n b
Electr® 8biljty

Electron. J. Probab. 25 (2020), article no. 76, 1-35.
ISSN: 1083-6489 https://doi.org/10.1214/20-EJP473

Hydrodynamic limit of a (2 + 1)-dimensional crystal
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Abstract

We study a model, introduced initially by Gates and Westcott [11] to describe crystal
growth evolution, which belongs to the Anisotropic KPZ universality class [19]. It
can be thought of as a (2 + 1)-dimensional generalisation of the well known (1 + 1)-
dimensional Polynuclear Growth Model (PNG). We show the full hydrodynamic limit of
this process i.e the convergence of the random interface height profile after ballistic
space-time scaling to the viscosity solution of a Hamilton-Jacobi PDE: d:u = v(Vu)
with v an explicit non-convex speed function. The convergence holds in the strong
almost sure sense.
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1 Introduction

Crystal growth belongs to a wider class of random interface growth phenomena
that appear naturally in physics and biology [1]. Trying to better understand the
behavior of these natural phenomena is a source of interest in itself. On the other hand,
random growth models mainly caught the attention of mathematicians in the last couple
of decades because of their conjectural universality properties and relation with the
KPZ (Kardar-Parisi-Zhang) equation [14] which presumably encodes their long-time
fluctuation behavior (see e.g. [5, 10, 21] for reviews on the topic in dimension (1 + 1)
and [28] in dimension (2 + 1)).

To fix ideas, the microscopic d-dimensional interface is typically modelled by the
graph of a discrete height function h : Z? x R, — Z (here, R, represents the time
variable) and evolves according to an asymmetric Markovian dynamic which is often
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related to interacting particles systems. The transition rates are assumed to depend
only on height gradients, so that the dynamics is invariant by vertical translations
of the interface. The first problem one may address is the law of large numbers or
hydrodynamic limit, i.e the typical macroscopic behavior of the randomly evolving
height function. Under space-time ballistic rescaling of the form n~'h(|nz],nt), the
height profile is expected to converge to the solution of a first-order non-linear PDE of
Hamilton-Jacobi type:

Ou = v(Vu), (1.1)

where the growth velocity v only depends on the slope and not on u itself since the
model is vertically translation invariant. Next, and more challengingly, comes the
study of fluctuations, i.e the behavior of the discrete height function around its hy-
drodynamic limit. The large-scale fluctuations are expected to look qualitatively like
the solution of the KPZ equation and in particular share the same universal charac-
teristics exponents. Most results in this direction are established for d = 1. In di-
mension two, growth models are conjectured [29] to fall into two universality classes
depending on the convexity properties of v. When v is strictly convex (or concave),
we speak simply of KPZ universality class: it is predicted and numerically observed
that fluctuations grow like ¢# with a universal exponent 3 > 0 and spatial fluctua-
tions at equilibrium grow with a “roughness exponent” o = 28/(8 + 1). When the
Hessian of v has signature (4, —) the model is conjectured to belong to the so-called
Anisotropic KPZ (AKPZ) class where spatial and temporal fluctuations are expected
to grow logarithmically and spatial fluctuations to scale to a Gaussian Free Field, as
is the case for the stochastic heat equation with additive noise. One says that the
non-linearity in the KPZ equation is irrelevant in the AKPZ regime and relevant in the
KPZ one.

The model we are considering in this paper was introduced by Gates and Westcott
in [11] to describe crystal growth evolution and its stationary states. The interface
can be described by a height function 4 : (R x Z) x Ry — 7, semi-discrete in space
and continuous in time, whose level lines are piece-wise constant functions with +1
jumps. Even if we adopt a different viewpoint, the Gates-Westcott dynamic can be
viewed as a multi-line generalisation of the PNG dynamic where each level line follows
simultaneously the PNG dynamic with “kink/antikink creations” suppressed whenever
two lines intersect. Although the PNG is a solvable model that can be mapped to the
problem of the longest increasing subsequence of a random permutation, to random
polymers and to random matrix ensembles (see [9] for a nice review on the topic), the
Gates-Westcott dynamics induces non-trivial interaction among level lines, which makes
the model harder to analyse. In [19], Prahofer and Spohn identified a slope-dependent
family of stationary distributions for the dynamic restricted to a bi-dimensional torus
(note that Gates and Westcott already computed equilibrium measures in [11] but
only for a one-dimensional subset of slopes p). In a certain thermodynamic limit of
large torus, they were able to compute the slope-dependent growth velocity v(p) at
stationarity. This is the natural candidate for the speed function v(p) in (1.1). As ex-
pected, the Hessian of v has signature (+,—) everywhere so the model belongs to
the AKPZ universality class. The authors of [19] also showed that the spatial fluctu-
ations at equilibrium are of logarithmic order with respect to the distance between
points; this is typical of the two-dimensional Gaussian Free Field. However, they
didn’t treat the temporal fluctuations (also expected to grow logarithmically). Our
contribution to the study of the model is the rigorous proof of the hydrodynamic limit
starting from arbitrary initial condition. As an intermediate step, we also get a log-
arithmic upper bound on fluctuation growth w.r.t. time in the stationary states (see
Lemma 6.4).

EJP 25 (2020), paper 76. http://www.imstat.org/ejp/
Page 2/35


https://doi.org/10.1214/20-EJP473
http://www.imstat.org/ejp/

Hydrodynamic limit of the Gates-Westcott model

In the literature, most results about hydrodynamic limits in multi-dimensional spaces
are given for convex velocities v, where the viscosity solution of (1.1) can be expressed
in terms of the variational Hopf-Lax formula. The strategy is to show that the discrete
height function enjoys a variational formula (sometimes called “envelope property”)
at the microscopic level, which passes to the limit thanks to the sub-additive ergodic
theorem. This applies e.g. to the Corner Growth Model [26, Section 9], Ballistic
deposition [25] and a wider family of grows models on 74 [23], and yields existence
of such a hydrodynamic limit without providing an explicit expression of the speed
function v. The function v can be explicitly identified when equilibrium measures are
known, as is the case for various one-dimensional models, such as ASEP and PNG. For
two-dimensional models in the AKPZ class, such envelope property and Hopf-Lax formula
cannot hold, otherwise the speed function in the hydrodynamic limit would automatically
result to be convex.

In his seminal article [22], Rezakhanlou introduced a different approach to hydro-
dynamic limit for growth processes based on a compactness argument and on a list
of conditions that allow to identify any limit point with the unique viscosity solution
of (1.1). This method does not require convexity of v, but the only examples for which
a full hydrodynamic limit was proved in [22] are one-dimensional where the structure
of ergodic translation invariant stationary measures is better understood. For d > 2,
only a partial result was obtained, namely, that any limit in distribution of the rescaled
height profile is concentrated on a set of viscosity solutions of Hamilton-Jacobi equations
with a possibly random speed function. However, a precise description of equilibrum
measures is available for some of these models (e.g. the Gates-Westcott model [19] and
models related to the two-dimensional dimer model [2, 3, 6, 27, 4] where the station-
ary measures are given by translation invariant Gibbs measures on perfect matchings
[16]). Inspired by Rezakhanlou’s technique, Zhang obtained the first full hydrodynamic
limit [30] for a (2 + 1)-dimensional growth model. Specifically, he considered the dimer
shuffling-algorithm, whose stationary distributions are given by weighted random dimer
configurations on 72. Let us also mention the works [3, 17] about a long jump two-
dimensional interlaced particle dynamic generalising the Hammersley process. In [3],
the authors showed the hydrodynamic limit starting from a very specific initial condition
(with a CLT for temporal fluctuations on scale logt) while in [17], the authors proved
the hydrodynamic limit either up to the first time when a shock appears, or under the
assumption of a convex initial profile [8].

The present article follows the main idea of [22, 30] in terms of proof structure.
The idea consists in constructing a sequence (labeled by the parameter n associated
to the ballistic rescaling) of discrete random semi-groups associated to the rescaled
microscopic dynamic, showing compactness in some sense and identifying the limiting
continuous semi-group with the one associated with the unique viscosity solution of the
PDE. The identification relies both on the sufficient conditions given in [22] (summarised
in Proposition 3.5) and on a precise analysis of the stationary processes. With respect to
[22, 30], non-trivial additional difficulties we had to overcome in the proof of compactness
are related to the semi-continuous character of the model and to unboundedness of
the slopes and of the speed function. In particular, we had to control the evolution
of spatial gradients (Proposition 5.6) while this was trivial in [22, 30] since gradients
are bounded. To do so, we related the height function along the first coordinate to
the PNG with a random subset of Poissonian creations and used a representation in
terms of random directed polymers. Also, instead of showing tightness of probability
measures like in [22, 30], we showed that, for a certain topology, the sequence of random
semi-groups is almost surely contained in a (random) compact set and then proved
almost sure uniqueness of the possible sub-sequential limits. Let us emphasize that the
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hydrodynamic limit we obtained is in the strong sense of almost sure convergence (on
an underlying probability space determined by the Poissonian clocks).

The article is structured as follows. The Gates-Westcott model is introduced in
Section 2: we define the state space of admissible height functions and its dynamic via a
Poisson Point Process on R x Z x R, representing space-time locations of kink-antikink
creations. In Section 3, we start by stating the main result: the hydrodynamic limit for
the height function (Theorem 3.1). Then, we remind elements of Hamilton-Jacobi PDE
theory and useful results on equilibrium measures. The rest of the article is dedicated
to the proof of the main theorem (the strategy of the proof is briefly explained at the
end of Section 3). In Section 4, we first show elementary facts about the microscopic
dynamic and a fundamental property of locality (Corollary 4.8) and then construct the
sequence of random discrete semi-group mentioned above. Section 5 is about proving
compactness. A key step in this proof is the control of random spatio-temporal gradients
(Propositions 5.5 and 5.6). Then, we apply a Arzela-Ascoli type theorem (Proposition D.1)
and show compactness of the sequence of discrete semi-groups. Finally, in Section 6, we
identify the limit points as the semi-group associated with the unique viscosity solution
of (3.5) thanks to Proposition 3.5 and the results about equilibrium measures.

2 The Gates-Westcott model

2.1 Height function

In this model, the surface will be described by a discrete height function ¢ : RxZ — Z
which lives in the state space given as follows:

Definition 2.1. Let I be the set of functions h : R x Z — 7. satisfying the following two
conditions:

1. For any y € Z, x — h(z,y) is piece-wise constant with a locally finite number of
+1-valued jumps. By convention, we impose that the values at discontinuity points
make the function upper semi-continuous.

2. Foranyz € R, h(z,y+1) — h(z,y) € {-1,0}.

Because of condition 1, the discontinuities along direction x can be of three different
types:

e kink: h(z,y) = h(z™,y) = h(zt,y) +1
» antikink: h(xz,y) = h(z~,y) + 1 = h(z™,y)

* kink-antikink pair: h(z,y) = h(z~,y) + 1= h(z,y) + 1.

A height function looks like a stack of terraces seen from a plane (see Figure 1), the
edges of each terrace along the z direction corresponding to the kinks and antikinks
of the height function. Due to the first condition in Definition 2.1, each function A(-,y)
is entirely determined by the position of its kinks and antikinks and its height at any
point g € R. In other words, the kinks and antikinks define the variations of the height
function along the x direction.

Remark 2.2. In the article [11] of Gates and Westcott, condition 2 was replaced by the
height function being integer-valued and non-decreasing along the y direction so that
arbitrary slopes could be allowed (which is physically more realistic). However, there
exists a one-to-one correspondence between height functions according to these two
definition variants, as explained in [20, p. 91].
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2.2 Dynamic

Let w be a Poisson Point Process of intensity 2 on R x Z x R, seen as a random,
locally finite, set of points in R x Z x R, that will be called creations. Starting from a
configuration in the state space I', the Gates-Westcott dynamic is defined by three rules:
the first two are deterministic while the last one is random.

* Lateral Expansion: each terrace exands laterally at speed 1, i.e. each kink (resp.
antikink) of the height function is moved at speed +1 (resp —1) along the x direction.

e Annihilation: whenever two terraces meet, they merge, i.e. whenever a kink and
an antikink meet, they annihilate each other.

* Creation: If (z,y,t) € w, then the height h at (z,y) increases by one at time ¢ if
the height function obtained remains in I'. In other words, a kink-antikink pair is
created at time ¢ and at space position (z, y) if the height function remains in I after
the transition, i.e. if h(z,y — 1,t7) — h(z,y,t7) =1, h(z,y,t7) — h(z,y+ 1,t7) =0
and if there is no preexisting discontinuity of h(-,y,t~) at . Note that the last
condition is verified with probability 1, since the discontinuities are locally finite
hence countable for any function in T".

Figure 1: A section of a height function. The lateral expansion is indicated by arrows.
A newly created terrace expansion is shown in blue.

Remark 2.3. As usual in interacting particle systems, some care has to be taken to
ensure that the process is well defined on the infinite lattice. If we worked in a finite
domain, there would be a finite number of creations in finite time intervals and we could
know the height function deterministically up to the first time of creation, determine
whether this creation occurs or not and repeat the procedure inductively on the number
of creations. On the infinite lattice it makes no sense to look at “the first creation”
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but existence and locality of the dynamics can be proven by a modification of the
classical disagreement percolation argument [18, Sec. 3.2] used for Glauber dynamics
on infinite graphs. Namely, suppose we want to determine the evolution of h(z,y,t) for
all (z,y,t) € [a,b] x [¢,d] x [0,T]. Since kinks/antikinks move with speed 1, we see that
creations whose z-coordinate is outside [a — T',b + T do not matter. Also, let y~ (resp.
y+) be the largest integer smaller than c (resp. the smallest integer larger than d) such
that there are no creations at (z,y,t) € [a — T,b+ T] x {y*} x [0, 7], then the creations
that happen for y > y™ or y < y~ also do not matter and then the evolution of h(z,y,t)
for all (x,y,t) € [a,b] x [¢,d] x [0,T] is determined by the finitely many creations in the
bounded domain (z,y,t) € [a — T,b+ T] x [y~,y™] x [0, T].Finally, for any ¢ < b € R and
T > 0, the random variables yjE are almost surely finite. Later (cf. Proposition 4.5) we
will prove a more quantitative locality statement: the height at a point up to time T’
is determined by creations that occur in a domain that, with high probability, grows
linearly with 7.

Remark 2.4. The Gates-Westcott model can be equivalently described in terms of level
lines of the height function (i.e. the bold lines drawn by the terraces edges seen from
above in figure 1) as explained in [11, 19, 20]. From this point of view, the dynamic is
nothing but the Polynuclear Growth (PNG) Model dynamic [9] applied simultaneously to
each level line, creations being suppressed whenever two lines intersect.

3 The main result

3.1 Hydrodynamic limit

First of all, let us introduce a few definitions and notations. We denote by (2 the set
of locally finite subsets of R x Z x Ry endowed with the o-algebra and the probability
measure induced by a Poisson Point Process of intensity 2 on R x Z x R. For all w € €,
for all admissible height function ¢ € I" and for all (z,y,t) € R x Z x R4, we define

h(z,y,t; o, w) (3.1)

as the height function at time ¢ obtained by applying the Gates-Westcott dynamic de-
scribed in the previous section with initial height profile ¢ and creations w. Let us also
define the continuous state-space

f = {f eC (]RQ) ) Vr € ]Ra Vyl < Y2 € ]R7 f(x7y2) - f($>y1) € [_(yQ - 91)70]} . (32)
Notice that a continuously differentiable function on R? is in I if and only if its gradient
takes values in R x [—1,0].

Theorem 3.1. Let (p,)nen € I'™ be a sequence of admissible initial height functions
approaching a continuous function f € I in the following sense:

— 0. (3.3)

n—oo

lson(m, lny]) — f(z,y)

n

VR >0 sup
|z|,ly|<R

Then, for almost all w in €,

vVI'>0 VR>0 sup
|lz],ly|<R,t€[0,T]

gh(nl‘, LnyJ ) ’I’Lt, L)OTHW) - u('r7 Y, t)

1
’ — 0, (3.4)

Exde el

where u is the unique viscosity solution of the Hamilton-Jacobi equation

Oru = v(Vu) (3.5)
”U,(~, *y 0) - fa ‘
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with

1 .
v(p1,p2) = ;\/WQp% + 4sin?(mps). (3.6)

Remark 3.2. For any continuous function f € I', we can always find a sequence of func-
tions ¢,, € I" approaching f in the sense of (3.3) as we will show later in Proposition 4.10.

Before proving this theorem, we will remind the definition of the viscosity solution
of Hamilton-Jacobi equations in the next section, explain why it is unique and state
sufficient conditions to identify it. In Section 3.3, we will present useful results about
equilibrium measures taken from [19, 20], where the speed function in (3.6) is also
computed.

3.2 Viscosity solutions of Hamilton-Jacobi equations

In this section, we briefly recall some elements of the theory of Hamilton-Jacobi
Partial Differential Equations. In order to show Theorem 3.1, all we need to know about
viscosity solutions is gathered in Theorem 3.4 and in Proposition 3.5. The interested
reader can find more background and motivations about Hamilton-Jacobi equations in
the monography [7] for instance.

Given f,v € C(R?), we consider the following first order PDE:

{ atu
u('a O)
Under some further regularity conditions on v and f, it is possible to apply the method
of characteristics to obtain a local classical solution. In general, whatever the regularity
of v and f, shocks for Vu appear in finite time and the solution is no more differentiable.
In order to give a definition of solution that is global in time, we introduce the classical

concept of viscosity solution that guarantees existence and uniqueness under suitable
assumptions.

v(Vu) on RY x (0, +0c0)
f on R%.

(3.7)

Definition 3.3. We say that u : R? x [0,7] — R is a viscosity solution of (3.7) on
R? x [0,T] if u is continuous, u(.,0) = f and u is both a subsolution and a supersolution.

A function u is a subsolution (respectively a supersolution) if for all ¢ € C°>*(R%x (0, T))
and all (z¢,t0) € R? x (0,T) such that ¢(zo,t9) = u(xo,ty) and ¢ > u (resp. ¢ < u) on a
neighbourhood of (xg, ty), the following inequality holds:

Osp(o, to)
(resp. 0rp(xo, to)

< v(V(zo,t0)) (3.8)
> |

(Vo(xo,t0)) ).

We won’t address the question of general existence of viscosity solutions because,
in our case, we will show existence by proving that the hydrodynamic limit is indeed a
solution of (3.5). However, a result of uniqueness will be needed to identify the potential
limit points. The following Theorem shown by Ishii can be obtained as a corollary of [13,
Th. 2.5].

Theorem 3.4. Ifv is globally Lipschitz, there is at most one viscosity solution of (3.7)
on R? x [0,7).

Since the function v in (3.6) is globally Lipschitz, there is at most one viscosity
solution of (3.5).

The next proposition gives sufficient conditions to identify the viscosity solution
of (3.5). Even if it is stated for the special case of functions living in the two-dimensional
continuous state-space T defined in (3.2) and for the speed function v defined in (3.6), it
can be easily extended to a more general framework.
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Proposition 3.5. Let T be a positive real number and S(s,t,)o<s<i<r be a family of
functions from T into itself satisfying the following properties:

1. Translation invariance: for all f € ILallce Randall s <t,
S(s,t, f+¢)=5(s,t, f) +c.

2. Monotonicity: forall s < t, and all f,g € T,
f<g=S(s,t,f) <S(s,t,g).

3. Locality: There exists o > 1 such that for all f,g € T, all s < t, all x € R? and all
R>0

sup [S(s,t, f)(2) = S(s,t,9)(2)] < sup £ (2) —9(2)],
z€B(x,R) zeB(z,R+a(t—s))

where B(x,r) is the ball of centre z and radius r for the supremum norm on R?.
4. Semi-group: forallr < s<tandall f €T,

S(r,t, f) = S(s,t,S(r,s, f)) and S(t,¢t, f) = f.

5. Compatibility with linear solutions: for all linear function f, : * — p-x with
p€R x[-1,0] and all s <,

S(s,t, fp) = fo+v(p)(t—s).

For any f € T, if (x,t) — S(0,t, f)(z) is continuous, then it is a viscosity solution of (3.7).
The proof of this proposition is postponed to Appendix A.

3.3 Equilibrium measures

In this section, we briefly remind a few facts about equilibrium measures, following
Prahofer and Spohn [19, 20]. They identified a family of random height functions, whose
spatial height differences have a law that is translation-invariant with a slope parameter
pin R x (—1,0), and are stationary with respect to time (Gates and Westcott already
treated the case p € {0} x (—1,0) when they introduced their model in [11]). Prahofer
and Spohn also computed the stationary growth speed v(p) which gives the candidate
speed function of the Hamilton-Jacobi equation (3.6) in Theorem 3.1 and showed that
the variance of spatial height differences behaves logarithmically. To do so, they used
fermionic Fock space tools to carry out a fine analysis of the equilibrium measures. Let
us sum up useful results, most of which can be recovered or easily deduced from [20,
Section 6] and others will be detailed in Appendix B.

The starting point of Prahofer and Spohn [19, 20] is the analysis of the Gates-Westcott
model in a periodized setting, i.e. on a torus [-M, M) x [-N, N — 1]. Let us remark that,
even though we use different notations, we follow the construction of [20] rather than
[19] in which a more complicated “twisted” periodic boundary condition is considered
(both constructions lead to the same results in the infinite volume limit of the torus). The
allowed height profiles have space gradients that are periodic with horizontal period 2N
and vertical period 2M. They evolve according to the periodised Gates-Westcott dynamic
i.e the Gates-Wescott dynamic with periodised Poissonian creations [w]™'" defined from
w as follows:

(z,y,1) € W & ([2]M, [y, 1) € w, (3.9)
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where [2]M is the unique number in [~M, M) equal to  modulo 2M and similarly for
[y]"V. In [20, Section 6.2], the author defined a family of random height functions (see
[20, equation (6.9)]) taking values in I', whose law is indexed by weight parameters
n* on antikinks and on kinks and a slope parameter along y (related to the density of
level lines). The space gradients of these functions are 2M, 2N periodic and their law is
translation invariant and time stationary. Fixing properly the weights n* and the line
density, one can guarantee that the average slope approaches any fixed p in R x (—1,0)
when the size of the torus tends to infinity (sending first M and then NN to infinity). We
call then ¢/, n,, the stationary periodized profile with limit slope p, so that

V(z,y) e RxZ lim lim Elemn,(z,y)] =p-(z,y) (3.10)

N—o00 M —00
(we are fixing here ¢/ N, p(O, 0) = 0) and stationarity translates into

Y (). (3.11)

In [19, 20], the authors showed that the joint probability density of kinks, antikinks
and occupation variables (i.e the set of (x, y) such that v v (2, y+1) =N, p(2,y) = —1)
has a determinantal structure and identified the associated kernel. When the size of
the torus tends to infinity, the expression of this kernel somehow simplifies (see [20,
equation (6.20)]). Also, the average growth velocity is equal to the sum of the kink and
antikink densities (independent of time by stationarity), and one obtains [20, Equation
(6.24)]:

Vit Z 0 h(7 y ta SDM,N,p7 [W}ALN) - h(07 07 t7 SOM,N,pv [W]MJV)

v<:]'),y,t) ER X Z x R+ lim lim IE [h(xa yvt; $M,N,ps s [w]M,N)} =p- (x,y) + U(p) t;
N—o00 M —oc0
(3.12)
with v(p) as in (3.6).

Prahofer and Spohn also computed the covariance (or “structure function”) between
kinks, antikinks and occupation variables (see [20, Equation (6.30)] and [19, Equation
(27) and (29)]). They deduced that, after taking the infinite volume limit, the variance
of the height difference at equilibrium is equivalent to 72 log(||(z,v)|) as ||(x,y)|| — oo,
but under the technical constraint that y/x is constant or = o(y). For our purposes, we
will simply need the following upper bound that holds without technical restriction on
T,y

lim lim Var(omn,(2,y)) = ) (log (|| (z, »)I)) - (3.13)

N=r00 M—>00 (@)l o0

Equation (3.13) can be is easily shown by bounding the variance of var,n,,(z, y) by twice
the sum of the variance of pas,n,,(x,0) and the variance of vy v (2, y) — ©m N, p(2,0) (by
Cauchy-Schwarz inequality) which grow logarithmically w.r.t |z| and |y|, according to the
asymptotic computations of Prahofer and Spohn.

Finally, it can be shown that the kink/antikink covariance decays like the inverse of
the distance squared multiplied by a bounded oscillating term (an upper bound will be
proven in Appendix B). Note that this is similar to the large-distance behavior of dimer-
dimer correlations in dimer models [15]. From this, it is easy deduce (see Appendix B)
that

lim T Var (N v, (Ar)) = O (R*logR), (3.14)
e — 00

N—o00o M—o0

where Nﬁ ~.p(AR) is the number of antikinks/kinks of N, in the domain Ap =
[-R,R] x [-R, R].
Strategy of proof of Theorem 3.1

The crucial point is Proposition 3.5 which gives sufficient conditions for identifying
the viscosity solution of (3.5). Most of these conditions are naturally satisfied by the
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microscopic Gates-Westcott dynamics, apart from the “compatibility with linear solutions”
which requires a study of the process started from the translation invariant stationary
measures, beyond what was obtained in [19, 20]. The rest of the proof is based on
compactness arguments, that allow to show sub-sequential existence of S(s,t,-) as the
limit of the random microscopic semi-group S, (s, ¢, -,w), associated to the rescaled Gates-
Westcott dynamics. At the end, one identifies the limiting continuous semi-group thanks
to Proposition 3.5. The main steps of the proof are summed up as follows:

1. Construction of a sequence of random discrete semi-groups (S, (s,t;.,w))o<s<tneN
(that will be defined more precisely in Section 4.2, Definition 4.9):

I — F(R?
Sn(s,t;.,w) : 1
f = =, [n.Jn(t = )i o, Tasw),

with ¢f € T approaching f in the sense of (3.3): || 2o/ (n., [n.]) = fllec < 2/n, Tnsw
is the time translation by —ns of w defined later in (4.6) and where F (]R2) is the set
of functions from R? to R. The function S,,(s,t, f;w) should be thought of as the
rescaled height function following the dynamic starting close from the continuous
initial profile f and with Poissonian creations taken between the macroscopic times
s and t.

2. Compactness: Show that there exists a subset 2y C 2 of probability 1 such that for
any fixed w € Qo, from any subsequence (ny)rcN, We can extract a subsubsequence
(nk, )iew such that for any function f € T, (Sn, (5 frw))ien (seen as a sequence
of functions from {(s,t) € [0,7]%, s <t} to F(IR?)) converges for the topology of
uniform convergence on all compact sets to a certain limiting function S(, -; f,w)
which is continuous in space and time. The proof relies on a control of spatio-
temporal height differences and on an adaptation of Arzela-Ascoli’s Theorem (see
Proposition D.1).

3. Identification of the limit: Show that any such limit S(., .;.,w) satisfies the sufficient
conditions of Proposition 3.5 thus (z,y,t) — S(0,t; f,w)(z,y) is the unique viscosity
solution of (3.5). The knowledge on equilibrium measures explained in Section 3.3
will be used to show compatibility with linear solutions.

4 Construction of a sequence of random discrete semi-groups

Let us start by defining, for later use, the set of creations that lead to an actual height
increase.

Definition 4.1. For allw €  and all ¢ € I', we define the subset of effective creations:
w? = {(z,y,t) €w: h(z,y,t;0,w) — h(z,y,t750,w) = 1} 4.1

It is a subset of w that depends (non trivially) only on ¢ and w. For all y € Z, we define
the restriction of w¥ and w to line y:

wy = wfN(Rx{y} xRy) (4.2)
wy = wNRx{y}xRy) (4.3)

By abuse of notation, we will see w, and w{ as subsets of R®.

4.1 Useful properties of the microscopic dynamic

In this section, we present useful properties satisfied by the microscopic dynamic
that will be useful to apply Proposition 3.5 later on but also to show compactness.
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Lemma 4.2 (Translation invariance). For all constant m € Z, allw € (), all ¢ € T and all
te Ry,
h(-,-,t;gp—l—m,w) :h('7'7t; 507w)+m' (44)

Proof. Having fixed w, by definition, the Gates-Westcott dynamic only depends on the
height differences of the initial height function (kinks/antikinks and relative height
differences along y). Therefore, the temporal height growth A(-, -, ¢; p,w) — ¢ depends
on ¢ only through its spatial height differences hence is invariant by addition of a
constant m to the initial function ¢. O

Lemma 4.3 (Monotonicity). For all p1,¢ €T, forallw € €, and allt € Ry,
01 <2 = h(, ., to1,w) <h(, .t p2,w). (4.5)

Proof. As explained in Remark 2.3, the dynamic can be defined locally and thus it is
enough to show this Lemma when there are finitely many creations. It is not hard to
show that the deterministic part of the dynamic (lateral expansion and annihilation)
is non-decreasing with respect to the initial condition. We just have to check that any
creation preserves monotonicity.

Suppose that there is a creation at (z,y,t) and that h(.,., s;¢1,w) < h(.,.,8;92,w)
for s < t. Let us show that h(z,y,t;¢1,w) < h(z,y,t;02,w). If h(z,y,t7501,w) <
h(z,y,t™;p2,w), then there is nothing to show since the height can only jump by one
after a creation. If h(z,y,t;01,w) = h(x,y,t”;v2,w) and if the creation is allowed for
the dynamic starting from ¢, then so it is for the one starting from ¢, because

W,y — 1,875 02,0) = h(@, 4,875 p2,w) 2 W,y — 1,875 01,0) = hl(@, 9,875 01,0) = 1
and h(z,y,t”;po,w) — h(z,y+ 1, t7;02,w) < h(z,y,t" ;01,w)—h(z,y + 1,t";¢1,w) =0.
In any case, the monotonicity is preserved after a creation. O

For w € (), we define 7,w, the time translation by —s of w as follows:
V(z,y,t) ER X Z x Ry, (z,y,t) € Tow & (v,y,t + 5) € w. (4.6)
Lemma 4.4 (Markov property). Forallp € ', all0 < s <t and allw € {2,
h(.y oty o,w) = h(, .t —s;h(.,.,s;0,w), Tsw), (4.7)
and forall0 <r <s<t,
h(oy ot —r;o,mw) =h(.,  t—sh(.,., 8 — 70, Thw), Tsw). (4.8)

Proof. From Remark 2.3, we can assume that w contains finitely many points. In this
case, the first point follows directly from the construction of the dynamic. The second
point is obtained from the first point applied to (s',¢,w’) = (s — r,t — r, 7,w). O

Next, as announced in Remark 2.3, we are going to show that the dynamic on a
bounded space-time domain only depends on the initial height function and the creations
on a bigger domain that grows linearly with time with high probability. To make this
statement precise, for any x € R2, R>0,t€e R+ and a > 0, let us define

Vo, €l V' €Q
Aprta=qw €, ifo=¢ onB(x, R+ at)andw =won Bz, R+ at) x [0,

then Vu < t, h(-, -, @, Tuw)=h(-, -, ¢, 7,w") on B(z, R) x [0,t — u]
(4.9)
where the notation B abusively denotes the ball (for the supremum norm) intersected
with R x Z.
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Proposition 4.5 (Linear propagation of information). There exist constants o > 1 and
v > 0, such that forall R > 0, allt € R, and all z € R?,

p (Anm,nR,nt,a) n_:>00 1—-0 (e*’yt n) )

Proof. To lighten the notations, without loss of generality, we will assume that = = 0.
The idea of the proof is the following. If the height functions differ on B(0, R) x [0,¢] and
if initial conditions and creations agrees on B(0, R + at), then there must exists a “chain
of creations” of length at least at (connecting B(0, R) to the complement of B(0, R + at))
in a time interval of length less than ¢ (see Lemma 4.6). This is unlikely if « is chosen big
enough and if £ goes to infinity.

Lemma 4.6. Let ¢, ¢’ € ' agreeing on B(0, R + at) and w,w’ € Q agreeing on B(0, R +
at) x [0,t]. Ifh(-, -, p;w) and h(-,-,-,¢';w") differ on B(x, R) x [0,t], then, there must
exist a sequence (x;,y;, t;)o<i<k With k := |«t| satisfying

* lyo| < Rand |y;41 —yi| <1, foralli € [0,k —1],
e 0<t,<.--<ty<tand (z;,t;) €wy, forallie [0, k], with w, as in Definition (4.1)
. |l‘0| <R+t—tyand ‘$i+1 —l‘i| <t; —ti4q foralli e [[O,k— 1]].

Before proving this Lemma, let us finish the proof of Proposition 4.5. If w ¢
Ao, r.t.o, then there must exists ¢, ¢’,w’ as in Lemma 4.6 and some u € [0,¢] such that
h(-, -, -, p; Tuw) and h(-, -, -, ¢'; Tuw’) differ on B(z, R) x [0, ¢ — u]. By applying Lemma 4.6 at
time ¢ — v and with creations 7,w and 7,w’ we get a chain of creations (;, ¥;,ti)o<i<|at|
such that (x;,y;, t; + u)ogigmq satisfies the 3 points in Lemma 4.6. In order to be con-
sistent with the definition of CT in Appendix C, we relabel this sequence by setting
(5 Yis tio<i<|at) = (T|at)—isYlat)—irtlat|—i T Wo<i<|at) SO that |zjy —xj| <t —t.
Doing this, we see that

“Ao,R,t,a C U CI)EI(TR,t)
Y €EVR, | at)

where Vg, is defined by Vg ,, := {(y( -~ y,,) € Z", |y, | < R, Vi € [0,n—1] [Yi1 —vil <

1} and T is the trapezoid defined by Tr, := {(x,s), s € [0,¢], |z| < R+t — s}. By
Corollary C.2, since Tg is of vertical diameter ¢ and area 2Rt + 2, for any Y € VR, |at)s

4e2 12 Lat]
lat|? )

Now, since Vg |4 is of cardinality bounded by (2| R] + 1) 3lot] by union bound,

r (Clxy(TR’t)) < 2(2Rt + 12 (

1262 t2 Lat]
P (Aoaa) <200+ LRI Y (T ) (4.10)
and thus, for a := v/24 e we get
P (CAO,nR,nt,a) n;w O (n3 2—omt) ,
and the proof of Proposition 4.5 is concluded by choosing any v < aoln 2. O

Proof of Lemma 4.6. Let us introduce some notations (we will also use the notation
w?,w¢ as in Definition 4.1). For all (z,t) € R x Ry, we define C,, := {(z,5) € R x
R4, |z — 2| <t — s}. By speed one propagation of kinks/antikinks, h(x,y,t, ¢;w) only
depends on wy N C,, and on ¢(z,y) for z € [z — ¢,z + t]. This fact can also be seen as a
consequence of Lemma 5.3 below. Now, we are going to construct by induction a chain
of creations like in Lemma 4.6.

EJP 25 (2020), paper 76. http://www.imstat.org/ejp/
Page 12/35


https://doi.org/10.1214/20-EJP473
http://www.imstat.org/ejp/

Hydrodynamic limit of the Gates-Westcott model

Construction of (zg, yo, to): Assume that there exists (z,y,s) € B(0,R) x [0,t] such
that we have h(z,y, s, p;w) # h(z,y, s,¢’;w’). Let us fix such a (z,y, s) and set yo := y. By
the discussion above, since (-, yo) and ¢'(-,y9) agree on the interval [-R — at, R + at] 2
[z —t,x + ] (because |r| < R and a > 1), necessarily wf N C, ; and (w’);’; ncC, , are
distinct. In other words, we can find (z¢, t0) € wy, N Cy 4 (= w,, N C; ; by assumption on
w’) corresponding to a kink/antikink creation that occurs for one of the dynamics but not
for both (and such that |zg| < R+t — tg). Consequently, the height functions must differ
either at (xo, yo — 1,%; ), (@0, Yo,y ) or (zo,yo + 1,%; ) (otherwise the creation would have
been accepted or rejected simultaneously in both dynamics).

Construction of (z;y1,yi+1,ti+1): According to the three possibilities above, we set y;
to be equal to yg — 1,y or yg + 1 (respectively in the first, second and third possibility).
If y; is still in B(0, R + at), we can repeat the procedure above and find some (z1,t1) €
wy, N Cy, 4, (hence |z — x0| <ty — t1) corresponding to a creation that occurs for one
of the dynamic but not for both and so on. This construction continues as long as
y; € B(0,R + at) and note that y; cannot exit B(0, R + at) for i < |at|. Overall, we
constructed a sequence as in Lemma 4.6. Its length is at least |at]| + 1. O

Now, let us show a Lemma that relates the linear propagation of information with a
Lipschitz property with respect to the initial height profile.

Lemma 4.7. Forall R > 0, all s < t, all x € R? and all n € N, the following event
happens with probability 1 — O (e~ ™) as n goes to infinity (with -y as in Proposition 4.5):

sup  |h(z,v —u; o, Tuw) — h(z,v —u; ', Tw)| < sup lo(2) —¢'(2)], (4.11)
zenB(z,R) zenB(z,R+a(t—s))

for every ¢, ¢’ € T' and every u,v such that ns < u < v < nt (and with « as in Proposi-
tion 4.5).

Proof. By time translation invariance of the law of the Poisson process, we can assume
that s = 0. We are going to show that the event A,,; ,,r nt,o is included in the event in the
Lh.s. of (4.11). To do this, let us fix w € A, nRntar @, ¢ €T and 0 < u < v < nt. We set

m=  sup [p(z) —¢'(z)] €N,
zenB(xz,R+at)

and ¢ := ¢ V (¢’ +m). It is not hard to show that ¢ € I". Now, for all z € nB(z, R),

h(z,v —u; @, Tyw) < h(z,v —u; p,7yw) by Lemma 4.3 since p < ¢
=h(z,v —u; ¢’ +m, T,w) W € Apz nrmt.o and ¢ = ¢’ +m on nB(z, R+ at)
= h(z,v —u;¢’, Tyw) + m by Lemma 4.2.

We can prove the other inequality by exchanging ¢ and ¢’ which concludes this proof. O

Let us conclude this section by the next corollary which will be very useful later on.

Corollary 4.8 (Asymptotic locality). There exists « > 1 and a subset §)y C 2 of probability
1 such that for allw € Qg, € R?, R >0, (s,t) € R? with 0 < s < t, there exists N(w) € N
such that for alln > N(w) and all p,¢' € T':
’ B(z,R)
sup [k (n-, [n-],n(v —u); @, Tnuw) = b (ne, [1:],n(v = w); ', Tuw) |l
s<u<v<t (412)
< llp(ne, [n-]) = @' (ne, LIRS HCD,

The proof follows easily from Lemma 4.7, Borel-Cantelli Lemma and rational approxi-
mation (up to choosing an « slightly larger than the one in Lemma 4.7).
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4.2 Definition of the sequence of random discrete semi-groups

We are going to define a sequence of functions (S,(s,t, f,w))nen describing the
rescaled dynamic, between times s and ¢ and Poissonian creations w, starting at time s
from an initial height profile close to a continuous function f.

Definition 4.9. Forallw € Q and (s,t) € T := {(s,t) € [0,T)?, s < t}, we define

I —F®R?

Sn(s,t;.,w) : (4.13)

1
f l—>7h(7’L~7 |_n'J>n(t - 3); @£>Tnsw)a
n

where F(R?) denotes the set of functions from R? to R, 7,5 is the temporal translation
defined in (4.6) and ¢/ is the height profile in T approaching f as in the following
Proposition 4.10.

Proposition 4.10. For all n € IN, there exists a mapping

r— T @i
f— ol '
satisfying that for allc € R and f € T, ¢£+”_1 el — »f + |nc|, and such that
I 2
sup | =y (nz, [ny]) - f(z,y)| < — (4.15)
z,yeR2 [T n

Therefore, the sequence of functions (¢ ),cn approaches f in the sense of (3.3).

Remark 4.11. We cannot just choose ¢f := (z,y) = |nf(n~'z,n"'y)| because it could
possibly have an accumulation point of discontinuities if f oscillates too much; this would
violate the first condition in Definition 2.1.

Proof. For any fixed y € Z, we are going to define ¢/ (-,y) as piecewise constant on
R (we will construct it similarly on R_). Let us define inductively X{ = 0, ¢/ (0,y) :=
[nf(0,y/n)] and

XY, =inf{z > XY, |nf(z/n,y/n) — oL (XY,y)| > 1}  (with inf ) = +o0)

el (y) = pl(X!,y) on (X!, X!,)

ol (XY 1 y) = nf(XL /ny/n).

By induction and by continuity of f, ¢/ (X?,y) € Z for all i. Still by continuity, X/, , > X/
and {X/, i € IN} is a locally finite subset of R with lim; ,, X/ = +occ. Similarly, we
construct ¢/ (-,y) on negative real numbers. Up to modifying the value at discontinuity
points, we obtain a function ¢ (-, y) which satisfies point 1 of Definition 2.1 and which

satisfies the translation invariance property gpff"*lc = ¢! +cforall c € Z by construction.
Moreover, by construction, for all (z,y) € R x Z, |¢} (x,y) — nf(x/n,y/n)| < 1 and thus

1
sup | =¢f (nx, |ny|) — f(z,y)|
(z,y)er? M

< sup \lwﬁ(mxtnyJ)—f(%LnyJ/n)lJr sup |f(z, [ny]/n) — f(z,y)]
(my)eR2 T (z,y)ER2

1 2 _
< —+||lny]/n—y| <=  because f eT.
n n

It remains to check that ¢/ satisfies point 2 of Definition 2.1 and hence is in I'. To do this,
let us fix y € Z and show that for all # > 0, ¢/ (z,y + 1) — ¢/ (2,y) € {~1,0} (the case
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z < 0 being similar). Let > 0 and i, j be the unique integers such that X! < z < XZ:”Jrl

and X;’H <z < XJZ/LI. By construction of ¢,

(sz(x’y) = nf(le/n,y/n)
oh(@,y+1) =nf (XY /n, (y +1)/n).

There are two cases: either X]“l € X/, X/ )or X/ e [X]y“, X;’Ill) Since they are

similar, we will just treat the first one. By definition of X/, |, for all z € [X}, X/ ) we
have |nf(z/n,y/n) — nf(X!/n,y/n)| <1 and thus

oh(e,y +1) = ol(e,y) =nf (XY /n, (y + 1) /n) = nf(X] /n,y/n)

= nf (X, (y+ 1)/n) = nf (X ny/n) +nf (X3 /0,y /n) —nf (XF /oy /n) .

€[~1,0] since feT' €(-1,1) since XY e[XY XY, )

Finally, o} (z,y + 1) — o} (z,y) € (=2,1) N Z = {-1,0}. O

5 Compactness

5.1 Control on spatio-temporal height differences

In this section, we control the spatio-temporal gradients of the height function follow-
ing the Gates-Westcott dynamic by comparison with the PNG dynamic. By construction,
(z,t) = h(z,y,t; p,w) follows the PNG dynamic (see e.g. [9, Section 2] for an introduction
to the model) starting from initial condition (-, y) with creation locations given by wy as
in Definition 4.1. This simple remark allows us to use the representation of PNG model
in terms of directed polymer on Poisson points (see [9, Section 3.1]). First, we need to
introduce some new definitions.

Definition 5.1. For any finite set A C R?, we define L'(A) as the maximal number of
points in A that can be collected by a light-path i.e a continuous path ~ : [0,1] — R?
satisfying that for any 0 < a < b, we have v(b) — y(a) € {(z,t) € R? |z| < t}.

We say that a rectangle R C R? is a light-rectangle if its sides are parallel to the
straight lines t = x ort = —x. For any s < t and (z, s), (y,t) such that |y — z| <t — s, we
note R, s),(y+) the unique light-rectangle of diagonal [(x, s), (y,1)].

Remark 5.2. We let the reader check that the area of R, ;) (,.¢) is ((t —s)* — (y — 2)?)/2
and that if |2 — x| < s — &' then R, ), (y.t) © R(ar,s'),(y,) While if [y’ —y[ < ' —t then
Rz, w.0) © Bias), (v )

The next Lemma is an easy extension to arbitrary initial conditions of the equivalence
between the PNG and the directed polymers model as explained in [9, Sections 2.3 and
3.1] for special “droplet” and “flat” initial conditions (see also Figure 2).

Lemma 5.3. For all (z,y,t) e RxZ xR, allp e andw € (,

W,y t;p,w) = S ]{w(z,y) + LN w¢ N Rz 0),2.0)) (5.1)
z€|lxz—t,x+1

and the supremum is attained for some z € [z — t,z + t].

In order to control the space gradients of the interface, we need an upper bound on
L' (w¢ N R) (or on L' (w, N R) since wf C w,) for large rectangles R. This quantity is well
studied as it is related to the length of the longest increasing subsequence of a random
uniform permutation, which was shown first by Hammersley to behave like the square
root of the number of Poisson points in R (this is also known as Ulam’s problem; see
[12]).
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A (2, )

@ %,0) (2,0) (@ 1 £.0)
Figure 2: The graphical representation of the PNG and its interpretation in terms of
Directed Polymer. The lines are drawn from the initial antikinks (triangles) and kinks
(squares) of ¢(+, y) and the effective creations in wy (filled circles) (the creations in w, \wy‘/J
are marked by crossed circles and can be ignored). The height difference between two
points is equal to the number of lines crossed by any light-path joining these points.
A path touches at most one effective creation per line crossed and conversely, we can
always find a path passing by effective creations that realises the maximum in the
variational formula of Lemma 5.3.

Lemma 5.4. There exists a constant ¢ > 0 such that for all w in a subset of ) of
probability 1, for all light-rectangle R C R? and all Y > 0,

limsup  sup ELT(wy NnR) < cy/Leb(R), (5.2)

n—0o ye[-nY,nY] 1

where Leb(R) is the area of R. Therefore, up to intersecting this subset of probability 1
with € (defined in Corollary 4.8) we can assume that (5.2) holds for all w € €.

Proof. By Lemma C.1 in Appendix C, for all y € Z and all £ € N,

2¢2 Leb(R) ) r |

P (LYw, NR) > k) < ( 2

This is a classical inequality when dealing with longest increasing subsequences that
can be found for example in [24, Lemma 4.1]. Therefore, for ¢ = 2e,

ye[-nY,ny] LT

1
P ( sup {LT(wy N nR)} > cVLeb(R)) < 2nY 2~ [ney/Leb(R)]
By Borel-Cantelli Lemma, for almost all w, for any Y > 0,

limsup  sup ELT(wy NnR) < c+/Leb(R).

n—oo ye[-nY,nY] 1

By countability, we can have this almost surely simultaneously for all light-rectangle R
with rational coordinate vertices. The full proof follows by density of rational numbers
and by the monotonicity with respect to inclusion of R — L' (w, NnR). O

Let us now give some consequences of Lemmas 5.3 and 5.4.
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Proposition 5.5 (Control on temporal growth). For all w € g, for all f € T, all s <tand
(z,y) € R?,
limsup Sy, (s, t, f;w)(z,y) < sup  f(z,y) +V2c (t =), (5.3)

n—00 |z—z|<t—s

where c is the same constant as in Lemma 5.4.

Proof. By definition of S,, and by Lemma 5.3,

1
Sn(sa t7 f7 LU)(J), y) = ﬁh(?’ll‘, I_nyJ ) n(t - 5)7 @ia Tnsw)
= sup {1<sz(”2, y) + Lo ((Tnsw) iyl N B(nz,0), (nan(e— s)))}
|z—z|<t—s LTV n Y
2 1
< sup {f(z, y)+ =+ =LT ((Tnsw)tnyj N nR(z,O),(z,ts))} by (4.15) and wen Cw
|z—z|<t—s n n
2 1
= sup {f(z, y)+ — + -t (WLnyJ n nR(z,s),(m,s)>} by definition of 7,,, in (4.6)
|z—z|<t—s n n

2 1 .
< ‘ Slllf f(zy)+ - + ELT (Winy) N NR(z25—1), ()  SINCE Rz o) 2.ty C Rz,25—1),(2,8)-
z—x|<t—s

We conclude the proof with Lemma 5.4 and Leb(R; 2s—¢),(2,1)) = 2(t — 5)2. O

Now, we establish a crucial lemma that guarantees a priori that, at any time, the
asymptotic rescaled height function has at least the worst regularity between that of the
initial height profile and 1/2-Holder regularity. A posteriori, after the proof of the main
theorem, we will have that it stays Lipschitz at any time if the initial condition is itself
Lipschitz since this is the case for viscosity solutions of Hamilton-Jacobi equations.

Proposition 5.6 (Control on height differences along ). There exists a constant C (that
depends on the time horizon T) such that for all w € Qq, all f € T, all (z,y) € R?, and all
6 €10,1],

lim sup sup |Sn(s,t, fyw) (@2, y) — Sn(s,t, frw)(z1,y)]
n—00 zq,xo€[x—0,x+40]
0<s<t<T 5.4)
< sup [f(x1,9) = flaz,y)| + C V6.
z1,x2€[x—0—T,x+6+T]
|127I1|§25

Proof. We start by showing the following Lemma.
Lemma 5.7. Forally € Z, allz; <zy € R, allt >0, allp €T,
[h(@2,y,t;0,w) — h(z1, 9,15 0, w)|
< sup lp(2,y) — ¢(2',y)| + max (LT (wy N Ry), LT (wy N R»)),  (5.5)
2,2 €[z —t,x2+1]

[z—2"|<|z2 1]

with Ry := R(ml;r,c2 —t,—”zgzl),(zl,t) and Ry := R(11+,2 e J02gw1)7(127t) .

Proof. We start by showing that

h(z2,y,t; 0,w) —h(z1,9,t; ¢, w) < [ sup ]\w(z,y)—w(m +t,9)+ LT (w, N Ry) . (5.6)
z€|x1+t,z2+1t

By Lemma 5.3, there exists z € [z2 — t, 22 + t] such that
h(m2,y,t; 0, w) = 0(2,y) + LT (wf N R(2.0),(200))-

Two cases can occur:
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(i) If z € [x1 — t,z1 + t], then, by Lemma 5.3, h(z1,y,t; p,w) is larger than ¢(z,y) +
LT(w;’ N R(Z,O),(wl,t)) hence
h(wa, y, tip,w) = h(w1, 4,6 0,w) < LN wE N R20),(00,0)) — LT (WE N Rz 0),(00.0))-

Now, for any 4, B C R? finite sets, it is not hard to show LT(AUB) < LT(A)+L"(B),
and thus for any A, B C R? finite sets,

L'(A) - L"(B) < L"(A\ B).

We apply this inequality with A = w? N R, 0),(zs,¢) @nd B = wf N R(; 0) (2, .¢) (the cre-
ations inside the blue and red rectangles on Figure 3). The set A\ B is equal to the
creations inside the green rectangle which is included in the light-rectangle R, (sur-
rounded by dash lines on Figure 3). Altogether, h(za,y,t; 0, w) — h(z1,y,t; p,w) <

(w1,1) (w2,t)
”»

(0 (@2 F.0) 20) @B Aw+t.0)
~

(Irzlrftz _{_Z,'_ 132;5131 )

Figure 3: Illustration of the proof of Lemma 5.7. The effective creations are depicted
by black circles. The blue rectangle R ) (., and the red rectangle R(. ¢ (s, ) are
involved in the variational formula (5.1) applied to h(z2,y,t) and h(z1,y,t). The green
rectangle corresponds to the set difference of the blue and red rectangles and is included
in the larger dashed-line rectangle.

L' (w¢ N Ry), which implies (5.6).
(ii) If z € [z + t,x2 + t], then by choosing 2’ = z; + ¢ in the variational formula (5.1),
we get that h(z1,y,t; 0, w) > p(z1 + t,y) hence
h(z2,y,t; 0, w) — h(z1,y, ¢ 0, W)
S QD(Z& y) + LT(wf N R(z,O),(zz,t)) - (,0(:E1 + tay)

< s e(zy) - el )|+ LT (wf N Re)
zE€[x1+t,x2+1]

since
Rz,0),(22.t) € R(m;rwz-;-t,_fzgzl )7(952775) =Ry forallze€ [z +1, 22 +1],

as shown in Figure 3. This also implies (5.6).
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The proof of Lemma 5.7 is concluded by showing similarly that

h(xlayfﬁ;@?w)_h(‘/EQay7t;¢5w) S [ sup ]|@(Z,y)—g0(l'2—t,y)|+LT (wUle) O
z€|x1—t,xo2—1t

Lemma 5.7 yields that forallz —§ < z; <xy <z +dJandallt >0,

|h($2»y7t§%w) _h(xlvyvt; QO,W)‘ S sup |<,0(Z,y) _@(Z/,y”
z,2' €[x—5—t,x+05+t]
|z—2"|<26
+max (LT (wy N Riat,-5),(o.046)s LT (@y O Bost,—8).(@.1+5))

since one can check that

R(wftﬁ%)’(%t) C R(z—t,-8),(x,t+0)
and
R(%H’_%)’(mt) C R(z4t,-4),(x,t49)-
Thus, for all 21,25 € [x — 6,2 + 6], all s,t such that 0 < s <t < T, all f c T and alln € IN,

‘Sn(&tv f;(’J)(an y) - Sn(87t> f;w>($17 y)|

1 1
= ‘h(nxg, lny], n(t — s), gafL,me) — —h(nzy, |ny],n(t — s), (p{;,’l’nsw)‘
n n

1 1
< sup Lot (nz, i) — Lot ne, LnyJ)\
2,2 €[a—6—(t—s),a+6+(t—s)] | TV n
|z—2"|<26

1 1
+ max (nLT(Wl_nyj NNR (5 (1—s),5—8),(2,t4+6))s — LT (@Wny) N nR(z-i—(t—s),s—é),(m,t-i—&)))

n
< sup |f(zy) = F(Z )|+ 4/n
2,2 €[x—6—T,x+5+T)
|z—2"|<26

+ max (iLT(WLnyJ NNRe_1,—5),(2,7+5)) %LT(WLnyJ N nR(erT,é),(m,TJré))) ,
where the last inequality holds because of (4.15) and because R+ (t—s),s—6),(z,t+6) 1S
included in R, +7, _s),(2,7+5)- Note that this upper bound is uniform in z1, x5 € [z —0, 2+0]
and in s, such that 0 < s <t < T. We conclude the proof of Proposition 5.6 by applying
Lemma 5.4 t0 R(,17 ), (x,7+s) Which are of area 2(6T + §*) < 2(T + 1) since 6 € [0,1]
and by choosing C := ¢+/2(T + 1) (c is the same constant as in Lemma 5.4). O

5.2 Choice of the metric

We endow F(RR?) and I' C C(R?) C F(R?) with the distance of uniform convergence
on all compacts, e.g.

o

Vfisfa € FRY), dooiolfi f2) = Y27 (Ilf2 = LU A1) (5.7)

i=1

For this distance, a sequence of functions (f,,),en converges to f € F(R?) if and only if
it converges uniformly on all compact sets of R? to f.

Proposition 5.8. The metric space (F(R?),dw ) is complete. The metric space (T, dwo,c)
is complete and separable (i.e. a Polish space).
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Proof. The completeness of (F(R?),dw ) is a classical fact. Since I is a closed subset
of C(R?) (which is complete because closed in F(RR?) and separable by approximation
by polynomials with rational coefficients on any compact set) it is in turn a complete
separable metric space. O

Now, we denote Fr := F(T,F(R?)) the set of functions from 7 (defined in Defini-
tion 4.9) into F(RR?) which we endow with the uniform distance:

VF1, Fy € Fr, Doo(F1, Fy) :=  sup  deoo(Fi(s,t), Fa(s,1)). (5.8)

0<s<t<T

The following Proposition is standard when dealing with functional spaces with a
complete set of destination such as F(R?) (by Proposition 5.8) and endowed with the
uniform distance.

Proposition 5.9. The metric space (Fr, D) is complete.

5.3 Compactness for any fixed w in a subset (2, of probability 1

We recall that )y is a subset of €2 of probability 1 introduced in Corollary 4.8 and
Lemma 5.4. The goal of this section is to show the following proposition:
Proposition 5.10. For all w € €, and all sub-sequences (ny)rcn, we can extract a sub-

sub-sequence (ny, )iew such that for all functions f € T, the sequence (Snkl (o f,w))ien
converges to a certain S(-,; f,w) in Fr, i.e,

VR >0, sup  |Sp, (5,8, fiw)(2,y) — S(s,t, f;w)(x,y)| — 0.
0<s<t<T ! l—o00
|z],|y|<R

Moreover, for all (s,t) € T, f v S(s,t; f,w) is continuous from T into itself and for all
f €T, (s,t) — S(s,t; f,w) is continuous.

Proof. In all this proof, we fix w € )y. Let us apply Proposition D.1 to the sequence
of functions ' > f — S,,(-,-, f;w) € Fr. From Propositions 5.8 and 5.9, I' is separa-
ble and F7 is complete. Therefore, the proof of Proposition 5.10 follows easily from
Proposition D.1 together with the next two lemmas giving asymptotic equi-continuity
and pointwise relative compactness.

Lemma 5.11 (Asymptotic equi-continuity of (f — S, (-, -, f;w))nen). For allw € Qg and
alle > 0, there exists N € N such that

VHEN Vf,g€f Doo (Sn('a'7f;w)aSn('a'ag;w)) SQ(QTW doo,C(f»g)+5' (5.9)

The proof comes from an easy corollary of (4.12) (we will prove it in details at the
end of this section).

Lemma 5.12 (Pointwise relative compactness of ((s,t) — S, (s,t, f;w))nen in Fr). For
anyw € Qq and f € T, the sequence ((s,t) — S,(s,t, f;w))nen is contained in a compact
set of Fr. Moreover, any limit point is continuous from 7T into T.

Proof of Lemma 5.12. We want to show that for any fixed f € I, from any sub-sequence
of ((s,t) = Sn(s,t, f;w))nen, we can find a uniformly converging sub-sub-sequence in Fr.
We are going to apply once again Proposition D.1. The set F7 is the set of functions from
T which is compact into (F(R?), dw,.) which is complete (by Proposition 5.8). Therefore,
it is enough to show asymptotic equi-continuity and pointwise relative compactness.
Lemma 5.13 (Pointwise relative compactness of (S, (s,, f;w))nen in F(R?)). For any
we, feTand0 < s <t < T, the sequence (S,(s,t, f;w))nen is contained in a
compact set of F(R?). Moreover, any limit point isin T.
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Proof of Lemma 5.13. As F(R?) is endowed with the topology of convergence on all
compact sets of R?, it is enough to show asymptotic equi-continuity and pointwise
relative compactness in order to apply Proposition D.1 once more.

1. Pointwise relative compactness: (S, (s,t, f;w)(z,4))neny € R

By Bolzano-Weierstrass Theorem, it is enough to show that this sequence is
bounded. The upper bound is a direct consequence of Proposition 5.5 while
the lower bound is trivial since height functions are non-decreasing with time.

2. Asymptotic equi-continuity of ((x,y) — Sn(s,t, f;w)(2,y))nen
Let (z,y) € R2. By the slope constraint for functions in T, it is easy to check that
foranyn € N,z € Rand y < ¢/

Sn(svt7 f;w)(1.7y/) - Sn(svtv f,(/J)(SL',y) € [_(Lny,J - LnyJ)/n,O] . (5.10)
By this and Proposition 5.6,

limsup ~ sup 1Sn(s,t, f;w)(z,y) = Sn(s,t, f;w)(@,y")]
n—o00 (I’vy’)eﬂz
le—z'],|ly—y'|<8

Shmsup sup |Sn(5,t,f,W)(.’E7y)_Sn(S,t,f,W)(x/7y)|+6 (511)

n—00 g'glr—§,x+4]

< sup |[f(@1,y) = f(w2,9)| + C V6 + 6.
z1,22€[x—0—T,z+6+T]
|zo—21]<28
By uniform continuity of f on any compact, the right-hand side tends to 0 when ¢
tends to 0.

Therefore, by Proposition D.1, any subsequence of (S, (s,t, f;w))nen has a subse-
quence that converges in (F(R?), d ) and any limit point is continuous. Actually, by tak-
ing the limit in (5.10), any limit point is in I'. This concludes the proof of Lemma 5.13. O

To finish the proof of Lemma 5.12, we are going to show asymptotic equi-continuity
of ((s,t) = Sn(s,t, f;w))nen. Let us fix w € Qp, f € T and (s,t) € T. By definition of d .,
it is enough to show that for any ¢ > 0 and R > 0 there exists § > 0 such that:

lim sup sup 1S (5,1, f1w) = Su(s', ¢, f50)[| R
n—o00 (S/,t/)ET
|8 —s|<6, |t'—t|<S

We claim that for any (s',t¢') € T, there exists some r <t At’ and v > s V s’ such that

2
||Sn(8,t,f,OJ)—Sn(S/,t/,f, )H RR]
/ R,R)? ’ R,R)? (5.12)
<ISn(ryt, f30) = Su(r,t!, f) [ 4 (190 (5,1, f30) = Suls’,u, frw) |5
Indeed, at least one of the two conditions occurs: s <t/ or s’ < t. In the first case, (5.12)

holds with (r,u) = (s,t’) while in the second case, (r,u) = (s, t). Therefore, asymptotic
equi-continuity of ((s,t) — Sn(s,t, f;w))nen follows from the next Lemma.

Lemma 5.14. Forallw € Qq, (s,t) € T, f €T, R > 0 and € > 0, there exists § > 0 such

that
limsup  sup  [|Sa(rt, fiw) = Su(r,t', frw) | SR (5.13)
n—o00 1’,t’€[O,T]
r<tAt, |t —t|<6
and
2
limsup  sup  [|Sa(s,u, fiw) — Su(s u, frw) | S <. (5.14)
n—00 u,s’€[0,T)
u>sVs', |s'—s|<s
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Proof. We are going to prove (5.13) first. Let (x,y) € R? and suppose first that r < ¢ < ¢'.
By Lemma 4.4,

1
Sn(rt', frw)(@,y) = ~h (nz, [ny),n(t' = 1), ¢}; 7rw)
1
= Eh (nx’ [ny],n(t" —t), h(n-, [n-],n(t — 1), 90{17 TnrW); Tntw) .

Now, by Lemma 5.3 applied with initial condition ¢ := h(n-, |n-|,n(t — ), ol Thw),

1 1
Sn(r,t', fiw)(z,y) = sup {1/}(271/) + LT ((me)lfnyj n nR(z,o»(m,t/t))}

|z—a|<]t/—¢] LT

1 1
< sup {1/}(271/) + gLT (Tntw) [y N nR(z,O),(z,t’t))}

|z—a|<]t/—¢] LT

1
= sup {Sn(T7 t, fiw)(z,y) + gLT (Wpny) N nR(z,t),(m,t’))}

lz—=z| <[t~

1
< | bllil‘) ISn(ﬂt, frw)(z,y) + ELT (Wlny) N ARGt —t])(w,t7)) 5
z—zx|<|t'—t

since R(Zi))(gj’t/) - R(w,t—\t’—ﬂ),(w,t’) for all |z — x| < |[t' — ¢t|. Similarly if r < ¢’ <,
1
Sn(r,t, frw)(z,y) < ‘ Slurl) lSn(r, t, fiw)(z,y) + ﬁLT (Wlny) N ARGt —t)) (2,)) -
z—zx|<|t' —t

In any case, since R, —26),(x,t+5) contains both R, ;¢ _¢)), 2,y @0d Rg 11t —1)), (2,t)

sup |Sn(7‘,t/,f,w)($,y)—Sn(r,t,f,w)(x,y)\
r,t'€[0,T)
r<tAt’,|t'—t|<s

< sup [Sa(mt AT, fiw)(2,y) = Sa(rt AT, fiw)(@,y))|
zE€[x—6,2+6]
r<tAt’

1
+ gLT (Winy) VR t-26),(2,045)) -

Therefore, by Proposition 5.6 and Lemma 5.4, since Leb (R 1—25),(z,t46)) = (36)?/2,

hmsup sup |Sn(r,t',f,w)(z,y)fSn(r,t,f,w)(x,yﬂ
n—00 r,t'€[0,T]
r<tAt, |t —t|<$
3 (5.15)
< sup |f(x1,y) — f(22,9)] + C Vb + ¢ —=6.
z1,22€[x—8—T,x+6+T)] \/5
|I2—21|§26

The right-hand side tends to 0 when § goes to 0. To finish off the proof of (5.13), we need
to get a uniform control in (z,y) € [~ R, R]?. To do this, we cover the rectangle [ R, R]?
by a finite union of balls of radius d. Let (z1,¥1),- - , (p, yp) be the centers of these balls.
By (5.11), for any 4,

lim sup sup |Sn (1,1, frw)(x,y) — Sn(r, 7', frw) (@i, i)
n—o0 (r,r"YET
(z,y)eB((zi,y:),0)
< sup [f(z1,y) = f(@2,9)| + CVE+ 6.
z1,22€[x—0—T,x+6+T]
|zo—21]<28

This bound proves the uniform control in (z,y) € B((x;,v;),d). Since (5.15) holds
simultaneously for all (z;,y;), (5.13) holds for any § > 0 chosen small enough.
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Let us now prove (5.14). If s < s’ < u, by Lemma 4.4,
1
S"(S’u7 f,OJ) = gh (n'7 |_’I’LJ7’I7/<’U, - S/)7 h(”v Ln-J,n(s/ - 3)7 @fﬁ’rnsw); Tns’w> 5
1
and SH(S/’U" f;OJ) = gh(n, I_’I’LJ,TL(U - S/)a @fz; Tns’w)'

Therefore, by Corollary 4.8, there exists N(w) € IN such that for all n > N(w) and all
s<s§ <u<T,

||Sn(s7u,f,w)—5n(s/,u,f, )H RR]

1

LG Ll (s’ = 81 7)o Lo )|

[-R—a(u—s"),R+a(u—s")]?
<

(oo}

2
< |[Sn(s, s, fiw) — Sn(s,s,f;w)H[;R*aT’R*”‘T] .
We can do similarly for s’ < s < u and finally get that for all n > N(w),

2
sup  [[Su(s,u, fw) = S’ u, frw) |5
u,s'€[0,T]
u>sVs', |s'—s|<6

)|

< sup [|Su(s A, s, f;w) = Sa(s A S8, frw)|SRmeT R+l

and the proof is concluded by the first case (5.13) (with (t,¢') = (s,s’) andr =sAs'). O

This shows the asymptotic equi-continuity of ((s,t) — S,(s,¢, f;w))nen. Together
with Lemma 5.13 and Proposition D.1, this concludes the proof of Lemma 5.12. O

The proof of Proposition 5.10 is complete up to showing Lemma 5.11. O

Proof of Lemma 5.11. Letw € Qp, ¢ > 0and I € N such that 2= < /2. By definition of
the metric Do, for any f,g € T,

Doc (Sn(vvaw)asn(aag7 = sup 22 ’ (”Sﬂ S, )_S7L(S7tvg; )H ZZ )

O<s<t<T

< swp Zz-l(ns 1 f3w) = Sals, g @) L A ) 22

0<s<t<T

Now, by (4.12), there exists N(w) € N such that for all n > N(w) for all f,g € I and all
0<s<t<T,

‘ ’ [7’L'7aT,’i+aT]2

1 1

180(5:8 i) = (st g5 < | Lk L) = St L

< |If = glllgioTi+eT Ly /n by (4.15)

Therefore, for all n > max(N(w),e/8) and all f,g € T,
I . . . 2
Doc (S £10), S, g50)) < 3227 (If = gl 5T +T A1) +4/m + /2
=1
< 9foT] 2271‘7(QT1 <||f 79H£;i7(aT],i+(ocTﬂ2 A 1) te
=1

< ofaTT doo,c(fa 9) +e. O
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6 Identification of the limit

6.1 Properties of the limit points

In this section, we are going to show that any subsequential limit of (S5, (., .; f,w))nen
(as in Definition 4.9) satisfies the sufficient conditions of Proposition 3.5, most of these
properties being automatically satisfied by the analogous microscopic properties stated
in Section 4.1 or by Proposition 5.10 concerning continuity.

Proposition 6.1. Let w € €y and (n;)rew a subsequence such that for all f € T,
(Sn, (-, +; f,w))kew converges to a certain S(-,-; f,w) in Fr, i.e

VR>07 sup |Snk(s,t,f;w)(m7y)—S(s,t,f;w)(x,y)| — 0.
(s,t)eT k—roo
lz|,ly|<R

Any such limit (f = S(s,t, f;w))o<s<i<7 is a family of continuous functions from T into
itself satisfying the first four properties listed in Proposition 3.5. Moreover, for any f € T,
(s, t,z,y) — S(s,t, f;w)(z,y) is continuous.

Proof. - Continuity: By Proposition 5.10, for all f € T, (s,t) — S(s,t, f;w) is contin-

uous from 7 into I' (which is composed of continuous functions) hence (s,t,z,y) —
S(s,t, f;,w)(zx,y) is continuous.

- Translation invariance: Forany c € R, s <t and k£ € IN, by Lemma 4.2 and by translation

invariance property of <p£ stated in Proposition 4.10,

1
Sﬂk(sat;f"’_nlzl Lnkcj,w) = Sﬂk (Svt;fv(*J) + n \_nkcj
k

When k goes to infinity, the right-hand side tends to S(s, ¢; f,w) + ¢ in (F(R?), dw ) while
the left-hand side goes to S(s,¢; f + ¢,w) by Lemma 5.11.
- Monotonicity: By (4.15), if f < g, then for all k£ € IN, <pf% < ¢}, +4so by Lemmas 4.3
and 4.2,

Sny (85, fiw) < Sy, (s, t, g;w) + 4/
Monotonicty follows by taking the limit £ — oc.
- Locality: It is a direct consequence of Corollary 4.8 and (4.15).
- Semi-group: the fact that S(¢,¢,f) = f, forallt € [0,7] and f € I is an immediate
consequence of (4.15). Now, forany 0 <r < s <t < T, we have by Lemma 4.4,

S (1t i60) = b0 [t = ), By = 1), ol ) i),
and since S(r, s, f;w) € T, we can apply S, (s,t, ;w) and write
Snp (8,8, 9(ry s, fiw);w) = nikh(n-, [n],n(t—s),¢ S(r 59 7 sw).
Therefore, by Corollary 4.8, for all R > 0 and k large enough,

||Snk(T7t,f;OJ)_Snk(s,t,S(T,S,f; ) )” RR]

1 TS w
L eyl = 1),y ) = S ,Ln~J)‘

[-R—aT,R+aT)?

_R-a o 2
<118 (1,5, fi0) = S(r.s, fr)| ST 2 by (4.15)
k
which tends to zero when k goes to infinity. Consequently, for all R > 0,
IS(r.t, f;0) — S(s,t, S(r, 5, frw);w) | S
_ . . RR]2
= B ||y, (1t fi0) = Sy (5,8, S(r, s, frw)i )|
e el

which concludes the proof of the semi-group property. O

EJP 25 (2020), paper 76. http://www.imstat.org/ejp/
Page 24/35


https://doi.org/10.1214/20-EJP473
http://www.imstat.org/ejp/

Hydrodynamic limit of the Gates-Westcott model

6.2 Hydrodynamic limit for linear initial profiles

The only condition missing to apply Proposition 3.5 is the compatibility with linear
initial profiles. We start with the following result:

Proposition 6.2. Forall p € R x (—1,0), allt € [0,7] and all (z,y) € R?:

w—as  Sp(0,t; fr,w)(z,y) — folz,y)+tu(p), (6.1)
n— oo
with f, == (2,y) = p- (z,y).
Before proving this Proposition, let us show the following Corollary that gives the
compatibility with linear solutions.

Corollary 6.3. There exists )1 C () of probability one such that for all w € Q¢ Ny, if
(nk)ren is a subsequence such that for all f € T, (S, (-, *; f,w))ken converges towards
S(+,+; f,w) in F, then

VoeRx[-1,0] YO<s<t<T  S(s,t, fp;w)=f,+ ({t—s)v(p). (6.2)

Proof of Corollary 6.3. By Proposition 6.2, there exists a subset 2; C ) of probability
one such that (6.1) holds for any p, ¢, x,y in a countable dense subset of their respective
set of definition. Therefore, for all w € Qy N Q;, any subsequential limit S(,-,-;w) of
Sn(+, -, ;w) satisfies that for any such p, ¢, z,y,

S(O7taf/);w)(xvy) = fp(x’y) + t’U(p).

By continuity with respect to (¢, z,y) of both sides (by Proposition 6.1), this holds actually
for all (x,y) € R? and t € [0,T]. Similarly, by continuity of p — v(p) (defined in (3.6))
and of p — f, on R x [—1,0] (including the endpoints of the interval) for the topology
of convergence on all compact sets and by continuity of f — S(0,¢, f;w) for the same
topology (still by Proposition 6.1) we deduce that it holds also for all p € R x [-1,0].
Finally, we get the result for any s > 0 by the semi-group property satisfied by S (by
Proposition 6.1):

fo+tu(p) = 5(0,¢, fp;w) = S(s,1,5(0, 5, fp, w); w)
= S(s,t, fp +sv(p);w) = S(s,t,9,;w) + sv(p) by translation invariance property

and thus S(s,t, fo;w) = f, + (t — s) v(p). O

Proof of Proposition 6.2. This proof requires the knowledge on equilibrium measures
developed by Prahofer and Spohn in [20, 19]. As in Section 3.3, we note ¢y n,, the
height function with asymptotic average slope p € R x (—1,0) (in the thermodynamic
limit N — oo, M — o0) and whose gradients are stationary w.r.t time for the periodised
Gates-Westcott dynamic (i.e the Poisson point process is periodised on a torus of size
2M and 2N and noted [w]M’N as in (3.9)). There are two key ingredients in this proof:
to show that, in the limit M, N — oo, ¢, nN,, approaches f, in the sense of (3.3) and
that n=1h(0,0,nt; oar N, [w]*N) approaches f, + tv(p). From (3.10) and (3.12), this is
true on average. It remains to show concentration via variance estimates as in the next
Lemmas.

Lemma 6.4. For any p € R x (—1,0) and t > 0,
lim sup lim sup Var (h (O, 0,t;0Mm,N,p, [w]M’N)) =, O (logt). (6.3)

N—oo M—oo 0

Lemma 6.5. For any p € R x (—1,0), anye > 0, anyn € IN* and any compact set K C R?,

1
lim sup lim sup P ( sup ‘ngoM,N’p(mc, lny|) — fp(a:,y)’ > 5> = O (n"’logn). (6.4)

N—oo M—oo (z,y)eK oo
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Let us admit first these Lemmas and finish the proof of Proposition 6.2. Let us fix
p,t,x,y as in Proposition 6.2. We also fix e > 0 and n € IN. For any M, N € R4,

P(15n(0, 8 fp, w)(@,y) — fp(z,y) — tv(p)| = 2e)
<P (S0(0,8; o, w)(2,9) # S (0,8; fo, [W]N) (2, 1)) JA
+ P (In~ h(na, [ny], nt; oarn e, (W) = fo(2,y) = to(p)| > €) 1B
+P (\Sn(O,t; fos [w]M’N)(gc, y) — n_lh(n:v, lny ], nt; o N,p, [w]M’N)| > 5) . }C

Let us bound the limsup when M, N goes to infinity of the three terms of the r.h.s called
A, B and C.

(6.5)

A) The first term is easy to control thanks to the linear propagation of information.
For any M, N large enough, [-M, M) x [-N, N — 1] contains B((nz,ny), ap, n nt) with
am,n = (M AN)/(2nt). For such M, N, if w € Ap(54),0nt,ar v (defined in (4.9)), then
S (0,5 foow)(@,y) = Sn(0,t; £, W)™ N)(2,y). Consequently, by (4.10) and since aa,n
tends to infinity when M, N tend to infinity,

P (Sn(0,8; o, w)(,y) # Sn(0,6; fo, [wW]"™)(2,9)) <P (“An(ag) 0mtianin) < 0. (6.6)

M,N—o0

B) Let us write h(nz, [ny], nt; o N,p) for h(nz, [ny|, nt; oar,n,ps w]™N). By Chebyshev’s
inequality,
P(|n"'h(nz, [ny),nt; omn.p) — fo(z,y) — to(p)| > )
< e K [In~"h(nz, [ny], nt; ormn,0) — fol2,y) — to(p)]?]
_ _ 2
= ? (E [n""h(nz, [ny),nt; onn,p)] — folz,y) — tu(p))

42 Var (h(nz, [ny],nt; o))
n2

By (3.12), the first term of the r.h.s in the last equality goes to zero when M, N tends to
infinity. To treat the second term, we write h(nz, |ny|,nt; oam.n,p) = h(0,0,nt; op N,p) +
h(nz, |ny],nt; o N,p) —h(0,0,nt; or N,p) and use that the variance of the sum is smaller
than twice the sum of the variances:

Var(h(nz, |ny], nt; oa,n,p))
< 2Var (h(0,0,nt; on,n,p)) + 2 Var (h(nz, |ny], nt; oarn,p) — h(0,0,nt; 0N p))
= 2Var (h(0,0,nt; par,n,p)) + 2 Var (par,n,p(nz, [ny])), by (3.11).

The first term of the r.h.s is controlled by Lemma 6.4 and the second by (3.13). Therefore,

lim sup lim sup IP (’nilh(nas, lny|,nt; omn,p) — folz,y) — tv(p)| > {—:) = 0 (sz logn) .

C) By Lemma 4.7 and by (4.15), for any n > 2/¢

P (180(0,; fo, [w]"™) (@, y) = n~ h(nz, [ny], nt; oarw.p, [W]*0)] > €)

<P sup
(' ,y")EB((z,y),0t)

Consequently, by Lemma 6.5,

n— oo

fol@'y') — %SDJVI,N,p(an, Lny’J)’ > E/2> + 0 (e7m).

hmsup hmsup]P (|S7L(O7ta fpa [w]M,N)(x,y) - nilh(nxv I_nyjanta $M,N,p> [W]M’N” > 5)

N—oco M—oo -

= 0 (n_2 log n) .
n—oo
(6.8)
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Altogether, by taking the limsup when M, N goes to infinity in (6.5) and by (6.6), (6.7)
and (6.8),

P (|8n(0,t; fp, w)(z,y) — folz,y) —tv(p)] > 26) = O (n"*logn),

n— oo

and the proof of Proposition 6.2 follows from Borel-Cantelli Lemma. O

Now, as promised, we prove Lemmas 6.4 and 6.5.
Proof of Lemma 6.4. Again we write h(z,y,t; o, N,,) instead of h(x, y,t; oum N, p, [W]0N).
For any rectangle Ag = [-R, R] X [—R, R] with R > 0 and any ¢ > 0 if we define

R R
h(Ath;(pM,N,p) = Z / h(xvyvt;<pM,N,p) dLU,
y=—RY R

then it is easy to see

t
h(Ar,t;omN,p) = R(AR, 03 90,n,p) :/ (NJ-\Z,NW(AR’S) +N1Er,N,p(AR75)) ds, (6.9)
0

where Nj\jjy ~.p(AR, s) is the number of antikinks/kinks in the domain Ar at time s for the
dynamic starting from ¢, v, ,. Then,

Var (h(Ar,t; onm,N,p) — (AR, 0500 .N,p))
t ot
= / / Cov ((N+ + N_)M,N7p(AR7 8), (N+ + N_)M,N,p(AR) S/)) dsds’
0o Jo
<t*Var (Nt + N7)pnp(Ag,0)) < 282 (Var (N]\J}’N’p(AR,O)) + Var (N;I’N’p(AR,O))) ;

where the two last inequalities hold by Cauchy-Schwarz inequality and by stationarity
with respect to time. Therefore, by (3.14) applied for R = ¢,

lim sup lim sup Var (h(A¢, t; oar,n,p) — M(A¢, 05 00.n,p)) = O (t4 log t) . (6.10)
N—oo M—oo R—o0

Now we are going to compare h(A¢, t; o N,p) — h(At, 05 00, N,p) With t2 h(0,0,t00,N.p),
using the logarithmic bound (3.13) on fluctuations. We can write

[t] t
24(2[t] + 1)R(0, 0, prrxp) = / (h(0,0,; prr.np) — h(z, .t Parx ) da
y=—1t) "~
6.11
[t] t ( )
+ Z / oM Np(x,y) de 4+ h(As, 600, n,p) — R(Ae, 05001, N,p)-
t

y=—[t] "

By Cauchy-Schwarz inequality and by stationarity (3.11), for any (z,y), (z',y) € Ay,

lim sup lim sup Cov(h(0,0,t; ©ar,N,p) —h(z, Y, t; 001,n,p),0(0,0, 85 oar, N, o) — (2, Y b5 orr N, p)

N—oco M—oo

< lim sup lim sup \/Var (enm,n,p(x,Y)) \/Var (ea,np(@,y))

N—oco M—oo

= 0O (logt), by (3.13)

t—o0

and thus

lim sup lim sup Var Z / (h(0,0,t;0m,N,p) — Rz, y, t; 0mN,p))da | = . O (t*logt).

N—oo M-—soco —+co
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By the same argument, we get

[t] t
lim sup lim sup Var Z / MmNz, y)de | = t_(?oo(t4 logt).
t

N—oco M—oo —
y=—|t]

Therefore, using (6.11), (6.10) and that the variance of the sum of three terms is less
than three times the sum of the variances,

(2t(2[t] + 1))? lim sup lim sup Var (h(0,0,t; oamn,p)) = O (t*logt),
N—oo M—o0 t—o0
which concludes the proof of the Lemma. O
Proof of Lemma 6.5. Since K is compact, for any § > 0, we can cover K by a finite
number /5 € IN of balls B((z;,¥:),0)1<i<i,- Fix i € [1,15] and (z,y) € B((zi,y:),J). For all
Y e [In(y: — d)], [n(y: +0)]],

T = pnt o, L) | < 6pe) = o) + oo ) Stz L))

1 1 1 1
# onn s, L)) = om0 )| | Lon (1, Y) = Sonn (0, )

1 1
+ ‘HWM,N,;)(W, Y) - ﬁﬁpM,N,p(nl’, Lnyj)‘

<C,0+

1 1 _
fo(@i, ys) — ;‘F’M,N,p(nxiv Lnyzj)’ + n ‘(NJ—&,N,,; - NA{,N,p)(nI-'Ew'L'i X {Y})’

<C,5+

1 1 _
Foliyyi) = —onnp(ni, Lnyd)’ + E(N;\tLN,p + Nagn,p) (0l 5,045 X {Y'}),

where C, = |p1| + |p2| + 3, NE’NVP(D) is the number of antikinks/kinks of s n,, in a
domain D and I, := [a Ab,a VD] (the second inequality holds because the height slope in
the y direction is bounded by 1). One could simply choose Y = |ny; ] in the last inequality
and try to control the variance of (NIJVFLN,p + Nar ) (0da;—6,2,+6 x {[nyi]}) for large n
(after sending M, N to infinity) but it is not obvious to get a bound better than O(n)
(which is insufficient). Instead, we average the last inequality for all possible values of Y’
in [|n(y; —9)], [n(y; + 9)]] in order to get

sup
(z,9)eB((zi,y:),9)

fp(w7y)—%<pM,N,p(nw7 LnyJ)’ < C(p) o+ |folmisyi) — %soM,N,p(nxi, ny:))

1 _
+ @on—1)n (NJJ&,N,,J + NM,N,p> ((nzy, [nyi]) + Anst1), (6.12)

where A,511 is the rectangle defined as at the beginning of the proof of Lemma 6.4. Now,
we know from (3.10), from (3.13) and from Bienaymé-Chebyshev inequality that

n— oo

lim sup lim sup IP <

N—oco M—oo

1 _
Jo(wiys) — ﬁ‘PM,N,p(nxia I_nyiJ)‘ > 6/4> = O (n"logn). (6.13)
Moreover, by (3.14) and by invariance by translation of the stationary measures,

lim lim Var ((N]E)Nm + Norn p) (s, [ny:]) + An5+1)) = nO (n?logn).

N—o00 M —00 —00

Besides, since the sum of the asymptotic kink and antikink densities is equal to the
average speed v(p),

lim lim E [(NJ\J;I,N,p + N]T/[)Nm) ((nas, |ny:]) + An5+1):| o (2n8)% v(p).

N—0c0 M —00 —»00
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Note that the two previous limits exist as explained in Appendix B. Dividing by (26n — 1)n
and using Bienaymé-Chebyshev inequality yields

lim sup lim sup IP

1 _
n i ((25n — l)n(N]—\tI,N,p + Nysnp) (n@, [nyi]) + Ans1) = 26v(p) + 5/4>
— 00 — 00

= O (n7%logn). (6.14)

n—oo

From (6.12), (6.13) and (6.14), we get that for any § > 0,

1
lim sup lim sup P ( sup |fo(x,y) — ﬁgoM,N,p(nx, Lnyj)‘ > C0 + 5/2)

N—oco M—oo (z,y)EK

ls
< Z limsuplimsup P sup
i=1 N—oo M—oo (z,y)eB((zi,Y:),0)

fp(x;y) - %@M,N,p(nl'a Lnyj)’ > C;(S + E/Q)

= 0 (n*QIOgn),

n—oo

with C7, := [p1| + |p2| + 3 + 2v(p) which concludes the proof by setting d = ¢/(2C}). O

6.3 Conclusion of the proof of Theorem 3.1

Propositions 5.10 (compactness) and Proposition 6.1 together with Corollary 6.3
provide all necessary ingredients to conclude the proof of Theorem 3.1.

Proposition 6.6. Forallw € QyNQy, all f €T and all R, T > 0,

sup 1S, (0,¢; f,w)(z,y) — u(z,y, t)] — 0, (6.15)
||, ly| <R,te[0,T] n—oo

where u is the unique viscosity solution of (3.5).

Proof. Assume that convergence (6.15) does not hold for some w € Qy N Q4, f € T and
R,T > 0. Then, there exists ¢ > 0 and a subsequence (ny)gen such that

Sup |Sﬂk(0ata faw)(xay) *U(l’,y,t” Z €. (616)
lz|,|y|<R,t€[0,T]

By Proposition 5.10, we can extract another subsequence (ny,);en such that for all
g € T, the sequence (Snkl (-,;9,w))ien converges towards a certain S(-,-;g,w) in Fr. By
Proposition 6.1 and Corollary 6.3, (S(s, t,;w))o<s<t<7 Satisfies all sufficient conditions of
Proposition 3.5. Therefore, (x,y,t) — S(0,t, f;w)(z,y) = u(z,y,t) is the unique viscosity
solution of (3.3) and thus (z,y,t) — S, (0,t; g,w)(z,y) converges on all compact sets of

R? x [0,T] towards u when [ goes to infinity which is a contradiction with (6.16). O
The full proof of Theorem 3.1 follows from Proposition 6.6 and the fact that, by
locality (Corollary 4.8),

1
sup S, (0, t; fw)(z,y) — —h(n-, [n-],nt, on;w)| — 0, 6.17)
|lz],|y|<R,t€[0,T] n N oo

since both rescaled initial height functions n=1¢/ (n-, [n-]) and n=1¢,, (n-, |n-]) converges

to f uniformly on [-R — oT, R + oT? by (4.15) and assumption (3.3).

A Sufficient conditions for viscosity solutions of Hamilton-Jacobi
equations

In this section, we give a self-contained proof of Proposition 3.5 which is inspired
from [22, Lemma 5.3] and [30, Proposition 7.1].
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Proof. Let us show thatu : (z,t) — S(0,t, f)(x) defined from R? x [0, 7] to R is a viscosity
solution of (3.5). First of all, by assumption, u in continuous on R? x [0, T]. Then, by the
Semi-group property:

u('v 0) - S(Oa ng) =g

We are left to show that v is a subsolution (the proof that u is a supersolution being
identical). Let ¢ € C*®(R< x (0,T)) and (zo,tp) € R? x (0, T) such that ¢(xg,to) = u(zo,to)
and ¢ > u on a neighbourhood of (z,t). At first, we introduce the following affine
approximation of ¢ around x:

Y(z,t) := (20, t) + Vo(z0,t0).(x — T0).
As ¢ and ¢ have the same value and derivatives at (zo, o), it is enough to show that
Opp(xo,t0) < v(Vih(xo,t0)), (A1)

by studying ¢ (xo, to) — ¥(zo,to — d) for small positive §.
On the one hand, by the semi-group property and the definition of u,

Y(xo,to) = u(zo,to) = S(to — 9, to, u(-,to — 9))(wo)- (A.2)

On the other hand, it is easy to show that V¢(zg,%p) € R x [—1,0] thanks to the
assumptions ¢ > u around (xg,ty) with equality at (zg,ty) and the slopes constraints
satisfied by functions in I' such as u(-,ty). Therefore, by compatibility with linear
solutions and translation invariance,

S(to — 4,19, ¢(.,t0 — 5))(930) e w(l’o,to — 5) + 511(Vz/)(x0,t0)). (A.3)

We are left to compare S(tg — d,to, (., to — 0))(xo) with S(tg — d, to, u(-, to — 9)) (o).
Thanks to locality and monotony, this can be done by comparing (., to — &) with u(-,tg— )
in the ball B(zg, @ d). By Taylor expansion of ¢ and v at order 2 around (zg, to),

d(z,t) = Y(x,t) + O (|l — xol|Z, + [t — to]?) .

Moreover, u < ¢ on a neighbourhood of (zg, t9) hence u(-,tg—3d) < ¢(-,tg—9) on B(zg, o d)
for 4 small enough. Altogether, there exists C' > 0 such that for all § small enough,

Vo € B(xg,ad)  u(z,to—0) < (x,tg —6) + C 52 (A.4)

Now, we set g := u(.,tp — §) A (., top — 0). By locality property (applied at xo with
R=0),

|S(to — &,t0, u(.,to — 8))(wo) — S(to — 8,0, 9)(wo)| < sup |u(,to —6) — g(z)| < C&?,

xeB(xo,a 0)
(A.5)
where the last inequality holds because of (A.4). Since ¢ > g,
S(to — (5, to, ’l/)(, to — (S))(Z‘o) Z S(to — 5, to,g)(l‘o) by monotonicity
> S(to - 57 to,U(.,tO - 5))(:170) - 052 by (A5)
= 1p(xg,t9) — C62. by (A.2)
Using (A.3), we finally get
1/}(%0, to — 5) -+ (5U(V¢(CEO, to)) Z 1/)(.%0, to) — 062
and then 5
to) — to —
Ot (o, o) = tim L0 = V0 T0 = 0) G 4o, 0
6—0 )
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B Stationary kink/antikink correlations and proof of (3.14)

In this section, we give more details about the determinantal structure of the station-
ary measures introduced in Section 3.3 and show that the kink/antikink correlations are
bounded by the inverse of the distance squared in order to deduce (3.14).

Let us first fix M and N, the sizes of the torus, and a slope p = (p1,p2) € R x (—=1,0).
The existence of a stationary height profile ¢ n , (with value fixed e.g. to 0 at the
origin) whose average slope approaches p was already discussed in Section 3.3. The
height function (and in particular the kinks and antikinks) are totally determined by the
occupation variables 7(z,y) for (z,y) € R x Z that take value 1 if there is a level line
of the height function passing by (z,y) (i.e if oar,n (2, y + 1) — orm,n,p(z,y) = —1) and 0
otherwise. In [20], the author showed, that any moments of the occupation variables can
be computed thanks to a determinant: for any (z1,41), -, (Tm,ym) € R X Z,

E[n(x1,y1) - 1(Tm, Ym)] = det (SM,N,p(Ik’a Yk L, yl))1§k71§m ) (B.1)

where Sy N, is an explicit kernel that somehow simplifies in the infinite volume limit:

1 P2 , Ly
27 / e e iy vk qf; for 2’ >z
™ —T
lim lim SM,N’p(x/,y/;xay) = p227'r—7r
N—00 M—o00 . i/ P2 e(w'—w)a(k)ei(y/—y)k dk for o <,
2w 7p2
(B.2)

with e(k) = —n; cos(k) + in, sin(k) and where n; > 0, 1, € R are parameters uniquely
determined by p. In particular, the law of ¢y n,, admits an infinite volume limit in the
sense that the average of any local function has a limit as N — oo after M — oo.

Thanks to this determinental structure, Prahofer and Spohn computed the infinite
volume limit of the densities of kinks and antikinks and deduced the speed of growth v(p)
(defined in (3.6)) depending on the slope p. Furthemore, they computed the covariance
(or “structure function”) between kinks, antikinks and occupation variables (see [20,
Equation (6.30)] and [19, Equation (27) and (29)]). For our purposes, we only need
the antikink/antikink and kink/kink covariances between the origin and (z,y) denoted
respectively by S (x,y) and S, (z,y) and which can be written as:

772 pam o 2T —pom o w ,
St(a,y) = 1 / e\xle(k)ez(myil)kdkx/ eIl () iEVEDR g1 (g 3y
p

(27T)2 —pP2T 2T

A B

where 74 are positive constants determined by p. Let us show that

1
SE(z,y) = 0 () B.4
» (@) I(w)l—oo \ ||(x, y)||? B4

Without loss of generality, let us treat the case of S and x > 0. First of all, the modulus
of A in (B.3) is bounded by 2 fopﬂ e~ s2cos(k) 4k whose asymptotic behavior for large z
only depends on the behavior of the integrand around p,7 where it attains its maximum.
Therefore, by a Taylor approximation, we get that for all (z, y),

e s cos(pam)z

—+oo
|A| < 2/ e (e cos(pam)—k/Cla g — 90 =~ (B.5)
O x

for some constant C' > 0. Now, by integration by parts, we get that

1 ) p2m P . ) . i
A= Qem(k)e“‘“”k} e /pgm sin(k) + 1, cos(k))e=(H) i+ D d’“)
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and thus, by using (B.5) to bound the second term, we obtain

1
Al < (26_% o) g\ 2 F 20

T ly+1]

—ns cos(pam)T e s cos(pam)x
) < (B.6)

|yl ’

for some constant C’ > 0. In any case, we have that

—ns cos(p2m)|z|
(e) ) (B.7)

max(|z|, [y])

Al =

@)l —oe

and similar computations show that

Ns cos(p2m)|z|
< > : (B.8)

Bl = (@) _
1Bl ()| o0 (maX(lxI, lyl)
which concludes the proof of (B.4), by equivalence of norms on R2.

Now, let us show how we can deduce (3.14). The variance of the number of an-
tikinks/kinks in the domain Ay is given by:

lim lim Var(Ni v (AR)) = / SE(x' — x,y —y)deda.
oo Mimroe o [-R.R)? y@/E%—:R,R]] ’

By standard approximation of sums by integrals arguments and by (B.4), the proof
of (3.14) is concluded thanks to the following inequality:

/ - Cl/ SV M dzdyda’ dy’ g/ C, log Rdz dy < Cs R?log R,
[-R,R]* (2" — 9" —y)| [-R,R)?

where M is the sup norm of S;r and C,Cs > 0 are constants chosen large enough.

C Longest light-chain of Poisson points

In this section we give a control on the maximal length of Poisson points in a domain
that can be collected by a light-path (as in Definition 5.1). Let w € Q, k € N, Yy =
(y1, -+ ,yx) € Z* and D a bounded domain of R2. We define the event

k
CZ’?}(D) = {w € Q7 3($i7ti)1§i§k S H (w% N D), Vi € [[1,/{3 — 1]] |£L‘i+1 — .’I?l| <tit+1—tip,
=1

(C.1)
which means that there exists a light-path that collects at least one point per set w,, N D
in a precise order (from i = 1 to i = k). The link with L" of Definition 5.1 is the following.
Ify = (y,--- ,y) where y € Z appears k times, then

{L" (wy N D) >k} =C] (D).

The next Lemma gives a control on the probability of this event when D is a light-
rectangle (see Definition 5.1).

Lemma C.1. For any light-rectangle R C R?, any k € N and any y = (y1, -+ ,yx) € Z¥,

P (Cjuyy(R)) < (2621;:213(R)>k

Proof. This probability is invariant by translation of R and up to a rotation of angle —7 /4,
we can suppose that R = [0,a] x [0,b] and that where are considering non-decreasing
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paths instead of light-path in the definition of C'. Therefore, by the union bound
inequality,

k
P (L, ) =P (30%,80199 e[Jwp. 0<m < <rm<a 0<si < <si < b)

i=1

k
§/ / P (m#{wyiﬂ[ri,ri—l—dri] X [si,si—&—dsi]}:l)
0<r1<--<rp<a JO0<s1 < <5, <b ie=1

S/ / 2k dry - -drp dsy - - - dsg
0<ry <o <rp<a J0<sy < <5 <b

(since the w,, are independent PPPs of intensity 2 on R x Z x R} )

_ (2ab)* _ (262 Leb(R))’“ |

(k)2 — k?
In the last inequality, we used that k! > (k/e)* valid for all k € IN (this classical inequality
can be obtained from e* > z*/(k!) evaluated at x = k). O

Now we give a Corollary that can be useful when dealing with domains different from
light-rectangles (the upper bound obtain is not optimal, yet enough for our purposes).

Corollary C.2. For any domain D C R?, any k € N and any y = (yo, - ,yx) € Z"1,

4e? v(D)? ) F |

P (CT (D)) < 2Leb(D) < =

w,y

where v(D) is the vertical diameter of D i.e the longest distance between two points in
D aligned vertically.

Proof. In order to realise the event C[, (D), once we have chosen (zo,ty) € wy, N D,

then the rest of the points (z1,¢;) - - (s, t) must be in the intersection between D and
the cone {(z,t), |x — xo| <t — to} which is included in a certain light-square denoted
R., .+, whose diagonal is of length less than 2v(D), hence is of area less than 2v(D)?2. By
the union bound inequality and Lemma C.1,

P (cl,(D)) < /D P (o) (R ) 2dodlty

2¢22v(D)*\" 4¢?v(D)2\ "
g/ (e];;()> 2dedty = 2Leb(D) (6;2,)) . O
D

D Compactness for asymptotically continuous functions

In this section, we show a generalisation of Arzela-Ascoli theorem, that gives sufficient
conditions for “almost continuous functions” (e.g. sequences of functions with jumps of
size tending to 0) to converge uniformly on all compact sets.

Proposition D.1. Let (f,).cn be a sequence of functions from a separable metric space
(E,d) to a complete metric space (F,d’) such that:

1. Asymptotic equi-continuity: For all x € E and all € > 0, there exists § > 0 such that

limsup sup  d'(fu(@), fuly)) < <. (D.1)
n—00 yeE
d(z,y)<é

2. Pointwise relative compactness: Forall x € E, the sequence (f,,(x))nen is contained
in a compact set of F'.
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Then, for any subsequence (nj)ren, (fn,)ren has a subsequence that converges uni-
formly on all compact subsets of E to a function f : (E,d) — (F,d’"). Moreover, any limit
point is continuous.

Proof. For the sake of simplicity and since any subsequence (f,,)ren still satisfies
assumptions 1 and 2, we can assume that (fy, )kenw = (fn)nenw without loss of generality.

Let Ey be a dense countable subset of E. By pointwise relative compactness and a
diagonal extraction argument, we can find a subsequence (n;);en such that for every
x € Ey, (fn,(z))icn converges in F. Let us show that actually, for all z € E, (fy,(z))ien
is a Cauchy sequence, hence converges in F'. Let z € E and £ > 0. By assumption,
there exists 6 > 0 such that (D.1) is satisfied. By density, we can find zy € Ej such
that d(z,zo) < J. As (fn,(%0))1en converges, it is a Cauchy sequence so for all I, m large
enough, d'(fn,(z0), fn,, (o)) < & and thus

d/(fm (LL'), fnm (LL')) < dl(fm (1‘), fnz (1‘0)) + d/(fm (LL’()), fnm (:L‘o)) + d/(fnm (LL'()), fnm (:L‘))

< 3e,

for I, m large enough by (D.1). Let us call f the pointwise limit. By taking the limit
in (D.1), we get immediately that any such limit point is continuous.

Now, let K be a compact subset of E and let us show that f,,, converges to f uniformly
on K. Let € > 0. By compactness and asymptotic equi-continuity assumption, we can
find a covering of K by a finite number p € IN of balls of centers z,-- -z, and radius
d1,--- ,0p such that (D.1) is satisfied with (z, ) = (z;,0;) for any ¢ € {1,---p}. Therefore,
we can find N € IN such that foralll > N,

Vi € {17 e 7p} VZ/ € B(l‘ué) d/(fnz (in)afnl (Z/)) <e. (DZ)

Moreover, by point-wise convergence we can assume that for all [ > N and all i €
{1,--,p}, d'(fn,(z;), f(x;)) < e. Therefore, for alll > N and all y € K, if we choose the
index ¢ such that d(y, z;) < §;, then

<3e,

where we used (D.2) and point-wise convergence in the last inequality. O
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