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Abstract

In this note, we study the model of directed last passage percolation on Z2, with i.i.d.
exponential weight. We consider the maximum directed paths from vertices (0, bk2/3c)
and (bk2/3c, 0) to (n, n), respectively. For the coalescence point of these paths, we
show that the probability for it being > Rk far away from the origin is in the order
of R−2/3. This is motivated by a recent work of Basu, Sarkar, and Sly [7], where the
same estimate was obtained for semi-infinite geodesics, and the optimal exponent
for the finite case was left open. Our arguments also apply to other exactly solvable
models of last passage percolation.
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1 Introduction

As a model of fluid flow in a random medium, first passage percolation (FPP) has
been studied by probabilists for more than fifty years, while many predictions about
its geometric structure remain unsettled. One major prediction is that the planar FPP
belongs to the so-called KPZ universality class, proposed by Kardar, Parisi, and Zhang
in their seminal work [23]. While little progress has been made to rigorously establish
this prediction for the planar FPP, similar results are known for some exactly solvable
directed last passage percolation (DLPP) models, where exact distributional formulas
exist and are obtained from combinatorics, representation theory, or random matrix
theory. See e.g. [10, 29] for surveys in this direction.

For general planar FPP, due to the absence of such formulas, its study relies more on
understanding of the geodesics (i.e. minimal weight paths between points). In particular,
coalescence of geodesics has been wildly used in obtaining geometric information of the
model. The study in this direction was initiated by Newman and co-authors, see e.g. [27].
A breakthrough was then made by Hoffman [21], where he used Busemann functions to
study infinite geodesics. These techniques then led to more progress in the geometric
structure of geodesics, see e.g. [13, 14].

For exactly solvable DLPP models, there are also several motivations to study the
geometry of geodesics (which are maximal weight paths under this setting). For example,
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Optimal exponent for coalescence of geodesics in LPP

for models obtained by adding local defects to exactly solvable ones, the integrable struc-
tures are destroyed, thus the geometric properties of the geodesics play an important
role in the study of such models; see e.g. [8], where the authors settled the “slow bond
problem”, where extra weights are added to the diagonal in the exactly solvable DLPP
models. Besides, the coalescence of geodesics in exactly solvable models would help to
understand the geometry of the scaling limiting objects of the KPZ universality class, e.g.
the coalescence structure in Brownian LPP is used towards understanding Brownian
regularity of the Airy process [18, 19].

In recent years there are several results about geodesics in DLPP models, see e.g.
[12, 15]; and some of these results have been proved beyond exactly solvable models,
see [16, 17]. There is the problem of the speed of coalescence, i.e. to understand
the distribution of the coalescence location of two geodesics. For two semi-infinite
geodesics in the same direction, such problem was first studied in [32]. A lower bound
of the tail of the distribution was obtained by Pimentel in [28], using a duality argument.
A corresponding upper bound was conjectured in [28], and this was settled by Basu,
Sarkar, and Sly in [7]. In a different line of works, using inputs from the connection
of the stationary LPP with queuing theory, Seppäläinen and Shen ([30]) also obtained
an upper bound which falls short of the optimal order by a logarithmic factor. They
also obtained upper and lower bounds of matching orders for the probability of the
coalescence location being very close to the starting points. More recently, in [9] various
coalescence results are obtained, and are used to deduce universality of geodesic trees.

In this note, we study coalescence of finite geodesics, in the model of DLPP with
exponential weights. We consider two geodesics, from two distinct points to the same
finite point in the (1, 1) direction, and study the tail of the distribution of their coalescence
location. This problem was also studied in [7], where the tail of the distribution of the
coalescence location was conjectured to have the same order as that of semi-infinite
geodesics, and the authors also gave an upper bound of polynomial decay. We settle this
problem in this note, by providing matching upper and lower bounds up to a constant
factor. Very soon since this note was posted, similar result was also obtained in [2], with
slightly more restricted conditions (using notations of Theorem 1.1 below, in [2] the
estimates are proven for n > (Rk)5, while we only assume that n > Rk).

As [7], our proofs work, essentially verbatim, for several generalizations; while we
state and prove our results in the current form for technical and notational convenience.
First, following our arguments, the same result also holds when consider two finite
geodesics in any fixed direction (rather than the (1, 1) direction), except the axial direc-
tions. Besides, our arguments generalize to some other exactly solvable models beyond
DLPP with exponential weights. These include Poissonian DLPP in continuous space R2,
and DLPP with geometric weights. The difference is that, unlike DLPP with exponential
weights, under these two settings the geodesics are not almost surely unique. Thus we
consider the right-most (or left-most) geodesics between pairs of points, and study their
coalescence location instead. The same estimates as our main result (Theorem 1.1 below)
can be obtained. For these two settings, we would also need the Tracy-Widom limit and
one point upper and lower tail moderate deviation estimates for the last passage times
(as given by [22, 24] for exponential DLPP). For Poissionian DLPP these can be found in
[25, 26], and for geometric DLPP these are in [1, 11].

1.1 Notations, main results, and proof ideas

We set up notations for the model and formally state our results here. Consider the
2D lattice Z2. For each v ∈ Z2 we associate a weight ξv, which is distributed as Exp(1)

and independent from each other. For any upper-right oriented path γ in Z2, we define
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the passage time of the path to be

T (γ) :=
∑
v∈γ

ξv.

For any u, v ∈ Z2, we denote u ≤ v, if u is less or equal to v in each coordinate; and we
denote u < v if u ≤ v and u 6= v. For any u < v ∈ Z2, there are finitely many upper-right
paths from u to v. Almost surely, there is a unique one γ with the largest T (γ). We denote
it to be the geodesic Γu,v, and Tu,v := T (γ) to be the passage time from u to v. For any
u = (u1, u2) ∈ Z2, we denote d(u) := u1 +u2. For each n ∈ Z, we denote Ln to be the line
{v ∈ Z2 : d(v) = n}. For any u, v < w ∈ Z2, we denote Cu,v;w = (Cu,v;w

1 , Cu,v;w
2 ) ∈ Z2 to be

the first coalescence point of Γu,w and Γv,w, i.e. Cu,v;w ∈ Γu,w ∩ Γv,w with the smallest
d(Cu,v;w).

For any n, k ∈ Z+, we denote n := (n, n) and k := (bk2/3c,−bk2/3c). In particular, we

let 0 := (0, 0). Our result is about the location of Ck,−k;n.

Theorem 1.1. There exists universal constants C1, C2, R0 > 0, such that for any k, n ∈
Z+, R > R0, and n > Rk, we have

C1R
−2/3 < P[d(Ck,−k;n) > Rk] < C2R

−2/3.

Denote k̃ := (0, bk2/3c). In [7, Theorem 1] the problem was presented in a slightly

different setting, where the first coordinate of C0,k̃;n was studied; and it was shown there

that P[C0,k̃;n
1 > Rk] < CR−c, for some constants C, c > 0. Our result confirms that the

optimal c is 2
3 .

Corollary 1.2. There exists universal constants C ′1, C
′
2, R0 > 0, such that for any k, n ∈

Z+, R > R0, and n > 4Rk, we have

C ′1R
−2/3 < P[C0,k̃;n

1 > Rk] < C ′2R
−2/3.

Let us explain the main ideas and difficulties in proving these results, and the new
ingredients based on previous works. To get matching upper and lower bounds for the
coalescence probability P[d(Ck,−k;n) > Rk], which is a small quantity, a general idea
from [7] is to “magnify” it, i.e. to prove that multiplied by R2/3 it is upper and lower
bounded by constants. For semi-infinite geodesics in the same direction, all of them have
the same distribution (under translations). The argument in [7] is to take bCR2/3c+ 1

points in L0 of equal distances (for some constant C), and take the (1, 1)-direction semi-
infinite geodesic from each of them. For any two “neighboring” semi-infinite geodesics,
the probability that they do not coalesce before LbRkc is the same by the translation
invariance. Then this probability multiplied by bCR2/3c is precisely the expected number
of different intersecting points of these bCR2/3c+ 1 semi-infinite geodesics with LbRkc,
minus 1. This quantity is shown to be in constant order, using results from [6, 8].

However, to study coalescence of finite geodesics ending at the same point, one could
not directly magnify the probability in a similar way. The main difference is that finite
geodesics (from different points to the same end point) do not have the same distribution.
Thus approaches from some different directions were taken to study coalescence of finite
geodesics. In [7], a multi-scale argument is used; and the bounds in [2] are obtained
from a comparison between finite and semi-infinite geodesics. Our main contribution
is a short geometric construction utilizing invariances of this model in a novel way,
which allows us to still magnify the coalescence probability by R2/3, and to get matching
bounds with the least requirements. Specifically, in addition to translation invariance,
a key and simple observation is that the model is also invariant under rotation by π.
With this, we convert the study of coalescence of Γ−k,n and Γk,n to that of coalescence
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of Γ−k,n and Γk,n+2k. The advantage of the later one is that Γk,n+2k has the same law

as Γ−k,n, after translating by 2k (and we call them parallel geodesics). Then to do the

magnification, we make bCR2/3c translations by 2k each time, and consider a family of
bCR2/3c + 1 parallel geodesics. It remains to study the number of their intersections
with LbRkc, and for this we adapt arguments from [7] and also use results from [6, 8].

2 Geometric construction and parallel geodesics

2.1 Preliminaries

We start with some basic geometric properties of geodesics. A first observation is
that, for any u ≤ v ∈ Z2, if u′ ≤ v′ and u′, v′ ∈ Γu,v, we must have that Γu′,v′ ⊂ Γu,v, and
Γu′,v′ is the part of Γu,v between u′ and v′ (including u′, v′). This immediately leads to
the following result.

Lemma 2.1. Take points u < v and u′ < v′. Then Γu,v ∩ Γu′,v′ is either empty, or equals
Γu′′,v′′ for some u′′ ≤ v′′.

In particular, this implies that for u, v < w ∈ Z2, the geodesics Γu,w and Γv,w follow
the same path from Cu,v;w to w.

We define another (partial) order of points in Z2: for u = (u1, u2), v = (v1, v2) ∈ Z2,
we denote u � v, if u1 ≤ v1 and u2 ≥ v2, and we denote u ≺ v if u � v and u 6= v. From
Lemma 2.1 we get the following result which says that geodesics are ordered.

Lemma 2.2. Suppose u, u′, v, v′ ∈ Z2 satisfy that u ≤ v, u′ ≤ v′, and u � u′, v � v′. Then
for any w ∈ Γu,v and w′ ∈ Γu′,v′ , we cannot have w′ ≺ w.

The next (less elementary) result is an estimate about spatial transversal fluctuation
of geodesics, and will be repeatedly used in the rest of this note. It can be thought of as
[7, Theorem 3] in a slightly different form.

Proposition 2.3. There are absolute constants c, r0 ∈ R+ such that the following is
true. Let n, r ∈ Z+ with r0 < r < n, and m ∈ Z with |m| < 10r2/3. Take f0 ∈ Z such
that (r + f0, r − f0) = Γ(m,−m),n ∩ L2r, then we have P[|f0| > xr2/3] < e−cx for any large
enough x.

The proof of this proposition is similar to that of [7, Theorem 3], and the arguments
could be traced back to [27] in the setting of first passage percolation. We leave the
proof to the appendix.

2.2 Proof of the main results: rotation and translation

Exploiting rotation invariance of this model, we convert the probability considered in
Theorem 1.1 to the probability of coalescence of two parallel geodesics.

Lemma 2.4. Take any k, n ∈ Z+, R > 10, with n > Rk. We have

1

2
≤ P[d(Ck,−k;n) > Rk]

P[Γ−k,n ∩ LbRkc 6= Γk,n+2k ∩ LbRkc]
≤ 1 (2.1)

Proof. Denote E1 to be the event where Γk,n ∩ LbRkc 6= Γ−k,n ∩ LbRkc. Then we note that

the event d(Ck,−k;n) > Rk is equivalent to E1, by Lemma 2.1. Also, denote E2 to be the
event where

Γk,n ∩ LbRkc 6= Γk,n+2k ∩ LbRkc,

and E3 to be the event where

Γ−k,n ∩ LbRkc 6= Γk,n+2k ∩ LbRkc.
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Figure 1: An illustration of the objects in the proof of Lemma 2.4.

Now (2.1) is equivalent to 1
2P[E3] ≤ P[E1] ≤ P[E3].

We define E ′1 as E1 rotated by π around k+n
2 , i.e.

Γk,n ∩ L2n−bRkc 6= Γk,n+2k ∩ L2n−bRkc.

We have P[E ′1] = P[E1] by rotation invariance of this model. Note that both E2 and E ′1
are about the geodesics Γk,n,Γk,n+2k. Since n > Rk, we have 2n − bRkc > bRkc, so E2
implies E ′1 by Lemma 2.1, and P[E2] ≤ P[E ′1]. By Lemma 2.2 we have Γ−k,n ∩ LbRkc �
Γk,n ∩ LbRkc � Γk,n+2k ∩ LbRkc, so E3 = E1 ∪ E2. Thus

P[E3] ≤ P[E1] + P[E2] ≤ P[E1] + P[E ′1] = 2P[E1] ≤ 2P[E3],

and our conclusion follows.

Our next step is to study coalescence of two parallel geodesics. For this, we consider
a family of parallel geodesics as follows.

Take a, b ∈ Z and m, d, s ∈ Z+. We define two sequences of points: u0, u1, · · · , um ∈ L0

and v0, v1, · · · , vm ∈ Ls, where ui := (a+id,−a−id), and vi := (bs/2c+b+id, ds/2e−b−id)

for each 1 ≤ i ≤ m. We take the family of geodesics {Γui,vi}mi=1, and study the number of
intersections of them with Lr, for some 0 < r < s. We will show that when md is in the
order of r2/3, its expectation is lower and upper bounded by constants.

Proposition 2.5. There exist constants M, r0 ∈ R+, such that if md > Mr2/3, r0 < r < s,
and |a|, |b| < r2/3, we have

E|Lr ∩ ∪mi=1Γui,vi | >
3

2
. (2.2)

Proposition 2.6. There exist constants C, r0 ∈ R+, such that if r > r0, s > 3r
2 , and

md, |a|, |b| < r2/3, we have
E|Lr ∩ ∪mi=0Γui,vi | < C. (2.3)

The proofs of these results are adapted from the proof [7, Theorem 2], and we
leave them to the next subsection. We now prove our main results assuming these two
propositions.

Proof of Theorem 1.1. For the parameters in the setting of Proposition 2.5 and 2.6, we
take r = bRkc, s = 2n, a = −bk2/3c, b = 0, d = 2bk2/3c. We leave m ∈ Z+ to be
determined. Then we have u0 = −k, u1 = k, v0 = n, and v1 = n + 2k. In view of
Lemma 2.4, we just need to upper and lower bound P[Γu0,v0 ∩ Lr 6= Γu1,v1 ∩ Lr].

By letting R large, we can make r large, |a|, |b| < r2/3, and s > 3r
2 (since we require

that n > Rk). By translation invariance, for each 0 ≤ i ≤ m− 1, we have

P[Γu0,v0 ∩ Lr 6= Γu1,v1 ∩ Lr] = P[Γui,vi ∩ Lr 6= Γui+1,vi+1
∩ Lr].
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This (with Lemma 2.2) implies that

E|Lr ∩ ∪mi=0Γui,vi | = 1 +

m−1∑
i=0

P[Γui,vi ∩ Lr 6= Γui+1,vi+1 ∩ Lr]

= 1 +mP[Γu0,v0 ∩ Lr 6= Γu1,v1 ∩ Lr].

First, we take m = dMR2/3e, where M is from Proposition 2.5. By taking R large enough,
we have m < 2MR2/3, and md ≥ 2MR2/3bk2/3c > Mr2/3. Hence by Proposition 2.5 we
have

P[Γu0,v0 ∩ Lr 6= Γu1,v1 ∩ Lr] >
1

2m
> (4M)−1R−2/3.

Second, we take m = bR2/3/3c. Now we have m > R2/3/4 and md ≤ 2(Rk)2/3/3 < r2/3

when R is large enough. By Proposition 2.6, we have that

P[Γu0,v0 ∩ Lr 6= Γu1,v1 ∩ Lr] <
C

m
< 4CR−2/3.

Finally, putting these together and using Lemma 2.4, we get

(8M)−1R−2/3 < P[d(Ck
(1),k(2);n) > Rk] < 4CR−2/3,

and our conclusion follows since M and C are constants.

Proof of Corollary 1.2. For the upper bound, first note that C0,k̃;n ≤ Ck,−k;n, which is
due to −k ≺ 0, k̃ ≺ k and Lemma 2.1, 2.2. Then applying Theorem 1.1 we have

P[C0,k̃;n
1 > Rk] ≤ P[d(C0,k̃;n) > Rk] ≤ P[d(Ck,−k;n) > Rk] < C2R

−2/3.

Now we prove the lower bound. Denote k̃′ := (bk2/3c, 0). By symmetry of the model we
have

2P[d(C0,k̃;n) > 4Rk] = P[d(C0,k̃;n) > 4Rk] + P[d(C0,k̃
′;n) > 4Rk] ≥ P[d(Ck̃,k̃

′;n) > 4Rk],

where for the second inequality we use that d(Ck̃,k̃′;n) = max{d(C0,k̃;n), d(C0,k̃′;n)}, which
is due to Lemma 2.1. By Theorem 1.1, we have that

P[d(Ck̃,k̃
′;n) > 4Rk] > C1R

−2/3/8.

Next, by Proposition 2.3 we have

P[d(C0,k̃;n) > 4Rk, C0,k̃;n
1 ≤ Rk] ≤ P[f0 < −Rk] < e−cR

2/3k2/3 ,

where f0 ∈ Z such that (d2Rke+ f0, d2Rke− f0) ∈ Γ0,n, and c > 0 is an absolute constant.
Thus we have

P[C0,k̃;n
1 > Rk] ≥ P[d(C0,k̃;n) > 4Rk]− P[d(C0,k̃;n) > 4Rk, C0,k̃;n

1 ≤ Rk]

≥ C1R
−2/3/16− e−cR

2/3k2/3 .

Then by taking R0 large enough the lower bound follows.

2.3 Intersections with parallel geodesics

In this subsection we prove Proposition 2.5 and 2.6, adapting the arguments in [7,
Section VI]. We start with the lower bound, which follows from the spatial transversal
fluctuation (Proposition 2.3).
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Proof of Proposition 2.5. It suffices to consider two geodesics Γu0,v0 and Γum,vm .
Take f0, fm ∈ Z such that (b r2c+f0, d r2e−f0) = Γu0,v0 ∩Lr, and (b r2c+fm, d r2e−fm) =

Γur,vr ∩ Lr. By Proposition 2.3, and translation invariance, we can find constant p ∈ R+

such that

P[|f0| > pr2/3], P[|fm −md| > pr2/3] <
1

4
.

By taking M > 2p, we have md > Mr2/3 > 2pr2/3, and P[f0 = fm] < 1
2 . Then

E|Lr ∩ ∪mi=1Γui,vi | ≥ E|Lr ∩ (Γu0,v0 ∪ Γum,vm) | ≥ 1 + P[f0 6= fm] >
3

2
,

and our conclusion follows.

u0 u1 u2 u3 u4 u5 u6

v0 v1 v2 v3 v4 v5 v6

w0 w1/w2 w3 w4 w5/w6

L0

Lr

Ls

Figure 2: An illustration of the objects in the proof of Proposition 2.6, rotated by π/4.

For the upper bound, in addition to Proposition 2.3 we also need the following
estimate on the number of disjoint geodesics.

Proposition 2.7 ([6, Corollary 2.7]). There exists n0, `0, c ∈ R+ such that the following
is true. Take any n, ` ∈ Z+, n > n0, n0.01 > ` > `0. Let A`,n := {(i,−i) : i ∈ Z, |i| <
`1/16n2/3} ⊂ L0, and B`,n := {(n+ i, n− i) : i ∈ Z, |i| < `1/16n2/3} ⊂ L2n. Let E`,n be the
event that there exists ũ1, · · · , ũ` ∈ A`,n and ṽ1, · · · , ṽ` ∈ B`,n, such that the geodesics

{Γũi,ṽi}`i=1 are mutually disjoint. Then P[E`,n] < e−c`
1/8

.

In [6], this result is stated as a generalization of [6, Theorem 2] (see also [3, Theorem
3.2] for a refinement of the arguments). For completeness we also contain a proof of this
proposition in the appendix.

Now we finish the proof of the upper bound.

Proof of Proposition 2.6. We can assume that r > 101001, since otherwise the result
follows by taking C large enough.

Take an absolute constant τ0 := max{1010, 2`0 + 1}, where `0 is from Proposition 2.7.
For any τ ∈ Z+, τ0 < τ < r0.001, we wish to bound P[|Lr ∩ ∪mi=0Γui,vi | > τ ]. We denote
wi := Γui,vi ∩ Lr for each i = 0, · · · ,m. Then by Lemma 2.2 we have w0 � · · · � wm. For
any 0 ≤ i < j ≤ m, if wi 6= wj , then by Lemma 2.1 at least one of Γui,wi ∩ Γuj ,wj = ∅ and
Γwi,vi ∩ Γwj ,vj = ∅ happens (see Figure 2 for an illustration). Now we denote

I : = {i ∈ {0, · · · ,m− 1} : wi 6= wi+1},
I1 : = {i ∈ {0, · · · ,m− 1} : Γui,wi ∩ Γui+1,wi+1

= ∅},
I2 : = {i ∈ {0, · · · ,m− 1} : Γwi,vi ∩ Γwi+1,vi+1

= ∅}.

From this definition we have that I = I1 ∪ I2. We also have that {Γui,wi}i∈I1 are mutually
disjoint, and that {Γwi,vi}i∈I2 are mutually disjoint.

We let f0, fm ∈ Z such that (b r2c+ f0, d r2e − f0) = w0, and (b r2c+ fm, d r2e − fm) = wm.
Now suppose that |Lr ∩ ∪mi=0Γui,vi | > τ , and |f0|, |fm| < bτ/2c1/16br/4c2/3 − 1. Then
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|I| ≥ τ , so either |I1| ≥ τ/2 or |I2| ≥ τ/2. Using the notations in Proposition 2.7, these
imply that either the event Ebτ/2c,br/2c happens, or the event Ebτ/2c,b(s−r)/2c translated
by (dr/2e, dr/2e) happens (here we use that b(s − r)/2c ≥ br/4c since s > 3r/2). Thus
P[|Lr ∩ ∪mi=0Γui,vi | > τ ] is bounded by

P[max{|f0|, |fm|} ≥ bτ/2c1/16br/4c2/3 − 1] + P[Ebτ/2c,br/2c] + P[Ebτ/2c,b(s−r)/2c].

Note that `0 < bτ/2c < br/4c0.01 ≤ br/2c0.01, b(s−r)/2c0.01, so by Proposition 2.7 we have

P[Ebτ/2c,b r2 c] + P[Ebτ/2c,b(s−r)/2c] < 2e−c1τ
1/8

, (2.4)

for some constant c1 > 0. By Proposition 2.3, and translation invariance, for some
constant c2 > 0 we have

P[|f0| > bτ/2c1/16br/4c2/3/2], P[|fm −md| > bτ/2c1/16br/4c2/3/2] < e−c2τ
1/16

.

Since r is taken large enough, and md < r2/3, τ > 1010, we get that

P[max{|f0|, |fm|} ≥ bτ/2c1/16br/4c2/3 − 1] < 2e−c2τ
1/16

.

Using this and (2.4), we have that

P[|Lr ∩ ∪mi=0Γui,vi | > τ ] < 2e−c2τ
1/16

+ 2e−c1τ
1/8

.

Finally, note that |Lr ∩ ∪mi=0Γui,vi | ≤ m+ 1 < r2/3 + 1, we have

E[|Lr ∩ ∪mi=0Γui,vi |]

<τ0 + (r2/3 + 1)P[|Lr ∩ ∪mi=0Γui,vi | > r0.001] + τ0

dr0.001e∑
τ=dτ0e

P[|Lr ∩ ∪mi=0Γui,vi | > τ ]

<τ0 + (r2/3 + 1)(2e−c2(r0.001)1/16 + 2e−c1(r0.001)1/8) + τ0

dr0.001e∑
τ=dτ0e

2e−c2τ
1/16

+ 2e−c1τ
1/8

,

and this is upper bounded by a constant.

A Transversal fluctuation estimates and disjoint geodesics

In this appendix we provide proofs of Proposition 2.3 and 2.7, following arguments in
the proof of [7, Theorem 3] and [6, Theorem 2], respectively.

We start with estimates on passage times. We have that T0,(m,n) has the same law as
the largest eigenvalue of X∗X where X is an (m+ 1)× (n+ 1) matrix of i.i.d. standard
complex Gaussian entries (see [22, Proposition 1.4] and [4, Proposition 1.3]). Hence we
get the following one point estimates from [24, Theorem 2].

Theorem A.1. There exist constants C, c > 0, such that for any m ≥ n ≥ 1 and x > 0, we
have

P[T0,(m,n) − (
√
m+

√
n)2 ≥ xm1/2n−1/6] ≤ Ce−cx. (A.1)

In addition, for each ψ > 1, there exist C ′, c′ > 0 depending on ψ such that if m
n < ψ, we

have

P[T0,(m,n) − (
√
m+

√
n)2 ≥ xn1/3] ≤ C ′e−c

′min{x3/2,xn1/3},

P[T0,(m,n) − (
√
m+

√
n)2 ≤ −xn1/3] ≤ C ′e−c

′x3

,
(A.2)

and as a consequence
|ET0,(m,n) − (

√
m+

√
n)2| ≤ C ′n1/3. (A.3)
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We also have the following segment to segment estimate.

Proposition A.2. Let A and B be segments of length n2/3 which are aligned with L0

and L2n respectively, and let their midpoints being (m,−m) and n. For each ψ < 1, there
exist constants C, c > 0 depending only on ψ, such that when |m| < ψn,

P
[

sup
u∈A,v∈B

|Tu,v − ETu,v| ≥ xn1/3
]
≤ Ce−cx.

A more general version of this result (where u, v are taken in a parallelogram rather
than two segments) is proved as [8, Proposition 10.1, 10.5], in the setting of Poissionian
DLPP (see also [20, Proposition B.1]). In the setting of exponential DLPP a proof is given
in [5, Appendix C] by Basu, Ganguly, and the author, following the ideas in [8]. For
completeness we also write the proof here, and it is reproduced from the proof in [5,
Appendix C].

We start with a segment to point lower bound.

Lemma A.3. Let A′ denote the line segment of length 2n2/3 on L0 with midpoint at
(m,−m). For each ψ < 1, there exist C, c > 0 depending only on ψ such that when
|m| < ψn, we have for all x > 0 and all n ≥ 1,

P
[

inf
u∈A′

(Tu,n − ETu,n) ≤ −xn1/3
]
≤ Ce−cx

3

.

Proof. For simplicity of notations, we write this proof only for the case m = 0, and the
same proof will apply to the general case. We shall also ignore some rounding issues.
We will use C, c > 0 to denote large and small universal constants throughout this proof,
and the value could change from line to line.

We construct a tree T whose vertices are a subset of vertices of Z2; in particular root
of T will be the vertex n and the leaves of T are the vertices on A′. Let n be sufficiently
large so that there exists J such that n1/4 < 8−J(2n) ≤ n1/3. For smaller n the lemma
follows by taking C large and c small enough. For j = 0, 1, 2, . . . , J , there will be 4j

vertices of T at level j (let us denote this set by Tj) on the line L8−j(2n), such that these
4j vertices divide the line joining 8−jn+ (−n2/3, n2/3) and 8−jn+ (n2/3,−n2/3) into 4J + 1

equal length intervals. Notice that, for each j the vertices in Tj are ordered under ≺
from left to right. The vertices of T is ∪0≤j≤JTj , and the k-th vertex at level j from the
left is connected to the four vertices in level (j+ 1) which are labeled 4k−3, 4k−2, 4k−1

and 4k from the left.
Noticing that it suffices to prove this lemma for x sufficiently large. Let Aj denote

the event that for all u ∈ Tj and for all v ∈ Tj+1 such that the edge (u, v) is present in

T , we have Tv,u ≥ ETv,u − x2−9j/10−10n1/3. We claim that P(∪jAcj) ≤ Ce−cx
3

for all x
sufficiently large. Indeed, by our construction of T , for each edge between a vertex
u ∈ Tj and a vertex v ∈ Tj+1, using (A.2) we have that

P[Tv,u − ETv,u ≤ −x2−9j/10−10n1/3] ≤ Ce−cx
323j/10

.

By taking a union bound over all 4j+1 such edges, and over all j = 0, 1, 2, . . . , J − 1, we
get that P(∪jAcj) ≤ Ce−cx

3

.

Now it remains to show that, on ∩0≤j≤JAj , we have infu∈A′(Tu,n − ETu,n) ≥ −xn1/3

for all x sufficiently large. Let us fix u ∈ A′ and let u(J) be its closest vertex in TJ .
Let u < u(J) < u(J−1) < . . . < u(0) = n denote the path to n in T . Hence we have
Tu,n ≥

∑J−1
j=0 Tu(j+1),u(j) . By definition, on ∩0≤j≤JAj we also have that

∑J−1
j=0 Tu(j+1),u(j) −

ETu(j+1),u(j) ≥ −x2n
1/3 for x sufficiently large. Observe also that by our definition of T ,

we have ETu,u(J) ≤ x
4n

1/3 by (A.3), and hence it suffices to lower bound
∑J
j=0ETu(j+1),u(j)

(here we write u = u(J+1)). For u = (u1, u2) ∈ Z2, we denote φ(u) = u1 − u2. Observe
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now that, by the construction of T and the choice of u(J), we have for each j ≤ J that

|φ(u(j+1)) − φ(u(j))| ≤ Cn2/3

4j . Using (A.3) we get ETu(j+1),u(j) ≥ 2(d(u(j)) − d(u(j+1))) −
C2−jn1/3, for each j ≤ J . Summing over j from 0 to J we get

∑J
j=0ETu(j+1),u(j) ≥

ETu,n − x
4n

1/3, and this completes the proof.

Proof of Proposition A.2. Applying Lemma A.3 twice we get the bound for the lower
tail of infu∈A,v∈B Tu,v − ETu,v. Now denote A0 = {supu∈A,v∈B(Tu,v − ETu,v) ≥ xn1/3},
it remains to show that P[A0] ≤ Ce−cx for some C, c > 0 depending only on ψ. Again
we only prove the case m = 0 for simplicity of notations, and the general case follows
similarly. We also observe that it suffices to prove the result for x sufficiently large.
Consider the following events:

A1 = { inf
u∈A

T−n,u − ET−n,u ≥ −
xn1/3

10
}, A2 = { inf

v∈B
Tv,2n − ETv,2n ≥ −

xn1/3

10
}.

It follows from (A.3) that for x sufficiently large we have for any u ∈ A and v ∈ B, we have

ET−n,u + ETu,v + ETv,2n ≥ ET−n,2n − xn1/3

10 . It therefore follows that A ⊇ A0 ∩ A1 ∩ A2,

where A = {T−n,2n − ET−n,2n ≥ xn1/3

2 }. Since A0,A1,A2 are all increasing events in the
weights {ξv}v∈Z2 , it follows that P[A] ≥ P[A0 ∩ A1 ∩ A2] ≥ P[A0]P[A1]P[A2] by the FKG
inequality. The result follows by noting that we have P[A1],P[A2] ≥ 1

2 by Lemma A.3,

and P[A] ≤ C ′e−c′min{x3/2,xn1/3} by (A.2).

A.1 Transversal fluctuation

Now we give the proof of Proposition 2.3. We note that it is an analog of [7, Theorem
3], in the sense that both bound the fluctuation of the geodesic from the diagonal. The
main difference is that in [7, Theorem 3], the fluctuation is measured in terms of the
intersections with a vertical or horizontal line, while here we use the perpendicular
distance of a point on the geodesic to the diagonal. In our setting the transversal
fluctuation at L2r is at most linear in r, avoiding some technical complexities (see also
[7, Remark 1.3]).

Proof of Proposition 2.3. For simplicity of notations, we assume that m = 0, and we
write Γ = Γ0,n. We also assume that n = 2Jr for some J ∈ Z+. The general case follows
the same arguments. By symmetry it suffices to show that P[f0 > xr2/3] < e−cx.

Let α = 2
1
6 . For 0 ≤ j ≤ J , take fj ∈ Z such that (2j−1r + f0, 2

j−1r − f0) =

Γ ∩ L2jr. Denote fJ+1 = 0. Let Bj denote the event that fj > x((2α)jr)2/3 and fj+1 ≤
x((2α)j+1r)2/3. Then {f0 > xr2/3} ⊂ ∪J−1

j=0 Bj , and it suffices to show that P[Bj ] ≤
e−cxα

2j/3

. For this we split L2jr and L2j+1r into segments of length (2jr)2/3. For t, t′ =

0, 1, 2, . . . , denote

Ut={(2j−1r + f, 2j−1r − f) : f ∈ (x((2α)jr)2/3 + t(2jr)2/3, x((2α)jr)2/3 + (t+ 1)(2jr)2/3]},

Vt′={(2jr + f, 2jr − f) : f ∈ [x((2α)j+1r)2/3−(t+ 1)(2jr)2/3, x((2α)j+1r)2/3−t(2jr)2/3)},

and we let Bj,t,t′ = {∃u ∈ Ut, v ∈ Vt′ ,0 < u < v, T0,u + Tu,v − T0,v ≥ 0}. Then we

have Bj ⊂ ∪∞t,t′=0Bj,t,t′ . We claim that P[Bj,t,t′ ] ≤ e−c1(xα
2j
3 +t+t′) for some c1 > 0. Then

summing over j, t, t′ gives the result.
Fix some j, t, t′, and assume that there exist u ∈ Ut and v ∈ Vt′ with 0 < u < v. Then

for any v = (v1, v2) ∈ Vt′ we must have that v1
v2
∈ (0.1, 10). We can also assume that for

all u = (u1, u2) ∈ Ut and v = (v1, v2) ∈ Vt′ , we have u2

u1
, v2−u2

u2−u1
∈ (0.01, 100) (otherwise, we

can get the desired bound of P[Bj,t,t′ ] by (A.1) and (A.2) and taking a union bound over
all u ∈ Ut, v ∈ Vt′ with 0 < u < v). Now by (A.3), we have that there exists some constant
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C independent of r, x, t, t′, j, such that for all u ∈ Ut, v ∈ Vt′ and all x sufficiently large,
we have ET0,u + ETu,v ≤ ET0,v − C(xα

2j
3 + t + t′)2(2jr)1/3. By Proposition A.2 we get

P[Bj,t,t′ ] ≤ e−c1(xα
2j
3 +t+t′) as desired.

A.2 Disjoint geodesics

For completeness, in this subsection we give a proof of Proposition 2.7 (which is
precisely [6, Corollary 2.7]). It is reproduced from the proof of [6, Theorem 2], and the
only difference is that we write in the slightly more general setting of [6, Corollary 2.7].

Fix n, `, which are sufficiently large and satisfy ` < n0.01. Below we will ignore some
rounding issues. Let h = `1/2, consider h line segments L0, · · · , Lh, each with slope
−1 and length 2`1/8n2/3, and the midpoints are in the line connecting 0 and n. These
segments are equally spaced with internal spacing 2n

h , and L0 ⊂ L0, Lh ⊂ L2n.

Let E be the event that there exist u ∈ A`,n, v ∈ B`,n, and 0 ≤ i ≤ h, such that

Γu,v does not intersect Li. Then we have P(E) ≤ e−c`
1/8

for some c > 0. Indeed, by
Lemma 2.2, E implies that at least one of Γul,ul+n and Γur,ur+n do not intersect some Li.
Here ul and ur are two end points on A`,n. Then we just apply Proposition 2.3.

Take a constant c1 > 0 to be determined. Using (A.3) and Proposition A.2, we have
that P[infu∈A`,n,v∈B`,n Tu,v ≤ 4n − c1`

1/4n1/3] ≤ e−c`
1/4

for some c > 0. Now to get
Proposition 2.7 it suffices to prove the following result.

Proposition A.4. Let G`,n denote the event that there exists ũ1, · · · , ũ` ∈ A`,n and
ṽ1, · · · , ṽ` ∈ B`,n, and disjoint paths γi joining ũi and ṽi, such that γi intersects Lk for

each 0 ≤ k ≤ h, and T (γi) ≥ 4n− c1`1/4n1/3. Then P(G`,n) ≤ e−c`1/4 .

Our argument to prove this proposition is as follows. Take some g ∈ Z+ to be
determined, and divide the line segment Li into equally spaced line segments Li,j (for j ∈
[−`1/8g, `1/8g)∩Z), each of length n2/3

g . For a fixed sequence J := {j0, j1, j2, . . . , jh−1, jh}
taking values in [−`1/8g, `1/8g) ∩Z, we shall consider the best path γJ from A`,n to B`,n
that passes through the line segment Li,ji for each i = 0, 1, . . . , h. We shall show that
T (γJ) is typically much smaller than 4n. For this we need the following lemma.

Lemma A.5. LetA∗ denote the line segment joining (− c0n
2/3

2 , c0n
2/3

2 ) and ( c0n
2/3

2 ,− c0n
2/3

2 ),
and let B∗ = A∗ + (n+m,n−m). For c0 sufficiently small there exists c2 > 0 such that
for all n sufficiently large and |m| < 0.9n, we have E supu∈A∗,v∈B∗ Tu,v ≤ 4n− c2n1/3.

Proof. For simplicity of notations we assume that m = 0, and the same arguments work
for the general case. Consider u0 = (−c3/20 n,−c3/20 n), v0 = n + (c

3/2
0 n, c

3/2
0 n), and note

E sup
u∈A∗,v∈B∗

Tu,v ≤ ETu0,v0 − E inf
u∈A∗

Tu0,u − E inf
v∈B∗

Tv,v0 .

By Proposition A.2 we have E infu∈A∗ Tu0,u,E infv∈B∗ Tv,v0 ≥ 4c
3/2
0 n− Cc1/20 n1/3 for some

constant C > 0. From the Tracy-Widom convergence result of [22], and the fact that the
GUE Tracy-Widom distribution has negative mean, it follows that that for n sufficiently
large ETu0,v0 ≤ 4(n+2c

3/2
0 n)−C ′n1/3 for some C ′ > 0. Thus we can choose c0 sufficiently

small to complete the proof.

From now on we fix c0 such that Lemma A.5 holds, and choose g = h2/3

c0
.

Lemma A.6. For any sequence J := {j0, j1, j2, . . . , jh−1, jh} taking values in
[−`1/8g, `1/8g) ∩ Z, let γJ denote the best path from A`,n to B`,n that intersects the
line segment Li,ji for each i = 0, 1, . . . , h. Then there exists c1, c > 0, such that for each

J we have P[T (γJ) ≥ 4n− c1h2/3n1/3] ≤ e−ch1/2

.
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Proof. Fix a sequence J , first observe that T (γJ) ≤
∑h−1
i=0 supu∈Li,ji ,v∈Li+1,ji+1

Tu,v, which

is a sum of h independent random variables. By our choice of ` and h we have that the
slope of the line joining the midpoints of Li,ji and Li+1,ji+1

is between 1/2 and 2. Thus
for each i, by Lemma A.5 we have

E sup
u∈Li,ji ,v∈Li+1,ji+1

Tu,v ≤ 4n/h− c2(n/h)1/3;

and by Proposition A.2, for large enough x we have

P
[

sup
u∈Li,ji ,v∈Li+1,ji+1

Tu,v − 4n/h ≥ x(n/h)1/3
]
≤ e−cx.

By a Bernstein type bound on sum of independent variables with exponential tails, we
have P[T (γJ) − (4n − c2h2/3n1/3) ≥ xh1/6n1/3] ≤ e−cx for some c > 0 and each x > 0

sufficiently large. By taking c1 = c2/2 and x = c1h
1/2 we finish the proof.

Proof of Proposition A.4. We use the BK inequality, and bound the entropy term of
disjoint paths. Clearly we can assume that n, ` are sufficiently large with ` < n0.01.

We let C denote the set of all tuples (J1, J2, . . . , J`), where each Ji = (j
(i)
0 , . . . , j

(i)
h ) is a

sequence taking values in [−`1/8g, `1/8g) ∩Z, satisfying that j(i1)
k ≤ j(i2)

k for any 1 ≤ i1 <
i2 ≤ ` and 0 ≤ k ≤ h. For (J1, J2, . . . , J`) ∈ C, let AJ1,J2,...,J` denote the event that there
exist disjoint paths γ1, . . . , γ` from A`,n to B`,n, such that each T (γi) ≥ 4n− c1h2/3n1/3,
and γi intersects L

k,j
(i)
k

for each k. Since geodesics are ordered (Lemma 2.2), we have

that G`,n ⊂ ∪(J1,J2,...,J`)∈CAJ1,J2,...,J` .
For each 1 ≤ i ≤ `, consider the event that there is a path γi from A`,n to B`,n,

intersecting L
k,j

(i)
k

for each k, with T (γi) ≥ 4n− c1h2/3n1/3. This is an increasing event

in the weights {ξv}v∈Z2 . Thus by the BK inequality [31] 1, the probability of such events
happening disjointly is upper bounded by the product of the marginal probabilities. It
therefore follows using Lemma A.6 that P(AJ1,J2,...,J`) ≤ e−c`

5/4

.
It remains to bound |C|. Note that C can be enumerated by picking (h + 1) many

non-decreasing sequences of length `, where each co-ordinate takes values between
−`1/8g and `1/8g. Now we need to enumerate positive integer sequences −`1/8g ≤ y1 ≤
y2 ≤ · · · ≤ y` ≤ `1/8g. By taking the difference sequence zk = (yk − yk−1) this reduces to
enumerating sequences with z1 + z2 + · · ·+ z` ≤ 2`1/8g. It is a standard counting exercise

to see that number of such sequences is bounded by
(`+2`1/8g

2`1/8g

)
. Hence as h = `1/2 and

g = h2/3

c0
, for any ε > 0 we have |C| ≤ ``23/24+ε and the result follows.
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