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Abstract

This paper is devoted to a direct martingale approach for Pólya urn models asymptotic
behaviour. A Pólya process is said to be small when the ratio of its replacement
matrix eigenvalues is less than or equal to 1/2, otherwise it is called large. We find
again some well-known results on the asymptotic behaviour for small and large urn
processes. We also provide new almost sure properties for small urn processes.
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1 Introduction

At the inital time n = 0, an urn is filled with α ≥ 0 red balls and β ≥ 0 white balls.
Then, at any time n ≥ 1 one ball is drawn randomly from the urn and its color observed.
If it is red it is then returned to the urn together with a additional red balls and b ≥ 0

white ones. If it is white it is then returned to the urn together with c ≥ 0 additional
red balls and d white ones. The model corresponding replacement matrix is given, for
a, b, c, d ∈ N, by

R =

(
a b

c d

)
.

The urn process is said to be balanced if the total number of balls added at each step is
a constant, S = a+ b = c+ d ≥ 1. Thanks to the balance assumption, S is the maximum
eigenvalue of RT . In fact, S is the Perron–Frobenius eigenvalue so it is simple. Moreover,
the second eigenvalue of RT is given by m = a− c = d− b. Throughout the rest of this
paper, our processes will be balanced and we shall denote

σ = m/S < 1

the ratio of the two eigenvalues. It is straightforward that the respective eigenvectors of
RT are given by

v1 =
S

b+ c

(
c

b

)
and v2 =

S

b+ c

(
1

−1

)
.

We can rewrite RT under the following form

RT = PDP−1 =
1

b+ c

(
c 1

b −1

)(
S 0

0 m

)(
1 1

b −c

)
.
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A martingale approach for Pólya urn processes

Hereafter, let us define the process (Un), the composition of the urn at time n, by

Un =

(
Xn

Yn

)
and U0 =

(
α

β

)
where Xn is the number of red balls and Yn is the number of white ones. Then, let
τ = α+β ≥ 1 and τn = τ+nS be the number of ball inside the urn at time n. In particular,
one can observe that Xn + Yn = τn is a deterministic quantity.

The traditionnal Pólya urn model corresponds to the case where the replacement
matrix R is diagonal, while the generalized Pólya urn model corresponds to the case
where the replacement matrix R is not diagonal.

The questions about the asymptotic behavior of (Un) have been extensively studied,
firstly by Freedman [9] and by many after, see for example [5, 7, 8, 13, 15, 14]. We
also refer the reader to Pouyanne’s CIMPA summer school lectures 2014 [16] for a
very comprehensive survey on Pólya urn processes that has been a great source of
inspiration. The reader may notice that this paper is related to Bercu [4] on the elephant
random walk. This is due to the paper of Baur and Bertoin [2] on the connection between
elephant random walks and Pólya-type urns.

Our strategy is to use the martingale theory [6, 11] in order to propose a direct proof
of the asymptotic normality associated with (Un). We also establish new refinements on
the almost sure convergence of (Un). The paper is organized as follows. In Section 2,
we briefly present the traditional Pólya urn model, as well as the martingale related to
this case. We establish the almost sure convergence and the asymptotic normality for
this martingale. In Section 3, we present the generalized Pólya urn model with again
the martingale related to this case, and we also give the main results for this model.
Hence, we first investigate small urn regime where σ ≤ 1/2 and we establish the almost
sure convergence, the law of iterated logarithm and the quadratic strong law for (Un).
The asymptotic normality of the urn composition is also provided. We finally study the
large urn where σ > 1/2 and we prove the almost sure convergence as well as the mean
square convergence of (Un) to a non-degenerate random vector whose moments are
given. The proofs are postponed to Sections 4 and 5.

2 Traditional Pólya urn model

This model corresponds to the case where the replacement matrix is diagonal

R =

(
S 0

0 S

)
.

It means that at any time n ≥ 1, one ball is drawn randomly from the urn, its color
observed and it is then returned to the urn together with S ≥ 1 additional balls of the
same color. Let us define the process (Mn) by

Mn =
Xn

τn

and write

Xn = α+ S

n∑
k=1

εk

where the conditional distribution of εn+1 given the past up to time n is L(εn+1|Fn) =

B(Mn) where B denotes the Bernouilli distribution. We clearly have

E[Mn+1|Fn] = Mn
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which means that (Mn) is a martingale. We have ∆Mn+1 = S
τn+1

(
εn+1 −Mn

)
. Hence,

E
[
∆M2

n+1|Fn
]

=
S2

τ2
n+1

(
E
[
ε2
n+1|Fn

]
−M2

n

)
=
S2Mn(1−Mn)

τ2
n+1

.

We now focus our attention on the asymptotic behavior of (Mn).

Theorem 2.1. The process (Mn) converges to a random variableM∞ almost surely and
in any Lp for p ≥ 1. The limitM∞ has a beta distribution, with parameters α

S and β
S .

Remark 2.2. This results was first proved by Freedman, Theorem 2.2 in [9].

Our first new result on the gaussian fluctuation of (Mn) is as follows.

Theorem 2.3. We have the following convergence in distribution

√
n

M∞ −Mn√
Mn(1−Mn)

L−→
n→∞

N
(
0, 1
)

(2.1)

3 Gereralized Pólya urn model

This model corresponds to the case where the replacement matrix is not diagonal,

R =

(
a b

c d

)
.

Let us rewrite

Xn = α+ a

n∑
k=1

εk + c

n∑
k=1

(1− εk)

where the conditional distribution of εn+1 given the past up to time n is L(εn+1|Fn) =

B(τ−1
n Xn). We have

Un+1 = Un +RT
(

εn+1

1− εn+1

)
and

Un − E[Un] =

(
Xn − E[Xn]

Yn − E[Yn]

)
=

(
1

−1

)(
Xn − E[Xn]

)
=
b+ c

S

(
Xn − E[Xn]

)
v2.

Hence, we obtain that

E
[
Un+1 − E[Un+1]|Fn

]
= Un − E[Un] +RTE

[( εn+1

1− εn+1

)
− E

[( εn+1

1− εn+1

)]
|Fn
]

=
(
I2 + τ−1

n RT
)(
Un − E[Un]

)
=

(
I2 + τ−1

n RT
)( 1

−1

)(
Xn − E[Xn]

)
=

(
1 + τ−1

n m
)( 1

−1

)(
Xn − E[Xn]

)
=

(
1 + τ−1

n m
)(
Un − E[Un]

)
. (3.1)

Finally, denote

σn =

n−1∏
k=0

(
1 + τ−1

k m
)−1

=
Γ(n+ τ

S )Γ( τS + σ)

Γ( τS )Γ(n+ τ
S + σ)

. (3.2)

One can observe that

lim
n→∞

nσσn = λ where λ =
Γ( τS + σ)

Γ( τS )
. (3.3)
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Hereafter, we define the process (Mn) by

Mn = σn
(
Un − E[Un]

)
. (3.4)

Thanks to equation (3.1), we immediatly get that

E[Mn+1|Fn] = Mn.

Hence, the sequence (Mn) is a locally bounded and square integrable martingale. We
are now allowed to compute the quadratic variation of (Mn). First of all

∆Mn+1 = mσn+1

(
εn+1 − E[εn+1|Fn]

)( 1

−1

)
= mσn+1

(
εn+1 − τ−1

n Xn

)( 1

−1

)
. (3.5)

Moreover,
E
[(
εn+1 − τ−1

n Xn

)2∣∣Fn] = τ−1
n Xn

(
1− τ−1

n Xn

)
. (3.6)

Consequently, we obtain from (3.5) and (3.6) that

E
[
∆Mn+1∆MT

n+1

∣∣Fn] = m2σ2
n+1τ

−1
n Xn

(
1− τ−1

n Xn

)( 1 −1

−1 1

)
. (3.7)

Therefore

〈M〉n =

n−1∑
k=0

E
[
∆Mk+1∆MT

k+1

∣∣Fk]

= m2

(
1 −1

−1 1

) n−1∑
k=0

σ2
k+1τ

−1
k Xk

(
1− τ−1

k Xk

)
. (3.8)

As τ−1
k Xk

(
1− τ−1

k Xk

)
≤ 1

4 , it is not hard to see that

Tr〈M〉n ≤ m2wn where wn =

n∑
k=1

σ2
k. (3.9)

The asymptotic behavior of (Mn) is closely related to the one of (wn) with the following
trichotomy:

• The diffusive regime where σ < 1/2: the urn is said to be small and we have

lim
n→∞

wn
n1−2σ

=
λ2

1− 2σ
.

• The critical regime where σ = 1/2: the urn is said to be critically small and we
have

lim
n→∞

wn
log n

=
Γ( τS + 1

2 )

Γ( τS )
.

• The superdiffusive regime where σ > 1/2: the urn is said to be large and we have

lim
n→∞

wn =

∞∑
k=0

(Γ(k + τ
S )Γ( τS + σ)

Γ( τS )Γ(k + τ
S + σ)

)2

< +∞.

Proposition 3.1. We have for small and large urns

E[Un] = nv1 + σ−1
n

(bα− cβ
S

)
v2 +

τ

S
v1. (3.10)
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Proof. First of all, denote Λn = I2 + τ−1
n RT = P

(
I2 + τ−1

n D
)
P−1 where I2 is the identity

matrix of order 2, and Tn =
∏n−1
k=0 Λk. For any n ∈ N, Tn is diagonalisable and

Tn = PDnP
−1 =

1

b+ c

(
c 1

b −1

)(
τn/τ 0

0 σ−1
n

)(
1 1

b −c

)
.

Since E[Un+1|Fn] = ΛnUn we easily get that E[Un] = TnU0, which leads to

E[Un] =
1

b+ c

(τn
τ

(
c c

b b

)
+ σ−1

n

(
b −c
−b c

))
U0

= nv1 +
τ

S
v1 + σ−1

n

bα− cβ
S

v2.

3.1 Small urns

The almost sure convergence of (Un) for small urns is due to Janson, Theorem 3.16
in [13].

Theorem 3.2. When the urn is small, σ < 1/2, we have the following convergence

lim
n→∞

Un
n

= v1 (3.11)

almost surely and in any Lp, p ≥ 1.

Our new refinements on the almost sure rates of convergence are as follows.

Theorem 3.3. When the urn is small and bc 6= 0, we have the quadratic strong law

lim
n→∞

1

log n

n∑
k=1

1

k2
(Uk − kv1)(Uk − kv1)T =

1

1− 2σ

bcm2

(b+ c)2

(
1 −1

−1 1

)
a.s. (3.12)

In particular,

lim
n→∞

1

log n

n∑
k=1

‖Uk − kv1‖2

k2
=

2

1− 2σ

bcm2

(b+ c)2
a.s. (3.13)

Moreover, we have the law of iterated logarithm

lim sup
n→∞

‖Un − nv1‖2

2n log log n
=

2

1− 2σ

bcm2

(b+ c)2
a.s. (3.14)

Remark 3.4. The law of iterated logarithm for (Xn) was previously established by Bai,
Hu and Zhang via a strong approximation argument, see Corollary 2.1 in [1].

Theorem 3.5. When the urn is small and bc 6= 0, we have the following asymptotic
normality

Un − nv1√
n

L−→
n→∞

N
(
0,K

)
(3.15)

where K =
1

1− 2σ

bcm2

(b+ c)2

(
1 −1

−1 1

)
.

Remark 3.6. An invariance principle for (Xn) was proved by Gouet, see Proposition 2.1
in [10].

3.2 Critically small urns

The almost sure convergence of (Un) for critically small urns is again due to Janson,
Theorem 3.16 in [13].
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Theorem 3.7. When the urn is critically small, σ = 1/2, we have the following conver-
gence

lim
n→∞

Un
n

= v1 (3.16)

almost surely and in any Lp, p ≥ 1.

Once again, we have some refinements on the almost sure rates of convergence.

Theorem 3.8. When the urn is critically small and bc 6= 0, we have the quadratic strong
law

lim
n→∞

1

log log n

n∑
k=1

1

(k log k)2
(Uk − kv1)(Uk − kv1)T = bc

(
1 −1

−1 1

)
a.s. (3.17)

In particular,

lim
n→∞

1

log log n

n∑
k=1

‖Uk − kv1‖2

(k log k)2
= 2bc a.s. (3.18)

Moreover, we have the law of iterated logarithm

lim sup
n→∞

‖Un − nv1‖2

2 log n log log log n
= 2bc a.s. (3.19)

Remark 3.9. The law of iterated logarithm for (Xn) was also established by Bai, Hu and
Zhang via a strong approximation argument, see Corollary 2.2 in [1].

Theorem 3.10. When the urn is critically small and bc 6= 0, we have the following
asymptotic normality

Un − nv1√
n log n

L−→
n→∞

N
(
0,K

)
(3.20)

where K = bc

(
1 −1

−1 1

)
.

Remark 3.11. An invariance principle for (Xn) was also proved by Gouet, see Proposi-
tion 2.1 in [10].

3.3 Large urns

The convergences of n−σ(Un − nv1) to Wv2 first appeared in Pouyanne [15, Theorem
3.5]. The almost sure convergence of (Un) for large urns is again due to Janson, Theorem
3.16 in [13]. The explicit calculations of the moments of W are new.

Theorem 3.12. When the urn is large, σ > 1/2, we have the following convergence

lim
n→∞

Un
n

= v1 (3.21)

almost surely and in any Lp, p ≥ 1. Moreover, we also have

lim
n→∞

Un − nv1

nσ
= Wv2 (3.22)

almost surely and in L2, where W is a real-valued random variable and

E[W ] =
Γ( τS )

Γ( τS + σ)

bα− cβ
S

, (3.23)

E[W 2] = σ2 Γ( τS )

Γ( τS + 2σ)

( bc

2σ − 1

τ

S
+ (b− c)bα− cβ

σS
+

(bα− cβ)2

σ2S2

)
. (3.24)
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4 Proofs of the almost sure convergence results

4.1 Generalized urn model – small urns

Proof of Theorem 3.2. We denote the maximum eigenvalue of 〈M〉n by λmax〈M〉n. We
make use of the strong law of large numbers for martingales given e.g. by Theorem
4.3.15 of [6], that is for any γ > 0,

‖Mn‖2

λmax〈M〉n
= o
(
(log Tr〈M〉n)1+γ

)
a.s.

It follows from (3.9) that

‖Mn‖2 = o
(
wn(logwn)1+γ

)
a.s.

which implies

‖Mn‖2 = o
(
n1−2σ(log n)1+γ

)
a.s.

Hence, we deduce from (3.3) and (3.4) that

‖Un − E[Un]‖2 = o
(
n(log n)1+γ

)
a.s.

which completes the proof for the almost sure convergence. The convergence in any Lp

for p ≥ 1 holds since n−1‖Un − E[Un]‖ is uniformly bounded by 2
√

2(τ + S).

Proof of Theorem 3.3. We shall make use of Theorem 3 of [3]. For any u ∈ R2 let

Mn(u) = 〈u,Mn〉 and denote fn =
σ2
n

wn
. We have from (3.3) and (3.9) that fn is asymptoti-

cally equivalent to (1− 2σ)n−1 and converges to 0. Moreover, we obtain from equations
(3.8), (3.11) and the Toeplitz lemma that

lim
n→∞

1

wn
〈M〉n = lim

n→∞

m2

wn

(
1 −1

−1 1

) n−1∑
k=0

σ2
k+1τ

−1
k Xk

(
1− τ−1

k Xk

)
=

bcm2

(b+ c)2

(
1 −1

−1 1

)
a.s.

which implies that

lim
n→∞

1

wn
〈M〉n = (1− 2σ)K a.s. (4.1)

where K is the covariance matrix from Theorem 3.5.. Therefore, we get from (4.1) that

lim
n→∞

1

logwn

n∑
k=1

fk

(Mk(u)2

wk

)
= (1− 2σ)uTKu a.s.

which leads to

lim
n→∞

1

log n

n∑
k=1

f2
ku

T (Uk − E[Uk])(Un − E[Uk])Tu = (1− 2σ)2uTKu a.s.

Furthermore, we have from (3.10) that E[Un] is asymptotically equivalent to nv1. Conse-
quently, we obtain that

lim
n→∞

1

log n

n∑
k=1

1

k2
(Uk − kv1)(Uk − kv1)T = K a.s.
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We now focus our attention on the law of iterated logarithm. We already saw that

∞∑
n=1

σ4
n

w2
n

<∞.

Hence, it follows from the law of iterated logarithm for real martingales that first
appeared in Stout [17, 18], that for any u ∈ Rd,

lim sup
n→∞

1√
2wn log logwn

Mn(u) = −lim inf
n→∞

1√
2wn log logwn

Mn(u)

=
√

(1− 2σ)uTKu a.s.

Consequently, as Mn(u) = σn〈u, Un − E[Un]〉, we obtain that

lim sup
n→∞

1√
2n log log n

〈u, Un − E[Un]〉 = −lim inf
n→∞

1√
2n log log n

〈u, Un − E[Un]〉

=
√
uTKu a.s.

In particular, for any vector u ∈ R2

lim sup
n→∞

1

2n log log n
uT (Un − E[Un])(Un − E[Un])Tu = uTKu a.s.

Finally, we deduce from Un − E[Un] =

(
1

−1

)
(Xn − E[Xn]) and for u =

(
1

0

)
that

lim sup
n→∞

1

2n log log n
‖Un−E[Un]‖2 = lim sup

n→∞

2

2n log log n
(Xn−E[Xn])2 =

2

1− 2σ

bcm2

(b+ c)2
a.s.

which together with (3.10) completes the proof of Theorem 3.3.

4.2 Generalized urn model – critically small urns

Proof of Theorem 3.7. The proof follows essentialy the same lines as the one of small
urns in Theorem 3.2 and is left to reader.

Proof of Theorem 3.8. Again, the proof follows exactly the same lines as the one of small
urns in Theorem 3.3 and shall not be explicited here.

4.3 Generalized urn model – large urns

Proof of Theorem 3.12. First, as Tr〈M〉n ≤ m2wn < ∞, we have that (Mn) converges
almost surely to a random vector Mv2, where M is a real-valued random variable and

lim
n→∞

σn
(
Xn − E[Xn]

)
=

S

b+ c
M =

1

1− σ
M a.s.

Hence, it follows from (3.4) that

lim
n→∞

σn(Un − E[Un]) = Mv2 a.s. (4.2)

which implies via (3.3) that

lim
n→∞

σn‖Un − E[Un]‖ = lim
n→∞

λ

nσ
‖Un − E[Un]‖ = ‖Mv2‖ a.s.

Therefore, we obtain that

lim
n→∞

‖Un − E[Un]‖
n

= 0 a.s. (4.3)
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Hence, we deduce (3.21) from (3.10), (4.2) and (4.3). The convergence in any Lp for
p ≥ 1 holds again by the same arguments as before. We now focus our attention on
equation (3.22). We have from (3.10) and (4.2) that

lim
n→∞

σn
(
Un − E[Un]

)
= lim
n→∞

σn
(
Un − nv1

)
−
(bα− cβ

S

)
v2 = Mv2 a.s.

Consequently,

lim
n→∞

Un − nv1

nσ
= Wv2 a.s.

where the random variable W is given by

W =
1

λ

(
M +

bα− cβ
S

)
. (4.4)

Using the fact that
E
[
‖Mn‖2

]
= E

[
Tr〈M〉n] ≤ m2wn,

we get
sup
n≥1

E
[
‖Mn‖2

]
<∞

which means that (Mn) is a martingale bounded in L2, thus converging in L2. Finally, as
E[Mn] = 0 and (Mn) converges in L1 to M , E[M ] = 0. Hence, we find from (4.3) that

E[W ] =
Γ( τS )

Γ( τS + σ)

bα− cβ
S

.

We shall now proceed to the computation of E[W 2]. It is not hard to see that

E
[
(Xn+1 − E[Xn+1])2

]
= (1 + 2mτ−1

n )E
[
(Xn − E[Xn])2

]
+m2τ−1

n E[Xn]
(
1− τ−1

n E[Xn])

which leads to

E
[
(Xn − E[Xn])2

]
= m2 Γ(n+ τ

S + 2σ)

Γ(n+ τ
S )

n−1∑
k=0

Γ(k + 1 + τ
S )

Γ(k + 1 + τ
S + 2σ)

τ−1
k E[Xk]

(
1− τ−1

k E[Xk])

=
σ2

(1− σ)2

Γ(n+ τ
S + 2σ)

Γ(n+ τ
S )

Sn.

It follows from (3.10) that

Sn = bcAn + (b− c)bα− cβ
S

Γ( τS )

Γ( τS + σ)
Bn −

(bα− cβ)2

S2

Γ( τS )2

Γ( τS + σ)2
Cn

where An, Bn and Cn are as follows, and we obtain from Lemma B.1 in [4] that

An =

n∑
k=1

Γ(k + τ
S )

Γ(k + τ
S + 2σ)

=
1

2σ − 1

( Γ( τS + 1)

Γ( τS + 2σ)
−

Γ(n+ τ
S + 1)

Γ(n+ τ
S + 2σ)

)
,

Bn =

n∑
k=1

Γ(k − 1 + τ
S + σ)

Γ(k + τ
S + 2σ)

=
1

σ

( Γ( τS + σ)

Γ( τS + 2σ)
−

Γ(n+ τ
S + σ)

Γ(n+ τ
S + 2σ)

)
,

Cn =

n∑
k=1

Γ(k − 1 + τ
S + σ)2

Γ(k + τ
S )Γ(k + τ

S + 2σ)
=

1

σ2

( Γ(n+ τ
S + σ)2

Γ(n+ τ
S )Γ(n+ τ

S + 2σ)
−

Γ( τS + σ)2

Γ( τS )Γ( τS + 2σ)

)
.

Consequently, we have

E[M2] =
σ2λ2Γ( τS )

Γ( τS + 2σ)

( bc

2σ − 1

τ

S
+ (b− c)bα− cβ

σS
+

(bα− cβ)2

σ2S2

)
− (bα− cβ)2

S2
(4.5)

which via (4.4) and (4.5) achieves the proof of Theorem 3.12.
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5 Proofs of the asymptotic normality results

5.1 Traditional urn model

Proof of Theorem 2.3. We shall make use of part (b) of Theorem 1 and Corollaries 1 and
2 from [12]. Let

s2
n =

∞∑
k=n

E[∆M2
k ].

It is not hard to see that
lim
n→∞

s2
n = 0

since
∞∑
n=1

E[∆M2
n] ≤ S2

4

∞∑
n=1

1

τ2
n

< +∞.

In order to use the Corollaries we need to verify that

1– (b)(i)
1

s2
n

∞∑
k=n

E
[
∆M2

k+1|Fk
] P−→ η2.

1– (b)(ii) ∀ε > 0, lim
n→∞

1

s2
n

∞∑
k=n

E
[
∆M2

k1|∆Mk|>εsn
]

= 0 a.s.

2– (b)
∞∑
k=1

1

s2
k

(
|∆Mk|2 − E

[
|∆Mk|2|Fk−1

])
< +∞ a.s.

For condition 1–(b)(ii), we get from the convergence of (Mn) in L2 and the moments of a
beta distribution with parameters α

S and β
S that

lim
n→∞

( ∞∑
k=n

1

τ2
k+1

)−1

s2
n =

αβS2

(α+ β)(α+ β + S)
,

leading to

lim
n→∞

ns2
n = ` where ` =

αβ

(α+ β)(α+ β + S)
.

Hence

lim
n→∞

1

s2
n

∞∑
k=n

E
[
∆M2

k+1|Fk
]

= lim
n→∞

1

s2
n

∞∑
k=n

c2Mk(1−Mk)

τ2
k+1

a.s.

= lim
n→∞

1

`S2

( ∞∑
k=n

1

τ2
k+1

)−1 ∞∑
k=n

S2Mk(1−Mk)

τ2
k+1

a.s.

=
M∞(1−M∞)

`
a.s.

Consequently, the first condition of part (b) of Corollary 1 in [12] is satisfied with
η2 = `−1M∞(1−M∞). Let us now focus on the second condition of Corollary 1 in [12]
and let ε > 0. On the one hand, we get that for all ε > 0

1

s2
n

∞∑
k=n

E
[
∆M2

k+11|∆Mk+1|>εsn
]
≤ 1

ε2s4
n

∞∑
k=n

E
[
∆M4

k+1

]
≤ 7S4

ε2s4
n

∞∑
k=n

1

τ4
k

≤ 7

ε2s4
n

∞∑
k=n

1

k4
.

On the other and, using that s4
n increases at speed n2 and that

lim
n→∞

3n3
∞∑
k=n

1

k4
= 1,
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we can conclude that

lim
n→∞

1

s2
n

∞∑
k=n

E
[
∆M2

k1|∆Mk|>εsn
]

= 0 a.s.

and we obtain condition 1–(b)(ii). Hereafter, it only remains to verify that the condition
2–(b) from Corollary 2 in [12] is satisfied. We easily get that

∞∑
k=1

1

s4
k

E
[
∆M4

k |Fk−1

]
≤ 7

∞∑
k=1

1

k2
< +∞. (5.1)

Noting that
n∑
k=1

1

s2
k

(
|∆Mk|2 − E

[
|∆Mk|2|Fk−1

])
is a martingale, the equation (5.1) proves that its bracket is convergent, which implies
that the martingale is also convergent. This gives us

∞∑
k=1

1

s2
k

(
|∆Mk|2 − E

[
|∆Mk|2|Fk−1

])
< +∞ a.s.

Hence, the second condition of Corollary 1 in [12] is satisfied. Therefore we obtain that

M∞ −Mn√
〈M〉∞ − 〈M〉n

L−→
n→∞

N
(
0, 1
)
. (5.2)

Moreover, since

lim
n→∞

√
Mn(1−Mn)

n(〈M〉∞ − 〈M〉n)
= 1 a.s.

we finally obtain from Slutsky’s Lemma that

√
n

M∞ −Mn√
Mn(1−Mn)

L−→
n→∞

N
(
0, 1
)
. (5.3)

which achieves the proof of Theorem 2.3.

5.2 Generalized urn model – small urns

Proof of Theorem 3.5. We shall make use of the central limit theorem for multivariate
martingales given e.g. by Corollary 2.1.10 in [6]. First of all, we already saw from (4.1)
that

lim
n→∞

1

wn
〈M〉n = (1− 2σ)K a.s.

It only remains to show that Lindeberg’s condition is satisfied, that is for all ε > 0,

1

wn

n−1∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn
|Fk
] P−→
n→∞

0.

We clearly have

1

wn

n−1∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn
|Fk
]
≤ 1

ε2w2
n

n−1∑
k=0

E
[
‖∆Mk+1‖4

]
≤ m2

ε2w2
n

n−1∑
k=0

σ4
k a.s.

However, it is not hard to see that

lim
n→∞

1

w2
n

n−1∑
k=0

σ4
k = 0
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which ensures that Lindeberg’s condition is satisfied. Consequently, we can conclude
that

Mn√
wn

L−→
n→∞

N
(
0, (1− 2σ)K

)
.

As Mn = σn
(
Un−E[Un]

)
and
√
nσn is asymptotically equivalent to

√
(1− 2σ)wn, together

with (3.10), we obtain that
Un − nv1√

n

L−→
n→∞

N
(
0,K

)
.

5.3 Generalized urn model – critically small urns

Proof of Theorem 3.10. We shall also make use of the central limit theorem for multi-
variate martingales. First of all, when σ = 1/2, we have b + c = m, and we get from
equations (3.8), (3.16) and Toeplitz’s lemma that

lim
n→∞

1

wn
〈M〉n = lim

n→∞

m2

wn

(
1 −1

−1 1

) n−1∑
k=0

σ2
k+1τ

−1
k Xk

(
1− τ−1

k Xk

)
= bc

(
1 −1

−1 1

)
.

Once again, it only remains to show that Lindeberg’s condition is satisfied, that is for all
ε > 0,

1

wn

n−1∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn
|Fk
] P−→
n→∞

0.

As in the proof of Theorem (3.5), we have

1

wn

n−1∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn
|Fk
]
≤ 1

ε2w2
n

n−1∑
k=0

E
[
‖∆Mk+1‖4

]
≤ m2

2ε2w2
n

n−1∑
k=0

σ4
k.

It is not hard to see that once again

lim
n→∞

1

w2
n

n−1∑
k=0

σ4
k = 0.

Hence, Lindeberg’s condition is satisfied and we find that

Mn√
wn

L−→
n→∞

N
(
0,K

)
.

As Mn = σn
(
Un − E[Un]

)
and σn

√
n log n is asymptotically equivalent to

√
wn, together

with (3.10), we can conclude that

Un − nv1√
n

L−→
n→∞

N
(
0,K

)
.
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