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We study the adaptation properties of the multivariate log-concave maxi-
mum likelihood estimator over three subclasses of log-concave densities. The
first consists of densities with polyhedral support whose logarithms are piece-
wise affine. The complexity of such densities f can be measured in terms of
the sum �(f ) of the numbers of facets of the subdomains in the polyhe-
dral subdivision of the support induced by f . Given n independent observa-
tions from a d-dimensional log-concave density with d ∈ {2,3}, we prove a
sharp oracle inequality, which in particular implies that the Kullback–Leibler
risk of the log-concave maximum likelihood estimator for such densities is
bounded above by �(f )/n, up to a polylogarithmic factor. Thus, the rate can
be essentially parametric, even in this multivariate setting. For the second
type of adaptation, we consider densities that are bounded away from zero
on a polytopal support; we show that up to polylogarithmic factors, the log-
concave maximum likelihood estimator attains the rate n−4/7 when d = 3,
which is faster than the worst-case rate of n−1/2. Finally, our third type of
subclass consists of densities whose contours are well separated; these new
classes are constructed to be affine invariant and turn out to contain a wide
variety of densities, including those that satisfy Hölder regularity conditions.
Here, we prove another sharp oracle inequality, which reveals in particular
that the log-concave maximum likelihood estimator attains a risk bound of

order n
−min(

β+3
β+7 , 4

7 ) when d = 3 over the class of β-Hölder log-concave den-
sities with β > 1, again up to a polylogarithmic factor.

1. Introduction. The field of nonparametric inference under shape constraints has wit-
nessed remarkable progress on several fronts over the last decade or so. For instance, the
area has been enriched by methodological innovations in new research problems, including
convex set estimation (Brunel (2013), Gardner, Kiderlen and Milanfar (2006), Guntuboyina
(2012)), shape-constrained dimension reduction (Chen and Samworth (2016), Groeneboom
and Hendrickx (2018), Xu, Chen and Lafferty (2016)) and ranking and pairwise comparisons
(Shah et al. (2017)). Algorithmic advances together with increased computing power now
mean that certain estimators have become computationally feasible for much larger sam-
ple sizes (Koenker and Mizera (2014), Mazumder et al. (2019)). On the theoretical side,
new tools developed in recent years have allowed us to make progress in understanding how
shape-constrained procedures behave (Cai and Low (2015), Dümbgen, Samworth and Schuh-
macher (2011), Guntuboyina and Sen (2013)). Moreover, minimax rates of convergence are
now known1 for a variety of core problems in the area, including decreasing density estima-
tion on the nonnegative half-line (Birgé (1987)), isotonic regression (Chatterjee, Guntuboyina
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1In the interests of transparency, we note that in some of our examples, there remain gaps between the known

minimax lower and upper bounds that are polylogarithmic in the sample size.
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and Sen (2018), Deng and Zhang (2018), Han et al. (2019), Zhang (2002)) and convex regres-
sion (Han and Wellner (2016)). Groeneboom and Jongbloed (2014) provide a book-length
introduction to the field; many recent developments are also surveyed in a 2018 special issue
of Statistical Science devoted to the topic.

One of the most intriguing aspects of many shape-constrained estimators is their ability to
adapt to unknown features of the underlying data generating mechanism. To illustrate what
we mean by this, consider a general setting in which the goal is to estimate a function or pa-
rameter that belongs to a class D. Given a subclass D′ ⊆ D, we say that our estimator adapts
to D′ with respect to a given loss function if its worst-case rate of convergence over D′ is an
improvement on its corresponding worst-case rate over D; in the best case, it may even attain
the minimax rates of convergence over both D′ and D, at least up to polylogarithmic factors
in the sample size. As a concrete example of this phenomenon, consider independent obser-
vations Y1, . . . , Yn with Yi ∼ N(θ0i ,1), where θ0 := (θ01, . . . , θ0n) belongs to the monotone
cone D := {θ = (θ1, . . . , θn) ∈ R

n : θ1 ≤ · · · ≤ θn}. Zhang (2002) established that the least
squares estimator θ̂n over D satisfies the worst-case �2-risk bound

E
{‖θ̂n − θ0‖2} ≤ C

{(
θ0n − θ01

n

)2/3
+ logn

n

}

for some universal constant C > 0; thus, in particular, it attains the minimax rate of O(n−2/3)

for signals θ0 ∈D of bounded uniform norm. On the other hand, the fact that the least squares
estimator is piecewise constant motivates the thought that θ̂n might adapt to piecewise con-
stant signals. More precisely, letting D′ ≡ D′

k denote the subset of D consisting of signals
with at most k constant pieces, a consequence of Bellec ((2018), Theorem 3.2) is that

sup
θ0∈D′

k

E
{‖θ̂n − θ0‖2} ≤ k

n
log

(
en

k

)
.

Note that, up to the logarithmic factor, this rate of convergence (which is parametric when
k is a constant) is the same as could be attained by an ‘oracle’ estimator that had access
to the locations of the jumps in the signal. The proof of this beautiful result relies on the
characterisation of the least squares estimator as an �2-projection onto the closed, convex
cone D, as well as the notion of such a cone’s statistical dimension, which can be computed
exactly in the case of the monotone cone (Amelunxen et al. (2014), Soloff, Guntuboyina and
Pitman (2019)).

As a result of intensive work over the past decade, the adaptive behaviour of shape-
constrained estimators is now fairly well understood in a variety of univariate prob-
lems (Balabdaoui, Rufibach and Wellner (2009), Chatterjee, Guntuboyina and Sen (2015),
Chatterjee and Lafferty (2019), Dümbgen and Rufibach (2009), Jankowski (2014), Kim,
Guntuboyina and Samworth (2018)). Moreover, in the special cases of isotonic and con-
vex regression, very recent work has shown that shape-constrained least squares estimators
exhibit an even richer range of adaptation properties in multivariate settings (Chatterjee, Gun-
tuboyina and Sen (2018), Deng and Zhang (2018), Han (2019), Han and Wellner (2016), Han
et al. (2019)). For instance, Chatterjee, Guntuboyina and Sen (2018) showed that the least
squares estimator in bivariate isotonic regression continues to enjoy parametric adaptation
up to polylogarithmic factors when the signal is constant on a small number of rectangular
pieces. On the other hand, Han et al. (2019) proved that, in general dimensions d ≥ 3, the
least squares estimator in fixed, lattice design isotonic regression2 adapts at rate Õ(n−2/d)

for constant signals, and that it is not possible to obtain a faster rate for this estimator. This is

2Here and below, the Õ(·) notation is used to denote rates that hold up to polylogarithmic factors in n.
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still an improvement on the minimax rate of Õ(n−1/d) over all isotonic signals (in the lexico-
graphic ordering) with bounded uniform norm, but is strictly slower than the parametric rate.
We remark that, in addition to the ideas employed by Bellec (2018), these higher-dimensional
results rely on an alternative characterisation of the least squares estimator due to Chatterjee
(2014), as well as an argument that controls the statistical dimension of the d-dimensional
monotone cone by induction on d; see Han ((2019), Theorem 3.9) for an alternative approach
to the latter. Given the surprising nature of these results, it is of great interest to understand
the extent to which adaptation is possible in other shape-constrained estimation problems.

This paper concerns multivariate adaptation behaviour in log-concave density estimation.
The class of log-concave densities lies at the heart of modern shape-constrained nonparamet-
ric inference, due to both the modelling flexibility it affords and its attractive stability prop-
erties under operations such as marginalisation, conditioning, convolution and linear trans-
formations (Samworth (2018), Saumard and Wellner (2014), Walther (2009)). However, the
class of log-concave densities is not convex, so the maximum likelihood estimator cannot
be regarded as a projection onto a convex set, and the results of Amelunxen et al. (2014),
Chatterjee (2014) and Bellec (2018) cannot be applied.

To set the scene, let Fd denote the class of upper semicontinuous, log-concave densities
on R

d , and suppose that X1, . . . ,Xn are independent and identically distributed random vec-
tors with density f0 ∈ Fd . Also, write dH(f, g) := {∫

Rd (f 1/2 − g1/2)2}1/2 for the Hellinger
distance between two densities f and g. Kim and Samworth (2016) proved the following
minimax lower bound:3 for each d ∈ N, there exists cd > 0 such that

(1) inf
f̃n

sup
f0∈Fd

E
{
d2

H(f̃n, f0)
} ≥

{
c1n

−4/5 if d = 1,

cdn−2/(d+1) if d ≥ 2,

where the infimum is taken over all estimators f̃n of f0 based on X1, . . . ,Xn. Thus, when
d ≥ 3, there is a more severe curse of dimensionality than for the problem of estimating a
density with two bounded derivatives and exponentially decaying tails, for which the corre-
sponding minimax rate is n−4/(d+4) in all dimensions (Goldenshluger and Lepski (2014)).
See Section S3.3.1 in the Supplementary Material (Feng et al. (2021)) for further details and
discussion. The reason why this comparison is interesting is because any concave function
is twice differentiable Lebesgue almost everywhere on its effective domain, while a twice
differentiable function is concave if and only if its Hessian matrix is nonpositive definite at
every point. This observation had led to the prediction that the rates in these problems ought
to coincide (e.g., Seregin and Wellner (2010), page 3778).

The result (1) is relatively discouraging as far as high-dimensional log-concave den-
sity estimation is concerned, and has motivated the definition of alternative procedures that
seek improved rates when d is large under additional structure, such as independent com-
ponent analysis (Samworth and Yuan (2012)) or symmetry (Xu and Samworth (2019)).
Nevertheless, in lower-dimensional settings, the performance of the log-concave maximum
likelihood estimator f̂n := argmaxf ∈Fd

∑n
i=1 logf (Xi) has been studied with respect to

the divergence d2
X(f̂n, f0) := n−1 ∑n

i=1 log f̂n(Xi)
f0(Xi)

(cf. Kim, Guntuboyina and Samworth
(2018), page 2281). This loss function is closely related to the Kullback–Leibler diver-
gence KL(f, g) := ∫

Rd f log(f/g) and Hellinger distance. Indeed, we have d2
H(f̂n, f0) ≤

KL(f̂n, f0) ≤ d2
X(f̂n, f0), where the the first bound is standard and the second inequality fol-

lows by applying Dümbgen, Samworth and Schuhmacher ((2011), Remark 2.3) to the func-
tion x 
→ log(f0(x)/f̂n(x)). A small modification of the proof of Kim and Samworth ((2016),

3In fact, more recently, Kur, Dagan and Rakhlin (2019) proved that cd may be chosen independently of the
dimension d .
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Theorem 5) yields the following result, which is stated as Theorem S2 in the Supplementary
Material (Feng et al. (2021)) for convenience:

(2) sup
f0∈Fd

E
{
d2
X(f̂n, f0)

} =

⎧⎪⎪⎨
⎪⎪⎩

O
(
n−4/5)

if d = 1,

O
(
n−2/3 logn

)
if d = 2,

O
(
n−1/2 logn

)
if d = 3;

see also Doss and Wellner (2016) for a related result in the univariate case. Moreover, very
recently, Kur, Dagan and Rakhlin (2019) proved that4

(3) sup
f0∈Fd

E
{
d2

H(f̂n, f0)
} = Od

(
n−2/(d+1) logn

)

for d ≥ 4, so that, at least in squared Hellinger loss, it follows from (1), (2) and (3) that f̂n

attains the minimax optimal rate in all dimensions, up to a logarithmic factor.
Our goal is to explore the potential of the log-concave maximum likelihood estimator

to adapt to three different types of subclass of Fd . The definition of the first of these is
motivated by the observation that log f̂n is piecewise affine on the convex hull of X1, . . . ,Xn,
a polyhedral subset of R

d . It is therefore natural to consider, for k ∈ N and m ∈ N ∪ {0},
the subclass Fk(Pm) ≡ Fk

d (Pm) ⊆ Fd consisting of densities that are both log-k-affine on
their support (see Section 1.1), and have the property that this support is a polyhedral set
with at most m facets. Note that this class contains densities with unbounded support. By
Proposition 1 in Section 2 below, the complexity of such densities f can be measured in terms
of the sum �(f ) of the numbers of facets of the subdomains in the polyhedral subdivision of
the support induced by f . A consequence of our first main result, Theorem 2, is that for all
f0 ∈ Fk(Pm), we have

(4) E
{
d2
X(f̂n, f0)

} = Õ

(
�(f0)

n

)

when d ∈ {2,3}; moreover, we also show that �(f0) is at most of order k + m when d = 2,
and at most of order k(k+m) when d = 3. Thus, when k and m may be regarded as constants,
(4) reveals that the log-concave maximum likelihood estimator adapts at a parametric rate to
Fk(Pm) when d ∈ {2,3}, up to the polylogarithmic term. Moreover, Theorem 2 offers a com-
plete picture for this type of adaptation by providing a sharp oracle inequality that covers the
case where f0 is well approximated (in a Kullback–Leibler sense) by a density in Fk(Pm) for
some k, m. Unsurprisingly, the proof of this inequality is much more delicate and demanding
than the corresponding univariate result given in Kim, Guntuboyina and Samworth (2018),
owing to the greatly increased geometric complexity of both the boundaries of convex sub-
sets of Rd for d ≥ 2 and the structure of the polyhedral subdivisions induced by the densities
in Fk(Pm). In particular, the parameter m plays no role in the univariate problem, since the
boundary of a convex subset of the real line has at most two points, but it turns out to be
crucial in this multivariate setting. Indeed, no form of adaptation would be achievable in the
absence of restrictions on the shape of the support of f0 ∈ Fd ; for instance, when f0 is the
uniform density on a closed Euclidean ball in R

d with d ≥ 2, consideration of the volume
of the convex hull of X1, . . . ,Xn yields that E{d2

H(f̂n, f0)} ≥ c̃dn−2/(d+1) for some c̃d > 0
depending only on d (Wieacker (1987)).

In contrast to the isotonic regression problem described above, Theorem 2 indicates that
even when d = 3, the log-concave maximum likelihood estimator also enjoys essentially

4Here and below, the Od(·) notation is used as shorthand for an upper bound that holds up to a dimension-
dependent quantity.
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parametric adaptation when f0 is close to a density in Fk(Pm) for small k and m. Unfortu-
nately, our arguments do not allow us to extend our results to dimensions d ≥ 4, where the
relevant bracketing entropy integral diverges at a polynomial rate. Recent work by Carpenter
et al. (2018) derived worst-case rates in squared Hellinger loss for the log-concave maxi-
mum likelihood estimator when d ≥ 4; the crux of their argument involved using Vapnik–
Chervonenkis theory to bound

E

(
sup

K∈K∗
d

∣∣∣∣∣1

n

n∑
i=1

1{Xi∈K} − P(X1 ∈ K)

∣∣∣∣∣
)
,

where K∗
d denotes the set of all closed, convex subsets of Rd . Kur, Dagan and Rakhlin (2019)

obtained an improved bound on this quantity of Od(n−2/(d+1)) using a general chaining
argument, and this allowed them to deduce the worst-case guarantees on the performance
of the log-concave maximum likelihood estimator stated in (3). Unfortunately, it is unclear
whether this approach can provide any adaptation guarantees.

Sections 3 and 4 consider different subclasses of Fd , and are motivated by the hope that
if we rule out ‘bad’ log-concave densities such as the uniform densities with smooth bound-
aries mentioned above, then we may be able to achieve faster rates of convergence, up to
the n−4/(d+4) rate conjectured by Seregin and Wellner (2010). Since this rate already coin-
cides with the worst-case rate for the log-concave maximum likelihood estimator given in (2)
when d = 1,2 (up to a logarithmic factor), and since the same entropy integral divergence
issues mentioned above apply when d ≥ 4, we focus on the case d = 3 in these sections. In
Section 3, we restrict attention to densities with polytopal support (that need not satisfy the
log-k-affine condition of Section 2). Theorem 5 therein provides a sharp oracle inequality,
which reveals that in such cases, the log-concave maximum likelihood estimator attains the
rate Õ(n−4/7) with respect to d2

X divergence, at least when the density is bounded away from
zero on its support.

In Section 4, we introduce an alternative way to exclude the bad uniform densities men-
tioned above, namely by considering subclasses of Fd consisting of densities f whose con-
tours are well separated in regions where f is small. A major advantage of working with con-
tour separation, as opposed to imposing a conventional smoothness condition such as Hölder
regularity, is that we are able to exhibit adaptation over much wider classes of densities, as
we illustrate through several examples in Section 4. A consequence of our main theorem in
this section (Theorem 9) is that the log-concave maximum likelihood estimator attains the
rate Õ(n−4/7) with respect to d2

X divergence over the class of Gaussian densities; again, one
can think of this result as partially restoring the original conjecture of Seregin and Wellner
(2010), in that their rate is achieved with additional restrictions on the class of log-concave
densities. A key feature of our definition of contour separation is that it is affine invariant;
since the log-concave maximum likelihood estimator is affine equivariant and our loss func-
tions d2

H, KL and d2
X are affine invariant, this allows us to obtain rates that are uniform over

classes without any scale restrictions.
We mention that alternative estimators have also been studied for the class of log-concave

densities. One such is the smoothed log-concave maximum likelihood estimator (Chen and
Samworth (2013), Dümbgen and Rufibach (2009)), which matches the first two moments of
the empirical distribution of the data, but for which results on rates of convergence are less
developed. Another interesting proposal is the ρ-estimation framework of Baraud and Birgé
(2016), for which similar adaptation properties as for the log-concave maximum likelihood
estimator are known in the univariate case.

Proofs of most of the main results in Section 2 are given in the Appendix. The remaining
proofs, as well as numerous auxiliary results, are presented in the Supplementary Material
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(Feng et al. (2021)); these results appear with an ‘S’ before the relevant label number. In
particular, the proofs of all the stated results in Sections 3 and 4 are deferred to Sections S1.4
and S3.1, respectively.

1.1. Notation and background. First, we set up some notation and definitions that will
be used throughout the main text as well as in the proofs later on. For a fixed d ∈ N, we
write {e1, . . . , ed} for the standard basis of Rd and denote the �2 norm of x = (x1, . . . , xd) =∑d

j=1 xj ej ∈R
d by ‖x‖ ≡ ‖x‖2 = (

∑d
j=1 x2

j )1/2. For x, y ∈ R
d , let [x, y] := {tx + (1 − t)y :

t ∈ [0,1]} denote the closed line segment between them, and define (x, y), [x, y), (x, y]
analogously. For x ∈ R

d and r > 0, let B̄(x, r) := {w ∈ R
d : ‖w − x‖ ≤ r}. For A ⊆ R

d , we
write dim(A) for the affine dimension of A, that is, the dimension of the affine hull of A, and
for Lebesgue-measurable A ⊆ R

d , we write μd(A) for the d-dimensional Lebesgue measure
of A. If 0 < dim(A) = k < d , we can view A as a subset of its affine hull and define μk(A)

analogously, whilst also setting μl(A) = 0 for each integer l > k. In addition, we denote the
set of positive definite d × d matrices by S

d×d and the d × d identity matrix by I ≡ Id .
Next, let � ≡ �d be the set of all upper semicontinuous, concave functions φ : Rd →

[−∞,∞) and let G ≡ Gd := {eφ : φ ∈ �}. For φ ∈ �, we write domφ := {x ∈ R
d : φ(x) >

−∞} for the effective domain of φ, and for a general f : Rd → R, we write suppf := {x ∈
R

d : f (x) �= 0} for the support of f . For k ∈ N, we say that f ∈ Gd is log-k-affine if there
exist closed sets E1, . . . ,Ek such that suppf = ⋃k

j=1 Ej and logf is affine on each Ej .
Moreover, let F ≡ Fd be the family of all densities f ∈ Gd , and let μf := ∫

Rd xf (x) dx and
	f := ∫

Rd (x − μf )(x − μf )� dx for each f ∈ Fd . In addition, we write F0,I ≡ F0,I
d :=

{f ∈ Fd : μf = 0,	f = I } for the class of isotropic log-concave densities.
Henceforth, for real-valued functions a and b, we write a � b if there exists a universal

constant C > 0 such that a ≤ Cb, and we write a � b if a � b and b � a. More generally, for
a finite number of parameters α1, . . . , αr , we write a �α1,...,αr b if there exists C ≡ Cα1,...,αr >

0, depending only on α1, . . . , αr , such that a ≤ Cb. Also, for x ∈ R, we write x+ := x ∨ 0
and x− := (−x)+, and for x > 0, we define log+ x := 1 ∨ logx.

To facilitate the exposition in Section 4, we now introduce some additional terminology.
We say that the densities f and g on R

d are affinely equivalent if there exist an R
d -valued

random variable X and an invertible affine transformation T : Rd → R
d such that X has

density f and T (X) has density g; in other words, there exist b ∈ R
d and an invertible A ∈

R
d×d such that g(x) = |detA|−1f (A−1(x −b)) for all x ∈ R

d . Thus, each f ∈ Fd is affinely
equivalent to a unique f0 ∈ F0,I

d . A class D of densities is said to be affine invariant if it is
closed under affine equivalence; in other words, if f belongs to D, then so does every density
g that is affinely equivalent to f .

The rest of this subsection is devoted to a review of some convex analysis background used
in Section 2. A closed half-space is a set of the form {x ∈ R

d : α�x ≤ u}, where α ∈ R
d \ {0}

and u ∈ R, and the interiors and boundaries of closed half-spaces are known as open half-
spaces and affine hyperplanes, respectively. For a nonempty and convex E ⊆ R

d , we say
that an affine hyperplane H supports E if H ∩ E �= ∅ and H is the boundary of a closed
half-space that contains E. A face F ⊆ E is a convex set with the property that if u, v ∈ E

and tu + (1 − t)v ∈ F for some t ∈ (0,1), then u, v ∈ F . We say that x ∈ E is an extreme
point if {x} is a face of E. Also, we say that F ⊆ E is an exposed face of E if F = E ∩ H

for some affine hyperplane H that supports E. Exposed faces of affine dimensions 0, 1 and
dim(E)−1 are also known as exposed points (or vertices), edges and facets, respectively. We
write F (E) for the set of all facets of E.

A polyhedral set is a subset of Rd that can be expressed as the intersection of finitely many
closed half-spaces, and a polytope is a bounded polyhedral set, or equivalently the convex
hull of a finite subset of Rd ; see Theorems 2.4.3 and 2.4.6 in Schneider (2014). As a special
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case, we also view R
d as a polyhedral set with 0 facets. Let P ≡ Pd denote the collection of

all polyhedral sets in R
d with nonempty interior, and for m ∈ N0 := N ∪ {0}, let Pm ≡ Pm

d
denote the collection of all P ∈ P with at most m facets. For 1 ≤ k ≤ d , a k-parallelotope is
the image of [0,1]k under an injective affine transformation from R

k to R
d , that is, a polytope

of the form {v0 + ∑k
�=1 λ�v� : 0 ≤ λ� ≤ 1 for all �}, where v0, v1, . . . , vk ∈ R

d and v1, . . . , vk

are linearly independent. Recall also that a k-simplex is the convex hull of k + 1 affinely
independent points in R

d . Finally, for P ∈ Pd , a (polyhedral) subdivision of P is a finite
collection of sets E1, . . . ,E� ∈ Pd such that P = ⋃�

j=1 Ej and Ei ∩ Ej is a common face of
Ei and Ej for all i, j ∈ {1, . . . , �}. A triangulation of a polytope P ∈ Pd is a subdivision of
P consisting solely of d-simplices.

2. Adaptation to log-k-affine densities with polyhedral support. In order to present
the main result of this section, we first need to understand the structure of log-k-affine func-
tions f ∈ Gd with polyhedral support. Due to the global nature of the constraints on f , namely
that logf is concave on suppf ∈ P and affine on each of k closed subdomains, the function
f necessarily has a simple and rigid structure. More precisely, Proposition 1 below shows
that there is a minimal representation of f in which the subdomains are polyhedral sets that
form a subdivision of suppf , and the restrictions of logf to these sets are distinct affine
functions. The proof of this result is deferred to Section S2.1.

PROPOSITION 1. Suppose that f ∈ Gd is log-k-affine for some k ∈ N and that
suppf ∈P . Then there exist κ(f ) ≤ k, α1, . . . , ακ(f ) ∈ R

d , β1, . . . , βκ(f ) ∈ R and a poly-
hedral subdivision E1, . . . ,Eκ(f ) of suppf such that f (x) = exp(α�

j x + βj ) for all x ∈ Ej ,

and αi �= αj whenever i �= j . Moreover, the triples (αj , βj ,Ej )
κ(f )
j=1 are unique up to reorder-

ing. In addition, if suppf ∈Pm, then Ej ∈Pk+m−1 for all j .

In particular, for each such f , the sum of the numbers of facets of the polyhedral subdo-
mains E1, . . . ,Eκ(f ), which we denote by

(5) �(f ) :=
κ(f )∑
j=1

∣∣F (Ej )
∣∣,

is well defined and can be viewed as a parameter that measures the complexity of f . Now
for k ∈ N and P ∈ P , let Fk(P ) denote the collection of all f ∈ Fd for which κ(f ) ≤ k and
suppf = P , so that Fk(Pm) = ⋃

P∈Pm Fk(P ) for m ∈ N0. It is shown in Proposition S21
that Fk(Pm) is nonempty if and only if k + m ≥ d + 1. We remark here that it is more
appropriate to quantify the complexity of a polyhedral support in terms of m, which refers to
the number of facets of the support, rather than in terms of the number of vertices. Indeed,
the former quantity may be much greater than the latter when the support is unbounded; for
example, a polyhedral convex cone has just a single vertex but may have arbitrarily many
facets. That said, if the support is a polytope with v vertices and m facets, it can be shown
that v = m when d = 2, and that v ≤ 2m − 4 and m ≤ 2v − 4 when d = 3; see the proof of
Lemma S23 and the subsequent remark.

We are now in a position to state our sharp oracle inequality for the risk of the log-concave
maximum likelihood estimator when the true f0 ∈ Fd is close to some element of Fk(Pm).

THEOREM 2. Fix d ∈ {2,3}. Let X1, . . . ,Xn
i.i.d.∼ f0 ∈ Fd with n ≥ d + 1, and let f̂n

denote the corresponding log-concave maximum likelihood estimator. Then there exists a
universal constant C > 0 such that

(6) E
{
d2
X(f̂n, f0)

} ≤ inf
k∈N,m∈N0:
k+m≥d+1

inf
f ∈Fk(Pm)

{
C�(f )

n
logγd n + KL(f0, f )

}
,
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where γ2 := 9/2 and γ3 := 8. Moreover, for d ∈ {2,3}, we have �(f ) � kd−2(k + m) for all
f ∈Fk(Pm).

The ‘sharpness’ in this oracle inequality refers to the fact that the approximation term
KL(f0, f ) has leading constant 1. A consequence of Theorem 2 is that if d = 2 and f0 ∈
Fk(Pm) with k+m small by comparison with n1/3/ log7/2 n, then the log-concave maximum
likelihood estimator attains an adaptive rate that is faster than the rate of decay of the worst-
case risk bounds (2) of Kim and Samworth (2016). When d = 3, the same conclusion holds
when k(k + m) is small by comparison with n1/2/ log7 n.

Theorem 2 is proved in the Appendix by first considering the case k = 1, where it turns
out that we can prove a slightly stronger version of our result. We therefore state it separately
for convenience.

THEOREM 3. Fix d ∈ {2,3}. Let X1, . . . ,Xn
i.i.d.∼ f0 ∈ Fd with n ≥ d + 1, and let f̂n

denote the corresponding log-concave maximum likelihood estimator. Then there exists a
universal constant C̄ > 0 such that

(7) E
{
d2
X(f̂n, f0)

} ≤ inf
m≥d

{
C̄m

n
logγd n + inf

f ∈F1(Pm)
suppf0⊆suppf

d2
H(f0, f )

}
.

We suspect that the restriction on the support of the approximating density f in (7) is an
artefact of our proof. Indeed, in the case d = 1, Baraud and Birgé (2016) obtain an oracle
inequality for their ρ-estimator where the approximating density f need not have this prop-
erty (although their result is stated for d2

H rather than d2
X); moreover, we have been able to

strengthen the corresponding univariate result for the log-concave maximum likelihood esti-
mator (Kim, Guntuboyina and Samworth (2018), Theorem 5) by removing this restriction.

The proof of Theorem 3 in fact constitutes the main technical challenge in deriving The-
orem 2. This entails deriving upper bounds on the (local) Hellinger bracketing entropies of
classes of log-concave functions that lie in small Hellinger neighbourhoods of densities in
f ∈ F1(Pm) for each m ∈ N with m ≥ d . Our argument proceeds via a series of steps, the
first of which deals with the case where f is a uniform density on a simplex (Proposition S8);
it turns out that any density in a small Hellinger ball around such a f satisfies a uniform upper
bound (Lemma S25(ii)), and a pointwise lower bound whose contours are characterised ge-
ometrically in Lemma S30 (and illustrated in Figure S5). We proceed by considering a finite
nested sequence of polytopal subsets of the simplex, each of which has a controlled num-
ber of vertices and approximates the region enclosed by one of the aforementioned contours;
see the accompanying Figure S1. After constructing suitable triangulations of the regions be-
tween successive polytopes (Corollary S33), we exploit existing bracketing entropy results
for classes of bounded log-concave functions (Proposition S7).

In the next step, we consider the uniform density on a polytope in Pm; here, using the fact
that there is a triangulation of the support into O(m) simplices (Lemma S23), we apply our
earlier bracketing entropy bounds in conjunction with an additional argument which handles
carefully the fact that these simplices may have very different volumes (Proposition S9).

Finally, in the proof of Proposition 10 in the Appendix, we generalise to settings where
f is an arbitrary (not necessarily uniform) log-affine density whose polyhedral support may
be unbounded. There, we subdivide the domain by intersecting it with a sequence of parallel
half-spaces whose normal vectors are in the direction of the negative log-gradient of the
density. Our characterisation of such log-affine densities in Section S2.1 ultimately allows
us to apply our earlier results to transformations of the original density and thereby obtain
the desired local bracketing entropy bounds (Proposition 10). The conclusion of Theorem 3
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then follows from standard empirical process theory arguments (e.g., van de Geer (2000),
Corollary 7.5); see the Appendix.

We do not claim any optimality of the polylogarithmic factors in Theorems 2 and 3. In
fact, we can improve these exponents in the special case where f0 is well approximated by
a uniform density fP := μd(P )−11P on a polytope P ∈ Pd . Note that every polytope in Pd

has at least as many facets as a d-simplex, namely d + 1; see, for example, Lemma S22.

PROPOSITION 4. Fix d ∈ {2,3}, and for m ≥ d + 1, denote by F [1](Pm) the subclass of

all uniform densities on polytopes in Pm. Let X1, . . . ,Xn
i.i.d.∼ f0 ∈ Fd with n ≥ d +1, and let

f̂n denote the corresponding log-concave maximum likelihood estimator. Then there exists a
universal constant C′ > 0 such that

(8) E
{
d2
X(f̂n, f0)

} ≤ inf
m≥d+1

{
C′m
n

logγ ′
d n + inf

f ∈F [1](Pm)
suppf0⊆suppf

d2
H(f0, f )

}
,

where γ ′
2 := 3 and γ ′

3 := 6.

3. Adaptation to densities bounded away from zero on a polytopal support. Recall
from the discussion in the Introduction that in order to observe adaptive behaviour for the
log-concave maximum likelihood estimator, we need to exclude uniform densities supported
on convex sets with smooth boundaries. In fact, we will see from Proposition 6 below that
we also need to rule out subclasses containing sequences of elements of Fd that approximate
such uniform densities. In this section, we continue to work with densities in Fd that are close
to a log-concave density with polyhedral support, but, in contrast to Section 2, now drop the
requirement that this approximating density be log-k-affine. In fact, we do not impose any ex-
tra structural constraints or smoothness conditions that would regulate further the behaviour
of the densities on the interiors of their supports. It will turn out, however, that we will only
be able to improve on the worst-case risk bounds of Theorem S2 when the approximating
density is also bounded away from zero on its support, which must therefore necessarily be
a polytope. The generality of the resulting new classes means that we can no longer expect
near-parametric adaptation, and moreover, for the reasons explained in the Introduction, our
main result of this section (Theorem 5 below) is restricted to the case d = 3. As an example
of a density that will be covered by this result, we can consider the density of a trivariate
Gaussian random vector conditioned to lie in [−1,1]3.

Following on from Proposition 4, we now extend the definition of F [1](Pm) given above
and introduce our new family of subclasses of Fd . For θ ∈ (0,∞) and a polytope P ∈ Pd ,
let F [θ ](P ) ≡ F [θ ]

d (P ) denote the collection of all f ∈ Fd for which suppf = P and f ≥
θ−1fP on P . Then F [1](P ) = {fP } and F [θ ](P ) is nonempty if and only if θ ≥ 1. For θ ∈
[1,∞) and m ∈ N with m ≥ d + 1, denote by F [θ ](Pm) ≡ F [θ ]

d (Pm
d ) the union of those

F [θ ](P ) for which P is a polytope in Pm ≡ Pm
d , and note that this is a nonempty affine

invariant subclass of Fd . Indeed, fix b ∈ R
d and an invertible A ∈ R

d×d , and let T : Rd →
R

d be the invertible affine transformation defined by T (x) := Ax + b. If X ∼ f ∈ F [θ ](P )

for some polytope P ∈ Pm, then μd(T (P )) = |detA|μd(P ), and so the density g of T (X)

satisfies g(x) = |detA|−1f (T −1(x)) ≥ {θ |detA|μd(P )}−1 = {θμd(T (P ))}−1 for all x ∈
T (P ). Since suppg = T (P ) is also a polytope in Pm, this shows that g ∈ F [θ ](Pm), as
required.

The sharp oracle inequality (9) below may be viewed as complementary to Theorem 3 and
Proposition 4.
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THEOREM 5. Let X1, . . . ,Xn
i.i.d.∼ f0 ∈ F3 with n ≥ 4, and let f̂n denote the correspond-

ing log-concave maximum likelihood estimator. Then there exists a universal constant C > 0
such that

(9)

E
{
d2
X(f̂n, f0)

} ≤ inf
m≥4

θ∈(1,∞)

{
C

(
log6/7 θ

(
m

n

)4/7
log17/7

+
(

n

log3/2 θ

)

+
(

m

n

)20/29
log85/29 n + θ log3(eθ)

m log6 n

n

)

+ inf
f ∈F [θ ]

3 (Pm)

suppf0⊆suppf

d2
H(f0, f )

}
.

For a fixed θ ∈ (1,∞), note that if n/m is sufficiently large, then the dominant contribution
to the right-hand side of (9) comes from the first term. It follows that for fixed θ , m, the log-
concave maximum likelihood estimator f̂n of f0 ∈ F [θ ]

3 (Pm) converges at rate Õ(n−4/7) as
n → ∞, which was the rate originally conjectured by Seregin and Wellner (2010).

Despite the attractions of the adaptation mentioned in the previous paragraph, it is worth
considering the bound (9) in the limits as θ ↘ 1 and θ → ∞. In the first case, owing to the
presence of the second term on the right-hand side of (9), we do not recover the bound (8)
from Proposition 4 when we take the limit of the right-hand side of (9); see Section S1.3 for
further discussion. We also mention here that for a fixed n, the bound in (8) may be stronger
than that in (9) if, for example, f0 ∈ F [θ ]

3 (Pm) for some θ ≡ θn ∈ (1,∞) sufficiently close
to 1. To substantiate this remark, we note that if θ ∈ [1,∞) and P ∈ P3 is a polytope, then
it follows from the proof of Lemma S25(iii) that every f ∈ F [θ ]

3 (P ) satisfies θ−1fP ≤ f �
log3(eθ)fP on P . Thus, if f0 ∈F [θ ]

3 (P ), then

d2
H(f0, fP ) =

∫
P
(
√

f0 − √
fP )2 �

(
1 − θ−1) ∨ (

log3(eθ) − 1
)
� θ − 1

when θ ≤ 2. Consequently, if θ is such that θ ≤ 1 + n−20/29 and m ≤ n9/29 log−6 n, then for
any f0 ∈ F [θ ]

3 (P ) with P ∈ Pm, the bound in (8) is at most a universal constant multiple
of (m/n) log6 n + (θ − 1) � n−20/29, while the bound in (9) is at least a universal constant
multiple of n−20/29 log85/29 n.

It is also notable that the bound in (9) diverges to infinity as θ → ∞. In fact, we will deduce
from Proposition 6 below that this is not just an artefact of our analysis; more precisely, the
log-concave maximum likelihood estimator does not adapt uniformly over

⋃
θ≥1 F [θ ]

d (P ), or
indeed over any subclass of Fd containing an approximating sequence for a uniform density
on a closed Euclidean ball.

PROPOSITION 6. Fix d ∈ N and n ≥ d + 1. Let (f (�)) be a sequence of densities in Fd

for which the corresponding sequence of probability measures (P (�)) converges weakly to a

distribution P (0) with density f (0) : Rd → [0,∞). For each � ∈ N0, let X
(�)
1 , . . . ,X

(�)
n

i.i.d.∼
f (�), and let f̂

(�)
n denote the corresponding log-concave maximum likelihood estimator. Then

lim inf
�→∞ E

{
d2
X

(
f̂ (�)

n , f (�))} ≥ E
{
d2
X

(
f̂ (0)

n , f (0))}.
To understand the consequences of this lower semicontinuity result, fix any polytope P ∈

Pd and a closed Euclidean ball B ⊆ IntP . We can find a sequence (f (�)) in
⋃

θ≥1 F [θ ]
d (P )
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such that the corresponding probability measures converge weakly to the uniform distribu-
tion on B . Such a sequence must necessarily satisfy infx∈P f (�)(x) → 0, and Proposition 6,
together with the result of Wieacker (1987) mentioned in the Introduction, then ensures that
lim inf�→∞E{d2

X(f̂
(�)
n , f (�))} �d n−2/(d+1) for d ≥ 2. Thus, indeed, no adaptation is possi-

ble.
The proof of Theorem 5 follows a similar approach to that set out after the statement of

Theorem 3. The key intermediate results are the local bracketing entropy bounds in Proposi-
tions S10 and S11 in Section S1.3, which are analogous to the Propositions S8 and S9 that
prepare the ground for the proof of Theorem 3. As we explain in the discussion before the
proof of Proposition S8, some modifications to the previous arguments are necessary, but we
once again draw heavily on the technical apparatus developed in Section S2.2. The key reason
we are able to apply these techniques here is that the densities in F [θ ](Pm) are bounded away
from zero, as evidenced by the fact that the bound (9) diverges as θ → ∞. Once we have ob-
tained Proposition S11, all that remains is to appeal to standard empirical process theory (van
de Geer (2000), Corollary 7.5), from which the desired conclusion (9) follows readily; see
Section S1.4. In contrast to the proof of Theorem 3, we do not require an additional argument
along the lines of the proof of Proposition 10 given in the Appendix, which is specific to the
log-1-affine densities (with possibly unbounded polyhedral support) studied in Section 2.

4. Adaptation to densities with well-separated contours. In this section, we consider
adaptation of the log-concave maximum likelihood estimator over yet further subclasses of
Fd . As discussed in Examples 4 and 5 below, these are designed to generalise notions of
Hölder smoothness, while at the same time satisfying our key property of affine invariance.
Given S ∈ S

d×d and x ∈ R
d , we write ‖x‖S := (x�S−1x)1/2 for its S-Mahalanobis norm.

DEFINITION 1. For β ≥ 1 and �,τ > 0, let F (β,�,τ) ≡F (β,�,τ)
d denote the collection of

all f ∈ Fd that are continuous on R
d and satisfy

(10) ‖x − y‖	f
≥ {f (x) − f (y)}det1/2 	f

�{f (x)det1/2 	f }1−1/β

whenever x, y ∈ R
d are such that f (y) < f (x) < τ det−1/2 	f . In addition, we define

F (β,�) := ⋂
τ>0 F (β,�,τ).

The defining condition (10) imposes a separation condition on contours below some fixed
level. For instance, when f is isotropic, the condition asks that for all small t > 0, the contours
of f at levels t and 2t are at least a distance of order �−1t1/β apart. See the motivating
examples below for further discussion. We now collect together some basic properties of the
classes F (β,�,τ).

PROPOSITION 7. For β ≥ 1 and �,τ > 0, we have the following:

(i) F (β,�,τ) is affine invariant; that is, if X ∼ f ∈ F (β,�,τ) and T : Rd → R
d is an in-

vertible affine transformation, then the density g of T (X) also lies in F (β,�,τ).
(ii) F (β,�,τ) ⊆ F (β,�∗) for all �∗ ≥ �(Bd/τ)1/β , where we set

Bd := sup
h∈F0,I

d

sup
x∈Rd

h(x) ∈ (0,∞).

(iii) If α ∈ [1, β), then F (β,�,τ) ⊆ F (α,�′,τ ) for all �′ ≥ B
1/α−1/β
d �.

(iv) There exists �0,d > 0, depending only on d , such that F (β,�) is nonempty only if
� ≥ �0,d .
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Note in particular that since the log-concave maximum likelihood estimator f̂n is affine
equivariant (Dümbgen, Samworth and Schuhmacher (2011), Remark 2.4), and since our loss
functions d2

H, KL and d2
X are affine invariant, property (i) above allows us to restrict attention

to isotropic f ∈ F (β,�,τ), namely those belonging to F0,I
d . Property (iii) indicates that the

classes F (β,�,τ) are nested with respect to the exponent β ≥ 1.
In addition, by taking α = 1 in (iii) and then applying (ii), we deduce that the densities in

F (β,�,τ) are all Lipschitz on R
d , but as we will see in Examples 2 and 4, they need not be

differentiable everywhere. In cases where f ∈ Fd is differentiable on an open set of the form
{x ∈ R

d : f (x) < τ ∗} for some τ ∗ > 0, the necessary and sufficient condition in the following
proposition provides us with a simpler way of checking whether f belongs to F (β,�,τ). For
w ∈R

d and S ∈ S
d×d , let ‖w‖′

S := (w�S−1w)1/2 det−1/2 S denote its scaled S-Mahalanobis
norm.

PROPOSITION 8. Suppose that there exists τ ∗ > 0 such that f ∈ Fd is continuous on
R

d and differentiable at every x ∈ R
d satisfying f (x) < τ ∗. Then for β ≥ 1 and any τ ≤

τ ∗ det1/2 	f , we have f ∈ F (β,�,τ) if and only if

(11)
∥∥∇f (x)

∥∥′
	−1

f
≤ �

{
f (x)

1/2
det	f

}1−1/β

for all x ∈ R
d with f (x) < τ det−1/2 	f .

Our main result in this section is a sharp oracle inequality for the performance of the log-
concave maximum likelihood estimator when the true log-concave density is close to F (β,�)

d

when d = 3. In view of Proposition 7(ii), we work here with the classes F (β,�)
3 rather than the

more general classes F (β,�,τ)
3 for ease of presentation. Let �0 ≡ �0,3 > 0 be the universal

constant from Proposition 7(iv) and its proof, and for each β ≥ 1, let rβ := β+3
β+7 ∧ 4

7 .

THEOREM 9. Let X1, . . . ,Xn
i.i.d.∼ f0 ∈ F3 for some n ≥ 4, and let f̂n denote the corre-

sponding log-concave maximum likelihood estimator. Then there exists a universal constant
C > 0 such that

(12) E
{
d2
X(f̂n, f0)

} ≤ inf
β≥1,�≥�0

{
C�

4β
β+7 ∧1

n−rβ log
16β+39
2(β+3)

rβ n + inf
f ∈F (β,�)

3

d2
H(f0, f )

}
.

Ignoring polylogarithmic factors and focusing on the case where f0 ∈ F (β,�)
3 for some

β ≥ 1 and � > 0, Theorem 9 presents a continuum of rates that interpolate between the worst-
case rate of Õ(n−1/2), corresponding to rate when β = 1, and Õ(n−4/7), again matching the
rate conjectured by Seregin and Wellner (2010).

As mentioned in the Introduction, the main attraction of working with the general contour
separation condition (10) is that we can give several examples of classes of densities con-
tained within F (β,�,τ) for suitable β , � and τ . Since each of the conditions (10) and (11) are
affine invariant, it suffices to check these conditions for the isotropic elements of the relevant
classes (or for any other convenient choice of scaling). Moreover, to verify (10) for densities
that are spherically symmetric, it suffices to consider pairs x, y of the form y = λx for some
λ > 0; in other words, if f (x) = g(‖x‖), then it is enough to verify the contour separation
condition (10) for g.
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EXAMPLE 1 (Gaussian densities). Writing f : x 
→ (2π)−d/2e−‖x‖2/2 for the standard
Gaussian density on R

d and fixing an arbitrary β ≥ 1, we have

∥∥∇f (x)
∥∥′
I = ∥∥∇f (x)

∥∥ = ‖x‖
(2π)d/2 e−‖x‖2/2 = 21/2f (x) log1/2

(
1

(2π)d/2f (x)

)

≤ β1/2

(2π)d/(2β)
e−1/2f (x)1−1/β

for all x ∈ R
d . Hence, it follows from Proposition 8 that f ∈ F (β,�) for all β ≥ 1, with � =

β1/2e−1/2(2π)−d/(2β). Thus, Theorem 9 implies that when d = 3, the log-concave maximum
likelihood estimator attains the rate Õ(n−4/7) in d2

X divergence uniformly over the class of
Gaussian densities.

EXAMPLE 2 (Spherically symmetric Laplace density). Writing Vd := μd(B̄(0,1)) =
πd/2/�(1 + d/2), we see that f : x 
→ (d!Vd)−1e−‖x‖ is a density in Fd with corresponding
covariance matrix 	 ≡ 	f = (d + 1)I . For τ ≤ (d + 1)d/2(d!Vd)−1 and any β ≥ 1, we have

∥∥∇f (x)
∥∥′
	−1 = (d + 1)(d+1)/2f (x) ≤ (d + 1)(d+1)/2

(d!Vd)1/β
f (x)1−1/β

for all x ∈ R
d with f (x) < τ det−1/2 	 = τ(d + 1)−d/2. Hence, when d = 3, the log-concave

maximum likelihood estimator attains the rate Õ(n−4/7) in d2
X divergence uniformly over

the class of densities that are affinely equivalent to f , even though f is not differentiable
at 0. A similar conclusion holds for the densities f1, f2 satisfying f1(x) ∝ exp(−e‖x‖) and
f2(x) ∝ exp(−ee‖x‖

).

EXAMPLE 3 (Spherically symmetric bump function density). Consider the smooth den-
sity f : x 
→ Ce−1/(1−‖x‖2)1{‖x‖<1}, where C > 0 is a normalisation constant. By Xu and
Samworth ((2019), Proposition 2), f is log-concave. Writing 	 ≡ 	f = σ 2I for the covari-
ance matrix corresponding to f , and again fixing an arbitrary β ≥ 1, we see that each x ∈ R

d

with ‖x‖ < 1 satisfies

∥∥∇f (x)
∥∥′
	−1 = σd+1∥∥∇f (x)

∥∥ = σd+1 2C‖x‖
(1 − ‖x‖2)2 e−1/(1−‖x‖2)

≤ 2σd+1f (x) log2
(

C

f (x)

)
≤ �β

{
f (x)

1/2
det	

}1−1/β
,

where �β := 8C1/ββ2e−2σ 1+d/β . Thus, again by Proposition 8, we deduce that f ∈ F (β,�β)

for all β ≥ 1. Consequently, when d = 3, the log-concave maximum likelihood estimator
attains the rate Õ(n−4/7) in d2

X divergence uniformly over the class of densities that are
affinely equivalent to f .

EXAMPLE 4 (Hölder condition on the log-density). For γ ∈ (1,2] and L > 0, let H̃γ,L ≡
H̃γ,L

d denote the subset of densities f ∈ Fd such that φ := logf is differentiable and

(13)
∥∥∇φ(y) − ∇φ(x)

∥∥
	−1

f
≤ L‖y − x‖γ−1

	f

for all x, y ∈R
d . We extend this definition to γ = 1 by writing H̃1,L for the subset of densities

f ∈Fd for which φ = logf satisfies

(14)
∣∣φ(y) − φ(x)

∣∣ ≤ L‖y − x‖	f
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for all x, y ∈ R
d . Note that the densities in H̃1,L can have points of nondifferentiability for

arbitrarily small values of the density. For instance, if we define f ∈ Fd by

f (x) ∝ exp

(
−

∞∑
r=0

‖x‖ − r

2r
1{‖x‖≥r}

)
,

which is not differentiable at any x ∈ R
d with integer Euclidean norm, then f ∈ H̃1,L for

suitably large L > 0.
The careful and nonstandard choice of norms in (13) and (14) ensures that the classes H̃γ,L

are affine invariant. Moreover, Proposition S41(iv) in Section S3.1 shows that for each β ≥ 1,
there exists �′ ≡ �′(β,L) such that

⋃
γ∈[1,2] H̃γ,L ⊆ F (β,�′). Thus, when d = 3, the log-

concave maximum likelihood estimator attains the rate Õ(n−4/7) in d2
X divergence uniformly

over
⋃

γ∈[1,2] H̃γ,L.
A related result in the literature is Dümbgen and Rufibach ((2009), Theorem 4.1), which

applies when d = 1, γ ∈ (1,2] and the logarithm of the true fixed f0 ∈ F1 is γ -Hölder on
some compact subinterval T of the interior of suppf0. In this case, the corresponding f̂n is

shown to achieve an adaptive rate of order (
logn

n
)

γ
2γ+1 with respect to the supremum norm

over certain compact subintervals of the interior of T . We remark that this is not entirely
comparable with the rate we obtain in the paragraph above, especially since our loss function
d2
X is rather different.

Observe that the densities in the classes H̃γ,L must be supported on the whole of Rd , and
that conditions (13) and (14) imply that the rate of tail decay of f is ‘super-Gaussian’. This is
quite a stringent restriction; note for example that the density f satisfying f (x) ∝ exp(−e‖x‖)
does not feature in any of the classes H̃γ,L. Another drawback of this definition of smoothness
is that the classes are not nested with respect to the Hölder exponent γ ∈ (1,2]; this can be
seen by considering a density f satisfying f (x) ∝ exp(−‖x‖γ ), which belongs to H̃γ̃ ,L for
some L > 0 if and only if γ̃ = γ .

EXAMPLE 5 (Hölder condition on the density). To remedy the issues mentioned in the
previous example, fix β ∈ (1,2] and L > 0 and let Hβ,L ≡ Hβ,L

d denote the set of f ∈ Fd

such that f is differentiable on R
d and

(15)
∥∥∇f (y) − ∇f (x)

∥∥′
	−1

f
≤ L‖y − x‖β−1

	f

for all x, y ∈ R
d . Again, it can be shown that the classes Hβ,L are affine invariant, and if

f ∈Fd is β-Hölder in the usual Euclidean sense, that is, ‖∇f (y) −∇f (x)‖ ≤ L‖y − x‖β−1

for all x, y ∈ R
d , then f ∈ Hβ,L̃ with L̃ := Lλ

β/2
max(	f )det1/2 	f , where λmax(	f ) denotes

the maximum eigenvalue of 	f . This follows from the facts that ‖w‖	f
≥ ‖w‖λ−1/2

max (	f )

and ‖w‖′
	−1

f

≤ ‖w‖λ1/2
max(	f )det1/2 	f for all w ∈ R

d . Moreover, Proposition S40 shows

that the classes Hβ,L are nested with respect to the Hölder exponent β; more precisely, if β ,
L are as above, then there exists L̃ ≡ L̃(d,β,L) > 0 such that Hβ,L ⊆ Hα,L̃ for all α ∈ (1, β].

The condition (15) can in fact be extended to an affine invariant notion of β-Hölder reg-
ularity for all β > 1; see Section S3.3 for full technical details. Here, we present the ana-
logue of (15) for β ∈ (2,3] and L > 0, for which we require the following additional nota-
tion. First, if g : Rd → R is twice differentiable at x ∈ R

d , then denote by Hg(x) ∈ R
d×d

the Hessian of g at x. In addition, for each S ∈ S
d×d , define a norm ‖·‖′

S on R
d×d by

‖M‖′
S := ‖S−1/2MS−1/2‖F det−1/2 S, where ‖A‖F := tr(A�A)1/2 denotes the Frobenius
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norm of A ∈ R
d×d . We now define Hβ,L to be the collection of f ∈ Fd for which f is

twice differentiable on R
d and

(16)
∥∥Hf (y) − Hf (x)

∥∥′
	−1

f
≤ L‖y − x‖β−2

	f

for all x, y ∈ R
d . In Section S3.3, we present a unified argument that establishes the affine

invariance of the classes Hβ,L defined by (15) and (16); see the proof of Lemma S39.
In addition, for each β ∈ (1,3] and L > 0, parts (i) and (iii) of Proposition S41 imply that

Hβ,L ⊆ F (β,�) for some � ≡ �(β,L); when β ∈ (1,2], we can take �(β,L) := L1/β(1 −
1/β)−1+1/β . It was this fact that motivated our choice of parametrisation in β in (10). For
β > 3 and L > 0, Proposition S40 ensures that there exists L̃ ≡ L̃(β,L) > 0 such that Hβ,L ⊆
H3,L̃. Therefore, for β > 1 and L > 0, Theorem 9 yields the rate Õ(n

−min{ β+3
β+7 , 4

7 }
) for the log-

concave maximum likelihood estimator, uniformly over Hβ,L. An interesting feature of this

rate is that, when β ∈ (1,9/5), it is faster than the rate O(n
− 2β

2β+3 ) that can be obtained in
squared Hellinger distance for β-Hölder densities that satisfy a ‘tail dominance’ condition
(Goldenshluger and Lepski (2014), Section 4). For further details of this comparison, see
Section S3.3.1. Thus, in this range of β , the log-concavity shape constraint results in a strict
improvement in the rates attainable.

APPENDIX: PROOFS OF MAIN RESULTS IN SECTION 2

The following notation is used in this section and in the Supplementary Material.
To define bracketing entropy, let S ⊆ R

d and let G be a class of nonnegative functions
whose domains contain S. For ε > 0 and a semimetric ρ on G, let N[ ](ε,G, ρ, S) denote
the smallest M ∈ N for which there exist pairs of functions {[gL

j , gU
j ] : j = 1, . . . ,M} such

that ρ(gU
j , gL

j ) ≤ ε for every j = 1, . . . ,M , and such that for every g ∈ G, there exists j∗ ∈
{1, . . . ,M} with gL

j∗(x) ≤ g(x) ≤ gU
j∗(x) for every x ∈ S. We then define the ε-bracketing

entropy of G over S with respect to ρ by H[ ](ε,G, ρ, S) := logN[ ](ε,G, ρ, S) and write
H[ ](ε,G, ρ) := H[ ](ε,G, ρ,Rd) when S = R

d .
For each f0 ∈ Fd and δ > 0, let G(f0, δ) ≡ Gd(f0, δ) := {f 1suppf0 : f ∈ Gd, dH(f, f0) ≤

δ}. In addition, let F(f0, δ) ≡ Fd(f0, δ) = Fd ∩ Gd(f0, δ) and let F̃(f0, δ) ≡ F̃d(f0, δ) :=
{f ∈ Fd : dH(f, f0) ≤ δ}. Writing ‖M‖ ≡ ‖M‖op := sup‖u‖≤1 ‖Mu‖ for the operator norm of

a matrix M ∈ R
d×d , we denote by F̃1,η ≡ F̃1,ηd

d := {f ∈ Fd : ‖μf ‖ ≤ 1,‖	f − I‖ ≤ ηd} the
class of ‘near-isotropic’ log-concave densities, where the constant η ≡ ηd ∈ (0,1) is taken
from Kim and Samworth ((2016), Lemma 6) and depends only on d . Finally, we define
h2, h3 : (0,∞) → (0,∞) by h2(x) := x−1 log3/2

+ (x−1) and h3(x) := x−2, respectively.
The proof of Proposition 1 is lengthy and is deferred to Section S2.1. The main goal of

this subsection, therefore, is to prove Theorem 2, which proceeds via several intermediate
results, including Theorem 3. We begin by stating our main local bracketing entropy result,
whose proof is summarised at the end of Section 2. Note that by Proposition S21, the subclass
F1(Pm) is nonempty if and only if m ≥ d .

PROPOSITION 10. Let d ∈ {2,3} and fix m ∈ N with m ≥ d . Then there exist universal
constants �2, �3 > 0 such that whenever 0 < ε < δ < �d and f0 ∈ F1(Pm), we have

(17) H[ ]
(
21/2ε,G(f0, δ), dH

)
� m

(
δ

ε

)
log3

(
1

δ

)
log3/2

(
log(1/δ)

ε

)
when d = 2 and

(18) H[ ]
(
21/2ε,G(f0, δ), dH

)
� m

{(
δ

ε

)2
log6

(
1

δ

)
+

(
δ

ε

)3/2
log7

(
1

δ

)}
when d = 3.



144 FENG, GUNTUBOYINA, KIM AND SAMWORTH

See Propositions S8 and S9 for details of the initial stages of the proof, which deal with
the case where f0 is the uniform density fK := μd(K)−11K on some polytope K ∈ Pm.
Here, we turn our attention to the general nonuniform case, where the support of f0 may
be unbounded. Writing F1 for the subclass of all log-1-affine densities in Fd , we note that
any f ∈ F1 must take the form x 
→ fK,α(x) := c−1

K,α exp(−α�x)1{x∈K}, where K ⊆ R
d

and α ∈ R
d are the support and negative log-gradient of f , respectively, and cK,α :=∫

K exp(−α�x)dx ∈ (0,∞); see (S75). It follows from the characterisation of F1 given in
Proposition S15 that K and α satisfy the conditions of Proposition S13(ii), which in turn
implies that mK,α := infx∈K α�x is finite. In addition, let MK,α := supx∈K α�x ∈ (−∞,∞],
and for t ∈ R, define the convex sets

Kα,t := K ∩ {
x ∈ R

d : α�x = t
}
,

K+
α,t := K ∩ {

x ∈ R
d : α�x ≤ t

}
,

K̆α,t := K ∩ {
x ∈ R

d : t − 1 ≤ α�x ≤ t
}
,

which are all compact by Proposition S13; see Figure S2 for an illustration. Finally, we denote
by F1

� the collection of all f = fK,α ∈ F1 for which mK,α = 0.

PROOF OF PROPOSITION 10. For a fixed d ∈ {2,3}, let C ≡ Cd := 8d + 7, υ ≡ υd :=
2−3/2 ∧ {d−1/2(d + 1)−(d−1)/2} and � ≡ �d := {υde−C/2γ 1/2} ∧ νd , where γ ≡ γ (d,C) and
ν ≡ νd are taken from Lemmas S17 and S26, respectively. For 0 < ε < δ < υ , the important
quantity Hd(δ, ε) is defined in Proposition S8.

Fix 0 < ε < δ < � and m ∈ N with m ≥ d . It follows from Corollary S16 and the affine
invariance of the Hellinger distance that we need only consider densities f0 = fK,α ∈ F1

� ∩
F1(Pm), which have the property that K ∈ Pm and mK,α = 0. Since Proposition S9 handles
the case α = 0, we fix an arbitrary fK,α ∈ F1

� ∩F1(Pm) with α �= 0, and set L := �MK,α� ∈
N∪ {∞}. Now define

K ′
j :=

{
K+

α,C for j = C,

K̆α,j for each j ∈N with C + 1 ≤ j ≤ L,

which is compact for all integers C ≤ j ≤ L. Note also that since K ∈ Pm, it follows from
Bruns and Gubeladze ((2009), Theorem 1.6) that K ′

C ∈ Pm+1 and K ′
j ∈Pm+2 for all integers

C + 1 ≤ j ≤ L.
In addition, let a+ be the smallest integer C + 1 ≤ j ≤ L such that δ2ej+1 ×

μd(K̆α,j )
−1cK,α ≥ υ2 if such a j exists, and let a+ = L + 1 otherwise. Since (1/δ̃)d−1 ≥

logd−1(1/δ̃) ≥ d(d + 1)d−1υ2 logd−1(1/δ̃) for all δ̃ ∈ (0,1), we deduce from (S78) in
Lemma S17 that

δ2et+1cK,α

μd(K̆α,t )
≥ δ2et+1cK,α

dtd−1μd(K+
α,1)

≥ δ2et

dtd−1 ≥ υ2

for all t ≥ (d + 1) log(1/δ), and hence that a+ � log(1/δ). Next, set u2
j := c exp{−(j −

a+)/2} for each integer a+ ≤ j ≤ L, where c := 1 − e−1/2 is chosen to ensure that∑L
j=a+ u2

j ≤ 1, and also define

ε2
j :=

⎧⎪⎪⎨
⎪⎪⎩

2ε2/3 for j = C,

2ε2(a+ − C)−1/3 for j = C + 1, . . . , a+ − 1,

2u2
j ε

2/3 for j = a+, . . . ,L.
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Since K = ⋃L
j=C K ′

j and
∑L

j=C ε2
j ≤ 2ε2, we can write

H[ ]
(
21/2ε,G(fK,α, δ), dH

) ≤ H[ ]
(
εC,G(fK,α, δ), dH,K ′

C

)
(19)

+
a+−1∑

j=C+1

H[ ]
(
εj ,G(fK,α, δ), dH,K ′

j

)
(20)

+
L∑

j=a+
H[ ]

(
εj ,G(fK,α, δ), dH,K ′

j

)
,(21)

and we now address each of the terms (19), (20) and (21) in turn. Note that while there are
infinitely many summands in (21) when MK,α = L = ∞, it will follow from the bounds we
obtain that the series remains summable.

For (19), let AC := cK,α/μd(K ′
C), which by Lemma S17 satisfies e−C ≤ AC ≤ γ −1. Now

for f ∈ G(fK,α, δ), define f̃C : Rd → [0,∞) by f̃C(x) := AC exp(α�x)f (x)1{x∈K ′
C} and

observe that

δ2 ≥
∫
K ′

C

(
f 1/2 − f

1/2
K,α

)2 =
∫
K ′

C

e−α�x

AC

{
f̃

1/2
C (x) − f

1/2
K ′

C
(x)

}2
dx

≥ e−C

AC

∫
K ′

C

(
f̃

1/2
C − f

1/2
K ′

C

)2
,

which shows that f̃C ∈ G(fK ′
C
,A

1/2
C eC/2δ). Since δ < � < υe−C/2γ 1/2, it follows from the

above bounds on AC that

(22) δ ≤ A
1/2
C eC/2δ < υ < 2−3/2 and A

−1/2
C ε−1

C � ε−1.

Recalling that K ′
C ∈ Pm+1, we can now apply Proposition S9 to deduce that there exists an

(A
1/2
C εC)-Hellinger bracketing set {[g̃L

� , g̃U
� ] : 1 ≤ � ≤ NC} for G(fK ′

C
,A

1/2
C eC/2δ) such that

(23) logNC � (m + 1)Hd

(
A

1/2
C eC/2δ,A

1/2
C εC

)
�mHd(δ, ε).

We see that {f 1K ′
C

: f ∈ G(fK,α, δ)} is covered by the brackets {[gL
� , gU

� ] : 1 ≤ � ≤ NC}
defined by

gL
� (x) := A−1

C exp
(−α�x

)
g̃L

� (x); gU
� (x) := A−1

C exp
(−α�x

)
g̃U

� (x).

Moreover, exp(−α�x) ≤ 1 for all x ∈ K ′
C , so∫

K ′
C

(√
gU

� −
√

gL
�

)2 = A−1
C

∫
K ′

C

(√
g̃U

� (x) −
√

g̃L
� (x)

)2 exp
(−α�x

)
dx ≤ ε2

C

for all 1 ≤ � ≤ NC . Together with (23), this implies that

(24) H[ ]
(
εC,G(fK,α, δ), dH,K ′

C

) ≤ logNC � mHd(δ, ε).

For (20), fix an integer C + 1 ≤ j ≤ a+ − 1 (if such a j exists) and let Aj := cK,α/μd(K ′
j ).

For f ∈ G(fK,α, δ), define f̃j : Rd → [0,∞) by f̃j (x) := Aj exp(α�x)f (x)1{x∈K ′
j }. Now

δ2 ≥
∫
K ′

j

(
f 1/2 − f

1/2
K,α

)2 =
∫
K ′

j

e−α�x

Aj

{
f̃

1/2
j (x) − f

1/2
K ′

j
(x)

}2
dx

≥ e−j

Aj

∫
K ′

j

(
f̃

1/2
j − f

1/2
K ′

j

)2
,
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so f̃j ∈ G(fK ′
j
,A

1/2
j ej/2δ). Since j ≤ a+ − 1, it follows from the definition of a+ that Aj <

δ−2υ2e−(j+1). In addition, since K ′
j ⊆ K+

α,j , we can apply Lemma S17 to deduce that Aj ≥
cK,α/μd(K+

α,j ) ≥ e−j . Therefore,

δ ≤ A
1/2
j ej/2δ < υ < 2−3/2 and A

−1/2
j e−(j−1)/2 � 1.

Since K ′
j ∈ Pm+2, we can apply Proposition S9 to deduce that there exists an (A

1/2
j e(j−1)/2 ×

εj )-Hellinger bracketing set {[g̃L
� , g̃U

� ] : 1 ≤ � ≤ Nj } for G(fK ′
j
,A

1/2
j ej/2δ) such that

(25) logNj � (m + 2)Hd

(
A

1/2
j ej/2δ,A

1/2
j e(j−1)/2εj

)
�mHd(δ, εj ).

We see that {f 1K ′
j

: f ∈ G(fK,α, δ)} is covered by the brackets {[gL
� , gU

� ] : 1 ≤ � ≤ Nj }
defined by

gL
� (x) := A−1

j exp
(−α�x

)
g̃L

� (x); gU
� (x) := A−1

j exp
(−α�x

)
g̃U

� (x).

Moreover, exp(−α�x) ≤ e−(j−1) for all x ∈ K ′
j , so∫

K ′
j

(√
gU

� −
√

gL
�

)2 = A−1
j

∫
K ′

j

(√
g̃U

� (x) −
√

g̃L
� (x)

)2 exp
(−α�x

)
dx ≤ ε2

j

for all 1 ≤ � ≤ Nj . Together with (25) and the fact that a+ � log(1/δ), this implies that

a+−1∑
j=C+1

H[ ]
(
εj ,G(fK,α, δ), dH,K ′

j

)
� log(1/δ)mHd

(
δ, ε/ log(1/δ)1/2)

,

which is bounded above up to a universal constant by

(26) m

(
δ

ε

)
log3

(
1

δ

)
log3/2

(
log(1/δ)

ε

)

when d = 2 and

(27) m

{(
δ

ε

)2
log6

(
1

δ

)
+

(
δ

ε

)3/2
log7

(
1

δ

)}

when d = 3.
For (21), if L ≥ C + 1, consider f = eφ ∈ G(fK,α, δ) and define ψ ≡ φ̃K,α : Rd →

[−∞,∞) by ψ(x) := φ(x) + α�x + log cK,α , as in the statement of Lemma S26. First,
we claim that

(28) ψ(x) ≤ 4d + 2

a+ − 2
α�x

for all x ∈ K \K+
α,a+−1. To see this, first set K̃ := K+

α,a+−1 and Ã := cK,α/μd(K̃), and define

f̃ : Rd → [0,∞) by f̃ (x) := Ã exp(α�x)f (x)1{x∈K̃}. Observe that

log f̃ (x) = logf (x) + α�x + log cK,α − logμd(K̃) = ψ(x) − logμd(K̃).

Then by similar arguments to those given above, we deduce that f̃ ∈ G(f
K̃

, Ã1/2e(a+−1)/2δ).
Moreover, if a+ ≥ C + 2, then it follows from the definitions of a+ and υ that

Ãea+−1δ2 ≤ μd(K̆α,a+−1)
−1cK,αea+−1δ2 < e−1υ2 < 2−3.

Otherwise, if a+ = C + 1, then recall from (22) that

Ãea+−1δ2 = ACeCδ2 < υ2 < 2−3.
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Thus, in all cases, Lemma S25(ii) implies that

log f̃ (x) ≤ 27/2d
(
Ãea+−1δ2)1/2 − logμd(K̃)

for all x ∈ K̃ , and hence that ψ ≤ 4d on Kα,a+−1. On the other hand, we know from
Lemma S26 that there exists some x− ∈ K+

α,1 such that ψ(x−) > −2. Now if x ∈ K and
α�x > a+ −1, then s := (a+ −1−α�x−)/(α�x −α�x−) satisfies 1 ≥ s ≥ (a+ −2)/(α�x −
1) > 0, and w := sx + (1− s)x− lies in Kα,a+−1. It then follows from the concavity of ψ that

ψ(x) ≤ 1

s
ψ(w) − 1 − s

s
ψ(x−) ≤ 4d

s
+ 2(1 − s)

s
= 4d + 2

s
− 2 <

4d + 2

a+ − 2
α�x,

which yields (28), as required.
Now fix an integer a+ ≤ j ≤ L (if such a j exists). First, recalling the definition of a+, we

deduce from the bound (S78) in Lemma S17 that

(29)
μd(K ′

j )

cK,αea+ ≤
(

j

a+ − 1

)d−1 μd(K̆α,a+)

cK,αea+ ≤ eυ−2δ2
(

j

a+ − 1

)d−1
.

Also, it follows from (28) that if f ∈ G(fK,α, δ), then the function f̃j : Rd → [0,∞) de-
fined by f̃j (x) := cK,α exp(α�x)f (x)1{x∈K ′

j } belongs to the set G−∞,Bj
(K ′

j ) := {g1K ′
j

:
g ∈ G, g1K ′

j
≤ eBj }, where Bj := (4d + 2)j/(a+ − 2). Now if {[g̃L

� , g̃U
� ] : 1 ≤ � ≤ N} is

a (c
1/2
K,αe(j−1)/2εj )-Hellinger bracketing set for G−∞,Bj

(K ′
j ), then {f 1K ′

j
: f ∈ G(fK,α, δ)}

is covered by the brackets {[gL
� , gU

� ] : 1 ≤ � ≤ N} defined by

gL
� (x) := c−1

K,α exp
(−α�x

)
g̃L

� (x); gU
� (x) := c−1

K,α exp
(−α�x

)
g̃U

� (x).

Moreover, exp(−α�x) ≤ e−(j−1) for all x ∈ K ′
j , so

∫
K ′

j

(√
gU

� −
√

gL
�

)2 = c−1
K,α

∫
K ′

j

(√
g̃U

� (x) −
√

g̃L
� (x)

)2 exp
(−α�x

)
dx ≤ ε2

j

for all 1 ≤ � ≤ N . Recalling that a+ ≥ C = 8d + 7 and that hd is a decreasing function for
d = 2,3, we now apply (29) and the bound (S35) from Proposition S7 to deduce that

H[ ]
(
εj ,G(fK,α, δ), dH,K ′

j

) ≤ H[ ]
(
c

1/2
K,αe(j−1)/2εj ,G−∞,Bj

(
K ′

j

)
, dH

)

� hd

(
c

1/2
K,αe(j−1)/2εj

μd(K ′
j )

1/2 exp{ (4d+2)j
2(a+−2)

}
)

� hd

({
cK,α

μd(K ′
j )

}1/2 e(j−a+)/2ea+/2e−(j−a+)/4ε

exp{ (4d+2)(j−a+)
2(a+−2)

+ (4d+2)a+
2(a+−2)

}
)

� hd

({
cK,αea+

μd(K ′
j )

}1/2
ε exp

{
−

(
4d + 2

2(a+ − 2)
− 1

4

)
(j − a+)

})

� hd

(
ε

δ

(
a+ − 1

j

) d−1
2

exp
{
−

(
4d + 2

2(a+ − 2)
− 1

4

)
(j − a+)

})

� hd

(
ε

δ

(
a+ − 1

j

) d−1
2

exp
{
−

(
4d + 2

2(8d + 5)
− 1

4

)
(j − a+)

})
,
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and we note that 4d+2
2(8d+5)

− 1
4 < 0. Thus, when d = 2, the final expression above is bounded

above by a constant multiple of

δ

ε
log3/2

(
δ

ε

)
j1/2(

log3/2 j
)

exp
{
−

(
1

4
− 4d + 2

2(8d + 5)

)
(j − a+)

}
,

where we have used the fact that log+(ax) ≤ (1 + loga) log+ x for all x > 0 and a ≥ 1. It
follows that

(30)
L∑

j=a+
H[ ]

(
εj ,G(fK,α, δ), dH,K ′

j

)
� δ

ε
log3/2

(
δ

ε

)

when d = 2. Similarly, when d = 3, we conclude that

(31)
L∑

j=a+
H[ ]

(
εj ,G(fK,α, δ), dH,K ′

j

)
�

(
δ

ε

)2
.

The result follows upon combining the bounds (19), (20), (21), (24), (26), (27), (30) and (31).
�

We are now in a position to give the proof of Theorem 3.

PROOF OF THEOREM 3. By the affine equivariance of the log-concave maximum likeli-
hood estimator (Dümbgen, Samworth and Schuhmacher (2011), Remark 2.4) and the affine
invariance of dH, we may assume without loss of generality that f0 ∈ F0,I

d . In addition, by
Kim and Samworth ((2016), Lemma 6), we have

(32) sup
f0∈F0,I

d

P
(
f̂n /∈ F̃1,ηd

d

) = O
(
n−1)

,

where F̃1,ηd

d is the class of ‘near-isotropic’ log-concave densities defined at the start of the
Appendix. For fixed f0 ∈ Fd and m ≥ d , let

� := inf
f ∈F1(Pm)

suppf0⊆suppf

d2
H(f0, f ).

First, we consider the case d = 2 and assume for the time being that � ≤ �2/2, where �2 is
taken from Proposition 10. If δ ∈ (0, �2 − �), then for all η′ ∈ (0, �2 − � − δ), there exists
f ∈F1(Pm) with suppf0 ⊆ suppf such that dH(f0, f ) ≤ �+η′. It follows from the triangle
inequality that F(f0, δ) ⊆ F(f, δ + � + η′) ⊆F(f,�2), and we deduce from the first bound
(17) in Proposition 10 that

H[ ]
(
21/2ε,F(f0, δ), dH

)
�m

(
δ + � + η′

ε

)
log3

(
1

δ

)
log3/2

(
log(1/δ)

ε

)
.

But since η′ ∈ (0, �2 − � − δ) was arbitrary, it follows that

(33) H[ ]
(
21/2ε,F(f0, δ), dH

)
� m

(
δ + �

ε

)
log3

(
1

δ

)
log3/2

(
log(1/δ)

ε

)

and hence that

(34)

∫ δ

δ2/213
H

1/2
[ ]

(
ε,F(f0, δ), dH

)
dε

�m1/2(δ + �)1/2 log3/2
(

1

δ

)∫ δ

0
ε−1/2 log3/4

(
log(1/δ)

ε

)
dε.
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Now for any a > eδ, we can integrate by parts to establish that

(35)

∫ δ

0
ε−1/2 log3/4

(
a

ε

)
dε = a1/2

∫ ∞
log(a/δ)

u3/4e−u/2 du

= 2δ1/2 log3/4
(

a

δ

)
+ 3a1/2

2

∫ ∞
log(a/δ)

e−u/2

u1/4 du

≤ 5δ1/2 log3/4(a/δ).

Thus, setting a := log(1/δ) and combining the bounds in (34) and (35), we see that

1

δ2

∫ δ

δ2/213
H

1/2
[ ]

(
ε,F(f0, δ) ∩ F̃1,η2, dH

)
dε �m1/2

(
δ + �

δ3

)1/2
log9/4

(
1

δ

)
,

where the right-hand side is a decreasing function of δ ∈ (0, �2 − �). On the other hand,
if δ ≥ �2 − �, which is at least �2/2, then it follows from Kim and Samworth ((2016),
Theorem 4) that

H[ ]
(
ε, F̃1,η2, dH

)
� h2(ε) �

1

ε
log3/2

+
(

1

ε

)
� δ

ε
log3/2

+
(

1

ε

)

and hence that

1

δ2

∫ δ

δ2/213
H

1/2
[ ]

(
ε,F(f0, δ) ∩ F̃1,η2, dH

)
dε � 1

δ
log3/4

+
(

1

δ

)
.

Consequently, there exists a universal constant C′
2 > 0 such that the function �2 : (0,∞) →

(0,∞) defined by

�2(δ) := C′
2m

1/2δ1/2(δ + �)1/2 log9/4
+ (1/δ)

satisfies �2(δ) ≥ δ ∨ ∫ δ
δ2/213 H

1/2
[ ] (ε,F(f0, δ) ∩ F̃1,η2, dH) dε for all δ > 0 and has the prop-

erty that δ 
→ δ−2�2(δ) is decreasing. Setting c2 := 269/4C′
2 ∨1 and δn := (c2

2mn−1 log9/2 n+
�2)1/2, we have � ≤ δn and δ−1

n ≤ c−1
2 m−1/2n1/2 log−9/4 n ≤ n1/2, so

(36) δ−2
n �2(δn) ≤ 21/2C′

2m
1/2δ−1

n log9/4(
n1/2) ≤ 2−19n1/2.

We are now in a position to apply van de Geer ((2000), Corollary 7.5), which is restated as
Theorem 10 in the online supplement to Kim, Guntuboyina and Samworth (2018). It fol-
lows from this, (32) and the bound (S2) from Lemma S1 that there are universal constants
C̄, c, c′, c′′ > 0 such that

(37)

E
{
d2
X(f̂n, f0)

} ≤
∫ 8d logn

0
P

[{
d2
X(f̂n, f0) ≥ t

} ∩ {
f̂n ∈ F̃1,η2

}]
dt

+ (8d logn)P
(
f̂n /∈ F̃1,η2

) +
∫ ∞

8d logn
P

{
d2
X(f̂n, f0) ≥ t

}
dt

≤ δ2
n +

∫ ∞
δ2
n

c exp
(−nt/c2)

dt + c′n−1 logn + c′′n−3

≤ δ2
n + 2c′n−1 logn ≤ C̄m

n
log9/2 n + �2

for all n ≥ 3, provided that � ≤ �2/2. On the other hand, when � > �2/2, observe that by
Theorem S2, which is a small modification of Kim and Samworth ((2016), Theorem 5), we
have E{d2

X(f̂n, f0)} � n−2/3 logn � (�2/2)2 ≤ �2. We have now established the d = 2 case
of the desired result.
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The proof for the case d = 3 is very similar in most respects, except that the first term in
the local bracketing entropy bound (18) from Proposition 10 gives rise to a divergent entropy
integral. If � ≤ �3/2, then

1

δ2

∫ δ

δ2/213
H

1/2
[ ]

(
ε,F(f0, δ) ∩ F̃1,η3, dH

)
dε �m

(
δ + �

δ2

)
log4+

(
1

δ

)

for all δ > 0, where we once again appeal to the global entropy bound

H[ ]
(
ε, F̃1,η3, dH

)
� h3(ε) �

1

ε2

from Kim and Samworth ((2016), Theorem 4) to handle the case δ ≥ �3 − �. We conclude
as above that there exists C ′

3 > 0 such that the function �3 : (0,∞) → (0,∞) defined by

�3(δ) := C′
3m

1/2(δ + �) log4+(1/δ)

has all the required properties. Also, if we set c3 := 216C′
3 ∨ 1, then δn := (c2

3mn−1 log8 n +
�2)1/2 satisfies δ−2

n �3(δn) ≤ 2−19n1/2 for all n ≥ 4. The rest of the argument above then
goes through, and we once again use the worst-case bound E{d2

X(f̂n, f0)}� n−1/2 logn from
Theorem S2 to handle the case where � > �3/2. �

PROOF OF PROPOSITION 4. Observe that in Proposition S9, the polylogarithmic expo-
nents in the local bracketing entropy bounds for uniform densities on polytopes in Pm are
smaller than those that appear in Proposition 10. We can therefore exploit this and deduce
Proposition 4 from Proposition S9 in the same way as Theorem 3 is derived from Proposi-
tion 10. We omit the details for brevity. �

Now that we have established our main novel results of this section, the proof of Theorem 2
is broadly similar to that of the univariate oracle inequality stated as Theorem 3 in Kim,
Guntuboyina and Samworth (2018), so our exposition will be brief, and we will seek to
emphasise the main points of difference.

PROOF OF THEOREM 2. Fix f0 ∈ F and an arbitrary f ∈ ⋃
m∈NFk(Pm) such that

KL(f0, f ) < ∞. Note that we must have suppf0 ⊆ suppf . Proposition 1 yields a poly-
hedral subdivision E1, . . . ,E� of suppf ∈ P with � := κ(f ) ≤ k such that logf is affine
on each Ej , and recall that �(f ) = ∑�

j=1 dj , where dj := |F (Ej )|. Setting pj := ∫
Ej

f0

and qj := ∫
Ej

f for each j ∈ {1, . . . , �}, we see that
∑�

j=1 pj = ∑�
j=1 qj = 1. Moreover, let

Nj := ∑n
i=1 1{Xi∈Ej } for each j ∈ {1, . . . , �}, and partition the set of indices {1, . . . , �} into

the subsets J1 := {j : Nj ≥ d + 1} and J2 := {j : Nj ≤ d}. Then |J2| ≤ d� and

(38) d2
X(f̂n, f0) ≤ 1

n

∑
j∈J1

∑
i:Xi∈Ej

log
f̂n(Xi)

f0(Xi)
+ d�

n
max

1≤i≤n
log

f̂n(Xi)

f0(Xi)
.

The bound (S1) from Lemma S1 controls the expectation of the second term on the right-hand
side of (38), so it remains to handle the first term. For each j ∈ J1, let f

(j)
0 , f (j) ∈ F be the

functions defined by f
(j)
0 (x) := p−1

j f0(x)1{x∈Ej } and f (j)(x) := q−1
j f (x)1{x∈Ej }. We also

denote by f̂ (j) the maximum likelihood estimator based on {X1, . . . ,Xn} ∩ Ej , which exists
and is unique with probability 1 for each j ∈ J1 (Dümbgen, Samworth and Schuhmacher
(2011), Theorem 2.2). Writing M1 := ∑

j∈J1
Nj and arguing as in Kim, Guntuboyina and

Samworth (2018), we find that∑
j∈J1

∑
i:Xi∈Ej

f̂n(Xi) ≤ ∑
j∈J1

∑
i:Xi∈Ej

Nj

M1
f̂ (j)(Xi).
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It follows that

(39)

1

n
E

{ ∑
j∈J1

∑
i:Xi∈Ej

log
f̂n(Xi)

f0(Xi)

}

≤ 1

n
E

{ ∑
j∈J1

∑
i:Xi∈Ej

log
Nj f̂

(j)(Xi)/M1

pjf
(j)
0 (Xi)

}

= 1

n
E

{ ∑
j∈J1

∑
i:Xi∈Ej

log
f̂ (j)(Xi)

f
(j)
0 (Xi)

}
+E

( ∑
j∈J1

Nj

n
log

Nj

npj

)

+E

(
M1

n
log

n

M1

)

=: r1 + r2 + r3.

To bound r1, we observe that f (j) ∈ F1(Pdj ) and suppf
(j)
0 ⊆ suppf (j) for each j ∈ J1.

Consequently, after conditioning on the set of random variables {Nj : j = 1, . . . , �}, we can

apply the risk bound in Theorem 3 to each f
(j)
0 and the corresponding f̂ (j) to deduce that

(40)

r1 ≤ 1

n
E

( ∑
j∈J1

Nj

{
C̄dj

Nj

logγd Nj + inf
f1∈F1(Pdj )

suppf
(j)
0 ⊆suppf1

d2
H
(
f

(j)
0 , f1

)})

≤ C̄�(f )

n
logγd n +

�∑
j=1

pjd
2
H
(
f

(j)
0 , f (j))

≤ C̄�(f )

n
logγd n + KL(f0, f ),

where the penultimate inequality follows as in the proof of Kim, Guntuboyina and Samworth
((2018), Theorem 3). Moreover,

(41) r2 ≤
�∑

j=1

E

{
Nj

n

(
Nj

npj

− 1
)}

−E

( ∑
j∈J2

Nj

n
log

Nj

npj

)
≤ �

n
+ d�

n
logn.

Finally, for r3, we first suppose that d� < n/2, in which case M1/n ≥ 1 − (d�)/n > 1/2.
Thus, arguing as in Kim, Guntuboyina and Samworth (2018), we deduce that r3 ≤ (2�d)/n.
Together with (39), (40), (41) and the fact that � ≤ �(f ), this implies that the desired bound
(6) holds whenever d� < n/2. On the other hand, if d� ≥ n/2, then �(f )/n � 1 and we can
apply Lemma S1 again to conclude that

E
{
d2
X(f̂n, f0)

} ≤ E

{
max

1≤i≤n
log

f̂n(Xi)

f0(Xi)

}
� logn� �(f )

n
logγd n.

This completes the proof of (6). The final assertion of Theorem 2 follows from Lemma S23
in the case d = 2 and from the final assertion of Proposition 1 in the case d = 3. �
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