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Since 1973, the U.S. State Department has been using electronic record
systems to preserve classified communications. Recently, approximately 1.9
million of these records from 1973–77 have been made available by the U.S.
National Archives. While some of these communication streams have periods
witnessing an acceleration in the rate of transmission, others do not show any
notable patterns in communication intensity. Given the sheer volume of these
communications, far greater than what had been available until now, schol-
ars need automated statistical techniques to identify the communications that
warrant closer study. We develop a statistical framework that can identify
from a large corpus of documents a handful that historians would consider
more interesting. Our approach brings together techniques from nonparamet-
ric signal estimation, statistical hypothesis testing and modern optimization
methods—leading to a set of tools that help us identify and analyze vari-
ous geometrical aspects of the communication streams. Dominant periods of
heightened activities, as identified through these methods, correspond well
with historical events recognized by standard reference works on the 1970s.

1. Introduction. For more than 40 years, social scientists have been developing datasets
for the quantitative analysis of world politics. The last decade has witnessed a dramatic in-
crease in activity in this area, much of it focused on automatic event detection for purposes
of explaining and predicting political crises (Beieler et al. (2016)). All of these efforts, how-
ever, have used public information, such as newspaper or wire service reporting. Rather than
directly measuring political activity, these systems can only count what reporters write about,
which can vary over time and geography, depending on many extraneous factors (Jenkins and
Maher (2016)). Together with the intrinsic challenges in automatic extraction, this has pro-
duced datasets that purport to track the same kind of events, such as political protests, but that
are completely uncorrelated (Hanna (2014)). Moreover, some of the most important political
activity is not immediately reported and may not become publicly known until decades later,
when formerly secret records are declassified. The sheer volume of these records can make it
difficult, even for the diligent researcher, to identify individual events and assess their relative
importance.

In this paper we study a new dataset of declassified documents and use statistical methods
to identify political events and explore how these heterogeneous events manifest themselves
in the form of different geometric characteristics of these diplomatic communication streams.
Since 1973, the State Department has been using electronic records systems to preserve clas-
sified communications. The National Archives1 now makes available over 1.4 million declas-
sified cables from 1973–77 as well as the metadata of more than 0.4 million other commu-
nications originally delivered by diplomatic pouch. They are all machine readable—creating
many opportunities for statistical analyses.
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Our goal is to explore methods that can automatically identify statistically interesting
events in an important corpus of historical documents which will continue to grow year-
by-year as millions of additional communications are declassified. We contend that these
“interesting” statistical patterns correspond to heightened diplomatic activity and validate
our findings with standard reference works on the 1970s. A statistically interesting pattern
can mean several things; we explore how they relate to heterogeneous political events. To
provide some intuition, this can correspond to sudden localized changes or abrupt “jumps” in
communication traffic, regardless of the overall series-specific baseline activity (a communi-
cation stream may be very active or have very low traffic intensity overall). There can also
be continuous periods in a communication stream, where the data lies consistently above
a series-specific baseline that corresponds to a representative global activity level of that
stream. These are “bursts” of activity in the temporal structure of the document streams that
probably correspond with heightened diplomatic activity, such as the start or end of a war. An
interesting event can also correspond to heightened traffic intensity that plays out over longer
periods, such as an increase over time.

When these communications were first entered in the State Department system, they were
assigned one or more TAGS (Traffic Analysis by Geography and Subject) which indicate to
what countries or subjects each cable is related. For example, “VS” signifies South Vietnam,
and “SHUM” concerns human rights. By using these content-based TAGS as the feature,
we avoid the complication of language processing and focus on identifying statistically rele-
vant activity patterns based on the traffic of communication streams. Unfortunately, reliable
text data is unavailable for many thousands of the cables in this corpus, either because State
Department storage systems failed to preserve it or because only the metadata has been de-
classified for cables that have been deemed to contain sensitive information. In this context,
the TAGS-specific features appear to be quite useful and effective in identifying events of
importance to a social scientist.

1.1. A brief exploratory description of the data. A glimpse of processed data in the form
of communication streams is shown in Figure 1. The data shows that there is less traffic on
weekends and holidays (including the end of the year). In addition, the number of communi-
cations sent in 1973 seems to be smaller compared to later years, due to fewer records. We
study the time series at a granular level by restricting to different types of TAGS. In Figure 1,
panels (a)–(d) represent the communication streams when restricted by TAGS type. Panels
(a)–(c) show noticeable forms of increased activities in portions of the series; these are in-
dicative of “interesting” historical events. For example, in panel (a) the increased activity
in July 1974 corresponds to the Cyprus coup; in panel (b) the increase in number of diplo-
matic communications in April 1975 corresponds to the Fall of Saigon; in panel (c) multiple
bursts correspond to the annual United Nations General Assembly meetings. In addition to
these visible bursts there seem to be some shorter periods of heightened activities, such as
the smaller peaks for VS (South Vietnam) a year after the fall of Saigon corresponding to the
ensuing refugee crisis.

In contrast to panels (a)–(c) in Figure 1, panel (d), for cables related to Finland (FI), does
not seem to show any period of heightened activity during the time period under considera-
tion. These prototypes are representative of the different TAGS-specific series: Exploratory
analyses of the database of TAGS-specific communication streams suggest that there are sev-
eral series with some “interesting event” (as in panels (a)–(c)), while others seem to be less
active (as in panel (d)). Changes in the proportion of a particular TAGS appearing in a com-
munication stream seem to be better representatives of identifying whether a period is active
or not, as compared to tracking the corresponding counts.

Due to the noticeable difference in the number of cables that were communicated over
the weekdays and holidays—as a preprocessing step, we filtered out the days where the total
number of cables being communicated were very small.
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FIG. 1. Figures showing counts of communications sent on each day, in the period 1973–1977. The
numbers in the plot represent day-of-week (0-Sunday, 1-Monday, 2-Tuesday, . . . , 6-Saturday), with
weekdays colored in blue and weekends in red. Figures (a)–(d) show the communications restricted
to different TAGS. The apparent heightened activities in the communication streams correspond to:
(a) Cyprus coup, (b) Fall of Saigon (the most intense one), (c) the yearly United Nation General
Assembly meetings. There does not seem to be any interesting activity for panel (d), showing cables
related to Finland. A goal of this paper is to create statistical methods to automatically identify series
with heightened diplomatic communications and further describe their structural patterns. .

1.2. Scope of this work. A first goal of our work is to quantitatively define traits that sep-
arate communications like panel (d) from panels (a)–(c). We develop statistical methods that
can mine these (TAGS-specific) time series and identify communication streams that exhibit
statistically interesting activities. Once they are identified, we develop algorithms (Sections 2
and 3) that perform a deeper investigation of each series and identify time intervals where the
signal undergoes abrupt localized changes in communication traffic. We also present methods
to quantify and contrast these various geometric patterns.

Our general methodological approach is inspired by principles in statistical signal seg-
mentation and change-point modeling with origins in 1950s (Page (1954)); see Brodsky
and Darkhovsky (1993), Truong, Oudre and Vayatis (2018) for excellent overview(s) of the
topic. On the algorithmic front we employ ideas from first-order methods in continuous op-
timization (Nesterov (2004), Nesterov (2013)) that complement state-of-the-art approaches
in change-point detection (Johnson (2013), Killick, Fearnhead and Eckley (2012)). Statisti-
cal models for change-point detection have enjoyed a great deal of success across several
application domains spanning speech processing, financial analysis, bioinformatics, clima-
tology, network traffic, gait analysis, text processing, among others. Similar models are also
employed in the context of burstiness analysis (Kleinberg (2003)). Such ideas are enhanced
in important ways for identifying events in Twitter communication streams; see, for exam-
ple, Atefeh and Khreich (2015) for a nice survey. Our main goal in this paper is to build upon
classical and modern statistical signal estimation/inference tools and enhance them in suit-
able ways so that they can provide insights to a historian on a new dataset available from the



1702 GAO, GOETZ, CONNELLY AND MAZUMDER

National Archives. In this work we establish a synergy between statistics and social science
perspectives. As we discuss in Section 4, analysis of diplomatic documents using TAGS-
based features relevant to a historical scientist presents a unique set of challenges. The scope
of our work is quite different from the analysis of text-based features to mine events in Twitter
communication streams.

2. Statistical methodology. We first present a brief outline of the main statistical ap-
proaches pursued in this paper. Section 2.1 addresses how we can use a global testing ap-
proach to determine whether a TAGS-specific communication stream, among several hun-
dreds, is interesting or not. To further explore the geometry of the underlying signal, we use
a regularized negative log-likelihood criterion based on the fused lasso penalty (Tibshirani
et al. (2005)) and also its �0-counterpart (Killick, Fearnhead and Eckley (2012), Boysen et al.
(2009), Johnson (2013)). For efficient computation we propose a unified framework for these
optimization problems which seem to be promising alternatives to prior approaches (Johnson
(2013), Killick, Fearnhead and Eckley (2012)). We use hypothesis testing ideas based on sam-
ple splitting (Wasserman and Roeder (2009)) to associate p-values to the detected jumps; see
Section 2.3. Inspired by Kleinberg (2003), the jumps in an individual series are aggregated
to obtain “bursts,” leading to a rank-ordering of political events across the corpus. Finally, in
Section 3 we discuss how to estimate the underlying proportions with models that are more
flexible than piecewise constant segments.

2.1. Identifying interesting communication streams. Consider a TAGS-specific series
(yt , nt ), t = 1, . . . ,N , where, yt denotes the number of documents containing the specific
TAGS among nt cables, with proportion pt . We will assume that the conditional distributions
of (yt |nt ,pt )’s are independent across t . We are interested in the following question:

Is there any evidence of (localized) heightened intensity of the proportions, compared to a
baseline model, where all proportions are the same?

To measure a localized change (increase) in intensity, we fix a window of size 2� and
consider all the points in the � neighborhood of a time point i, given by N(�; i) = {j : 1 ≤
j ≤ N, |j − i| ≤ �}. The average proportion in this neighborhood,

pave
i := ∑

j∈N(�;i)
njpj

/ ∑
j∈N(�;i)

nj ,

is a measure of communication traffic around the reference time point i. We say that a large
value of pave

i , compared to a baseline value p, indicates the presence of an intense localized
activity of some form.2 We hypothesize such an activity to be associated with an event of his-
torical interest and, subsequently, validate this belief by factoring in the insights of a historian
or social scientist.

Formally, we consider a global testing approach with H0: pt = p ∀t vs. H1: there exists
an i such that pave

i is larger than the (global) average proportion. Inspired by popularly used
scan statistics (Glaz, Naus and Wallenstein (2001)), we propose the following test statistic:

(2.1) T = max
t

Tt where, Tt := (
p̂ave

t − p̂H0

)
/σ̂t ,

where, p̂H0 is the (estimated) global proportion of the signal estimated under the null hypoth-
esis; p̂ave

t is an estimate of pave
t , that is, p̂ave

t = ∑
j∈N(�;i) yj /

∑
j∈N(�;i) nj . Furthermore,

σ̂t is the estimated standard deviation of p̂ave
t evaluated under the null (H0): If p̂H0 denotes

2At this point we do not offer an explanation of the exact geometric reason behind such an heightened activity—
we address this at a later stage in the paper.
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FIG. 2. Communication streams with different significance scores based on the framework of Sec-
tion 2.1: (a): (TAGS FI) relating to Finland, corresponds to a null model; (b): (TAGS OSCI) relating to
scientific grants, shows a weak deviation from the null model—perhaps due to a slow decreasing trend
in the series; (c): (TAGS PFOR) relating to foreign policy—this generally shows significant deviation
from the null model which is due to sudden changes/jumps after Oct. ’76; (d): (TAGS PINT) relating
to internal political affairs, shows deviation from the null model but not due to a jump as prominent as
(c)—this series seems to exhibit some systematic pattern of heightened activity after Oct. ’76, leading
to a small p-value. The small p-values suggest the presence of a statistically interesting event in each
series and can be used to identify interesting communication streams. The p-value, however, does not
provide additional insights into the finer structural patterns of the streams. Additional examples can
be found in Figure 2 in the Supplementary Material (Gao et al. (2020)).

the estimate of p under the null, then σ̂ 2
t = (p̂H0(1 − p̂H0))/(

∑
j∈N(�;i) nj ); see the Supple-

mentary Material (Gao et al. (2020)) for a derivation. Tt measures the strength of a locally
contiguous period of heightened activity; we take the supremum over all time points t to
get T . The larger the value of T , the more pronounced is the localized traffic compared to
the baseline value p̂H0 . We use a permutation based approach to compute the null distribu-
tion of T . Figure 2 (see also Figure 2 in the Supplementary Material (Gao et al. (2020)) for
additional examples) shows different communication streams with their associated p-values.
A large3 p-value for panel (a), Figure 2 (corresponding to TAGS FI) signifies a lack of in-
teresting activity in this series; this aligns with an expert’s understanding that, during this
period, there was limited diplomatic activity at the international scale related to TAGS FI.

To understand the sensitivity of results to �, a summary of how many cables survive
different p-value thresholds for different choices of � are provided in the Supplementary
Material (Gao et al. (2020)). While the TAGS-specific p-values are found to change with
�, the overall results remain quite stable.4 Note that we use this step to simply remove a
small fraction of the communication streams from further downstream analysis. The results

3We note the choice of a p-value threshold (i.e., whether it is deemed to be large or small) may depend upon
the subjective intuition of a practitioner.

4Usually, the p-values smaller than 0.001 become smaller with increasing values of �; larger p-values remain
large.
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in Figure 2 suggest an important limitation of statistic (2.1)—this framework in itself does
not offer much insight into the geometry of the signal. This motivates the methods presented
in Section 2.2.

2.2. Identifying jumps in communication streams. We propose methods to explore finer
structural properties of the series that are not informed by the methods in Section 2.1. Inspired
by popularly used signal segmentation/estimation methods (Killick, Fearnhead and Eckley
(2012), Tibshirani et al. (2005), Mammen and van de Geer (1997)), we seek to identify breaks
or jumps in a piecewise constant approximation of the signal t �→ pt .

Regularized maximum likelihood. Using the notation of Section 2.1, we assume (yt |nt ,

pt )
ind∼ Bin(nt ,pt ) for t = 1, . . . ,N where, pt denotes the probability of success and N

denotes the total number of time points. This leads to a joint likelihood (conditional on
{(nt ,pt )}t≥1) given by

(2.2) P
({yt }N1 |{(nt ,pt )

}N
1

) =
N∏

t=1

(
nt

yt

)
p

yt
t (1 − pt)

(nt−yt ) .

Note that an unconstrained maximum likelihood estimator will lead to p̂t = yt/nt for all
t which overfits the data. Therefore, additional structural constraints on pt are needed for
interpretable models. Using the standard logistic parametrization, pt = exp(θt )/(1+exp(θt )),
the negative log-likelihood (2.2) in terms of the variables {θt }N1 is

(2.3)
N∑

t=1

{−ytθt + nt log
(
1 + exp(θt )

)} −
N∑

t=1

log
((

nt

yt

))
,

where the second term above does not depend upon θt , t ≥ 1. The expression in (2.3) is con-
vex in {θt }N1 —we consider θt , t ≥ 1 to be our natural parameters. We first discuss a method
to approximate t �→ θt by a piecewise constant signal (generalizations are discussed in Sec-
tion 3). A location where the latent signal t �→ θt exhibits a discontinuity will be called a
“jump” in the communication stream. We consider the following regularized criterion:

(2.4) minimize
θt ,1≤t≤N

N∑
t=1

(−ytθt + nt log
(
1 + exp(θt )

)) + λH(θ),

where L(θ) := ∑N
t=1(−ytθt + nt log(1 + exp(θt ))) is the part of (2.3), depending upon {θt }N1

(i.e., the data-fidelity term) and H(θ) is the regularizer. H(θ) encourages the estimated θt ’s
(and hence the proportion pt ’s) to be piecewise constant, and the regularization parameter
λ > 0 controls the amount of shrinkage. Two examples of H(θ) we study appear in earlier
works in signal estimation (Tibshirani et al. (2005), Johnson (2013), Killick, Fearnhead and
Eckley (2012))—we present a simultaneous analysis for both these choices:

• �1-segmentation (fused lasso): Here, H(θ) = H�1(θ) = ∑N−1
t=1 |θt+1 − θt |—this penalizes

the total variation of a signal and may also be thought as a soft version of the number of
jumps in θt , t ≥ 1.

• �0-segmentation: Here, we take H(θ) = H�0(θ) = ∑N−1
t=1 1(θt+1 	= θt ) which penalizes the

number of jumps in the signal θt , t ≥ 1.

We assume above and in the discussion below that the time points are equally spaced. If they
are not equispaced, the penalty function needs to be adjusted in a straightforward fashion, as
discussed in the Supplementary Material (Gao et al. (2020)).



MINING EVENTS WITH DIPLOMATIC DOCUMENTS 1705

Choice of regularizer. For the �1 penalty H�1(θ), Problem (2.4) is a convex optimization
problem. This is commonly referred to as the fused lasso or total-variation penalty (Tibshirani
et al. (2005), Mammen and van de Geer (1997)) and used in the context of signal estimation
wherein the underlying signal is assumed to have a small total variation norm. H�1(θ) shrinks
the successive coefficient differences {θt+1 − θt }t to zero and, due to the presence of the �1-
norm, encourages sparsity in θt+1 − θt ’s leading to a piecewise constant signal t �→ θt . The
shrinkage effect of the �1-penalty severely penalizes large values of the jumps θt+1 − θt .
Hence, this penalty leads to a model with many jumps, especially when the tuning parameter
is chosen so as to obtain a model with good data-fidelity (e.g., if the tuning parameter is
chosen based on validation set tuning). To obtain a model with fewer jumps, the regularization
parameter needs to be made larger—in the process, important jumps may be missed. These
observations are well known in the context of the usual lasso estimator in regression; see, for
example, Bertsimas, King and Mazumder (2016), Mazumder, Friedman and Hastie (2011).
An alternative is to use an �0-based penalty (Killick, Fearnhead and Eckley (2012), Boysen
et al. (2009)) which directly penalizes the number of jumps and is agnostic to the precise
value of the jump. Both these penalty functions are popularly used in change-point detection
in statistics; see for example, Truong, Oudre and Vayatis (2018) for a recent review. The
rich literature on �0 and �1-based approaches seems to have grown somewhat independently
of one another, with curious links and differences between the two approaches. Indeed the
�0 and �1-based estimators have different operating characteristics—this is also seen in our
numerical experiments. For example, if the amount of shrinkage for the �0-penalty is not
very high, one can obtain a signal with short segments. Furthermore, being agnostic to the
magnitude of the jumps, the �0-based estimator may lead to a signal estimate that is “spiky”;
this is often ameliorated with �1-based estimators which shrinks the magnitude of a jump.
For additional discussion on the delicate differences between �1 and �0-based estimators in
the regression context,5 we refer the reader to the recent works of Hazimeh and Mazumder
(2018), Mazumder, Radchenko and Dedieu (2017). The signal estimation problem we study
here differs from the regression problem and poses a unique set of challenges. Here, we
present algorithms that can compute solutions for both the �1 and �0-based estimators. This
allows us to gather useful insights about the estimators in the context of the problems studied
here. More importantly, this will allow practitioners to make an informed decision regarding
what might be appropriate in their context.

Other regularizers beyond the �0 and �1 penalties, alluded to above, are also used in the
context of change-point models; see, for example, Killick, Fearnhead and Eckley (2012),
Truong, Oudre and Vayatis (2018). In Section 3 we discuss another regularizer that encour-
ages a piecewise linear description of t �→ θt .

2.2.1. Model fitting: Optimization algorithms. Developing efficient specialized solvers
for Problem (2.4) is a challenging task. Johnson (2013), Killick, Fearnhead and Eckley (2012)
propose appealing dynamic programming based algorithms for Problem (2.4). However, as
far as we can tell, the software packages made available by Johnson, Killick, Fearnhead
and Eckley do not provide implementations for the general form of Problem (2.4)—they
present easy-to-use interfaces for the least squares loss function. We present an alternative
method to obtain good quality solutions to Problem (2.4) by using first-order optimization
methods (Nesterov (2004)). To this end, we rely on efficient dynamic programming solvers
proposed by Johnson and Killick, Fearnhead and Eckley for the least squares loss with the
H�1(θ) or H�0(θ) penalty.

5The differences of these estimators depend upon a multitude of factors, such as signal to noise ratios, feature
correlations, model sparsity, sample size, number of features, etc.



1706 GAO, GOETZ, CONNELLY AND MAZUMDER

We note that the framework presented below applies to problems more general than Prob-
lem (2.4). In particular, they apply to a more general class of problems than can be handled via
dynamic programming methods (Johnson (2013), Killick, Fearnhead and Eckley (2012))—
they are complementary to the suite of algorithms used in change point models6 and may be
of independent interest. We present proximal gradient descent methods (Beck and Teboulle
(2009)) for problems of the composite form (Nesterov (2013)),

(2.5) min
θ

φ(θ) := L(θ) + λH(θ),

where L(θ) is a function with Lipschitz continuous gradient,

(2.6)
∥∥∇L(u) − ∇L(v)

∥∥ ≤ �‖u − v‖, ∀u,v ∈ �N.

In the case of Problem (2.4), we have � = 1
4 maxN

i=1 ni . This follows by noting that the ith co-
ordinate of ∇L(u) is: {∇L(u)}i = −yi + ni exp(ui)/(1 + exp(ui)) and ∇2L(u) is a diagonal
matrix with the ith diagonal entry satisfying

(2.7)
{∇2L(u)

}
ii = ni exp(ui)/

(
1 + exp(ui)

)2 ≤ 1

4
ni, i = 1, . . . ,N.

Hence, the largest eigenvalue of ∇2L(u), that is, λmax(∇2L(u)) ≤ 1
4 maxN

i=1 ni , which justi-
fies the choice of �, as above. For a fixed L ≥ �, the proximal gradient algorithm performs
the following updates (for all k ≥ 0):

(2.8) θk+1 ∈ arg min
θ

L

2

∥∥∥∥θ −
(
θk − 1

L
∇L(θk)

)∥∥∥∥2

2
+ λH(θ).

This leads to a decreasing sequence of objective values φ(θk+1) ≤ φ(θk) for k ≥ 0. If φ(θ)

is bounded below (which is true for Problem (2.4) as soon as ni > 0 for all i), then φ(θk)

converges to a finite value. We now study the fate of the sequence φ(θk) (and θk), depending
upon the choice of H(θ).

2.2.1.1. The fused lasso penalty (H�1(θ)). Due to the convexity of H(θ), the function φ(θ)

is convex in θ . Using standard results in proximal gradient methods, θk converges to a min-
imum of Problem (2.5) with the penalty function H�1(θ). In terms of convergence rates of
objective values, it follows from Beck and Teboulle (2009) that

(2.9) φ(θk) − φ
(
θ∗) ≤ L

2k

∥∥θ0 − θ∗∥∥2
2,

where θ∗ is an optimal solution to Problem (2.5)—hence, the sequence φ(θk) converges to
the minimum of Problem (2.5) at a worst case rate of O(1/k). If L(θ) is strongly convex
in θ , the sequence φ(θk) exhibits a linear rate (Nesterov (2013)) of convergence. Let μk =
mini=1,...,N {∇2L(θk)}ii denote the smallest diagonal entry of the Hessian of L(θk). Since,
θk’s are uniformly bounded7 and mini ni > 0, then μ := infk μk > 0. The convergence rate is
given by (Nesterov (2013))

(2.10) φ(θk) − φ
(
θ∗) ≤

(
1 − μ

4L

)k(
φ(θ0) − φ

(
θ∗))

.

The rates in (2.9) and (2.10) are interesting to interpret. If μ/(4L) is small, the sublinear
rate (2.9) explains the convergence speed of φ(θk) in the initial stages of the algorithm, after

6We note that, due to the generality of our methods, they may not lead to optimal solutions to Problem (2.4) if
H(θ) is nonconvex.

7Note that, for Problem (2.5), minθ L(θ) has a finite minimizer (as ni > 0 for all i); hence, an optimal solution
to Problem (2.5) is finite, and the sequence {θk} is uniformly bounded.
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which the linear rate (2.10) will kick in. If μ/(4L) is large, the linear rate of convergence
dominates, and the algorithm converges very fast. Interestingly, the convergence speed of the
algorithm adapts to the better of the linear or sublinear rates without explicitly changing the
algorithm.

We note that accelerated variants (Nesterov (2013)) of proximal gradient descent can also
be used; they improve the convergence rate in (2.9) to O(1/k2).

Note that subproblem (2.8) is a problem of the form (for some λ′ > 0)

(2.11) minimize
u∈�N

1

2
‖u − ū‖2

2 + λ′
N−1∑
i=1

|ui+1 − ui |.

This can be solved very efficiently via dynamic programming (Johnson (2013)) with a worst
case cost of O(N)—in fact, for N ≈ 106 the solver of Johnson (2013) takes usually around
0.03 seconds on a modest desktop computer. Hence, obtaining a solution to Problem (2.4) for
a similar size usually takes a second or so.

2.2.1.2. The �0-segmentation penalty (H�0(θ)). The algorithm above can also be applied
for the penalty H�0(θ). In update (2.8) we set H(θ) to H�0(θ). Instead of Problem (2.11), we
solve the following jump penalized least squares problem:

(2.12) minimize
u∈�N

1

2
‖u − ū‖2

2 + λ′
N−1∑
i=1

1(ui+1 	= ui)

which can be computed efficiently using the dynamic programming algorithm(s) of Johnson,
Killick, Fearnhead and Eckley. Intuitively, our proposed proximal method approximates the
smooth part of the loss function (by a quadratic objective as in a Newton method). A key com-
ponent of the nonconvexity in the optimization problem (2.4) lies in solving (2.12) which can
be solved to optimality via dynamic programming. The proximal gradient algorithm, outlined
above, is different from the dynamic programming algorithms of Johnson and Killick, Fearn-
head and Eckley that can solve Problem (2.4) to optimality. When direct comparisons are
possible, our proposed algorithm seems to be faster than Johnson (2013) (See Section 2.2.2
for details). While our algorithm may lead to a local solution of Problem (2.4), in our numer-
ical experiments, solutions were often found to be near optimal.

Describing the properties of the sequence θk, k ≥ 1 is subtle for Problem (2.4) (with
penalty function H�0(θ)) due to nonconvexity of the optimization problem. Following
Bertsimas, King and Mazumder (2016), it can be shown that the sequence φ(θk) is decreas-
ing, bounded below,8 and it converges to φ∗ (this may depend upon the initialization). We say
that θ̃ is a first-order stationary point for Problem (2.4) if setting θk = θ̃ leads to θk+1 = θ̃ . We
say that θk is an ε-accurate first order stationary point for Problem (2.5) if ‖θk+1 − θk‖2

2 ≤ ε.
Following the convergence analysis in Bertsimas, King and Mazumder (2016), Theorem 3.1,
we obtain the following finite-time convergence rate of θk to a first order stationary point:

(2.13) min
0≤k≤K

‖θk − θk−1‖2
2 ≤ 2(φ(θ0) − φ∗)

K(L − �)
.

The above convergence rate is conservative; in practice, φ(θk) is found to converge much
faster (usually, within 10 iterations or so).

8This is satisfied under minor conditions, as discussed earlier.



1708 GAO, GOETZ, CONNELLY AND MAZUMDER

2.2.1.3. A constrained variant of Problem (2.5). The above framework for the penalized
problem can be extended to a constrained version of the form

(2.14) min
θ

L(θ) s.t. H(θ) ≤ κ,

where, κ ≥ 0 is the regularization parameter (in constrained form). An important instance of
the above corresponds to the choice H(θ) = H�0(θ)—in which case we constrain the total
number of jumps to a pre-set value κ . To obtain solutions to Problem (2.14), we will need to
modify the proximal operator (2.8) to

θk+1 ∈ arg min
θ

∥∥∥∥θ −
(
θk − 1

L
∇L(θk)

)∥∥∥∥2

2
s.t. H(θ) ≤ κ.

For H(θ) = H�0(θ) this proximal operator can (once again) be solved using the dynamic
programming framework of Johnson (2013) (at a slightly higher cost than the jump penalized
least squares problem). When H(θ) = H�1(θ), the solutions obtained from (2.14) are in one-
to-one correspondence to solutions from (2.5). This is no longer true when H(θ) = H�0(θ)—
it may be possible that, for certain choices of κ , Problem (2.5) does not lead to a solution
with H(θ) = κ for any value of λ. In this sense, formulation (2.14) with H(θ) = H�0(θ) may
be more favorable than the penalized version.

2.2.2. Related work (Algorithms). The origins of change-point modeling in statistics date
back to 1950s (Page (1954)); see Brodsky and Darkhovsky (1993), Truong, Oudre and Vay-
atis (2018) for excellent overview(s) of the topic. Dynamic programming based segmentation
for curve-fitting appeared in 1960s (Bellman and Roth (1969)). Approximate segmentation
methods, for example, based on binary segmentation appear in Olshen et al. (2004), Scott
and Knott (1974)—these are popular heuristics that may not lead to an optimal solution to
the nonconvex �0-penalized problem, as pointed out by Killick, Fearnhead and Eckley (2012)
and others. Some more recent exact segmentation algorithms appear in Auger and Lawrence
(1989), Jackson et al. (2005)—for a sequence of length N , these methods have a computa-
tional cost of O(N2). Killick, Fearnhead and Eckley (2012) use a pruning step to improve the
algorithm of Jackson et al. (2005). Related algorithms, based on improvements of dynamic
programming, also appear in Johnson (2013).

The two works most related to the segmentation problem, discussed in Section 2.2.1,
are Johnson (2013), Killick, Fearnhead and Eckley (2012). The R package changepoint
provides a user-friendly interface for mean and/or variance changes for Gaussian data and
some other distributions (though not the Binomial distribution considered in this paper). In
the Supplementary Material (Gao et al. (2020)) we present a comparison of the change points
obtained by the algorithm in changepoint (for mean changes in Gaussian data) vs. the
method presented here for the �0 jump penalized problem.

Under some assumptions the method of Killick, Fearnhead and Eckley has an expected
computation cost of O(N), though the worst-case cost is O(N2). Johnson describe dynamic
programming algorithms for the �1 and �0-penalties with a variety of loss functions (separa-
ble across time points). The R package of Johnson provides a user-friendly interface for the
squared error loss for both these penalty functions—their cost is O(N). In our experience the
algorithm of Johnson was found to be faster than Killick, Fearnhead and Eckley (2012) for
large instances of Problem (2.12) (Gaussian �0 segmentation): For problems with N = 105

and N = 106, the method of Johnson exhibits a 300x-fold and 2000x-fold improvement (re-
spectively) in runtimes over the algorithm of Killick, Fearnhead and Eckley. The signals we
consider are much smaller (usually, N ≈ 1500), hence the time difference between Johnson
and Killick, Fearnhead and Eckley is less pronounced (Johnson (2013) shows a 5x speed im-
provement) for computing a solution to Problem (2.12). However, for every TAGS-specific
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time-series, we use multiple calls to this function via (2.8) and consider multiple values of λ.
When aggregated across all the TAGS-specific time series, there is an overall time-benefit in
using the framework of Johnson.

For the �1-based segmentation problem with the Binomial likelihood, we compared our
algorithm with the code of Johnson. For signals of length N = 104, N = 105 and N = 106,
the implementation9 of Johnson takes around 1.5, 18 and 197 seconds (respectively)—our
method exhibits 187, 267 and 540x-fold speedups (respectively).

Since Killick, Fearnhead and Eckley, Johnson rely on dynamic programming, the class
of loss functions considered is rather limited. Our proposed framework can address a larger
family of loss functions. Since we rely on existing efficient solvers for Problem (2.8), our
algorithms are also efficient, with a cost of O(N) per iteration. Thus, Section 2.2.1 presents
an easy-to-implement and useful tool for signal segmentation tasks.

Signal segmentation problems also appear in the computer science/data-mining literature.
In a seminal paper, Kleinberg formalizes models for detecting bursts in events in the context
of a continuous steam of events (e.g., email messages over time) and discrete time events
(events arriving in batches as in conference papers)—they have close ties to change-point
models in statistics. For the first case, Kleinberg models email messages arriving over time
with an exponential interarrival rate. These rates can take values in a finite set (a.k.a. states)
and are of the form qi = q0s

i for some scale factor s, and q0 is a prespecified base rate.
The rates can change over time, but there is a penalty for an increase in the current rate to a
newer one. He uses dynamic programming algorithms for hidden Markov models to perform
the estimation. The computational cost increases with the number of states—the R package
bursts (that implements the algorithms of Kleinberg (2003)) is usually found to be much
slower than the implementations of Johnson (2013), Killick, Fearnhead and Eckley (2012)
alluded to above. For the case of events occurring in batches over discrete periods of time,
Kleinberg uses a binomial model for every time point—there are two models corresponding
to success probabilities q1, q0, with q0 denoting the known baseline and q1 = q0s for some
prespecified scale factor s. Our framework is different: While Kleinberg allows pt to take
two prespecified values, we allow pt to take a continuum of values in [0,1]. We allow for a
flexible family of penalty functions H�0 and H�1 that penalize any increase/decrease in pt ,
while Kleinberg penalizes only an increase. It is also known that Kleinberg’s model may
lead to under-smoothing—to this end, localized window averaging is often recommended as
a smooth preprocessing step. The regularized likelihood framework considered in this paper
systematically addresses the smoothing/under-smoothing tradeoff by adjusting the regular-
ization parameter λ (e.g., based on cross-validation).

2.2.3. Estimated signal. To gather some intuition about the behavior of the estimators
described above, we consider a synthetic example in Figure 3 and some real datasets in Fig-
ures 4 and 5.

2.2.3.1. Illustration with a synthetic dataset. In this synthetic example (Figure 3) the un-
derlying (true) signal is piecewise constant with three levels up to time point t0; there is a
right discontinuity at t0 after which it becomes linear.10 Note that the underlying signal is
not piecewise constant—there is model misspecification due to the linearity on the right part
of the signal. This example is chosen to shed light into the behaviors of the �0 and �1-based

9We note that Johnson (2013) presents an implementation in R for this problem, unlike the least squares problem
which is written in C with a R wrapper. Our code is written in R.

10More specifically, data is generated by yt
ind∼ Bin(nt = 200,pt ), t = 1, . . . ,1203, where pt = 0.5 for 1 ≤ t ≤

200; pt = 0.6 for 201 ≤ t ≤ 500; pt = 0.8 for 501 ≤ t ≤ 550; pt = 0.55 + (t − 550)/3000 for 551 ≤ t ≤ 1203.
(Note that a constant value of nt is a simplification—in the real dataset nt depends upon t .)
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FIG. 3. Estimators obtained from Problem (2.4) with �1 (upper panel) and �0 (lower panel) regular-
ization. The data is synthetic and the underlying signal contains two sharp jumps (on the left) and a
gradual increasing trend (on the right). We use cross-validation to select a value of λ. The �1 penalty
shrinks the estimated probability during a big burst (501 ≤ t ≤ 550) and leads to more jumps during
the gradual increase period (551 ≤ t ≤ 1203). The �0-based estimator leads to a better estimate of the
signal burst and leads to fewer jumps during the gradual increase period. .

estimators for the real datasets studied herein, where there is obvious model misspecification.
Figure 3 presents the signal estimates (for both the �0 and �1 penalties) at the cross-validated
choices of the tuning parameter; we use k-fold (with k = 10) cross validation (Hastie, Tibshi-
rani and Friedman (2009)) which is also used in the R package genlasso (Since we want to
ensure each fold is representative of the time series, instead of randomly assigning points to a
fold, we systematically assign points by placing every kth point into the same fold). For both
schemes the estimated signals {p̂t } serve as good (overall) approximations of {pt }; however,
there are some important differences. First of all, the �1-segmentation scheme leads to biased
estimates, and the bias becomes quite prominent in estimating the jump at the centre of the
signal. This behavior is not present for the �0-scheme. In addition, the estimates for the linear
component (at the right) also differ across the �0 and �1 schemes. The �0 regularizer leads
to a fewer number of segments (here, three), compared to the �1-penalty which has several
smaller jumps.

2.2.3.2. Illustration on TAGS series. Figures 4 (TAGS UNGA) and 5 (TAGS VS) show
the estimated signal proportions obtained via estimator (2.4). Both of the penalty functions
do a good job in estimating a piecewise constant version of the underlying signal. The �0
scheme leads to fewer jumps than its �1 counterpart for a comparable data-fidelity. The figures
also show fitted signals for a few other values of λ around the cross-validated choice at
the center11 (λ increases as one moves down the rows); we include the tuning parameter
selected by the one-standard error rule (Hastie, Tibshirani and Friedman (2009)) (see also
the R package genlasso). We can see that, as λ decreases, the algorithm captures a more
granular structure of the data and estimates more jumps.

Figure 4 shows communication traffic corresponding to TAGS specific to the U.N. Gen-
eral Assembly. The cyclical jumps correspond to the regular fall meetings of the General
Assembly. In addition, our signal estimate suggests additional peaked activities, for example,
a jump in April–May 1974. It seems that this jump is of smaller intensity compared to the
other regular peaks corresponding to the annual meetings. Further investigation revealed that

11For Figure 4 the λ values were: (a) for the �0-penalty: 2.2, 4.8 and 13.7 (top to bottom) and (b) for the �1-
penalty: 39.2, 66.3 and 189 (top to bottom). For Figure 5, the λ values were: (a) for the �0-penalty: 2.9, 8.1 and
23.2 (top to bottom) and (b) for the �1-penalty: 86.1, 245.7 and 701 (top to bottom).
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FIG. 4. Figure showing the raw proportions (in blue dots) for TAGS UNGA (U.N. General Assem-
bly) and the estimated proportions p̂t , t ≥ 1, as obtained from the regularization framework in Prob-
lem (2.4). The left panel shows the estimates obtained with the �0-segmentation penalty, and the right
panel shows the estimates with the �1-segmentation penalty. The middle rows correspond to the optimal
λ (as discussed in the text). It shows how, in between the cyclical jumps in U.N.-related communica-
tions relating to the regular fall meetings of the General Assembly, there was also a jump in April–May
1974. This occurred when Algeria called a special session to demand U.N. support for a “New Inter-
national Economic Order.” We show a few additional choices of the regularization parameter for each
example.

this jump occurred when Algeria called a special session to demand U.N. support for a “New
International Economic Order.” In Figure 5 (TAGS related to South Vietnam) we observe
that the most intense jump corresponds to the fall of Saigon and the end of the Vietnam War.
The signal estimate suggests that this event is accompanied by a peak in communication traf-
fic in April 1975—this happened with the collapse of the South Vietnamese regime and the
rush to evacuate American personnel. A social scientist might also be interested to identify
and explore smaller jumps; here, they correspond to the refugee crisis that continued into the
following year.

2.3. A deeper investigation of jumps. The framework of Section 2.2 can be used to obtain
a simple piecewise constant approximation of the underlying signal. Upon further investiga-
tion they offer insights into the behavior of communication streams. Section 2.3.1 discusses
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FIG. 5. Figure showing the raw proportions (in blue dots) for TAGS VS (South Vietnam) and the
estimated proportions p̂t , t ≥ 1, as obtained from the regularization framework in Problem (2.4). The
left panel shows the results for the �0-segmentation penalty and the right panel the �1-penalty. The
middle rows correspond to the optimal λ (as discussed in the text), and we show a few additional
choices of the regularization parameter for each example. The biggest burst corresponds to the fall of
Saigon and the end of the Vietnam War. A social scientist might select one or another depending on
whether they would want to identify smaller jumps that correspond, in this case, to the refugee crisis
that followed the defeat of South Vietnam.

how to quantify the intensity of a jump using sample splitting ideas (Wasserman and Roeder
(2009)). In Section 2.4 we show how these jumps can be aggregated to obtain the notion of a
“burst” (Kleinberg (2003)) in a communication stream. We also present related social science
perspectives.

2.3.1. How intense is a jump?. A jump estimated by the �0 or �1-segmentation procedure
may reflect: (a) a discontinuity in the signal, as we saw in the first half of Figure 3 (in this
case the signal is well approximated by locally constant segments with pieces adapting to
the data) and/or (b) a localized trend in the signal, as we saw in the second half of Figure 3.
A jump in (b) is a consequence of the slope of t �→ pt and not a discontinuity. A piecewise
constant signal can be considered as an approximation of the underlying (linear) trend in
t �→ pt . Given an estimate of {p̂t }, a scholar accustomed to analyzing events through a close
reading of historical documents may ask:
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• Which of these jumps might be important or are indicative of a historical event of interest?
• Can one obtain a rank ordering of the jumps based on their intensities?

We formalize this as follows: given an estimate {p̂t } and a set of candidate jumps, can we
obtain a scoring for their strengths and sizes? This would lead to a smaller set of jumps that
merit closer scrutiny. Toward this end, we use a sample splitting12 procedure: a subsample
of size 50% of the data is used for estimating the location of the jumps, and the remaining
held out part of the data is used to associate a p-value score (the method is described below)
to each jump that is identified in the first stage. In other words, the training set is created by
randomly choosing half the cables for each day, with the remaining half set aside for testing
purposes.

Suppose t̂ is a candidate change point based on the first part of the sample (used for es-
timating the signal). We denote the time points on the left of t̂ as L(t̂) and those on the
right of t̂ as R(t̂)—these segments L(t̂) and R(t̂) do not contain any jumps. We assume that
pt for t ∈ L(t̂) are all equal to p(L, t̂), and pt for t ∈ R(t̂) are all equal to p(R, t̂). We
test the null hypothesis (H0) that the proportions on the left and right parts of t̂ are equal,
p(L, t̂) = p(R, t̂), vs. the alternative (H1) that p(L, t̂) 	= p(R, t̂). We use the likelihood ratio
test statistic for this purpose, where the null distribution is computed based on a permutation
test.

Note that a candidate jump obtained at the cross-validated choice of the tuning parameter
need not have a low p-value.13 The p-values, thus obtained, can be used to: (a) devise a scor-
ing mechanism to rank-order multiple jumps observed in a series and/or (b) prune out redun-
dant jumps and identify ones that exhibit a significant difference in proportions between the
left and right intervals. Scheme (b) is useful for estimators obtained by the �1-segmentation
scheme, as this is known (Boysen et al. (2009), Killick, Fearnhead and Eckley (2012)) to
make false discoveries of change-point locations (even if the underlying signal is piecewise
constant). In our application the underlying signal is not piecewise constant—it simply serves
as an useful approximation. In this case the p-value scores appear to measure the strength of
a jump.

Figure 6 shows the communication stream for TAGS CVIS (Consular Affairs-Visas) and
the estimated signal obtained via �0-segmentation. We also computed the p-value scores for

FIG. 6. Figure showing the communication stream for TAGS CVIS—the estimated signal is obtained
from the �0-segmentation scheme (at the cross-validated choice of λ). We compute the p-values (based
on sample splitting, as described in Section 2.3.1) for every candidate jump location and prune the
jump locations (and refit the signal with the new jump locations) based on the mentioned thresholds.
The refitted signal is shown on the right panel.

12Since we have a large number of samples (or cables), the size of the training set after sample splitting is still
quite large.

13A jump obtained from the estimated {p̂t } may be due to a linear rise in the signal which need not correspond to
a significant change in local proportions. Our experiments indicate that jumps in {p̂t }, that correspond to gradual
linear rises in the signal, have higher p-values associated with them when compared to sudden or abrupt changes
in {p̂t }.
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FIG. 7. TAGS ENRG (energy) and TAGS US (for cables relating to the U.S.) with p-values associ-
ated with the estimated jumps (using the framework in Section 2.3.1). The jumps for ENRG are much
sharper and indicate rapid (though not instantaneous) changes in mean, starting with the 1973 OPEC
oil embargo. This gives them low p-values. In contrast, the two jumps to the right of the signal for
US are during less rapid changes in mean and thus have slightly larger p-values (∼ 10−3). Figure 8
presents more flexible fits of the underlying signal. (The notation p = x is a shorthand for p-value
being equal to x.)

each potential jump location, as suggested via the �0-segmentation fit. The sharp jump in
TAGS CVIS that persists across the panels, starts around mid September 1975, and ends
around early October 1975. This spike is rather curious from a social science perspective.
Prior to this period the number of communications related to visa applications sharply de-
creased not because this kind of activity diminished, but because archivists decided to stop
retaining these records. The exception is a two-week period in September 1975, when the
number of CVIS records is comparable or even higher than before. Some concern Indochi-
nese refugees, but many others involve the FBI, especially visas for people coming from the
U.S.S.R. and other communist states. Few, if any, of these FBI communications have message
text. This is intriguing given the (limited) information available to us from the declassified
cable documents and suggests the need for further investigation. This is the kind of anomaly
that a social scientist might miss without using this kind of statistical framework.

Figure 7 presents two examples for TAGS ENRG (energy) and TAGS US (for cables re-
lating to the United States). The jumps in TAGS ENRG are much sharper and indicate rapid
(though not instantaneous) changes in mean, starting with the 1973 OPEC oil embargo. For
the TAGS US figure, the p-values are indicative of whether a jump is due to a shift in the
piecewise constant level or a linear trend—the p-values are larger when there is a linear trend
rather than a sharp jump (as in a piecewise constant signal). We illustrate the intuition con-
veyed above via a synthetic example; see Figure 1 in the Supplementary Material (Gao et al.
(2020)).

2.4. From jumps to bursts. We discuss how to summarize a single communication stream
(corresponding to a specific TAGS) with a score that aggregates different jumps into a “burst;”
this terminology was introduced by Kleinberg in the context of event detection. Informally
speaking, a burst corresponds to a stretch of time where a communication stream depicts
traffic larger than a baseline value. The approach we present here is a bit different from the
work of Kleinberg (see also discussion in Section 2.2.2), who uses a Binomial model with
two states at every time point. Kleinberg defines the weight of a burst to be the aggregated
sum of the differences in the loss function (data fidelity term) across these two states. In
our approach, we do not restrict pt to two a priori specified states—instead, we allow for a
continuum of values that are obtained by solving a regularized signal segmentation problem.

2.4.1. Computation of the strength of a burst. Suppose we are given an estimate of a
baseline proportion p0 (we discuss how to compute this below) for a communication stream.
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A “burstiness period” or, simply, “burst” corresponds to a time interval where the estimated
signal lies above the baseline value p0 and is given by T = [tstart, tend], where p̂t > p0, ∀t ∈ T.
Inspired by Kleinberg (2003), we define the strength S(T) of the burst as the logarithm of the
likelihood ratio (here, the numerator is the likelihood of the signal and the denominator is that
evaluated at the baseline) given by S(T) = ∑

t∈T(logL(p̂t |nt , yt ) − logL(p0|nt , yt )), where
L(p̂t |nt , yt ) denotes the likelihood at time t . As the baseline p0 is specific to a communica-
tion stream, the score S(T) represents a deviation from this global baseline. S(T) is different
than the magnitude of a jump given by p̂t+1 − p̂t ; it takes into account the deviation of p̂t

from the baseline p0 as well as the duration of the burst given by the length of T. A large value
of S(T) means that a large part of the likelihood is explained by deviations from the baseline
and, therefore, corresponds to a strong burst. Note that each TAGS-specific communication
stream can have multiple bursts leading to multiple intervals T, each with an assigned strength
S(T).

2.4.1.1. Choice of baseline. The baseline value p0 should be representative of the behav-
ior of the TAGS-specific communication stream. The global proportion of a communication
stream is a reasonable choice. We set p0 to be one standard deviation larger than the global
proportion

p0 = p̄ +
√

p̄(1 − p̄)

n̄
, where, p̄ =

∑N
t=1 yt∑N
t=1 nt

, n̄ = 1

N

N∑
t=1

nt .

A robust estimate like the median can also be used instead of the average. In our experiments
we found that the top-ranked slots (cf Table 1) were relatively agnostic to the choice of the
baseline p0.

2.4.2. Interpretation of bursts. Table 1 presents the top thirty bursts with the start and
end dates as well as the date with the highest burst strength score. A close study of the
content of the cables shows that not all of these bursts correspond with what scholars would
recognize as an event of historical importance. After all, the cable TAGS that diplomats used
do not necessarily correspond with diplomatic activity. For instance, the second biggest burst
is made up of cables related to transportation (ETRN)—a TAGS that was commonly used,
and overused, from when we begin to have records continuing until 1974, when diplomats’
use of this TAGS was largely discontinued. The biggest burst, for CVIS (visas), has a similar
pattern (as shown in Figure 6). But in this case, it appears to reflect a decision by archivists
to stop preserving records related to visas (Langbart, Fischer and Roberson (2007)). To the
model, both of these look like bursts, but they simply reflect administrative procedures rather
than historical events.

The bursts that follow, on the other hand, appear to correspond well with historical events.
The next 10 include the Carter administration’s prioritization of human rights (SHUM), An-
war Sadat’s surprise visit to Israel (PGOV), the Southeast Asian Boat People crisis (SREF),
the U.S. withdrawal from the International Labor Organization (PORG), the conclusion of the
Panama Canal Treaty (PDIP), the 1973 Yom Kippur War (XF, for Middle East), Portugal’s
withdrawal from Angola (AO) and the 1974 crisis over Cyprus (CY).

To validate these results, we consulted four standard reference works on U.S. foreign rela-
tions (Brune and Burns (2003), Flanders and Flanders (1993), Bruce et al. (1997), De Conde
et al. (2002)). The editors are all domain experts, but the varying content of each one reflects
the different ways social scientists evaluate historical significance. Nevertheless, all of the
aforementioned events appear in every one of these reference works, suggesting our frame-
work succeeds in identifying events that are broadly recognized as historically important.
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TABLE 1
Top 30 bursts identified using �0 segmentation algorithm, using the method in Section 2.4 to compute burst

strengths. For interpretations regarding the bursts, please see the discussion in Section 2.4.2

TAGS Meaning start end peak Burst
Strength

1 ETRN Economic Affairs-Transportation 1973-07-02 1974-08-09 1973-09-28 5146.05
2 CVIS Consular Affairs-Visas 1973-07-02 1975-01-02 1974-06-28 4839.35
3 SHUM Social Affairs-Human Rights 1977-01-19 1977-12-30 1977-11-18 2872.02
4 US United States 1976-01-28 1977-09-16 1976-04-15 2516.03
5 PGOV Political Affairs-Government 1977-06-03 1977-12-30 1977-11-18 2484.57
6 SREF Social Affairs-Refugees 1975-04-22 1976-07-20 1976-06-02 1662.58
7 SOPN Social Affairs-Public Opinion

and Information
1976-11-26 1977-12-30 1977-08-26 1597.14

8 PORG Political Affairs-Policy Relations
With International Organizations

1977-06-15 1977-12-30 1977-11-11 1547.35

9 PDIP Political Affairs-Diplomatic and
Consular Representation

1977-05-24 1977-12-30 1977-09-02 1462.93

10 XF Middle East 1973-10-09 1973-12-19 1973-10-16 1453.76
11 AO Angola 1975-11-08 1976-02-23 1975-11-10 1439.58
12 CY Cyprus 1974-07-15 1974-07-29 1974-07-20 1378.79
13 VM Vietnam 1977-10-11 1977-12-30 1977-10-12 1365.45
14 PDEV Political Affairs-National

Development
1977-06-13 1977-12-30 1977-08-31 1344.70

15 VS Vietnam (South) 1973-07-02 1975-06-06 1975-04-25 1150.46
16 UNGA UN General Assembly 1975-08-19 1975-12-13 1975-11-07 1044.29
17 CARR Consular Affairs-Americans

Arrested Abroad
1977-06-01 1977-12-30 1977-06-28 951.98

18 MCAP Political Affairs-Military
Capabilities

1973-07-02 1974-08-15 1974-07-03 903.26

19 ENRG Economic Affairs-Energy 1973-11-08 1974-02-21 1974-01-25 760.64
20 PBOR Political Affairs-Boundary and

Sovereignity Claims
1977-07-01 1977-12-30 1977-11-09 685.75

21 OVIP Operations-VIP Travel
Arrangements

1974-10-09 1974-11-09 1974-10-31 607.17

22 RH Rhodesia 1976-09-01 1977-12-30 1977-08-31 569.89
23 AEMR Administration-Emergency and

Evacuation
1975-03-28 1975-05-12 1975-04-28 524.59

24 MPLA Popular Movement for the
Liberation of Angola

1975-11-07 1976-02-24 1976-02-18 507.98

25 MSG Marine Security Guards 1976-09-02 1977-12-30 1977-11-28 507.27
26 OREP Operations-Congressional Travel 1976-10-27 1976-11-18 1976-11-02 481.08
27 PRG Provisional Revolutionary

Government of South Vietnam
1975-01-16 1975-02-06 1975-02-03 470.51

28 MNUC Military and Defense
Affairs-Military Nuclear
Applications

1977-03-11 1977-12-30 1977-08-22 421.53

29 UNGA UN General Assembly 1974-09-05 1974-12-05 1974-10-10 417.20
30 CB Cambodia (Khmer Republic) 1973-07-02 1975-05-21 1975-04-16 370.14

A systematic evaluation of hundreds of bursts for historical significance lies outside the
scope of this paper. But the relative proportion of recognized historical events appears to di-
minish as one examines smaller bursts, like the ones ranked in the range 13–22. They include
the denouncement of the Vietnamese War (VM and VS), the OPEC oil embargo (ENRG),
the Vladivostok summit (OVIP) and negotiations to end white rule in Rhodesia (RH). This
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suggests that the ranking of the bursts, while not necessarily corresponding to historical im-
portance, does reflect the likelihood that each one will correspond to events historians have
already recognized as significant. But among the unrecognized events, like a 1975 U.N. Gen-
eral Assembly debate over the command of foreign military forces in South Korea, there are
some that appear to merit closer scrutiny. The identification of such unstudied episodes, no
less than rank-ordering well-known events, is valuable for historical scholarship.

3. A generalization beyond piecewise constant segments. A major focus of Section 2
was on approximating a communication stream with a piecewise constant signal. This frame-
work does help us answer some key data-driven questions of interest to a political scientist,
based on a first order (i.e., piecewise constant) approximation of the communication streams.
However, as we discussed before, many of the signals are not piecewise linear. We now in-
vestigate more flexible signal approximations that provide us insights into the finer behavior
of the signals. A natural extension of a piecewise constant estimate {p̂t } is a piecewise linear
estimate. However, we need to address certain technical issues to incorporate this structure
into our likelihood framework, as we discuss below.

Let us consider the usual signal denoising problem with data: ỹi = μi +εi , for i = 1, . . . ,N

where, εi
iid∼ N(0, σ 2). Suppose we would like to estimate μ such that it is piecewise lin-

ear. A method to achieve this is by using the �1 trend-filtering approach (Kim et al. (2009),
Tibshirani (2014)). Here, one uses a convex regularizer H tf

�1
(μ) = ∑

t |μt+2 − 2μt+1 +μt | to
obtain a signal with piecewise linear segments,

(3.1) minimize
μ

1

2

N∑
i=1

(ỹi − μi)
2 + λH tf

�1
(μ).

The penalty function H tf
�1

(μ) encodes the �1-norm on the discrete second order derivative of

the signal {μt } assuming that the time points are all equally spaced. H tf
�1

(μ) can be interpreted

as a convexification of its �0 version: H tf
�0

(μ) = ∑
t 1(μt+2 −2μt+1 +μt 	= 0) that counts the

number of different piecewise linear segments.
Our situation is different from the denoising example (with least squares loss), as outlined

above. Since we are working under the modeling assumption: (yt |nt ,pt ) ∼ Bin(nt ,pt ) with
pt = exp(θt )/(1 + exp(θt )), imposing a trend filtering penalty on pt will lead to a difficult
nonconvex optimization problem due to the nonlinear dependence of pt on θt . Instead, we let
the latent parameter t �→ θt be piecewise linear; this leads to a computationally tractable es-
timation framework based on convex optimization. Toward this end, we propose an adaption
of Problem (2.4) by using the regularizer H(θ) = H tf

�1
(θ):

(3.2) minimize
θt ,1≤t≤N

N∑
t=1

(−ytθt + nt log
(
1 + exp(θt )

)) + λH tf
�1

(θ).

Figure 8 shows the results of estimates obtained from some communication streams using the
�1-trend filtering penalty. If the time points are not equally spaced, then this penalty needs
to be modified; see, for example, Kim et al. (2009) and also Section 5 in the Supplementary
Material (Gao et al. (2020)).

Computation. The proximal gradient-stylized update (2.8) can be adapted to the setting
described above with H(θ) = H tf

�1
(θ). To solve the proximal operator, we use existing spe-

cialized solvers for the �1-trend filtering problem for the least squares loss function—in par-
ticular, we found the interior point solver14 of Kim et al. (2009) to work quite nicely for

14We use the R package wrapper available from https://github.com/hadley/l1tf.

https://github.com/hadley/l1tf
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FIG. 8. Figure showing the estimates obtained from Problem (2.4) with the �1-trend filtering reg-
ularizer (see Section 3). The sharp spike in the CY (Cyprus) communication stream corresponds to
an unanticipated event, when Greek forces launched a coup with the goal of annexing Cyprus. The
first peak for the second stream (ENRG) corresponds to the 1973 energy crisis, after the OPEC oil
ministers announced an embargo during the Yom Kippur War. The peak for VS, for South Vietnam,
corresponds to the Fall of Saigon in 1975, which marked the end of the Vietnam War. SHUM, for com-
munications related to human rights, shows the increasing attention the State Department gave to this
subject, especially after the election of President Jimmy Carter. .

the problem sizes encountered in this paper. We note, however, that solving Problem (3.2) is
computationally more demanding than the piecewise constant segmentation approach. The
main difference is due to the proximal operator: Problem (2.11) can be solved much more
efficiently than Problem (3.1). As Problem (2.4) is convex, the sequence (2.8) converges to
a minimum of the optimization problem (note that the minimum exists under minor assump-
tions). The convergence rates outlined in (2.9) and (2.10) will also apply to this problem.

If we set H(θ) = H tf
�0

(θ), the resulting Problem (2.4) becomes a challenging nonconvex
optimization problem—in this case, the proximal operator is harder to solve compared to the
fused �0 problem (2.12). Hence, in this paper we limit our attention to the convex �1-trend
filtering regularizer.

Social science interpretation. The shapes of the estimated signal (see Figure 8) capture key
differences between different kinds of events in the history of U.S. foreign relations—these
would have been less obvious using the piecewise constant signal approximation framework
of Section 2.2. Some crises, like the Cyprus coup, occur with no warning, but also make
little difference in the longer-term level of attention and activity. Others, like the OPEC oil
embargo, are similarly unexpected, but signal the beginning of a period marked by moments
of heightened activity well over the previous baseline. Still others, like the Fall of Saigon,
build to a climax, and then gradually subside. Finally, the rise of human rights as a concern for
policymakers is gradual but seemingly inexorable. The taxonomy of these different patterns
provide useful insights to a social scientist in identifying and classifying different kinds of
events. There are a few broad categories of patterns. From the sudden and unexpected, to the
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gradual rise and fall, to longer-term trends, these patterns can help social scientists develop a
taxonomy of historical events to gain a deeper understanding of heterogenous data.

4. Related work (event detection literature). We present a brief contextualization of
our work in regard to the event detection literature within the computer science/data mining
community. Event detection in text communication streams, such as news or social media
platforms (e.g., Twitter), is a fairly rich area of research; see for example, the nice review
by Atefeh and Khreich (2015) for an overview of event detection in Twitter communication
streams. Starting with the seminal work of Kleinberg (2003), important contributions have
been made in the field of feature-pivot techniques, where one attempts to identify context-
specific words that depict a sharp rise in frequency as an event emerges. An important line of
research in this area—see, for example, He, Chang and Lim (2007), Pui Cheong Fung et al.
(2005)—focuses on how to understand contributions from different words toward describing
an event. A key focus in this line of work is an elaborate design of specialized features to
describe the content of messages (keywords, hashtags, advanced text/context based features,
etc), interactions among users, etc. For many of these approaches, text-processing methods
play an important role. The dataset we analyze in this paper and its application context is
different from event detection in Twitter streams; the corpus we study has limited textual
data. Nevertheless, we present a preliminary analysis of text-based data for our problem in
Section 5.1.

The communication streams we study are naturally characterized by TAGS, defined by
the State Department when they were entered into the system. Our emphasis is on the use
of statistical methods that make our models and results interpretable to a social scientist
(see Section 5 for further discussion). As mentioned by Atefeh and Khreich (2015), many
of the complex methods used in the context of analyzing Twitter streams are based on an ad
hoc selection of thresholds—this is understandable given the complexity of the problem. In
contrast, such heuristics are mostly avoided in our approach.

5. Concluding remarks and discussion. In this paper we present statistical methods
to analyze diplomatic cable communications during 1973–1977, recently made available by
the U.S. National Archives. The complexity and heterogeneity of different historical events
present themselves in the form of various geometric patterns in the communication streams.
An important challenge of this work has been in identifying and proposing a suitable suite
of statistical tools useful to a social scientist to glean insights from this newly available data.
Our study focuses on the TAGS-specific communication streams and understanding how ge-
ometric characteristics of these streams relate to events of historical significance.

We present a global testing framework to identify which, among potentially thousands of
communication streams, exhibit interesting statistical activity that merit further downstream
analysis. We propose signal segmentation methods based on �1 and �0 penalization to identify
structural breaks, a.k.a. jumps in the communication streams. The proposed algorithms are
complementary to the area of change-point models in statistics and appear to be faster than
existing implementations. We present a sample-splitting framework to perform statistical in-
ference on the detected jumps and discuss a simple but effective notion of combining jumps
to bursts, following Kleinberg (2003). Finally, we present extensions of piecewise constant
signals to model the underlying process of communication stream traffic.

5.1. A social science perspective. Results available from our statistical analysis in some
cases correspond to well-known events, while in other cases they lead to curious findings
that a social scientist might have missed in the absence of statistical tools such as the ones
presented herein. The tools proposed here may be used (with suitable modifications) in other
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contexts, beyond the dataset analyzed in this paper. With the ever growing volume of digital
content, it will become increasingly important for social scientists to devise a range of new
methods to identify patterns and anomalies. When a corpus consists of hundreds of millions
of emails—as is the case with the Obama White House files—in the absence of a suitable sta-
tistical framework, it may be challenging to filter out less interesting communications without
obscuring unexpected and potentially important information. Historical events are quite het-
erogeneous, and social scientists need methods, such as the ones presented herein, that can
help them prioritize which communications they should examine most closely.

An important characteristic of our framework—of particular appeal to a social scientist—
is that it permits efficient algorithmic processing of large corpora. Our methodology does not
require prior knowledge of the content of the communications; it is thus agnostic to specific
biases that may be imposed by a practitioner. At the same time, our proposed framework is
flexible enough to be able to capture very different kinds of events. Our statistical methods
also present a clear guideline of what geometric patterns these events might correspond to.
Throughout our project we have observed an interesting synergy between statistics and social
science perspectives during the interpretation of the findings.

Our results in Sections 2.3 and 3 suggest how a social scientist may use our framework to
identify and classify different kinds of events. Some of these events can be described by jumps
(piecewise constant signals), while others are better explained by piecewise linear segments.
While each one is unique, there are clearly different classes, from the sudden and unexpected,
to the gradual rise and fall, to longer-term trends, to cyclical patterns. Categorizing these
different phenomena provides a useful heuristic in analyzing heterogenous data and could
help social scientists develop a taxonomy of historical events. Developing a comprehensive
statistical framework to perform shape-based grouping of these taxonomies is an interesting
topic for future research.

Our framework is perhaps most important in supporting a new, more inductive approach
to historical analysis, where it may not be possible to know in advance what communications
should be examined more closely. Since the “archive” is increasingly digital and archivists are
no longer able to create traditional finding aids to guide researchers, it is increasingly difficult
to decide which events or trends were most important. Our framework makes it possible to
start instead with the data and then conduct a statistical analysis of communications that
deviate from established communications patterns.

Inductive and deductive approaches are not mutually exclusive. For instance, we asked
a historian, who had just published a history of the 1970s, to independently identify and
rank the most important events. There was substantial overlap between his list and the one
generated by our methodology. But there were also interesting differences which raised what
he called “crucial questions” about how we judge historical significance:

“Is that most vital quality to be assessed only in [the] perspective of hindsight, or can we
use quantitative aggregation of contemporary data to achieve novel perspectives?”

Our framework can already help researchers meet the challenge of exponentially larger
archives and do what machines can never do: interpret complex data, assess historical signif-
icance and determine what this history really means for the present and the future.

Using text data to understand regime changes. While our work has focused on cable meta-
data and communication volume, similar methods could be applied to textual data. Unfortu-
nately, the text is unavailable for many thousands of the cables in this corpus, either because
State Department storage systems failed to preserve it or because only the metadata has been
declassified for cables that have been deemed to contain sensitive information. But we per-
formed a small-scale analysis to explore what might be learned from what data is available.

We studied communications relating to several regime changes in the 1970s by using the
name of the incoming leader as a guiding feature. In this analysis we looked at the weekly
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proportion of cables with the country in question (CY for Cyprus, CI for Chile, AR for Ar-
gentina and PK for Pakistan) which also contain the name of the leader or leaders of the
coup in the text (SAMPSON for CY, PINOCHET for CI, VIDELA or GUZZETTI for AR,
and ZIA-UL-HAQ or ZIA for PK). Documents with unavailable text data were not included
in the analysis. We applied our framework to detect potential change points (by restricting
the number of jumps to at most two). Our results appear in Figure 3 of the Supplementary
Material (Gao et al. (2020)). In three of the four cases we examined, Pakistan, Cyprus and
Argentina, our framework clearly shows the change in communications patterns that corre-
sponds with a coup. This is, as opposed to, for example, South Vietnam, where the peak
corresponding to the fall of Saigon is preceded by a long period of increasing activity. Al-
though all three do have cables mentioning the coup leader before the event, these mentions
are not persistent enough to shift the location.

Chile presents an interesting exception, in which the change point appears well after the
regime change. There is increased interest in Pinochet leading up to it, but U.S. diplomats did
not recognize he was a key figure in military plotting against the Allende government. The
Nixon administration faced accusations of backing the coup once it succeeded, leading it to
be cautious initially in contacts with the new leaders. That did not start to change until the
spring of 1974 (Harmer (2011)).

Even though the textual data for the cable corpus is incomplete, rich textual data is avail-
able for other corpora necessitating an in-depth analysis of text processing methods. There
is already a large body of work in the context of event detection in Twitter data (Atefeh and
Khreich (2015)) using text processing tools. We leave the combination of statistical analy-
sis of communications streams and techniques from natural language processing as topics of
future research.
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SUPPLEMENTARY MATERIAL

Supplement to “Mining events with declassified diplomatic documents” (DOI:
10.1214/20-AOAS1344SUPPA; .pdf). In the Supplementary Material, we provide additional
discussion for (i) the derivation of T in (2.1); (ii) sensitivity analysis of the global testing
results in Section 2.1; (iii) the comparison of the �0 segmentation approach we used for
Problem (2.4) versus PELT (Killick, Fearnhead and Eckley (2012)); (iv) discussion of local
p-values on synthetic data; and (v) modification of Problem (2.8) to handle irregularly spaced
time points.

Supplement to “Mining events with declassified diplomatic documents” (DOI:
10.1214/20-AOAS1344SUPPB; .zip). This supplement contains R scripts of the fused �0
and �1-penalized problems discussed in the paper.

15Article www.buzzfeed.com/josephbernstein/can-a-computer-algorithm-do-the-job-of-a-historian?
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