RN S(X,)=%%)e,
Therefore we conclude z € (R N S(X()2%2)>' N .S(X,)>® would imply B.(z) C R, and
by (2.4) we have X¢:(1) = 0. It follows that forall 0 < e, < 0/2,
Ex, (£(0)° (R 1 S(X0)27/2)>" 15(X0)*7) )

< EXO(/ X(;;;(l) exp ( — ﬁxcg(l))l(?(x) C Rc)dx)

2

= /EXO (ngp(l) exp ( - nXGg(l))l(m C RC))d:z: =0.

2

Thus we get (A.4) by taking a countable union of null sets.
Now use (A.3) and (A.4) to see that with P x -probability one, for M > 1 large we
have

sup L(r)5" ({o:|e] = M}) < sup  Z(r) (RN S(X0)>72)>)
0<en<6/2 0<e,<6/2

= sup L(k)" ((R N S(Xo)2%/2)>1 n S(X0)25) ~0. (A.5)
0<e,<6/2

For any M > 1, by using (A.2) with m = 1, we conclude with P x -probability one, for
k > 1 large, we have

sup E(/@)E“(BM) = sup E(/@)E"(S(Xo)zé NBy) < sup Z(H)E"(XkXO) < 00.
0<e,<6/2 0<e, <6/2 0<e,<6/2

Together with (A.5), we have

sup E(n)g"(l) < sup Z(H)?"(BM) + sup E(/ﬁ)g" ({a: el > M}) < 00. (A.6)
0<e,<6/2 0<e,<6/2 0<e,<6/2

Note (A.5) also implies the tightness of {E(n)g",O < &, < §/2} and together with (A.6),
we get the relative compactness of {E(m)g", 0 < e, < §/2} by Prohorov’s theorem (see,
e.g., Theorem 7.8.7 of [1]). Therefore any subsequence admits a further sequence along
which the measures converge to some T(I*i)g supported on S(X;)Z? in the weak topology.
It remains to check all limit point coincide which is easy to see by (A.2) since Cx, is
a determining class on Mpr(S(X()2?). Therefore for any § > 0, under Px, we have
L(k)s Bl(k)sase 0.

Note by definition, {(k)s and I(k)s agree on S(X,)2? for all § > &' > 0. Take § = 1/k
and define a o-finite measure £(x) on S(X,)¢ by

E(K)‘S(XO)ZU/C = Flv(/i)l/]ka 2 1. (A7)

Thus we conclude E(n)ﬂs(xg)zl/k KR Z(K)|S(XO)21/}9 as ¢ | 0 under Py, for all £ > 1
and by taking a diagonal subsequence, we can find some sequence ¢, | 0 so that
L(k)= S(Xo)Z1/k = Z(H)‘S(XO)Zl/k,vk >1la.ss.asn— o0.

With the construction of Z(m), and by a similar argument for the construction of
L complete under Px,, we now show Px, -a.s. that Z(n) = c¢1.13(k)L. By the above
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construction, it suffices to show that for any £ > 1, we have Px,-a.s. that E(n) ls(xo)21/6 =

C1,13(/€)£‘S(X0)21/k .
Similar to the derivation of (5.18), by Corollary 5.5 and Corollary 5.6, we can get
Px,-a.s. that C4_1(n)£(1/)£?k) = K41 L(k)(420,) for all m, k > 1 and so we have

m,k

04.1(H)£|S(X0)21/k = K4-1‘E(H)|S(X0)Zl/’“ for all k Z 1.

Then it follows that Py -a.s. L(k) = ¢1.13(k)L as noted above.

Finally by using Proposition 5.7, one can show that £(x) (and hence £) is supported
on JR in a similar way to the proof of Theorem 1.3 under Ny in Section 5.2. The
construction of £(x) will then give us that £(k) is supported on OR N S(Xy)¢. The proof
is then complete.

B Proofs of Lemmas 8.1 and 8.3
B.1 Proof of Lemma 8.1
Recall from (1.15) that
VEI(e) = N, ({L7 > 0} U{L™ > 0}) < ox,

where the finiteness is by No(L* > 0) = V*°(z) < oo. Therefore by (4.3) and the
monotone convergence theorem we have

Voo,a’?'(x) _ VX,:B(x) =N, (1 _ 1{L“1:O}N{LT’2:0}) - N, (1 _ e*)\le17>\2L1’2)

=N, (e_lewl_/\szz 1{L1'1 >O}U{Lm2>0}) — 0 as A\, Ay — 0.

Now we will turn to the proof for UV and W<, For any  so that |z — ;| > &, i = 1,2,
we first define K1, K5 by

Xgzi (1) 2
Ky = N (((exp (= A —5)1(Xge | = 0) = 1mizgy) ) (B.1)
Xz (1)
=, ((exp (- 2N )1(XG::-/2 =0)
Xz (1)
— 2exp ( — /\iT)l(XGj?/Q = O)I{Lmq‘,:()} + I{Lmi:o})-
Use Proposition 2.1(i) to see that
Xg=i(1)
K, =N, ((exp ( — 2Ai672)]PXG:Z (Xgz:,, = 0) (B.2)

Xg=i(1) N .
— 2exp ( - Aigi;)lPXGIi (Xgri , = 0,17 = 0) + Px_y, (L™ = 0)).

Apply (1.27) to see that
Xgzi (1)

IPXG:; (L** =0) = exp ( — VOO(EZ')XG:; (1)) = exp ( — )\dgié),
and as in the derivation of (3.20), we have

Px ., (Xg= =0) zexp(—4U , (2)72)

/2 B
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Use Proposition 2.2(i) to get
Pxgr (X, =0,L7 =0) =Px_,, (1(XG:? =0)Px_., (L™= 0))

G, /2
= Px, (Xgn, =0).

£;/2

Returning to (B.2), we have

K; :]Nz(exp ( (2N AU (2)) 0 (B.3)

— 2exp ( (Ot 4U°°71(2))XG71()

Xee=i(1) .
<IN, (exp (= A ) —exp (= (A + 401 (2) =2
E’L
—y NI () — UM (p — ) — O as & L0,

where the secongi equality is by (3.18) and the convergence to 0 follows from (8.29).
Turning to UM®¢(x), for 1,5 > 0 small enough, by definition we have

[=U*5(z) = Vi (z)
=N, (1 — H exp (

-, (1{“120}1{”2:0} chp( XGIi(l))l(XG?/Q - 0)).

2

XG” (1))

’L

1(Xgm: , = 0)) - N, (1 - 1{L1‘1:0}1{L$2:0}>

By Jensen’s inequality we have

<% ([T (- )10, =00 hm-antsnn) )
i=1
2

— l{re1=0y exp ( - Az)(bg(D)l(chj/z = 0))2)
+2]Nx(<1{Lw1:0} €xXp ( >\2XGI2())1(XG:§/2 =0)— 1{L“'1:0}1~{L”2:0}>2)7

2
where the last inequality is by (a + b)? < 2a? + 2b%,Va,b € R. Then we have

I’ < 2]Nw((exp( )\1)(62()) (XG:;/Q =0)— 1{Lz120})2)
+2]Nz((exp( )\2)((;;:()) (Xg;g/ =0)— 1{“2:0})2) = 2K, + 2Ky — 0

ase1,62 10 wherg we have used (B.1) and (B.3) in the last line.
Turning to W*#¢(z), for ¢ > 0 small enough we have

J= Wx,f,s(x) _ Voo,i’( )

g ez (1)
= ]Nx (1 — € A L1 exp ( AQ?)I(X ”?2_0)) ]NI (1 — 1{[1“’1:0}1{1412:0})

A L® Xgz2 (1)
= ]Nw <1{Lm1:0}1{L’”2:0} — € A LT exp ( — AQ?)l(XGJQ = 0))

e/2
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By Jensen’s inequality we have

_ T XGIQ (1) 2
72 gmﬁ((e NI o ( - AQ#)MXG:?Z —0)— 1{”1:0}1{”2:0}) )

_ z XGJ:?(l)
<N ( (e e (= 2075 )1 (X, =0)

ggermgy e (- )\QX%;(Uﬁ(XG:?Q - 0))2)

+ 2]Nm<(1{ml:0} eXp ( - AzX%;(l))l(XG:}Z =0)— 1{L”1:0}1{L$2:0})2)
<2IN, ((e_Alel - 1{Lw1:0})2) + Q]Nm((eXp ( - )\2X%;(1)) L(x jep =0) — 1{L’”2:0})2)

e/2

<ON, (e*%”l 1(1m >0}) 2Ky — 0,

as A1 — oo and ¢ | 0 where we have used the monotone convergence theorem and (B.3)
in the last line.

B.2 Proof of Lemma 8.3
Recall G = GZ! NGE2. For all x € G we let

o 2 Xeei(1
u(z) = UM = ]NT(l - Hexp ( AN )1(XG::/2 = 0))
Define
N =\ + AU (2),i=1,2, (B.4)
and recall (8.1) to get for all x € G,
u(w) < UM 9 (2 — ) + U292 (2 — 1) < Mgy 2 4 oy %, (B.5)

where the last inequality follows from that r — U™¢(r) is decreasing by Lemma 3.2(b) of
[19] and that U’\’E(s) = \. Next, for any 2’ € G, let D be an open ball that contains 2/,
whose closure is in GG. Use Proposition 2.1(i) to see that for z € D,

)= 1= oo (075 iy, =)
i=1 2 '
w1 (o (-3, =01)
i=1 i

=N, (1 — exp ( — /u(y)XD(dy)))a

the last equality by (4.6) with Xy = Xp. Therefore

u(z) =N, (1 — exp < - /u(y)XD(dy))>, Vz € D.
Note u is bounded in G by (B.5), and hence on 9D. Use Theorem V.6 of [16] to conclude
Au(z) = (u(x))?, Vo € D, and, in particular, for z = 2.

Since ' is arbitrary, it holds for all z € G.
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C Proofs of Propositions 4.1(i) and 4.3()

Proof of Proposition 4.1(i). By symmetry it suffices to consider the case ¢ = 1. Recall
Lemma 8.2 to get

ATy

AlFayXE () —plta lim E, (vaf (B(tAT,.,))exp ( - / vxf“(Bs)ds)),
— 00 0
. __1
where o, =T, AT? andT; =inf{t>0:|B;—x;| <ry}. Herery, =), " and
we will choose A to be some fixed large constant below. By (5.2), we have l/ff(x) —0

as |z| — oo and V;"*(B(t A T}.,)) is uniformly bounded for all ¢ > 0. Apply the dominated
convergence theorem to see that

MOV @) =2 By (L, <oy VY (B(T) exp (- /O VA9(B,)ds))
2
« X,i‘ i
;Ex(l{TﬁAi<oo}1{TﬁM<T§>\;’i})\%"‘ V(BT )

exp ( . /OTi” Vx’f(Bs)ds)) =1, + . (C.1)

We first deal with I. Note in the integrand of I> we may assume that |B(TT2A2) — o] =7y,
and so by (8.9) we have |z — B(T?, )| > A/2 where A = [z; — 2. Apply (5.2) with
x = B(T7?,)) to get

MFVIE(B(T2, ) < e32|B(T2) — 21| P < c32A7P27. (C.2)
Let 7. = inf{t > 0: |B;| < r} and use (C.2) and (8.4) to see that I> becomes
T2
o 5w
I < ¢392"PAPE, (1{T?A2 coorlizz, <m, yexp ( - /0 v (Bs)ds)) (C.3)

TT/\

< c322PATPE, (l{nA <oo} €XP ( - / ’ VA2 (Be)d5)>
2 0

Ty, < oo)

|z —w2|

= c322P AP} |o — x2|_pE(2+2y) (exp (/ " (Voo — V)‘Q)(ps)ds)
0

< C3,22pA_p7“§2|.13 — J,‘Ql_p(jgﬁ(/\o7 v, 1) — 0 as /\2 — 00,

where we have used Proposition 3.7 in the equality and we choose \g > ¢35 to apply
Lemma 3.5 in the last inequality.

Now we will turn to I;. Let (Y;,¢ > 0) be the d-dimensional coordinate process under
Wiener measure, P,. By slightly abusing the notation, we set 7. = 77 = inf{t > 0: |Y;| <
r} for any r > 0, and set

Ty, =T,  =mf{t > 0: Y, — (z2 — 21)] <7} (C.4)

r>\2
Then use translation invariance of Y to get

’7'r,~>\1

L=FE; 4 (1{nAl <ooplfr, <11 MV (7,) 4 11) GXP(—/ VA, + xl)ds))-
0

H(2—2v)

Recall that Py is the law of Y starting from z such that Y is the unique solution of
A t
Yt:x—FBt—l—fO(—V—u)&/Tslgds, t <719, C.5)
Y—t = 07 t 2 70, '
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where B is a standard d-dimensional Brownian motion under P$(2_2”). Apply Proposi-
tion 7.1 with g(-) = VA¥(- 4 z;) in the above to get

Tp v %
I :#E@_ 2 )(1{77/\ <T7{A2}>\i+ozv1)\, (Y(T',-Al) + 331)

| — 21|P
X exp ( - / B (Vx’f(K; + 1) — VOO(YS))ds))
0
~(2—2v at NE
=B ><[1{T%<T;A2}][m%+ VMY (7,,) + )]

< [exp ( - /0 VR, a0 - VI (v))ds) |
(

TT‘)\
<Jow ([0 vy W])
0
1 ~(2—2v)
=k J1)[J2][Js][J. C.6
|x—x1|p T—21 ([ 1][ 2][ 3][ 4]) ( |
where we have order/evd the fours terms in square brackets as JNl, o ,J~4,

We first consider J>. Recall (4.9) and use translation invariance to get
T =8 ANy (e, i, (L“” exp(—\ L% — AQLM))
=% ANy, )<L exp(—ML° — /\2L””2*””1)>.

By the scaling of Brownian snake and its local time (L*°) under the excursion measure
IN.. (see, e.g., Proof of Proposition V.9 in [16]), we have

1
Ty =R NNy (1 e, (%

2_ _3\4A—djo _ 4*dL(12*11)/7',\1
1

law \ p4+-2—d 0 A4 =0 _p,pdmdp@2m@1)/may
:>\O INY(ﬁ)<L e " e ) (C.7)

A0, ~Mri L fAQT‘ide‘”"T“”%)

where in the next to last equality we have used the definitions of ry, and a and the last
equality follows from the scaling of Y. Note for any K > 0, we have

‘wz —n } > K for \; large enough,

and so by the compactness of the support of SBM (see (2.3)), we conclude Ny (- )-a.e.,
LE2=21)/m = for \; large enough.
Therefore an application of the dominated convergence theorem Theorem will give us

lim Ny, (LO exp(—Ag L — Azrifdﬂ“_”)ml))

)\1,A2—>OO
d

- - Ao~
Ny (L0 exp(—AFTIL) ) = N, (L0exp(-Ag L)) =V (1), (€®)

where in the next to last equality we have used spherical symmetry and e; is the first
unit basis vector. The last equality follows by (3.2). In view of (C.7), we have proved

4—d
Jp = . )\H“V Ty (Try,) + 1) 4 Ag“*dvﬁo (1) in distribution (C.9)
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£ (2—2
as A1, Ay — 00, and furthermore, under P;_zl”) we have

Jp = 2 ey REy AP+2=dy% " (1) i probabili C.10
2 =13, A V(Y () H 1) = Ag 1° (1) in probability (C.10)

4—d
as A\, Ay — oo since Ag“—dvfo (1) is a constant.
By (8.20), with Péi;?”)-probability one we have

Ji=1ir, <ry y = las A, Ao — oo, (C.11)

2v)

As for (8.21), we use Lemma 8.1 to see that with If’z(z_;l

-probability one,
=eo (- [ IV ) - VY (v))ds)
Sexp (- /OTO(V Yt a) - VR(Y))s) as A de oo, (CA2)
Here one can see from (8.4) that

0 < VA(Y, 4 21) = VI(YS) S V(Y = (22— 31)) < VY, — (20 — 21)),

and so apply the dominated convergence theorem as before.
Combining (C.10), (C.11) and (C.12), we conclude that under P>,

Tidady = NN (1 exp (- / P WY ) - V(Y,))ds)
in probal(;ility as A1, Ay — 0. (C.13)
Recall (5.2) to see that
T = f APV (7,,) + 21) <18, 02l (7, ) 77 = a2
Use (8.4) to see that j; < 1 and so conclude

Tidads < ¢z, PP as. (C.14)

r—I1
Recall (8.32) and use (C.13), (C.14) and the bounded convergence theorem to get
. ~(2—20) pt2—dyAe? B [Py _ 1yo0
i B (5 e (= [0 ) - V(7))
N2
- J1J2J3) ) —0. (C.15)

Recalling JN4 as in (C.6), we use the fact that under ]5(2_2”), the process {|Y5MTA l,s >0}
1

r—T1
is a stopped (2 — 2v)-dimensional Bessel process and then use Corollary 7.3 to get for all
/\1 >0,

~(9_9y) 2 A (9—2 Tra
B2 = B2 (oo (2 [ (v - VA (v))ds))
0

072 (o (2 [ V(0 - VA p)s))

2+42u ™
:E\(xle\) (exp (2/0 (V=(ps) — V)‘(ps))ds) Try, < oo)
<C3.5(Ao,,2) < o0, (C.16)
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where we have chosen \y > ¢35 so that we can apply Lemma 3.5 in the last inequality.
Now we can conclude that

A ~——— o~ ~ 4—d
’Ea(i_giy)(J1J2J3J4) - B2 (/\g+27dV1A° (1)

r—I1

X exp ( — /OTO(V&’E(YS + 1) — VOO(YS))ds) x :71)‘

ne-2) (7 |5 EFRSVEL
SER2) (T [Ty = 0 )

|z
<exp (- / VR, 4 ) - VE()ds))

A — 1/2 , . —— 4—d
< (E(2_2V)(J42)) (E(z_QV) (J1J2J3 - )\8+27dv1/\0 (1)

r—I1 r—I1

1/2

<exp (- /OTO(V SE(Y, 4 an) — V°°(Ys))ds))2) 50

as A1, A2 — oo, where the second inequality is by the Cauchy-Schwartz inequality and
the convergence to 0 follows from (C.15) and (C.16). In view of (C.6), we conclude

Lo g Al
=2 VM)
A1,A2—00 |£C — l‘l‘p

i B2 (exp (= [0S ) - vR())as) - ),

/\1,)\2*>OO

(C.17)

provided we can show the limit on the right-hand side exists.
Recall Cs 5(Ao, v, 1) as in Lemma 3.5. We claim that

. a(2-20) A _ o A
Jim BE (eXp( /0 (VRE(Y, +2,) — V (YS))ds) J4) (C.18)
To

=Cas (o, DEZ (exp (= | VAVt ) —VE(Yi))ds) ).

r—T1

s—

It will then follow from (C.1), (C.3), (C.17) and (C.18) that

NS 4—d
lim AV () = MRV (1)C (0,4 1)

>\1,)\2—)OO

@ — g | PEP) (exp ( - /OTO(VW(YS ) — V°°(§§))ds>)7

4—d
and the proof will be complete by letting K, 1 = Ag”—dvﬁo (1)C3.5(Xo, v, 1). Recall ¢35
as in Lemma 3.8 (see (3.11)) to conclude K41 = c35.

It remains to prove (C.18). First by (8.32) and the monotone convergence theorem,
we have

lim B2 (oxp (= [ V=0 00 - vE(v)s))

- B2 (exp ( - /OTO(V‘;O’ (Vs + 1) — V”(YS))ds)) ’ —0. (C.19)
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Since JN4 has an uniform L? bound for all A\; > 0 by (C.16), by Cauchy-Schwartz we have

20 (exo (- / VRV, a0) — VE(Y))ds) x T (C.20)
0 o
~ B2 (exp (- /0 VY, + 1) - VR(Y))ds) x )|
<(B ) (B (e (- [0SR ) - vEr)as)
2\ 1/2

—exp(—/OTO(V&j’f(Ys—Q—m)—VOO(YS))ds)> )" s o0asslo

uniformly for all A\; > 0, where the last follows from the monotone convergence theorem
and (C.16). Fixing any § > 0, we will show that

Ts oL .
lim B2 (exp ( - / (VT (Y, 4 21) — VOO(YS))ds> : J4) (€.21)
)\1*)00 0
Ts5
=Cs5(No, v, P2 (exp ( - / (VRE(Y, + 1) — V°°(Ys))ds)>,
0
and one can easily conclude from (C.19), (C.20) and (C.21) that (C.18) holds.

It remains to prove (C.21). For ry, < § we use the strong Markov property of
(Ys,s > 0) to get

B2 (oxp (= [ 00 ) - v ()s)
x exp ( /0 T e VA (V)ds ) )

—EE) <exp (- /0 "R, 4 ) — VS (Yi)ds )
coxp ([ () - v (v)ds)

x B2 <exp (/ Ve (Ys) — v s))ds))). (C.22)
0
Using Corollary 7.3 as in (C.16), we have

B (o ([ 072 (v - v vas)
=53 (e ([ 000 - v )i
= B2 (e ([ V() — V(o))

0
T C'?,,5(/\07 v, 1) as \; — o, (C.23)

Try, < oo)

where the last follows from Lemma 3.5 by choosing A\g > c3.5. Next since J > 0 is fixed,
we have

Ts
lim exp(/ (V2(Y,) — V(Y. ))ds) —1,P*as. (C.24)
/\1*)00 0
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In view of (C.23) and (8.32), with Pﬁ;?”)-probability one, for any A\; > 0 we have

Ts Lo
exp(—/ (VF (Y, 1) = VS(Y,))ds
0
Ts
coxp ([ (V=) - VA v)as)
0
(0_9, Tray
x B2 (exp (/O (V=(Y,) =V (Y,))ds ) )
75
< exp (/ VOO(YS)ds) - Cy.5(00, 1, 1). (C.25)
0
Similar to (C.23), we apply Corollary 7.3 and Lemma 3.4(i) to get
R _ou Ts _oy Ts5
B2 )(exp ( 0 VOO(YS)ds)) = 5272 (exp (/O V‘X’(ps)ds)) (C.26)
Ts5
:E‘(jfff‘) (exp (/0 Vw(ps)ds) ‘75 < oo)
T1
=B 25 (oo /0 V< (po)ds )| < o) = (o — 1] /) < ox,

where the second last equality is by scaling of Bessel process. Combine (C.23)-(C.26)
to see that the integrand in (C.22) converges pointwise a.s. and is bounded by (the

integrable) exp ( fg‘s V°°(Ys)ds> - C3.5(Xo, v, 1). Therefore by the dominated convergence
theorem we conclude that

A~ T(S — =
lim E£2_121V) (exp ( — / (VR (Y, + 1) — VOO(Ys))dS)

)\1—>OO 0

X exp (/OT (Ve - VM)(YS)ds))

. (9—ay Ts oo
=C3.5(\o, v, 1)E’£2,m21 )(exp ( — /0 (Vor(Ys + 1) — VOO(YS))ds)),
and the proof of (C.21) is complete. ]

Proof of Proposition 4.3(i). We will only give the convergence of /\}“‘Wl’\’f’s(x) and leave

1
ep—2

the details for the convergence of WQ’\"E’E(J;) to the readers. Recall Lemma 8.6 to see

that
- - tATx, e -
MW @) = Al B (W BT, e (< [T WRB)as)).
> 0

where Ty, . = T, AT and T} = inf{t > 0: |B; — 21| < ry,} and 75, = inf{t > 0 :

__1
|B: — z2| < 2¢}. Here ry, = M\, '~ and we will choose Ay to be some fixed large

constant below. By (5.4), we have Wx’f’e(x) — 0 as || — oo and WE’E’E(B(t ATy, ) is
uniformly bounded for all ¢ > 0. Apply the dominated convergence theorem to get

Aty iae g (C.27)

1 X, @,e T X2
A (1, e W BT, Desn (= [ WA (B)as) )

Tl
AL

=Ly, <oolimy, <y MTOWDT (BT, ) exp ( - / WA (B,)ds ) )

+ Be(Lrg <o Lz s AW (BT exp ( — / WAT(B,)ds) )

S:.[1 -+ IQ.
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We first deal with I5. Note in the integrand of I> we may assume that |B(T%.) — xa| = 2¢
and so for e < |21 — 72|/4 we have |z; — B(T%.)| > A/2 where A = |21 — z2|. Apply (5.4)
with z = B(T%) to get

AW (B(TL)) < 59| BTE) — 21|77 < 5047727, (C.28)
Let 7. = inf{t > 0: |B;| < r} and use (C.28) and (8.8) to see that I> becomes

2
T2 &

I < 03.22PA_pEw(1{T225<oo}1{T§5<T1})\ } €Xp ( - Wx’f’E(Bs)dSD
1

T2e
< c322PATPE, ., (1{Tzs<oo} exp ( — / VOO(BS)ds))
0
= c3.92? A7P(2e/|x — 23])? = 0ase |0, (C.29)

where we have used Proposition 3.7 in the last equality with g = V'*°.

Now we will turn to I;. Let (Y;,t > 0) be the d-dimensional coordinate process under
Wiener measure, P,. By slightly abusing the notation, we set 7. = 7,7 =inf{t > 0: |Y;| <
r} for any r > 0, and set

Ty =T =inf{t>0:|Y; — (zy —x1)| < 2¢}. (C.30)

Then use translation invariance of Y to get
X,7,
I, = Ezfa:l (1{Tr>\1 <c>o}1{7'r>\1 <T2’E}Ai+aW1 m E(Y(TTM) + 1’1)

cexp (= [ WA, +anas)).

Recall that 15,15272") is the law of Y starting from x such that Y satisfy the SDE as in (C.5).

Now apply Proposition 7.1 with g(-) = Wx’f7€(- + 1) to get

P
TA [(2—2v o X,i",e
L :mEi_zl >(1{m1<T5€}/\}+ W (Y (7ry,) + 71)

X exp ( - /OTTAl (WA (Y, +21) — VOO(YQ))ds))

1 ~(2—20 XE
E——T a(L'—J;l )<[1{m1 < IS MTOWTE(Y (74, ) + 1))

X {exp ( — /OTU1 (WX"%’E(YS + ) — yM (Ys))ds)}

% [exp / v —vwm)ds)})

LB (L), (€31)

'_|{L‘—Z‘1‘p Tr—T1
We first consider J,. Recall the definition of Wf’f *“ as in Section 4 and use translation
invariance to get

A a 1 M L Xge2(1)
Jo :Til)\}+ ]NY(TTM ), (L”le A1 L71 exp ( — Ao ;72) l{XGI?2:O})

X opeer (1)
1+a 0,—XL° G:
:7"2;1)\1+ ]NY(Tr/\l ) (L e 1 exp ( — )\QT) 1{XG:D?2—3:1 :0}) .
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By the scaling of Brownian snake and its local time and exit measure under the excursion
measure N, (see, e.g., Proof of Proposition V.9 in [16]), we have

Jo :rfl)\ﬁar;f]l\ly(nh )/7ay <r§1_dL0 exp(f)\lril_dLO)

e/r
21 )1(X (wa—w1)/7x, =0>

X € — Ay
e ( ’ (e/ma,)? GE/27‘)\1

XG(”JZ*WI)/T)\l (1) >

Use the definitions of ), and « to see that the above becomes

o =N Ny, e, (L0 exp(=X§77L0) (C.32)
XG(U—Q*”—'I)/"')Q (1>

E/TAI
coxp (et VI(X e, —0))
CENE S

la:wAngZfd]Ny(ﬁ) (LO exp(—A=1L0)
AXGOEQ*M)/T)\1 (1)
e/r
" exp < —h (;/1”1)2 )1 (XG(’”Z*”)/”l - 0))’

/275,

where the last equality follows from the scaling of Y. Note for any K > 0, for all
0 <e < |y —x2]/2, we have

£ lm—2/2

’ T2 — T > K for \; large enough,

T2 ‘ Ta, (W

and so by (2.3) and (2.4) we conclude ]Ny(ﬁ)-a.e.

XGW_M)/TAl (1) = XGW_W/TAl (1) = 0 for A, large enough.

£/maq /27y,
Therefore an application of the dominated convergence theorem Theorem will give us

X (wa—w1)/rx, (1)

a?
li N . (LO —XéidLO (_ by E/r/\l—)l(X 2o z) /1 — O))
AI%IOISEJ(O Y (71) e exp 2 (g/rAl)Q Gi/imf)/ AL
— — 4—d
:]Ny(ﬁ)<Loe’)‘3 dL“) =N, (Loe**‘o‘ dL“) =V (1), (C.33)

where in the next to last equality we have used spherical symmetry and e; is the first
unit basis vector. The last equality follows by (3.2). In view of (C.32), we have proved

7 Py lt+aphge pr2—di AT N s e e
Ja =1y AW (YnAl +x1) = Ap Vi (1) in distribution
as Ay — oo, ¢ | 0, and furthermore under If’f_ﬁ"), we have

Jy = P ARy 4y o APy (1) in probabilit (C.34)
2 =T\, M 1 Ty, T 1 0 f p y )

. —dy AT
as A; — 0o, | 0 since N3PV (1) is a constant.

By (8.20), with P*~*")-probability one we have

1

Ji = Ur, <1yy — 1as A — 00,6 |0, (C.35)
1 £
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2v)

As for (8.21), we use Lemma 8.1 to see that with PS_;

-probability one,
Ja=exp (= [ VARY, 4 a) < V) ds)
0
To
N eXp ( - / (VOO,:L’(YG + 'Il) _ VOO(YS))dS) as Al — 0078 \l, 0 (C36)
0

Here one can see from (8.5) that
0 < WAE(Y, +a1) = VM(Y,) S UM 5(Y, — (22 — m1)), (C.37)

where Xg is as in (8.2). Then argue as in the derivation of (8.27) and apply the dominated
convergence theorem as before.
Combine (C.34), (C.35) and (C.36) to see that under P(272V), we have

r—T1

A A A 4—d
JiJads — AETETAY

(1) exp ( — /OTU(V&”’?(YS + 1) — VOO(Ys))d5>
in probability as A\; — oo,e | 0. (C.38)
Recall from (5.4) to see that
o S MW (1) 4 1) <78, ol (7, ) 7 = e
By (C.37) we have jg < 1 and so conclude
Jiods < es9, P as. (C.39)

Recall (8.32) and use (C.38), (C.39) and the bounded convergence theorem to get

lim EA’f__fly) ((Ag”fdvl/\éid(l) exp ( — / (VE(Ys + 1) — Voo(ys))ds)
0

A1 —00,el0

N2
- J1J2J3) ) —0. (C.40)
Recall JN4 from (C.6) to see that
Je=e ([ =) - v )s) = T
0

By (C.16) and by choosing A\g > c3.5, we have

2

EC2 03,5 = B229(0,7%) < Cus (Mo, 1,2) < 00,YA1 > 0. (C.41)

r—T1 r—T1

Now we conclude

N A A A A ~ 4—d
E(Q’QV)(J1J2J3J4) _ E(zfzu) ()\10)+2—dV1>\0 (1)

rT—x1 r—x1

exp ( _ /OTO(VO“O@(YS Ya) — V°°(Ys))ds) : j4)’

~ ~ A A A 4—d
<BC) (J4 : ‘J1J2J3 —aprdye ()

|z—z1]
exp ( - /OTO(VO*OF(YS tay) - V°°(Y;))ds) D
B2 (N e (= [0 ) - vo(v))as)

_ j1j2j3)2)1/2 (E(2’2V)(j42))1/2 —0as A\ = 00,e /0,

r—T1
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where the second inequality is by Cauchy-Schwartz and the convergence to 0 follows
from (C.40) and (C.41). In view of (C.31), we have

lim Il
A1 —00,e]0
4—d
ARTZdy o Ty (22 T . - .
= e B (exp(*/o (VI +00) = VE(V))ds) - o)

)\p+27dVA{§*d 1 oo o
= 20 W e ) g‘;;)(exp(—/ (VRE(Y, + 21) — VOO(Y'S))ds)),

a |z — z1|P 0
(C.42)
where the last equality is by (C.18) (recall Jy = j;).
Now we conclude from (C.27), (C.29) and (C.42) that
T - 4—d
lim  AFFOWT (@) = MR (1)Cy 5N, v, Dle — | 7
A1—00,e]0
A TO - =
B2 (o (= [0 ) - vE()s) ).
0
and the proof is complete. |

D Proofs of Proposition 4.2(i) and Proposition 4.3(ii)

Proof of Proposition 4.2(i). For any x; # xo, we fix  # x1, 2. In order to find the limit

of Ai*“/\;r“(—l/ﬁf(sc)) as A1, A2 — oo, by Lemma 9.2, it suffices to find the limits of the
following as A1, Ay — o0.

2 N to
K+ Ky = A}*aA;ME / H VA (B,) exp ( - / V’\’“'(Bs)ds) dt)
il 0
paltelta g ( exp ( / v f(BS)ds) Lz, <oo)(=Vi5(Br,, ))). (D.1)

__1
In the above T, =T} /\T2 and T}, =inf{t > 0:|B; — ;| <r),}. Herery, = Ao, 7
and we will choose )\0 to be some ﬁxed large constant below. Let A1, A5 > 0 be large so
that

0 < 4(ry, V7ra,) <min{|zy — x|, |z — x|, |21 — 22|} (D.2)

zx(w) = B(T,,) = B(T}, ) so that |z) — 2;| = rx, and by (D.2) we have |x3:1 —xz\| > A/2
where A = |z; — 25|. Lemma 9.1 and the above imply

We first consider K». On {T;, < oo}, by considering T;, = T};, < T} we may set

1 1

X,fﬂ 2 (1+0¢)
(=Vis"(B(T},))) < el ATTY <en” p}\Hax.

X

This shows that

1 1

14+ay 1+«
Ky < ATON Z cA” PAHQ/\

i=1

Er(1(Tjki < UT], < T Jexp ( - /OT'Z* (B, )ds)) (D.3)

<
>
&y
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From (C.3), by choosing A\g > ¢35 we have for: =1, 2,

i
T‘I'A.

EI(1(T;M <o) U(T}, < T3 i)exp(— /0 : Vx’f(Bs)ds»

<78 o — x| "PCs5( Mo, 1, 1), (D.4)

and so (D.3) becomes

2

«a «a — 1 1 —
K2 S/\%—i_ )\%4— 'CA p Z )\:1))"'(,1 )TT{JI’ — SCZ‘ p03_5()\0, v, 1)
i=1 7'3—i 7
2 a2 2
SCATPARA T 4+ 20, 7)) e — i TP = 0 as Ay, A — o0, (D.5)

i=1

where in the last equality we have used the definitions of r, and o.
Now we will turn to K. Recall

[e%s) - > t o
Ky = / / ALty AT (B VAT (B exp ( - / V’\””(Bs)ds)l(t < T, )dtdP;.
0 0
By Proposition 4.1 and Lemma 8.1, for Leg x P,-a.e. (t,w), we have

- - . to
lim ANV BV (B exp (- / VA (B,)ds)1(t < T5,)
0

)\1,)\2—>OO
t
= K2, UX%(B)US ™ (By) exp ( - / V°°’$(Bs)ds>. (D.6)
0
Use the bounds (5.2) and (8.4) to see that

- - toL
ANV BV (B exp ((— /0 VA(B,)ds)1(t < Th,)

t N
<3 o] By — 21| 7P| By — w2 Pexp ( - / VA’m(Bs)dS)l(t <T,)
0

2
<35 Y |Bi—a1|P|By — a| PU(|By — wi| < |By — 234))
i=1
t
exp ( - / V*i(Bs — xi)ds>1(t <T.)
0
2 t )
<c2,2PATP Z | By — ;| P exp ( — /0 V*i(Bs — xi)ds)l(t < Tﬁxi), (D.7)
i=1

where we have used |B; — z3_;| > A/2 on {|B; — 2;| < |B; —x3_;|} and T,,, <7} inthe
last inequality. It is clear that for Leg x P,-a.e. (t,w) we have

t
lim |Bt _ -Ti|_p exp ( _ /0 V>\71 (Bs — ajl)ds) 1<t < T:/\L)

i —00

t
=|B; — ;| Pexp ( — / Ve (Bs — xi)ds). (D.8)
0

In view of (D.6), (D.7) and (D.8), if one can show that for: =1, 2,

oo t
lim // |B; — x;| P exp ( - / V*(Bs — xﬁds)l(t < T} )dtdP,
0 0 ‘

Ai—00

0 t
_ // B, — 2] P exp ( —/ Vo (B, — xi)ds)dthx < o0, (D.9)
0 0
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then a generalized the dominated convergence theorem Theorem (see, e.g., Exercise 20
of Chp. 2 of [4]) implies that

im K- lim / / ALty Xd(pyyAE )
0

)\1,)\2*}00 )\1,)\2*}00

t Y =
exp( /V”( S)ds)l(th”)dthm

t
—K41// US(B,)U. (Bt)eXp( /Voa’f(Bs)ds)dthT
0
_ K2 (~US (@ (D.10)

where the last is by (1.17). The proof will then be finished by Lemma 9.2, (D.1), (D.5)
and (D.10).

It remains to prove (D.9) and it suffices to consider i = 1. We first show that for any
0 < g <6—p, we have

oo t
sup// |B; — x1]” % exp ( — / VMNB, — xﬂds)l(t < Tﬁk)dthI < 00. (D.11)
0 0

A>0

Assuming the above, we can apply Fatou’s Lemma to see that
o] t
// 1B, — 21|~ exp ( - / Vo (B, — xﬂds)dthz (D.12)
< hmmf// |By — x|~ qexp / VMNB, — x ds) (t< Trlk)dthz < 00,

thus giving the finiteness in (D.9) (recall p € (2, 3)).
To see that (D.11) holds, by Fubini’s theorem and translation invariance we have

o] t
V= [ [ 1B m e (< [ VAB - o)1 < 7 dear,
0 0

:/000 B, 4, (|Bt|7‘1 exp < _ /Ot VA(Bs)ds)l(t < Tm))dt, (D.13)

where 7. = inf{t > 0 : |B;| < r} for any r > 0. Let u, v are as in (1.13) and then apply
Lemma 3.6 to get

Ey—u, (|Bt|*qexp ( - /t VA(BS)ds)l(t < Tm)) (D.14)
0
=B (ot esp (— [ VApas)10 < 7,0)
’ t
o =B (e ([ (7% =V s s, ).

where we slightly abuse the notation and let 7. = 7# = inf{¢t > 0: p; < r} for any r > 0.
Use the above to see that (D.13) becomes

o t
v— 242v v+p oo
1) = e = [ (o e ([ V=V (p0ds) L, )

T t
v " —q—Vv o0
o= B2 ([ e ([ - v pads)at).
0 0
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where the second equality is by Fubini’s theorem. Now use the scaling of Bessel process
1
and V>°,V? (recall ry = \gA~717) to see that

T1 t 4
1) = o =B, ([ e ([ v pu)as)ar)

T1 t
< ‘3? — |V_HE|(;E2iril:\)/m (/0 T?\—q—u-i-upt—q—l/-‘ru exp (A 03.1)\6(’772)/);’)618) dt),

(D.15)

where the last inequality is by Lemma 3.1.
We interrupt the proof for another auxiliary result from [19].

Lemma D.1. There is some universal constant cp 1 > 0 such that for any r > 0 with
r<|rland0<d<(p—2)(2—p)and2+pu—v < q<6—p, we have

T t
Efj;fu) (/ pt—q—V-Ht exp (/ 5pS—PdS) dt) < CD,1T_2+q+V_“‘$|2_q_y+“,
0 0

Proof. This is included in the proof of Proposition 6.1 of [19] with r = r). In particular,
the above expectation appears in (9.23) of [19] and is bounded by eJ; in (9.27) of that
paper. Following the inequalities in that work, noting we only need to use Lemma 9.6(b)
witha=1,v>1and v+ p—2 <1+ v where 2y = ¢+ v — i, we arrive at the above
bound. |

Returning to (D.15), we choose Ay > 0 so that 03,1/\5(”72) <(p=-2)2-p). IfXis
sufficiently large so that r) < | — z1| we may apply Lemma D.1 to conclude

I) < o — oy |7y T ep o — @ PO R TE = ep o — 2 P < o

and we finish the proof of (D.11).
Next we show that for any fixed T' > 0,

T t
lim // 1B, — 21| 7P exp ( - / VB, — xl)ds)l(t < T )dtdP,
0 0

A—00
T t
:// |Bt—x1|_pexp(—/ V“(Bs—xl)ds)dthw. (D.16)
0 0

Since we are working under a finite measure 1(¢t < T)dtdP,, it suffices to show that
{|B: —x1| P exp (— f(f VANB, — xl)ds) 1(t < T} )} is a uniformly integrable family indexed
by X sufficiently large. This in turn will follow from a (1 + v) moment bound for v > 0

which is uniform in A sufficiently large. Since p € (2, 3), we can pick v > 0 small such
that g := p(1 + ) < 6 — p. Therefore by (D.11) we have

T t
// By — 21| 7P+ exp ( 1+ 7)/ VB, - xl)ds)l(t < T )dtdP,
0 0
e} t
< // B, — 1|~ exp ( —/ VB, - xl)ds)l(t < TL)dtdP, < c,
0 0

and (D.16) follows as noted above.
Use (D.12) with ¢ = p to get

o] t
lim // 1B, — 21|77 exp ( - / Vo (B, — xl)ds)dthx —0. (D.17)
T—o00 T 0
EJP 25 (2020), paper 106. https://www.imstat.org/ejp

Page 61/66


https://doi.org/10.1214/20-EJP507
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Boundary local time measure of super-Brownian motion

We claim that

e} t
lim Sup// |B; — 21| 7P exp ( — / V)‘(BS — xl)ds) Ly<r ydtdP, = 0. (D.18)
T—o0 x>0 T 0 =4

Then the proof of (D.9) will follow immediately from (D.16), (D.17) and (D.18).
It remains to prove (D.18). Similar to the derivation of (D.13) and (D.14) with ¢ = p,
we have

[e%¢) t
// 1B, — 21| 7P exp ( - / VAB, — zl)ds)l(tql dtdP, (D.19)
T 0 -

—|z— @ | /DO B (pt_p_”+“ exp (/t(VC><> - Vk)(ps)dS) Lisr, >)df-
T ! 0 -

Use p = 1 + v to see that the integrand of the right-hand side term of the above equals

t
B2 (o e ([ (v = VA)(pds)1(t < 7)) (D.20)
0

- (Eﬁfif\) (pt—zy))lm y (E\(ffiff (pt_gu o </Of (v _ V)\)(ps)ds>l(t < Trk)))l/Qa

where in the inequality we have applied Cauchy-Schwarz inequality.
For the first term on the right-hand side of (D.20), we use the scaling of Bessel
process to get
B2 (o) =tV B2 (07 ) = 7O, |1 — 1)), (D.21)

|z—21] |z—21]

where the finiteness of El(fffl"‘) (pl_2”) follows easily from the known transition density of

Bessel process (see, e.g. Chp. XI of [21]). For the second term on the right-hand side
of (D.20), by (2.c) of [24] one can conclude that for any r > ¢ > 0,

2v

P,£272V) _ LP£2+2U) (D22)
]:feAt p‘%:/\t Fﬁe/\t
Use the above to get
t
24-2v —2v le’e)
B2 (07 exp (/O 2V = V)(p)ds ) 1(t < 72,) ) (D.23)

t/\‘rTA
= B (p;ﬁ;} exp ( /0 2V — V’\)(ps)ds) 1t <tA m))
tAT,
=lo—arEC ) (exp ([ 2V =V (pa)ds )1t < tAT,))
0
—2v TTA )
<|x-— J;l\*Q"El(j_il‘)(exp (/0 2V — VA)(ps)ds))

v T
= |z — xl\_Q"El(jfil‘) (exp (/ 2(V>° — V’\)(ps)ds)
0

< |z — 21|72 Cy5( Mo, 1, 2),

Try < OO)

where the last equality is by Corollary 7.3 and in the last inequality we have used
Lemma 3.5 with A\g > ¢35 and v = 2. Now we conclude from (D.20), (D.21) and (D.23)
that

B (o oo ([ (V= v)p05)10 < 7))

< COu, |z — x|V 2Cs5( Mo, v, 2)Y 2|2 — 21|V = C |z — 2 |)t7/2.
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Returning to (D.19), we apply the above to get

[e%e] t
// 1B, — 21| P exp ( - / V(B — zl)ds> 1(t < T )dtdP,
T 0 !
<o — g / Clle — )t/ 2dt
T
<CO(z—mx1])- (v/2 - 1) /2 5 0as T — oo, (D.24)

thus giving (D.18). The proof is then complete. |

Proof of Proposition 4.3(ii). For any x; # x2, we fix  # x1, 5. In order to find the limit
of AT~ (P=2 (W5 (x)) as A1 — 00, | 0, by Lemma 9.4, it suffices to find the limits
of the following as Ay — oo,e | 0.

A1+a T>\1w6 2 - t -
Ky + Ky = 611,72 El(/ H WM (B,) exp ( — / WA’””’E(BS)ds) dt)
0 bl 0

1+«

)\1 3 ’T,\1Y€
2 Ex<exp(—/0 w

In the above T, . = T, ATj. where T} =inf{t >0:|B; — 1| <7y} and T3, = inf{t >

FE(B)ds) 1z, . <o0) (W5 (B(T,,0)) . (D.25)

>l

+

0:|B; — xa] < 2¢}. Here 7y, = Ao\, ¢ and we will choose )\ to be some fixed large
constant below. Let ¢ > 0 small and A; > 0 large so that

0 <4(ry, Ve) <min{|z; — x|, |22 — 2|, |1 — 22|} (D.26)
We first consider Ky. On {13, . < oo}, by considering T, . = T}Al < T3 we may set

wa(w) = B(Ix ) = B(T}, ) so that |z) — z1| = r), and hence |z; — 23| > A/2 where
A = |z — z2|. Lemma 9.1 and the above imply

(W (B(T3,.))) < 207 BTy, o) — ol 7er—2 < AP Ter 2,

Similarly by considering T),,. = T5. < T, we have |B(73.) — 21| > A/2 and hence by
Lemma 9.1,

(WA (BT, 2)) < 225 s oA] T B(TY, o) — 21| P < 27F A Peg o2 A 0

This shows that

/\1+a o B ™ -
K> S;TQQPHA PA P TPE, (1(T}Al <oo) b7y, <T2) €XP ( - /0 ' W’\’m’E(Bs)dSD
(D.27)
AT 1y—(1+a) T s
+€1177722p+1A_p03'2)\27 )\1 Ew (1(T225<(X1)1(T225<T,}/\1) exp ( — o WAJ%E(BS)dS)).
By (8.8), for all « so that « # z; and |z — x2| > £ we have
WAEE(2) > VM (2 — 21) V VS (z — 22). (D.28)
Let 7. = inf{¢ : | B;| < r}. Use the above to see that
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Tl
LSV

E, (1(TT1Al <oo)1(TgAl <T2) €XP ( - WA’E’E(Bs)d‘S))

0

<E, a4 (1(TTAl < 00) exp ( — -/0 B V’\l(BS)ds)) < ril |z — 21| 7PC3.5(No, v, 1), (D.29)

where the last line follows in a similar way to the derivation of (C.3) by choosing \g > c3.5.
Similarly by (D.28) and (C.29) we have

T225 T -
E, (1(T§E<<><>)1(T§E<TgAl ) €Xp ( - WA’“(BS)dS))
T2e
<Er g, (1(7’2E < 00) exp ( - / V‘X’(Bs)ds)) = (2¢/|z — 21])P. (D.30)
0

Apply (D.29) and (D.30) in (D.27) to get

14+«
/\1

K, < PHATPAT P2 |2 — 21| P Cs.5( Mo, v, 1)

ep—2
1+a

A —(1+a
+ 611)7_22p+1A_p03,2)\271)\1 1+ )(25/|x —xq|)P

SCATPAB|z — 21| TPA, 7 + ONJ P AP — 0| P2 = 0 (D.31)

as A\ — oo, ¢ J 0, where in the last equality we have used the definitions of r), and «.
Now we will turn to K. Recall

o] /\1-&-(1 %z - " o
K, = // 6117—2 Wi S(By) W3 (By) exp ( —/ W ,x,s(Bs)ds>1(t < T\, o)dtdP,.
0 0

By Proposition 4.3 and Lemma 8.1, for Leb x P,-a.e. (t,w), we have

1+« o

>‘1 A\, Z,e X,f,s K X@‘,
i S W B )W (B exp (- [ “(B)ds)1(t < T, 0)

t
= K410 (M) URT (B)US T (B,) exp ( —/ VO‘va(Bs)ds). (D.32)
0

Use the bounds (5.4), (5.5) and (D.28) to see that

1+«
Al

- - to
WS (BOW ™ (By) exp ( - / WA (B)ds )1t < T, )
0

gp—2

t
gc3_2|Bt—x1|*P\Bt—x2|*pexp(—/ wh ’E(Bs)ds)l(th,\l,s)
0

2
=c3.2 Z |By — x1|7P|By — x2| P1(| By — xi| < |By — x3—i)
i=1

t Y =
exp ( - / WA’“C’E(Bs)ds)l(t <Th,.)
0

t
<c3.22P ATP|By — x1| P exp ( — / VM(BS — xl)ds)l(t < Trlxl)
0

t
+ 302" A7P|By — 23] P exp ( - / Vo (B, — :Eg)ds), (D.33)

0
where we have used |B; — z3_;| > A/2 on {|B, — z;| < |By —x3_;|} and T}, < T}Al in
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the last inequality. It is clear that for Leb x P,-a.e. (t,w),

t
lim |B; —x1| Pexp ( / V)‘l(BS — xl)ds)l(t < TTlM)
0

A1 —00
t

= |By — z1| P exp ( — / V(B — xl)ds) (D.34)
0

By (D.9) we have
[e’e] t
lim // |B: — 21| 7P exp ( — / V>‘1(Bs — a:l)ds) 1(t < TT1A1 )dtd P,
0 0

Al—)OC
[e’e] t
_ // 1B, — 1| 7P exp ( f/ Vo (B, — :cﬂds)dthx < 0, (D.35)
0 0

and by (D.12) with ¢ = p we have

o] t
// By — 22| exp ( - / VB, — xg)ds)dth$ < . (D.36)
0 0

In view of (D.32), (D.33), (D.34), (D.35) and (D.36), a generalized the dominated conver-
gence theorem Theorem (see, e.g., Exercise 20 of Chp. 2 of [4]) implies that

)\1+O¢ 5
lim K; = // SWNEE (B W4 (By)
)\1~>oo eJ0

A1 —00,el0

exp - /WX,:B,E( )ds)1{tgk175}dtdp$

t

—Ky41Cu1(\2) // UR(B (Bt)exp( /VO*va(BS)ds)dthr
0

=K41C41(N2)(— &Df

where the last is by (1.17). The proof will then be finished by Lemma 9.4, (D.25), (D.31)
and the above. ]
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