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Abstract

Consider the Markov process taking values in the partitions of N such that each pair
of blocks merges at rate one, and each integer is eroded, i.e., becomes a singleton
block, at rate d. This is a special case of exchangeable fragmentation-coalescence
process, called Kingman’s coalescent with erosion. We provide a new construction
of the stationary distribution of this process as a sample from a standard flow of
bridges. This allows us to give a representation of the asymptotic frequencies of this
stationary distribution in terms of a sequence of independent diffusions. Moreover,
we introduce a new process valued in the partitions of Z called Kingman’s coalescent
with immigration, where pairs of blocks coalesce at rate one, and new blocks of size
one immigrate according to a Poisson process of intensity d. By coupling Kingman’s
coalescents with erosion and with immigration, we are able to show that the size of a
block chosen uniformly at random from the stationary distribution of the restriction
of Kingman’s coalescent with erosion to {1, . . . , n} converges as n → ∞ to the total
progeny of a critical binary branching process.
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1 Introduction

1.1 Motivation

In evolutionary biology, speciation refers to the event when two populations from the
same species lose the ability to exchange genetic material, e.g. due to the formation of a

*Laboratoire de Probabilités, Statistique et Modélisation (LPSM), CNRS UMR 8001, Sorbonne Université,
Paris, France.

†Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR 7241, INSERM
U1050, PSL Research University, Paris, France

E-mail: felix.foutel-rodier@college-de-france.fr
E-mail: amaury.lambert@sorbonne-universite.fr
E-mail: emmanuel.schertzer@sorbonne-universite.fr

http://www.imstat.org/ejp/
https://doi.org/10.1214/20-EJP450
http://arXiv.org/abs/1907.05845
http://hal.archives-ouvertes.fr/hal-02183351
mailto:felix.foutel-rodier@college-de-france.fr
mailto:amaury.lambert@sorbonne-universite.fr
mailto:emmanuel.schertzer@sorbonne-universite.fr


Kingman’s coalescent with erosion

{1, 2, 3}{1, 2}, {3}{1, 2, 3}{1, 3}, {2}

past present

Figure 1: Illustration of the model with N = 5 species, represented by grey tubes, and
n = 3 genes, represented by the colored lines inside the tubes. A species can split
into two, simultaneously replicating its genome (speciation). A gene can replicate and
move from one species to another and then replace its homologous copy in the recipient
species (introgression). At present time a randomly chosen species is sampled: the
ancestral lineages of its genes are represented with bolder colors. The green lineage is
first subject to an introgression event and jumps to a new species. It is then brought
back to the same species as the other genes by a coalescence event. The corresponding
partition-valued process obtained by assigning the labels 1, 2 and 3 to the red, blue and
green gene respectively is given.

new geographic barrier or accumulation of genetic incompatibilities. Even if speciation
is usually thought of as irreversible, related species can often still exchange genetic
material through exceptional hybridization, migration events or sudden collapse of a
geographic barrier [19]. This can lead to the transmission of chunks of DNA between
different species, a phenomenon known as introgression, which is currently considered
as a major evolutionary force shaping the genomes of groups of related species [17]. Our
study of Kingman’s coalescent with erosion was first motivated by the following model
of speciation incorporating rare migration events, depicted in Figure 1.

Consider a set ofN species, each harboring a genome of n genes indexed by {1, . . . , n}.
We suppose that the species are monomorphic, i.e., that all individuals in the same
species carry the same alleles at all genes, and that their dynamics is given by a Moran
model: at rate one for each pair of species (s1, s2), species s2 dies, s1 gives birth to a
new species, replicates its genome and sends it into the daughter species. Moreover, we
assume that the species are closely related and that they retain the ability to exchange
genetic material at exceptional migration events. This effect is incorporated into the
model by stating that at rate d for each gene g ∈ {1, . . . , n} and each pair of species s1

and s2, the gene g is replicated, the new copy of g is sent from s1 to s2 and replaces its
homolog in s2.

The assumption that each migrant transmits at most one gene to the recipient species
is strong. A more realistic model should allow any subset of the n genes to be transmitted,
at a rate that depends in a complex way on the geometry of the genome due to the
biological nature of the recombination process. However, if recombination is sufficiently
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Kingman’s coalescent with erosion

strong and if the number of individuals in each species is large, each time a migrant goes
from species s1 to s2, its genome is rapidly broken into small segments due to frequent
back-crosses with the resident. Each of these segments behaves almost independently
from the other segments, and has a small probability to reach fixation. Thus, to the first
order there should be at most one segment that can reach fixation at a time, as we have
assumed.

Now consider a fixed large time T , and sample uniformly one species at that time. We
follow backwards in time the ancestral lineages of its genes and the ancestral species to
which those genes belong. This induces a process valued in the partitions of {1, . . . , n}
by declaring that i and j are in the same block at time t if the ancestral lineages of genes
i and j sampled at T lie in the same ancestral species at time T − t.

At first (t = 0), all genes belong to the same ancestral species. Eventually this species
receives a successful migrant from another species. Backwards in time, the gene that
has been transmitted during this event is removed from its original species and placed
in the migrant’s original species. Such events occur at rate (N − 1)d for each gene, and
the migrant species is then chosen uniformly in the population. Once genes belong to
separate species, they can be brought back to the same species by coalescence events,
corresponding to genome replication in foward time. Any two species find their common
ancestor at rate one, and at such an event the genes from the two merging species are
placed back into the same species.

This informal description shows that the partition-valued process has two kinds
of transitions: each pair of blocks merges at rate one; each gene is placed in a new
uniformly chosen species at rate (N − 1)d. Setting the introgression rate to dN = d/N

and letting N → ∞, introgression events occur at rate d for each gene. At each such
event the gene is sent to a new species that does not contain any of the other n − 1

ancestral gene lineages, i.e., it is placed in a singleton block. This is the description of
Kingman’s coalescent with erosion, that we now more formally introduce.

1.2 Kingman’s coalescent with erosion

Let n ≥ 1, we define the n-Kingman coalescent with erosion as a Markov process
(Πn

t )t≥0 taking values in the partitions of [n] := {1, . . . , n}. Its transition rates are the
following. Started from a partition π of [n], the process jumps to any partition π′ obtained
by merging two blocks of π at rate one. Moreover, at rate d for each i ≤ n, the integer i
is “eroded”. This means that if C is the block of π containing i, then the process jumps
to the partition π′ obtained by replacing the block C with the blocks C {i} and {i}.
(Obviously if C = {i}, i.e., if i is in a singleton block, no such transition can occur.)

Kingman’s coalescent with erosion is a special case of the more general class of
partition-valued processes called exchangeable fragmentation-coalescence processes,
introduced and studied in [1]. These processes are a combination of the well-studied
fragmentation processes, where blocks can only split, and coalescence processes, where
blocks are only allowed to merge. The main new feature of combining fragmentation
and coalescence is that they can balance each other so that fragmentation-coalescence
processes display non-trivial stationary distributions. In this work we will be interested
into describing the stationary distribution associated to Kingman’s coalescent with
erosion. The following proposition, which is a direct consequence of Theorem 8 of [1],
provides the existence and uniqueness of this distribution.

Proposition 1.1 (Berestycki, 2004 [1]). There exists a unique process (Πt)t≥0 valued in
the partitions of N such that for all n ≥ 1, the restriction of (Πt)t≥0 to [n] is distributed
as the n-Kingman coalescent with erosion. Moreover, the process (Πt)t≥0 has a unique
stationary distribution Π.
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Kingman’s coalescent with erosion

Kingman’s coalescent with erosion is an exchangeable process in the sense that for
any finite permutation σ of N,

(σ(Πt))t≥0
(d)
= (Πt)t≥0.

It is then clear that the stationary distribution Π is also an exchangeable partition of
N. Exchangeable partitions of N are often studied through what is known as their
asymptotic frequencies. Let Π = (C1, C2, . . . ) be the blocks of the partition Π. Then,
Kingman’s representation theorem [12] shows that for any i, the following limit exists
a.s.

lim
n→∞

1

n

n∑
k=1

1{k∈Ci} = fi.

Let (βi)i≥1 be the non-increasing reordering of the sequence (fi)i≥1. We call (βi)i≥1 the
asymptotic frequencies of Π. The sequence (βi)i≥1 is such that

β1 ≥ β2 ≥ · · · ≥ 0,
∑
i≥1

βi ≤ 1.

Such sequences are called mass-partitions. Mass-partitions are interesting because
exchangeable partitions are entirely characterized by their asymptotic frequencies. The
partition Π can be recovered from its asymptotic frequencies (βi)i≥1 through what is
known as a paintbox procedure. Conditional on (βi)i≥1, let (Xi)i≥1 be an independent
sequence such that for k ≥ 1, P(Xi = k) = βk, and P(Xi = −i) = 1−

∑
k≥1 βk. Then the

partition Π′ of N defined as
i ∼Π′ j ⇐⇒ Xi = Xj

is distributed as Π [12]. We see that i is in a singleton block iff Xi = −i. The set of
all singleton blocks is referred to as the dust of Π, and the partition Π has dust iff∑
i≥1 βi < 1.
The main characteristics of the asymptotic frequencies of the stationary distribution

of fragmentation-coalescence processes have already been derived in [1], see Theorem 8.
In the case of Kingman’s coalescent with erosion, these results specialize to the following
theorem.

Theorem 1.2 (Berestycki, 2004 [1]). Let (βi)i≥1 be the asymptotic frequencies of Π, the
stationary distribution of Kingman’s coalescent with erosion. Then∑

i≥1

βi = 1, and ∀i ≥ 1, βi > 0, a.s.

In other words, the partition Π has infinitely many blocks, and no dust.

Before stating our main two results, let us motivate them. Consider a partition Π̂

obtained from a paintbox procedure on a random mass-partition (β̂i)i≥1, and denote
Π̂n its restriction to [n]. There are two sources of randomness in Π̂n. One originates
from the fact that (β̂i)i≥1 is random. Moreover, conditional on (β̂i)i≥1, Π̂n is obtained by
sampling a finite number of variables with distribution (β̂i)i≥1. Thus, in addition to the
randomness of (β̂i)i≥1, Π̂n is subject to a finite sampling randomness.

Suppose that Π̂ has a finite number of blocks, say N , with asymptotic frequencies
(β̂1, . . . , β̂N ). When n gets large, the finite sampling effects vanish and the sizes of
the blocks of Π̂n resemble (nβ̂1, . . . , nβ̂N ). However, when Π̂ has infinitely many non-
singleton blocks, there always exists a large enough i such that the size of the block
with frequency β̂i remains subject to finite sampling effects in Π̂n. In this case it is not
entirely straightforward to go from the asymptotic frequencies (β̂i)i≥1 to the size of the
blocks of Π̂n, as this involves a non-trivial sampling procedure.
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Kingman’s coalescent with erosion

In this work our task will be twofold. First, we will investigate the size of the “large
blocks” of Πn by describing the distribution of the asymptotic frequencies (βi)i≥1. In
order to get an insight into the distribution of the “small blocks” of Πn, we will then also
study the empirical distribution of the size of the blocks of Πn, for large n. Let us now
state the corresponding results.

1.3 Main results

We show two main results in this work. One is concerned with the size of the
large blocks of the stationary distribution of Kingman’s coalescent with erosion, and
gives a representation of its asymptotic frequencies in terms of an infinite sequence of
independent diffusions. The other is concerned with the size of the small blocks and
provides the limit of the distribution of the size of a block chosen uniformly from the
stationary partition when n is large. Let us start with the former result.

Size of the large blocks. Let (Yi)i≥1 be an i.i.d. sequence of diffusions verifying

∀i ≥ 1, dYi = (1− Yi)dt+
√
Yi(1− Yi)dWi,

started from 0, and where (Wi)i≥1 are independent Brownian motions. Each Yi is dis-
tributed as a one-dimensional Wright-Fisher diffusion with mutation, see for example [7],
Lemma 4.1. It represents the dynamics of the frequency of a focal allele in a population
with constant size, where the mutation rate from any other allele to that focal allele is
one, and there are no back mutations, i.e., the mutation rate from the focal allele to any
other allele is 0. Moreover, it is known that each Yi is also distributed as a Wright-Fisher
diffusion (without mutation) conditioned on hitting 1, see for instance Proposition 2.3.4
in [15]. Thus we have

∀i ≥ 1, lim
t→∞

Yi(t) = 1 a.s.

Accordingly, we set Yi(∞) = 1. We build inductively a sequence of processes (Zi)i≥1 and
time-changes (τi)i≥1 as follows. Set

∀t ≥ 0, Z1(t) = Y1(t), τ1(t) =

∫ t

0

1

1− Z1(s)
ds.

Then, suppose that (Z1, . . . , Zi) and (τ1, . . . , τi) have been defined, and set

∀t ≥ 0, Zi+1(t) = (1− Z1(t)− · · · − Zi(t))Yi+1(τi(t)),

∀t ≥ 0, τi+1(t) =

∫ t

0

1

1− Z1(s)− · · · − Zi+1(s)
ds.

Then we have the following representation of the asymptotic frequencies of the stationary
distribution of Kingman’s coalescent with erosion.

Theorem 1.3. Let (Zi)i≥1 be the sequence of diffusions defined previously. Then the
non-increasing reordering of the sequence (zi)i≥1 defined as

∀i ≥ 1, zi =

∫ ∞
0

de−dtZi(t)dt,

is distributed as the frequencies of the blocks of the stationary distribution of Kingman’s
coalescent with erosion rate d.

Remark 1.4. Note that the previous result provides a coupling between the stationary
distributions of Kingman’s coalescent with erosion for various values of the erosion rate
d.
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Kingman’s coalescent with erosion

Let us explain the intuition behind Theorem 1.3. Kingman’s coalescent is dual
to a measure-valued process called the Fleming-Viot process [6]. The Fleming-Viot
process describes the family size distribution of a population with constant size, while
Kingman’s coalescent gives the genealogy of that population. By a classical duality
argument, Kingman’s coalescent at time t can be obtained by sampling individuals at
time t from a Fleming-Viot process and placing in the same block those that have the
same ancestor [2]. The link with Theorem 1.3 is that the diffusions (Zi)i≥1 correspond to
the family sizes of the initial individuals of a Fleming-Viot process, ordered by extinction
time of their descendance, see Section 5. The integral transformation is roughly due
to the fact that in Kingman’s coalescent with erosion, one needs to place in the same
block the individuals that have the same ancestor at their last erosion event, which is
an exponential variable with parameter d. This heuristic argument is made rigorous in
Section 5, where Theorem 1.3 is proved.

Size of the small blocks. In order to capture the characteristics of the small blocks
of Πn, we study the empirical measure of the size of the blocks of Πn. Let Mn be the
total number of blocks of Πn, and let (|Cn1 |, . . . , |CnMn |) be their sizes. For each k ≥ 1, we
denote by

µnk =
1

Mn
Card({i : |Cni | = k})

the frequency of blocks of size k. The probability vector (µnk )k≥1 is the empirical measure
of the size of the blocks of Πn. We give the following characterization of the asymptotic
law of (µnk )k≥1 and Mn.

Theorem 1.5. (i) The following convergence holds in probability

lim
n→∞

Mn

√
n

=
√

2d.

(ii) Moreover, for each k ≥ 1, the following convergence holds in probability

lim
n→∞

µnk =
1

22k−1

1

k

(
2(k − 1)

k − 1

)
= P(J = k),

where J is half the return time to 0 of a simple symmetric random walk.

There is a natural interpretation of the random variable J involved in the previous
proposition. Consider a Markov process on N starting from one that jumps from k to k+1

and from k to k− 1 at rate k. It represents the size of a population where each individual
gives birth and dies independently at rate one, and is called a critical binary branching
process. Then the total progeny of this process, that is the total number of particles
that have lived before the population goes extinct, is distributed as J . Actually, we will
show the slightly stronger result that the genealogy of a block sampled uniformly from
Kingman’s coalescent with erosion is a critical binary branching process, see Remark 4.2.

Remark 1.6. It is interesting to notice that the limiting distribution of the vector (µnk )k≥1

is deterministic and does not depend on the erosion coefficient d.

Remark 1.7. The convergence of the vector (µnk )k≥1 is equivalent to the convergence in
probability of the empirical measure of the size of the blocks of Πn to the distribution of
J in the weak topology.

Kingman’s coalescent with immigration. The proof of Theorem 1.5 is based on the
following heuristic. Erosion occurs at a rate proportional to the size of the blocks, i.e., a
block of size k is eroded at rate dk, while coalescence events do not take the sizes of the
blocks into account. As there are only few blocks with large size in Πn, and many small
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blocks, most coalescence events occur between small blocks, while most erosion events
occur within these few large blocks. When restricting our attention to small blocks, we
can neglect erosion, and consider that pairs of blocks coalesce at rate one, and that new
blocks of size one appear at constant rate due to the erosion of the large blocks.

This heuristic led us to consider a process analogous to Kingman’s coalescent with
erosion, where pairs of blocks coalesce at rate one, but new singleton blocks immigrate
according to a Poisson process with rate d. We call this process Kingman’s coalescent
with immigration, see Section 2.1 for a rigorous definition. We will first prove that the
genealogy of a block sampled uniformly from Kingman’s coalescent with immigration
converges, as the immigration rate goes to infinity, to a critical binary birth-death
process, see forthcoming Proposition 3.6. Then, we will use this result and a coupling
between Kingman’s coalescents with immigration and erosion, described in Section 2.4,
to prove Theorem 1.5.

The main focus of the present work is the stationary distribution of Kingman’s
coalescent with erosion. We only use Kingman’s coalescent with immigration to obtain
information about this distribution. However, we believe that Kingman’s coalescent with
immigration is an interesting object in its own right, which could describe the genealogy
of entities sampled at distinct time points. In a population genetics interpretation,
Kingman’s coalescent models the genealogy of genes that are all sampled at the current
time. In this case, a new particle that immigrates corresponds to a gene that has
been sampled in the past. Such a multi-temporal sampling could occur for example
in two situations: in viral phylodynamics [9, 22] and in macroevolution [21, 10]. Viral
phylodynamics is a field of evolutionary biology that studies viral phylogenies and their
interaction with various characteristics of the underlying epidemics. Viral sequences
are often sampled at several timepoints, corresponding for example to different viral
outbreaks. Macroevolution studies the evolutionary history of speciation, extinction. In
this context, fossil data correspond to remainders of individuals that have lived and been
sampled at some time point in the far past.

Outline. The remainder of the paper is organized as follows. In Section 2 we provide
two constructions of Kingman’s coalescent with immigration, as well as a coupling
between Kingman’s coalescents with erosion and immigration. Section 3 is then devoted
to giving the genealogy of the blocks of Kingman’s coalescent with immigration. The
main result of this section is Proposition 3.1, which is the reformulation of Theorem 1.5
in the immigration case. In Section 4, we use Proposition 3.1 and the coupling between
Kingman’s coalescents with erosion and immigration to prove Theorem 1.5. Finally, we
prove Theorem 1.3 in Section 5.

Possible extensions. As we have mentioned, Kingman’s coalescent is part of the more
general class of fragmentation-coalescence processes. We now briefly discuss potential
extensions of our results to such processes.

The main ingredient of our study of the size of small blocks is that fragmentation
is faster for larger blocks, while coalescence occurs at the same speed regardless of
the size of the blocks. This allows us to neglect fragmentation and consider a purely
coalescing system where new blocks immigrate due to the fragmentation of the large
blocks. This picture remains valid for Λ-coalescents with erosion, but the proofs would
be more involved because computations could no longer be made explictly. Morever, we
believe that this picture also remains valid for a broad class of binary fragmentation
measures. The particles that are removed from the large blocks would no longer be
of size one, but should not have time to split on the time-scale when small blocks are
formed, yielding a situation similar to the erosion case.
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Theorem 1.3 relies on a construction of the stationary distribution of Kingman’s
coalescent with erosion from a Fleming-Viot process that can be directly generalized
to Λ-coalescents with erosion (and even to Ξ-coalescents with erosion) by using the
corresponding Λ-Fleming-Viot process. However, the explicit expression of the size of the
blocks in terms of independent diffusions cannot be achieved in general. Nevertheless
see the end of Section 5 for a discussion of a possible extension of Theorem 1.3 to
Beta-coalescents with erosion.

Overall, the techniques and ideas we use in this work are not entirely specific to
Kingman’s coalescent with erosion. Nevertheless, in this case, the proofs are greatly
simplified because all calculations can be made explicitly. This reason led us to restrict
our attention to Kingman’s coalescent with erosion in this work, and to leave possible
extensions for future work.

2 Kingman’s coalescent with immigration

In this section we construct Kingman’s coalescent with immigration as a partition-
valued process such that pairs of blocks coalesce at rate one and new blocks immigrate
at rate d. Then, we give an alternative construction of Kingman’s coalescent with erosion
from the flow of bridges of [2]. Finally, the coupling between Kingman’s coalescents with
erosion and with immigration is carried out in Section 2.4.

2.1 Definition

Consider a Poisson point process on R with intensity ddt, and let (Ti)i∈Z be its atoms
labeled in increasing order such that T0 < 0 < T1. The sequence (Ti)i∈Z corresponds to
the immigration times of new particles in the system.

FixN ∈ Z, we will first define Kingman’s coalescent with immigration for the particles
that have a label larger that N , and then extend it to all particles by consistency. We do
that in the following way. Initially, set

∀t < TN , Π̄N
t = O6 .

We now extend Π̄N
t to all real times by induction. Suppose that Π̄N

t has been defined on
(−∞, Tk), for k ≥ N . We first set

Π̄N
Tk

= Π̄N
Tk− ∪ {k}

to represent the immigration of the new particle with label k. We now let each pair of
blocks of Π̄N

t coalesce at rate one for Tk ≤ t < Tk+1. One can achieve this by considering,
conditional on

{
Π̄N
Tk

= π̄k
}
, an independent version (Πk

t )t≥0 of Kingman’s coalescent
started from π̄k, and setting

∀t < Tk+1 − Tk, Π̄N
Tk+t = Πk

t .

We say that the process (Π̄N
t )t∈R is the N -Kingman coalescent with immigration rate

d. The following proposition shows that we can extend consistently the N -Kingman’s
coalescent with immigration to a process taking its values in the partitions of Z.

Proposition 2.1. (i) There exists a unique process (Π̄t)t∈R, called Kingman’s co-
alescent with immigration rate d, such that for all N ∈ Z, its restriction to
{i ∈ Z : i ≥ N} is distributed as the N -Kingman coalescent with immigration.

(ii) With probability one, Π̄t has finitely many blocks for all t ∈ R.

Proof. (i) Let (Π̄N
t )t∈R be a N -Kingman’s coalescent with immigration. It is sufficient

to show that the restriction (Π̄N+1
t )t∈R of (Π̄N

t )t∈R to {i ∈ Z : i ≥ N + 1} is distributed
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as a N + 1-Kingman’s coalescent with immigration, and the result will follow from
Kolmogorov’s extension theorem. Obviously, the immigration times of (Π̄N+1

t )t∈R have
the desired distribution. The result is now a simple consequence of the sampling
consistency of Kingman’s coalescent.

(ii) Let us now prove the second point. Kingman’s coalescent has the property of
coming down from infinity [13]. This means that even if Kingman’s coalescent is started
from a partition with an infinite number of blocks, then for all positive times it will have
only finitely many blocks. Thus, as the number of immigrated particles is locally finite,
Kingman’s coalescent with immigration only has a finite number of blocks for all times
a.s.

In the remainder of this work we will make use of the process counting the number
of blocks of Kingman’s coalescent with immigration. More formally, for t ∈ R, we define
Mt as the (finite) number of blocks of Π̄t.

2.2 Preliminaries on flows of bridges

The previous construction of the Kingman coalescent with immigration is based
on Kolmogorov’s extension theorem. The aim of the next two sections is to give an
alternative construction of Kingman’s coalescent with immigration based on the flow
of bridges of [2]. This construction will only be needed in Section 4 for the proof of
Theorem 1.3. In this section we recall the material on flows of bridges that will be
needed.

Bridges. We call a bridge [2] any random function of the form

∀u ∈ [0, 1], B(u) = (1−
∑
i≥1

βi)u+
∑
i≥1

βi1{u≥Vi},

for some random mass-partition (βi)i≥1 and an independent i.i.d. sequence of uniform
[0, 1] variables (Vi)i≥1. For a bridge B, we define its inverse B−1 as

∀u ∈ [0, 1), B−1(u) = inf{t ∈ [0, 1] : B(t) > u}, B−1(1) = 1.

Let (Ui)i≥1 be a sequence of i.i.d. uniform variables. An exchangeable partition Π̂ of N
can be obtained from B and (Ui)i≥1 by setting

i ∼Π̂ j ⇐⇒ B−1(Ui) = B−1(Uj).

Let (C1, C2, . . . ) be the blocks of Π̂ labeled in decreasing order of their least elements,
i.e., such that

i ≤ j ⇐⇒ min(Ci) ≤ min(Cj).

To each block Ci is associated a unique random variable V ′i defined as

∀j ∈ Ci, V ′i = B−1(Uj).

If Π̂ has finitely many blocks, say M , for i > M we set V ′i = Ṽ ′i where (Ṽ ′i )i≥1 is an
independent sequence of i.i.d. uniform random variables. The sequence (V ′i )i≥1 will be
referred to as the sequence of ancestors of the blocks of Π̂. The key results on bridges
from [2] is their Lemma 2 that we state here for later use.

Lemma 2.2 (Bertoin and Le Gall, 2003 [2]). Consider a bridge B, and let Π̂ and (V ′i ) be
respectively the partition and sequence of ancestors obtained from B as above. Then
(V ′i )i≥1 is independent of Π̂, and (V ′i )i≥1 is a sequence of i.i.d. uniform variables.
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The standard flow of bridges. A flow of bridges is defined as follows.

Definition 2.3. A flow of bridges is a family of bridges (Bs,t)s≤t such that:

(i) For any s ≤ u ≤ t, we have Bs,u ◦Bu,t = Bs,t.

(ii) For t1 ≤ · · · ≤ tp, the bridges Bt1,t2 , . . . , Btp−1,tp are independent, and Bt1,t2 is
distributed as B0,t2−t1 .

(iii) The limit B0,t → Id as t ↓ 0 holds in probability in the Skorohod space.

A flow of bridges encodes the dynamics of a population represented by the interval
[0, 1]. Let t ∈ R and x < y. If the interval [x, y] is interpreted as a subfamily of the
population at time t, then its progeny at time s ≤ t is represented by the interval
[Bs,t(x−), Bs,t(y)]. (Notice that time is going backward: if t is the present, then s ≤ t

represents the future of the population.)
By the independence and stationarity of the increments of the flow, the distribution

of a flow of bridges is entirely characterized by the distribution of B0,t, for t ≥ 0. We will
be particularly interested in the so-called standard flow of bridges, that can be described
as follows. Let t ≥ 0 and consider the bridge

∀u ∈ [0, 1], B0,t(u) =

Nt∑
i=1

βi1{Vi≤u},

where

(i) The process (Nt)t≥0 is distributed as a pure-death process started at∞, and going
from k to k − 1 at rate k(k − 1)/2.

(ii) Conditional onNt, (β1, . . . , βNt
) has a Dirichlet distribution with parameter (1, . . . , 1).

(iii) The variables (Vi)i≥1 is an independent i.i.d. sequence of uniform variables.

Then we know [2] that there exists a flow of bridges (Bs,t)s≤t such that B0,t is distributed
as above. It is called the standard flow of bridges.

Our interest in the standard flow of bridges is that is represents the dynamics of a
population whose genealogy is given by Kingman’s coalescent. Let (Ui)i≥1 be a sequence
of i.i.d. uniform variables, and let Π̂t be the partition obtained from the bridge B0,t and
the sequence (Ui)i≥1. We stress that the same sequence is used for all t. Then the
process (Π̂t)t≥0 is distributed as Kingman’s coalescent started from the partition of N
into singletons [2].

The Fleming-Viot process. One of the main advantages of flows of bridges is that
they couple a backward process, giving the genealogy of the population, and a forward
process, giving the size of the progeny of the individuals in the population. This forward
process is often encoded as a measure-valued process known as a Fleming-Viot process.

Let (Bs,t)s≤t be a standard flow of bridges. For each t ≥ 0, B−t,0 is the distribution
function of some random measure ρt on [0, 1]. The measure-valued process (ρt)t≥0 is
called a Fleming-Viot process [6]. A well-known fact that we will use is that the dynamics
of the mass of n fixed disjoint intervals is distributed as the n first coordinates of a
(n+ 1)-dimensional Wright-Fisher diffusion. More precisely, let (I1, . . . , In) be n disjoint
intervals, and define

∀i ∈ {1, . . . , n}, ∀t ≥ 0, Xi(t) = ρt(Ii)

and
∀t ≥ 0, Xn+1(t) = 1− (X1(t) + · · ·+Xn(t)).

EJP 25 (2020), paper 56.
Page 10/33

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP450
http://www.imstat.org/ejp/


Kingman’s coalescent with erosion

Then, if we denote by (|I1|, . . . , |In|) the lengths of the intervals (I1, . . . , In), the process
(X1, . . . , Xn+1) is distributed as the unique solution to

∀i ∈ {1, . . . , n+ 1}, dX ′i =

n+1∑
j=1
j 6=i

√
X ′iX

′
jdW

′
i,j ,

started from (|I1|, . . . , |In|, 1−|I1|− · · ·− |In|), where (Wi,j)i<j are independent Brownian
motions and Wi,j = −Wj,i.

2.3 A flow of bridges construction of Kingman’s coalescent with immigration

Let (Bs,t)s≤t be a standard flow of bridges. We now construct a version of Kingman’s
coalescent with immigration from (Bs,t)s≤t. Consider a Poisson point process on R× [0, 1]

with intensity ddt ⊗ dx, and let (Ti, Ui)i∈Z be its atoms, labeled in increasing order of
their first coordinate such that T0 < 0 < T1. Similarly to Section 2.1, the times (Ti)i∈Z
correspond to immigration times of new particles. Here the sequence (Ui)i∈Z represents
the location in the population of these immigrated particles.

For each t ∈ R, we define a partition Π̄t of {i ∈ Z : Ti ≤ t} by setting

i ∼Π̄t
j ⇐⇒ B−1

Ti,t
(Ui) = B−1

Tj ,t
(Uj).

The following proposition shows that (Π̄t)t∈R is distributed as Kingman’s coalescent with
immigration.

Proposition 2.4. The process (Π̄t)t∈R defined from the flow of bridges is a version of
Kingman’s coalescent with immigration rate d.

Proof. The proof is almost identical to the proof of Corollary 1 of [2]. The main difference
is that here the flow of bridges is sampled at various times (Ti)i∈Z while for the classical
Kingman coalescent, the flow of bridges is only sampled at an initial time.

We work conditional on (Ti)i∈Z and consider these times as fixed. Let (Π̄N
t )t∈R be the

restriction of (Π̄t)t∈R to {i ∈ Z : i ≥ N}. It is sufficient to show that for all N ∈ Z the
blocks of (Π̄N

t )t∈R coalesce according to independent versions of Kingman’s coalescent
between immigration times.

Let t ∈ R, and let (C1, . . . , CMt) be the blocks of Π̄N
t , where Mt is the number of

blocks, and where the blocks are labeled such that

i ≤ j ⇐⇒ min(Ci) ≤ min(Cj).

Similarly to Section 2.2, we can define the sequence of ancestors of Π̄N
t by setting

∀j ∈ Ci, V ′i = B−1
Tj ,t

(Uj),

and supplementing it with an independent sequence of i.i.d. uniform variables (Ṽ ′i )i≥1,
i.e., defining ∀i > Mt, V ′i = Ṽ ′i .

Let us show by induction that for all k ≥ N ,

(i) The ancestors (V
(k)
i )i≥1 of Π̄N

Tk
are i.i.d. with uniform distribution.

(ii) The sequence (V
(k)
i )i≥1 is independent of (Π̄N

t )t≤Tk
.

(iii) (Π̄N
t )t≤Tk

is a version of the N -Kingman coalescent with immigration.
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Fix Tk ≤ t1 < · · · < tp+1 ≤ Tk+1. By induction on p we can suppose that the sequence

of ancestors of Π̄N
tp , denoted by (V

(tp)
i )i≥1, is independent of

(
(Π̄N

t )t≤Tk
, Π̄N

t1 , . . . , Π̄
N
tp

)
.

Then (i) and (ii) are proved if we can show that the sequence of ancestors of Π̄N
tp+1

is

independent of
(
(Π̄N

t )t≤Tk
, Π̄N

t1 , . . . , Π̄
N
tp+1

)
, and is a sequence of i.i.d. uniform variables.

Let us now call Π∗ the partition obtained from the bridge Btp,tp+1
and the sequence

(V
(tp)
i )i≥1, i.e.,

i ∼Π∗ j ⇐⇒ B−1
tp,tp+1

(V
(tp)
i ) = B−1

tp,tp+1
(V

(tp)
j ),

and let (V ∗i )i≥1 be the sequence of ancestors of Π∗, i.e.,

∀j ∈ C∗i , V ∗i = B−1
tp,tp+1

(V
(tp)
j ),

where (C∗1 , C
∗
2 , . . . ) denote the blocks of Π∗ labeled in increasing order of their minimal

elements as above. Using the fact that for u ≤ s ≤ t, B−1
u,t = B−1

s,t ◦B−1
u,s, we get that for

all N ≤ i, j ≤ k,

i ∼Π̄tp+1
j ⇐⇒ B−1

tp,tp+1
(B−1

Ti,tp
(Ui)) = B−1

tp,tp+1
(B−1

Tj ,tp
(Uj))

⇐⇒ B−1
tp,tp+1

(V
(tp)

b(i) ) = B−1
tp,tp+1

(V
(tp)

b(j) )

⇐⇒ b(i) ∼Π∗ b(j) (2.1)

where b(i) denotes the label of the block of Π̄N
tp to which i belongs.

By independence of the increments of the flow of bridges, the bridge Btp,tp+1
is

independent of the collection of variables
(
(Π̄N

t )t≤Tk
, Π̄N

t1 , . . . , Π̄
N
tp , (V

(tp)
i )i≥1

)
. Thus,

(Btp,tp+1 , (V
(tp)
i )i≥1) are independent of

(
(Π̄N

t )t≤Tk
, Π̄N

t1 , . . . , Π̄
N
tp

)
, and hence (Π∗, (V ∗i )i≥1)

are independent of
(
(Π̄N

t )t≤Tk
, Π̄N

t1 , . . . , Π̄
N
tp

)
. Using Lemma 2.2, we get that Π∗ is indepen-

dent of (V ∗i )i≥1. This shows that (V ∗i )i≥1 is independent of
(
(Π̄N

t )t≤Tk
, Π̄N

t1 , . . . , Π̄
N
tp ,Π

∗).
Using (2.1), we see that Π̄N

tp+1
can be recovered from Π̄N

tp and Π∗. Thus, the variables(
(Π̄N

t )t≤Tk
, Π̄N

t1 , . . . , Π̄
N
tp+1

)
are independent of (V ∗i )i≥1.

In order to end the proof of the claim we need to distinguish two cases. First,
suppose that tp+1 < Tk+1. Then, due to our labeling convention, we have that (V ∗i )i≥1 =

(V
(tp+1)
i )i≥1 (up to the auxiliary variables (Ṽi)i≥1 that play no role). Conversely, if tp+1 =

Tk+1, then one of the variables (V ∗i )i≥1 has to be replaced by the ancestor Uk+1 of the
block {k + 1}. More precisely, if Π̄N

Tk+1
has Mk+1 blocks, again by labeling convention,

the block {k + 1} has label Mk+1. Thus, (V
(tp+1)
i )i≥1 is recovered by setting V

(tp+1)
i = V ∗i

for i 6= Mk+1, and V
(tp+1)
i = Uk+1 for i = Mk+1. It is straightforward to see that, as Uk+1

is independent of all other variables, (V
(tp+1)
i )i≥1 remains a sequence of i.i.d. of uniform

variables, independent of
(
(Π̄N

t )t≤Tk
, Π̄N

t1 , . . . , Π̄
N
tp+1

)
and thus the fact that points (i) and

(ii) of the claim hold.
For k ≥ N and t < Tk+1 − Tk consider the partition Πk

t of N defined as

i ∼Πk
t
j ⇐⇒ B−1

Tk,Tk+t(V
(k)
i ) = B−1

Tk,Tk+t(V
(k)
j )

As the sequence (V
(k)
i )i≥1 is i.i.d. uniform and independent of (Π̄N

t )t≤Tk
, the process

(Πk
t )t≥0 is a version of Kingman’s coalescent started from the partition into singletons,

independent of (Πk
t )t≥0. Using equation (2.1), we have that

i ∼Π̄N
Tk+t

j ⇐⇒ b(i) ∼Πk
t
b(j),

where b(i) denotes the label of the block of Π̄N
Tk

to which i belongs. In other words,
(Π̄N

Tk+t)0≤t<Tk+1−Tk
is obtained by letting the blocks of Π̄N

Tk
coalesce according to an

independent version of Kingman’s coalescent. This proves that (Π̄N
t )t≤Tk+1

is distributed
as a N -Kingman coalescent with immigration, and ends the proof of the result.
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2.4 Coupling erosion and immigration

We now explain the coupling between Kingman’s coalescents with erosion and with
immigration. Let n ≥ 1, consider a Poisson point process Pn on R with intensity nddt

and let (Ti)i∈Z be its atoms ordered increasingly such that T0 < 0 < T1. To each atom of
the process we attach a uniform mark in [n]. We denote by `i the mark attached to Ti, so
that (`i)i∈Z is a sequence of i.i.d. uniform variables on [n].

Consider t ∈ R. For each k ∈ [n], let ϕt(k) be the label of the last atom of Pn with
mark k before time t, i.e., ϕt(k) ∈ Z is the unique i such that `i = k and there is no atom
T of Pn with Ti < T ≤ t carrying mark k. Let (Π̄t)t∈R be Kingman’s coalescent with
immigration rate nd built from the Poisson process (Ti)i∈Z as in Section 2.1. We define a
partition Πn

t of [n] by setting

i ∼Πn
t
j ⇐⇒ ϕt(i) ∼Π̄t

ϕt(j).

In words, i and j belong to the same block of Πn
t iff the most recently immigrated

particles of (Π̄t)t∈R with marks i and j have coalesced before time t. The key point of
this construction is that (Πn

t )t∈R is distributed as Kingman’s coalescent with erosion.

Proposition 2.5. The process (Πn
t )t∈R is a stationary version of the n-Kingman coales-

cent with erosion rate d.

Proof. Let k ∈ [n]. By thinning, the set of atoms of Pn with mark k is a Poisson process
on R with intensity ddt, and these processes are independent. Thus new atoms of Pn

with mark k arrive at rate d. Let us consider what happens at such an arrival time.
Suppose that `i = k. Then, by definition, we have ϕTi(k) = i, as the atom Ti has mark
k. Moreover, the particle i is a singleton of the partition Π̄Ti (it is the particle that has
newly immigrated). Thus at time Ti, the integer k is removed from its block and placed
in a singleton block. This is the description of an erosion event, which occur at rate d.

Let us now describe the dynamics between two immigration times, say Ti and Ti+1.
Conditional on Π̄Ti

, the blocks of (Π̄t)Ti≤t≤Ti+1
coalesce according to an independent

version of Kingman’s coalescent started from Π̄Ti
. The labels of the atoms of Pn that

are the last atoms with their marks form a subset of {j ∈ Z : j ≤ i}, say L. By
sampling consistency of Kingman’s coalescent, the restriction of (Π̄t)Ti≤t≤Ti+1

to L is
also distributed as Kingman’s coalescent, starting from the restriction of Π̄Ti

to L. Thus,
as the blocks of (Πn

t )Ti≤t≤Ti+1
are, up to an independent relabeling, the blocks of the

restriction of (Π̄t)Ti≤t≤Ti+1
to L, any two pairs of blocks of (Πt)Ti≤t≤Ti+1

coalesce at rate
one.

The fact that (Πt)t∈R is stationary follows from the stationarity of the Poisson point
process.

Combined with the construction of Kingman’s coalescent with immigration from the
standard flow of bridges, this coupling gives an interesting construction of the stationary
distribution of Kingman’s coalescent with erosion.

Corollary 2.6. Let (Bs,t)s≤t be a standard flow of bridges, (Ti)i≥1 be an independent
sequence of i.i.d. exponential variables with parameter d, and (Ui)i≥1 be an independent
sequence of i.i.d. uniform variables. Then the partition Π defined by

i ∼Π j ⇐⇒ B−1
−Ti,0

(Ui) = B−1
−Tj ,0

(Uj)

has the stationary distribution of Kingman’s coalescent with erosion rate d.

Proof. Consider a Poisson process Pn on R× [0, 1] with intensity nddt⊗ dx, and attach
to each atom of Pn a uniform mark on [n]. If (Ti, Ui) denotes the last atom of Pn with
mark i before t = 0, then Ti is exponentially distributed with parameter d, Ui is uniform
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on [0, 1], and all these variables are independent. A combination of Proposition 2.5 and
Proposition 2.4 now proves the result.

Remark 2.7. The construction of Kingman’s coalescent with immigration from Sec-
tion 2.1 and the construction with the flow of bridges of Section 2.3 only rely on the
sampling consistency of Kingman’s coalescent. These constructions could be extended di-
rectly to a case where the coalescence events occur according to a Λ-coalescent [18, 20].
In particular, the construction of the stationary distribution of Kingman’s coalescent with
erosion of Corollary 2.6 extends directly to Λ-coalescents with erosion if one replaces
the standard flow of bridges by the corresponding Λ-flow of bridges.

3 Size of the blocks of Kingman’s coalescent with immigration

In this section we study Kingman’s coalescent with immigration. The main result we
will show is the following.

Proposition 3.1. Let n ≥ 1 and consider (Π̄n
t )t∈R a version of Kingman’s coalescent

with immigration rate nd. Let (|C̄n1 |, . . . , |C̄np |) be the size of p blocks chosen uniformly
from Π̄n

0 , then

(|C̄n1 |, . . . , |C̄np |) =⇒ (J1, . . . , Jp)

where (J1, . . . , Jp) are i.i.d. variables distributed as the total progeny of a critical binary
branching process.

We prove this result by choosing k blocks uniformly from Π̄n
0 , and counting backwards

in time the number of blocks that are ancestors of these blocks, i.e., that will further
coalesce to form these blocks. We show that this process converges, under appropriate
scaling, to k independent critical binary branching processes, yielding the result. In this
section we work in both directions of time. We will index time by t when it is flowing
forward, and by s when it is flowing backwards.

We first give a precise definition of the ancestral process counting the number of
blocks in Section 3.1, along with its basic properties. The convergence is then carried
out in Section 3.2.

3.1 The ancestral process

Let (Π̄t)t∈R be a version of Kingman’s coalescent with immigration rate d. The
process (Π̄t)t∈R is naturally endowed with a notion of ancestry between its blocks. For
t ∈ R, let Mt be the number of blocks of Π̄t. Let (C̄1, . . . , C̄Mt) be an enumeration of the
blocks of Π̄t. We say that this enumeration is exchangeable if conditional on {Mt = k},
for any permutation σ of [k],

(C̄1, . . . , C̄k)
(d)
= (C̄σ(1), . . . , C̄σ(k)).

We can always consider an exchangeable enumeration of the blocks of Π̄t by changing
the labels of any enumeration according to an independent uniform permutation.

For u ≤ t, consider Π̄t = (C̄1, . . . , C̄Mt) and Π̄u = (C̄ ′1, . . . , C̄
′
Ms

) an enumeration of the
blocks of Π̄t and Π̄u respectively. In Kingman’s coalescent with immigration, a block
present at time u can only coalesce with other blocks. Thus, for any block C̄ ′i, there is a
unique block C̄j of Π̄t such that C̄ ′i ⊆ C̄j . We say that C̄ ′i is an ancestor of C̄j . We define
the ancestral process of Kingman’s coalescent with immigration as the vector counting
the number of ancestors of the blocks of Π̄0, enumerated in an exchangeable way. This
definition is illustrated in Figure 2.

EJP 25 (2020), paper 56.
Page 14/33

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP450
http://www.imstat.org/ejp/


Kingman’s coalescent with erosion

-s 0

C1

C2

C3

(1, 1, 1, 1)(0, 2, 0, 1) (0, 1, 2, 1)(0, 2, 0, 1)

 

3

1

2

4

{-2, -1}

{0}

{C1, C3, -3}

{C2}

Figure 2: In this example, we have Π̄−s = (C1, C2, C3). Each black circle represents an
immigration event, and the lines merge at the coalescence time of the blocks to which
they correspond. At s = 0 the blocks of Π̄0 are labeled according to the permutation σ,
and the value of (As)s≥0 is given below for some times.

Definition 3.2. Let (Π̄t)t∈R be Kingman’s coalescent with immigration, and denote by
(C̄1, . . . , C̄M0

) the blocks of Π̄0 enumerated in an exchangeable order. For s ≥ 0, let
(C̄ ′1, . . . , C̄

′
M−s

) be the blocks of Π̄−s. We define the number of ancestors of the i-th block
as

As(i) =

{
Card{j ≤M−s : C̄ ′j ⊆ C̄i} if i ∈ {1, . . . ,M0}
0 if i > M0.

The process (As)s≥0 defined as As := (As(1),As(2), . . . ) is called the ancestral process
associated to (Π̄t)t∈R.

The process (As)s≥0 can be seen as a particle system where at time 0, there are M0

particles with distinct types, and (As(i))s≥0 records the number of particles with type
i. As we have reversed time, each coalescence event now corresponds to the birth of a
new particle, and each immigration event to the death of a particle.

Note that relative to the original population model described in the introduction,
we have now reversed the time twice. As Kingman’s coalescents with erosion and
immigration represent genealogies, the future of these processes corresponds to the
past of the population. Therefore, the “ancestors” of the blocks of Kingman’s coalescent
with immigration actually correspond to the descendants of these individuals in the
population point of view.

Recall that (Mt)t∈R stands for the number of blocks of (Π̄t)t∈R forward in time. For
each s ∈ R, we define Ns := M−s, the number of blocks of (Π̄t)t∈R backwards in time.
The process (Ns)s≥0 also gives the number of particles of the ancestral process (As)s≥0,
that is we have

∀s ≥ 0, Ns =
∑
i≥1

As(i).

The following proposition shows that the ancestral process is Markovian. This is a
key feature that makes Kingman’s coalescent with immigration easier to study than
Kingman’s coalescent with erosion.
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Proposition 3.3. Let (As)s≥0 be the ancestral process associated to Kingman’s coales-
cent with immigration rate d, and let (Ns)s≥0 be the number of particles of (As)s≥0. Then
(As)s≥0 is a Markov process with initial condition

∀i ≤ N0, A0(i) = 1, ∀i > N0, A0(i) = 0.

Moreover, conditional on As:

• each particle gives birth to a new particle of its type at rate d/Ns.

• each particle dies at rate (Ns − 1)/2.

The proof of Proposition 3.3 can be found in Appendix A, we only sketch it here. We
will first show that the process (Mt)t∈R is a stationary birth-death process, such that
conditional on Mt = k, a birth occurs at rate d, and a death at rate k(k − 1)/2. A simple
calculation shows that it is actually a reversible process, i.e., with our notation, that
(Ns)s≥0 is distributed as (Mt)t≥0. When (Ns)s≥0 jumps from k to k + 1, a particle has
given birth to two particles. By exchangeability of our system, the particle that gives
birth is chosen uniformly, i.e., each particle gives birth at the same rate d/k. Similarly,
when (Ns)s≥0 jumps from k to k− 1 a particle chosen uniformly from the population dies.
Thus each particle dies at rate k(k − 1)/(2k) = (k − 1)/2.

Making the above argument rigorous involves counting the number of trajectories of
(Π̄t)t∈R yielding a given trajectory of (As)s≥0. We postpone it until Appendix A.

In order to prove Proposition 3.1, we need to keep track of the number of ancestors of
k blocks chosen uniformly from Π̄0. As we have chosen a uniform labeling of the blocks
of Π̄0, this amounts to considering the process (As(1), . . . ,As(k); s ≥ 0). Proposition 3.3
directly gives us the distribution of this process.

Corollary 3.4. The process (As(1), . . . ,As(p), Ns; s ≥ 0) is a Markov process such that
conditional on {As(1) = a1, . . . ,As(p) = ap, Ns = k}, the process jumps to:

• (a1, . . . , ai + 1, . . . , ap, k + 1) at rate d
kai.

• (a1, . . . , ai − 1, . . . , ap, k − 1) at rate k−1
2 ai.

• (a1, . . . , ap, k + 1) at rate d
k (k − a1 − · · · − ap).

• (a1, . . . , ap, k − 1) at rate k−1
2 (k − a1 − · · · − ap).

Proof. We see from the expression of the transition rates of (As)s≥0 that the rate at
which each particle splits or dies only depends on the rest of the population through the
total population size Ns. This is enough to prove the result.

3.2 Convergence

We now prove that the process (As(1), . . . ,As(p); s ≥ 0) converges to independent
critical binary birth-death processes when time is rescaled by a factor 1/

√
n. We start

with the following lemma.

Lemma 3.5. Let Mn have the stationary distribution of (Mn
t )t≥0, the number of blocks

of Kingman’s coalescent with immigration rate dn. The sequence (Mn/
√
n; n ≥ 1) is

tight.

Proof. Let n ≥ 1 and consider a birth-death process (Xn
t )t≥0 such that conditional on

{Xn
t = k}, the process jumps to

• k + 1 at rate dn;
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• k − 1 at rate µk,

where the death rate µk is defined as

µk =

{
0 if k <

√
2dn+ 1,

(
√

2dn+1)
√

2dn
2 else.

The process (Xn
t − b

√
2dn+ 1c; t ≥ 0) is distributed as a simple random walk, reflected

at 0. Thus it admits a geometric stationary distribution with parameter γn given by

γn =
2dn

(
√

2dn+ 1)
√

2dn
=

1

1 +
√

1
2dn

.

This shows that the process (Xn
t )t≥0 also admits a stationary distribution. If Xn has the

stationary distribution of (Xn
t )t≥0, then Xn is distributed as b

√
2dnc+ 1 + Y n, where Y n

has a geometric distribution with parameter γn.
Hence, for K and n large enough, we have

P
(
Xn ≤ K

√
n
)
≤ P

(
Y n ≤ K

√
n−
√

2dn
)

= 1− γ(K−
√

2d)
√
n

n

= 1− exp(−K −
√

2d√
2d

) + on(1).

Thus the sequence (Xn/
√
n; n ≥ 1) is tight.

Recall that (Mn
t )t≥0 is a birth-death process jumping from k to k + 1 at rate dn, and

from k to k − 1 at rate k(k − 1)/2 ≥ µk. Its stationary distribution is thus dominated by
that of Xn, and this proves the result.

We now prove our main convergence result. The proof will use a result from Chap-
ter 11 of [8] on the a.s. convergence of rescaled Markov processes. In order to stick to
their notation, we introduce

∀s ≥ 0, N̂n
s = Nn

s/
√
n, Â

n
s = Ans/√n,

and

∀x ≥ 0, β+(x) = d, β−(x) =
x2

2
, F (x) = d− x2

2
.

Proposition 3.6. Let (Ans )s≥0 be the ancestral process of Kingman’s coalescent with
immigration rate dn. Then

(
Âns (1), . . . , Âns (p),

N̂n
s√
n

; s ≥ 0
)

=⇒
(
X1(s), . . . , Xp(s),

√
2d; s ≥ 0

)
,

in the sense of convergence in distribution in the Skorohod space, and where the
processes (X1, . . . , Xp) are i.i.d. critical binary birth-death processes, with per-capita
birth and death rate

√
d/2.

Proof. We start by showing that the process (N̂n
s /
√
n; s ≥ 0) converges to the constant

process with value
√

2d. By applying Proposition 3.3 (bearing in mind that in Proposi-
tion 3.3 the immigration rate is d, and not dn) the process (N̂n

s )s≥0 is a Markov process
jumping from

• k to k + 1 at rate d
√
n =
√
nβ+( k√

n
).
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• k to k − 1 at rate k(k−1)
2
√
n

=
√
nβ−( k√

n
)− 1

2
√
n

.

Thus, the process (N̂n
s )s≥0 is of the same form as the processes considered in Theorem 2.1

of Chapter 11 of [8], except that the scaling is
√
n and not n.

Let us consider a stationary version of the process (N̂n
s )s≥0. Lemma 3.5 shows that

the sequence (N̂n
0 /
√
n; n ≥ 1) is tight. We can thus find an increasing sequence of

indices (nk)k≥1 such that the subsequence (N̂nk
0 /
√
nk; k ≥ 1) converges in distribution

to a limiting variable N . Using Skorohod’s representation theorem, see for example
Theorem 6.7 in [3], we can assume that the convergence holds a.s.

Applying Theorem 2.1 of Chapter 11 of [8] shows that the sequence of processes
(N̂nk

s /
√
nk; s ≥ 0, k ≥ 1) converges a.s. uniformly on compact sets to the solution of

ẋ = F (x) = d− x2

2
, (3.1)

started from the random variable N . (The original theorem is given for a different
scaling, but the proof is easily adapted to ours.) As each process (N̂nk

s )s≥0 is stationary,
the limiting process is a stationary solution to (3.1), i.e., it is the constant process with
value

√
2d. This shows that each converging subsequence of (N̂n

s /
√
n; s ≥ 0, n ≥ 1)

converges to the same constant process, and thus that the entire sequence converges.
Let us now prove the convergence of the ancestral processes. Consider independent

Poisson processes (P−i (s))s≥0, (P+
i (s))s≥0 for i ≤ p, and (P−N (s))s≥0, (P+

N (s))s≥0. Using
for instance Theorem 4.1 from Chapter 6 of [8], there exists a unique strong solution to
the following equations

∀s ≥ 0,∀i ≤ p, Xn
i (s) = P+

i

(∫ s

0

d
√
nXn

i (u)

Y n(u)
du
)
− P−i

(∫ s

0

Xn
i (u)(Y n(u)− 1)

2
√
n

du
)
,

and

∀s ≥ 0, Y n(s) = P+
N

(∫ s

0

d
√
n(1−

∑
iX

n
i (u)

Y n(u) )du
)

− P−N
(∫ s

0

Y n(u)(Y n(u)−1)
2
√
n

(1−
∑

iX
n
i (u)

Y n(u) )du
)

+

p∑
i=1

Xn
i (s).

Moreover, this solution (Xn
1 , . . . , X

n
p , Y

n) is distributed as (Âns (1), . . . , Âns (p), N̂n
s ; s ≥ 0).

As Y n/
√
n converges in probability to the constant process with value

√
2d, we can

find a subsequence such that

lim
n→∞

d
√
n

Y n(s)
=

√
d

2
, lim

n→∞

(Y n(s)− 1)

2
√
n

=

√
d

2
a.s.

holds uniformly in s on compact sets. This is sufficient to show that for each i ≤ p,
the subsequence of processes (Xn

i (s))s≥0 converges a.s. in the Skorohod space to the
solution (Xi(s))s≥0 of

∀s ≥ 0,∀i ≤ p, Xi(s) = P+
i

(∫ s

0

√
d

2
Xi(u)du

)
− P−i

(∫ s

0

√
d

2
Xi(u)du

)
.

This proves that the entire sequence (Xn
1 , . . . , X

n
p ) converges in probability in the Skoro-

hod topology to the solution of the previous equation. Finally, noting that the solutions of
these equations are independent and distributed as critical binary branching processes
with branching rate

√
d/2 ends the proof.
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We are now ready to prove Proposition 3.1.

Proof of Proposition 3.1. By construction, the size of p blocks of Π̄n chosen uniformly is
given by the total number of particles of the processes (Âns (1), . . . , Âns (p); t ≥ 0). Thus,
in the limit, the size of these blocks converges to the total size of p independent critical
binary branching processes.

4 Proof of Theorem 1.5

In the previous section we have derived the limiting distribution of the sizes of blocks
uniformly sampled from Kingman’s coalescent with immigration. In this section we make
use of the coupling between Kingman’s coalescent with immigration and Kingman’s
coalescent with erosion from Section 2.4 to get the analogous result in the erosion case.

We first show the following result.

Corollary 4.1. Let Πn have the stationary distribution of the n-Kingman coalescent with
erosion. Let (|Cn1 |, . . . , |Cnp |) be the size of p blocks chosen uniformly from Πn. Then

(|Cn1 |, . . . , |Cnp |) =⇒ (J1, . . . , Jp),

where (J1, . . . , Jp) are i.i.d. variables distributed as the total progeny of a critical binary
branching process.

Proof. Recall the coupling between Kingman’s coalescent with erosion and Kingman’s
coalescent with immigration. Let (Ti)i∈Z be the atoms of a Poisson point process Pn with
intensity dn, labeled in increasing order such that T0 < 0 < T1. Consider an independent
i.i.d. sequence of marks (`i)i∈Z that are uniformly distributed on [n].

Let Π̄n
0 be the value at time 0 of the version of Kingman’s coalescent with immigration

rate nd built from (Ti)i∈Z as in Section 2.1. We know from Proposition 2.5 that we can
obtain a version Πn of the stationary distribution of the n-Kingman coalescent with
erosion rate d by placing i and j in the same block of Πn if the most recent atoms of Pn

in (−∞, 0] with mark i and j both belong to the same block of Π̄n
0 .

Now let (C̄n1 , . . . , C̄
n
p ) be p blocks chosen uniformly from Π̄0, and let (|C̄n1 |, . . . , |C̄np |)

be their respective sizes. For k ≤ p, let

|Cnk | = Card
{
i ∈ C̄nk : (Ti, `i) is the most recent atom in (−∞, 0] with mark `i

}
.

Then conditional on
{
|Cn1 | ≥ 1, . . . , |Cnp | ≥ 1

}
, (|Cn1 |, . . . , |Cnp |) are the sizes of p blocks

chosen uniformly from Πn. The result is thus proved if we can show that

lim
n→∞

P
(
|Cn1 | = |C̄n1 |, . . . , |Cnp | = |C̄np |

)
= 1.

Let us first explain intuitively why the previous claim holds. The ancestors of C̄n1
have all immigrated on a time-scale of order 1/

√
n. On this time-scale, there are of order√

n particles that have also immigrated. All these particles receive a uniform label in
[n]. Thus the probability that an ancestor of C̄n1 has received the same label as one of
the other

√
n particles, i.e., that it is not the most recent atom with its mark, is of order

1/
√
n. Let us make this argument rigorous.

Set

τn1 := min
{
Ti : i ∈ C̄n1

}
to be the total life-time of the ancestors of the block C̄n1 . (The variable τn1 gives the
immigration time of the first particle that forms the block C̄n1 .) The total number
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of particles that have immigrated during the time interval [τn1 , 0] is then Pn([τn1 , 0]).
Consider the event

Ek =
{
|C̄n1 | = k, τn1 ∈ [− s√

n
, 0], Pn([− s√

n
, 0]) ≤ (1 + ε)ds

√
n
}
.

On this event, if |Cn1 | 6= |C̄n1 |, then one of the k ancestors of C̄n1 has received the same
label as one of the particles that has immigrated in the time interval [τn1 , 0], that is, the
same label as one of the (1 + ε)dt

√
n most recent atoms of Pn. As the labels are chosen

uniformly, the probability that each of the k ancestors has a label distinct from the labels
of the other (1 + ε)ds

√
n− 1 most recent particles is(
1− 1

n

)
. . .
(

1− k − 1

n

)(
1− k

n

)(1+ε)ds
√
n−k

which goes to 1 as n goes to infinity for all fixed k. Thus

P
(
|Cn1 | 6= |C̄n1 |, Ek

)
≤
(

1− 1

n

)
. . .
(

1− k − 1

n

)(
1− k

n

)(1+ε)ds
√
n−k

,

and

P
(
|Cn1 | 6= |C̄n1 |

)
≤ P

(
τn1 6∈ [− s√

n
, 0]
)

+ P
(
|C̄n1 | ≥ K

)
(4.1)

+ P
(
Pn([− s√

n
, 0]) > (1 + ε)ds

√
n
)

+ on(1).

Now, by Proposition 3.6, the sequence (−
√
nτn1 )n≥1 converges in distribution to the

total life-time of a binary critical branching process and (|C̄n1 |)n≥1 converges to the total
progeny of this process. Thus, the first two terms in the above equation can be made
as small as desired uniformly in n by taking t and K large enough. For a fixed ε > 0,
Chebishev’s inequality shows that the last term goes to 0 as n goes to infinity. This
proves the result for p = 1 and a simple union bound proves the result for any p.

Remark 4.2. In the previous proof, on the event {|C̄n1 | = |Cn1 |}, not only the size of the
blocks of Kingman’s coalescents with erosion and immigration coincide, but also the
genealogy of the blocks. Thus we have shown the slightly stronger result that, in the
n-Kingman coalescent with erosion, the genealogy of a block chosen uniformly from the
stationary distribution converges to that of a critical binary branching process.

We can now prove Theorem 1.5. Recall that µnk denotes the frequency of blocks of
size k of Πn, i.e., if the blocks of Πn are (Cn1 , . . . , C

n
Mn), then

µnk =
1

Mn
Card({i : |Cni | = k}).

Proof of Theorem 1.5. (i) We start by proving that Mn/
√
n converges to

√
2d in probabil-

ity. Let us consider a version Π̄n of the stationary distribution of Kingman’s coalescent
with immigration rate nd, coupled with a version Πn of the stationary distribution of
Kingman’s coalescent with erosion rate d on [n]. Let M̄n, resp. Mn, denote the number
of blocks of Π̄n, resp. Πn. Recall that the blocks of Πn are subsets of the blocks of Π̄n,
where a particle is retained if there are no other particles with the same label that have
immigrated after it. Let |C̄n| be the size of a block of Π̄n chosen uniformly, and let |Cn|
be the size of the corresponding block of Πn. Some blocks of Π̄n are only composed of
particles that are not retained to form Πn. Such blocks have no corresponding blocks in
Πn, and M̄n −Mn is exactly the number of such blocks. Thus

E
[M̄n −Mn

M̄n

]
= P(|Cn| = 0) ≤ P

(
|Cn| 6= |C̄n|

)
−→ 0,
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where the convergence holds by (4.1). This shows that Mn/M̄n goes to 1 in probability.
Proposition 3.6 further shows that M̄n/

√
n goes to

√
2d in probability, and thus that

Mn/
√
n also goes to

√
2d in probability.

(ii) We prove the second point using the method of moments. Let (|Cn1 |, . . . , |Cnp |) be
the sizes of k uniformly sampled blocks of Πn. Then, as the number of blocks Mn goes
to infinity, Corollary 4.1 shows that

lim
n→∞

E[(µnk )p] = lim
n→∞

P
(
|Cn1 | = · · · = |Cnp | = k

)
= P(J = k)p,

where J is the total progeny of a binary critical branching process. The convergence of
the moments readily implies convergence in distribution as the limit is a Dirac mass.

5 Asymptotic frequencies of Kingman’s coalescent with erosion

In this section we prove Theorem 1.3, which gives a representation of the asymptotic
frequencies in terms of independent diffusions. First, we use the flow of bridges construc-
tion of Kingman’s coalescent with erosion from Corollary 2.6 to give a correspondence
between the frequencies of the blocks and the size of the families of a Fleming-Viot
process.

5.1 Eves of a Fleming-Viot process

Let (ρt)t≥0 be a Fleming-Viot process built from a standard flow of bridges as in
Section 2.2. For each individual x ∈ [0, 1], denote by

ζ(x) = inf{t ≥ 0 : ρt({x}) = 0}

the extinction time of the offspring of x. It is clear that the set

{x ∈ [0, 1] : ζ(x) > 0} = {x ∈ [0, 1] : ρt({x}) > 0 for some t ≥ 0}

is countable. The elements of this set can actually be enumerated in decreasing order of
their extinction time, that is, they can be written (ei)i≥0 with

ζ(e1) > ζ(e2) > . . .

This fact can be found e.g. in [14], Theorem 1.6. The sequence (ei)i≥0 is called the
sequence of Eves of (ρt)t≥0, and was introduced in [2] and [14], see also [5] for a similar
notion for Continuous-State Branching Processes. The following result shows that the
frequencies of the blocks of the stationary distribution of Kingman’s coalescent with
erosion can be recovered from the size of the offspring of the Eves.

Lemma 5.1. Let (ei)i≥1 be the Eves of a Fleming-Viot process (ρt)t≥0. Then the non-
increasing reordering of the sequence (zi)i≥1 defined as

∀i ≥ 1, zi =

∫ ∞
0

de−dtρt({ei})dt

is distributed as the frequencies of the blocks of the stationary distribution of Kingman’s
coalescent with erosion rate d.

Proof. Consider a flow of bridges (Bs,t)s≤t, and let (Ti)i≥1, (Ui)i≥1 be two indepen-
dent i.i.d. sequences of exponential variables with parameter d, and uniform variables
respectively. Again, as in Corollary 2.6, let Π be the partition of N defined as

i ∼Π j ⇐⇒ B−1
−Ti,0

(Ui) = B−1
−Tj ,0

(Uj),
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which has the stationary distribution of Kingman’s coalescent with erosion. We denote
by Π = (C1, C2, . . . ) the blocks of Π, ordered in increasing order of their least elements,
i.e., such that

i ≤ j ⇐⇒ min(Ci) ≤ min(Cj).

Then let us call
Ai = B−1

−Tj ,0
(Uj), ∀j ∈ Ci,

the ancestor of the block Ci.
As the flow of bridges (Bs,t)s≤t is independent of the sequences (Ui)i≥1 and (Ti)i≥1,

the sequence (B−1
−Ti,0

(Ui))i≥1 is exchangeable. Thus, the law of large numbers shows
that for any i ≥ 1,

1

n
Card(Ci ∩ [n]) =

1

n

n∑
j=1

1{
B−1
−Tj,0

(Uj)=Ai

} −→
n→∞

∫ ∞
0

de−dtρt({Ai})dt a.s.

Thus the result is proved if we can show that a.s.

{ei : i ≥ 1} = {Ai : i ≥ 1}.

Clearly we have ζ(Ai) > 0, as otherwise the frequency of the block Ci would be zero.
Moreover, conditional on the flow of bridges, there exists a.s. some j ≥ 1 such that

(Uj , Tj) ∈ {(x, t) : B−1
−t,0(x) = ei}

as by definition of ei this set has positive Lebesgue measure. Thus, a.s. ei is the ancestor
of some block of Π, and the result is proved.

In order to prove Theorem 1.3, it remains to show that the sequence of processes(
ρt({e1}), ρt({e2}), . . . ; t ≥ 0

)
has the same distribution as the sequence of diffusions

introduced in Section 1.3. In the following section we characterize this distribution, and
complete the proof in the last section.

5.2 Wright-Fisher diffusion conditioned on its extinction order

Consider a n-dimensional Wright-Fisher diffusion (X1, . . . , Xn). That is, (X1, . . . , Xn)

is distributed as the unique solution to

∀i ≥ 1, dXi =

n∑
j=1
j 6=i

√
XiXjdWi,j ,

where (Wi,j)i<j are independent Brownian motions, and Wj,i = −Wi,j , and started from
an initial condition (x1, . . . , xn) ∈ (0, 1)

n verifying x1 + · · ·+ xn = 1. The Wright-Fisher
diffusion describes the dynamics of a population with constant size, where individuals can
be of n different types; Xi denotes the frequency of type i individuals in the population.
Each process Xi is eventually absorbed at 0 or 1. We say that the family Xi reaches
fixation if it gets absorbed at 1, and that it becomes extinct otherwise. Let

ζi = inf{t ≥ 0 : Xi = 0}

denote its absorption time at 0.
In this section, we study the distribution of (X1, . . . , Xn) conditional on the event

{ζn < · · · < ζ1}. First, notice that as X1 + · · ·+Xn = 1, there is exactly one family that
reaches fixation. Thus, on the event {ζn < · · · < ζ1}, we have ζ1 = ∞ and X1 reaches
fixation; X2 is the last family to go extinct, and Xn is the first family to go extinct. We
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now express the distribution of the conditioned Wright-Fisher diffusion in terms of the
diffusions introduced in Section 1.3.

We will work inductively, by first conditioning the process (X1, . . . , Xn) on ζ1 being
the largest extinction time, then on ζ2 being the second largest and so on and so forth.
The key point is that after conditioning on the fixation of X1, the remainder of the
population, (X2, . . . , Xn), is distributed as a rescaled, time-changed, unconditioned
(n− 1)-dimensional Wright-Fisher diffusion, independent of X1.

Let us be more specific and let Y1 be the solution of

dY1 = (1− Y1)dt+
√
Y1(1− Y1)dW1, (5.1)

for some Brownian motion W1. Notice that Y1 is distributed as a usual one-dimensional
Wright-Fisher diffusion, conditioned on fixation. Consider the fixation time of Y1 which is
defined as

S1 = inf{t ≥ 0 : Y1(t) = 1}.
We further define a random time-change τ1 as

∀t < S1, τ1(t) =

∫ t

0

1

1− Y1(s)
ds, ∀t ≥ S1, τ1(t) =∞.

We start by proving the following result.

Lemma 5.2. Let Y1 and τ1 be as above and consider an independent (n− 1)-dimensional
Wright-Fisher diffusion (X2, . . . , Xn). Then, the process (Z1, . . . , Zn) defined as

Z1 = Y1, ∀i > 1,∀t ≥ 0, Zi(t) = (1− Z1(t))Xi(τ1(t)),

is distributed as a n-dimensional Wright-Fisher diffusion conditioned on {ζ1 =∞}.
Remark 5.3. The time τ1(t) is infinite with positive probability. However, each of the
processes (X2, . . . , Xn) has an a.s. limit as t goes to infinity. On the event {τ1(t) =∞},
we take Xi(τ1(t)) to be this limit, so that the process (Z1, . . . , Zn) is now well-defined.

Before proving Lemma 5.2, we need the following fact that we prove for the sake of
completeness.

Lemma 5.4. Let (Wt)t≥0 be a Brownian motion on R started at 1, and let T0 be the first
time it hits 0. Then for α ∈ R, a.s.∫ T0

0

Wα
s ds =

{
∞ if α ≤ −2

yα <∞ if α > −2.

Proof. Let us define

∀t ≥ 0, ξt = W̃t −
t

2
, τ(t) = inf

{
s ≥ 0 :

∫ s

0

exp(2ξu)du > t
}
,

for a Brownian motion (W̃t)t≥0 with the convention that inf O6 =∞ and ξ∞ = −∞. The
Lamperti representation of positive self-similar processes [16] shows that Wt stopped at
T0 satisfies the equality in distribution

(Wt∧T0)t≥0
(d)
= (exp(ξτ(t)))t≥0.

Thus ∫ t∧T0

0

Wα
s ds

(d)
=

∫ t

0

exp(αξτ(s))ds =

∫ τ(t)

0

exp((2 + α)ξs)ds,

and ∫ T0

0

Wα
s ds

(d)
=

∫ ∞
0

exp((2 + α)ξs)ds,

which yields the result.
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Proof of Lemma 5.2. Consider a n-dimensional Wright-Fisher diffusion (X1, . . . , Xn). A
calculation of Doob’s h-transform using the harmonic function

h(x1, . . . , xn) = P
(

lim
t→∞

X1(t) = 1
∣∣∣X1(0) = x1, . . . , Xn(0) = xn

)
= x1

shows that the process (X1, . . . , Xn) conditioned on {limt→∞X1(t) = 1} = {ζ1 = ∞} is
distributed as the unique solution to the equation

dX1 = (1−X1)dt+

n∑
j=2

√
X1XjdW1,j ,

∀i ≥ 2, dXi = −Xidt+

n∑
j=1
j 6=i

√
XiXjdWi,j ,

where (Wi,j)i<j are independent Brownian motions, and Wi,j = −Wj,i. We will prove
that the process (Z1, . . . , Zn) solves this equation.

Now consider a (n− 1)-dimensional Wright-Fisher diffusion (X ′2, . . . , X
′
n) independent

of Y1 which solves

∀i ≥ 2, dX ′i =

n∑
j=2
j 6=i

√
X ′iX

′
jdW

′
i,j ,

where (W ′i,j)i<j are independent Brownian motions and W ′i,j = −W ′j,i. We start by giving
the equation solved by the process (Y1, X

′
2 ◦ τ1, . . . , X ′n ◦ τ1). Notice that here, only a

subset of the processes are time-changed, and that τ1 explodes in finite time. For these
two reasons, let us realize the time-change carefully.

We transform τ1 into a family of finite stopping times. Our first task is to prove that
τ1 goes continuously to infinity, we do this using the speed function and scale measures
of the diffusion Y1, see for instance [7]. If we define D = 1/Y1, then by Itô’s formula,

dD = −
√
D − 1DdW1, ∀t ≥ 0, [D,D]t =

∫ t

0

(D(s)− 1)D(s)2ds.

Recall that S1 stands for the first time when Y1 hits one. Using Dubins-Schwarz theorem,
see for instance Theorem 18.4 of [11], we obtain that∫ S1

0

1

1− Y1(s)
ds =

∫ S1

0

D(s)

D(s)− 1
ds =

∫ S1

0

W̃1([D,D]s)

W̃1([D,D]s)− 1
ds =

∫ T1

0

1

(W̃1(s)− 1)2W̃1(s)
ds

where W̃1 is a Brownian motion (on a possibly larger probability space) started at 1/Y1(0),
and T1 is the first time when W̃1 hits 1. We now know from Lemma 5.4 that this integral
is a.s. infinite, and thus that τ1 goes continuously to infinity, and does not “jump to
infinity”.

Further consider the times

∀i ≥ 2, Si = inf{t ≥ 0 : X ′i(t) = 1}, S = min(S2, . . . , Sn).

At time S, one of the families has reached fixation, and thus for t ≥ S we have X ′i(t) =

X ′i(S). Therefore, for all t ≥ 0, we have X ′i(τ1(t)) = X ′i(τ1(t)∧S), where the stopping time
τ1(t) ∧ S is now a.s. finite, and t 7→ τ1(t) ∧ S is continuous. (The continuity requires that
τ1 does not jump to infinity.) Thus, by making a time-change in the following integrals,
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see for instance [11], Theorem 17.24, we obtain

∀t ≥ 0, X ′i(τ1(t)) = X ′i(τ1(t) ∧ S)

=

n∑
j=2
j 6=i

∫ τ1(t)∧S

0

√
X ′i(s)X

′
j(s)dW

′
i,j

=

n∑
j=2
j 6=i

∫ t

0

√
X ′i(τ1(s) ∧ S)X ′j(τ1(s) ∧ S)dW ′i,j(τ1(s) ∧ S)

=

n∑
j=2
j 6=i

∫ t

0

√
X ′i(τ1(s))X ′j(τ1(s))

1− Y1(s)
dW̃i,j

where

∀t ≥ 0, W̃i,j(t) =

∫ t

0

√
1− Y1(s)dW ′i,j(τ1(s) ∧ S).

A direct computation of the quadratic variations gives

∀i, j, t ≥ 0, [W̃i,j , W̃i,j ]t = t ∧ S,

and the crossed variations are null. Thus a multidimensional version of Dubins-Schwarz
theorem, see for instance Theorem 18.4 in [11], shows that we can find independent
Brownian motions (Ŵi,j)i<j such that W̃i,j(t) = Ŵi,j(t ∧ S). This proves that the time-
changed processes solve

∀t ≥ 0, X ′i(τ1(t)) =

n∑
j=2
j 6=i

∫ t

0

√
X ′i(τ1(s))X ′j(τ1(s))

1− Y1(s)
dŴi,j .

Finally, setting X̂i := X ′i ◦ τ1 and applying Itô’s formula to the process (Y1, X̂2, . . . , X̂n)

with the function

(x1, . . . , xn) 7→ (x1, (1− x1)x2, . . . , (1− x1)xn)

we obtain that for all i ≥ 2,

dZi = −X̂idY1 + (1− Y1)dX̂i

= −X̂i(1− Y1)dt− X̂i

√
Y1(1− Y1)dW1 +

n∑
j=2
j 6=i

√
(1− Y1)X̂iX̂jdŴi,j

= −Zidt− Zi
√

Z1

1− Z1
dW1 +

n∑
j=2
j 6=i

√
ZiZj

1− Z1
dŴi,j ,

where (Z1, . . . , Zn) is defined as in the statement of the result. A straightforward compu-
tation of the quadratic variations shows that (Z1, . . . , Zn) is distributed as (X1, . . . , Xn)

conditioned on {ζ1 =∞} and proves the result.

We can now proceed inductively. Let us set up the notation for the proof. Consider
i.i.d. processes (Y1, . . . , Yn−1) such that

∀i ≥ 1, dYi = (1− Yi)dt+
√
Yi(1− Yi)dWi
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where (W1, . . . ,Wn−1) are independent Brownian motions. We set Z̃1 = Y1, and

∀t ≥ 0, τ̃1(t) =

∫ t

0

1

1− Z̃1(s)
ds.

We then define recursively, for i < n− 1,

∀t ≥ 0, Z̃i+1(t) = (1− Z̃1(t)− · · · − Z̃i(t))Yi+1(τ̃i(t))

∀t ≥ 0, τ̃i+1(t) =

∫ t

0

1

1− Z̃1(s)− · · · − Z̃i+1(s)
ds.

We finally set Z̃n = 1− Z̃1 − · · · − Z̃n−1.

Proposition 5.5. The process (Z̃1, . . . , Z̃n) defined above is distributed as a n-dimen-
sional Wright-Fisher diffusion conditioned on {ζn < · · · < ζ1}.

Proof. We prove the result inductively. For n = 2, conditioning (X1, X2) on its extinction
order amounts to conditioning it on the fixation of X1, and Lemma 5.2 shows that the
result holds.

Let (Y1, . . . , Yn−1) be the i.i.d. diffusions defined above. We first define

∀t ≥ 0, Z̃ ′2(t) = Y2(t), ∀t ≥ 0, τ̃ ′2(t) =

∫ t

0

1

1− Z̃ ′2(s)
ds

and then define inductively, for i < n− 1,

∀t ≥ 0, Z̃ ′i+1(t) = (1− Z̃ ′2(t)− · · · − Z̃ ′i(t))Yi+1(τ̃ ′i(t)),

∀t ≥ 0, τ̃ ′i+1(t) =

∫ t

0

1

1− Z̃ ′2(s)− · · · − Z̃ ′i+1(s)
ds,

and Z̃ ′n = 1−Z̃ ′2−· · ·−Z̃ ′n−1. By induction, we can suppose that (Z̃ ′2, . . . , Z̃
′
n) is distributed

as a (n− 1)-dimensional Wright-Fisher diffusion conditioned on its extinction order. We
first claim that the process defined as

∀t ≥ 0, Z̃1(t) = Y1(t),

∀i > 1,∀t ≥ 0, Z̃i(t) = (1− Z̃1(t))Z̃ ′i(τ̃1(t))

is distributed as a n-dimensional Wright-Fisher diffusion conditioned on its extinction
order.

To see this, let (X2, . . . , Xn) be a (n − 1)-dimensional unconditioned Wright-Fisher
diffusion, independent of Y1, and recall the definition of (Z1, . . . , Zn) from Lemma 5.2.
Consider

ζ ′i = inf{t ≥ 0 : Zi(t) = 0}, ζi = inf{t ≥ 0 : Xi(t) = 0}

the extinction times of Zi and Xi. Lemma 5.2 ensures that (Z1, . . . , Zn) is distributed as a
Wright-Fisher diffusion conditioned on the fixation of Z1. Thus, the process (Z1, . . . , Zn)

further conditioned on {ζ ′n < · · · < ζ ′2} has the distribution of a Wright-Fisher diffusion
conditioned on its extinction order. Now notice that

{ζ ′n < · · · < ζ ′2} = {ζn < · · · < ζ2}.

Thus conditioning (Z1, . . . , Zn) on {ζ ′n < . . . ζ ′2} amounts to conditioning (X2, . . . , Xn)

on {ζn < · · · < ζ2}, that is, conditioning it on its fixation order. As {ζn < · · · < ζ2} is
independent of Z1, conditioning the process (Z1, . . . , Zn) on this event is equivalent to
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replacing (X2, . . . , Xn) by (Z̃ ′2, . . . , Z̃
′
n) in the construction of (Z1, . . . , Zn), and this proves

the claim.
It only remains to show that Z̃i+1 as defined in the proof can be written

∀i > 1, Z̃i+1(t) = (1− Z̃1(t)− · · · − Z̃i(t))Yi+1(τ̃i(t)).

A direct calculation first shows that, for i > 1 and t ≥ 0,

τ̃i(t) =

∫ t

0

1

1− Z̃1(s)− · · · − Z̃i(s)
ds

=

∫ t

0

1

1− Z̃1(s)− (1− Z̃1(s))Z̃ ′2(τ̃1(s))− · · · − (1− Z̃1(s))Z̃ ′i(τ̃1(s))
ds

=

∫ t

0

1

1− Z̃ ′2(τ̃1(s))− · · · − Z̃ ′i(τ̃1(s))

1

1− Z̃1(s)
ds

= τ̃ ′i(τ̃1(t)),

and the result follows.

We end this section by pointing out the following fact that will be required in the
next section. We have only defined the Wright-Fisher diffusion conditioned on its
extinction order for an initial condition (x1, . . . , xn) such that for all 1 ≤ i ≤ n, xi > 0.
Nevertheless, the processes Yi have an entrance boundary at 0. Thus there exists a
unique extension of the process (Y1, . . . , Yn−1) started from (0, . . . , 0) that remains Feller,
see [11], Theorem 23.3. This shows that a Wright-Fisher diffusion conditioned on its
fixation order (Z̃1, . . . , Z̃n) admits a Feller extension for the initial condition (0, . . . , 0, 1).

5.3 Proof of Theorem 1.3

Let (ρt)t≥0 be a Fleming-Viot process, and let (ei)i≥1 be its Eves. In this section
we end the proof of Theorem 1.3 by showing that the distribution of the sequence of
processes (ρt({e1}), ρt({e2}), . . . ; t ≥ 0) is that of a Wright-Fisher diffusion conditioned
on its fixation order.

The result we want to prove is the direct extension of Theorem 4 of [2]. Reformulated
in our setting, this theorem proves that (ρt({e1}); t ≥ 0) is distributed as the solution
to eq. (5.1) started from 0. We now give a similar representation for the process
(ρt({e1}), . . . , ρt({en}); t ≥ 0) giving the size of the progeny of the first n Eves.

Proposition 5.6. Let (ρt)t≥0 be a Fleming-Viot process, and (ei)i≥1 be its Eves. Then
for any n ≥ 1, the process (ρt({e1}), . . . , ρt({en}); t ≥ 0) is distributed as (Z̃1, . . . , Z̃n)

where (Z̃1, . . . , Z̃n+1) is a (n+ 1)-dimensional Wright-Fisher diffusion conditioned on its
extinction order, started from (0, . . . , 0, 1).

Proof. We realize a similar computation as in the proof of Theorem 4 of [2]. The proof
requires three facts. First notice that

lim
m→∞

ρt
(( bmeic

m , bmei+1c
m

])
= ρt({ei}).

Then, if I1, . . . , In are n disjoint intervals of length 1/m, due to exchangeability of the
increments of bridges, the process (ρt(I1), . . . , ρt(In); t ≥ 0) is distributed as the process(

ρt
((

0, 1
m

])
, . . . , ρt

((
n−1
m , nm

])
; t ≥ 0

)
which is distributed as the n first coordinates of a (n + 1)-dimensional Wright-Fisher
diffusion started from ( 1

m , . . . ,
1
m , 1−

n
m ).
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Finally, notice that on the event {∀i 6= j ∈ {1, . . . , n}, bmeic 6= bmejc}, conditioning
the process (

ρt
((

0, 1
m

])
, . . . , ρt

((
n−1
m , nm

])
; t ≥ 0

)
on its extinction order as in Section 5.2 is equivalent to conditioning it on the location of
the Eves, i.e., on the event

{
∀k ∈ {1, . . . , n}, ek ∈

(
k−1
m , km

]}
.

We can now proceed to the calculation. Let 0 ≤ t1 < · · · < tp and let ϕ1, . . . , ϕp be
continuous bounded functions. Consider (Z̃1, . . . , Z̃n+1) a (n + 1)-dimensional Wright-
Fisher diffusion conditioned on its extinction order. Then

E
[
ϕ1

(
ρt1({e1}), . . . , ρt1({en})

)
. . . ϕp

(
ρtp({e1}), . . . , ρtp({en})

)]
= lim
m→∞

m−1∑
i1=0

· · ·
m−1∑
in=0

E
[
ϕ1

(
ρt1
((
i1
m ,

i1+1
m

])
, . . . , ρt1

((
in
m ,

in+1
m

]))
. . .

ϕp
(
ρtp
((
i1
m ,

i1+1
m

])
, . . . , ρtp

((
in
m ,

in+1
m

]))
1{∀k∈{1,...,n}, ek∈

(
ik
m ,

ik+1

m

]}]
= lim
m→∞

mnE
[
ϕ1

(
ρt1
((

0, 1
m

])
, . . . , ρt1

((
n−1
m , nm

]))
. . .

ϕp
(
ρtp
((

0, 1
m

])
, . . . , ρtp

((
n−1
m , nm

]))
1{∀k∈{1,...,n}, ek∈( k−1

m , k
m ]}
]

= lim
m→∞

E
[
ϕ1

(
Z̃1(t1), . . . , Z̃n(t1)

)
. . . ϕp

(
Z̃1(tp), . . . , Z̃n(tp)

)
| Z̃1(0) = · · · = Z̃n(0) = 1

m

]
= E

[
ϕ1

(
Z̃1(t1), . . . , Z̃n(t1)

)
. . . ϕp

(
Z̃1(tp), . . . , Z̃n(tp)

)
| Z̃1(0) = · · · = Z̃n(0) = 0

]
,

where, the last line comes from the Feller property of the process (Z̃1, . . . , Z̃n+1).

Our current proof of Theorem 1.3 relies on calculations specific to the Wright-Fisher
diffusion. We end this section by discussing a potential alternative proof of this result
that would more easily generalize to Beta-coalescents.

The Feller branching diffusion describes the size of a population where different
individuals die and reproduce independently. Similarly to the Fleming-Viot process, it
is possible to define a measure-valued process, called the Dawson-Watanabe process,
that encodes the size of the offspring of each individual in the initial population, see
for example [6]. (Note that there are no mutations here, i.e., no spatial motion of
the particles.) Its total mass is then distributed as a Feller diffusion. Starting from a
Dawson-Watanabe process, one can renormalize it by its total mass to obtain a process
valued in the space of probability measures. Then the resulting renormalized process is
distributed as a time-changed Fleming-Viot process, see [4].

Let us now discuss the results of Section 5.2 in the light of this new construction. The
key point of Section 5.2 is that after removing one family from a Fleming-Viot process
and renormalizing the remainder of the population to have mass one, the resulting
process remains distributed as an independent time-changed Fleming-Viot process.
Suppose that the Fleming-Viot process has been obtained by renormalizing a Dawson-
Watanabe process. Then removing a family from the Fleming-Viot process amounts
to removing a family from the original Dawson-Watanabe process. By the branching
property, removing this family does not change the distribution of the remainder of the
population, which remains distributed as an independent Dawson-Watanabe process.
Thus when renormalizing the remainder of the population to have size one, we obtain a
new time-changed Fleming-Viot process, independent of the removed family. In other
words, the results of Section 5.2 essentially originate from the fact that the Fleming-Viot
process can be seen as a renormalized branching measure-valued process.

A similar link has been obtained in [4] between the Λ-Fleming-Viot processes associ-
ated to Beta-coalescents and a family of α-stable measure-valued branching processes.
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Thus we believe that one could derive a similar, but less explicit, representation of the
asymptotic frequencies of the stationary distribution of the Beta-coalescents with erosion
than the one obtained in Theorem 1.3.
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A Proof of Proposition 3.3

In this section, we prove that the ancestral process of Kingman’s coalescent with
immigration is Markovian. To do this, consider a version of Kingman’s coalescent
with immigration (Π̄t)t∈R, and let (Π̄i)i∈Z be its embedded chain, i.e., the sequence of
states visited by (Π̄t)t∈R, where Π̄0 is the state at time t = 0. We count the number of
trajectories of (Π̄i)i∈Z that produce a given trajectory of (Ai)i≥0, the embedded chain of
(At)t≥0.

First, note that given the values of (Π̄−n, . . . , Π̄0) and a uniform permutation σ of
the blocks of Π̄0, one can uniquely reconstruct the values of (A0, . . . ,An). We now fix
a sequence (a0, . . . , an) of possible values of (A0, . . . ,An), and a partition π̄−n with |an|
blocks, where |an| is the total number of particles of an. Our first task is to count the
number of trajectories of (Π̄−n, . . . , Π̄0) starting from π̄−n, and of labelings σ of the
blocks of Π̄0 such that (A0, . . . ,An) = (a0, . . . , an). Before stating the result we need to
introduce one notation. The variable Ak+1 is obtained from Ak by splitting or killing one
particle. Let us denote `k the label of this particle. That is, `k is the unique integer such
that

|Ak+1(`k)−Ak(`k)| = 1, ∀i 6= `k, |Ak+1(i)−Ak(i)| = 0.

Lemma A.1. Fix a sequence of states (a0, . . . , an) of (A0, . . . ,An), and a partition π̄−n of
{i ∈ Z : i ≤ −n} with |an| blocks. Then the number of trajectories of (Π̄−n, . . . , Π̄0) and
labelings of the blocks of Π̄0 such that (A0, . . . ,An) = (a0, . . . , an) and Π̄−n = π̄−n is

|an|!
2b

a0(`0) . . . an−1(`n−1),

where b is the number of birth events along the sequence (a0, . . . , an).

Proof. Each trajectory of (Π̄−n, . . . , Π̄0) naturally encodes a forest that can be built
through the following procedure, which is illustrated in Figure 2. Choose any labeling
of the blocks of Π̄−n, and for each block add an initial leaf with the corresponding
label. Suppose that the forest corresponding to (Π̄−n, . . . , Π̄−k) has been built. If Π̄−k+1

is obtained from Π̄−k by immigrating a new particle, then add a new isolated vertex.
Otherwise, a coalescence event has occurred between two blocks of Π̄−k. Then add a
new internal node and connect it to the nodes corresponding to the two blocks that have
coalesced. Once the forest representing (Π̄−n, . . . , Π̄0) is built, by construction the nodes
corresponding to Π̄0 all belong to different trees. We set them to be the roots of their
respective trees, and label them according to the partition σ. (Notice that the resulting
forest is endowed with some additional structure: the nodes added along the procedure
are totally ordered by the induction step at which they have been added.)

Counting trajectories of (Π̄−n, . . . , Π̄0) now amounts to counting forests. Instead
of building the forests by starting from the leaves as above, we build a forest with
ancestral sequence (a0, . . . , an) by starting from the roots. Initially, consider a set of |a0|
roots, labeled by {1, . . . , |a0|}, that represent the particles of a0. Nodes can be in two
states: active or inactive. Active nodes represent the particles that are still alive in the
population while inactive nodes represent the dead particles. Initially all roots are active.
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We build the forest recursively. Suppose that at step k we have built a forest such that
for all i there are ak(i) nodes that are active in the tree with root i. If a particle with
label `k has died from ak to ak+1, we inactivate one of the nodes belonging to the tree
with root `k. There are ak(`k) such nodes. Similarly, if a particle has split from ak to ak+1,
we inactivate one node in the tree `k, and connect it to two new active nodes. There
are again ak(`k) active nodes in the tree `k. After step n, we have built a forest with
ancestral sequence (a0, . . . , an). We assign the blocks of Π̄−n to the remaining active
nodes of the forest by choosing one of the |an|! permutations of the blocks.

There are

|an|! a0(`0) . . . an−1(`n−1)

outputs of the previous construction, and all forests with ancestral sequence (a0, . . . , an)

can be obtained that way. However, due to symmetries, some forests can be obtained
multiple times through this construction. More precisely, at each birth event, the two
daughter nodes are indistinguishable. Interchanging the trees corresponding to the
offspring of these two nodes yields the same forest. Thus, the actual number of forests
with ancestral sequence (a0, . . . , an) is

|an|!
2b

a0(`0) . . . an−1(`n−1)

where b is the number of birth events, and the result is proved.

Lemma A.2. Let (Mt)t∈R be the process counting the number of blocks of Kingman’s
coalescent with immigration. Then (Mt)t∈R is a stationary Markov process such that
conditional on {Mt = k}, it jumps to

• k + 1 at rate d;

• k − 1 at rate k(k − 1)/2.

Moreover (Mt)t∈R is a reversible process.

Proof. Let us consider a version of Kingman’s coalescent with immigration built from a
Poisson point process P . Let us first show that (Mt)t∈R is a Markov process. Conditional
on Mt = k, each of the k(k− 1)/2 pairs of blocks coalesce a rate one, and new atoms of P
immigrate at rate d. Thus, (Mt)t∈R goes to k − 1 at rate k(k − 1)/2 and to k + 1 at rate d.

Let us now argue that the family of variables (Mt)t∈R is tight. Fix t ∈ R and let T
be the location of the most recent atom of P before time t. Then t− T is exponentially
distributed with parameter d, and Mt is distributed as the number of blocks of Πt−T ,
where (Πs)s≥0 is a version of Kingman’s coalescent started with MT blocks. Thus Mt is
stochastically dominated by the number of blocks Π′t−T , where (Π′s)s≥0 is a version of
Kingman’s coalescent started from an infinite number of blocks. As each variable Mt is
stochastically dominated by the same variable, the family is tight.

It is not hard to see that a Markov process jumping from k to k+ 1 at rate d, and from
k to k − 1 at rate k(k − 1)/2 admits a unique stationary distribution. As it is irreducible
we have

∀k ≥ 1, P(Mt = i |Ms = j) −→
t→∞

P
(
M∞ = i

)
.

Thus, using the tightness of (Mt)t≥0, we have

P
(
Mt = i

)
=
∑
j≥1

P
(
Ms = j

)
P(Mt−s = i |Ms = j) −→

s→−∞
P
(
M∞ = i

)
.
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Let us compute the stationary distribution of (Mt)t∈R. As (Mt)t∈R jumps from k to
k + 1 at rate d and from k to k − 1 at rate k(k − 1)/2, a usual calculation shows that its
stationary distribution (νk)k≥1 is

∀k ≥ 1, νk ∝
(2d)k

k! (k − 1)!

where the renormalization constant is obtained by summing over all the terms. Thus a
direct calculation now proves that (νk)k≥1 fulfills the detailed balance equation

∀k ≥ 1, dνk =
k(k + 1)

2
νk+1

and thus that (Mt)t∈R is reversible.

We are now ready to prove Proposition 3.3

Proof of Proposition 3.3. Recall the notations from Section 3.1. As proved in Lemma A.2,
the process (Mt)t∈R that counts the number of the blocks of Kingman’s coalescent with
immigration is a reversible Markov process. Thus, the process (Nt)t≥0 that gives the
number of particles of (At)t≥0 is a stationary process jumping from k to k + 1 at rate
d, and from k to k − 1 at rate k(k − 1)/2. Hence, the result is proved if we show that
conditional on the sequence of states (N0, . . . , Nn) visited by (Nt)t≥0, the type of the
particle that dies or splits from Ak to Ak+1 is chosen with a probability proportional to
the vector Ak.

Let b denote the number of birth events along the sequence (a0, . . . , an). (Hence,
forward in time, there are n− b immigration events.) We have

P
(
A0 = a0, . . . ,An = an

)
=∑

(π̄−n,...,π̄0)

∑
s

P
(
∀i < n, Π̄−i = π̄−i, σ = s

∣∣ Π̄−n = π̄−n
)
P
(
Π̄−n = π̄−n

)
where the sum is taken over all partitions π̄−n of {i ∈ Z : i ≤ −(n − b)} with |an|
blocks, all trajectories (π̄−n+1, . . . , π̄0) and labelings s of the blocks of π̄0 such that
(A0, . . . ,An) = (a0, . . . , an). Now notice that the probability of seeing such a trajectory
and labeling does only depend on the sequence of number of blocks (|a0|, . . . , |an|).
Indeed, conditional on (|a0|, . . . , |an|), two trajectories (Π̄−n, . . . , Π̄0) are identical up to
the choice of the pairs of blocks that merge at each coalescence event, and these pairs
are chosen uniformly.

Thus the probability of the event {A0 = a0, . . . ,An = an} is proportional to the
number of terms in the sum, and thus to the number of trajectories of (Π̄−n, . . . , Π̄0) that
correspond to this ancestral sequence. Hence, Lemma A.1 shows that

P
(
A0 = a0, . . . ,An = an

)
= C(|a0|, . . . , |an|)a0(`0) . . . an−1(`n−1),

where the coefficient C(|a0|, . . . , |an|) only depends on (|a0|, . . . , |an|). This proves the
result.

Let us end this section by discussing a possible extension to Λ-coalescents. The key
point here is that conditional on the block counting process, the particles that die or
split are chosen uniformly in the population. This is a consequence of 1) Lemma A.1 and
2) the fact that all trajectories with a given sequence of number of blocks have the same
probability. The second point is a consequence of exchangeability so remains valid for
Λ-coalescents. As for Lemma A.1, the proof could be easily adapted to Λ-coalescents
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with immigration. (The factor 2b should be replaced by the product of the number of
blocks involved in coalescence events.)

Thus, the only difference between Kingman’s coalescent with immigration and more
general Λ-coalescents with immigration is that the block counting process is no longer
reversible. Hence we cannot obtain a closed form for the transition rates of the corre-
sponding ancestral processes. Nevertheless, we believe that in some cases it should be
possible to obtain a result similar to Theorem 1.5 by using the same techniques as in
this paper, if one can derive a good enough approximation for the stationary distribution
of the number of blocks.
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