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Humans are concurrently exposed to chemically, structurally and toxico-
logically diverse chemicals. A critical challenge for environmental epidemi-
ology is to quantify the risk of adverse health outcomes resulting from expo-
sures to such chemical mixtures and to identify which mixture constituents
may be driving etiologic associations. A variety of statistical methods have
been proposed to address these critical research questions. However, they
generally rely solely on measured exposure and health data available within
a specific study. Advancements in understanding of the role of mixtures on
human health impacts may be better achieved through the utilization of exter-
nal data and knowledge from multiple disciplines with innovative statistical
tools. In this paper we develop new methods for health analyses that incorpo-
rate auxiliary information about the chemicals in a mixture, such as physico-
chemical, structural and/or toxicological data. We expect that the constituents
identified using auxiliary information will be more biologically meaningful
than those identified by methods that solely utilize observed correlations be-
tween measured exposure. We develop flexible Bayesian models by specify-
ing prior distributions for the exposures and their effects that include auxiliary
information and examine this idea over a spectrum of analyses from regres-
sion to factor analysis. The methods are applied to study the effects of volatile
organic compounds on emergency room visits in Atlanta. We find that includ-
ing cheminformatic information about the exposure variables improves pre-
diction and provides a more interpretable model for emergency room visits
for respiratory diseases.

1. Introduction. Environmental chemical exposures, such as pesticides, industrial con-
taminants and air pollution, have major public health consequences. There is a vast body
of epidemiologic literature that has identified significant associations between ambient air
pollution and numerous adverse health outcomes, including all-cause mortality (Atkinson et
al. (2015), Chen et al. (2017)), cardiovascular events (Shah et al. (2015)), respiratory events
(Zheng et al. (2015)) and birth outcomes (Stieb et al. (2012), Vrijheid et al. (2011)). The ma-
jority of these past studies used single exposure approaches to assess health risks, controlling
for other confounders. However, humans are simultaneously exposed to complex mixtures
of chemicals from multiple sources. Many components of these mixtures are highly corre-
lated due to their common sources, chemical properties, spatial variation and meteorological
drivers. Moreover, chemicals within mixtures have the potential to interact with each other
in complex ways that may result in additive, synergistic or competing detrimental effects on
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human health. Therefore, the combined effect of exposure to a multipollutant mixture may
differ greatly than the sum of individual observed effects (Billionnet et al. (2012)).

As recommended by the United States (U.S.) National Research Council, there is a need
to move from a single-exposure to a multiexposure approach in order to gain an improved
understanding of the public health burden of chemical mixtures (National Research Council
and others (2004a, 2004b)). Hence, there has been a recent paradigm shift, particularly in air
pollution epidemiology, to study health risks associated with exposure to multiple chemicals
simultaneously. Knowledge gained from estimating health effects of mixtures will aid in
performing more comprehensive risk assessments, designing regulatory policies to effectively
minimize health burdens and developing compliance and monitoring strategies for multiple
pollutants (Dominici et al. (2010)).

Various statistical techniques have been developed for estimating joint effects of multi-
ple exposures. These techniques broadly fall into two categories, often with specific sci-
entific goals: (1) variable selection for estimating health effects of individual pollutants and
(2) dimension reduction for identifying interpretable latent processes (e.g., common sources).
Variable selection using stepwise algorithms (Sinisi and van der Laan (2004)) has been used
in multipollutant settings to identify pollutants associated with adverse health outcomes af-
ter controlling for confounders (Mortimer et al. (2008)). Under high-dimensionality, regu-
larization methods that penalize model complexity via additional constraints on regression
coefficients can further improve estimation stability (MacLehose et al. (2015)). However,
simulation studies have shown that health effect estimates can be inflated and have overly
optimistic confidence intervals (Dominici et al. (2008), Sun et al. (2013)). Recent work has
applied Bayesian variable selection to identify exposures with adverse and potentially non-
linear health effects (Antonelli et al. (2020), Bobb et al. (2015), Fang et al. (2019), Sabanés
Bové, Held and Kauermann (2015), Wei et al. (2020)).

As the scientific focus has shifted away from health effects of individual chemicals to-
ward the impact of the mixture, dimension reduction techniques, such as principal component
analysis and factor analysis, have become more widely used in environmental health studies.
These approaches utilize observed correlations between pollutants’ dose profiles to produce
a smaller number of constructed exposure variables that may be more interpretable than indi-
vidual pollutants. Examples include profile regression (Moliter et al. (2010)), selforganizing
maps (Pearce et al. (2016)) and weighted quantile sum (Carrico et al. (2015)).

We propose major expansions of methods in these two categories through the common
theme of integrating auxiliary information on pollutants’ chemical and toxicological prop-
erties. Under a Bayesian hierarchical framework, auxiliary information enters through prior
distributions in a flexible and modular fashion. We hypothesize that this approach will im-
prove estimation performance and provide interpretable findings by leveraging information
on chemical structures and toxicological properties. This follows from previous epidemio-
logic investigations where pollutants are first grouped a priori and analyzed as a group using
different methods (Suh et al. (2011), Ye et al. (2017)). We propose approaches that are moti-
vated by recent advances in bioinformatics and computational biology, where analytic tools
are being developed that have also increasingly considered leveraging auxiliary information,
such as genomic annotations, regulation networks (Li and Li (2010)), and protein-protein
interactions (Li et al. (2016)). Specifically, we will develop state-of-the-art Bayesian meth-
ods to simultaneously perform variable selection and induce shrinkage of estimates based on
interpollutant similarity in chemical/toxicological properties. More importantly, our model-
based framework also allows for an assessment of how these chemical/toxicological prop-
erties are associated with adverse health effects, allowing findings to be generalized to pol-
lutants not examined in a study. Finally, a Bayesian approach allows straightforward and
transparent uncertainty quantification, as opposed to methods that involve multiple screening
stages.
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The proposed methods are applied to a time series analysis of emergency department
visits in Atlanta to estimate the health effects associated with mixtures of volatile organic
compounds (VOC) that are not routinely measured at the ambient level. We aim to provide
population-based epidemiologic evidence that may help elucidate the biological mechanism
of air pollutant toxicity. VOC constituents can serve as better markers for emission sources;
therefore, better control strategies may be developed through the identification of specific
harmful pollutants. While our specific modeling approaches are driven by the scientific ques-
tions of this motivating epidemiologic study, the proposed modeling framework is applicable
to supplement existing methods for other applications.

2. Emergency department visits and air pollution in Atlanta.

2.1. Emergency department visits data. Since 1998, investigators at Emory University
have been collecting patient-level emergency department (ED) visit records for the Atlanta
metropolitan area. We analyze the daily number of ED visits from acute care hospitals in
Atlanta between January 1, 1998, and December 31, 2008. ED visits for asthma and wheeze,
all respiratory diseases and all cardiovascular diseases were identified by their International
Classification of Diseases 9th Revision (ICD-9) diagnostic codes and daily counts of each
response were aggregated from individual-level records by matching a patient’s ZIP code to
a ZIP Code Tabulation Area (ZCTA) within the city. Over this time frame the total number
(daily mean, standard deviation) of ED visits is approximately 232,000 (61, 24) for asthma
and wheeze, 250,000 (66, 18) for cardiovascular diseases and one million for respiratory
diseases (274, 98). By regressing city-wide counts onto city-wide ambient concentrations,
we do not account for individual variation in exposure. The Atlanta ED visit database is the
largest of its kind in the U.S. for assessing air pollution-related morbidity. Prior epidemiologic
results from Atlanta have shown cardiorespiratory effects of primary (e.g., carbon monoxide,
nitrogen dioxide, elemental carbon), secondary (e.g., ozone) and mixed (e.g., fine particulate
matter) origin pollutants (Strickland et al. (2010), Ye et al. (2018)).

2.2. Air pollution data. The population-based health studies described in Section 2.1
took advantage of the extensive air quality measurements collected at the Jefferson Street
(JST) monitoring site in the SouthEastern Aerosol Research and Characterization (SEARCH)
network. Situated in central Atlanta with few large emission sources nearby, JST is consid-
ered representative of the urban environment and has generated a long historical record of
unique daily speciated pollution data. The dataset includes daily concentrations of 44 identi-
fied VOC constituents. VOC sampling details are given by Hansen et al. (2006), and concen-
trations are reported in part per billion carbon (ppb-C). Complete lists of VOC constituents
and their summary statistics are given in Ye et al. (2017) which also presents a traditional
epidemiology analysis of these VOC measurements and Atlanta ED visits using single- and
multipollutant approaches. The multipollutant approaches relied on defining seven groups of
VOC a priori based on chemical structure (e.g., n-alkanes, cycloalkanes, alkenes and aro-
matics). Whereas, in this analysis we utilize quantitative measures to capture similarity in
chemical structures between VOCs. Figure 1 (upper-left triangle) plots the sample correla-
tions between the exposure variables; there are many strong positive correlations between the
exposures. For this analysis we only included 44 VOC constituents with concentrations above
the limit of detection (0.1 ppb-C) on at least 90% of days. The daily VOC measurements were
taken at a monitoring location specifically selected to reflect the daily “background” pollution
level in Atlanta. Hence, one limitation of the study is that we assume this daily concentration
is representative of averaged individual-level exposures.
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FIG. 1. Sample correlations of daily volatile organic compound air pollutant in Atlanta, 1998 to 2008. The
upper-left triangle plots the sample correlation between the exposure variables (X) in the dataset; the lower-right
triangle plots the correlation of VOC-associated auxiliary data (Z).

2.3. Auxiliary data. We use the in-silico methods in Fourches, Muratov and Tropsha
(2010) to characterize molecular structure. Using the R package cdk (Guha (2007)), we ex-
tract q = 74 numerical descriptors of each exposure variable’s molecule structure. Examples
of the descriptors include the number of aliphatic carbocycles for the molecule and the frac-
tion of carbon atoms that are SP3 hybridized. Let Zjl denote the (standardized) value of
descriptor l for exposure variable j . These descriptors can be used to measure the pairwise
structural similarity between toxicants. For example, the correlation of Zjl and Zkl across
the l = 1, . . . , q features is a measure of structural similarity between exposure variables j

and k. Figure 1 (bottom-right triangle) plots these correlations. Since these auxiliary vari-
ables are functions of chemical properties alone and have no relation with the observed con-
centrations, their correlation structure is vastly different than the correlation of the observed
concentrations of the exposure variables. The correlation of the concentrations varies from
study to study, whereas the auxiliary variables represent inherent properties of the chemi-
cals, therefore groupings based on the auxiliary variables are more stable and arguably more
biologically meaningful than groupings based on the concentrations.

3. Enhanced Bayesian variable selection by exploiting auxiliary information. For
observation i = 1, . . . , n, let Yi be the response, wi = (wi1, . . . ,wiW )T be a vector of poten-
tial confounders and Xi = (Xi1, . . . ,Xip)T be the vector of exposure variables. We supple-
ment these data with further information about the p exposures. Let Zj = (Zj1, . . . ,Zjq)

T be
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the vector of q additional variables relating to exposure j . In our motivating examples these
include molecular structure properties, but the methods below easily generalize to other forms
of auxiliary information including results of in-vitro experiments. Gathering data across ob-
servations, let X be the n × p matrix of exposure variables and Z be the q × p matrix of
auxiliary data. For simplicity, we assume all confounding, exposure and auxiliary variables
have been standardized to have mean zero and variance one.

The confounding and exposure variables are linked to the response as g[E(Yi)] = wT
i α +∑p

j=1 Xijβj where g is the link function, α are the regression coefficients associated with

the confounding variables and β = (β1, . . . , βp)T are parameters that describe the impact of
exposure on the response. For example, in our motivating case study, Yi represents number
of ED visits for day i, Xij represents the j th VOC pollutant and α include meteorology and
seasonal trends. Bayesian variable selection seeks to identify a subset of exposures associ-
ated with health effects which is equivalent to the subset of coefficients β1, . . . , βp that are
nonzero. Uncertainty about the subset of important variables is encoded in the prior distribu-
tion which is commonly (e.g., George and McCulloch (1997), O’Hara and Sillanpää (2009))
taken to be the two-component mixture: Prob(βj = 0) = πj and given that βj �= 0 the con-
tinuous component is βj |βj �= 0 ∼ Normal(μj , σ

2), independent across j . Since the subset
of variables that are included in the model is treated as random in the Bayesian analysis, this
is referred to as Stochastic Search Variable Selection (SSVS).

The auxiliary data Zj are used to define the prior distribution for the effects of the expo-
sure variables. The most direct way to incorporate the auxiliary variables into the Bayesian
variable selection prior is via the prior model probabilities,

(3.1) logit(πj ) = γ01 +
q∑

l=1

Zjlγl1,

where γl1 determines the effect of auxiliary variable l on the exposure variable’s inclusion
probability. We also use the auxiliary variables in the prior mean of the nonzero coefficients

(3.2) μj = γ02 +
q∑

l=1

Zjlγl2,

where γl2 determines the effect of auxiliary variable l on the exposure variable’s effect, given
it is included in the model.

The Bayesian model is completed by specifying priors for the model parameters. We as-
sume priors

(3.3) γl1|γl2 ∼ Normal
(
bγl2, τ

2
1
)

and γl2 ∼ Normal
(
0, τ 2

2
)

for l ≥ 1. The parameter b controls the dependence between the effect of an auxiliary variable
on the inclusion probability and the effect size; if b > 0, then it is more likely that the same set
of auxiliary variables determine both which exposures are associated with the health outcome
and the magnitude of their effect size. The remaining parameters have uninformative priors
α ∼ Normal(0, c2

1I), b, γ01, γ02 ∼ Normal(0, c2
1) and σ, τ1, τ2 ∼ HC(c2), that is, the half-

Cauchy prior with scale parameter c2 (Gelman (2006)). The logistic regression intercept γ01
controls the prior expected number of variables included in the model. We have given this
parameter a prior mean of zero to center the inclusion probabilities on 0.5, but its prior mean
could be reduced to control-model size if the number of exposures is large (e.g., Kwon et al.
(2011)). We also consider fixing τ1 = 0 so that γ1i = bγi2 and thus auxiliary variables enter
both the inclusion probability and the effect size model via the single index

∑q
l=1 Zjlγl1. This

shared model has fewer parameters to estimate which is advantageous if indeed inclusion
probability and effect magnitude are driven by the same factors.
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4. Enhanced principal components regression by exploiting auxiliary information.
Collinearity is a major challenge in estimating the effect of an exposure mixture. Bayesian
variable selection in multiple regression tends to select one representative exposure from a
correlated group which is misleading if all members of the group have significant effects
(Ghosh and Ghattas (2015)). Common dimension reduction tools, such as factor analysis
(FA) and principal component analysis (PCA), produce linear combinations of exposures
that explain their covariance. However, the sample covariance between the exposures is not
necessarily indicative of shared health effect; rather it may be an artifact of the creation,
transport and fate of pollutants which can vary dramatically across studies. Therefore, we
should not expect FA or PCA to return biologically-meaningful combinations. We propose
new multivariate methods guided by auxiliary information to overcome this limitation.

Standard principal components regression (PCR) reduces the dimension of the exposure
matrix by constructing representative linear combinations of the original exposures. The lin-
ear combinations are based on the p × p sample covariance matrix of X (which has been
standardized), SX . Let �x be the p × dx matrix comprised of the first dx eigenvectors of SX .
In the regression model the original exposure vector Xi is replaced with the dx linear combi-
nations X∗

i = XT
i �x = (X∗

i1, . . . ,X
∗
idx

)T , and the model becomes

(4.1) g
[
E(Yi)

] = wT
i α +

dx∑

l=1

X∗
ilγxl,

where γ x = (γx1, . . . , γxdx )
T are the principal-component effects. With all other covariates

held fixed, an increase of one in original exposure j leads to an increase in the linear predictor
equal to the j th element of β = �xγ x .

An alternative PCR approach that encourages biologically-meaningful combinations of the
exposures to emerge is to replace the weight matrix �x derived from the sample covariance
of X with weights based on the auxiliary data Z, denoted as the p × dz matrix �z. Although
Z is not a random variable, we use its covariance as a similarity measure to define groups
of exposures with similar chemical structure. Let Sz be the p × p sample covariance matrix
of Z (which has been standardized) and �z be comprised of the first dz eigenvectors of Sz.
An alternative approach is to take �z to be the eigenvectors of the similarity matrix defined
via similarity metrics such as Tanimoto (i.e., Jaccard) similarity. If the number of auxiliary
variables is small, then an option is to simply set �z = Z.

The eigenvectors �z should lead to linear combinations X̃i = XT
i �z = (X̃i1, . . . , X̃idx )

T

that group together biologically-similar exposures. For example, say �z = Z and that the
j th auxiliary variable is binary. Then, element X̃ij is the sum of the exposure variables on
day i that possess auxiliary feature j and thus represents the total exposure to a class of
biologically-similar chemicals. If �z are eigenvectors, then the constructed covariates X̃ij

are interpreted as the value of the j th linear combination of the exposure variables for obser-
vation i. Using these constructed covariates gives the model

(4.2) g
[
E(Yi)

] = wT
i α +

dz∑

k=1

X̃ikγzk,

where γ z = (γz1, . . . , γzdz)
T are the PC effects. With all other covariates held fixed, an in-

crease of one in original exposure j leads to an increase in the linear predictor equal to the
j th element of β = �zγ z.

In most cases it will not be clear a priori whether dimension reduction based on the sample
covariance or auxiliary data is preferred, and so we fit the combined model

(4.3) g
[
E(Yi)

] = wT
i α +

dx∑

l=1

X∗
ilγxl +

dz∑

k=1

X̃ikγzk.
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The regression coefficients have priors γxl ∼ Normal(0, σ 2) and γzk ∼ Normal(0, τ 2), so that
the prior variances σ 2 and τ 2 determine the relative influence of the two dimension reduction
approaches. In addition to studying the variance parameters and regression coefficients γ x

and γ z, we examine the posterior of the effects of the original exposures,

β = �xγ x + �zγ z.

We use priors α ∼ Normal(0, c2
1I) and σ, τ ∼ HC(c2); however, this model is a standard

generalized linear model and could easily be fit using maximum likelihood estimation.

5. Enhanced factor analysis by exploiting auxiliary information. In PCR the linear
combinations of the exposure variables that appear in the response model are determined
without input from the health response. The supervised factor analysis model described in
this section allows for both the health and exposure data to determine the relevant linear
combinations of the exposure variables.

The latent factor model is

g
[
E(Yi |α, θ i , δ)

] = wT
i α + θT

i δ,

Xi |A,D, θ i ∼ Normal(Aθ i ,D),
(5.1)

where ηi = θT
i δ is the cumulative effect of the exposure variables, θ i

iid∼ Normal(0, Id) are
the latent factors, A is the p × d (d < p) factor loading matrix with (j, l) element Ajl and
D is diagonal with diagonal elements τ 2

1 , . . . , τ 2
p . In this model, θ i is the driving latent factor

for observation i (e.g., emissions from d sources) that affects both Yi and Xi . Given θ i , δ
describes the health effects and A relates the latent factors to the observed exposure variables.
The models for health response and exposure variables are fit simultaneously in a hierarchical
Bayesian approach, and so both Yi and Xi provide information about θ i .

The primary interest is not to estimate the θ i but rather to use the latent random ef-
fect model for dimension reduction and to pool information across responses. For example,
marginally over θ i , the covariation between the exposures is Cov(Xi ) = AAT + D, and the
conditional mean is E(ηi |Xi ) = XT

i β where

(5.2) β = D−1A
(
AT D−1A + Id

)−1
δ.

Therefore, the posterior distribution of β can be used for inference on individual exposure
effects. The expression of β is a function of parameters in both the health and exposure
models, confirming that both aspects of the model contribute to effect estimation.

To encourage biologically-meaningful latent factors, we specify a prior for A that uses
auxiliary information. We center the prior for the columns of A on the eigenvectors of the
covariance of Z. The spectral decomposition of the p × p covariance matrix of the Zjl is
denoted as �jl for the value of eigenvector l corresponding to exposure j (alternative choices
for � are discussed in Section 4). For exposure j , let �j = (�j1, . . . ,�jd)T be the d leading
eigenvectors. The prior for A is then

(5.3) Ajl
indep∼ Normal

(
b�jl, σ

2)
.

Since each column of A is assigned a different prior mean, this serves to identify A as long
as b > 0. For identification, the number of latent factors d must be less than both p and q .

Two extreme cases illustrate the behavior of this prior. If b = 0, then we obtain the usual
Bayesian factor analysis model without auxiliary information. In the other extreme, if b = 1
and σ = 0, then A = �, and we use the principal components of Z to construct combinations
of exposures to relate to health response. We argue that dimension reduction based on covari-
ation of Z, which is driven by biology, is more appropriate than dimension reduction based
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on covariation in X which is driven by pollutant sources and other external factors such as
meteorological conditions.

In the absence of prior knowledge, b and σ are treated as unknown parameters to be esti-
mated, and thus the data determine how to balance the response, exposure and auxiliary data
to estimate A. The priors are α, δ ∼ Normal(0, c2

1I), b ∼ Normal(0, c2
1) restricted to b > 0

and σ, τj ∼ HC(c2).

6. Simulation study. In this simulation study we evaluate the benefits of incorporating
auxiliary data in the analysis and compare SSVS, factor analysis and PCR in terms precision
for estimating exposure effects and prior sensitivity. Since the three models given in Sec-
tions 3, 4 and 5 make very different assumptions and produce different forms of inference,
it is difficult to compare them directly in a comprehensive simulation study. Therefore, we
conduct separate simulation studies for the sparse SSVS model (Section 3), nonsparse PCR
(Section 4) and FA (Section 5) methods.

6.1. Linear regression simulation. We generate the p = 40 exposure variables Xij as
Gaussian with mean zero and autoregressive covariance Cov(Xij ,Xik) = ρ|j−k|, independent
over i. The auxiliary data are generated as Gaussian with mean zero and Cov(Zjl,Zjk) =
0.5|l−k|, independent over j . For i = 1, . . . , n = 500, we simulate the response Yi as Poisson
with mean μi = 10 exp(

∑p
j=1 Xijβj ). The simulations vary based on the number of auxiliary

variables q , the autocorrelation ρ and the true exposure effect, β = (β1, . . . , βp)T , which is
either:

1. Sparse: βj = 0.1(Zj4 + Zj5)+;
2. Nonsparse: βj = 0.05(

∑4
l=1 Zjl(1 − l/5))+,

where (x)+ = max{0, x}. This set-up ensures that βj ≥ 0 for all j , as we expect increased
exposure to increase health risk. Also, the relationship between the auxiliary data and the
true effects is nonlinear testing robustness to our assumptions. For the sparse scenario, on
average 50% of the βj are zero compared to only 18% for the nonsparse case where most
of the exposure variables have a small harmful effect. For each combination of q ∈ {5,20},
ρ ∈ {0.5,0.9} and true β we generate 100 datasets and apply each method below to each
dataset. Large q makes the effect of the auxiliary variables more difficult to estimate, and
large ρ increases collinearity and thus difficulty in separating effects of correlated exposure
variables.

For each dataset we fit several methods with Poisson likelihood and priors that are special
cases of the SSVS model in Section 3. The models are given in Table 1. For all models we use

TABLE 1
Model descriptions: We consider the following special cases of the Stochastic Search Variable Selection (SSVS)
model for Multiple Linear Regression (MLR) given in Section 3. The models vary depending on their inclusion

probabilities, πj , whether they include the auxiliary data Z, and the effects of the auxiliary data on the the
inclusion probabilities (via γl1) and the effect sizes (via γl2)

Model Description

MLR-NoZ All variables included (πj = 1) and no auxiliary data (Z = 0).
MLR-Z All variables included (πj = 1) and Z included the effect-size prior.
SSVS-NoZ SSVS but no auxiliary data (Z = 0).
SSVS-Z SSVS with Z in the inclusion (γl1 �= 0) but not effect-size (γl2 = 0) prior.
Full The full model in Section 3 with τ1 > 0.
Shared The full model in Section 3 but with γl1 = bγl2.
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TABLE 2
SSVS simulation results: Mean squared error (times 1000) for the regression coefficients β for the models in

Table 1. Coverage percentage of 90% intervals for β is given in the subscript. Data generation varies based on
the average proportion of true regression coefficients that equal zero (“Sparsity”), the number of auxiliary

variables (q) and the autocorrelation between exposure variables (ρ). Mean squared error is averaged over
exposure variables and dataset, and the final column gives the largest Monte Carlo standard error in each row to
gauge statistical significance between methods. The final row gives the CPU time (seconds) to generate 12,000

iterations for the first simulation setting

MLR SSVS Max

Sparsity q ρ NoZ Z NoZ Z Full Shared SE

0.50 5 0.5 0.1390 0.1290 0.0692 0.0593 0.0594 0.0594 0.00
0.50 5 0.9 0.3789 0.3589 0.1993 0.1694 0.4295 0.3895 0.11
0.50 20 0.5 0.1290 0.1290 0.0693 0.0693 0.0693 0.0693 0.00
0.50 20 0.9 0.3888 0.3889 0.2293 0.1994 0.2494 0.2294 0.07
0.18 5 0.5 0.1490 0.1490 0.1289 0.1286 0.1088 0.1087 0.00
0.18 5 0.9 0.4090 0.3891 0.3790 0.3285 0.3187 0.3285 0.04
0.18 20 0.5 0.1490 0.1490 0.1290 0.1287 0.1287 0.1287 0.00
0.18 20 0.9 0.3990 0.4289 0.3689 0.3486 0.3485 0.3385 0.02
CPU 54 56 178 178 178 168

uninformative priors c1 = 10 and c2 = 1. We compute the posterior mean of β using MCMC
and compute mean squared error (MSE) of β averaged over exposure variable and simulated
dataset. Computational details are given in the Appendix.

The results are given in Table 2 and Figure 2. As expected, the SSVS model with auxiliary
data has the largest reduction in MSE compared to the MLR model without the auxiliary data
when the true coefficient vector is sparse. In the sparse cases the SSVS-Z model that uses
auxiliary data only in the inclusion probabilities gives the best performance. In cases with

FIG. 2. SSVS simulation results: Mean squared error (times 1000) for the regression coefficients β for the
models in Table 1. Coverage percentage of 90% intervals for β is given along the x-axis. Data generation varies
based on the average proportion of true regression coefficients that equal zero (“Sparse” or “Nonsparse”), the
number of auxiliary variables (q) and the autocorrelation between exposure variables (ρ). Mean squared error is
averaged over exposure variables and plotted across datasets.
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high autocorrelation (ρ = 0.9), the more complicated full and shared models perform poorly.
Inspection of the results (Figure 2) shows that their poor performance is driven largely by a
few datasets that give large errors, and thus the simpler SSVS-Z model is more stable in this
most challenging case. In the less sparse cases the full and shared models have the smallest
MSE.

To test for sensitivity to the hyperpriors, we fit the full model to the first and eighth sim-
ulation scenarios with all four combinations of hyperpriors c1, c2 ∈ {0.5,10}. Across these
four scenarios, the MSE (times 1000) varied from 0.050 to 0.054 across the four hyperprior
settings, the coverage of 90% intervals varied from 93% to 94% for the first scenario, the
MSE (times 1000) varied from 0.35 to 0.38 and the coverage of 90% intervals varied from
83% to 85% for the eighth scenario. Therefore, there is some sensitivity to hyperparameter
selection in the final scenario with high autocorrelation and strong sparsity.

6.2. Factor analysis and principal components regression simulation. We generate the
p = 40 exposure variables Xij as Gaussian with mean zero and variance one. The exposures
are independent over i and have block-diagonal correlation across exposures with within-
block correlation ρx . The first of five blocks includes exposures {1,6, . . . ,36}, the second
block includes exposures {2,7, . . . ,37}, etc. To give a distinct covariance structure from the
exposure data, the q = 20 auxiliary variables Zjl are Gaussian with mean zero, variance one,

and autoregressive correlation Cor(Zjl,Zkl) = ρ
|j−k|
z , independent over l. For i = 1, . . . , n =

500, we simulate the response Yi as Poisson with mean μi = 10 exp(
∑p

j=1 Xijβj ). The true
exposure effect is set to β = 0.1[(1 − r)�x1 + r�z1], where �x and �z are the first three
eigenvectors of Sx and Sz, respectively. If r = 0, then the true effects are aligned with the
covariance of X; if r = 1, then the true effects are determined by the auxiliary data. The
simulations vary based on the correlation coefficients ρx and ρz, and the true exposure effect
via r . For each combination of ρx,ρz ∈ {0.5,0.9} and r ∈ {0.1,0.9}, we generate 100 datasets
and apply each method below to each dataset.

For each dataset we fit several methods with Poisson likelihood. The first model is standard
multiple linear regression (“MLR”) with βj ∼ Normal(0, σ 2). We also fit the FA model in
Section 5 with (“FA-Z”) and without (“FA-NoZ,” i.e., with b = 0) the auxiliary data. We also
fit the three PCR methods given in Section 4: PCR using only �x (“PCR-X”) as in (4.1), PCR
using only �z (“PCR-Z”) as in (4.2) and the full model that uses both �x and �z (“PCR-XZ”)
as in (4.3). For all models we use uninformative priors c1 = 10 and c2 = 1 and select the
number of dimension of the FA/PCR models (dx and/or dz) to explain 90% of the variation
as measured by cumulative eigenvalues (of Sx and/or Sz). Computational details are given in
the Appendix. We compare estimators based on MSE of the posterior mean of β averaged
over covariate and simulated dataset.

The results are given in Table 3. For the scenarios with r = 0.1, the true exposure effects
are largely determined by the eigenvectors of X, and thus the auxiliary data are not influen-
tial. In these cases both FA-NoZ and PCR-X that do not use the auxiliary data provide a large
reduction in MSE compared to MLR. In these cases FA is preferred to PCR when X has low
autocorrelation (ρx = 0.5) and vice versa. The methods that include auxiliary data in these
cases have higher MSE because the auxiliary data are not related to the true β . PCR-Z has
the largest MSE because it incorrectly assumes the true coefficients lie in a low-dimensional
space determined by the auxiliary data. In the scenarios with r = 0.9 and thus the true expo-
sure effects are largely determined by the auxiliary data, including auxiliary data in the FA
model, does not provide a reduction in MSE. The PCR models with auxiliary data do reduce
MSE compared with both MLR and PCR without the auxiliary data.

In summary, of the methods considered in this simulation the best vehicle to incorporate
auxiliary data in the analysis appears to be the PCR-XZ model. The FA methods use both the
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TABLE 3
FA and PCR simulation results: Mean squared error (times 1000) for the regression coefficients β for the
multiple linear regression (“MLR”) model without auxiliary data, factor analysis (“FA”) models with and

without the auxiliary data Z and principal components regression (“PCR”) based on eigenvectors of X, Z and
both X and Z. Coverage percentage of 90% intervals for β is given in the subscript. Data generation varies

based on the proportion of the true regression coefficients that are derived from the X’s eigenvectors (r) and the
autocorrelation in X (ρx ) and Z (ρZ ). Mean squared error is averaged over exposure variables and dataset, and

the final column gives the largest Monte Carlo standard error in each row. The final row gives the CPU time
(seconds) to generate 12,000 iterations for the first simulation setting

r ρx ρz MLR FA-NoZ FA-Z PCR-X PCR-Z PCR-XZ Max SE

0.1 0.5 0.5 0.2992 0.03100 0.04100 0.1091 1.1135 0.2092 0.03
0.1 0.5 0.9 0.2992 0.0299 0.0298 0.1091 0.9428 0.1691 0.03
0.1 0.9 0.5 0.7795 0.1799 0.1899 0.0163 3.4041 0.4491 0.16
0.1 0.9 0.9 0.7596 0.0498 0.0497 0.0166 6.1222 0.2291 0.26
0.9 0.5 0.5 0.3192 0.3283 0.3086 0.4060 0.1285 0.2191 0.01
0.9 0.5 0.9 0.2992 0.3473 0.3572 0.3564 0.0783 0.1592 0.01
0.9 0.9 0.5 0.8095 0.5094 0.5294 0.5210 0.3888 0.4991 0.02
0.9 0.9 0.9 0.7896 0.4274 0.4373 0.4310 0.2483 0.2789 0.02

CPU 60 287 287 34 24 48

covariance of X and the regression relationship with Y to estimate the latent factor matrix,
but for data with low signal-to-noise ratio, such as air pollution studies, the covariance of X
overwhelms the regression on Y and latent factor estimation is mostly driven by the covari-
ance of X regardless of whether auxiliary data is included in the prior. The PCR-Z model is
optimal when the true regression coefficients are largely determined by the auxiliary data but
is worse than MLR when this assumption is violated. PCR-XZ is robust to this form of model
misspecification and consistently outperforms MLR.

Finally, to test for sensitivity to the hyperpriors we fit the FA-Z and PCR-XZ models to the
first and eighth simulation scenarios with hyperpriors c1 = c2 = c ∈ {0.5,10}. For FA-Z, in
the first scenario the MSE (times 1000) is 0.03 (coverage 100%) for c = 0.5 and 0.04 (100%)
for c = 10; for the eighth scenario the MSE is 0.42 (74%) for c = 0.5 and 0.43 (73%) for
c = 10. For PCR-XZ, in the first scenario the MSE is 0.20 (coverage 92%) for both c = 0.5
and c = 10; for the eighth scenario the MSE is 0.27 (89%) for both c = 0.5 and c = 10.
Therefore, the PCR-XZ methods appears to be the least sensitive to hyperprior selection.

7. Analysis of the Atlanta ED visits data. We estimate short-term associations between
ED visits and mixtures of 44 ambient VOC pollutants in Atlanta during 1998 to 2008. We
expand the analysis previously conducted by Ye et al. (2017) by incorporating a suite of
74 quantitative auxiliary descriptors on chemical structure instead of assigning pollutants to
distinct chemical structure groups.

7.1. Model comparisons. To compare methods, we use the same models, priors and com-
putational details as in the simulation study except that we do not fit the factor analysis models
because of their poor performance in the simulation study. We also fit these models with a
negative binomial likelihood to account for overdispersion but found no marked improve-
ment over the Poisson likelihood, and so these results are excluded. The potential confounder
variables wi include: natural cubic splines of calendar date with monthly knots, cubic func-
tions of same-day maximum temperature, dew-point temperature, indicators of day-of-week,
holidays, seasons, season-day-of-week interactions, season-temperature interactions and in-
dicators for hospital participation periods. There are n = 3216 observations (days), p = 44
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TABLE 4
Cross-validation results for the Atlanta emergency department visit data: Root mean squared error (“RMSE”)
and test set deviance (“Dev”; reported as the reduction from the MLR-NoZ model) for asthma and wheezing,

respiratory and cardiovascular diseases for linear regression models in Table 1 and principal components
regression (PCR) based on the observed exposures X, the auxiliary data Z or both

Asthma Respiratory Cardiovascular

Model RMSE Dev RMSE Dev RMSE Dev

MLR-NoZ 11.3 0 138.3 0 9.0 0
MLR-Z 10.9 −97 106.8 −3341 9.0 0
SSVS-NoZ 11.6 55 111.7 −2838 9.0 −6
SSVS-Z 11.0 −88 125.0 −1468 9.0 −9
FULL 11.0 −93 125.1 −1425 9.0 −4
SHARED 10.8 −116 106.7 −3342 9.0 −6
PCR-X 12.4 177 113.5 −2653 9.0 −11
PCR-Z 10.9 −104 99.5 −4111 9.0 −6
PCR-XZ 11.5 58 118.7 −2163 9.0 −11

exposure variables and q = 74 auxiliary variables. Following Ye et al. (2017), we use the
three-day moving average of lags 0, 1 and 2 for asthma and respiratory emergency depart-
ment visits and the lag 0 concentration for cardiovascular visits. For the PCR models we use
dx = dz = 5 eigenvectors which explains 90% of the variability of Sx and Sz. Because of the
large number of auxiliary variables and their collinearity, we use these five eigenvectors of Sz

as the auxiliary data Z for the SSVS models.
We compare models using five-fold cross-validation with days randomly assigned across

folds. The metrics for comparison are root mean square prediction error and the test-set de-
viance, that is, twice the negative log likelihood of the test set data given the posterior mean
of the model parameters, summed over all observations and cross-validation folds. Table 4
gives the difference in deviance between each model and the baseline multiple regression
model that excludes auxiliary data; negative values indicate better fit.

With few exceptions the advanced methods improve fit compared to the standard Poisson
regression model. The SSVS model with shared structure in the inclusion probability and
effect size priors has the smallest RMSE and deviance for asthma and wheeze. For the res-
piratory response the PCR model based on the eigen decomposition of the auxiliary data has
the best performance. Perhaps due to the small number of events, none of the exposures are
identified as harmful for the cardiovascular response, and the results are fairly similar for all
models. Therefore, we do not discuss this health outcome below.

7.2. Results. The posterior of the exposure effects βj for asthma and wheeze ED visits
are plotted in Figures 3 and 4 (and the PCR parameter estimates are in Table 5). None of the
inclusion probabilities are close to zero or one, likely due to collinearity (Ghosh and Ghattas
(2015)). As in the standard epidemiological analysis of Ye et al. (2017), the estimated relative
risks of the individual exposures are no more than exp(0.01) ≈ 1.01, and so studying the total
effect requires considering the entire mixture. Compared to the standard SSVS model with-
out auxiliary data, the shared model has smaller inclusion probability (i.e., Prob(βj �= 0|Y))
than the SSVS standard model for most of the variables with small estimated effects size but
similar inclusion probability variables with larger estimated effect size. Therefore, including
the auxiliary data gives a smaller model without attenuating the estimates effects of the vari-
ables with high inclusion probability. The posterior 95% interval for b, the parameter that
controls the relationship between the model for inclusion probability and effect size in (3.3),
is (−6.0,6.1), and, since this parameter is centered on zero, it appears the auxiliary data
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FIG. 3. SSVS results for asthma and wheeze. Plotted are the posterior inclusion probabilities (i.e., the posterior
probability that βj �= 0) and posterior medians for βj for the SSVS models without auxiliary data (“SSVS-NoZ”)
and the SSVS-shared model. The exposures are ordered by the posterior mean of the shared auxiliary factor,
μj = ∑q

l=1 Zjlγl2, for the shared model.

affects the expected effect size more than the inclusion probability. The strongest positive
association with 2-Butanone was also identified in Ye et al. (2017). However, in this analysis
all 44 VOC pollutants were considered jointly, while Ye et al. (2017) examined associations
with 2-Butanone in a multipollutant model controlling for different small sets of pollutants.
Even though the shared model is the best fitting model, the PCR-Z model fits nearly as well.
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FIG. 4. PCR results for asthma and wheeze. Posterior 95% intervals for PCR regression using eigenvectors of
the correlation of X versus Z. Thick lines indicate intervals that exclude zero. The exposures are ordered by the
posterior mean of the shared auxiliary factor, μj = ∑q

l=1 Zjlγl2, for the shared model.

Comparing Figures 3 and 4 shows that the PCR-Z model identifies more harmful exposures
because it smooths effects across exposures with similar chemical structure. For example,
both models flag 2-Methylheptane and n-Decane, but PCR-Z also identifies chemically sim-
ilar exposures such as 3-Ethylhexane and n-Nonane as harmful. In Ye et al. (2017), asthma
ED visits were also found to be associated with these groups of alkanes.

The PCR method based on the auxiliary data is the best fitting model for the all respiratory
ED visits. Figure 5 compares the posteriors for PCR-X and PCR-Z. Both methods identify
a large group of exposures at the bottom of Figure 5 as being associated with increase risk
of respiratory problems. This group includes various alkane hydrocarbons and are primarily
emitted from traffic or other combustion sources. Because this group of exposures is also
correlated (top left of Figure 1) with many other exposures, the PCR-X model also flags
other exposures such as toluene. However, since toluene is an aromatic hydrocarbon and is
chemically dissimilar (bottom right of Figure 1) to the alkanes, it is not deemed harmful by
the PCR-Z model.

Thus far we have examined the results via the posterior of the regression coefficients of
individual exposures. An advantage of incorporating the auxilary data into the analysis is
that is can reveal the chemical properties that are common to harmful exposures. For both
asthma and all respiratory ED visits, only the first eigenvector in the PCR-Z model has a
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TABLE 5
Parameter estimates for the PCR-XZ model: Posterior median (equal-tailed 95% interval) for the effect of PC’s
of X (γxl ) and Z (γzk ) and their prior variances Var(γxl) = σ 2 and Var(γzk) = τ2. All values are multiplied by

1000

PCR-XZ PCR-X

Parameter Median 95% interval Median 95% interval

γx1 0.01 (−0.35,0.43) −0.14 (−0.21,−0.08)

γx2 0.08 (−1.23,2.24) 0.58 (−0.24,1.53)

γx3 −0.78 (−5.84,0.36) −2.18 (−4.72,0.00)

γx4 0.21 (−0.98,4.54) 0.50 (−1.13,2.76)
γx5 0.20 (−1.02,4.51) 0.18 (−1.56,2.21)

γz1 −1.39 (−5.76,2.64)

γz2 1.16 (−2.44,4.32)

γz3 0.60 (−2.51,4.71)

γz4 −6.56 (−11.69,−1.47)

γz5 −2.74 (−10.25,1.69)

σ 0.90 (0.01,6.10) 1.45 (0.18,4.79)

τ 4.68 (1.37,13.75)

FIG. 5. PCR results for respiratory diseases. Posterior 95% intervals for PCR regression using eigenvectors of
the correlation of X versus Z. Thick lines indicate intervals that exclude zero. The exposures are ordered by the
posterior mean β under the PCR-Z model.
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credible interval that excludes zero, that is, the posterior probability that γz1 is negative is
larger than 0.975. To summarize which chemical properties contribute the most to the first
eigenvector �z1, we compute Z�z1, which is proportional to the correlation between each
property, and �z1. Since �z1 has a negative relationship with the response, properties with
negative (positive) correlation with �z1 were deemed harmful (protective). The properties
(rcdk name) with the most negative correlation are the fraction of carbon atoms that are SP3
hybridized (FractionCSP3) and the Hall–Kier alpha coefficient (HallKierAlpha).
The properties with the strongest positive correlation are the number of rings (NumRings)
and the sum of log surface area for atoms with contribution between 20–25% (slogp-
VSA6).

8. Conclusions. In this paper we propose a suite of statistical methods that incorporate
auxiliary data to estimate the health effects of a mixture of exposure variables. Chemin-
formatics (Dragon (2019), Guha (2007), Landrum (2019)) and in-vitro (Filer et al. (2016))
characteristics are widely available in the toxicology literature, and therefore methods to in-
corporate this information can have a broad impact. We found, via simulation studies, that
supplementing regression models with auxiliary data improves the precision of estimating the
effects of individual exposure variables, and supplementing principal components regression
with auxiliary data improves the precision of estimating the effects of linear combinations
of individual exposure variables. Including auxiliary data in the factor analysis model, at
least using the structure imposed in this paper, did not improve the statistical analysis. When
applied to study emergency department visits for respiratory diseases, the principal compo-
nents regression model with auxiliary data gave better fit that other methods and resulted in
a biologically-plausible result.

While stochastic search variable selection is also effective when the signal is very sparse,
we found that the principal components regression model that includes principal components
of both concentration and auxiliary data (PCR-XZ) was overall the top-performing model.
This is the simplest auxiliary-data method we considered, and our simulation study showed
that it is fast, insensitive to hyperprior selection, had nominal coverage in all scenarios and
performed well in the presence of high correlation between exposures which is common in
mixture analyses.

Although the proposed methods are designed to handle a large number of exposure vari-
ables, they are not designed to handle a large number of auxiliary variables. In Section 7
we used principal components of the auxiliary data to reduce the dimension, but future work
might incorporate stochastic search variable selection to reduce its dimension. Also, our mod-
els thus far use only a single source of auxiliary data, namely, cheminformatics variables, but
future applications might include data from additional sources, such as in-vitro analysis, and
the statistical methodology will need to be enhanced to allow for separate effects for the
different types of auxiliary data. Another limitation is that we consider only linear effects.
It should be possible to use auxiliary information in the inclusion probability of Bayesian
variable selection methods for nonlinear regressions (e.g., Antonelli et al. (2020), Bobb et al.
(2015), Fang et al. (2019), Sabanés Bové, Held and Kauermann (2015), Wei et al. (2020))
as in our linear SSVS model, but incorporating auxiliary data in the model for the nonlinear
effect is not straightforward.

APPENDIX: MCMC DETAILS

The methods proposed in Sections 3, 4 and 5 could easily be coded in all-purpose Bayesian
software, including OpenBUGS, JAGS or NIMBLE. For faster computation we coded the
MCMC sampler in R. The updates are all standard Gibbs or Metropolis steps, and the code
is included in the Supplemental Material (Reich et al. (2020)). For the simulation study we
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used 10,000 MCMC samples after discarding the first 2000 as burn-in. For the data analysis
in Section 7, the MCMC burn-in is increased to 10,000, and the total number of iterations is
increased to 25,000.
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SUPPLEMENTARY MATERIAL

R code (DOI: 10.1214/20-AOAS1364SUPP; .zip). We provide R code to implement the
methods proposed in the manuscript.
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