The Annals of Probability

2021, Vol. 49, No. 2, 997-1032
https://doi.org/10.1214/20-A0P1468

© Institute of Mathematical Statistics, 2021

SMALL GAPS OF CIRCULAR B-ENSEMBLE

BY RENJIE FENG! AND DONGYI WEI?

lDepartment of Mathematics, University of Science and Technology of China, renjiefeng.math@ gmail.com

2Department of Mathematics, Peking University, jnwdyi @ pku.edu.cn

In this article, we study the smallest gaps of the circular B-ensemble
(CBE) on the unit circle, where B is any positive integer. The main result is
2

that the smallest gaps, after being normalized by n #+T, will converge in dis-
tribution to a Poisson point process with some explicit intensity. And thus one
can derive the limiting density of the kth smallest gap, which is proportional

to xKBHD—1 = gy particular, the results apply to the classical COE,
CUE and CSE in random matrix theory. The essential part of the proof is to
derive several identities and inequalities regarding the Selberg integral, which
should have their own interest.

1. Introduction. The extreme spacings of random point processes are important quan-
tities in probability and statistical physics. In random matrix theory, the limiting densities
of the smallest gaps of CUE and GUE were first derived by Vinson [16]; by a different
method, Soshnikov investigated the smallest gaps for the determinantal point processes on
the real line with translation invariant kernels [15]; Soshnikov’s technique was adapted by
Ben Arous—Bourgade in [4] where they studied the joint density of the smallest gaps of CUE
and GUE (which are both determinantal point processes) and proved that the smallest gaps,
after being normalized by n*/3, will tend to a Poisson point process and the kth smallest gap

has the limiting density proportional to x3%=1¢=%" Their results are further generalized by
Figalli—-Guionnet to some invariant multimatrix Hermitian matrices in [8]. The results about
the smallest gaps for random matrices with complex Ginibre, Wishart and universal Unitary
ensembles are derived in [12].

Regarding the largest gaps, the decay order +/32logn/n of the largest gaps of CUE and
GUE (in the bulk regime) was predicted by Vinson in [16] and proved by Ben Arous—
Bourgade in [4], and this result is further generalized by Figalli-Guionnet in [8]. Recently,
the fluctuations of the largest gaps of CUE and GUE have been derived in [7], and it’s proved
that the largest gaps, after being normalized, will also converge in distribution to a Poisson
point process.

In this paper, we will derive the limiting distribution of the smallest gaps of CSE where
B is any positive integer. Our results confirm the (numerical) predictions in physics [13] and
recover Ben Arous—Bourgade’s result in the case of CUE (where 8 = 2). But our proof is
different and technical. One can not make use of the structure of the determinantal point
processes any more (for example, when g = 1, 4, they are Pfaffian point processes other than
the determinantal point processes, we refer to Sections 3.9 and 4.2 in [1] for the definitions
and the structures of the Pfaffian point process and the determinantal point process and their
applications in random matrix theory), and we have to start from the Selberg integral to
get the estimates regarding the point correlation functions, where we need to derive several
asymptotic limits and inequalities (such as Lemma 1.1 and the crucial Lemma 1.4) which
should have their own interest in Selberg integral theory. The method developed in this paper
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is also adapted in [6] where we can derive the limiting distribution of the smallest gaps of
GOE.

In [10], the authors proved that our results in [6, 7] are universal for both smallest gaps
and largest gaps in the bulk of the general Hermitian and symmetric Wigner matrices with
assumptions.

1.1. Main results. In the theory of random matrices, Dyson introduced three ensembles
of random unitary matrices to study the energy-level behaviors in complex quantum systems
[5]. They are the circular orthogonal ensemble (COE) on symmetric unitary matrices, the
circular unitary ensemble (CUE) on unitary matrices, and the circular symplectic ensemble
(CSE) on self dual unitary quaternionic matrices. The circular 8-ensemble (8 > 0) is a gener-
alization of these three ensembles. It is a point process on the unit circle and the joint density
of the eigenangles 6; € [—m, ), 1 < j < n with respect to the Lebesgue measure is

1 . 4
(1) Js @1, ... 60 = = [l — %’
CﬁJlj<k
Here, the partition function
b b4 . . ﬁ
Cﬂ,n ::/ d@lf dgn 1_[|610j _elek|
-7 - j<k
is derived by the Selberg integral and it reads
o DU+ Bn/2)
ra+p/2))"

In particular, the joint density of the eigenangles of COE, CUE and CSE is given by Ji, J>
and J4 respectively (see Chapter 2 in [9] for the proofs).

One interpretation of the density Jg(041, ..., 6,) is as the Boltzmann factor for a classical
gas at inverse temperature S with potential energy

— Z ln|ei91—ei9"|.

1<j<k<n

Cpgn=Q2m)

Because of the pairwise logarithmic repulsion, such a classical gas is referred to as a log-gas.
This interpretation allows for a number of properties of correlations and distributions to be
anticipated using arguments based on macroscopic electrostatics [9].

We will need the following partition functions for the two-component log-gas where the
system consists of n| particles with charge ¢ = 1 and n; particles with charge g = 2:

g T ) ) A
@ Cp.nyna ::/ do, / dOn,+n, H ’elei — e’ek‘qJCIkﬁ
o - j<k
and
(3) Cp.nyny (1) ::/ doy - -dby,vn, 1_[|ei9j _ ei9k|q_,-qk/3,
(—m, )"l xI"2

j<k
where gj =1for1 < j<nyandg; =2forn; +1=<j<n;+ns.

We also need the following partition function for the system of the two-component log-gas
with n particles with charge ¢ = 1 and one particle with charge g = k:

T T ) )
) Cponi.k) 3=/ do, / dOn, 11 [l — ¢lf| 1P
- - .
j<l
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with g; =1for 1 < j <ny and g,,4+1 =k, then we have
Cpni,@ = Cpm.
and the following results.

LEMMA 1.1. ForO<k<n, 8 >1,we have
Chn—t.ty < Cpa(mp)FE—DF/2,

and
where
Agim @m)'+ (T B/2+ 1))t l:[ CUB2AD g ki-1pp2
FkB/2+1) jo D(k+ B2+ 1)
and

1 (B/2DP (T B2+ 1)

Ap=Ap2=00) L T D)

Now we consider the following point process on R:

n
) X(n’y) = Z8(m’(0(i+1)—0(i)),0(,‘)), X(n) = X(n’y) PvL
i=1 Y=p+1

where y > 0, 6;) (1 <i <n) is the increasing rearrangement of 6; (1 <i <n) and 0 ,) =
i) + 2m, i.e. the indices are modulo 7, then we have the following main result.

THEOREM 1.1. For CBE where B is a positive integer, the point process x ™ will con-
verge in distribution to a Poisson point process x as n — +00 with intensity

Ag|l
EX(Axl):%/Auﬂdu,

where A C Ry is any bounded Borel set, | C (—m, ) and |1| is the Lebesgue measure of 1.
In particular, the result holds for COE, CUE and CSE with
1 1 1

Ay =

Al = s A4 = —,
24 24w 2707

respectively.
As a direct consequence, we can derive the limiting distribution of the kth smallest gap.

COROLLARY 1.1. Let ty be the kth smallest gap of CBE and we define
1 1
T = pBF2/(B+D) o (Aﬂ/(ﬂ + 1)) /(B+ )lk’

then we have
B+1

. _ k(B+1)—
nEIEOOP(rk €A = . 7(]{ — 1)!x

_BH1
lex

dx
for any bounded interval A C R.

The above results generalize the previous results derived in [4, 16] for CUE with g = 2.
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1.2. Factorial moments and correlation functions. We first review some basic concepts
about the factorial moments and the correlation functions of a point process, we refer to the
survey [14] for more details. Let

X=>Y 8x
i
be a simple point process on R, and we consider the point process

© x® — Z B(Xil ..... Xi)

i1yeens iy all distinct
on R¥. One can define a measure my on R¥ by
(7) mi(A) =E(X©(4))

for any Borel set A in R¥. In particular, the factorial moment reads

X(B)!

where B is a Borel set in R.
If my is absolutely continuous with respect to the Lebesgue measure, then there exists a

function f; on R¥ such that for any Borel sets By, ..., By in R, we have
) my (B X"‘XBk)=/ Se(xr, oo xi ) dxy - - dxg.
By x---x By

The function f; is called the k-point correlation function of the point process. Note that
Jfx 1s not a probability density, but it admits the following probabilistic interpretation: for

distinct points x1, ..., xg in R, if [x;, x; + dx;],i =1, ..., k are neighbourhoods of x;, then
Jr(x1, ..., xx)dxy ---dxy is the probability of the event that each set [x;, x; + dx;] contains
a particle.

In particular, (8) and (9) imply that the kth factorial moment of a point process and the
k-point correlation function satisfy

(X(B)Y >
10 BY=E(— =f oo X)) dxy - doxg,
(10) mi(B") ((X(B)—k)! o SR x) da - dxg
where B is a Borel set in R.

If X is a determinantal point process, then the k-point correlation function has the repre-
sentation

(11) JiCrer, o) = det[K (i, x )]y ;i

where K (x, y) is some symmetric kernel. For example, in the case of CUE which is a Haar
measure on the unitary group U (n), one can prove that it is a determinantal point process and
the k-point correlation function is
1 sin(n6/2)

fx(1, ..., 60) =det[ K, (6; — 91‘)]15,-’]'5;{, Kq(0)= ﬂm
More properties regarding the correlation functions of determinantal point processes can be
found in [1, 14].
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1.3. Strategy and key lemmas. Now we explain the main steps to prove Theorem 1.1. As
in [4, 15], we still need to prove the convergence of the factorial moments of x ™ in order
to prove its convergence to the Poisson point process, but the proof follows a quite different
way. For the determinantal point processes considered in [4, 15], the factorial moments are
the integrations of the correlation functions (see (10)) which can be further expressed by the
symmetric kernels as in (11), therefore, the limits of the factorial moments can be derived
directly by taking the limits of the kernels, and one can also use the Hadamard—Fischer in-
equality to control all the estimates. But for general CBE which are not determinantal point
processes, one can only express the point correlation functions and the factorial moments
as the integration of the joint density by the definitions (6), (7) and (8). This causes many
difficulties and all the proofs require delicate estimates of the integrals.

By the moment method (see Proposition 2.1 in [4]), Theorem 1.1 will be proved if we can
prove the following convergence of the factorial moment:

_ XA x D) Y 5\ (T1Ap\F
a2 nBEIwE((X(”)(Ax[)—k)!>_<</Au d”) ( 27 >

for any fixed positive integer k, where A C Ry is any bounded interval and I C (—m, ).

We will not prove this convergence directly. We will study the following auxiliary point
process instead. We now introduce 6; j = 6; —6; for 6; > 0;, 0; ; = 0; — 0; + 27 for 6; < 0;.
For any y > 0, we define

(13) 0i.j,y = (n"6; . 0;)
and
>mny) _ ~(n) _ ~(n,y)
(14) X —#Zjaei,j,y, =30, g

i.e., ¥ is the point process of all (normalized) spacings, then we have
(15) X =x™.

In fact, we can rewrite

n—1

(16) gV =3 gorD
j=1
such that
. n
17 )ﬁ(“(n,V,J) = Z8(”y(9(i+j)—9(i)),9(f))-

i=1
Then we have
gD =) and 0< 3™7(B)<n

for every Borel set B C R2.
We need the following lemma which indicates that there is no successive smallest gaps.
Such property is also considered in [4, 15] for the determinantal point processes.

LEMMA 1.2.  For any bounded interval A C Ry and I C (—m, ), we have x ™ (A x
1) — Y™ (A x I) = 0 in probability as n — +oo.
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The proof of Lemma 1.2 relies on the estimates of the integration of the 3-point correla-
tion function, which can be derived for the determinantal point processes by estimating the
symmetric kernels directly. But in our case, we can only express the correlation functions as
the integrations of the joint density, and thus we will need several integral inequalities (see
Lemma 4.1 in §4), which are the basic estimates that will be applied many times in the whole
proof.

The significance of Lemma 1.2 is that, instead of proving the convergence of the factorial
moment of the point process of the smallest spacings x ™ (see (12)), it’s enough to prove the
following convergence of the factorial moment of ¥ of all (normalized) spacings:

. FPAx D)\ 5 \ (1A \F
(18) nlir—ir-looE<()?(")(AXI)—k)!)_</AM d”) ( 2 )

for any fixed k. And it is much easier to study the properties of the point process of all
spacings ¥ compared with only the smallest spacings x . Actually, (18) is the direct
consequence of the following Lemma 1.3 and Lemma 1.4.

LEMMA 1.3. For any bounded interval A C R*, I C (—n, ) and any positive integer

k> 1, we have
YW (A x I)! kCg p_or k(I
E<~(X (A x 1)) )_(/uﬂdu> B, 2k,k()_)0
(XM (A xI)—k)! A Cﬂ,nnkﬁ

asn — +00.

To prove Lemma 1.3, we will introduce another auxiliary point process
(knyy) (k) _ (kn,y)
IO - Z 8(9[*17['2,3/,...,0,‘2,(_1.[2,(,},)7 p - IO ’y:%7
i1,...,Iox all distinct
where 91'2]-71,1'2]-,;/ (1 < j <k)is defined in (13).

Regarding p®™, we will see that the expectation of p") will converge to the kth factorial
moment of ¥ . Lemma 1.3 is the consequence of the following two convergences:

. (X"M(A x )
Iim (E—
( (X™(A x I)—k)!

—E,O(k’n)((A X I)k)> :O

n——+00

and

k
lim (E(p(k’")((A x k) — (/A ubf du> M) =0.

n——+00 Cﬂ,nl’lkﬂ

Here, the second convergence is the most significant part of the whole proof, it im-
plies that one can bound E(p*™((A x I)K)) by the quotient of the partition functions
Cgn—2kx(1)/(C ﬁ,nnkﬁ ), therefore, the problem regarding the smallest gaps in nature is just a
problem about the integral estimates. To be more precise, one of the crucial ideas of the whole
method is that one can bound E(,o(k’”)((A x %)), which can be expressed in terms of the
integration of the joint density of the one-component log-gas (see (44)), by the generalized
partition function of the two-component log-gas (see (45) together with Lemma 6.2).

The intuitive idea of the whole proof is natural: for a pair of two particles with charge 1
of the smallest gap of CSE, these two particles will tend to a “double particle” with charge 2
in the limit, therefore, if there are k-pair of such particles of smallest gaps among n particles
in the one-component log-gas, then such system can be approximated by the two-component
log-gas with n — 2k particles with charge 1 and & particles with charge 2. Therefore, one needs
to compare the partition function of the one-component log-gas with the partition function of
the two-component log-gas as in the following lemma.
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LEMMA 1.4. For any interval 1 C (—m, ) and any positive integer k > 1, we have

Cgn—2k k() <|I|Aﬁ>k
“\ 2 )

HETOO Cﬂ7nnkﬁ

The convergence for k = 1 is guaranteed by Lemma 1.1. We will not prove this conver-
gence directly for k > 2. Actually, we only need to prove the following inequality for k = 2;

Cpn—a2l) _ <|I|Aﬂ)2

(19) lim sup

n—+o0o Cﬁ’nnzﬁ 27

And in Section 8, we can prove Lemma 1.4 for k = 2 by the upper bound (19), Holder
inequality and the powerful result of the convergence of the factorial moments in Lemma 1.3
which is valid for any fixed intervals A and /. The proof of Lemma 1.4 for all £ > 3 follows
by induction and Lemma 1.3 again.

The proof of the upper bound (19) is complicated and it will be proved in Section 7
based on the properties of the Selberg integral and the generalized hypergeometric func-
tions.

The method developed in this article is further applied to derive the limiting distribu-
tion of the smallest gaps of GOE in [6]. Actually our method is quite general, it can be
used to prove that of GSE and more general ensembles. In all cases, as indicated by the
intuitive idea mentioned above, one of the main difficulties is to prove the analogue asymp-
totic limit as in Lemma 1.4, that is, one has to prove the asymptotic limit of the quotient of
the partition functions of the two-component log-gas and the one-component log-gas, once
this is done, the point process of the smallest gaps can be proved to be converging to some
Poisson point process, and hence the limiting density of the kth smallest gap can be de-
rived.

As a final remark, we also conjecture that Theorem 1.1 must be true for any g > 0, but
our method only works for the positive integer 8. This is because, in the proof of the upper
bound (19), we use the properties about the generalized hypergeometric functions that have
been proved to be true for positive integer 5. As explained above, if one can prove Lemma 1.4
for every 8 > 0 by other methods without using the properties of generalized hypergeometric
functions, then Theorem 1.1 will hold for every 8 > 0.

2. Proof of Lemma 1.1. Now we give the proof of Lemma 1.1, which is based on the
Selberg integral. We refer to Selberg’s original method [11] and Aomoto’s method [2, 3] for
the proof of the Selberg integral. We also refer to Chapter 4 in [9] for other proofs and the
applications of the Selberg integral in the theory of random matrices.

PROOF. We can write

Cﬂ,nl,l
b b3 . . . .
= [Ty [T by TT e P T e P
- - 1<j<k=n| 1<j<n
r d 0, 6B 6 28
:/ dgl.../ d9n|+1 l_[ |elj_elk| 1_[ |elj+1|
- - 1<j<k<n; 1<j<n

= Q2n)"' M, (B, B, B/2),
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here we changed variables 6 — 6; +6,,+1 =7 (1 < j < np) and used the following formula
(see (4.4)in [9]):

n

1/2 1/2 . . +b
M, (a,b, 1) ::/ do -- / do, [ P|1 4 2|
-1/2 -1/2 e

(20) % l_[ iezn’i@j _ eZm'Gk |2)L
1<j<k=<n

n

B 1:[1 T(Aj+a+b+DIOAG+1)+1)
B jco T +a+ DG +b+ DI +2)

Similarly, we have

20 Cﬁ,m,] () =Q2m)™ |I|M,1l B, B,8/2) = (271)_1 |I|C'B’nl’]
and
(22) Cpony.ty = Q)" M, (kB/2,kB/2, B/2).

For every positive integer k, we have

"IPOG+2k)+ DTG+ 1)+ 1)

Mn(kx,kk,k>=g GG+ + )T+ )

1 lrae+pH+drkE TGA+D
H

“TO+ 1) Ek TGr+1) T+ j)+1)

~.

thus we have
Cpm.t = Q)" M, (B2, kB/2, B/2)

__@omtt I+ )2+ ) 1:[1 L(jB/2+1)
C@B/2+D)m 5 TGB/2+1) F(B+)/2+ 1)

j:
And forn; =n — k > 0, we have

Cpntty _ Q)T (B/2+ 1)* zﬁl(F(ﬂ(m + )2+ 1)>Sg“<f—’<>
Com  T@p/2+1) ;3\ T@B/2+1)

(271)1 e+ nt 1:[1 LB+ ,)/2+DIGA/2+1)
Fkp/2+1) T((k+ B2+ DB —j)/2+1)

j=1

As InT'(x) is convex for x > 0, we have
(/24 D) <T(kB/2+1).

Forn>k—1>j>1,wehave k8/2>1, 8j > 1,

rGgp/2+1) (l“(]/ﬁ’/2+1))kl‘3/2 < 1 )kﬂ/2<1
D+ B2+ 1) ~ \T(jB/2+2) jB/2+1 =

and

=B+ j)/2)" <mp)¥,

FBr+H/2+1) <<F(ﬁ(n+j)/2+1))ﬁj
FBn—p/2+10) —\ TEn+))/2)
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therefore, we have

k—1
Cﬂ,n—k,(k) < (27‘[)]_k H(l’l,B)'BJ — (Zﬂ)l_k(nﬂ)k(k_])ﬂ/z,
which will imply the first inequality. Using convexity of InI"(x), we also have
FBnt /24D

B F(ﬂ(n -2+~

(Bn— j)/2+1)P < B+ /2",

which implies
I FBn+j)/2+1)
im : .
n—+o0 T(B(n — j)/2+ DnPi

= (B/2)P.

And thus we have

Cp.n—k, k)
pm Cpank&=DA/2

(271)1 KB/2+ D)k A
CkB/2+1)

LOTGB2+ D M Te+H2+1)
lim H - -
C((k+))B/2+1) n>+too i 4 T(B(n— j)/2+ DnPl

i:l

>\,~

(277)1 ‘B2 + )"

T_TGB2+D  H o
CkB/2+1) H(ﬁ/ )

Tk + B2+ D) |

~.
Il

= Aﬂ,k-
As Cg uy,2) = Cp.ny,1, We have

C Cgn_
lim P2l _ lim —=pn=2.02)

= = Az,
n——+oo Cﬁ nnﬁ n—-+oo Cﬂ,nnﬂ B.2

and the expression of Ag = Ag > follows directly from that of Ag ;. U

3. One more auxiliary point process. Now we introduce another auxiliary point pro-

cess as
(k,n,y) _
(23) P - Z S(Gil’i2vV”"’9i2k71si2k~V)
i1yenes iy all distinct
and we define
24) plm = p | _pia,

=
where 91‘2_/’—1»1'2/'?)/ (1 < j <k)is defined in (13).

We need the following lemma which will be used to prove that the expectation of the
random variable p(k (A x 1)K converges to the factorial moment of X(")(A x I) for any
bounded interval A C R™ and I C (—m, ) (see (39)).

LEMMA 3.1. For any bounded intervals A CRy and I C (—m, ), let B=A X I, then
we have
p(k A, y)(Bk) ()?(n’Y)(B))!
— (X" (B) =kl

_B+2
Let ¢y be such that A C (0, c1), cp, =cin F+! and

a :max{i — ] . i,j S Z,Q(i) —Q(j) < 26‘,,},
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if cn € (0, 1), then we have

X" (B))!

= GoE o1 p®M(BX) < k(k — 1)(a — (7™ (B))*

and

P (BY) = (7™ (B)) — k(k — Da(F™(B)) .

PROOF. We denote
Xi={G1,....in):ij€Z,1<ij <n, V1< j <2k,
inj1#1i2j, V1 < j <k, {izj_1,i2;} # {iz—1, 02}, V1 < j <l <k},
Xo={(i1,...,in):ij€Z,1<ij <n, V1< j <2k,
ij#i,V1<j<Il<2k},
Yio={G1, ... i00) :{inj—1, i)} N {io—1, i} # D},
then we have X, C X and X\ X, = U15j<15k Y. Let
Xjp={G1.....im) €Xj 10y, 1.ir;.y €BVI<j <k}, j=1.2,
Yjs={G1 ... i) €Yj 110, 1ir,.y € BVI < j <k},
then we have

F1 (B))!
F(B) -k’
which gives the first inequality, here | X| is the cardinality of the set X.

We also have X1 5\ X2, = U1§j<l§k Y; p and by symmetry |Y;; p| =Y 2 p| for 1 <
j <1 <k, therefore

(26) |X1,8]l — |X2,B] < Z |Yj Bl =k(k—1)[Y12 8l/2.

I<j<I<k

25  p*" (BN =Xy, X2 X1p,  |X1pl=

Now we assume y = % If a =0, then we have 6 ; > n™7 (2c,) = 2c; forevery 1 < j <

I <n,thus 6, ¢ B,and ¥ (B) = p*" (B*) = 0; if k = 1, then by definition ¥ (B) =
p®&m (Bk) Thus, the second and third inequalities are clearly true in these two trivial cases,
for the rest, we only need to consider the case a > 0, kK > 1. The key point is to estimate
1Y1,2,Bl

For fixed 6;, i,,,, € B, we will show that there are at most 2(a — 1) choices of (i3, i4) to
satisfy (i1, ...,i%) € Y1,2,B- Let

Tj ={l Zl#ij,@iﬁl’y EB}U{ltl#ij,Qlﬁijyy € B},
T;:{l:l;éij,eij’l G(O,Cn)}U{lil;ﬁij,gl,ij € (O,Cn)}, j=1,2.

Then we have T; C T]f, since 01, € B impliesn”0;; € AC (0,c1) and 0;; € (0,n" 7 cy) =
(0, cp). Assume 6;; = 0, then we have

{91 e Tl/ U {il}} = {9(4)(m0d27r) : |9(q) - 9(p)| < Cn}
={0(g)(mod2m) :r <q <s},
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for some r, s € Z such that |0y — 0(p)| < cu, [05) — Opy| < cn, therefore |0y — O5)| < 2cp,
and by the definition of @ we have s — r < a. Since i1 ¢ Tl’ , we have

IT{|+1=|{6r:1 € T{ U{i1}}]
= {6y (mod27) : r <g <sl}|
<s—r+1<a+1,

and thus 71| < |T|| < a. Similarly, we have |T>| < |T;| < a.

Now for 6;, ;, , € B, by definition we have i> € T} and iy € T>.

If 0;5,iy,y € B, {i1, 12} N {i3, i4} # D, {i1, i2} # {i3, i4}, then we must have {i3, i4} = {i1, [},
L e o\ {i1}or {i3, i1} = {iz, 1}, ] € T1 \ {i2}, and the order of i3, i4 is uniquely determined. In
fact, by the definition of 6; ;, we have 6;, ;, + 0;, iy =2m, if 05, € B, 0;,,i;,, € B then we
have n?6;, ;,,n"6;, i, € A C(0,c1),and 6,5 ;, +6i,.i; <2n~ 7 c1 =2c, < 2m, acontradiction.

Thus for 6;, ;, , € B, the number of (i3, i4) satisfying 6;, ;, , € B, {i1, 12} N {i3,i4} # 9,
{i1, 02} # (i3, ia} is at most [To\ {i1} + [T \ {i2}| = |T2| = 1+ |T1| — 1 <2(a —1). Now there
are ¥ "(B) choices of (i1, i2), for fixed (i1, i) there are at most 2(a — 1) choices of (i3, is)
and X(”)(B) choices of (iyj—1,12),3 <1 <k, to satisty (i1, ..., i2k) € Y12, B, thus we have

Y128l < XM (B) x 2(a — 1) x F(B)} 2 =2(a — HF™(B)* .
By (25) and (26), we have

__&"m)
~ (X"™(B) —k)!
=|X1,8l — |X2,8| <k(k — 1)|Y12,8/2

_ ,o(k’”)(Bk)

<k(k—1)(a — D)(F™(B))!

which is the second inequality.
The third inequality follows from the second inequality and the fact that

™ (B! k-1
(X"™(B))! 1—[ (n)(B)—]

PRI S

k—1
& @) 11— j/x"B)
j=0

(X" (B)) "(1 -y J/W)(B))

Jj=
= (X" B —kk — DH(F™B) 2,

this completes the proof. [J

4. Integral inequalities. In this section, we will first prove Lemma 4.1 which is roughly
about the integration of the joint density on the small tubes around one variable. Then we
can derive several integral inequalities about the two-component log-gas. We will use these
inequalities many times during the whole proof.
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4.1. Integral lemma. We first prove the following integral lemma.

LEMMA 4.1. Let m, n, B be positive integers with m < n. Given c such that nc € (0, 1)
and0; € R, j=1,...,m, we define

m
Foo =l - o)
j=1
then we have
. ) B B+1 T
(sm(c/ )> cos(npe) c dx1|F(x1)’25
/2 B+1J-x

< i dx xl+cd ixy _ ixy|B B B
< | x2le e 2P| F(x1)|"|F (x2)]
-7 X1
C,B-‘rl T

B+1J-x

< dx|F(xp)|**,

and for k > 1, we have

k
b4 . .
f dxl/ dxy - -dxi 1_[ |erj _ etx1|f3 H|F(xj){ﬂ
- (x1,x1+c)k-1

I<j<I<k j=I

pkk—1)/2+k—1 [T kp
<c / dxi|Fxp|™.

For intervals A C (0,¢), I C (—m, ), we denote
o(B, A) :=/ 11— e du,
A

then we have

fd)q/ dxplet*! — 2
1 X1+A

< (B Ape) [ dm|Fon

B
I P|F ()l — o (8, A)fldxlmxl)\zﬂ

and

sin(c/2)\# 5 ,
( c/2 ) /Au duf@(/gvA)S/AM du.

PROOF. We can write
mﬂ .
F(x)? = Z aje’”.
j=0
We change variables xo = x| + t to get

b4 x1+c . .
/ dxl/ 1 dxz|e™ —e’xz|’3|F(xl)|ﬁ|F(xz)|'3
(27) -7 X1
c T )
:/ dtf 11— &I F e P | F(xy + )P dir.
0 -
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As
mﬂ .. mﬂ .. ..
F(xl)ﬂ:Zaje’”l, F(xl—l—t)ﬂ:Zaje’-’te’-’x‘,
j=0 j=0
by Parseval’s theorem, we have
T mp - mp N
/ F(x1)BF(x; + )P dx; =27 Za_jaje”’ =21 Z |ajlze”t
- j=0 j=0
and
d 2 T 2 &
/ |Fxn) [P dxy :/ \FeePPdxy =21 laj .
—TT —TT .
j=0

Thus fort € (0,¢),0< j <mpB <nB, wehave 0 < jr <nfc <1 and

/_ﬂ |F(x1)|’3|F(x1 +t)}ﬂdx1

b
> Re/ F(x)BF(x +0)fdx;
-7

mp
(28) =27 Y |aj|*(cos jt)
j=0

mp
> 27 Y |aj|* cos(nBc)
=0
g
=cos(nﬁc)/ |F(x1)|2ﬁ dxy,
—7T

integrating for ¢ € (0, ¢) gives

T x1+c¢ . .
f de/I dxale™ — &2 P|F ()P F ()P
—TT X

1
c it ,3 T 2[3
> | dt|]1 —¢€'"|" cos(nBe) |F(x1)|™ dx;.
0 -
As (sinx)/x is decreasing for x € (0, 1) and 0 < ¢ <nfc < 1, we further have
c . c
/ di|1 —¢'"|P :/ dt|2sin(z/2)|P
0 0

c : B B+1 : B
Z/ d”sm(c/2) _c (sm(c/2)> .
0

c/2 | BH+1I\ ¢/2
g X1+c . .
/ dxlf dxa|e™ — e2|P|F (x))|P|F (x2)|”
-7 X1

Therefore, we have

- cPHl <sin(c/2)
=B+r1\ ¢)2

which is the lower bound in the first inequality.

B T
) cos(n,Bc)/_ |F(x1)|2ﬂdx1,
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On the other hand, since F is 2 -perodic, for ¢ € (0, ¢), we have

05/_ IEGD|? — [Fer + 0P da
:f_ (yF(x1)|2/3+yF(x1+r)]2ﬁ)dx1—2/_ \FGe)|P|F ey +10)|P dxy

b g
- 2/ |Fxn) [P dxy — 2/ |Fen)|P|F ey +0)|P dx,
- -
which implies
s b
(29) [ PGP 0l an < [ [Faol? ax,
-7 —T
and using (28) and 2 — 2cos(nfc) < (n,Bc)z, we also have
i B B2 2 (7 28
(30) [ PGl ~Fe+0 Pax < @per [ |Fe dx.
- -
By (27) and (29), we have

T X1+c . ,
/ dxlf 1 dxz|e™ —e’x2|ﬂ|F(x1)|ﬂ|F(x2)|ﬂ
-7 X1
c ) T
5/ dz|1—e”|5/ |F (x| dxy
0 -7

< [ [ [P PP

B+1 T

c

=,3+1 dxl!F(X1)|2ﬁ,
-7

which gives the upper bound in the first inequality. .
If xj € (x1,x1 +¢) for 1 < j <k, then we have |¢'*/ —e'"| < |x; —x/| <cforl < j <
| <k, therefore,

k
b4 . .
f dxl/ dxy - -dxi l_[ |erj _ etx1|f3 l_[|F(xj){ﬂ
—7 (x1,x1+c)k=1

I<j<I<k j=1

k
b
5/ dxlf dxy---dxy l_[ cﬁH|F(xj~)|ﬂ
- (1, x40kt

I<j<i<k j=1

k
T
=C,3k(k—1)/2/ ) ldlz“'dfk/ dx; H|F(X1 +tj)’/3
0,c)~—

( -

j=1
cBkk—1)/2 7 k i
57/ dtg---dtk/ dX12|F(X1+tj){
k (0,c)k—1 - et
oBr—1)/2 K

T
_< dt ...dz/ dxy|F(ep) |
. l;/(O,c)k—l 2 o x1|F(xr)]

T
=cﬂk(k—1)/2+k—1/ dxl|F(x1)|kﬁ,
T

which is the second inequality, here we denote ¢; = 0.
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By changing variables, the definition of ¢ (8, A), Holder inequality and (30), we have

fdxlf dxp|e'*t — e'*2
1 x1+A

=‘/Adu/1dx1|1_eiu|ﬂ}F<x1>\ﬂ|F(x1+u>\ﬁ —/A|1—ei”|ﬂdu/1dx1|F(x1)|2ﬂ‘

B
|F )P F ()P —w(ﬁ,A>/Idx1|F<x1>|2ﬂ|

S/Adufldxlu — Pl || F G+ w) P — [Foe) |
S/Aduu—ei"|ﬂ(/ldxl\p(xl)\2ﬂ)2 « (fldxlup(xl +u)lf - ]F(x1)|ﬁ|2)2

ffAdu|1 —ei“|ﬂ</_ﬂdx1|F(x1)|2f’)2((nﬁc)zf_ﬂ|F(x1)yzf‘dxl>2

— 0(B. A)(nB) /_ dxi| F ()|,

which is the third inequality.
As (sinx)/x is decreasing for x € (0, 1) and

A cC(0,c) C(0,1),

we have

0B )= [ |1 =) du
:f\zsin(u/z)yﬁdu
A
sin(c/2)|#  rsin(e/2\ [ 4
Z/;‘u du-( ) /;‘M du,

c/2 c/2
and as |1 — e*| < u, we also have

@(ﬂ,A)=f|1—ei”|’3du§/ uP du,
A A

which gives the fourth inequality. This completes the proof. [

4.2. Inequalities regarding two-component log-gas. Let B = (0,co) x (—m,m), n > 2k,
by the definition of p*¥) (recall (23)), we have

|
31) Epknn)(ghy = "

= Jg(O1,...,6,)d0---db,
<n—2k>!/zn,k,c A Y

c:co/nV’
here
Znke={O1,....00):0; € (—m, ), VI <j<n—k,

(32)
0; —0j_k€(0,0),Vn—k < j <n}.

For 0 <[ < k, with the same assumptions as in Lemma 4.1, we denote

(33) Eﬁ,l’l,k,l(c) = / d@l . deﬂ—l 1_[ |ei9j _ ei@m |qjqrrlﬂ

Zn—lk—lc j<m qs=1+x(s<1)
Then we have

Eg nk,0(c)

f Jg(O1,...,0,)d0; ---dO, = )
Cgn

n,k,c
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and by definition we can check that

Eg i i(c) =Cpgn2k k-

We need to show that (for 0 < nfc < 1)

sin(c/2)\# Pl E _1(c Pl
(34) ( (c/ )) cos(1Be) < Epnkl 1(0) - ‘
c/2 B+1 Eﬁ,n,k,l(c) B+1
In fact, after changing the order of variables, we can write
Egpnki—1(c) = / doy---db,_;_; l—[ |ei9j . ei@,n|qquﬂ
2:nflfl,kfl,c 1§j<m§n—l—1
T X1+c . . B
x/ dxlf dxz|e'™ — '™
-7 X1
2 n—l-1 .
% 1_[ ’elxj _ esz }Qmﬁ ,
j=1 m=1 gs=1+X{s<i-1}
and
Egnki(c) = / doy - -db,_;_; 1—[ ‘eiej . ei9m|qquﬁ
anlfl,kfl,c l§j<m§n—l—l

T n—l-1 0 Qan
x/ dxi l_[ }e’x‘ —é ’”\ m
- m=1

then (34) is the direct consequence of Lemma 4.1 by taking

9
gs=1+x{s<i-1}

n—Il—1
F(x) — l_[ (eix _eiem)‘bn.

m=1

By (34) we finally have the following two estimates:

PN k= B\ k=l
(35) Egnki(c) < ('3 n 1) Egnki(c) = (,B n 1) Cp.n—2k.k
and
sin(c/2)\ # cPHNk
(36) (™ /2/ ) cosmpor)( ; 1) Chumai = Epnkofe)

5. No successive small gaps. In this section, we will prove Lemma 1.2 which implies
that there is no successive smallest gaps. We first need the following estimate.

LEMMA 5.1. For B=(0,c) x (—m,7),n >k > 1,n""7Bcg € (0, 1), we have

Ei(’l,%k—l)(B) < n(nl_yﬂco)ﬁk(k_l)/z""k_l.

PROOF. We consider the point process

n
EV=Y 8. = Y s
i=1 i
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For B=(0,¢9) X (—m, ), n >k > 1, let ¢, = cg/n?, then we have

)?(n,y,j)(B) le)(@ Oz S _g(n J+1)(A]+1 n)s
i=1

here, the angles are modulo 27, 1 is the indicator of an event and we define
Age={O1,....,00) 01 € (=7, 7),0; —61 €(0,0),¥1 < j <k}.
Let
Aken={O1,....6y):0j € (—m,m),V1<j<n—k+1,
0j — 6p—i+1€(0,0),Yn—k+1< j <n},
then by Lemma 1.1 and Lemma 4.1, we have
E7 "D (B)

1
< E&™0 (A
=& §5Y (Ake,)

_ 1 n!
(k=D (n—k)!

1 ! 1 n m . ‘
= n / dQI .. / de}’l—k l_[ |819j — el@m ’/3
(k=D (n—k)!'CgpJ—x -

1<j<m<n—k

f 501, ... 00 d6y - db,
Ak,cn,n

k n—k

Xf dxy -+ dxg l_[ txj _ lxm‘ﬂ 1_[ l_[ ‘elxj _eiem‘ﬁ
Ak,cn

1§j<m<k j=1lm=1

k

k—1)1CppJr 771

1<j<m<n—k

P n—k ‘ .
« cgk(k—l)/2+k—1/ daxy l—[ i1 _€,9m|k/3
m=1

k
nt Cgn—k,k FRCIERS

:(k—l)' Chon

(nB)K k=D /2 phk=1)/2 k=1
(k — D!

n(nlgcn)ﬁk(k—l)/Z—Fk—l
(k — 1)!pk=1

< n(nﬁcn)ﬂk(k—l)/2+k—l

— n(nl_yﬂco)ﬂk(k_l)/2+k_l,

this completes the proof. [J

Now we can give the proof of Lemma 1.2.

PROOF. Letcbesuchthat A C (0,c¢),and B=(0,¢) x (—m, ),y = ﬂ+1 Then by the
definitions (5) and (14), x (A x I) — X" (A x I) # 0 implies )~((" V(A x I) > 0 for some
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j > 1, and thus we must have ¥"?(B) > 0. Since y > I, for n large enough we have
nl_Vﬁc € (0, 1), and by Lemma 5.1 with k = 3, we have

P(x (A x I) = (A x I) #0) <P( ™72 (B) > 0)
(X(n Vs 2)(3))
(

n(nl— yﬂc)3,3+2

IA

1
I’l( _ﬁ_ )3/3-1—2 N O,
this completes the proof. [J

6. Proof of Lemma 1.3. In this section, we will prove Lemma 1.3.

6.1. Uniform boundedness. We need the following lemma which will be applied in the
proofs of Lemma 1.3 and Lemma 1.4.

LEMMA 6.1.

Cp
(37) lim sup —£1—2K

< 400
n—+00 C,B,nnk/8

PROOF. Let ¢o be fixed such that Bcg € (0,1) and B = (0, cg) X (—m, 7). Thanks to
the integral expression of Ep*"-7)(B¥) in (31), the definition of Eg_, x; (33) and the upper
bound (36), with y = 1, we have

n!  Egnko(c)
(” - Zk)' Cﬁ,n c=co/n

' Cgpe in(c/2)\*P Pl
> n Bn—2kk (Sln(C/ )) (cos(nBe)) ( )

n—26)! Cpn /2 B+1
o F Cpaok <sin(co/(2n))> g

(n —2k)! Cgpnkp co/(2n)

By the first inequality in Lemma 3.1, we have

F"D(B))!
= GODB) k!

EpknD(gk) =

c=co/n

0s(Bco))*

)

,O(k n, 1)(Bk) ( (n, 1)(3))

which implies

limsup E(n ' 5D (B))*

n—+0o0o
> limsupn*Ep®nD (B)
n——+4o00

_ 1
nn 2k C Cokk B+

wen Spn—2kk k( ‘o
nllrfoo (n — 2Kk)! liiligg Cﬁ kB (cos(Bco)) (ﬂ n 1)
CB.n—2k.k (Co COS(ﬁCo))"

B+1 '

=limsu
n— +o<];) Cﬂ,nnk/3

Thus, to prove (37), we only need to prove

(38) limsupE(n '3V (B))* < +o0.

n——+00
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As x ) = Z’};i x"7-)) by Lemma 5.1 (since Bcg € (0, 1)), we have
E(n~' "1 (B) < (Beo) VD2 < (Beg) .
Using 0 < ¥ 1)) (B) < n, we have
E(n~' " (B) <E(m~' ") (B)) < (Beo).

By Minkowski inequality, we finally have

< (1= (Bc)'’") 7",
thus (38) is true, so is (37). [

6.2. Proof of Lemma 1.3. For B= A x I, we will use Lemma 3.1 to prove that

. (X" (B))! (km) (pky )
> 1 (e -~ 80) =0
and use Lemma 4.1 to prove that

kCg ok k(D)
- (k) (ghy _ B pn=2kkX7) _
(40) ngrfooQEp (BY) (/A ’ du) e > 0,

then Lemma 1.3 follows from (39) and (40), here ,o(k’”) is defined in (24).

Let A C Ry be any bounded interval, ] € (—m, ) and B = A x I. Let ¢ be such that
A C (0,cy1), and By = (0,c1) x (—m, ) such that B C B;. We denote y = % and ¢, =
c1/n?.

Since y > 1, for n large enough we have nfc, =n'="Bc; € (0, 1). By the expression of
Ep®&mn7)(BX), Eg ks and (35), with y (B + 1) = B + 2, we have

Bp % (5 < Bp (81)

_nl Egnkolcn)
n—26)!  Cpn

- n! Cﬁ,n—zk,k(cr/?Jrl )k
S -2k Cpn \B+1

B+1
< 2k CBn—2kk ( al )kn—y(ﬂ+1)k

pt1
_ 2% Cpn—2k.k ( g )kn—(ﬂ—l-Z)k

1
_ Cpn—dkk ( C/IH >k
Cﬂ’nnkﬂ B+1 )
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By Lemma 6.1, we have

41) limsupEp(k’")(Bk) < +00.

n——+00

Let a be defined in Lemma 3.1 and assume n large enough such that 0 < ¢, < nfic, =
n'=Y Bey < 1/4. By definition, we have 0 < a < n and a > k is equivalent to ¥ V"% (B,) > 0,
here,a,k € Z,k > 0 and B, = (0, 2¢1) x (—m, ).

By Lemma 5.1 and (1 — y)(8+ 1) =—1, for 1 <k <n, we have

Pla = k) = B(x""9(By) > 0)
<E(x""0(B2)
< n(znlfyﬂcl)k(k—i-l)ﬂ/}l-k
= n(ZnI_V,Bcl)ﬂH (2nl—yﬂcl)(k+2)(k—1)ﬁ/2+k_1

= (2/301)/3-1—1(2nl—yﬁcl)(k+2)(k—1)ﬂ/2+k—l

< 2Bc)PT 2
Since P(a > k) =0 for k > n, thus
P(a > k) < 2Bc)P T (1/2)F!

is always true for k > 1.
The above argument also implies that for k > 1, k € Z, we must have

lim P(a >k)=0.
n——+00

And by dominated convergence theorem, we can further deduce that

(42) lim E(@—1)] =0, Vpe(0,+00),

n——+00

here, fi = max(f,0).
By Lemma 3.1, for any k > 1, we have (¥ ™ (B)* < 2p®™ (B¥) or (¥ ™ (B))* < 2k(k —
Da(¥™ (B))*¥~1, therefore, we have

(™ (B))F < max(2p®" (BY), (2k(k — 1)a)*)
and
E(%™ (B))" < 2E(p®™ (BY)) + (2k(k — 1))*E(aY).
By (41) and (42), we have
(43) limsup E(¥ " (B))* < +o0.

n——+00

By Lemma 3.1, Holder inequality, (42) and (43), we have

(X" (B))! () ¢ ok
°5E<<z<"><3>—k>! —p(B )>

<k(k — DE(@— D+(X"(B)* )
< k(k = D(E(@@ = D)) EED @)D -0

as n — +o00, which implies (39).
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For B=A x1,n> 2k, y >0, we have

(44) Ep®nY) (k) = (n—ni‘Zk)' /gn’k,CA., Jg(01,....0,)d6) ---db, o
here,
Zngkar={01,....00):0;j € (—m,7),V1 < j <n—2k,
Oj_xrel,0j—0j_reAVn—k<j<n}
We denote
Tokari={O1....0,_1):0; € (=, 7), V1 < j <n—2k,
0 el,Nn—2k<j<n—k0;—0, 4y €A Nn—k<j<n—I)
and
Enki(A, 1) 1=f 6y ---dy_y [ | — el |9590F
kAL j<p

with g5 = 1 + X(n—2k <s<n—2k+1}> then we have

Egnko0(A, )

45 / To@1, ... 0,)d0; ---d6, =
(45) _— (0 ) dOy i Com

and

Egnikx(A,1)=Cgpokr(l).

We need some inequalities similar to (34).

LEMMA 6.2. A C (0,c) and I € (—m,m), nfc € (0,1), n > 2k, n, B, k are positive
integers, then we have

k
‘Eﬁ,n,k,O(A,I) - (/A u? du) Cﬁ,n—Zk,k(I)’

B+1

k
< (knpc + Bkc? /24)( ¢ ) CBn—2k k-

B+1

PROOF. As before, after changing the order of variables, we can write
Epniini(A D= [ 46y - dfy1_1 AP
Tn—2,k—1,A,1,1-1

2 n—I-1

d / d ix; __ ixzﬁ in_ O qmB
X/lemAme 2P TT [T Je™ — e

j=1 m=l1

and
Epnii (A1) = | 461 -y AP
Xn—2k—1,A,1,1-1
n—I[—1
X /dx1 1‘[ |1 _eiem{2qm/3’
I m=1
here,

[0, O |4)
A= l_[ |el i —e!m |qqu’ qs =1+ X{n—2k<s<n—2k+I1}-

1<j<m<n—I—1
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By Lemma4.1, ¥, 2 k—1,4,1.1—1 C Xy—1—1k—I,c and (35), we have

|Egnk,i—1(A, 1) — (B, A)Eg nk1(A, )]

n—I[—1
doy - -dbp ;- 1A’3/ dxy l_[ |e”‘1_ 19m|24mﬁ

m=1

< 9(B. A (nfo) x /

Zn—2k—1,A.1,1—1

< p(B. A)(nBo) / By /_ ” dx,

nllklc

—1-1
% 1—[ |ei9j _ ei0,n|qquﬂnn |e”‘1 — oiOm |2qmﬂ

I<j<m=<n-—I-1 m=1 qs=1+X{0<s—n+2k<l}
— 0. HYpe) | e dbp
n —1,k—l,c
x 1—[ |ei9j _ eiem|qqu,6
qs=1+X{0<s—n+2k<l}

I<j<m<n—I-1
=@(B, A)(nBc)Eg n k.i(c)
c13+1

B+1

where ¢(B, A) is as in Lemma 4.1 and Eg ,, « /(c) is as in (33).
Therefore (using Lemma 4.1), we have

|Epnio(A, 1) — (B, A Eg ik (A, D

k—1
Sw(ﬂ,A)(nﬂC)< ) Chmzios

k
<> (B, A NEg pki—1(A, 1) — (B, AVEg i1 (A, D

Bl

=1

k k—1
<3 e(p. 4 (nﬂc‘)<ﬂ 1) Chnsik
k

Z

cﬁ-H

nﬁ@( ) Cp.n—2k.k

B+1

Bt
B ) CB.n—2k k-

As 1> % >1 —x2/6 > 0 for x € (0, 1), and by Lemma 4.1, we have

0< (/A uf du)k — (B, AF
< ( fA uf du)k(l _ (Sinc(/cz/2)>ﬁk)

g <cﬂ+1 )k(l (-2 5( B

B+1 B+1

By definition, we have

0<Egniik(A,1)=Cpgnoki(I) < Cgn2kks

(knﬁc)(

)kﬂkc /24.



SMALL GAPS 1019

therefore, we have
k
‘Eﬂ,n,k,o(A, I - ( fA u du) cﬂ,nzk,k(n‘
<|Egnro(A, 1) — (B, AXEg n k(A D)

k
+ '(/A uf du) — (B, A)k‘cﬁ,n—Zk,k(I)

BNk AN 5
s(knﬂc)( ; +1) Chmzir + ( o 1) (Bkc2/24)Cp i

which completes the proof. [J

Now we are ready to prove (40). By the expression of Ep(k*”’V)(Bk) with y = g—ﬁ (see

(44)), the definition of Eg , x,1(A, I) (see (45)) and changing variables, we have

KCpn—akk(I)
E(o®m((A x D*)) — </ Ba ) ZBn—2kk ")
(0" ((A x DY) e CpantP

n! Eﬂ,n,k,omm,l)_( f . du)" Cp -2tk (D)
n~vA

= (n—2Kk)! Chn Cp kP KDY
n2k 5 \¢
-~ (E —VA,I—/ d)C_ 1)
Chm < pnk0(n ) ( A udu | Cgn—okr(I)
_ (nZk . n ) Egnkon VAT
(n — 2k)! Cpn '
We first notice that
!
0 <n2k _ _n
- (n — 2k)!
2%—1
=n*— [Tm—p
j=0
2%—1

j=0

2k—1
j=0
2k—1
j=0
=n?*1k@2k - 1).

Asn™VAC(0,n77c1), Zy_ok—1nrA.10-1 C Zy_i—1 k—1.n-7c,» fOr n large enough we have
nl_y,Bcl € (0, 1), then we infer from (35) that

(nfycl)ﬂ+1 )k

0<Egnko(n VA, I)<Egnron7"c) < Cﬂ,n—Zk,k( 51
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Therefore, we have

0< <n2k . n )Eﬂ,n,k,o(n_”A, 1)
- (n — 2k)! Cg.n
Y\ BNk
< nZk—lk(zk . 1) Cﬁ,n—Zk,k <(l’l Cl) )
Cpn B+1
- B+1
— 22k — 1) Cpn—2kk (n B2 )k
B+l k
Cgn—
— 7 k(2k — 1) Ln2k ( 1 ) .
Coan®® \B+1

By Lemma 6.2, we have

n2k v B k
E YA ) — du) Cgn— 1
Chn ﬁ,n,k,O(n ) (/nmu M) B.n—2k,k( )’

2k
<

< g (knBc + ,8kc2/24)<

B.n

Cﬂ-i—l

B+1

k
) CB.n—2k k

c=n"7Yc

2k

= Com

_ B+1
(kn'~" By + ﬁkn_zyc%/24)<%
B+1

k
) Cp.n—2k k

B+1

= (kn'™7 ey + ,Bkn_zyc%/24)<;1+ 1)

kCp ok
Cpgankt -

Therefore, we have
kCg p_or k(1)
E(p® (A x I k_(/ ﬁd)M
(,O (( X ))) Au u Cﬁ,nnkﬁ

B+1

KCh 2k k
< (kn'"7 kn=2c2/24 +n~ "k (2k — 1 <c‘ > pnz2k k.
= ( n ,BC] +,B n Cl/ +l’l ( )) IB + 1 C‘B’nnkﬂ

Now (40) follows from (37) of the uniform boundedness of % and the fact that

lim (kn'=Y Bey + Bkn™2Y ¢3 /24 + n~ 'k (2k — 1)) = 0.

n—-+00

7. Proof of the upper bound (19). Now we consider (19). We will make use of several

formulas, especially these on the generalized hypergeometric functions » F’ 1(“), and we refer

to Chapter 13 of [9] for more details.
By definition, we can rewrite the two-component log-gas as

j iry 14
(46) CpunaD) = [ dridrale™ =[P 1, 2B r1. 1)
here

ho@inri= [ dods,
(=m,m)"
n 2
x 1‘[ 1‘“1 _ei(ej_rk)|2ﬁ 1—[ |t _ei9k|/f5_
j=1k=1

j=1 1<j<k<n
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We will see that the uniform upper bound (19) is a direct consequence of the following
Lemma 7.1, together with the integral expression (46) (with n; = n — 4) and Fatou’s lemma.

LEMMA 7.1. There exists a constant C depending only on B such that
Liaa(Biri,m)|e™ — e[ <CCpun®, Vn>4,r1,r (-7, 7],
and

limsup Chn =P I_s 2 (B; r1, o)™ — 2% < 27)72 43,

n——+0o

We need to prove several estimates in order to prove Lemma 7.1. By Proposition 13.1.2 in

[9], we have the following relation between the generalized hypergeometric function , F 1(0‘)
and the Selberg type integrals:

1/2 12 n . '
—/ / dgnl_[ em@z(a—b)“_{_eanel‘aer
My(a,b,1/a) J-1,2 ~1/2 Pl

ﬁ 1+ lyeQmal ) 1_[ |6,271i9j _ eZniOk {2/01

(47) 1<j<k=n
=2 F /) (—n,ab; —(n — 1) — (1 +a)i 11, ... 1)
R (cnabiata+bAm); 1 -1, 1~ 1)

2F® (—n, ab; a(a + b+ m); (1))

here, M, (a, b, 1/a) is defined as in (20) and we have used the following formula (Proposi-
tion 13.1.7 in [9]):

2F1(a)(a, bicitl, ..., tm)

R abia+b+ 1+ m—Dja—cl—1,... 1= tm)
2Fa,bya+b+ 1+ (m—1)ja—c; (1))

By Proposition 13.1.4 in [9], we have

1 n
X1 /0 dxy [T (1= x)™2(1 —sx) ™"

=1

1
rnreaymd A
Sn()"l, )\'27 l/a) 0

(48) x 1 |xj—xl®

I<j<k<n
_ e 1 2 ey

here, by (4.1) and (4.3) in [9], the Selberg integral is

1 1 n
Sn(kl,kz,k):zfo dn---fo di [ =™ ] Ity —ul®
=1

1<j<k<n

(49)

1:[ TOu+ 1+ 0T+ 1+ jO)T 4+ DA
i=0 FAi+2+2+m+j—DOIA+R)
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Now we change variables 6; — 6; + r| & 7 to obtain

ni
Inl,z(ﬁ§ r,1r) = / d91”'d9n1 H(|1 +ei0j|2/3|1 +ei(9j+r1—r2)’2/3)
(—m,m)" .
j=1
X H \ei‘gf —eie"\ﬁ.
1<j<k<n

For positive integer 8, we have

’

1+ ei(9j+r1—r2)|2/3 — e—iﬁ(9j+r1—rz)(1 + ei(9j+r1—r2))2ﬂ
which shows

Iy 2(Bir1,rp) = e~ HPmitrni=r2) doy - --dby,

(=m,m)"

n
% l—ll(e—iﬁej“ +ei9j|2ﬂ(1 +ei(9j+r1—r2))2/3) l—[ |ei9j _ei9k|l3_
j=1

1<j<k=<ni

Comparing with (47) and changing variables 6; — 2 6;, this integral is of the type therein
with

n=njy, m=28, a—b=-28, a+b=28, 2/a =8,
and
th=1t:=e"172) forl<k<m.
Thus (47) implies that I, » is proportional to
=Py FPD (—ny 4:8; (1 — 1)),

and by (20), (47), o F 1(/5 /2) equals to 1 at the origin, thus by considering the case of ty =t =1
(1 <k <2p) for r; =r, we will have

(50) L a(Birird) = Ly 2B r )t PP (cny 48 ((1 - 1)),
where
ni ) 4
1n1,2(,3;r1,rl)=/ ) d91"'d9n11_“1+e’9f]ﬁ
(—m, )"l i<
(51 > H |ei9j _ei9k|,3
15j<k§n1

= 27)"' My, (28,28, B/2).
Comparison with (48) shows that » F’ 1(/3 /2 is of the type therein with
r=-—-ny, oa=p8/2, n=28,

1 2
M=h=4——@m-1)—-1==-1, s=1-t1,
o B
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thus by (48), we have
2P (=ny, 4 8; (1= 1) %)

1
C Sp2/B—1,2/—-1,2/B)
(52) 2
X '/[0 l]2ﬂ dul c 'duzﬂ l_[ l/t?/ﬁ_l(l — uJ)Z/Ig_l(l _ (1 o t)uj)nl
: i
S I TR
1<j<k<2B
Using (50), (51), (52), we have
Ly 2(Bsr1,12)

_ Qu)" M, (28,28, B/t Fm
 SpQ2/B—-1.2/B—1.2/B) Jio1p#

2B
2/8—1 —
x [Tud?a—up? M= —oup)™ T[] luj—wl¥’.
j=1 1<j<k=<2p

(53) duy---duyg

Now we rewrite (53) as
m)" My, (28,28, B/2)1 =P

In172(,8;r1,r2): Szﬁ(z/ﬂ_1?2/ﬂ_1’2/’3)

Fnl,ﬂ(t)a

here t = ¢! "172) and we denote

2
2/8—1 —

< [T ' —up == =nup)™ ] g — %,

j=1 1<j<k=<2p

then Fj,, g is an analytic function (in fact a polynomial) of z. As [1 — (1 — Huj| =|1 —u; +
tuj| < |1 —wuj|+tuj|=1foru; €[0,1], |t| =1, we have

F, N < duy---d
| nl,ﬁ()|_/[0’l]2/3 u ug

28
2/8—1 -
) i L a IRCE U S ) IR
j=1 1<j<k<2B

28

< [ |, duduzy H"?/ﬂ_l(l —upP T g — il
[0.1] o
j=1

1<j<k<2p
=842/ —1,2/B—1,2/P),
which together with (22) implies
2m)" My, (28,28, 8/2)
Inl,Z(ﬁ;rlarZ): L ‘Fnlsﬂ(l)‘

(54) Sp2/B— 1,2/ —1,2/B)
< Q)" My, 28,28, B/2) = 21) "' Cpony -
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Changing variables u j — t; /(1 +t;), we obtain

Y
M J s L+ 1)2 - (1+ 1ap)?

2/8—1
I WD\ T4y,

25 2/’3 Y4 1pm
- /(0,+oo)2ﬁ diy---dhp H (1 +1; )2<2/ﬂ D 2+m+47B-2f—1)

x 1 |tj—tk|4/’3.

tj—t /B
(I +1;)( + 1)

) 1<j<k<28

1<j<k<28
Since 22/ —1)+2+4/8-2B8—1)=4/8+8 —4/8 =8, we have
28 Z/ﬂ 1(1 z2t~)”1
Fp g(—22 :f - dt ' d
ﬂlsﬂ( Z) (O,+oo)2ﬂ 2/3]1_[1 (l+tj)8+”'
x 1 1ty —ul*?.

1<j<k<2B
For z € (0, +00), a simple changing of variables z¢; > s; shows that

28 2//3 l(l—ZS )nl

2) — Z—Sﬂ
(0,+oo)2ﬂ

X l_[ |s —sk|4/ﬂ.

l<j<k<2p

F”l,ﬂ(_z 2/3 1_[ (1+Z_ls )8+n1

Since both sides are analytic functions of z for Rez > 0, this identity is always true for
Re z > 0, moreover, we can decompose (0, +o0) into (0, 1]U[1, 400) and use the symmetry
of s; to obtain

28 2p
(55) Fup(=2%)=2"%>" ( | ) Fup1(x),  Rez>0,
1=0
where
Fp, .1(2) f lz_ﬂl 50— s
7) = ds
n1.pl (0,11 x[1,400)2B— l 2 (1 +z—1s )8+
X H sj — sk|4/ﬁ.
1<j<k=2p

The changing of variables s; — sj_l for [ < j <2 shows that

l 2/’3 (1 —zs;)M
F =
n1,8,1(2) /(0’1]2/3 dsap 1_[ a +Z_1S )8+n1

2B Sj_z/ﬁ"‘](l _Zsj—l)nl

[T b= T Is7'—si'[*

-1 8+nj 2
jmipr (270 ) sy i gy I<j<k<2B
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<1 T s

j=1k=l+1
li[ 7PN — s pym 12—'3[ s§(sj — 2™
= dsp
(0,1]2/9 B (1 +Z_1S )S-H’ll i (Sj+Z_1)8+n'

I 28
x JT dsi=se™® TT sy =sl™ TT TT 11 —=sjsl*?,
1<j<k<l I<j<k<2B j=lk=I+1
here, a = —2/B+1+8—-2—4/8-28—1)=2/B—1.For z=¢",0 € (—n/2,7/2)
ie,Rez>0,and fors >0, wehave |1 +z 's|?=|s+z '>=1+s%+2scosf > 1 and
[1 — zs| =|s — z|, therefore, we have

2/131 i0..n
. |1 —e's;["
F, et </ ds _
’ nlvﬂ,l( )|— (0’1]25 2:31:[1 |1+e—195j|n1
(56) < [T t1sj=st™® [T Isj—sel™?
l<j<k<l I<j<k<28

= Fu..0)O0) Fuy g,28-1)(0),

here, we used |1 — s;s¢| < 1 and we denote

) 2/,3 1|1_ei9sj|n1
Fuy.5.0)(0) i=j ds; l_[ % — 1_[ Isj — sl P
! .11 i e s o
As %ﬁ <e 5 fors € (0, 1), we have
1 — elfs|m ‘ 1 +s2—2scos@ |"1/2 - _—2”11“2’*"
4 = e s
I1+e s|m1 |14 52+2scosh -

which implies

ZSjnl cosf
2

l
2/8-1 1152
1---ds; nsj e J
j=1

[T Isj—sl”

1<j<k=<l

Fu .0 (8) < /

o,17/

!
21 s,
Sf dsl---dsll_[sj/ﬂ esimeosd T |s; - slY#.
0,17 j=1 1<j<k<l

We denote
2/8—1 —
Jnp(2) :—f ]_[t/ﬂ @G 1 1t —ul¥fdn---di,
(0,400 )n 1<j<k<n

then we have
Jnp@ =228 1, 5 (1),
According to Proposition 4.7.3 in [9], we have the explicit evaluation

= T(+2j/BT2j
gy = [ LOH2/BTCIIP)

57) r{a+2/8)

j=1
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By the definition of J,, g, we have the upper bound

_nj2
(58) Fo, 5.0)(0) < Jip(n1cos@) = (ny cos8) 278 J, g(1).
We change of variables nys; — t; to get
-2/
Fnl,ﬁ,(l)(e) =n /P dty---dy
©.n)
1 2tj cos @
R T
X l_[ tjz//g le I-Hjnl 1—[ |[] _ tk|4/,3
j=1 1<j<k<l

By the dominated convergence theorem, we further have

!
: — .
limsupn%l /ﬁFnl,ﬂ,(l)(e) < f dty ---dy | | (2/B=1 =21 coso
(0.400)! !

np——+o00 j=1

4
x [1 1t —ul*?
1<j<k=<l

= J1.p(2c0s0) = (2cos0) 218 1, 4(1).
Therefore, we have

(59) limsup (2n; cos@)zlz/ﬁFnl,ﬂ,(l) ®) < J.p(1).

np—-+o0o
7.1. Proof of Lemma 7.1. Now we are ready to prove Lemma 7.1.

PROOF. If et —¢i"2| < ™!, then by (54) with n| = n — 4 and Lemma 1.1, we have the
first inequality,

Li—a2(Bir1,r2)|e" — 6"2{4’3 < Qr) ' Cpp_a.@n™* <CCpn*.

If |¢/" — e’:rzl >n1 ast =€ 1772 we have |t — 1| = |¢/"! — ¢/"2| > n~! and we can
write t = —e?? for some 6 € (—/2, 7/2), then by (22) and (54), we have
Li—a2(B;r1,12) | — 6”2!4’3

_ @m)"" Mu—4(28,28, B/2)
Sp(2/B—1,2/8—1,2/B)

B Q) Cpu_a@ll —t|*

|Fuea p(0]]1 — 1|

_ Fy s,
S35 @/B—1.2/p —T.27p) s )
By (55) and (56), we have
28 .
EEVIOIEDY (2;8) |Foa.p(e”)]
[=0

% g
= lX_(:)( I )Fn—4,/3,(l)(Q)Fn—4,ﬁ,(2ﬁ—z)(9),

thus we have

2B
j iro |4 )
Li—anBiri, )™ — 2| < S0 0, (Bir1, ),
=0
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where

O Q2r) " Chp—a @)l — 1[4
Ihoaa B = 28— 1,2/8)

As t = —e?? we know that |1 —t| =2cos6 > n~!, by (58) and Lemma 1.1 we have

CCpan®(2cos0)* (25)
T 52/ —1.2/B—1,2/B)

% (1 c0s0) 218 I 4 (1)(ny cos0)2CB=D1B 1,0 1 4 (1)
Y. Iy

2
< f) Fua,8.0)0)Fru_4,8,26-1)(0).

1(1) 42Biri, ) <

< CCpan (2 cos0)* (n) cos o) 2 1B-22B-1%/F
< CCp 1P (n1cos0)* (n; cos )~ 4B +(B-D*)/P

= CCpan (n) cos0) D" < CCy

here ny =n — 4, nycosd =n1|l —t|/2>n;/(2n) > 1/10, and C is a constant depending
only on 8, . Summing up, we now conclude the first inequality.

Now we consider the second inequality regarding the limit superior. If |¢/"1 — /2| =0,
then the result is clearly true. If |1 — ¢i"2| > 0, then we can write t = ¢!"1772) = —¢%? for
some 6 € (—m/2,m/2),and |1 — t| = 2cos6. Recall that

O<I()42(,8 r,r) <CCgyn ﬁ(mcos@) 4(B-0y? /’3 ny=n—4,
then for / # B, we have
lim Cg zﬂlrfl_)4,2(ﬂ;rl,r2)=0,

n—400
thus
lim sup Cﬁ " Li—a2(B;r1,m2)]e" — eirz|4ﬂ
(60) n— 400
< hmsupC 2’31(’3)4 ,(Bir1,12).
n——400
Notice that
) _ Q) Cpp—a,@)|l —1]* 2/3
L,y 2 (Biri,r) =
we have
Cﬁ 72}3](‘34 2(,3 r1,72)

_@m)” 1Cyan=2PCpua.4)(2c0s 0)*
S22/ —1,2/B—1,2/B)
_ Cgn-a@  (2m)'(2ncosf)*’ 28 F o)
= Camn®® 3528 —1.2/p — 1.2/ \ p ) [T O]
B.n 28 , ,
Therefore, by (59), Lemma 1.1 and Lemma 7.2 below, we have
2,31(/3

( ﬁ) | Faa.p.6) )]

lim sup o

n—+00

42(,3 ri,72)

lim Cpn—4,4) (2;3)
n—+00 Clg”n6/3 B
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@z) lim sup(2n cos 0)*F F (9)2
n '
52/3(2/,3 1,2/8—1,2/8) - Of 4,8.(8)
(2m) 1A,3,4

2,8> 2 —2 42
=< Jgg(1)|"=Q2r) “As.
Szﬁ(z/ﬁ—l,z/ﬁ—l,z/m(ﬂ D) p
This, together with (60), will complete the proof of Lemma 7.1 provided Lemma 7.2.

Now we prove the following identity to complete Lemma 7.1.

LEMMA 7.2. It holds that

2,3) /g8 (DI _ a2
B) Sp2/p—1,2/p—1,2/p) " F

PROOF. Notice that the Selberg integral

(2m)Apa (

26—1

I (CQG +1D/B)TU+2( +1)/B)
i—o TCCE+j+1D/AHIA+2/p)

S22/ 1.2/ —-1,2/p) =

2 (T2 /B) T (1 +2j/B)
L T(2j/B+4HT(1+2/B)

_ ff[ (C(2j/B))*
i [ /B + 0T (142/8)
that
26 3 3 26 T'(1+ (k+4)B/2)
2j/B+k)=@2/8)°% i+ kB/2) = (2/B)%F
,E[lkl;[l( JIB+k)=@2/B) k]:[l};[lo B/2) = (2/B) 1‘[ T k82
and that (using (57))
28 2 1 . 2
Trezj/8) (TG +kB)/8))
1_[r(1+2//3) L“;[ T'(1+2/8)
_ lﬁ[ (C2j/BT(2j/B+2)’
L Ca+2/p)y?
B
=Jp s [T @i/B+1)?
(T'(1+3B/2))°
— g ()} (2/p)2F L2027
[Jp.p(D[7(2/8) T 18/2)
we have
28 1Jg.s(DI?
21)A
em) ’“(ﬂ) 25 (2/f —1.2/B —1,2/B)
I'(1+2p8) 48 (T'(1+ B/2))? L1+ (k+4)8/2)
= @m A (F(1+ﬂ))2( /P) (1"(1+3/3/2))2 H (1 +kB/2)
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asin Lemma 1.1,

Cr) B2+ D) (oo 7 LUB2HD

Apa= 2B+ 1) AT @+ B2+

we have

2,3) | 7p.6(DI>
BJ $p2/B—1,2/B—-1,2/P)
e /2+ 1)) (B/2)% r(+2p) (I'(+8/2)°
B reg+1n (C(1+ ) (T (1 +38/2))?
_ Qu)2([C(B/2+1)°
(T(1+ BT (1 +38/2))?
this completes the proof. [J

(27T)A,3,4(

(B/2)*F = A2,

8. Proof of Lemma 1.4. Now we give the proof of Lemma 1.4 which will complete the
proof Theorem 1.1.

PROOF. As Cgn—21(I)=1I|Cpn-21/(2m) (recall (21)), by Lemma 1.1, we have

C 1 1 Cg— I1A
61) lim A= 21():u lim  CB 2,1:| |Ag
n—>+oo  Cg, anb 27T n—>+00 C,B,n”ﬂ 27

’

that is, Lemma 1.4 is true for k = 1. Now we assume |/| > 0, then for every A > 0, we can
find A = (0, a())) such that
I1A
A= / B du x| ' ‘3

We denote
X, =5"(Ax ),
then by Lemma 1.3 with k =1 and (61), we have

Cg o1l
lim EX,= Ilim </ uﬁdu)M=A;
A

n——+o00 n——+o00 C[ﬁ nnﬂ

and with £k =2 in Lemma 1.3, we have

2Cgp—an(l
limianE(Xn(X,,—1)):11minf( f P du) Cpn-a.2U)
n——+o00 n—+o00o\JA C,B,nnzﬁ

On the other hand, by Holder inequality, we have E(X,)? > (EX,)? and E(X,(X, — 1)) >
(EX,)? — (EX,,), and thus we have

lim inf E(X, (X, — 1)) > ’lliglirolg((EXn)z — (EX,))=1*—1.

Therefore, we have

. Cpaaa(l) -2 i (M1AgN?
hmmf%z</f‘uﬁdu> (kz—k)z(l—k 1)( ﬂ) )

n—+oo  Cg ,n?p 2w

Letting A — 400, we have

lim inf
liminf = 3

Cpn—-a,2(1) - (|1|145>2
—_ 2n b

which along with (19) gives Lemma 1.4 for k = 2.
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Moreover, since
E(X, — 1> =E(X,(X, — 1)) — @1 — D(EX,) + A2,
by Lemmas 1.3 and (19), we have

2C _ I
limsupE(X, (X, — 1)) = limsup(j u du) L’é()
n—+00 n—+oo \JA Cﬁ,nn B

2 2
5(/ uﬁdu) <—|I|Aﬂ> =22,
A 21

limsupE(X, —A)> <22 = Q2r— DA+ 21> =A.

n——+00

and thus we have

Now we denote by C a constant independent of n, A, which may be different from line
to line. As X,’; < ()?f_”,i)! + C (—C can be chosen as the lower bound of the polynomial

2x(x—=1)--(x —k+1) —x¥ forx > 0), by Lemma 1.3 and Lemma 6.1, we have

X!
limsup E(X¥) < 21imsupE(7”) +C
n——+00 n——+00 (Xn - k)!

kC B I
52limsup</ uﬂdu> L"’:()_i_c
n—-+oo \JA Cp.antP

k C
<2 /uﬂdu> lim sup -2k ¢
B (A n»+o£) Cﬁ,nnkﬂ

k
50(/ uﬂdu) +C<CA+c.
A
By Holder inequality, we have

E((X,, — 22X,

2kl
K Er ) SR

< (E(Xp — 122 (B((Xy — 2)2X2%2))2

1 1

< (BE(X, — )?)2(B(X2* + 22x2k=2))2,

and thus for any positive integer k, we have

: ((Xn —1)%X,!
limsupE —)
n—+00 (X, —k+ 1!
i 1
(62) < (lim supE(X,, — )\)2> 2 (lim supE(X2* + AzXﬁk_z)) 2
n—+00 n—+00

<AT((CAZ 4 C) +22(CA2 4 C))? < Car (3 + 1),

Now we can prove the lemma by induction. Assume j > 2 and Lemma 1.4 is true for k =
j — 1, j, then by Lemma 1.3, we have

X,! kC B I
lim E(7”>= lim </ uﬂdu) Lk]’;()
n——+00 (Xn —k)' n—+0o\JA Cﬁ,nn B

k I1A k
:(/ uﬂdu) (—' | ’3) =3k k=1,
A 27
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We note that (X, — 1) = (X, —k)(X,, —k — 1) — A — 2k — 1)(X,, — k) + (A — k)2, then
for any integer k > 2, we have the identity

Xn—1?Xa! X, (2. =2k =X, (L—k)?2X,!
X, —k)!  (X,—k—2) (X, —k—1)! X, —k)! -
Now by induction, (62), (63) and Lemma 1.3, we have

((Xn — A)ZX,,!)

(63)

C)L%()»j +1)> limsupE

n— 400 (Xn - J + 1)!

, ( X, Qr—=2j+DX,! (—j+ 1)2X,,!>
= limsupE - - ; :

nstoo \(Xp—j—D! (Xn — ! (Xp —Jj+ D!

X, . )
- limsupE(—n> —2A=2j+DA + =+ D!

n—stoo \(Xp—j—D!
kChp_ann(I .
- limsup(/ uﬁdu) L",’j() — == D=
n—+o00 \JA Cﬂ,nn p

where we denote k = j 4 1 in the last line. Therefore, as A large enough, we have

. Cpn—2kk () (/ )k i1 Lo
limsup ———— 2 < uf du Ml coaz( +1
n_)+£ Cﬁ,nnkﬁ = \Ja ( ( ))

I1Ag\* .
- <—| ;nﬂ) (14+Ch72 +Cai72),

Letting A — 400, we have

lim sup

Cpn—2kk ) _ <|I|A,s)k
n—+00 C,B,n”lk/3 '

2

Similarly, as % > 0, by induction and Lemma 1.3 again, we have
X! 2L =2j+ DX, (v —j+1)2X,!
051iminfE< n _( JHDX =i+ D) n)
n——+00 (Xn—]—l)! (Xn_])! (X”_J+1)!
kCpp—oic i (I .
= liminf</ uf du) Con-aeild) (W2— (== !,
n—+o0o\ JA Cﬂ,nnkﬂ

where k = j + 1 again. Therefore, we have

Cg ok i (I —k .
Jiminf SBn=2kk (D) (/ uﬂdu) (2= (=12 =i
n——+00 Cﬂ,nl’lkﬂ A

[11Ap\* - . -
:<7ﬁ) (1—2"" = —1)%72).
Letting A — 400 again, we have

Yim inf Cpun P

Cgn—2k,k (1) - (|I|A/3 )k
27 )

thus Lemma 1.4 is also true for k = j + 1. This completes the proof of Lemma 1.4, and thus
we complete the proof Theorem 1.1. [
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