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Abstract

In the present paper, we study central limit theorems (CLTs) for non-symmetric random
walks on nilpotent covering graphs from a point of view of discrete geometric analysis
developed by Kotani and Sunada. We establish a semigroup CLT for a non-symmetric
random walk on a nilpotent covering graph. Realizing the nilpotent covering graph
into a nilpotent Lie group through a discrete harmonic map, we give a geometric
characterization of the limit semigroup on the nilpotent Lie group. More precisely,
we show that the limit semigroup is generated by the sub-Laplacian with a non-trivial
drift on the nilpotent Lie group equipped with the Albanese metric. The drift term
arises from the non-symmetry of the random walk and it vanishes when the random
walk is symmetric. Furthermore, by imposing the “centered condition”, we establish
a functional CLT (i.e., Donsker-type invariance principle) in a Hölder space over the
nilpotent Lie group. The functional CLT is extended to the case where the realization
is not necessarily harmonic. We also obtain an explicit representation of the limiting
diffusion process on the nilpotent Lie group and discuss a relation with rough path
theory. Finally, we give an example of random walks on nilpotent covering graphs
with explicit computations.
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CLTs on nilpotent covering graphs

1 Introduction

There are many interests in the study of random walks on infinite graphs in many
branches of mathematics such as probability theory, harmonic analysis, geometry, graph
theory and group theory. Among these branches, the long time behavior of random walks
on infinite graphs is one of the major themes. For instance, a central limit theorem (CLT),
that is, a generalization of the Laplace–de Moivre theorem, has been studied intensively
and extensively in various settings. These mathematical backgrounds basically motivate
our study. For basic results on random walks, we refer to Spitzer [58], Woess [70],
Lawler–Limic [40] and references therein.

In these studies of random walks on infinite graphs, many authors have also discussed
what kinds of structures of underlying graphs affect the long time behavior of random
walks. It is known that geometric structures such as the periodicity of underlying
graphs play important roles in them (cf. Spitzer [58]). A typical example of periodic
infinite graphs is a crystal lattice, that is, a covering graph X of a finite graph X0 whose
covering transformation group Γ is abelian. It is a generalization of the square lattice,
the triangular lattice, the hexagonal lattice, the dice lattice and so on (see Figure 1).
We remark that the crystal lattice has inhomogeneous local structures though it has a
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Figure 1: Crystal lattices with the covering transformation group Γ = 〈σ1, σ2〉 ∼= Z2

periodic global structure. Kotani and Sunada [32] introduced the notion of standard
realization of a crystal lattice X, which is a discrete harmonic map from X into the
Euclidean space Γ⊗R equipped with the Albanese metric, to characterize an equilibrium
configuration of X. In a series of papers Kotani–Shirai–Sunada [34], Kotani [29] and
Kotani–Sunada [31, 32, 33], they developed a hybrid field of several traditional disciplines
including graph theory, geometry, discrete group theory and probability theory. Since
this new field, called discrete geometric analysis, was introduced by Sunada, it has been
making new interactions with many other fields. For example, Le Jan employs discrete
geometric analysis effectively in a series of recent studies of Markov loops (see e.g.,
[41, 42]). We refer to Sunada [63, 64] for recent developments of discrete geometric
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analysis. Especially, in [31], a geometric characterization of the diffusion semigroup
appeared in the CLT-scaling limit of the symmetric random walk on X was given in
terms of discrete geometric analysis. Ishiwata, Kawabi and Kotani [25] generalized these
results to the non-symmetric case and established two kinds of functional CLTs (i.e.,
Donsker-type invariance principles) for non-symmetric random walks on crystal lattices.
We also refer to Guivar’ch [21] and Kramli–Szasz [36] for related early works, Kotani
[30] and Kotani–Sunada [33] for a large deviation principle (LDP) and Namba [49] for
yet another functional CLT for non-symmetric random walks on crystal lattices.

On the other hand, long time behaviors of symmetric or centered random walks on
groups have been studied intensively and extensively. In particular, the notion of volume
growth of groups plays a key role in the interface between probability theory and group
theory. Generally speaking, it is difficult to characterize a finitely generated group itself
in terms of its volume growth. We refer to Saloff-Coste [57] for basic problems and
results for random walks on such groups including ones of superpolynomial volume
growth. On the contrary, there is a remarkable theorem on a group of polynomial volume
growth due to Gromov, which asserts that it is essentially characterized as a nilpotent
group (cf. Gromov [20] and Ozawa [51]). Hence, we find a large number of papers on
long time behaviors of random walks on nilpotent groups. See e.g., Wehn [69], Tutubalin
[67], Stroock–Varadhan [60], Raugi [55], Watkins [68], Pap [52] and Alexopoulos [3]
for related results on CLTs on nilpotent Lie groups, and Breuillard [6] for an overview
of random walks on Lie groups. We also refer to Alexopoulos [1, 2], Breuillard [7],
Diaconis–Hough [13] and Hough [22] for local CLTs on nilpotent Lie groups.

In view of these developments, we study the long time behavior of random walks on
a covering graph X whose covering transformation group Γ is a finitely generated group
of polynomial volume growth. It is regarded as a generalization of a crystal lattice or
the Cayley graph of a finitely generated group of polynomial volume growth. A typical
example of such a group is the 3-dimensional discrete Heisenberg group Γ = H3(Z) (see
Figure 2). Thanks to Gromov’s theorem mentioned above, Γ has a finite extension of a
torsion free nilpotent subgroup Γ̃ � Γ. Therefore, X is regarded as a covering graph of
the finite quotient graph Γ̃\X whose covering transformation group is Γ̃. Throughout
the present paper, we may assume that X is a covering graph of a finite graph X0 whose
covering transformation group Γ is a finitely generated, torsion free nilpotent group of
step r (r ∈ N) without loss of generality. We now mention a few related works. Ishiwata
[23] discussed symmetric random walks on nilpotent covering graphs and extended
the notion of standard realization of crystal lattices to the nilpotent case. Besides, in
[23, 24], a semigroup CLT and a local CLT for symmetric random walks were obtained
by realizing the nilpotent covering graph X into a nilpotent Lie group G such that Γ

is isomorphic to a cocompact lattice in G (cf. Malcév [48]). We notice that, in spite of
such developments, long time behaviors of non-symmetric random walks on nilpotent
covering graphs have not been studied sufficiently though an LDP on nilpotent covering
graphs was obtained in Tanaka [65].

Under these circumstances, we establish CLTs for non-symmetric random walks on
a Γ-nilpotent covering graph X. As an extension of the notion of standard realization
introduced in [23] to the non-symmetric case, we define the modified standard realization
Φ0 from X into a nilpotent Lie group G = GΓ whose Lie algebra is equipped with the
Albanese metric. Through the map Φ0, we obtain a semigroup CLT (Theorem 2.1),
which means that the n-th iteration of the “transition shift operator” converges to a
diffusion semigroup on G as n→∞ with a suitable scale change on G. The infinitesimal
generator −A of the diffusion semigroup is the sub-Laplacian with a non-trivial drift
β(Φ0) affected by the non-symmetry of the given random walk. Furthermore, by imposing
an additional natural condition (A3), we prove a functional CLT in a Hölder space over
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Figure 2: A part of the Cayley graph of Γ = H3(Z)

G (Theorem 2.2). Roughly speaking, we capture a G-valued diffusion process associated
with −A through the CLT-scaling limit of the non-symmetric random walk on X. We call
the condition (A3) the centered condition. The functional CLT is also extended to the
case where the realization Φ : X → G is not necessarily harmonic (Theorem 2.3) under
(A3). In this case, several technical difficulties appear in the proof of the functional CLT.
To overcome them,we take a modified harmonic realization Φ0 : X → G and show that the
(g(1)-)corrector, the difference between Φ and Φ0 in the g(1)-direction, is not so big. This
approach is the so-called corrector method in the context of stochastic homogenization
theory, and it is effectively used in the study of random walks in random environments
(see e.g., Papanicolaou–Varadhan [53], Kozlov [35] and Kumagai [37]).We then obtain
that a sequence

{
τn−1/2

(
Φ(w[nt])

)
; 0 ≤ t ≤ 1

}∞
n=1

also converges in law to the diffusion
process (Yt)0≤t≤1 as n → ∞. In a subsequent paper [26], we will consider the weakly
asymmetric case and establish another kind of CLTs for a family of random walks on
the nilpotent covering graph X which interpolates between the original non-symmetric
random walk and the symmetrized one. We also capture a G-valued diffusion process
different from the one obtained in the present paper. The comparison between these
two diffusions will be given in Remark 5.3.

Let us give another motivation of the present paper from rough path theory. It
is known that rough path theory was first initiated by Lyons in [46] to discuss line
integrals and ordinary differential equations (ODEs) driven by an irregular path such as
a sample path of Brownian motion B = (Bt)0≤t≤1 on Rd. Rough path theory makes us
possible to handle a Stratonovich type stochastic differential equation (SDE) driven by
Brownian motion B as a deterministic ODE driven by standard Brownian rough path (i.e.,
Stratonovich enhanced Brownian motion) B = (B,B), where B is a couple of Brownian
motion B itself and its Stratonovich iterated integral B. Thus rough path theory provides
a new insight to the usual SDE-theory and it has developed rapidly in stochastic analysis.
For more details on an overview of rough path theory and its applications to stochastic
analysis, see Lyons–Qian [47], Friz–Victoir [18] and Friz–Hairer [15]. In the rough path
framework, several authors have studied Donsker-type invariance principles. Among
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them, Breuillard–Friz–Huesmann [8] first studied this problem for Brownian rough path.
Namely, they captured Stratonovich enhanced Brownian motion B = (B,B) on Rd as
the usual CLT-scaling limit of the natural rough path lift of an Rd-valued random walk
with the centered condition. We also refer to Bayer–Friz [4] for applications to cubature
and Chevyrev [10] for a recent study on an extension to the case of Lévy processes.
Here we should note that there are good approximations to Brownian motion which
do not converge to B but instead to a distorted Brownian rough path B = (B,B + β),
where β is an anti-symmetric perturbation of B. For example, Friz–Gassiat–Lyons [14]
constructed such a rough path called magnetic Brownian rough path as the small mass
limit of the natural rough path lift of a physical Brownian motion on Rd in a magnetic
field. Through this approximation, they showed an effect of the magnetic field appears
explicitly in the anti-symmetric perturbation term β. See also e.g., Lejay–Lyons [43] and
Friz–Oberhauser [16] for related results on this topic.

In view of the background described above, we discuss a random walk approximation
of the distorted Brownian rough path B from a perspective of discrete geometric analysis.
Since the unique Lyons extension of B of order r (r ≥ 2) can be regarded as a diffusion
process on a free step-r nilpotent Lie group G(r)(Rd) (see Section 5 below for definition),
we obtain such a diffusion process in Corollary 5.5 through the CLT-scaling limit of a
non-symmetric random walk on a nilpotent covering graph X as a direct application
of Theorem 2.2. Besides, we observe that the non-symmetry of the random walk on
X affects the anti-symmetric perturbation term of B explicitly. Recently, Lopusanschi–
Simon [45] proved a similar invariance principle for B to ours. However, they did not
discuss an explicit relation between the perturbation term, called the area anomaly, and
the non-symmetry of the given random walk. See also Lopusanschi–Orenshtein [44] and
Deuschel–Orenshtein–Perkowski [12] for related results. In view of that, Corollary 5.5
gives a new approach to such an invariance principle in that we pay much attention to
the non-symmetry of random walks on X.

The rest of the present paper is organized as follows: We introduce our framework
and state the main results in Section 2. We make a preparation from nilpotent Lie
groups, the Carnot–Carathéodory metric, homogeneous norms and discrete geometric
analysis in Section 3. A relation between the G-valued random walk and the notion
of modified harmonicity is also discussed. In Section 4.1, we give a brief outline of
the proof of main results through a simple example. In Section 4.2, we prove the first
main result (Theorem 2.1) and give several properties of the non-trivial drift β(Φ0)

(Proposition 4.4). Trotter’s approximation theorem plays a crucial role in the proof of
Theorem 2.1. We then prove a functional CLT (Theorem 2.2) for the non-symmetric
random walk under the centered condition (A3) in Section 4.3. We show the tightness
of the family of probability measures induced by the G-valued stochastic processes
given by the geodesic interpolation of the given random walk (Lemma 4.5). In the case
r = 2, we prove it by combining the modified harmonicity of Φ0 with standard martingale
techniques. On the other hand, the same argument is insufficient in the case r ≥ 3. To
handle the higher-step terms, we employ a novel pathwise argument inspired by the proof
of the Lyons extension theorem (cf. Lyons [46]) in rough path theory. However, we need
a careful examination of the proof of Lyons’ extension theorem since rough path theory
is build on free nilpotent Lie groups and our nilpotent Lie group G is not necessarily free.
As a consequence of Theorem 2.1, the convergence of the finite dimensional distribution
of the stochastic process (Lemma 4.8) is proved. Moreover, in Section 4.4, a functional
CLT in the case where the realization is non-harmonic (Theorem 2.3) is also proved
by applying the corrector method described above. An explicit representation of the
limiting diffusion process is given in Section 5. We also discuss a relation between this
diffusion process and rough path theory by using this representation formula in the
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case where Γ is the free discrete nilpotent group over Zd. We give two examples of
non-symmetric random walks on nilpotent covering graphs with explicit calculations in
Section 6. Finally, we give a comment on another approach to CLTs in the non-centered
case in Appendix A (see Theorems A.2 and A.3).

Throughout the present paper, C denotes a positive constant that may change from
line to line and O(·) stands for the Landau symbol. If the dependence of C and O(·) are
significant, we denote them like C(N) and ON (·), respectively.

2 Framework and results

We introduce our framework and state the main results in this section. Let Γ be a
torsion free, finitely generated nilpotent group and X = (V,E) a Γ-nilpotent covering
graph, where V is the set of all vertices and E is the set of all oriented edges. The graph
X possibly have multiple edges or loops and is equipped with the discrete topology
induced by the graph distance. For an edge e ∈ E, we denote by o(e) and t(e) the origin
and the terminus of e, respectively. The inverse edge of e ∈ E is defined by an edge,
say e, satisfying o(e) = t(e) and t(e) = o(e). We set Ex = {e ∈ E | o(e) = x} for x ∈ V .
A path c in X of length n is a sequence c = (e1, e2, . . . , en) of n edges e1, e2, . . . , en ∈ E
with o(ei+1) = t(ei) for i = 1, 2, . . . , n− 1. We denote by Ωx,n(X) the set of all paths in X
of length n ∈ N ∪ {∞} starting from x ∈ V . Put Ωx(X) = Ωx,∞(X) for simplicity.

We introduce a transition probability, that is, a function p : E → [0, 1] satisfying

∑

e∈Ex

p(e) = 1 (x ∈ V ) and p(e) + p(e) > 0 (e ∈ E).

Moreover, we impose that p is invariant under the Γ-action, that is, p(γe) = p(e) for
γ ∈ Γ and e ∈ E. The random walk associated with p is the X-valued time-homogeneous
Markov chain (Ωx(X),Px, {wn}∞n=0), where Px is the probability measure on Ωx(X)

satisfying

Px
(
{c = (e1, e2, . . . , en, ∗, ∗, . . . )}

)
= p(e1)p(e2) · · · p(en)

(
c ∈ Ωx(X)

)

and wn(c) := o(en+1) for n ∈ N ∪ {0} and c = (e1, e2, . . . , en, . . . ) ∈ Ωx(X).

We define the transition operator L associated with the transition probability p by

Lf(x) :=
∑

e∈Ex

p(e)f
(
t(e)

)
(x ∈ V, f : V → R)

and the n-step transition probability p(n, x, y) by p(n, x, y) := Lnδy(x) for n ∈ N and
x, y ∈ V , where δy stands for the Dirac delta function at y and p(c) = p(e1)p(e2) · · · p(en)

for c = (e1, e2, . . . , en) ∈ Ωx,n(X). Let X0 = (V0, E0) = Γ\X be the finite quotient
graph.Then the random walk on X0 is induced through the covering map π : X → X0.
We write p : E0 → [0, 1] the transition probability on X0, by abuse of notation. For n ∈ N
and x, y ∈ V0, we also denote by p(n, x, y) the n-step transition probability of the random
walk on X0.

Throughout the present paper, we impose the following two conditions.

(A1): The random walk on X0 is irreducible. Namely, for x, y ∈ V0, there exists n =

n(x, y) ∈ N such that p(n, x, y) > 0.

(A2): There exists some e∗ ∈ E0 such that p(e∗) > 0 and p(e∗) > 0.

We mention that the condition (A2) is called the mixed traffic condition in Sunada [61].
Thanks to (A1) and the Perron–Frobenius theorem, we find a unique positive function
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m : V0 → (0, 1] which is called the invariant measure on X0 satisfying
∑

x∈V0

m(x) = 1 and m(x) =
∑

e∈(E0)x

p(e)m
(
t(e)

)
(x ∈ V0).

We set m̃(e) := p(e)m
(
o(e)

)
for e ∈ E0. The random walk on X0 is called (m-)symmetric

if m̃(e) = m̃(e) for e ∈ E0. Otherwise, it is called (m-)non-symmetric. We also write
m : V → (0, 1] for the Γ-invariant lift of m : V0 → (0, 1]. We denote by H1(X0,R) and
H1(X0,R) the first homology group and the first cohomology group of X0, respectively.
We define the homological direction of the given random walk on X0 by

γp :=
∑

e∈E0

m̃(e)e ∈ H1(X0,R).

It is clear that the random walk on X0 is (m-)symmetric if and only if γp = 0. In this
sense, γp gives the homological drift of given random walk on X0.

On the other hand, we provide a continuous state space in which the Γ-nilpotent
covering graph X is properly realized. There exists a connected and simply connected
nilpotent Lie group (G, ·) = GΓ such that Γ is isomorphic to a cocompact lattice in G

by applying Malcév’s theorem (cf. Malcév [48]). A piecewise smooth Γ-equivariant map
Φ : X → G is called a periodic realization of X. Let (g, [·, ·]) be the Lie algebra of G.
Since the exponential map exp : g→ G is a diffeomorphism, global coordinate systems
on G are induced through the exponential map. We write log : G→ g for the inverse map
of exp : g→ G.

We construct a new product ∗ on G in the following manner. Set n1 := g and
nk+1 := [g, nk] for k ∈ N. Since g is nilpotent, we find an integer r ∈ N such that
g = n1 ⊃ · · · ⊃ nr ) nr+1 = {0g}. The integer r is called the step number of g or G. We
define the subspace g(k) of g by nk = g(k) ⊕ nk+1 for k = 1, 2, . . . , r. Then the Lie algebra
g is decomposed as g = g(1) ⊕ g(2) ⊕ · · · ⊕ g(r) and each Z ∈ g is uniquely written as
Z = Z(1) +Z(2) + · · ·+Z(r), where Z(k) ∈ g(k) for k = 1, 2, . . . , r. Define a map τ (g)

ε : g→ g

by
τ (g)
ε (Z) := εZ(1) + ε2Z(2) + · · ·+ εrZ(r) (ε ≥ 0, Z ∈ g)

and also define a Lie bracket product [[·, ·]] on g by

[[Z1, Z2]] := lim
ε↘0

τ (g)
ε

[
τ

(g)
1/ε(Z1), τ

(g)
1/ε(Z2)

]
(Z1, Z2 ∈ g).

We introduce a map τε : G→ G, called the dilation operator on G, by

τε(g) := exp
(
τ (g)
ε

(
log(g)

))
(ε ≥ 0, g ∈ G),

which gives scalar multiplications on G. We note that τε may not be a group homomor-
phism, though it is a diffeomorphism on G. By making use of the dilation map τε, a Lie
group product ∗ on G is defined as follows:

g ∗ h := lim
ε↘0

τε
(
τ1/ε(g) · τ1/ε(h)

)
(g, h ∈ G).

The Lie group G∞ = (G, ∗) is called the limit group of (G, ·). It is a stratified Lie
group of step r in the sense that (g, [[·, ·]]) is decomposed as g =

⊕r
k=1 g

(k) satisfying
[[g(k), g(`)]] ⊂ g(k+`) unless k + j > r and the subspace g(1) generates g. The relation
between these two Lie group products is given in the next section. We endow G with the
so-called Carnot–Carathéodory metric dCC, which is an intrinsic metric defined by

dCC(g, h) := inf
{∫ 1

0

‖ẇt‖g0 dt
∣∣∣w ∈ Lip([0, 1];G), w0 = g, w1 = h,

w is tangent to g(1)

}
(2.1)
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for g, h ∈ G, where we write Lip([0, 1];G) for the set of all Lipschitz continuous paths and
‖ · ‖g0 for the norm on g(1) induced by the Albanese metric (see Section 3 for details).

Let π1(X0) be the fundamental group of X0. Then we have a canonical surjective
homomorphism ρ : π1(X0)→ Γ by the general theory of covering spaces. This map gives
rise to a surjective homomorphism ρ : H1(X0,Z) → Γ/[Γ,Γ] and we have a surjective
linear map ρR : H1(X0,R) → g(1) by extending it linearly. We call ρR(γp) ∈ g(1) the
asymptotic direction. Note that γp = 0 implies ρR(γp) = 0g. However, the converse does
not always hold. We induce a special flat metric g0 on g(1), which is called the Albanese
metric associated with the transition probability p by using the discrete Hodge-Kodaira
theorem (cf. Kotani–Sunada [33, Lemma 5.2]). The construction of the Albanese metric
is given in the next section. A periodic realization Φ0 : X → G is called (p-)modified
harmonic if

∑

e∈Ex

p(e) log
(

Φ0

(
o(e)

)−1 · Φ0

(
t(e)

))∣∣∣
g(1)

= ρR(γp) (x ∈ V ). (2.2)

Such Φ0 is uniquely determined up to g(1)-translation. The modified harmonicity de-
scribes the most natural realization of the nilpotent covering graph X in the geometric
point of view. If we equip g(1) with the Albanese metric g0, the modified harmonic
realization Φ0 : X → G is called the modified standard realization.

For a metric space T , we denote by C∞(T ) the Banach space of continuous functions
f : T → R vanishing at infinity with the uniform topology ‖ · ‖T∞. For q > 1, we define

C∞,q(X ×Z) :=
{
f = f(x, z) : X ×Z→ R

∣∣ f(·, z) ∈ C∞(X), ‖f‖∞,q <∞
}
,

where ‖f‖∞,q is a norm on C∞,q(X ×Z) given by

‖f‖∞,q :=
1

Cq

∑

z∈Z

‖f(·, z)‖X∞
1 + |z|q , Cq :=

∑

z∈Z

1

1 + |z|q <∞.

Then we see that (C∞,q(X ×Z), ‖ · ‖∞,q) is a Banach space. We introduce the transition-
shift operator Lp : C∞,q(X ×Z)→ C∞,q(X ×Z) by

Lpf(x, z) :=
∑

e∈Ex

p(e)f
(
t(e), z + 1

)
(x ∈ V, z ∈ Z) (2.3)

and the approximation operator Pε : C∞(G)→ C∞,q(X ×Z) by

Pεf(x, z) := f
(
τε
(
Φ0(x) ∗ exp(−zρR(γp))

))
(0 ≤ ε ≤ 1, x ∈ V, z ∈ Z). (2.4)

We extend each Z ∈ g as a left invariant vector field Z∗ on G as follows:

Z∗f(g) =
d

dε

∣∣∣
ε=0

f
(
g ∗ exp(εZ)

) (
f ∈ C∞(G), g ∈ G

)
.

We put

β(Φ0) :=
∑

e∈E0

m̃(e) log
(

Φ0

(
o(ẽ)

)−1 · Φ0

(
t(ẽ)

)
· exp(−ρR(γp))

)∣∣∣
g(2)

, (2.5)

where ẽ stands for a lift of e ∈ E0 to X. We note that γp = 0 implies β(Φ0) = 0g. However,
even if ρR(γp) = 0g, the quantity β(Φ0) does not vanish in general. Furthermore, β(Φ0)

does not depend on g(2)-components of the modified harmonic realization Φ0 : X → G,
though it has the ambiguity in the components corresponding to g(2) ⊕ g(3) ⊕ · · · ⊕ g(r).
See Proposition 4.4 for details and Section 6 for a concrete example.
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Then the first main result is as follows:

Theorem 2.1. For q > 4r + 1, the following hold:

(1) For 0 ≤ s ≤ t and f ∈ C∞(G), we have

lim
n→∞

∥∥∥L[nt]−[ns]
p Pn−1/2f − Pn−1/2e−(t−s)Af

∥∥∥
∞,q

= 0, (2.6)

where (e−tA)t≥0 is the C0-semigroup with the infinitesimal generatorA on C∞0 (G) defined
by

A := −1

2

d1∑

i=1

V 2
i∗ − β(Φ0)∗, (2.7)

where {V1, V2, . . . , Vd1} denotes an orthonormal basis of (g(1), g0).

(2) Let µ be a Haar measure on G. Fix z ∈ Z. Then, for any sequence {xn}∞n=1 ⊂ V with

lim
n→∞

τn−1/2

(
Φ0(xn) ∗ exp

(
− zρR(γp)

))
= g ∈ G

and for any f ∈ C∞(G), we have

lim
n→∞

L[nt]
p Pn−1/2f(xn, z) = e−tAf(g) :=

∫

G

Ht(h−1 ∗ g)f(h)µ(dh) (t > 0), (2.8)

where Ht(g) is a fundamental solution to ∂u/∂t+Au = 0.

Fix a reference point x∗ ∈ V with Φ0(x∗) = 1G and put ξn(c) := Φ0

(
wn(c)

)
for

n ∈ N∪{0} and c ∈ Ωx∗(X). We then have aG-valued random walk (Ωx∗(X),Px∗ , {ξn}∞n=0)

starting from 1G. For t ≥ 0, we define a map X (n)
t : Ωx∗(X)→ G by

X (n)
t (c) := τn−1/2

(
ξ[nt](c) ∗ exp

(
− [nt]ρR(γp)

)) (
n ∈ N, c ∈ Ωx∗(X)

)
.

Denote by Dn the partition {tk = k/n | k = 0, 1, . . . , n} of [0, 1] for n ∈ N. We define

a G-valued continuous stochastic process (Y(n)
t )0≤t≤1 by the geodesic interpolation of

{X (n)
tk
}nk=0 with respect to dCC. It is worth noting that (2.8) implies

lim
n→∞

∑

c∈Ωx∗ (X)

p(c)f
(
X (n)
t (c)

)
=

∫

G

Ht(h−1)f(h)µ(dh)
(
f ∈ C∞(G)

)
. (2.9)

We now consider an SDE

dYt =

d1∑

i=1

Vi∗(Yt) ◦ dBit + β(Φ0)∗(Yt) dt, Y0 = 1G, (2.10)

where (Bt)0≤t≤1 = (B1
t , B

2
t , . . . , B

d1
t )0≤t≤1 is an Rd1 -valued standard Brownian motion

with B0 = 0. Let (Yt)0≤t≤1 be the G-valued diffusion process which solves (2.10). In
Proposition 5.4 below, we prove that the infinitesimal generator of (Yt)0≤t≤1 coincides
with−A defined by (2.7). Let C1G([0, 1];G) be the set of all continuous paths w : [0, 1]→ G

such that w0 = 1G and Lip([0, 1];G) ⊂ C1G([0, 1];G) the set of all Lipschitz continuous
paths. For α < 1/2, we define the α-Hölder distance ρα on C1G([0, 1];G) by

ρα(w1, w2) := sup
0≤s<t≤1

dCC(us, ut)

|t− s|α , ut := (w1
t )
−1 ∗ w2

t (0 ≤ t ≤ 1).

We set C0,α-Höl
1G

([0, 1];G) := Lip([0, 1];G)
ρα

, which is a Polish space (cf. Friz–Victoir [18,

Section 8]). Let P(n) be the image measure on C0,α-Höl
1G

([0, 1];G) induced by Y(n)
· for

n ∈ N.
We now in a position to present a functional CLT, the second main theorem, for the

non-symmetric random walk {wn}∞n=0 on X.
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Theorem 2.2. We assume the centered condition (A3): ρR(γp) = 0g. Then the se-

quence (Y(n)
t )0≤t≤1 converges in law to the G-valued diffusion process (Yt)0≤t≤1 in

C0,α-Höl
1G

([0, 1];G) as n→∞ for all α < 1/2.

Finally, we generalize Theorem 2.2 to the case where the realization is not necessarily
modified harmonic. We take a periodic realizations Φ : X → G such that Φ(x∗) = 1G
for some base point x∗ ∈ V . On the other hand, we may take the modified harmonic
realization Φ0 : X → G such that Φ0(x)(i) = Φ(x)(i) for x ∈ V and i = 2, 3, . . . , r without
loss of generality. We now define the (g(1)-)corrector Corg(1) : X → g(1) by

Corg(1)(x) := log
(
Φ(x)

)∣∣
g(1) − log

(
Φ0(x)

)∣∣
g(1) (x ∈ V ). (2.11)

By periodicities of Φ and Φ0, we easily see that the set {Corg(1)(x) |x ∈ V } is finite. In
particular, we find a positive constant M > 0 such that maxx∈F ‖Corg(1)(x)‖g(1) ≤M .

Let (Y(n)

t )0≤t≤1 (n ∈ N) be the G-valued stochastic processes defined by just replacing

Φ0 by Φ in the definition of (Y(n)
t )0≤t≤1. Thanks to several properties of Corg(1) , we

establish the following functional CLT. Note that the information of the modified harmonic
realization Φ0 still remains in the drift term of the limiting diffusion even if we replace

Y(n) by Y(n)
.

Theorem 2.3. Assume the centered condition (A3). The sequence {Y(n)

t }∞n=1 converges
in law to the G-valued diffusion process (Yt)0≤t≤1 in C0,α-Höl

1G
([0, 1];G) as n → ∞ for

α < 1/2.

Let us make comments on our main theorems. As is emphasized in Breuillard [6,
Section 6], the situation of the non-centered case ρR(γp) 6= 0g is quite different from
the centered case ρR(γp) = 0g and thus some technical difficulties arise to obtain CLTs.
That is why there are few papers which discuss CLTs for non-centered random walks on
nilpotent Lie groups. We obtain, in Theorem 2.1, a semigroup CLT for the non-centered
random walk {ξn}∞n=0 on G with a canonical dilation τn−1/2 , while Crépel–Raugi [11]
and Raugi [55] proved similar CLTs for the random walk to (2.9) with spatial scalings
whose orders are higher than τn−1/2 . On the other hand, in the present paper, we need
to assume the centered condition (A3) to obtain a functional CLT (Theorem 2.2) for
{ξn}∞n=0 in the Hölder topology, stronger than the uniform topology in C1G([0, 1];G). In
Appendix A, we mention a method to reduce the non-centered case ρR(γp) 6= 0g to the
centered case by employing a measure-change technique based on Alexopoulos [2].

3 Preparations

3.1 Limit groups

Let us review some properties of the limit group. For more details, see e.g., Alex-
opoulos [1] and Ishiwata [23]. We also refer to Crépel–Raugi [11] and Goodman [19] for
related topics. Let (G, ·) be a connected and simply connected nilpotent Lie group of step
r and (g, [·, ·]) the corresponding Lie algebra. Then the limit group G∞ = (G, ∗) of (G, ·)
is a stratified Lie group of step r and its Lie algebra coincides with (g, [[·, ·]]). Namely,
the Lie algebra g = g(1) ⊕ g(2) ⊕ · · · ⊕ g(r) satisfies that [[g(i), g(j)]] ⊂ g(i+j) whenever
i + j ≤ r and the subspace g(1) generates g. It should be noted that the dilation map
τε : G → G is a group automorphism on (G, ∗) (see [23, Lemma 2.1]). We also note
that the exponential map exp : g∞ → G∞ coincides with the original exponential map
exp : g→ G. Furthermore, for any g ∈ G, the inverse element of g in (G, ·) coincides with
the inverse element in (G, ∗).

We set dk = dimR g(k) for k = 1, 2, . . . , r and N = d1 + d2 + · · · + dr. For k =

1, 2, . . . , r, we denote by {X(k)
1 , X

(k)
2 , . . . , X

(k)
dk
} a basis of the subspace g(k). We introduce
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several kinds of global coordinate systems in G through exp : g → G. We write g(k) =

(g
(k)
1 , g

(k)
2 , . . . , g

(k)
dk

) ∈ Rdk for k = 1, 2, . . . , r. We identify the nilpotent Lie group G with
RN as a differentiable manifold by

• canonical (·)-coordinates of the first kind :

RN 3 (g(1), g(2), . . . , g(r)) 7−→ g = exp
( r∑

k=1

dk∑

i=1

g
(k)
i X

(k)
i

)
∈ G,

• canonical (·)-coordinates of the second kind :

RN 3(g(1), g(2), . . . , g(r))

7−→ g = exp
(
g

(r)
dr
X

(r)
dr

)
· exp

(
g

(r)
dr−1X

(r)
dr−1

)
· · · · · exp

(
g

(r)
1 X

(r)
1

)

· exp
(
g

(r−1)
dr−1

X
(r−1)
dr−1

)
· exp

(
g

(r−1)
dr−1−1X

(r−1)
dr−1−1

)
· · · · · exp

(
g

(r−1)
1 X

(r−1)
1

)

· · · · exp
(
g

(1)
d1
X

(1)
d1

)
· exp

(
g

(1)
d1−1X

(1)
d1−1

)
· · · · · exp

(
g

(1)
1 X

(1)
1

)
∈ G,

• canonical (∗)-coordinates of the second kind :

RN 3(g
(1)
∗ , g

(2)
∗ , . . . , g

(r)
∗ )

7−→ g = exp
(
g

(r)
dr∗X

(r)
dr

)
∗ exp

(
g

(r)
dr−1∗X

(r)
dr−1

)
∗ · · · ∗ exp

(
g

(r)
1∗ X

(r)
1

)

∗ exp
(
g

(r−1)
dr−1∗X

(r−1)
dr−1

)
∗ exp

(
g

(r−1)
dr−1−1∗X

(r−1)
dr−1−1

)
∗ · · · ∗ exp

(
g

(r−1)
1∗ X

(r−1)
1

)

∗ · · · ∗ exp
(
g

(1)
d1∗X

(1)
d1

)
∗ exp

(
g

(1)
d1−1∗X

(1)
d1−1

)
∗ · · · ∗ exp

(
g

(1)
1∗ X

(1)
1

)
∈ G∞.

We give the relations between the deformed product and the given product on G as an
easy application of the Campbell–Baker–Hausdorff (CBH) formula

log
(

exp(Z1) · exp(Z2)
)

= Z1 + Z2 +
1

2
[Z1, Z2] + · · · (Z1, Z2 ∈ g). (3.1)

The following is straightforward from the definition of the deformed product.

log(g ∗ h)
∣∣
g(k) = log(g · h)

∣∣
g(k) (g, h ∈ G, k = 1, 2). (3.2)

We notice that the relation above does not hold in general for k = 3, 4, . . . , r. The
following identities give us a comparison between (·)-coordinates and (∗)-coordinates.
For g ∈ G, we have the following.

g
(k)
i∗ = g

(k)
i (i = 1, 2, . . . , dk, k = 1, 2), (3.3)

g
(k)
i∗ = g

(k)
i +

∑

0<|K|≤k−1

CKPK(g) (i = 1, 2, . . . , dk, k = 3, 4, . . . , r) (3.4)

for some constant CK , where K stands for a multi-index
(
(i1, k1), (i2, k2), . . . , (i`, k`)

)
with

length |K| := k1 + k2 + · · · + k` and PK(g) := g
(k1)
i1
· g(k2)
i2
· · · g(k`)

i`
. The invariances (3.2)

and (3.3) play an important role to obtain main results. For g, h ∈ G, we also have

(g ∗ h)
(k)
i∗ = (g · h)

(k)
i (i = 1, 2, . . . , dk, k = 1, 2), (3.5)

(g ∗ h)
(k)
i∗ = (g · h)

(k)
i +

∑

|K1|+|K2|≤k−1
|K2|>0

CK1,K2PK1
∗ (g)PK2(g · h)

(i = 1, 2, . . . , dk, k = 3, 4, . . . , r) (3.6)

by using (3.3) and (3.4). See [23, Section 2] for more details.
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3.2 Carnot–Carathéodory metric and homogeneous norms

As is well-known, a nilpotent Lie group G is a candidate of the typical sub-Riemannian
manifolds, which is a certain generalization of a Riemannian manifold. The notion of the
Carnot–Carathéodory metric is known as an important intrinsic metric in the context
sub-Riemannian geometry. We discuss several properties of the Carnot–Carathéodory
metric on a nilpotent Lie group G in this subsection.

Recall that the Carnot–Carathéodory metric dCC on G is defined by (2.1). We know
that the subspace g(1) satisfies the so-called Hörmander condition in g, that is, Lg(1)(g) =

TgG for any g ∈ G, where Lg(1)(g) denotes the evaluation of g(1) at g ∈ G. The Carnot-
Carathéodory metric is then well-defined in the sense that dCC(g, h) < ∞ for every
g, h ∈ G, thanks to the Hörmander condition on g(1). Furthermore, the topology induced
by dCC coincides with the original one of G. We emphasize that dCC behaves well under
dilations. More precisely, we have

dCC

(
τε(g), τε(h)

)
= εdCC(g, h) (ε ≥ 0, g, h ∈ G). (3.7)

We now present the notion of homogeneous norm on G. The one-parameter group
of dilations (τε)ε≥0 allows us to consider scalar multiplications on nilpotent Lie groups.
We replace the usual Euclidean norms by the following functions. A continuous function
‖ · ‖ : G→ [0,∞) is called a homogeneous norm on G if (i) ‖g‖ = 0 if and only if g = 1G
and (ii) ‖τεg‖ = ε‖g‖ for ε ≥ 0 and g ∈ G. One of the typical examples of homogeneous
norms is given in terms of dCC. We define a continuous function ‖ · ‖CC : G → [0,∞)

by ‖g‖CC := dCC(1G, g) for g ∈ G. Then ‖ · ‖CC is a homogeneous norm on G in view of
(3.7). Another basic homogeneous norm is given in the following way. We denote by
{X(k)

1 , X
(k)
2 , . . . , X

(k)
dk
} a basis in g(k) for k = 1, 2, . . . , r. We introduce a norm ‖·‖g(k) on g(k)

by the usual Euclidean norm. If Z ∈ g is decomposed as Z = Z(1)+Z(2)+· · ·+Z(r) (Z(k) ∈
g(k)), we define a function ‖ · ‖g : g → [0,∞) by ‖Z‖g :=

∑r
k=1 ‖Z(k)‖1/k

g(k) . We set

‖g‖Hom := ‖ log(g)‖g for g ∈ G. We then observe that ‖ · ‖Hom is a homogeneous norm
on G. The homogenuity (ii) leads to the most important fact that all homogeneous norms
on G are equivalent, which is similar to the case of norms on the Euclidean space. More
precisely, we have the following, which plays a crucial role to obtain Theorem 2.2.

Proposition 3.1. (cf. Goodman [19]) If ‖ · ‖1 and ‖ · ‖2 are two homogeneous norms
on G, then there exists a constant C > 0 such that C−1‖g‖1 ≤ ‖g‖2 ≤ C‖g‖1 for g ∈ G.

3.3 Discrete geometric analysis

We present some basics of discrete geometric analysis on graphs due to Kotani–
Sunada [33] or Sunada [62, 63, 64]. We consider a finite graph X0 = (V0, E0) and an
irreducible random walk on X0 associated with a non-negative transition probability
p : E0 → [0, 1]. We define the 0-chain group, 1-chain group, 0-cochain group and
1-cochain group by

C0(X0,R) :=
{ ∑

x∈V0

axx
∣∣∣ ax ∈ R

}
, C1(X0,R) :=

{ ∑

e∈E0

aee
∣∣∣ ae ∈ R, e = −e

}
,

C0(X0,R) := {f : V0 → R}, C1(X0,R) := {ω : E0 → R |ω(e) = −ω(e)},

respectively. An element of C1(X0,R) is called a 1-form on X0. The boundary operator
∂ : C1(X0,R) → C0(X0,R) and the difference operator d : C0(X0,R) → C1(X0,R)

are defined by ∂(e) = t(e) − o(e) for e ∈ E0 and df(e) = f
(
t(e)

)
− f

(
o(e)

)
for e ∈ E0,

respectively. Then, the first homology group H1(X0,R) and the first cohomology group
H1(X0,R) are defined by Ker (∂) ⊂ C1(X0,R) and C1(X0,R)/Im (d), respectively. We
write L : C0(X0,R)→ C0(X0,R) for the transition operator associated with p. We define
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a special 1-chain by
γp :=

∑

e∈E0

m̃(e)e ∈ C1(X0,R).

It is easily seen that ∂(γp) = 0 so that γp ∈ H1(X0,R). Furthermore, it is clear that
the random walk on X0 is (m-)symmetric if and only if γp = 0. The 1-cycle γp is called
the homological direction of the given random walk on X0. A simple application of the
ergodic theorem leads to the law of large numbers on C1(X0,R).

lim
n→∞

1

n
(e1 + e2 + · · ·+ en) = γp, Px-a.e. c = (e1, e2, . . . , en, . . . ) ∈ Ωx(X0).

A 1-form ω ∈ C1(X0,R) is said to be modified harmonic if

∑

e∈(E0)x

p(e)ω(x)− 〈γp, ω〉 = 0 (x ∈ V0), (3.8)

where 〈γp, ω〉 := C1(X0,R)〈γp, ω〉C1(X0,R) is constant as a function on V0. We denote by
H1(X0) the space of modified harmonic 1-forms and equip it with the inner product

〈〈ω1, ω2〉〉p :=
∑

e∈E0

m̃(e)ω1(e)ω2(e)− 〈γp, ω1〉〈γp, ω2〉
(
ω1, ω2 ∈ H1(X0)

)

associated with the transition probability p. We should emphasize that the condition
(A2) plays a crucial role in proving that 〈〈ω, ω〉〉p = 0 implies ω = 0. Indeed, 〈〈ω, ω〉〉p = 0

implies ∑

e∈E0

m̃(e)
(
ω(e)− 〈γp, ω〉

)2

= 0.

By using (A2), we find an edge e∗ ∈ E0 satisfying p(e∗) > 0 and p(e∗) > 0, so that we
have ω(e∗)−〈γp, ω〉 = ω(e∗)−〈γp, ω〉 = 0. Hence, we know 〈γp, ω〉 = 0 and this completes
the proof of ω = 0 since

∑

e∈E0

m̃(e)ω(e)2 = 0 and m̃(e) + m̃(e) > 0 (e ∈ E0).

We may identify H1(X0,R) with H1(X0) by the discrete Hodge-Kodaira theorem (cf. [33,
Lemma 5.2]). We induce an inner product from H1(X0,R) by using this identification.

Let Γ be a torsion free, finitely generated nilpotent group of step r. Then a Γ-nilpotent
covering graph X = (V,E) is defined by the Γ-covering of X0. Let p : E → [0, 1] and
m : V → (0, 1] be the Γ-invariant lifts of p : E0 → [0, 1] and m : V0 → (0, 1], respectively.
Denote by π̂ : G→ G/[G,G] the canonical projection. Since Γ is a cocompact lattice in
G, the subset π̂(Γ) ⊂ G/[G,G] is also a lattice in G/[G,G] ∼= g(1) (cf. Malcév [48] and
Raghunathan [54]). We take the canonical surjective homomorphism ρ : H1(X0,Z) →
π̂(Γ) ∼= Γ/[Γ,Γ] and its realification is denoted by ρR : H1(X0,R)→ π̂(Γ)⊗R. We identify
Hom(π̂(Γ),R) with a subspace of H1(X0,R) through tρR. We restrict 〈〈·, ·〉〉p on H1(X0,R)

to the subspace Hom(π̂(Γ),R) and take it up the dual inner product 〈·, ·〉alb on π̂(Γ)⊗R.
Then, a flat metric g0 on g(1) is induced and we call it the Albanese metric on g(1). This
procedure can be summarized as follows:

(g(1), g0)
OO

dual

��

∼= π̂(Γ)⊗R oooo ρR

OO

dual

��

H1(X0,R)
OO

dual

��
Hom(g(1),R) ∼= Hom(π̂(Γ),R) �

�

tρR

// H1(X0,R) ∼=
(
H1(X0), 〈〈·, ·〉〉p

)
.
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A map Φ : X → G is said to be a periodic realization of X if it satisfies Φ(γx) = γ ·Φ(x)

for γ ∈ Γ and x ∈ V . Fix a reference point x∗ ∈ V and define a special realization
Φ0 : X → G by

Hom(g(1),R)

〈
ω, log

(
Φ0(x)

)∣∣
g(1)

〉
g(1) =

∫ x

x∗

ω̃
(
ω ∈ Hom(g(1),R), x ∈ V

)
, (3.9)

where ω̃ is the lift of ω = tρR(ω) ∈ H1(X0,R) to X. Here
∫ x
x∗
ω̃ =

∫
c
ω̃ =

∑n
i=1 ω̃(ei) for a

path c = (e1, e2, . . . , en) with o(e1) = x∗ and t(en) = x. We note that this line integral does
not depend on the choice of a path c. By following the arguments in [33, Section 4], [23,
Section 5] and [25, Section 3], we obtain that such Φ0 enjoys the modified harmonicity
in the sense of (2.2). See Namba [50] for the proof.

Lemma 3.2 (cf. Namba [50, Lemma 2.4.8]). The periodic realization Φ0 : X → G defined
by (3.9) is the modified harmonic realization, that is,

∑

e∈Ex

p(e) log
(

Φ0

(
o(e)

)−1 · Φ0

(
t(e)

))∣∣∣
g(1)

= ρR(γp) (x ∈ V ).

Let us consider a random walk (Ωx(X),Px, {wn}∞n=0) with values in a Γ-nilpotent
covering graph X. We denote by Φ : X → G a Γ-equivariant realization of X. We then
have the G-valued Markov chain (Ωx(X),Px, {ξn}∞n=0) defined by ξn(c) := Φ

(
wn(c)

)
for

n ∈ N ∪ {0} and c ∈ Ωx(X), through the map Φ. This gives rise to the g-valued random
walk Ξn(c) := log

(
ξn(c)

)
= log

(
Φ
(
wn(c)

))
for n ∈ N ∪ {0} and c ∈ Ωx(X). We obtain the

following law of large numbers on g(1) by the ergodic theorem.

lim
n→∞

1

n
Ξn(·)

∣∣
g(1) = ρR(γp), Px-a.s. (3.10)

It is known that the notion of martingales plays a crucial role in the theory of stochas-
tic processes. We give a certain characterization of modified harmonic realizations in
view of martingale theory. Let πn : Ωx(X) → Ωx,n(X) (n ∈ N ∪ {0}) be a projection de-
fined by πn(c) := (e1, e2, . . . , en) for c = (e1, e2, . . . , en, . . . ) ∈ Ωx(X). Denote by {Fn}∞n=0

the filtration such that F0 = {∅,Ωx(X)} and Fn := σ
(
π−1
n (A)

∣∣A ⊂ Ωx,n(X)
)

for n ∈ N.
We mention that Fn is a sub-σ-algebra of F∞ :=

∨∞
n=0 Fn for n ∈ N. We use the following

in the proof of Lemma 4.6.

Lemma 3.3 (cf. Namba [50, Lemma 2.5.3]). Let {X(1)
1 , X

(1)
2 , . . . , X

(1)
d1
} be a basis of g(1).

Then a periodic realization Φ0 : X → G is the modified harmonic realization if and only if
the stochastic process

{
Ξn
∣∣
X

(1)
i

− nρR(γp)
∣∣
X

(1)
i

}∞
n=0

(i = 1, 2, . . . , d1),

with values in R, is an {Fn}-martingale.

4 Proof of main results

The aim of this section is to prove Theorems 2.1, 2.2 and 2.3. Before going into
details, we give a brief outline of the proof for the readers’ convenience.

4.1 A brief outline of the proof through a simple example

While the theory of discrete geometric analysis plays a crucial role throughout the
present paper, some readers may regard it as too complicated. Hence, we give a brief
outline of the proofs in the case where Γ is the 3-dimensional discrete Heisenberg group
in order to help readers get a bird’s eye view of them.
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It goes without saying that the most typical but non-trivial example of nilpotent groups
of step 2 is the 3-dimensional discrete Heisenberg group defined by Γ = H3(Z) := (Z3, ?),
where the product ? on Z3 is given by

(x, y, z) ? (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

Then, we see that G = H3(R) is the corresponding connected and simply connected
nilpotent Lie group of step 2 in which Γ is isomorphic to a cocompact lattice. Further-
more, the corresponding Lie algebra g is given by g = (R3, [·, ·]) with [X1, X2] = X3 and
[X1, X3] = [X2, X3] = 0g, where {X1, X2, X3} be the standard basis of g. We note that
the Lie algebra g is decomposed as g = g(1) ⊕ g(2), where g(1) := spanR{X1, X2} and
g(2) := spanR{X3}. The nilpotent Lie group G = H3(R) is free of step 2, which implies
that the limit group G∞ coincides with G itself. In general, the difference between G

and G∞ may appear in more general step cases.
Let X = (V,E) be a Cayley graph of Γ with a generating set

S = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.

Namely, X is an oriented graph with V = Γ and for γ, η ∈ Γ, γ is adjacent to η if
γ−1 ? η ∈ S. The quotient X0 = (V0, E0) = Γ\X is a 3-bouquet graph with V0 = {x0}
and E0 consisting of three loops e1, e2, e3 and their inverse loops as well. Consider a
non-symmetric random walk on X0 defined by

p(e1) = α, p(e2) = β, p(e3) = γ, p(e1) = α′, p(e2) = β′, p(e3) = γ′,

where α, β, γ, α′, β′, γ′ > 0 and α + β + γ + α′ + β′ + γ′ = 1. Then we easily have
ρR(γp) = (α− α′)X1 + (β − β′)X2. We fix an equivariant realization Φ0 : X → G. Since
X0 has only one vertex, the realization Φ always enjoy the modified harmonicity in the
sense of (2.2). Then the random walk

{
log
(
Φ(wn)

)∣∣
g(1) − nρR(γp)

}∞
n=0

is a g(1)-valued

martingale, which will play a key role in the proof. Here, {wn}∞n=0 is the random walk on
X associated with the transition probability p.

Step 1 (To show Theorem 2.1): In showing the first main theorem (Theorem 2.1), there
are several difficulties related to the asymptotic direction ρR(γp). In order to overcome
them, we need to use the transition-shift operator Lp on a Banach space C∞(X ×Z) (see
Section 2. We have to note that such an operator has not been introduced in any early
works discussing CLTs under non-centered settings (cf. Raugi [55]).

At first, we prove the convergence of the infinitesimal generator under the CLT-scaling
(Lemma 4.2). We use the Taylor formula to (I − LNp )Pεf in ε. Then, the first order terms
vanish due to the modified harmonicity of Φ so that we formally have, for x ∈ V and
f ∈ C∞0 (G),

1

Nε2
(I − LNp )Pεf(x) = Pε

(
∆G − β(Φ)

)
f(x) +O

( 1

N

)
+O(N2ε)

as N →∞, ε↘ 0 with N2ε↘ 0, where ∆G is a sub-elliptic operator on G and β(Φ) ∈ g(2)

is a quantity given by (2.5), that is,

β(Φ) =
∑

e∈E0

p(e) log
(

Φ
(
o(ẽ)

)−1
? Φ
(
t(ẽ)

)
? exp

(
− ρR(γp)

))∣∣∣
g(2)

=
{

(γ − γ′) +
1

2
(α− α′)(β − β′)

}
X3.

This leads to Lemma 4.2. Finally, we combine the Trotter approximation theorem (cf.
[66]) with Lemma 4.2. Then we obtain Theorem 2.1 by letting n→∞. Moreover, if we
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endow g(1) with the Albanese metric g0 associated with p, the sub-elliptic operator ∆G

coincides with − 1
2 (V 2

1 + V 2
2 ) for some orthonormal basis {V1, V2} of (g(1), g0).

Step 2 (To show the functional CLT): We put an additional assumption (A3). Let
{Y(n)}∞n=1 be a sequence of stochastic processes defined by the geodesic interpolation of
the underlying random walk. In order to show the functional CLT, it is sufficient to prove
the following two items:

• the convergence of the finite-dimensional distribution of {Y(n)}∞n=1, and

• the tightness of the image measures {P(n) = Px∗ ◦ (Y(n))−1}∞n=1.

Since the former item is obtained by an easy application of Theorem 2.1, we mention
the proof of the latter item. In the proof of the latter one, we may show that there is a
positive constant C > 0 independent of n ∈ N such that

EPx∗
[
dCC

(
Y(n)
s ,Y(n)

t

)4m] ≤ C(t− s)2m (m ∈ N, 0 ≤ s ≤ t ≤ 1). (4.1)

Indeed, (4.1) is established by applying several martingale inequalities such as the
Birkholder–Davis–Gundy inequality for the martingale {log(Φ(wn))|g(1)}∞n=0. (We mention
that this kind of tightness argument in the rough path framework was performed by e.g.,
Breuillard–Friz–Huesmann [8] and Bayer–Friz [4].) Consequently, we obtain that Y(n)

converges in law to a G-valued diffusion process Y which solves the SDE

dYt = V 2
1 (Yt) ◦ dB1

t + V 2
2 (Yt) ◦ dB2

t + β(Φ)(Yt) dt, Y0 = 1G

in the Hölder space C0,α-Höl([0, 1];G) for α < 1/2, where (B1
t , B

2
t )0≤t≤1 is a 2-dimensional

standard Brownian motion starting from the origin.

Nevertheless, we emphasize that several essential difficulties arise in the case of more
general covering graphs. The one difficulty appears when the number of vertices of X0 is
large. If it is larger than one, then each Γ-equivariant realization Φ is not always modified
harmonic. Since Step 2 basically uses the modified harmonicity, an additional step
should be inserted in the proof of the functional CLT for modified harmonic realizations,
which is given as follows: We first show the functional CLT for the modified harmonic
realization Φ0 in the same way as Step 2. Next, let Φ be a Γ-equivariant realization. Let

{Y(n)}∞n=1 be a sequence of stochastic processes defined by the geodesic interpolation of
the underlying random walk {Φ(wn)}∞n=0. We here introduce the (g(1))-corrector Corg(1)

defined by (2.11). Thanks to a nice estimation of the g(1)-corrector, we have the similar

moment estimate to (4.1) for {Y(n)}∞n=1 (see Lemma 4.9). Finally, we obtain that the

sequence {Y(n)}∞n=1 also converges in law to the G-valued diffusion process (Yt)0≤t≤1 in
C0,α-Höl([0, 1];G) for α < 1/2. This completes the proof of Theorem 2.3.

Another difficulty arises when the nilpotency of Γ is greater than 2. If the nilpotent
Lie group G is of step r ≥ 3, the dilation operators lack their nice propeties, which makes
the analysis on G much difficult. In order to recover such nice properties, we consider
everything on the correponding limit group G∞ intead of G. Nevertheless, there is a
further difficulty in the proof of the tightness of {P(n)}∞n=1, since it is difficult to give
(4.1) in higher-step cases directly. Therefore, we extend a novel pathwise argument
inspired by the proof of Lyons’ extension theorem to the cases of general nilpotent Lie
groups (Lemma 4.9). Such an extension enables us to prove the tightness of {P(n)}∞n=1

as well as the case mentioned in Step 2, which is one of remarkable contributions of the
present paper.
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4.2 Proof of Theorem 2.1

In what follows, we set

dΦ0(e) = Φ0

(
o(e)

)−1 · Φ0

(
t(e)

)
(e ∈ E),

‖dΦ0‖∞ = max
e∈E0

{∥∥ log
(
dΦ0(ẽ)

)∣∣
g(1)

∥∥
g(1) +

∥∥ log
(
dΦ0(ẽ)

)∣∣
g(2)

∥∥1/2

g(2)

}
,

where ẽ stands for a lift of e ∈ E0 to X. We should mention that
(

Φ0(x)−1 · Φ0

(
t(c)
))(k)

i
= O(Nk) (4.2)

for x ∈ V, c ∈ Ωx,N (X), i = 1, 2, . . . , dk and k = 1, 2, . . . , r. We also write ρ = ρR(γp) and
ezρ = exp

(
zρR(γp)

)
(z ∈ R) for brevity. We give an important property of the family of

approximation operators (Pε)0≤ε≤1 defined by (2.4).

Lemma 4.1. Let q > 1. Then
((
C∞,q(X × Z), ‖ · ‖∞,q;Pε

))
0≤ε≤1

is a family of Banach

spaces approximating to the Banach space
(
C∞(G), ‖ · ‖G∞

)
in the sense of Trotter [66]:

‖Pεf‖∞,q ≤ ‖f‖G∞ and lim
ε↘0
‖Pεf‖∞,q = ‖f‖G∞

(
f ∈ C∞(G)

)
.

Proof. The former assertion follows from

‖Pεf‖∞,q =
1

Cq

∑

z∈Z

‖f(·, z)‖∞
1 + |z|q ≤ 1

Cq

∑

z∈Z

‖f‖∞
1 + |z|q = ‖f‖∞.

We prove the latter one. Let g0 ∈ G be an element which attains ‖f‖∞ = supg∈G |f(g)|.
We fix z ∈ Z. Then we have

‖Pεf(·, z)‖∞ ≥ |f(g0)| − inf
x∈X

∣∣∣f(g0)− f
(
τε
(
Φ0(x) ∗ exp(−zρR(γp))

))∣∣∣.

On the other hand, we have

inf
x∈X

dCC

(
g0, τε

(
Φ0(x) ∗ exp(−zρR(γp))

))

= ε inf
x∈X

dCC

(
τ1/ε(g0),Φ0(x) ∗ exp(−zρR(γp))

)
< εM

for some M = M(z) > 0. From the continuity of f , for any δ > 0, there exists δ′ > 0 such
that dCC(g0, h) < δ′ implies |f(g0)− f(h)| < δ. By choosing a sufficiently small ε > 0, we
have

dCC

(
g0, τε

(
Φ0(x∗) ∗ exp(−zρR(γp))

))
< δ′

for some x∗ ∈ X. Then we have

inf
x∈X

∣∣∣f(g0)− f
(
τε
(
Φ0(x) ∗ exp(−zρR(γp))

))∣∣∣

≤
∣∣∣f(g0)− f

(
τε
(
Φ0(x∗) ∗ exp(−zρR(γp))

))∣∣∣ < δ

and this implies limε↘0 ‖Pεf(·, z)‖∞ = ‖f‖∞ for z ∈ Z. By using the dominated conver-
gence theorem, we obtain limε↘0 ‖Pεf‖∞,r = ‖f‖∞. This completes the proof.

The following lemma is significant to prove Theorem 2.1.

Lemma 4.2. Let f ∈ C∞0 (G) and q > 4r + 1. Then we have
∥∥∥ 1

Nε2

(
I − LNp

)
Pεf − PεAf

∥∥∥
∞,q
→ 0

as N →∞ and ε↘ 0 with N2ε↘ 0, where Lp is the transition-shift operator defined by
(2.3) and A is the sub-elliptic operator defined by (2.7).
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Proof. We divide the proof into several steps.

Step 1. We first apply Taylor’s formula (cf. Alexopoulos [2, Lemma 5.3]) for the (∗)-
coordinates of the second kind to f ∈ C∞0 (G) at τε

(
Φ0(x) ∗ e−zρ

)
∈ G. By recalling that

(G, ∗) is a stratified Lie group, we have

1

Nε2
(I − LNp )Pεf(x, z)

= −
∑

(i,k)

εk−2

N
X

(k)
i∗ f

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(k)

i∗

−
( ∑

(i1,k1)≥(i2,k2)

εk1+k2−2

2N
X

(k1)
i1∗ X

(k2)
i2∗ +

∑

(i2,k2)>(i1,k1)

εk1+k2−2

2N
X

(k2)
i2∗ X

(k1)
i1∗

)

× f
(
τε
(
Φ0(x) ∗ e−zρ

)) ∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(k1)

i1∗

(
BN (x, z, c)

)(k2)

i2∗

−
∑

(i1,k1),(i2,k2),(i3,k3)

εk1+k2+k3−2

6N

∂3f

∂g
(k1)
i1∗ ∂g

(k2)
i2∗ ∂g

(k3)
i3∗

(θ)
∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(k1)

i1∗

×
(
BN (x, z, c)

)(k2)

i2∗

(
BN (x, z, c)

)(k3)

i3∗
(x ∈ V, z ∈ Z), (4.3)

for some θ ∈ G with |θ(k)
i∗
| ≤ εk

∣∣(BN (x, z, c)
)(k)

i∗

∣∣ for i = 1, 2, . . . , dk and k = 1, 2, . . . , r,
where the summation

∑
(i1,k1)≥(i2,k2) runs over all (i1, k1) and (i2, k2) with k1 > k2 or

k1 = k2, i1 ≥ i2. We put

BN (x, z, c) := ezρ ∗ Φ0(x)−1 ∗ Φ0

(
t(c)
)
∗ e−(z+N)ρ

(
N ∈ N, x ∈ V, z ∈ Z, c ∈ Ωx,N (X)

)
.

We denote by Ordε(k) the terms of the right-hand side of (4.3) whose order of ε equals
just k. Then (4.3) is rewritten as

1

Nε2
(I − LNp )Pεf(x, z) = Ordε(−1) + Ordε(0) +

∑

k≥1

Ordε(k) (x ∈ V, z ∈ Z),

where

Ordε(−1) = − 1

Nε

d1∑

i=1

X
(1)
i∗ f

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(1)

i∗ ,

Ordε(0) = − 1

N

d2∑

i=1

X
(2)
i∗ f

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑

c∈Ωx,N (X)

p(c)
{(
BN (x, z, c)

)(2)

i∗

− 1

2

∑

1≤λ<ν≤d1

(
BN (x, z, c)

)(1)

λ∗

(
BN (x, z, c)

)(1)

ν∗ [[X
(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

}

− 1

2N

∑

1≤i,j≤d1

X
(1)
i∗ X

(1)
j∗ f

(
τε
(
Φ0(x) ∗ e−zρ

))

×
∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(1)

i∗

(
BN (x, z, c)

)(1)

j∗
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and
∑
k≥1 Ordε(k) is given by the sum of the following three parts:

I1(ε,N) = −
∑

k≥3

dk∑

i=1

εk−2

N
X

(k)
i∗ f

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(k)

i∗ ,

I2(ε,N) = −
( ∑

(i1,k1)≥(i2,k2)
k1+k2≥3

εk1+k2−2

2N
X

(k1)
i1∗ X

(k2)
i2∗ +

∑

(i2,k2)>(i1,k1)
k1+k2≥3

εk1+k2−2

2N
X

(k2)
i2∗ X

(k1)
i1∗

)

× f
(
τε
(
Φ0(x) ∗ e−zρ

)) ∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(k1)

i1∗

(
BN (x, z, c)

)(k2)

i2∗
,

I3(ε,N) = −
∑

(i1,k1),(i2,k2),(i3,k3)

εk1+k2+k3−2

6N

∂3f

∂g
(k1)
i1∗ ∂g

(k2)
i2∗ ∂g

(k3)
i3∗

(θ)

×
∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(k1)

i1∗

(
BN (x, z, c)

)(k2)

i2∗

(
BN (x, z, c)

)(k3)

i3∗
.

To complete the proof of Lemma 4.2, it is sufficient to show the following items:

(1) Ordε(−1) = 0.

(2) We have

Ordε(0) = −Af
(
τε
(
Φ0(x) ∗ e−zρ

))
+O

( 1

N

)
. (4.4)

(3) As N →∞ and ε↘ 0 with N2ε↘ 0, we have

‖Ii(ε,N)‖∞,q → 0 (i = 1, 2, 3). (4.5)

Step 2. We here show (1). We fix i = 1, 2, . . . , d1. By recalling (2.2) and (3.2), we have
inductively

∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(1)

i∗

=
∑

c′∈Ωx,N−1(X)

p(c′)
∑

e∈Et(c′)

p(e)
{

log
(

Φ0(x)−1 · Φ0

(
t(c′)

)
· e−(N−1)ρ

)∣∣∣
X

(1)
i

+ log
(

Φ0

(
o(e)

)−1 · Φ0

(
t(e)

)
· e−ρ

)∣∣∣
X

(1)
i

}

=
∑

c′∈Ωx,N−1(X)

p(c′) log
(

Φ0(x)−1 · Φ0

(
t(c′)

)
· e−(N−1)ρ

)∣∣∣
X

(1)
i

= 0 (x ∈ V, z ∈ Z).

Step 3. We prove the item (2). First consider the coefficient of X(2)
i∗
f
(
τε
(
Φ0(x) ∗ e−zρ

))

which is given by

− 1

N

∑

c∈Ωx,N (X)

p(c)
{(
BN (x, z, c)

)(2)

i∗

− 1

2

∑

1≤λ<ν≤d1

(
BN (x, z, c)

)(1)

λ∗

(
BN (x, z, c)

)(1)

ν∗ [[X
(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

}

= − 1

N

∑

c∈Ωx,N (X)

p(c) log
(
BN (x, z, c)

)∣∣
X

(2)
i

(x ∈ V, i = 1, 2, . . . , d2).
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Let us fix i = 1, 2, . . . , d2. We then deduce from (2.2) and (3.2) that, for x ∈ V and z ∈ Z,

− 1

N

∑

c∈Ωx,N (X)

p(c) log
(
BN (x, z, c)

)∣∣
X

(2)
i

= − 1

N

∑

c′∈Ωx,N−1(X)

p(c′)
∑

e∈Et(c′)

p(e) log
((
ezρ ∗ Φ0(x)−1 ∗ Φ0

(
t(c′)

)
∗ e−(z+N−1)ρ

)

∗
(
e(z+N−1)ρ ∗ Φ0

(
o(e)

)−1 ∗ Φ0

(
t(e)

)
∗ e−(z+N)ρ

))∣∣∣
X

(2)
i

= − 1

N

∑

c′∈Ωx,N−1(X)

p(c′) log
(
ezρ · Φ0(x)−1 · Φ0(t(c′)) · e−(z+N−1)ρ

)∣∣∣
X

(2)
i

+
∑

c′∈Ωx,N−1(X)

p(c′)
∑

e∈Et(c′)

p(e) log
(
e(z+N−1)ρ · dΦ0(e) · e−(z+N)ρ

)∣∣∣
X

(2)
i

= − 1

N

N−1∑

k=0

∑

c∈Ωx,k(X)

p(c)
∑

e∈Et(c)

p(e) log
(
e(z+k)ρ · dΦ0(e) · e−(z+k+1)ρ

)∣∣∣
X

(2)
i

.

For g, h ∈ G, we denote by [g, h] := g · h · g−1 · h−1 the commutator of g and h. Then we
have

∑

e∈Et(c)

p(e) log
(
e(z+k)ρ · dΦ0(e) · e−(z+k+1)ρ

)∣∣∣
X

(2)
i

=
∑

e∈Et(c)

p(e) log
([
e(z+k)ρ, dΦ0(e)

]
· dΦ0(e) · e−ρ

)∣∣∣
X

(2)
i

=
∑

e∈Et(c)

p(e) log
([
e(z+k)ρ, dΦ0(e)

])∣∣∣
X

(2)
i

+
∑

e∈Et(c)

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(2)
i

=
∑

e∈Et(c)

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(2)
i

(z ∈ Z, k = 0, 1, . . . , N − 1)

by again using (2.2). It should be noted that this is the most important equality in the
proof. Since the function

Mi(x) :=
∑

e∈Ex

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(2)
i

(i = 1, 2, . . . , d2, x ∈ V )

satisfies Mi(γx) = Mi(x) for γ ∈ Γ and x ∈ V due to the Γ-invariance of p and the
Γ-equivariance of Φ0, there exists a functionMi : V0 → R such thatMi

(
π(x)

)
= Mi(x)

for i = 1, 2, . . . , d2 and x ∈ V . Moreover, we have LkMi

(
π(x)

)
= LkMi(x) for k ∈ N, i =

1, 2, . . . , d2 and x ∈ V by using the Γ-invariance of p. Then the ergodic theorem (cf. [25,
Theorem 3.2]) for the transition operator L gives

− 1

N

∑

c∈Ωx,N (X)

p(c) log
(
BN (x, z, c)

)∣∣
X

(2)
i

= − 1

N

N−1∑

k=0

LkMi(x)

= −
∑

x∈V0

m(x)Mi(x) +O
( 1

N

)
= −β(Φ0)

∣∣
X

(2)
i

+O
( 1

N

)
(x ∈ V, z ∈ Z). (4.6)

We next consider the coefficient of X(1)
i∗ X

(1)
j∗ f

(
τε
(
Φ0(x) ∗ e−zρ

))
which is given by

− 1

2N

∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(1)

i∗

(
BN (x, z, c)

)(1)

j∗ (x ∈ V, z ∈ Z, i, j = 1, 2, . . . , d1).
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Fix i, j = 1, 2, . . . , d1. Then (2.2) and (3.2) imply

− 1

2N

∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(1)

i∗

(
BN (x, z, c)

)(1)

j∗

= − 1

2N

∑

c′∈Ωx,N−1(X)

p(c′)
∑

e∈Et(c′)

p(e)
{

log
(
BN−1(x, z, c′)

)∣∣
X

(1)
i

+ log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
i

}

×
{

log
(
BN−1(x, z, c′)

)∣∣
X

(1)
j

+ log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
j

}

= − 1

2N

{ ∑

c′∈Ωx,N−1(X)

p(c′) log
(
BN−1(x, z, c′)

)∣∣
X

(1)
i

log
(
BN−1(x, z, c′)

)∣∣
X

(1)
j

+
∑

e∈Et(c′)

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
i

log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
j

}

= − 1

2N

N−1∑

k=0

∑

c∈Ωx,N (X)

p(c)
∑

e∈Et(c)

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
i

log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
j

for x ∈ V and z ∈ Z. Since the function Nij : V → R defined by

Nij(x) :=
∑

e∈Ex

p(e) log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
i

log
(
dΦ0(e) · e−ρ

)∣∣
X

(1)
j

(i, j = 1, 2, . . . , d1, x ∈ V )

is Γ-invariant, by the same argument as above, we obtain

− 1

2N

∑

c∈Ωx,N (X)

p(c)
(
BN (x, z, c)

)(1)

i∗

(
BN (x, z, c)

)(1)

j∗

= −1

2

∑

e∈E0

m̃(e) log
(
dΦ0(ẽ) · e−ρ

)∣∣
X

(1)
i

log
(
dΦ0(ẽ) · e−ρ

)∣∣
X

(1)
j

+O
( 1

N

)
. (4.7)

Recall that {V1, V2, . . . , Vd1} denotes an orthonormal basis of (g(1), g0). We especially put

X
(1)
i = Vi for i = 1, 2, . . . , d1. Let {ω1, ω2, . . . , ωd1} ⊂ Hom(g(1),R) ↪→ H1(X0,R) be the

dual basis of {V1, V2, . . . , Vd1}. Namely, ωi(Vj) = δij for i, j = 1, 2, . . . , d1. It follows from
the modified harmonicity and (3.9) that

∑

e∈E0

m̃(e) log
(
dΦ0(ẽ) · e−ρ

)∣∣
Vi

log
(
dΦ0(ẽ) · e−ρ

)∣∣
Vj

=
∑

e∈E0

m̃(e) log
(
dΦ0(ẽ)

)∣∣
Vi

log
(
dΦ0(ẽ)

)∣∣
Vj
− ρR(γp)

∣∣
Vi
ρR(γp)

∣∣
Vj

=
∑

e∈E0

m̃(e)tρR(ωi)(e)
tρR(ωj)(e)− ωi(ρR(γp))ωj(ρR(γp))

=
∑

e∈E0

m̃(e)ωi(e)ωj(e)− 〈γp, ωi〉〈γp, ωj〉 = 〈〈ωi, ωj〉〉p = δij . (4.8)

Hence, we obtain (4.4) by combining (4.6) with (4.7) and (4.8).

Step 4. We show (3) at the last step. We first discuss the estimate of I1(ε,N). By using
(3.6) and (4.2), we have
∣∣∣
(

Φ0(x)−1 ∗ Φ0

(
t(c)
))(k)

i∗

∣∣∣ ≤ C
∑

|K1|+|K2|≤k
|K2|>0

∣∣∣PK1
∗

(
Φ0(x)−1

)∣∣∣
∣∣∣PK2

(
Φ0(x)−1 · Φ0

(
t(c)
))∣∣∣

≤ C
∑

|K1|+|K2|≤k
|K2|>0

N |K2|
∣∣∣PK1
∗

(
e−zρ ∗

(
Φ0(x) ∗ e−zρ

)−1
)∣∣∣
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for i = 1, 2, . . . , dk and k = 1, 2, . . . , r. Then (3.1) implies that there is a continuous
function Q1 : G→ R such that

∣∣∣
(

Φ0(x)−1 ∗ Φ0

(
t(c)
))(k)

i∗

∣∣∣ ≤ |z|k−1Q1

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑

|K1|+|K2|≤k
|K2|>0

ε−|K1|N |K2| (4.9)

for i = 1, 2, . . . , dk and k = 1, 2, . . . , r. Thus, (3.1) and (4.9) yields

∣∣(BN (x, 0, c)
)(k)

i∗

∣∣ ≤ C
∑

|L1|+|L2|=k
|L1|,|L2|≥0

∣∣∣PL1
∗

(
Φ0(x)−1 ∗ Φ0

(
t(c)
))∣∣∣
∣∣PL2
∗
(
e−Nρ

)∣∣

≤ C|z|kQ2

(
τε
(
Φ0(x) ∗ e−zρ

)) ∑

|L1|+|L2|=k
|L1|,|L2|≥0

N |L2|
∑

|K1|+|K2|≤|L1|
|K2|>0

ε−|K1|N |K2|

= C|z|kQ2

(
τε
(
Φ0(x) ∗ e−zρ

))
F (ε,N) (4.10)

for some continuous function Q2 : G → R, where F (ε,N) denotes the polynomial of ε
and N which satisfies εk−2N−1F (ε,N)→ 0 as N →∞ and ε↘ 0 with N2ε↘ 0.

On the other hand, combining (4.10) with ρR(γp) ∈ g(1), there is some continuous
function Q3 : G→ R such that

εk−2

N

∣∣(BN (x, z, c)
)(k)

i∗

∣∣ =
εk−2

N

∣∣∣
([
ezρ,BN (x, 0, c)

]
∗ ∗ BN (x, 0, c)

)(k)

i∗

∣∣∣

≤ C ε
k−2

N

∑

|K1|+|K2|=k
|K1|,|K2|≥0

∣∣∣PK1
∗

([
ezρ,BN (x, 0, c)

]
∗

)∣∣∣
∣∣∣PK2
∗
(
BN (x, 0, c)

)∣∣∣

≤ C|z|2k ε
k−2

N
Q3

(
τε
(
Φ0(x) ∗ e−zρ

))
F (ε,N) (4.11)

for i = 1, 2, . . . , dk, k = 3, 4, . . . , r, x ∈ V, z ∈ Z and c ∈ Ωx,N (X). Hence, we obtain
that ‖I1(ε,N)‖∞,q → 0 as N → ∞ and ε ↘ 0 with N2ε ↘ 0 in C∞,q(X × Z) by using
(4.11). This follows from 2k < 2r < q. In the same argument as above, we also obtain
‖I2(ε,N)‖∞,q → 0 as N →∞ and ε↘ 0 with N2ε↘ 0 in C∞,q(X ×Z)-topology since the
order of |z| in I2(ε,N) satisfies 2× 2k < 4r < q.

Finally, we study the estimate of I3(ε,N). We recall that f ∈ C∞0 (G) and the support

of the function ∂3f/(∂g
(k1)
i1∗ ∂g

(k2)
i2∗ ∂g

(k3)
i3∗ ) is included in supp f . Therefore, it suffices to

show by induction on k = 1, 2, . . . , r that, if εN < 1,

εk
∣∣(BN (x, z, c)

)(k)

i∗

∣∣ ≤ |z|kQ(k)
(
τε(Φ0(x) ∗ e−zρ) ∗ θ

)
× εN (4.12)

for some continuous function Q(k) : G→ R, where θ ∈ G appears in the remainder term
of (4.3). The cases k = 1 and k = 2 are obvious. Suppose that (4.12) holds for less than k.
Then we have

εk
∣∣(BN (x, z, c)

)(k)

i∗

∣∣ ≤ Cεk
∑

|K1|+|K2|≤k
|K2|>0

∣∣∣PK1
∗

(
Φ0(x)−1

)∣∣∣
∣∣∣PK2

(
Φ0(x)−1 · Φ0

(
t(c)
))∣∣∣

by using (3.6). Since

(
Φ0(x)−1

)(k1)

i1∗
=
(
e−zρ ∗ (τε−1θ) ∗

(
τε−1(τε(Φ0(x) ∗ e−zρ) ∗ θ)−1

))(k1)

i1∗
(k1 ≤ k − 1),

we have inductively

∣∣(Φ0(x)−1
)(k1)

i1∗

∣∣ ≤ |z|k1Q
(
τε(Φ0(x) ∗ e−zρ) ∗ θ

)
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for a continuous function Q : G→ R and k1 ≤ k − 1. We thus obtain

εk
∣∣(BN (x, z, c)

)(k)

i∗

∣∣

≤ Cεk
∑

|K1|+|K2|≤k
|K2|>0

N |K2|
∣∣∣PK1
∗

(
e−zρ ∗ (τε−1θ) ∗

(
τε−1(τε(Φ0(x) ∗ e−zρ) ∗ θ)−1

))∣∣∣

≤ C|z|kQ
(
τε(Φ0(x) ∗ e−zρ) ∗ θ

) ∑

|K1|+|K2|≤k
|K2|>0

εk−|K1|+1N |K2|+1

≤ |z|kQ(k)
(
τε(Φ0(x) ∗ e−zρ) ∗ θ

)
× εN

for some continuous function Q(k) : G→ R. Therefore, (4.12) holds for k = 1, 2, . . . , r and
this implies that ‖I3(ε,N)‖∞,q → 0 as N →∞ and ε↘ 0 with N2ε↘ 0 in C∞,q(X × Z)

since the order of |z| in I3(ε,N) satisfies 3k < 3r < q. This completes the proof.

We now give the proof of Theorem 2.1 by using this lemma. We note that the
infinitesimal operator A in Lemma 4.2 enjoys the following property.

Lemma 4.3 (cf. Robinson [56, page 304]). The range of λ − A is dense in C∞(G) for
some λ > 0. Namely, (λ−A)

(
C∞0 (G)

)
is dense in C∞(G).

Proof of Theorem 2.1. (1) We follow the argument in Kotani [29, Theorem 4]. Let N =

N(n) be the integer satisfying n1/5 ≤ N < n1/5 +1 and kN and rN be the quotient and the
remainder of ([nt]− [ns])/N(n), respectively. Note that rN < N . We put εN := n−1/2 and
hN := Nε2

N . Then we have N = N(n)→∞, r2
NεN < N2εN ≤ (1 + n1/5)2 · n−1/2 → 0 and

hN ≤ (1 +n1/5) ·n−1 → 0 as n→∞. We also see that rNε2
N < Nε2

N ≤ (1 +n1/5) ·n−1 → 0

as n→∞. Hence, we have

kNhN =
[nt]− [ns]− rN

N
·Nε2

N =
(
[nt]− [ns]− rN

)
ε2
N → t− s (n→∞).

Since C∞0 (G) ⊂ Dom(A) ⊂ C∞(G) and C∞0 (G) is dense in C∞(G), the operator
A is densely defined in C∞(G). We use this fact and Lemma 4.3 to apply Trotter’s
approximation theorem (cf. Trotter [66] and Kurtz [39]). We obtain, for f ∈ C∞0 (G),

lim
n→∞

∥∥∥LNkNp Pn−1/2f − Pn−1/2e−(t−s)Af
∥∥∥
∞,q

= 0. (4.13)

Then Lemma 4.2 implies

lim
n→∞

∥∥∥ 1

rNε2
N

(
I − LrNp

)
Pn−1/2f − Pn−1/2Af

∥∥∥
∞,q

= 0 (4.14)

for all f ∈ C∞0 (G). We thus have
∥∥∥L[nt]−[ns]

p Pn−1/2f − Pn−1/2e−(t−s)Af
∥∥∥
∞,q

≤
∥∥∥
(
I − LrNp

)
Pn−1/2f

∥∥∥
∞,q

+
∥∥∥LNkNp Pn−1/2f − Pn−1/2e−(t−s)Af

∥∥∥
∞,q

. (4.15)

On the other hand, we have
∥∥∥
(
I − LrNp

)
Pn−1/2f

∥∥∥
∞,q

≤ rNε2
N

∥∥∥ 1

rNε2
N

(
I − LrNp

)
Pn−1/2f − Pn−1/2Af

∥∥∥
∞,q

+ rNε
2
N

∥∥Pn−1/2Af
∥∥
∞,q

≤ rNε2
N

∥∥∥ 1

rNε2
N

(
I − LrNp

)
Pn−1/2f − Pn−1/2Af

∥∥∥
∞,q

+ rNε
2
N

∥∥Af
∥∥G
∞. (4.16)
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We obtain (2.6) for f ∈ C∞0 (G) by combining (4.14), (4.15) and (4.16) with rNε
2
N →

0 (n→∞). For f ∈ C∞(G), we also obtain the convergence (2.6) by following the same
argument as [25, Theorem 2.1].

(2) For t > 0 and z ∈ Z, we have
∣∣L[nt]
p Pn−1/2f(xn, z)− e−tAf(g)

∣∣

≤
∣∣L[nt]
p Pn−1/2f(xn, z)− Pn−1/2e−tAf(xn, z)

∣∣+
∣∣Pn−1/2e−tAf(xn, z)− e−tAf(g)

∣∣

≤ (1 + |z|q)
∥∥∥L[nt]

p Pn−1/2f − Pn−1/2e−tAf
∥∥∥
∞,q

+
∣∣∣e−tAf

(
τn−1/2

(
Φ0(xn) ∗ exp(−zρR(γp))

))
− e−tAf(g)

∣∣∣.

We thus obtain (2.8) by (2.6) and the continuity of the function e−tAf : G → R. This
completes the proof of Theorem 2.1.

We now give several properties of β(Φ0).

Proposition 4.4. (1) If the random walk on X is m-symmetric, then β(Φ0) = 0g.
(2) Let Φ0, Φ̂0 : X → G be two modified harmonic realizations. Then

β(Φ0) = β(Φ̂0)−
[
ρR(γp), log

(
Φ0(x)−1 · Φ̂0(x)

)]∣∣
g(2) (x ∈ V ).

In particular, if either

• log Φ0(x∗)
∣∣
g(1) = log Φ̂0(x∗)

∣∣
g(1) for some reference point x∗ ∈ V , or

• ρR(γp) = 0g

holds, then we have β(Φ0) = β(Φ̂0).

Proof. Assertion (1) is easily obtained as follows:

β(Φ0) =
1

2

∑

e∈E0

(
m̃(e)− m̃(e)

)
log
(
dΦ0(ẽ)

)∣∣
g(2) = 0g.

Next we show Assertion (2). We set Ψ(x) := Φ0(x)−1 · Φ̂0(x) for x ∈ V . We note that the
map Ψ : X → G is Γ-invariant. Since the g(1)-components of Φ0 and Φ̂0 are uniquely
determined up to g(1)-translation, there exists a constant vector C ∈ g(1) such that
log
(
Ψ(x)

)∣∣
g(1) = C for x ∈ V . Define a function Fi : V → R by Fi(x) := log

(
Ψ(x)

)∣∣
X

(2)
i

for i = 1, 2, . . . , d2 and x ∈ V . Then we see that the function Fi is Γ-invariant. Hence,
there is a function F̂i : V0 → R satisfying F̂i

(
π(x)

)
= Fi(x) for x ∈ V . Then we obtain

β(Φ0) =
∑

e∈E0

m̃(e) log
(

Ψ
(
o(ẽ)

)
·
(
dΦ̂0(ẽ) · e−ρ

)
· eρ ·Ψ

(
t(ẽ)

)−1 · e−ρ
)∣∣∣

g(2)

= β(Φ̂0)−
∑

e∈E0

m̃(e)
{

log
(

Ψ
(
t(ẽ)

))∣∣∣
g(2)
− log

(
Ψ
(
o(ẽ)

))∣∣∣
g(2)

}
− [ρR(γp), C]

∣∣
g(2)

= β(Φ̂0)−
d2∑

i=1

(
C1(X0,R)〈γp, dF̂i〉C1(X0,R)

)
X

(2)
i − [ρR(γp), C]

∣∣
g(2)

= β(Φ̂0)−
d2∑

i=1

(
C0(X0,R)〈∂(γp), F̂i〉C0(X0,R)

)
X

(2)
i − [ρR(γp), C]

∣∣
g(2)

= β(Φ̂0)− [ρR(γp), C]
∣∣
g(2) ,

where we used (3.1) for the second line and γp ∈ H1(X0,R) for the fourth line. This
completes the proof.
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4.3 Proof of Theorem 2.2

We now assume the centered condition (A3): ρR(γp) = 0g, throughout this subsection.
For k = 1, 2, . . . , r, we denote by (G(k), ·) and (G(k), ∗) the connected and simply connected
nilpotent Lie group of step k and the corresponding limit group whose Lie algebras
are

(
g(1) ⊕ g(2) ⊕ · · · ⊕ g(k), [·, ·]

)
and

(
g(1) ⊕ g(2) ⊕ · · · ⊕ g(k), [[·, ·]]

)
, respectively. For

the piecewise smooth stochastic process (Y(n)
t )0≤t≤1 = (Y(n),1

t ,Y(n),2
t , . . . ,Y(n),r

t )0≤t≤1

defined in Section 2, we define its truncated process by

Y(n; k)
t =

(
Y(n),1
t ,Y(n),2

t , . . . ,Y(n),k
t

)
∈ G(k)

for 0 ≤ t ≤ 1 and k = 1, 2, . . . , r in the (·)-coordinate system. To complete the proof of
Theorem 2.2, it is sufficient to show the tightness of {P(n)}∞n=1 (Lemma 4.5) and the

convergence of the finite dimensional distribution of {Y(n)
· }∞n=1 (Lemma 4.8).

In the former part of this subsection, we aim to show the following.

Lemma 4.5. Under (A3), the family {P(n)}∞n=1 is tight in C0,α-Höl
1G

([0, 1];G), where α is
an arbitrary real number less than 1/2.

As the first step of the proof of Lemma 4.5, we prepare the following lemma.

Lemma 4.6. Let m,n be positive integers. Then there exists a constant C > 0 which is
independent of n (however, it may depend on m) such that

EPx∗
[
dCC(Y(n; 2)

s ,Y(n; 2)
t )4m

]
≤ C(t− s)2m (0 ≤ s ≤ t ≤ 1). (4.17)

Proof. The proof is partially based on Bayer–Friz [4, Proposition 4.3]. We emphasize
that the relation between the modified harmonicity of Φ0 and martingale theory such as
Lemma 3.3 is significant in this proof. We split the proof into several steps.

Step1. At the beginning, we show

EPx∗
[
dCC(Y(n; 2)

tk
,Y(n; 2)

t`
)4m
]
≤ C

(`− k
n

)2m (
n,m ∈ N, tk, t` ∈ Dn (k ≤ `)

)
(4.18)

for some C > 0 independent of n (depending on m). By recalling the equivalence of two
homogeneous norms ‖ · ‖CC and ‖ · ‖hom (cf. Proposition 3.1), we readily see that (4.18)
is equivalent to the existence of positive constants C(1) and C(2) independent of n such
that

EPx∗
[∥∥ log

(
(Y(n)
tk

)−1 · Y(n)
t`

)∣∣
g(1)

∥∥4m

g(1)

]
≤ C(1)

(`− k
n

)2m

, (4.19)

EPx∗
[∥∥ log

(
(Y(n)
tk

)−1 · Y(n)
t`

)∣∣
g(2)

∥∥2m

g(2)

]
≤ C(2)

(`− k
n

)2m

. (4.20)

Step2. We now show (4.19). We see

EPx∗
[∥∥ log

(
(Y(n)
tk

)−1 · Y(n)
t`

)∣∣
g(1)

∥∥4m

g(1)

]

=
( 1√

n

)4m

EPx∗
[( d1∑

i=1

log(ξ−1
k · ξ`)

∣∣2
X

(1)
i

)2m]

≤
( 1√

n

)4m

· d2m
1 max

i=1,2,...,d1
max
x∈F

{ ∑

c∈Ωx,`−k(X)

p(c) log
(

Φ0(x)−1 · Φ0

(
t(c)
))∣∣∣

4m

X
(1)
i

}
, (4.21)

where F stands for the fundamental domain in X containing the reference point x∗ ∈ V .
For i = 1, 2, . . . , d1, x ∈ F , N ∈ N and c = (e1, e2, . . . , eN ) ∈ Ωx,N (X), we put

M(i,x)
N (c) =M(i,x)

N (Φ0; c) := log
(

Φ0(x)−1 · Φ0

(
t(c)
))∣∣∣

X
(1)
i

=

N∑

j=1

log
(
dΦ0(ej)

)∣∣
X

(1)
i

.
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By Lemma 3.3, {M(i,x)
N }∞N=1 is an R-valued martingale for every i = 1, 2, . . . , d1 and

x ∈ F . Therefore, we apply the Burkholder–Davis–Gundy inequality with the exponent
4m to obtain

∑

c∈Ωx,N (X)

p(c)
(
M(i,x)

N (c)
)4m

=
∑

c∈Ωx,N (X)

p(c)
( N∑

j=1

log
(
dΦ0(ej)

)∣∣
X

(1)
i

)4m

≤ C4m
(4m)

∑

c∈Ωx,N (X)

p(c)
( N∑

j=1

log
(
dΦ0(ej)

)∣∣2
X

(1)
i

)2m

≤ C4m
(4m)‖dΦ0‖4m∞ N2m (4.22)

for i = 1, 2, . . . , d1, x ∈ F and N ∈ N, where C(4m) stands for the positive constant which
appears in the Burkholder–Davis–Gundy inequality with the exponent 4m. In particular,
by putting N = `− k, (4.22) leads to

∑

c∈Ωx,`−k(X)

p(c) log
(

Φ0(x)−1 · Φ0

(
t(c)
))∣∣∣

4m

X
(1)
i

≤ C4m
(4m)‖dΦ0‖4m∞ (`− k)2m. (4.23)

Thus, we obtain

EPx∗
[∥∥ log

(
(Y(n)
tk

)−1 · Y(n)
t`

)∣∣
g(1)

∥∥4m

g(1)

]

≤ d2m
1 C4m

(4m)‖dΦ0‖4m∞ ·
(`− k

n

)2m

= C(1)
(`− k

n

)2m

by combining (4.21) with (4.23), which is the desired estimate (4.19).

Step3. Next we prove (4.20). In the similar way to (4.21), we also have

EPx∗
[∥∥ log

(
(Y(n)
tk

)−1 · Y(n)
t`

)∣∣
g(2)

∥∥2m

g(2)

]

≤
( 1

n

)2m

· d2m
2 max

i=1,2,...,d2
max
x∈F

{ ∑

c∈Ωx,`−k(X)

p(c) log
(

Φ0(x)−1 · Φ0

(
t(c)
))∣∣∣

2m

X
(2)
i

}
. (4.24)

An elementary inequality (a1 + a2 + · · ·+ aK)2m ≤ K2m−1(a2m
1 + a2m

2 · · ·+ a2m
K ) yields

log
(

Φ0(x)−1 · Φ0

(
t(c)
))∣∣∣

2m

X
(2)
i

= log
(

Φ0

(
o(e1)

)−1 · Φ0

(
t(e1)

)
· · · ·Φ0

(
o(e`−k)

)−1 · Φ0

(
t(e`−k)

))∣∣∣
2m

X
(2)
i

=
( `−k∑

j=1

log
(
dΦ0(ej)

)∣∣
X

(2)
i

− 1

2

∑

1≤j1<j2≤`−k

∑

1≤λ<ν≤d1

[[X
(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

×
{

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

− log
(
dΦ0(ej1)

)∣∣
X

(1)
ν

log
(
dΦ0(ej2)

)∣∣
X

(1)
λ

})2m

≤ 32m−1
{( `−k∑

j=1

log
(
dΦ0(ej)

)∣∣
X

(2)
i

)2m

+ L max
1≤λ<ν≤d1

( ∑

1≤j1<j2≤`−k

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

)2m

+ L max
1≤λ<ν≤d1

( ∑

1≤j1<j2≤`−k

log
(
dΦ0(ej1)

)∣∣
X

(1)
ν

log
(
dΦ0(ej2)

)∣∣
X

(1)
λ

)2m}
, (4.25)

EJP 25 (2020), paper 86.
Page 26/46

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP486
http://www.imstat.org/ejp/


CLTs on nilpotent covering graphs

where we put

L :=
1

2
max

i=1,2,...,d2
max

1≤λ<ν≤d1

∣∣[[X(1)
λ , X(1)

ν ]]
∣∣
X

(2)
i

∣∣.

We fix i = 1, 2, . . . , d2. Then the Jensen inequality gives

( `−k∑

j=1

log
(
dΦ0(ej)

)∣∣
X

(2)
i

)2m

= (`− k)2m
( `−k∑

j=1

1

`− k log
(
dΦ0(ej)

)∣∣
X

(2)
i

)2m

≤ (`− k)2m
`−k∑

j=1

1

`− k log
(
dΦ0(ej)

)∣∣2m
X

(2)
i

≤ (`− k)2m‖dΦ0‖4m∞ . (4.26)

For 1 ≤ λ < ν ≤ d1, x ∈ F , N ∈ N and c = (e1, e2, . . . , eN ) ∈ Ωx,N (X), we put

M̃(λ,ν,x)
N (c) = M̃(λ,ν,x)

N (Φ0; c) :=
∑

1≤j1<j2≤N

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

=

N∑

j2=2

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)
.

We clearly observe that {M̃(λ,ν,x)
N }∞N=1 is an R-valued martingale for every 1 ≤ λ < ν ≤ d

and x ∈ F due to Lemma 3.3. Hence, we apply the Burkholder–Davis–Gundy inequality
with the exponent 2m to obtain

∑

c∈Ωx,N (X)

p(c)
(
M̃(λ,ν,x)

N (c)
)2m

≤ C2m
(2m)

∑

c∈Ωx,N (X)

p(c)
{ N∑

j2=2

log
(
dΦ0(ej2)

)∣∣2
X

(1)
ν

( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)2}m

≤ C2m
(2m)

∑

c∈Ωx,N (X)

p(c)Nm
N∑

j2=2

1

N − 1
log
(
dΦ0(ej2)

)∣∣2m
X

(1)
ν

( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)2m

≤ C2m
(2m)N

m
N∑

j2=2

1

N − 1

{ ∑

c∈Ωx,N (X)

p(c) log
(
dΦ0(ej2)

)∣∣4m
X

(1)
ν

}1/2

×
{ ∑

c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)4m}1/2

≤ C2m
(2m)‖dΦ0‖2m∞ Nm

N∑

j2=2

1

N − 1

{ ∑

c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)4m}1/2

, (4.27)

where we used Jensen’s inequality for the third line and Schwarz’ inequality for the
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fourth line. Then we have

∑

c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

)4m

≤ C4m
(4m)

∑

c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

log
(
dΦ0(ej1)

)∣∣2
X

(1)
λ

)2m

= C4m
(4m)(j2 − 1)2m

∑

c∈Ωx,N (X)

p(c)
( j2−1∑

j1=1

1

j2 − 1
log
(
dΦ0(ej1)

)∣∣2
X

(1)
λ

)2m

≤ C4m
(4m)j

2m
2

∑

c∈Ωx,N (X)

p(c)

j2−1∑

j1=1

1

j2 − 1
log
(
dΦ0(ej1)

)∣∣4m
X

(1)
λ

≤ C4m
(4m)‖dΦ0‖4m∞ j2m

2 (4.28)

by applying the Burkholder–Davis–Gundy inequality with the exponent 4m. It follows
from (4.27) and (4.28) that

∑

c∈Ωx,N (X)

p(c)
(
M̃(λ,ν,x)

N (c)
)2m ≤ C2m

(2m)‖dΦ0‖2m∞ Nm
N∑

j2=2

1

N − 1

(
C4m

(4m)‖dΦ0‖4m∞ j2m
2

)1/2

≤ C2m
(2m)C2m

(4m)‖dΦ0‖4m∞ Nm
N∑

j2=2

1

N − 1
·Nm

= C2m
(2m)C2m

(4m)‖dΦ0‖4m∞ N2m. (4.29)

We now put N = `− k. Then (4.29) implies
∑

c∈Ωx,`−k(X)

p(c)
{( ∑

1≤j1<j2≤`−k

log
(
dΦ0(ej1)

)∣∣
X

(1)
λ

log
(
dΦ0(ej2)

)∣∣
X

(1)
ν

)2m

+
( ∑

1≤j1<j2≤`−k

log
(
dΦ0(ej1)

)∣∣
X

(1)
ν

log
(
dΦ0(ej2)

)∣∣
X

(1)
λ

)2m}

≤ 2C2m
(2m)C2m

(4m)‖dΦ0‖4m∞ (`− k)2m (1 ≤ λ < ν ≤ d1). (4.30)

By combining (4.24) with (4.25), (4.26) and (4.30), we obtain

EPx∗
[∥∥ log

(
(Y(n)
tk

)−1 · Y(n)
t`

)∣∣
g(2)

∥∥2m

g(2)

]

≤
( 1

n

)2m

d2m
2 32m−1‖dΦ0‖4m∞

{
1 + 2LC2m

(2m)C2m
(4m)

}
(`− k)2m = C(2)

(`− k
n

)2m

.

This is the desired estimate (4.20), and thus we have shown (4.18).

Step4. We finally prove (4.17). Suppose that tk ≤ s ≤ tk+1 and t` ≤ t ≤ t`+1 for some

1 ≤ k ≤ ` ≤ n. Since the process Y(n)
· is given by the dCC-geodesic interpolation, we

have
dCC(Y(n; 2)

s ,Y(n; 2)
tk+1

) = (k − ns)dCC(Y(n; 2)
tk

,Y(n; 2)
tk+1

),

dCC(Y(n; 2)
t`

,Y(n; 2)
t ) = (nt− `)dCC(Y(n; 2)

t`
,Y(n; 2)

t`+1
).

By using (4.18) and the triangle inequality, we have

EPx∗
[
dCC(Y(n; 2)

s ,Y(n; 2)
t )4m

]

≤ 34m−1
{

(k + 1− ns)4m · C
( 1

n

)2m

+ C
(`− k − 1

n

)2m

+ (nt− `)4m · C
( 1

n

)2m}

≤ C
{

(tk+1 − s)2m + (t` − tk+1)2m + (t− t`)2m
}
≤ C(t− s)2m,

which is the desired estimate (4.17) and we have proved Lemma 4.6.
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In what follows, we write dY(n)∗
s,t := (Y(n)

s )−1 ∗ Y(n)
t for n ∈ N and 0 ≤ s ≤ t ≤ 1. By

using Lemma 4.6, we obtain the following.

Lemma 4.7. For m,n ∈ N, k = 1, 2, . . . , r and α < 2m−1
4m , there exist an F∞-measurable

set Ω
(n)
k ⊂ Ωx∗(X) and a non-negative random variable K(n)

k ∈ L4m(Ωx∗(X) → R; Px∗)

such that Px∗(Ω
(n)
k ) = 1 and

dCC

(
Y(n; k)
s (c),Y(n; k)

t (c)
)
≤ K(n)

k (c)(t− s)α (c ∈ Ω
(n)
k , 0 ≤ s ≤ t ≤ 1). (4.31)

Proof. We partially follow the original proof of Lyons extension theorem (cf. [46, Theorem
2.2.1]) in rough path theory. As mentioned in Section 2, his proof is not available in the
case where the nilpotent Lie group G is not necessarily free due to technical reasons.
Hence, we need to make a careful modification of it. We show (4.31) by induction on the
step number k = 1, 2, . . . , r.

Step 1. In the cases k = 1, 2, we have already obtained (4.31) in Lemma 4.6. Indeed,
(4.31) for k = 1, 2 are readily obtained by a simple application of the Kolmogorov–Chentov
criterion with the bound

‖K(n)
k ‖L4m(Px∗ ) ≤

5C

(1− 2−θ)(1− 2α−θ)
(n,m ∈ N, k = 1, 2), (4.32)

where θ = (2m − 1)/4m and C is a constant independent of n, which appears in the
right-hand side of (4.17). See e.g., Stroock [59, Theorem 4.3.2] for details.

Step 2. Suppose that (4.31) holds up to step k. Then, for n ∈ N, there are F∞-
measurable sets {Ω̂(n)

j }kj=1 and non-negative random variables {K̂(n)
j }kj=1 satisfying that

Px∗(Ω̂
(n)
j ) = 1 for j = 1, 2, . . . , k and

∥∥(dY(n)∗
s,t (c)

)(j)∥∥
R
dj ≤ K̂(n)

j (c)(t− s)jα (j = 1, 2, . . . , k, c ∈ Ω̂
(n)
j , 0 ≤ s ≤ t ≤ 1) (4.33)

with K̂(n)
j ∈ L4m/j(Ωx∗(X)→ R; Px∗) for m ∈ N and j = 1, 2, . . . , k.

We fix 0 ≤ s ≤ t ≤ 1 and n ∈ N. Set Ω̂
(n)
k+1 =

⋂k
j=1 Ω̂

(n)
j . We denote by ∆ the partition

{s = t0 < t1 < · · · < tN = t} of the time interval [s, t] independent of n ∈ N. We define

two G(k+1)-valued random variables Z(n)
s,t and Z(∆)

(n)
s,t by

(
Z(n)
s,t

)(j)
:=

{(
dY(n)∗

s,t

)(j)
, (j = 1, 2, . . . , k)

0 (j = k + 1)
, Z(∆)

(n)
s,t := Z(n)

t0,t1 ∗ Z
(n)
t1,t2 ∗ · · · ∗ Z

(n)
tN−1,tN ,

respectively. For i = 1, 2, . . . , dk+1, (3.1) and (4.33) imply

∣∣∣
(
Z(∆)

(n)
s,t (c)

)(k+1)

i∗ −
(
Z(∆ \ {tN−1})(n)

s,t (c)
)(k+1)

i∗

∣∣∣

=
∣∣∣
(
Z(n)
tN−2,tN−1

(c) ∗ Z(n)
tN−1,tN (c)

)(k+1)

i∗ −
(
Z(n)
tN−2,tN (c)

)(k+1)

i∗

∣∣∣

=

∣∣∣∣∣
∑

|K1|+|K2|=k+1
|K1|,|K2|≥0

CK1,K2PK1
∗
(
Z(n)
tN−2,tN−1

(c)
)
PK2
∗
(
Z(n)
tN−1,tN (c)

)
∣∣∣∣∣

≤ C
∑

|K1|+|K2|=k+1
|K1|,|K2|≥0

∣∣∣PK1
∗
(
dY(n)∗

tN−2,tN−1
(c)
)∣∣∣
∣∣∣PK2
∗
(
dY(n)∗

tN−1,tN (c)
)∣∣∣

≤ K̂(n)
k+1(c)(tN − tN−2)(k+1)α ≤ K̂(n)

k+1(c)
( 2

N − 1
(t− s)

)(k+1)α

(c ∈ Ω̂
(n)
k+1),
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where the random variable K̂(n)
k+1 : Ωx∗(X)→ R is given by

K̂(n)
k+1(c) := C

∑

|K1|+|K2|=k+1
|K1|,|K2|≥0

Q(n,K1)(c)Q(n,K2)(c),

Q(n,K)(c) := K̂(n)
k1

(c)K̂(n)
k2

(c) · · · K̂(n)
k`

(c)
(
K =

(
(i1, k1), (i2, k2), . . . , (i`, k`)

))
.

Note that K̂(n)
k+1 is non-negative and it has the following integrability:

EPx∗
[
(K̂(n)

k+1)4m/(k+1)
]
≤ C

∑

k1,...,k`>0
k1+k2+···+k`=k+1

EPx∗
[(
K̂(n)
k1
K̂(n)
k2
· · · K̂(n)

k`

)4m/(k+1)
]

≤ C
∑

k1,...,k`>0
k1+k2+···+k`=k+1

∏̀

λ=1

EPx∗
[(
K̂(n)
kλ

)4m/kλ]kλ/(k+1)

<∞,

where we used the generalized Hölder inequality for the second line. By removing points
in ∆ successively until the partition ∆ coincides with {s, t}, we have
∣∣∣
(
Z(∆)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣ ≤
∣∣∣
(
Z(∆ \ {tN−1})(n)

s,t (c)
)(k+1)

i∗

∣∣∣+ K̂(n)
k+1(c)

( 2

N − 1
(t− s)

)(k+1)α

≤
∣∣∣
(
Z({s, t})(n)

s,t (c)
)(k+1)

i∗

∣∣∣+

N−2∑

`=1

K̂(n)
k+1(c)

( 2

N − `
)(k+1)α

(t− s)(k+1)α

≤
∣∣∣
(
Z(n)
s,t (c)

)(k+1)

i∗

∣∣∣+ K̂(n)
k+1(c)2(k+1)αζ

(
(k + 1)α

)
(t− s)(k+1)α

≤ K̂(n)
k+1(c)(t− s)(k+1)α (i = 1, 2, . . . , dk+1, c ∈ Ω̂

(n)
k+1), (4.34)

where ζ(z) denotes the Riemann zeta function ζ(z) :=
∑∞
n=1(1/nz) for z ∈ R.

We will show that the family {Z(∆)
(n)
s,t } satisfies the Cauchy convergence principle.

Let δ > 0 and take two partitions ∆ = {s = t0 < t1 · · · < tN = t} and ∆′ of [s, t]

independent of n ∈ N satisfying |∆|, |∆′| < δ. We set ∆̂ := ∆ ∪∆′ and write

∆̂` = ∆̂ ∩ [t`, t`+1] = {t` = s`0 < s`1 < · · · < s`L` = t`+1} (` = 0, 1, . . . , N − 1).

By using (4.34), we have
∣∣∣
(
Z(∆)

(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣

=
∣∣∣
(
Z(n)
t0,t1(c) ∗ · · · ∗ Z(n)

tN−1,tN (c)
)(k+1)

i∗
−
(
Z(∆̂0)

(n)
t0,t1(c) ∗ · · · ∗ Z(∆̂N−1)

(n)
tN−1,tN (c)

)(k+1)

i∗

∣∣∣

=
∣∣∣
(
Z(n)
t0,t1(c)

)(k+1)

i∗
+
(
Z(n)
t1,t2(c) ∗ · · · ∗ Z(n)

tN−1,tN (c)
)(k+1)

i∗

−
(
Z(∆̂0)

(n)
t0,t1(c)

)(k+1)

i∗
−
(
Z(∆̂1)

(n)
t1,t2(c) ∗ · · · ∗ Z(∆̂N−1)

(n)
tN−1,tN (c)

)(k+1)

i∗

∣∣∣

≤ K̂(n)
k+1(c)(t1 − t0)(k+1)α +

∣∣∣
(
Z(n)
t1,t2(c) ∗ · · · ∗ Z(n)

tN−1,tN (c)
)(k+1)

i∗

−
(
Z(∆̂0)

(n)
t1,t2(c) ∗ · · · ∗ Z(∆̂N−1)

(n)
tN−1,tN (c)

)(k+1)

i∗

∣∣∣ (i = 1, 2, . . . , dk+1, c ∈ Ω̂
(n)
k+1).

Repeating this kind of estimate and recalling (k + 1)α > 1 yield
∣∣∣
(
Z(∆)

(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣

≤
N−1∑

`=0

K̂(n)
k+1(c)(t`+1 − t`)(k+1)α

≤ K̂(n)
k+1(c)

(
max

∆
(t`+1 − t`)(k+1)α−1

)N−1∑

`=0

(t`+1 − t`) ≤ K̂(n)
k+1(c)(t− s)× δ(k+1)α−1 (4.35)
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for i = 1, 2, . . . , dk+1 and c ∈ Ω̂
(n)
k+1. We thus obtain

∣∣∣
(
Z(∆)

(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆′)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣

≤
∣∣∣
(
Z(∆)

(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣+
∣∣∣
(
Z(∆̂)

(n)
s,t (c)

)(k+1)

i∗
−
(
Z(∆̃)

(n)
s,t (c)

)(k+1)

i∗

∣∣∣

≤ 2K̂(n)
k+1(c)(t− s)× δ(k+1)α−1 → 0 (i = 1, 2, . . . , dk+1, c ∈ Ω̂

(n)
k+1)

as δ ↘ 0 uniformly in 0 ≤ s ≤ t ≤ 1 by (4.35). Therefore, noting the estimate (4.34),
there exists a random variable

Z(n)

s,t (c) :=





lim
|∆|↘0

Z(∆)
(n)
s,t (c) (c ∈ Ω̂

(n)
k+1),

1G (c ∈ Ωx∗(X) \ Ω̂
(n)
k+1),

(0 ≤ s ≤ t ≤ 1)

satisfying ∥∥(Z(n)

s,t (c)
)(k+1)∥∥

R
dk+1 ≤ K̂(n)

k+1(c)(t− s)(k+1)α (c ∈ Ω̂
(n)
k+1).

Our final goal is to show

Z(n)

s,t (c) = Y(n; k+1)
s (c) ∗ Y(n; k+1)

t (c) (0 ≤ s ≤ t ≤ 1, c ∈ Ω̂
(n)
k+1).

However, it suffices to check that

(
Z(n)

s,t (c)
)(k+1)

=
(
dY(n)∗

s,t (c)
)(k+1)

(0 ≤ s ≤ t ≤ 1, c ∈ Ω̂
(n)
k+1) (4.36)

by the definition of Z(n)

s,t . We fix i = 1, 2, . . . , dk+1 and c ∈ Ω̂
(n)
k+1. Put

Ψi
s,t(c) :=

(
dY(n)∗

s,t (c)
)(k+1)

i∗ −
(
Z(n)

s,t (c)
)(k+1)

i∗
(0 ≤ s ≤ t ≤ 1).

Then we easily see that Ψi
s,t(c) is additive in the sense that

Ψi
s,t(c) = Ψi

s,u(c) + Ψi
u,t(c) (0 ≤ s ≤ u ≤ t ≤ 1). (4.37)

Since the piecewise smooth stochastic process (Y(n)
t )0≤t≤1 is defined by the dCC- geodesic

interpolation of {X (n)
tk
}nk=0, we know

∥∥(dY(n)∗
s,t (c)

)(k+1)∥∥
R
dk+1 ≤ K̃(n)

k+1(c)(t− s)(k+1)α (c ∈ Ω̃
(n)
k+1)

for some set Ω̃
(n)
k+1 with Px∗(Ω̃

(n)
k+1) = 1 and random variable K̃(n)

k+1 : Ωx∗(X) → R. Then
we have

∣∣∣Ψi
s,t(c)

∣∣∣ ≤
(
K̃(n)
k+1(c) + K̂(n)

k+1(c)
)
(t− s)(k+1)α (0 ≤ s ≤ t ≤ 1, c ∈ Ω̃

(n)
k+1 ∩ Ω̂

(n)
k+1).

We may write Ω̂
(n)
k+1 instead of Ω̃

(n)
k+1 ∩ Ω̂

(n)
k+1 by abuse of notation, because its probability

is equal to one. For any ε > 0, there is a sufficiently large N ∈ N such that 1/N < ε.
Then, as ε↘ 0,

∣∣∣Ψi
0,t(c)

∣∣∣ =
∣∣∣Ψi

0,1/N (c) + Ψi
1/N,2/N (c) + · · ·+ Ψi

[Nt]/N,t(c)
∣∣∣

≤
(
K̃(n)
k+1(c) + K̂(n)

k+1(c)
)
ε(k+1)α−1

{ 1

N
+

1

N
+ · · ·+ 1

N︸ ︷︷ ︸
[Nt]-times

+
(
t− [Nt]

N

)}

=
(
K̃(n)
k+1(c) + K̂(n)

k+1(c)
)
ε(k+1)α−1t→ 0 (0 ≤ t ≤ 1, c ∈ Ω̂

(n)
k+1)
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by (4.37) and (k + 1)α − 1 > 0. This implies that Ψi
0,t(c) = 0 for 0 ≤ t ≤ 1 and c ∈ Ω̂

(n)
k+1.

Therefore, it follows from (4.36) that

Ψi
s,t(c) = Ψi

0,t(c)−Ψi
0,s(c) = 0 (0 ≤ s ≤ t ≤ 1, c ∈ Ω̂

(n)
k+1),

which means (4.35). Consequently, there exist a F∞-measurable set Ω
(n)
k+1 ⊂ Ωx∗(X)

with probability one and a non-negative random variable K(n)
k+1 ∈ L4m(Ωx∗(X)→ R; Px∗)

satisfying

dCC

(
Y(n; k+1)
s (c),Y(n; k+1)

t (c)
)
≤ K(n)

k+1(c)(t− s)α (0 ≤ s ≤ t ≤ 1, c ∈ Ω
(n)
k+1).

This completes the proof of Lemma 4.7.

Proof of Lemma 4.5. For m,n ∈ N and α̂ < 2m−1
4m , Lemma 4.7 implies that

EPx∗
[
dCC

(
Y(n; r)
s ,Y(n; r)

t

)4m] ≤ EPx∗
[(
K(n)
r

)4m]
(t− s)4mα̂

for 0 ≤ s ≤ t ≤ 1. Thus, it follows from (4.32) that

EPx∗
[
dCC

(
Y(n; r)
s ,Y(n; r)

t

)4m] ≤ C(t− s)4mα̂ (0 ≤ s ≤ t ≤ 1).

for a positive constant C > 0 independent of n ∈ N. By applying the Kolmogorov
criterion (cf. Friz–Hairer [15, Section 3.1]), we know that the family {P(n)}∞n=1 is tight in
C0,α-Höl

1G
([0, 1];G) for α < 4mα̂−1

4m < 1
2 − 1

2m . Since m ∈ N is taken arbitrarily, we complete
the proof.

We conclude Theorem 2.2 by showing the following convergence of the finite dimen-
sional distribution.

Lemma 4.8. Let ` ∈ N. For fixed 0 ≤ s1 < s2 < · · · < s` ≤ 1, we have

(Y(n)
s1 ,Y(n)

s2 , . . . ,Y(n)
s`

)
(d)→ (Ys1 , Ys2 , . . . , Ys`) (n→∞).

Proof. We only prove the convergence for ` = 2. General cases (` ≥ 3) can be also
proved by repeating the same argument. Put s = s1 and t = s2. Then, by applying

Theorem 2.1, we obtain (X (n)
s ,X (n)

t )
(d)→ (Ys, Yt) as n→∞ in the same way as [25, Lemma

4.2]. On the other hand, Lemma 4.7 tells us that there exists a non-negative random
variable K(n)

r ∈ L4m(Ωx∗(X)→ R; Px∗) such that

dCC

(
Y(n)
s (c),Y(n)

t (c)
)
≤ K(n)

r (c)(t− s)α Px∗ -a.s. (0 ≤ s ≤ t ≤ 1).

Now suppose that tk ≤ t ≤ tk+1 for some k = 0, 1, . . . , n− 1. For all ε > 0 and sufficiently
large m ∈ N, by using Chebyshev’s inequality, we have

Px∗

(
dCC

(
X (n)
t ,Y(n)

t

)
> ε
)

≤ 1

ε4m
EPx∗

[
dCC

(
X (n)
t ,Y(n)

t

)4m]

≤ 1

ε4m
EPx∗

[
dCC

(
Y(n)
tk
,Y(n)

tk+1

)4m]

≤ 1

ε4m
EPx∗

[
(K(n)

r )4m(tk+1 − tk)4mα
]

=
1

n2m−1ε4m
EPx∗

[
(K(n)

r )4m
]
→ 0 (n→∞).

Thus, Slutzky’s theorem (cf. Klenke [28, Theorem 13.8]) allows us to obtain the desired

convergence (Y(n)
s ,Y(n)

t )
(d)→ (Ys, Yt) as n→∞. This completes the proof.
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4.4 Proof of Theorem 2.3

In this section, we show Theorem 2.3, which is a generalization of Theorem 2.2 to
non-harmonic cases. Our first aim is to show that the same pathwise Hölder estimate as

Lemma 4.7 holds for the stochastic process {Y(n)}∞n=1.

Lemma 4.9. For m,n ∈ N and α < 2m−1
4m , there exist an F∞-measurable set Ω

(n)

r ⊂
Ωx∗(X) and a non-negative random variable K(n)

r ∈ L4m
(
Ωx∗(X) → R;Px∗

)
such that

Px∗(Ω
(n)

r ) = 1 and

dCC

(
Y(n)

s (c),Y(n)

t (c)
)
≤ K(n)

r (c)(t− s)α (c ∈ Ω
(n)

r , 0 ≤ s < t ≤ 1). (4.38)

Proof. Fix n ∈ N and 1 ≤ k ≤ ` ≤ n. We then have

dCC(Y(n)

tk
,Y(n)

t`
) ≤ dCC(Y(n)

tk
,Y(n)

tk
) + dCC(Y(n)

tk
,Y(n)

t`
) + dCC(Y(n)

t`
,Y(n)

t`
).

Set set Z(n)
t := (Y(n)

t )−1 ∗ Y(n)

t for 0 ≤ t ≤ 1 and n ∈ N. We then have

log
(
Z(n)
tk

)|g(1) =
1√
n

Corg(1)(wk) (n ∈ N, k = 0, 1, . . . , n)

so that there is a constant C > 0 such that
∥∥ log

(
Z(n)
tk

)|g(1)

∥∥
g(1) ≤ Cn−1/2 for n ∈ N

and k = 0, 1, 2, . . . , n. By the choice of the components of Φ0(x) for x ∈ V , we have∥∥ log
(
Z(n)
tk

)|g(i)

∥∥
g(i) ≤ Cn−i/2 for n ∈ N and k = 0, 1, 2, . . . , n. Then Proposition 3.1 leads

to

dCC(Y(n)

tk
,Y(n)

tk
) ≤ C

∥∥Z(n)
tk

∥∥
Hom

= C

r∑

i=1

∥∥ log
(
Z(n)
tk

)|g(i)

∥∥1/i

g(i) ≤
C√
n

(4.39)

for n ∈ N and k = 0, 1, 2, . . . , n. Then Lemma 4.7 and (4.39) imply that there exist

an F∞-measurable set Ω
(n)

r ⊂ Ωx∗(X) and a non-negative random variable K(n)

r ∈
L4m

(
Ωx∗(X)→ R;Px∗

)
such that P(n−1/2)

x∗ (Ω
(n)

r ) = 1 and

dCC

(
Y(n)

tk
(c),Y(n)

t`
(c)
)
≤ C√

n
+K(n)

r (c)
(`− k

n

)α
+

C√
n
≤ K(n)

r (c)
(`− k

n

)α
(4.40)

for c ∈ Ω
(n)

r and 0 ≤ k ≤ ` ≤ n. We now take 0 ≤ k ≤ ` ≤ n such that k/n ≤ s < (k + 1)/n

and `/n ≤ t < (`+ 1)/n. By the definition of (Y(n)

t )0≤t≤1, we have

dCC

(
Y(n)

s ,Y(n)

tk+1

)
= (k − ns)dCC

(
Y(n)

tk
,Y(n)

tk+1

)
,

dCC

(
Y(n)

t`
,Y(n)

t

)
= (nt− `)dCC

(
Y(n)

t`
,Y(n)

t`+1

)
.

We then use the triangular inequality and (4.40) to obtain

dCC

(
Y(n)

s (c),Y(n)

t (c)
)

≤ (k − ns)K(n)

r (c)
( 1

n

)α
+K(n)

r (c)
(`− k − 1

n

)α
+ (nt− `)K(n)

r (c)
( 1

n

)α

≤ K(n)

r (c)
{(k + 1

n
− s
)α

+
(`− k − 1

n

)α
+
(
t− `

n

)α}
≤ K(n)

r (c)(t− s)α (c ∈ Ω
(n)

r ).

This completes the proof.

Proof of Theorem 2.3. The proof is split into two steps.
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Step 1. We show that {Y(n)}∞n=1 converges in law to (Yt)0≤t≤1 in C1G([0, 1];G) as n→∞.
For 0 ≤ t ≤ 1, take an integer 0 ≤ k ≤ n such that k/n ≤ t < (k + 1)/n. Then (4.31),
(4.38) and (4.39) imply, Px∗ -almost surely,

dCC(Y(n)
t ,Y(n)

t ) ≤ dCC(Y(n)
tk
,Y(n)

t ) + dCC(Y(n)
tk
,Y(n)

tk
) + dCC(Y(n)

tk
,Y(n)

t )

≤ K(n)
r

(
t− k

n

)α
+

C√
n

+K(n)

r

(
t− k

n

)α

≤
{
K(n)
r +K(n)

r + C
}( 1√

n

)α (
m ∈ N, α < 2m− 1

4m

)
. (4.41)

Let ρ be a metric on C1G([0, 1];G) defined by ρ(w(1), w(2)) := max0≤t≤1 dCC(w
(1)
t , w

(2)
t ). By

applying the Chebyshev inequality and (4.41), we have, for ε > 0 and m ∈ N,

Px∗

(
ρ(Y(n),Y(n)

) > ε
)

≤
(1

ε

)4m

EPx∗
[
ρ(Y(n),Y(n)

)4m
]

≤
(1

ε

)4m

EPx∗
[

max
0≤t≤1

dCC(Y(n)
t ,Y(n)

t )4m
]

≤ 34m−1
(1

ε

)4m( 1√
n

)4mα{
EPx∗

[
(K(n)

r )4m
]

+ EPx∗
[
(K(n)

r )4m
]

+ EPx∗
[
C4m

]}
→ 0

as n→∞. Therefore, by Slutzky’s theorem, the convergence in law of {Y(n)}∞n=1 to the
diffusion process (Yt)0≤t≤1 in C1G([0, 1];G) as n→∞ is obtained.

Step 2. By the previous step, we see that the convergence of the finite-dimensional

distribution of {Y(n)}∞n=1 holds. On the other hand, we can prove that the sequence

{P(n)
:= Px∗ ◦ (Y(n)

)−1}∞n=1 is tight in C0,α-Höl
1G

([0, 1];G), by applying Lemma 4.9 and by
following the same argument as the proof of Lemma 4.5. We complete the proof by
combining these two.

5 An explicit representation of the limiting diffusions and a rela-
tion with rough path theory

5.1 An explicit representation of the limiting diffusion

Let us consider an SDE on RN

dξt =

d∑

i=1

Ui(ξt) ◦ dBit + U0(ξt) dt, ξ0 = x0 ∈ RN , (5.1)

where U0, U1, . . . , Ud are C∞-vector fields on Rd and (Bt)0≤t≤1 = (B1
t , B

2
t , . . . , B

d
t )0≤t≤1

is a d-dimensional standard Brownian motion. As is well-known, a number of authors
have studied explicit representations of the unique solution to (5.1) as a functional of
Itô/Stratonovich iterated integrals under some assumptions on vector fields U0, U1, . . . , Ud.
In particular, Kunita [38] has obtained the explicit formula by using the CBH formula
in the case where the Lie algebra generated by U0, U1, . . . , Ud is nilpotent or solvable.
Castell [9] gave a universal representation formula, which contains the above results in
the nilpotent case and extends the study of Ben Arous [5] to more general diffusions.

We now recall the result in [9] when the Lie algebra generated by U0, U1, . . . , Ud is
nilpotent of step r. We first introduce several notations of multi-indices. Set I(k) =

{0, 1, . . . , d}k and let I = (i1, i2, . . . , ik) ∈ I(k) be a multi-index of length |I| = k. For vector
fields U0, U1, . . . , Ud on Rd and I = (i1, i2, . . . , ik) ∈ I(k), we denote by U I the vector field
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of the form U I = [Ui1 , [Ui2 , · · · , [Uik−1
, Uik ] · · · ]]. For a multi-index I = (i1, i2, . . . , ik) ∈

I(k), we define BIt by

BIt :=

∫

∆(k)[0,t]

◦dBi1t1 ◦ dB
i2
t2 · · · ◦ dB

ik
tk
,

where ∆(k)[0, t] := {(t1, t2, . . . , tk) ∈ [0, t]k | 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t} for 0 ≤ t ≤ 1

and B0
t = t for convention. Next we introduce notations of the permutations. Denote

by Sk be the symmetric group of degree k. For a permutation σ ∈ Sk, we write
e(σ) for the cardinality of the set {i ∈ {1, 2, . . . , k − 1} |σ(i) > σ(i + 1)}, which we
call the number of inversions of σ. For I = (i1, i2, . . . , ik) ∈ I(k) and σ ∈ Sk, we put
Iσ := (iσ(1), iσ(2), . . . , iσ(k)) ∈ I(k).

Proposition 5.1. (cf. [9]) Let U0, U1, . . . , Ud be bounded C∞-vector fields on RN such
that the Lie algebra generated by U0, U1, . . . , Ud is nilpotent of step r. We consider the
solution (ξt)0≤t≤1 of (5.1). Then we have

ξt = exp
( r∑

k=1

∑

I∈I(k)
cItU

I
)

(x0) (0 ≤ t ≤ 1) a.s.,

where

cIt :=
∑

σ∈S|I|

(−1)e(σ)

|I|2
(|I| − 1

e(σ)

)BIσ−1

t .

We now provide an explicit representation of (Yt)0≤t≤1, the solution to the SDE (2.10).
As mentioned in Section 3.1, since G is identified with RN (N = d1 +d2 + · · ·+dr), we may
apply Proposition 5.1 by replacing U0, U1, . . . , Ud by V0, V1, . . . , Vd1 , where V0 = β(Φ0)∗.
By recalling several concrete computations of cItU

I mentioned in e.g., Kunita [38], we
obtain the following.

Theorem 5.2. The limiting diffusion process (Yt)0≤t≤1 is explicitly represented as

Yt = exp
(
tβ(Φ0)∗ +

d1∑

i=1

BitVi∗

+
∑

0≤i<j≤d1

1

2

∫ t

0

(BisdB
j
s −BjsdBis)[[Vi∗, Vj∗]] +

r∑

k=3

∑

I∈I(k)
cItV

I
∗

)
(1G), (5.2)

where V I∗ = [[Vi1∗, [[Vi2∗, · · · , [[Vik−1∗, Vik∗]] · · · ]]]] for I = (i1, i2, . . . , ik) ∈ I(k).

We should note that some of [[Vi∗, Vj∗]] (0 ≤ i < j ≤ d1) in (5.2) may vanish because
{[[Vi∗, Vj∗]]}1≤i<j≤d is not always linearly independent.

Remark 5.3. We will discuss yet another functional CLT for non-symmetric random
walks on a nilpotent covering graph in a subsequent paper [26]. We also obtain a
G-valued diffusion process whose infinitesimal generator differs from −A of (Yt)0≤t≤1

through another CLT. Precisely, the generator is the sub-Laplacian plus drift of the
asymptotic direction ρR(γp) ∈ g(1), and the corresponding diffusion process (Ŷt)0≤t≤1 is
given by

Ŷt = exp
(
tρR(γp)∗ +

d1∑

i=1

BitVi∗

+
∑

0≤i<j≤d1

1

2

∫ t

0

(BisdB
j
s −BjsdBis)[[Vi∗, Vj∗]] +

r∑

k=3

∑

I∈I(k)
cItV

I
∗

)
(1G),
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where V0 = ρR(γp) ∈ g(1). We see that these two diffusions are completely same when
the random walk on X is m-symmetric. However, the difference between them appears
in the case where γp 6= 0 and ρR(γp) = 0g. Namely, (Yt)0≤t≤1 is still given by (5.2), while

(Ŷt)0≤t≤1 is nothing but the “Brownian motion on G” given by

Ŷt = exp
( d1∑

i=1

BitVi∗ +
∑

1≤i<j≤d1

1

2

∫ t

0

(BisdB
j
s −BjsdBis)[[Vi∗, Vj∗]] + · · ·

)
(1G).

Before closing this subsection, we prove the following, which was mentioned in
Section 2.

Proposition 5.4. The C0-semigroup (e−tA)0≤t≤1 coincides with the C0-semigroup
(Tt)0≤t≤1 on C∞(G) defined by Ttf(g) = E[f(Y gt )] for g ∈ G, where (Y gt )0≤t≤1 is a
solution to the stochastic differential equation

dY gt =

d1∑

i=1

Vi∗(Y
g
t ) ◦ dBit + β(Φ0)∗(Y

g
t ) dt, Y g0 = g ∈ G. (5.3)

Proof. By recalling Lemma 4.3, the linear operator A satisfies the maximal dissipativity,
that is, λ − A is surjective for some λ > 0. Therefore, the Lumer–Fillips theorem
implies that (e−tA)0≤t≤1 is the unique Feller semigroup on C∞(G) whose infinitesimal
generator extends

(
−A, C∞0 (G)

)
. By applying Itô’s formula to (5.3), we easily see that

the generator of (Yt)0≤t≤1 coincides with −A on C∞0 (G). Therefore, it suffices to show
that the semigroup (Tt)0≤t≤1 enjoys the Feller property, that is, Tt

(
C∞(G)

)
⊂ C∞(G) for

0 ≤ t ≤ 1.
Suppose f ∈ C∞(G). For any ε > 0, we choose a sufficiently large R > 0 such

that |f(g)| < ε for g ∈ BR(1G)c, where BR(1G) := {g ∈ G | dCC(1G, g) < R}. Then, for
g ∈ B2R(1G)c, we have

|Ttf(g)| ≤ E
[
|f(Y gt )| : dCC(g, Y gt ) < R

]
+ E

[
|f(Y gt )| : dCC(g, Y gt ) ≥ R

]

≤ ε+ ‖f‖G∞P
(
dCC(g, Y gt ) ≥ R

)
.

By combining Proposition 3.1 and the Chebyshev inequality with Theorem 5.2,

P
(
dCC(g, Y gt ) ≥ R

)
= P

(
dCC(1G, Yt) ≥ R

)

≤ P
(
C‖Yt‖Hom ≥ R

)
≤ C

R2
E
[( r∑

k=1

∥∥∥
∑

I∈I(k)
cItV

I
∗

∥∥∥
1/k

g(k)

)2]
.

Now we recall the following fact (cf. Friz–Riedel [17, Lemma 2]): For a multi-index
I = (i1, i2, . . . , ik) ∈ I(k), there exists a positive constant C depending only on k such that

E
[( ∫

∆(k)[0,t]

◦dBi1t1 ◦ dB
i2
t2 · · · ◦ dB

ik
tk

)2]
≤ Ctk (0 ≤ t ≤ 1).

In view of this bound, we obtain P
(
dCC(g, Y gt ) ≥ R

)
≤ CR−2t. Taking a sufficiently large

R > 0 such that C‖f‖G∞tR−2 < ε, we conclude |Ttf(g)| < 2ε for g ∈ B2R(1G)c. This
implies that Tt

(
C∞(G)

)
⊂ C∞(G) for 0 ≤ t ≤ 1.

5.2 The free case: a relation with rough path theory

Consider the step-r non-commutative tensor algebra T (r)(Rd) = R⊕
(⊕r

k=1(Rd)⊗k
)
.

The tensor product on T (r)(Rd) is defined by

(g0, g1, . . . , gr)⊗r (h0, h1, . . . , hr) =
(
g0h0, g0h1 + g1h0, . . . ,

r∑

k=0

gk ⊗ hr−k
)
.
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An element g = (g0, g1, . . . , gr) ∈ T (r)(Rd) is occasionally written as g = g0 + g1 + · · ·+ gr.

We define two subsets of T (r)(Rd) by T (r)
1 (Rd) := {g ∈ T (r)(Rd) | g0 = 1} and T (r)

0 (Rd) :=

{A ∈ T (r)(Rd) |A0 = 0}. It is easy to see that T (r)
1 (Rd) is a Lie group under the tensor

product ⊗r. In fact, 1 = (1, 0, 0, . . . , 0) is the unit element of T (r)
1 (Rd) and the inverse

element of g ∈ T
(r)
1 (Rd) is given by g−1 =

∑r
k=1(−1)k(g − 1)⊗rk. The Lie bracket on

T
(r)
0 (Rd) is defined by [A,B] = A⊗r B −B ⊗r A for A,B ∈ T (r)

0 (Rd). Note that T (r)
0 (Rd)

is the Lie algebra of the Lie group T
(r)
1 (Rd), that is, T (r)

0 (Rd) is the tangent space of

T
(r)
1 (Rd) at 1. The map exp : T

(r)
0 (Rd)→ T

(r)
1 (Rd) is defined by

exp(A) := 1 +

r∑

k=1

1

k!
A⊗rk

(
A ∈ T (r)

0 (Rd)
)
.

Let {e1, e2, . . . , ed} be the standard basis of Rd. We introduce a discrete subgroup

g(r)(Zd) ⊂ T
(r)
0 (Rd) by the set of Z-linear combinations of e1, e2, . . . , ed together with

all possible commutators [ei1 , [ei2 , · · · , [eik−1
, eik ] · · · ]] for i1, i2, . . . , ik = 1, 2, . . . , d and

k = 2, 3, . . . , r.

We now set Γ = G(r)(Zd) := exp
(
g(r)(Zd)

)
. We also define g(r)(Rd) and G(r)(Rd) anal-

ogously. Then we see that
(
G(r)(Rd),⊗r

)
is the nilpotent Lie group in which Γ is included

as its cocompact lattice and the corresponding limit group coincides with
(
G(r)(Rd),⊗r

)

itself. We call
(
G(r)(Rd),⊗r

)
the free nilpotent Lie group of step r and

(
g(r)(Rd), [·, ·]

)
the

free nilpotent Lie algebra of step r. Let g(1) = Rd and g(k) = [Rd, [Rd, · · · , [Rd,Rd] · · · ]]
(k-times) for k = 2, 3, . . . , r. Then we see that the Lie algebra g(r)(Rd) is decomposed into
g(1) ⊕ g(2) ⊕ · · · ⊕ g(r). It is known that the free nilpotent Lie group G(r)(Rd) is highly
related to rough path theory, as is seen in e.g., Friz–Victoir [18].

Let Γ = G(r)(Zd) and X be a Γ-nilpotent covering graph. Then we see that X is
realized into the free nilpotent Lie group G = G(r)(Rd) through the modified harmonic
realization Φ0 : X → G, because Γ is a cocompact lattice in G. Then Theorem 5.2 reads
in terms of rough path theory. Precisely speaking, the G(r)(Rd)-valued diffusion process
(Yt)0≤t≤1 which solves (2.10) is represented as the Lyons extension of the so-called
distorted Brownian rough path of order r.

Corollary 5.5. Let {V1, V2, . . . , Vd} be an orthonormal basis of g(1) with respect to the
Albanese metric g0. We write

β(Φ0) =
∑

1≤i<j≤d

β(Φ0)ij [Vi, Vj ] ∈ g(2),

where we note that {[Vi, Vj ] : 1 ≤ i < j ≤ d} ⊂ g(2) forms a basis of g(2). Let β(Φ0) =(
β(Φ0)ij

)d
i,j=1

be an anti-symmetric matrix defined by

β(Φ0)ij :=





β(Φ0)ij (1 ≤ i < j ≤ d),

−β(Φ0)ij (1 ≤ j < i ≤ d),

0 (i = j).

Then the G(r)(Rd)-valued diffusion process (Yt)0≤t≤1 coincides with the Lyons extension

of the distorted Brownian rough path Bt = 1 + B
1

t + B
2

t ∈ G(2)(Rd) of order r, where

B
1

t :=

d∑

i=1

BitVi ∈ Rd, B
2

t :=

∫ t

0

∫ s

0

◦dBu ⊗ ◦dBs + tβ(Φ0) ∈ Rd ⊗Rd.
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6 Example

In this section, we discuss an example of the modified harmonic realizations associ-
ated with non-symmetric random walks on a nilpotent covering graph whose covering
transformation group Γ is the 3-dimensional discrete Heisenberg group H3(Z).

We now consider the 3-dimensional Heisenberg dice lattice. This graph is defined
by a covering graph of a finite graph consisting of three vertices with a covering
transformation group Γ = H3(Z) (see Figure 3). We emphasize that it is regarded as an
extension of the dice graph discussed in Namba [49] to the nilpotent case.

1

Figure 3: A part of 3-dimensional Heisenberg dice lattice and the projection of it on the
xy-plane

Suppose that Γ = H3(Z) is generated by two elements γ1 = (1, 0, 0) and γ2 = (0, 1, 0).
We also set two elements g1 := (1/3, 1/3, 1/3), g2 := (−1/3,−1/3,−1/3) in G = H3(R).
We put

V1 :=
{
g = γε1i1 ? · · · ? γ

ε`
i`
? 1G

∣∣ ik ∈ {1, 2}, εk = ±1 (1 ≤ k ≤ `), ` ∈ N ∪ {0}
}
,

V2 :=
{
g = γε1i1 ? · · · ? γ

ε`
i`
? g1

∣∣ ik ∈ {1, 2}, εk = ±1 (1 ≤ k ≤ `), ` ∈ N ∪ {0}
}
,

V3 :=
{
g = γε1i1 ? · · · ? γ

ε`
i`
? g2

∣∣ ik ∈ {1, 2}, εk = ±1 (1 ≤ k ≤ `), ` ∈ N ∪ {0}
}
.

We consider an H3(Z)-nilpotent covering graph X = (V,E) defined by V = V1 t V2 t V3

and E = E1 t E2, where

E1 :=
{

(g, h) ∈ V1 × V2 | g−1 ? h = g1, γ
−1
1 ? g1, γ

−1
2 ? g1

}
,

E2 :=
{

(g, h) ∈ V1 × V3 | g−1 ? h = g2, γ1 ? g2, γ2 ? g2

}
.

We note that X is invariant under the actions γ1 and γ2. Its quotient graph X0 =

(V0, E0) = Γ\X is given by V0 = {x,y, z} and E0 = {ei, ei | 1 ≤ i ≤ 6} (cf. Figure 4).
From now on we define a non-symmetric random walk on X. We define the transition

probability p : E → (0, 1] by

p
(
(g, g ? g1)

)
= ξ, p

(
(g, g ? γ−1

1 ? g1)
)

= η, p
(
(g, g ? γ−1

2 ? g1)
)

= ζ,

p
(
(g, g ? g2)

)
= ζ, p

(
(g, g ? γ1 ? g2)

)
= η, p

(
(g, g ? γ2 ? g2)

)
= ξ,

p
(
(g, g ? g1)

)
= γ, p

(
(g, g ? γ−1

1 ? g1)
)

= β, p
(
(g, g ? γ−1

2 ? g1)
)

= α,

p
(
(g, g ? g2)

)
= α, p

(
(g, g ? γ1 ? g2)

)
= β, p

(
(g, g ? γ2 ? g2)

)
= γ,
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for every g ∈ V1, where ξ, η, ζ, α, β, γ > 0, 2(ξ+η+ ζ) = 1 and α+β+γ = 1. The invariant
measure m : V0 = {x,y, z} → (0, 1] is given by m(x) = 1/2 and m(y) = m(z) = 1/4. Note
that this random walk is (m-)symmetric if and only if α = 2ζ, β = 2η and γ = 2ξ.

The first homology group H1(X0,R) is spanned by the four 1-cycles

[c1] := [e1 ∗ e2], [c2] := [e1 ∗ e3], [c3] := [e4 ∗ e5], [c4] := [e4 ∗ e6].

Then the homological direction is calculated as

γp =
β − 2η

4
[c1] +

α− 2ζ

4
[c2] +

β − 2η

4
[c3] +

γ − 2ξ

4
[c4].

The canonical surjective linear map ρR : H1(X0,R)→ g(1) is given by

ρR([c1]) = X1, ρR([c2]) = X2, ρR([c3]) = −X1, ρR([c4]) = −X2.

Then we obtain

ρR(γp) =
(α− γ)− 2(ζ − ξ)

4
X2. (6.1)

x

yz

e1

e2

e3

e4

e5

e6

1

Figure 4: The quotient X0 = (V0, E0) of the 3D-Heisenberg dice graph X = (V,E)

We write {u1, u2} ⊂ Hom(g(1),R) for the dual basis of {X1, X2} ⊂ g(1). We also denote
by {ω1, ω2, ω3, ω4} ⊂

(
H1(X0,R), 〈〈·, ·〉〉p

)
the dual basis of {[c1], [c2], [c3], [c4]} ⊂ H1(X0,R).

Namely, ωi([cj ]) = δij for 1 ≤ i, j ≤ 4. Then the modified harmonicity (3.8) yields

ω1(e1) = β − β − 2η

4
, ω1(e2) = −(1− β)− β − 2η

4
, ω1(e3) = β − β − 2η

4
,

ω1(e4) = −β − 2η

4
, ω1(e5) = −β − 2η

4
, ω1(e6) = −β − 2η

4
,

ω2(e1) = α− α− 2ζ

4
, ω2(e2) = α− α− 2ζ

4
, ω2(e3) = −(1− α)− α− 2ζ

4
,

ω2(e4) = −α− 2ζ

4
, ω2(e5) = −α− 2ζ

4
, ω2(e6) = −α− 2ζ

4
,

ω3(e1) = −β − 2η

4
, ω3(e2) = −β − 2η

4
, ω3(e3) = −β − 2η

4
,

ω3(e4) = β − β − 2η

4
, ω3(e5) = −(1− β)− β − 2η

4
, ω3(e6) = β − β − 2η

4
,

ω4(e1) = −γ − 2ξ

4
, ω4(e2) = −γ − 2ξ

4
, ω4(e3) = −γ − 2ξ

4
,

ω4(e4) = γ − γ − 2ξ

4
, ω4(e5) = γ − γ − 2ξ

4
, ω4(e6) = −(1− γ)− γ − 2ξ

4
.
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By direct computation, we have

〈〈ω1, ω1〉〉p =
β + 2η

4
− (β + 2η)2

8
, 〈〈ω1, ω2〉〉p = − (α+ 2ζ)(β + 2η)

8
,

〈〈ω1, ω3〉〉p = − (β − 2η)2

8
, 〈〈ω1, ω4〉〉p = − (β − 2η)(γ − 2ξ)

8
,

〈〈ω2, ω2〉〉p =
α+ 2ζ

4
− (α+ 2ζ)2

8
, 〈〈ω2, ω3〉〉p = − (α− 2ζ)(β − 2η)

8
, (6.2)

〈〈ω2, ω4〉〉p = − (α− 2ζ)(γ − 2ξ)

8
, 〈〈ω3, ω3〉〉p =

β + 2η

4
− (β + 2η)2

8
,

〈〈ω3, ω4〉〉p = − (β + 2η)(γ + 2ξ)

8
, 〈〈ω4, ω4〉〉p =

γ + 2ξ

4
− (γ + 2ξ)2

8
.

Since the linear space Hom(g(1),R) can be seen as a 2-dimensional subspace of H1(X0,R)

through the injection tρR, we see that u1 = tρR(u1) = ω1−ω3 and u2 = tρR(u2) = ω2−ω4

form a Z-basis in Hom(g(1),R). We then obtain

〈〈u1, u1〉〉p =
β + 2η − 4βη

2
, 〈〈u1, u2〉〉p = −β + 2η − 4βη

4
,

〈〈u2, u2〉〉p =
(β + 2η)(2− β − 2η) + 4αγ + 16ξζ

8
.

by (6.2). Thus the volume of the Albanese torus is computed as

vol(AlbΓ)−1 =
1

4

√
(β + 2η − 4βη)

{
(β + 2η)− (β2 + 4η2) + 4αγ + 16ξζ

}
.

Furthermore, the Albanese metric g0 on g(1) is given by

〈X1, X1〉g0 =
(β + 2η)(2− β − 2η) + 4αγ + 16ξζ

8
vol(AlbΓ),

〈X1, X2〉g0 =
β + 2η − 4βη

4
vol(AlbΓ), 〈X2, X2〉g0 =

β + 2η − 4βη

2
vol(AlbΓ).

We now determine the modified standard realization Φ0 : X → G = H3(R). Let
ẽi (i = 1, 2, 3, 4, 5, 6) be a lift of ei ∈ E0 to X and put Φ0

(
o(ẽi)

)
= 1G. Then it follows from

(2.2) and (6.1) that the Γ-equivariant realization Φ0 : X → G satisfying

Φ0

(
t(ẽ1)

)
=
(
β,

(3α+ γ) + 2(ζ − ξ)
4

, κ1

)
,

Φ0

(
t(ẽ2)

)
=
(
β − 1,

(3α+ γ) + 2(ζ − ξ)
4

, κ1 −
(3α+ γ) + 2(ζ − ξ)

4

)
,

Φ0

(
t(ẽ3)

)
=
(
β,

(3α+ γ) + 2(ζ − ξ)
4

− 1, κ1

)
,

Φ0

(
t(ẽ4)

)
=
(
− β, −(α+ 3γ) + 2(ζ − ξ)

4
,−κ2

)
,

Φ0

(
t(ẽ5)

)
=
(

1− β, −(α+ 3γ) + 2(ζ − ξ)
4

,−κ2 +
−(α+ 3γ) + 2(ζ − ξ)

4

)
,

Φ0

(
t(ẽ6)

)
=
(
− β, −(α+ 3γ) + 2(ζ − ξ)

4
+ 1,−κ2

)

is the modified harmonic realization, where κ1, κ2 is two real parameters which indicates
the ambiguity of the realization corresponding to g(2). Let {v1, v2} be the Gram–Schmidt
orthonormalization of the basis {u1, u2}, that is,

v1 = 〈〈u1, u1〉〉−1/2
p u1, v2 = 〈〈u1, u1〉〉1/2p vol(AlbΓ)

(
u2 −

〈〈u1, u2〉〉p
〈〈u1, u1〉〉p

u1

)
,
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and {V1, V2} ⊂ g(1) its dual basis. We write V3 := [V1, V2] = V1V2 − V2V1. Then we obtain

v1 =
(β + 2η − 4βη

2

)−1/2

u1, v2 =
(β + 2η − 4βη

2

)1/2

vol(AlbΓ)
(
u2 +

1

2
u1

)

by (6.2). Moreover, we have

V1 =
(β + 2η − 4βη

2

)1/2

X1 −
1

2

(β + 2η − 4βη

2

)1/2

X2,

V2 =
(β + 2η − 4βη

2

)−1/2

vol(AlbΓ)−1X2,

V3 = vol(AlbΓ)−1X3.

Finally, we see that β(Φ0) ∈ g(2) and the infinitesimal generator A are calculated as

β(Φ0) =

6∑

i=1

(
m̃(ei)− m̃(ei)

)
log
(
dΦ0(ẽi) · exp

(
− ρR(γp)

))∣∣∣
g(2)

=
β − 2η

8
vol(AlbΓ)V3,

A = −1

2
(V 2

1 + V 2
2 )− β − 2η

8
vol(AlbΓ)V3.

We should observe that the coefficient of β(Φ0) does not include the parameters κ1 and
κ2, though the realization Φ0 has the ambiguity of g(2)-components.

A A comment on CLTs in the non-centered case

As was already mentioned, the centered condition (A3) is crucial to establish the
functional CLT (Theorem 2.2). We present a method to reduce the non-centered case
ρR(γp) 6= 0g to the centered case by employing a measure-change technique based on
Alexopoulos [2]. See also Namba [49] for this kind of technique in the case where X is a
crystal lattice.

We consider a positive transition probability p : E → (0, 1] to avoid several technical
difficulties. Then the random walk on X associated with p is automatically irreducible.
Let Φ0 : X → G be the (p-)modified harmonic realization. We define a function F =

Fx(λ) : V0 ×Hom(g(1),R)→ R by

Fx(λ) :=
∑

e∈(E0)x

p(e) exp
(

Hom(g(1),R)

〈
λ, log

(
dΦ0(ẽ)

)∣∣
g(1)

〉
g(1)

)
(A.1)

for x ∈ V0 and λ ∈ Hom(g(1),R). Since the lemma below is obtained by following the
argument in [49, Lemma 3.1], we omit the proof.

Lemma A.1. For every x ∈ V0, the function Fx(·) : Hom(g(1),R) → (0,∞) has a unique
minimizer λ∗ = λ∗(x) ∈ Hom(g(1),R).

We now define a positive function p : E0 → (0, 1] by

p(e) :=
exp

(
Hom(g(1),R)

〈
λ∗
(
o(e)

)
, log

(
dΦ0(ẽ)

)∣∣
g(1)

〉
g(1)

)

Fo(e)
(
λ∗
(
o(e)

)) p(e) (e ∈ E0). (A.2)

It is straightforward to check that the function p also gives a positive transition probability
on X0 and it yields an irreducible Markov chain (Ωx(X), P̂x, {w(p)

n }∞n=0) with values in X.
We then find a unique positive normalized invariant measure m : V0 → (0, 1] by applying
the Perron-Frobenius theorem again. We set m̃(e) := p(e)m

(
o(e)

)
for e ∈ E0. We also

denote by p : E → (0, 1] and m : V → (0, 1] the Γ-invariant lifts of p : E0 → (0, 1]

and m : V0 → (0, 1] to X, respectively. The Albanese metric on g(1) associated with
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the transition probability p is denoted by g
(p)
0 . We write {V (p)

1 , V
(p)
2 , . . . , V

(p)
d1
} for an

orthonormal basis of (g(1), g
(p)
0 ).

Let L(p) : C∞(X)→ C∞(X) be the transition operator associated with the transition
probability p. By virtue of Lemma A.1, we have
∑

e∈(E0)x

p(e) exp
(

Hom(g(1),R)

〈
λ∗, log

(
dΦ0(ẽ)

)∣∣
g(1)

〉
g(1)

)
log
(
dΦ0(ẽ)

)∣∣
g(1) = 0g (x ∈ V0).

Hence, we conclude

(L(p) − I)(log Φ0

∣∣
g(1))(x) =

∑

e∈Ex

p(e) log
(
dΦ0(e)

)∣∣
g(1) = 0g (x ∈ V ). (A.3)

This means that the (p-)modified harmonic realization Φ0 : X → G in the sense of (2.2) is
regarded as the (p-)harmonic realization and ρR(γp) = 0g.

We fix a reference point x∗ ∈ V such that Φ0(x∗) = 1G and put

ξ(p)
n (c) := Φ0

(
w(p)
n (c)

) (
n ∈ N ∪ {0}, c ∈ Ωx∗(X)

)
.

This yields a G-valued random walk (Ωx∗(X), P̂x∗ , {ξ(p)
n }∞n=0). We define

Y(n;p)
tk

(c) := τn−1/2

(
ξ

(p)
ntk

(c)
)

= τn−1/2

(
Φ0(w

(p)
k (c))

)

for k = 0, 1, . . . , n, tk ∈ Dn and c ∈ Ωx∗(X). We consider a G-valued stochastic process

(Y(n; p)
t )0≤t≤1 defined by the dCC-geodesic interpolation of {Y(n; p)

tk
}nk=0. Let (Ỹt)0≤t≤1 be

the G-valued diffusion process which solves the SDE

dỸt =

d1∑

i=1

V
(p)
i∗ (Ỹt) ◦ dBit + β(p)(Φ0)∗(Ỹt) dt, Ỹ0 = 1G,

where
β(p)(Φ0) :=

∑

e∈E0

m̃(e) log
(

Φ0

(
o(ẽ)

)−1 · Φ0

(
t(ẽ)

))∣∣∣
g(2)

.

The following two theorems are CLTs for non-symmetric random walks associated with
the changed transition probability p. We remark that the proofs of these theorems below
are done by combining the ones of Theorems 2.1 and 2.2 with the argument in [49,
Theorem 1.3].

Theorem A.2. Let Pε : C∞(G) → C∞(X) be the approximation operator defined by
Pεf(x) := f

(
τε
(
Φ0(x)

))
for 0 ≤ ε ≤ 1 and x ∈ V . Then we have, for 0 ≤ s ≤ t and

f ∈ C∞(G),

lim
n→∞

∥∥∥L[nt]−[ns]
(p) Pn−1/2f − Pn−1/2e−(t−s)A(p)f

∥∥∥
X

∞
= 0, (A.4)

where (e−tA(p))t≥0 is the C0-semigroup with the infinitesimal generator A(p) on C∞0 (G)

defined by

A(p) := −1

2

d1∑

i=1

(V
(p)
i∗ )2 − β(p)(Φ0)∗. (A.5)

Theorem A.3. The sequence (Y(n; p)
t )0≤t≤1 converges in law to the G-valued diffusion

process (Ỹt)0≤t≤1 in C0,α-Höl
1G

([0, 1];G) as n→∞ for all α < 1/2.

We emphasize that the transition probability p coincides with the given one p under
the centered condition (A3). Therefore, Theorems A.2 and A.3 are regarded as exten-
sions of Theorems 2.1 (under the centered condition (A3)) and 2.2 to the non-centered
case. We might prove Theorem 2.2 without the centered condition (A3) via Theorem A.3.
We will discuss this problem in the future.
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