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Abstract. We study the one-dimensional stochastic wave equation driven by a Gaussian multiplicative noise, which is white in time
and has the covariance of a fractional Brownian motion with Hurst parameter H € [1/2, 1) in the spatial variable. We show that the
normalized spatial average of the solution over [—R, R] converges in total variation distance to a normal distribution, as R tends to
infinity. We also provide a functional Central Limit Theorem.

Résumé. Nous étudions I’équation des ondes en une dimension, perturbée par un bruit gaussien multiplicatif, qui est blanc en temps
et qui a la covariance d’un mouvement brownien fractionnaire avec parametre de Hurst H € [1/2, 1) dans la variable d’espace. Nous
démontrons que la moyenne spatiale normalisée de la solution sur un intervalle [— R, R] converge, en la distance de la variation totale,
vers une loi normale, quand R tend vers I’infini. Nous prouvons aussi un théoréme central limite fonctionnel.
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1. Introduction

We consider the one-dimensional stochastic wave equation
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(1.1)

on Ry x R, where W (¢, x) is a Gaussian random field that is a Brownian motion in time and behaves as a fractional
Brownian motion with Hurst parameter H € [1/2, 1) in the spatial variable. For H = 1/2, the random field W is just
a two-parameter Wiener process on R x R. We assume u (0, x) =1, %u(o, x) =0 and o is a Lipschitz function with
Lipschitz constant L € (0, 00).

It is well-known (see, for instance, [4,17]) that equation (1.1) has a unique mild solution, which is adapted to the
filtration generated by W, such that sup{E[|u (¢, X)*1:xeR, 1 €[0,T]} < oo and

1 t
u(t,x) =1+ 5/ f1{|x7y|stﬂ~}0(u(s,y))W(ds,dy), (1.2)
0 JR

where the above stochastic integral is defined in the sense of [t6—Walsh.
In this paper, we are interested in the asymptotic behavior as R tends to infinity of the spatial averages

R
/ u(t,x)dx, (1.3)

R

D. Nualart is supported by NSF Grant DMS 1811181.


https://imstat.org/journals-and-publications/annales-de-linstitut-henri-poincare/
https://doi.org/10.1214/20-AIHP1069
mailto:delgado@im.unam.mx
mailto:nualart@ku.edu
mailto:zhengguangqu@gmail.com
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

A CLT for the stochastic wave equation with fractional noise 3021

where ¢t > 0 is fixed and u(z, x) is the solution to (1.1). We remark that, for each fixed ¢ > 0, the process {u(t, x), x € R}
is strictly stationary,' meaning that the finite-dimension distributions of the process {u(t, x 4+ y), x € R} do not depend on
y. Furthermore, u(t, x) is measurable with respect to the o-field generated by the random variables {W (s, z) : |x — z| <
t —s}. As a consequence,

(1) for H =1/2, the random variables u(#, x) and u(t, y) are independent if |x — y| > 2¢;
(2) for H € (1/2,1), u(t, x) and u(z, y) have a correlation that decays like |x — y — 2¢|? =2 when |x — y| — 400, which
is a consequence of Gebelein’s inequality (see, for instance, [16]).

Therefore, we expect the Gaussian fluctuation of the spatial averages (1.3).

Our first goal is to apply the methodology of Malliavin—Stein to provide a quantitative Central Limit Theorem for
(1.3), which will be described in total variation distance.

Define the normalized averages by

R
Fr(t) :=%(/Ru(t,x)dx—2R>, (1.4)

where u(t, x) is the solution to (1.1) and O’I% = Var(f_RR u(t,x)dx).

To avoid triviality, throughout this paper, we assume that o (1) # 0, which guarantees that o > 0 for all R > 0 and
also that oy is of order R¥; see Lemma 3.4 and Propositions 3.2, 3.3 below.

Our first result is the following quantitative Central Limit Theorem.

Theorem 1.1. Let dyy denote the total variation distance (see (2.8)) and let Z ~ N (0, 1). For any fixed t > 0, there
exists a constant C = C; g o, depending on t, H and o, such that

drv(Fr(t), Z) < CR"~.
Our second objective is to provide the functional version of Theorem 1.1.

Theorem 1.2. For any s > 0, we set n(s) = E[o (u(s, v))] and &(s) = E[o>(u(s, y))], which do not depend on y due to
the stationarity. Then, for any T > 0, as R — +00,

() if H=1/2, then

1 R t
— t,x)dx —2R - fz/ t—s)/ dBS} ;
{Jﬁ(/‘—Ru( r)dx )}ze[O,T] { 0 ( g g(S) t€(0,T]

(i) if H € (1/2, 1), then

R t
{R_H(/ u(t,x)dx—2R>} = {ZH[ (I—S)U(S)dBS} '
—R te[0,T] 0 tel0,T]

Here B is a standard Brownian motion and the above weak convergence takes place in the space of continuous functions

C([0,T]).

Theorem 1.1 is proved using a combination of Stein’s method for normal approximation and Malliavin calculus,
following the ideas introduced by Nourdin and Peccati in [9]. The main idea is as follows. The total variation distance
drv(Fgr(2), Z) is bounded by 2,/Var(DFR(t), vr) g, where D is the derivative in the sense of Malliavin calculus, § is
the Hilbert space associated to the noise W and vg is an $)-valued random variable such that Fg(¢) = §(vR), 6 being the
adjoint of the derivative operator, called the divergence or the Skorohod integral. A key new ingredient in the application
of this approach is to use the representation of Fg(¢) as a stochastic integral of vg, taking into account that the Itd—Walsh
integral is a particular case of the Skorohod integral.

A similar problem for the stochastic heat equation on R has been recently considered in [7], but only in the case of a
space-time white noise. In this case, it was proved in [7] that the limiting process in the functional Central Limit Theorem
is a martingale, which is not true for our wave equation. Moreover, in the colored case H € (1/2, 1) considered here, we

1T see the strict stationarity, we fix y € R and put v(¢, x) = u(¢, x + y): It is clear that v solves the stochastic heat equation (1.1) driven by the shifted
noise {W(t,x +y),t € R4, x € R}, which has stationary increments in the spatial variable.
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have found the surprising result that the square moment E[o2(u(s, ¥))] in the white noise case is replaced by the square
of the first moment (E[o (u(s, y))])?. Furthermore, the rate of convergence depends on the Hurst parameter H.

When o (1) = u, the solution has an explicit Wiener chaos expansion. A natural question in this case is whether the
central limit is chaotic, meaning that the projection on each Wiener chaos contributes to the limit. Such a phenomenon
has been observed in other cases (see, for instance, [6]). We will show that for H > 1/2 only the first chaos contributes
to the limit, where as for H = 1/2, we will see in Remark 1 that the first chaos is not the only contributor in the limit and
to check whether or not this central limit is chaotic, one shall go through the usual arguments for chaotic Central Limit
Theorem (see [11, Section 8.4]).

The rest of the paper is organized as follows. In Section 2 we recall some preliminaries on Malliavin calculus and
Stein’s method. Sections 3 and 4 are devoted to the proofs of our main theorems. We put the proof of a technical lemma
(Lemma 2.2) in the Appendix. This lemma, which has an independent interest, states that the p-norm of the Malliavin
derivative Dy yu(t, x) can be estimated, up to constant that depends on p and 7, by the fundamental solution of the wave
equation %1{|x,y|5t,s}.

Along the paper we will denote by C a generic constant that might depend on the fixed time ¢, the Hurst parameter H
and the non-linear coefficient o, and it can vary from line to line.

2. Preliminaries

We denote by W = {W (¢, x),t > 0, x € R} a centered Gaussian family of random variables defined in some probability
space (€2, F, P), with covariance function given by

AIWAN

t
——(1x [P + [y — |x — y[*H),

E[W(, x)W (s, y)] 5

where H € [1/2, 1).
Let $9 be the Hilbert space defined as the completion of the set of step functions on R equipped with the inner product

HQH — 1) [pa ()¢ Wx — y?12dxdy if H e (1/2,1),

Jre(x)¢(x)dx it H=1)2. Q2.1

(@, ¢>550 = I

Set H = L2(R+; $o) and notice that

E[W(t, )W (s, y)] = (1[0,11x10,x1> 10,5110, ]) 5

where, by convention, [0, x] = [—|x][, 0] if x is negative. Therefore, the mapping (z, x) — W (¢, x) can be extended to a
linear isometry between $) and the Gaussian subspace of L>(£2) generated by W. We denote this isometry by ¢ —> W ().
When H = 1/2, the space §) is simply L>(R; x R) and W (g) is the Wiener—It6 integral of ¢:

W (p) :/ o(t, x)W(dt,dx).
R+ xR

For H € (1/2, 1), the space L'H (R) is known to be continuously embedded into $)o; see [8,15].
For any 7 > 0, we denote by F; the o-field generated by the random variables {W (s, x) : 0 <s <t, x € R}. Then, for
any adapted $)o-valued stochastic process {X (¢), ¢ > 0} such that

/0 E[| X 0]}, ]dt < oo, 2.2)

the following stochastic integral

/00/ X(s,y)W(ds,dy) (2.3)
0 R

is well-defined and satisfies the isometry property

E[(/OOO/RX(S, YW (ds, dy))2:| - E(/:OHX(t)H%O dt).

We will make use of the following lemma and the notation ey = H(2H — 1).
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Lemma 2.1. Forany H € (1/2,1),s,t > 0and x,& € R, we have

2y /IRZ 1{\x—y|5t}1{|g_zlfs}|y _Z|2H72dydZ
:lx_é_t_s|2H+|x_s+t+s|2H

—lx =g+t —sPH —|x—& 1451 (2.4)

Proof. Let BY be a two-sided fractional Brownian motion with Hurst parameter H. That is, BH = {B,H ,teR}isa
centered Gaussian process with covariance

1
E[B/'BI'] = 5(|t|2HjL Is|?# — e —s*"),  s,teR.

Notice that both sides of (2.4) are equal to ZE[(BfH — B)ﬁt)(BégﬂI‘ﬂrx — BSI{S)], in view of (2.1) and the above covariance

structure. So the desired equality follows immediately. (]

The proof of our main theorems relies on a combination of Malliavin calculus and Stein’s method. We will introduce
these tools in the next two subsections.

2.1. Malliavin calculus

Now we recall some basic facts on Malliavin calculus associated with W. For a detailed account of the Malliavin calculus
with respect to a Gaussian process, we refer to Nualart [10].

Denote by C;O (R™) the space of smooth functions with all their partial derivatives having at most polynomial growth
at infinity. Let S be the space of simple functionals of the form

F=f(Wh),..., W(hy))

for f e C[C;O (R") and h; € 9, 1 <i <n.Then, DF is the $)-valued random variable defined by
n af
DF = 121: 8—M(W(h1), oo W(hp))hi.

The derivative operator D is closable from L? () into L?(2; $) for any p > 1 and we let D!-? be the completion of S
with respect to the norm

IFlI1., = (E[IFI”]+E[IDFI2])"".
We denote by § the adjoint of D given by the duality formula

E(8u)F)=E((u, DF)g)
forany F € D'2 and u € Dom$ C Lz(Q; £), the domain of §. The operator § is also called the Skorohod integral, because
in the case of the Brownian motion, it coincides with an extension of the It integral introduced by Skorohod (see [5,12]).

More generally, in the context of our Gaussian noise W, any adapted random field X that satisfies (2.2) belongs to the
domain of § and 6(X) coincides with the Dalang—Walsh-type stochastic integral (2.3):

8(X)=/oo/ X(s,y)W(ds,dy).
0 R

As a consequence, the mild formulation equation (1.2) can also be written as

1
ut,x)=1+ 58(1{|x_*‘5,_.}0(u(~, *))). (2.5)
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It is known that for any (, x) € R4 x R, the solution u(z, x) to equation (1.1) belongs to D'? for any p > 2 and the
derivative satisfies the following linear stochastic integral differential equation for ¢ > s,

t
Ds,yu(t, xX)= %1{|X_y|5,_s}a(u(s, y)) + % / /R 1{|x_z‘5,_r}2(r, Z)D‘y,yu(r, 2)W(dr,dz), (2.6)
s

where X (r, z) is an adapted process, bounded by the Lipschitz constant of o (we refer to the Appendix for more details
on the properties of the derivative). If o is continuously differentiable, then X (r, z) = o’/ (u(r, z)). This result is proved in
[10, Proposition 2.4.4] in the case of the stochastic heat equation with Dirichlet boundary conditions on [0, 1] driven by
a space-time white noise. Its proof can be easily extended to the wave equation on R driven by the colored noise W. We
also refer to [1,13] for additional references, where this result is used for o € C!(R).

In the end of this subsection, we record a technical result that is essential for our arguments, and we postpone its proof
to the Appendix.

Lemma 2.2. Forany p €[2,+00),0<t <T and x € R, we have for almost every (s, y) € [0, T] x R,
| Dsyute. ), = Clyjemyizi—g) 2.7)
for some constant C = C7,p p o that depends on T, p, H and the function o .

2.2. Stein’s method

Stein’s method is a probabilistic technique that allows one to measure the distance between a probability distribution and
a target distribution, notably the normal distribution. Recall that the total variation distance between two real random
variables F and G is defined by

drv(F,G):= sup |P(FeB)—P(GeB)
BeB(R)

) (2.8)

where B(R) is the collection of all Borel sets in R.
The following theorem provides the well-known Stein’s bound in the total variation distance; see [9, Chapter 3].

Theorem 2.3. For Z ~ N(0, 1) and for any integrable random variable F,

drv(F,Z) < sup |E[f(F)]-E[Ff(F)]

feFrv

) (2.9)

where Fry is the class of continuously differentiable functions f : R — R such that || f oo < /7/2 and || f' |lco < 2.

For a proof of this theorem, see [9, Theorem 3.3.1]. Theorem 2.3 can be combined with Malliavin calculus to get a
very useful estimate (see [7,11,14]).

Proposition 2.4. Let F = §(v) for some $-valued random variable v € Dom$. Assume F € DV2 and E[F?] = 1 and let
Z ~N(0, 1). Then we have

drv(F, Z) <2,/Var[(DF,v)g]. (2.10)

In the course of proving Theorem 1.2, we also need the following lemma, which is a generalization of [9, Theo-
rem 6.1.2]; see [7, Proposition 2.3].

Lemma 2.5. Let F = (FV, ..., F™) be a random vector such that F) = §(v®) for v® € Domé and F® e D2,
i=1,...,m. Let Z be an m-dimensional centered Gaussian vector with covariance (C; j)1<i, j<m. For any Cc? function
h : R™ — R with bounded second partial derivatives, we have

[E[(E)] ~E[r@)]| = Z[#" ]« | D E[(Cej — (DFO.vD),)’),
i,j=1

where ||h" || oo 1= sup{|#§){jh(x)| xeR™ i, j=1,...,m}.
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3. Proof of Theorem 1.1

We begin with the asymptotic variance of Fg(¢), as R tends to infinity. We need some preliminary results and notation.
We fix ¢ > 0 and define

1 R
(pR(Svy):E/ L{jx—y|<r—s) dx.
—R

Notice that 2¢g (s, y) is the length of [-R, RN [y —t +s,y+1t — 5], s0
1
Pr(s,y) = 5([1? AY+t=9)]-[R VvV —1+9]),.
As a consequence, we deduce that
or(s,y)=0, if|y|>R+4+t—s; and @r(s,y) <RA(t—35).

Set G =GR(t) = ffR u(t, x)dx — 2R. With this notation, we can write

t
Gr =/ / oR(s, y)o(u(s, y))W(ds, dy).
0 JR
The next lemma provides a useful formula.

Lemma 3.1. Let 0 < a < b and define ¢, r(y) = % f_RR 1{x—y|<a) dx, then we have, for any R > 2b,

/1 (@b, r(y)dy =2ab R‘11b2+13
— =2ab — = —a’ ).
| RV R 0P R()dy 54 g

Therefore, img_ 100 [z %%a, k() @b, r(Y) dy = 2ab.

Proof. We can write

1
/ E‘pa,R(J’)QDb,R()’)dy
R

1
=—— - yi<at Lix—y|<py dX dx d
4R/]R/[—R,R]2 {Ii-yl<a}Hix—y|<b}dX dxay

1
_E [7R,R]2
_ 1
_ﬁ [—R,R]z{

dx dx(V(z—x|<p—a} + Lip—a<|t—x|<b+a)) /R Lji—y<a,lx—y|<b) 4y
15—x|<b—a) 2a) + Vp_g<ji—x|<pta)(a + b — |x — %)} dx d¥,

which is equal to 2ab — R‘l(%ab2 + %a3) for any R > 2b, as one can verify. O
The next result provides the asymptotic variance of Gr(t) for H = 1/2.

Proposition 3.2. Suppose H = 1/2. Denote £(s) = E[o2(u(s, x))], which does not depend on x as a consequence of
stationarity. Then

t
Jim %E[Gi] = 2/0 (t —5)E(s) ds.

and E[G%] > (3 [, (t — $)*6(s)ds)R for any R > 2t.

Proof. Thanks to the It6 isometry, we have

t t
E[G%]:/O /R<p,%(s,y)E[oz(u(s,y))]dyds:/0 g(s)Awﬁ(s,y)dyds.
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If R > 2¢, we can see from Lemma 3.1 that

1 ) oy 2fy 1S 5. 0 2
R/R(pR(s,y)dy—Z(t s) (1 3R)€|:3(t )5, 2(t — ) i| 3.1

This leads easily to the results. ]

Surprisingly, in the case H > 1/2, we obtain a different formula for the asymptotic variance of Gg.

Proposition 3.3. Suppose H € (1/2,1). Denote n(s) = E[o (u(s, x))], which does not depend on x as a consequence of
stationarity. Then

t
lim R™*7E[G%] 22H/ (t — 5)’n%(s) ds.
0

R—o0

Proof. Thanks to the It isometry, we have

t
E[Gk]=an fo fR 9r(s. )¢r(s. DE[o (u(s. 1)o (u(s, ) ]ly = 2P dydz s,

where oy = H(2H — 1). Keeping in mind that {o (u(¢, x)), x € R} is stationary, we write E[o (u(s, y))o (u(s, z))] =:
W (s, y — z). Then,

t
E[G}] = an fo /R (s, E OpR(s, DG, P2 dE deds.

We claim that

lim  sup |\Il(s & —n (s)| = 3.2)

[§1—>—+00 <5<

In order to show (3.2), we apply a two-parameter version of the Clark—Ocone formula (see e.g. [2, Proposition 6.3]). We
can write

o (u(s, v)) = Efo (u(s, )] / / o (u(s, 1))\ W (dr, dy)
and

o (u(s. ) = B0 (u(s, 2))] / / o (u(s, )1 ]W (dr, dp).
As a consequence,

E[o (u(s. y))o (u(s. )] =n*(s) + T (s, . 2), (3.3)
where

T(s,y.2) = / / o (1(s. 1)) 1 JE[ Dy o (s, )1 )
x|y —B1*H2dy dBdr. (3.4)
By the chain-rule for the derivative operator (see [10, Proposition 1.2.4]),

D,y (o (u(s, y))) = (s, ) Dypu(s, y)

and

Dr.g(0(u(s,2))) = =(s,2) Dy pu(s, 2)
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with X (s, y) an adapted random field uniformly bounded by the Lipschitz constant of o, denoted by L. This implies,
using (2.7),

[E{E[D:, (o (u(s, ))IF |E[Dr.g (o (u(s, 2))) 15 ]}
<L? || Dy yu(s,y) qu Dy gu(s, z) H2 < Clyy—y<s—r)l{p—z<s—r})> (3.5)

for some constant C. Therefore, substituting (3.5) into (3.4), we can write

N
TGy, 2] = C fo fR Aotz lpzizsnly — BRI dy dpdr. (3.6)

If |y — z| > 2s, we have

_ 2H-2
Ly —yi<s—rip—zi=s—rly — B 7% < Ly yi<s—nLp—zi=s—r (Iy — 2l — 25)

and therefore deduce from (3.6) that (for |y — z| > 2s)

2H-2

S
T(s,y,2)| SC/O /Rz Ly —yi<s—rlgp—ci<s—r (ly — 2l = 25)"" “dy dBdr

<4CP(ly — g —2)22 TR

Thus, claim (3.2) is established in view of formula (3.3).
Let us continue our proof of Proposition 3.2. We first show that the quantity

1 t
377 /0 /R PR(,E+20r(s, D[ WG, &) — 0’ ()] |E1PH 72 d& dzds 3.7)

converges to zero, as R — 4-o00.
By (3.2), we can find K = K, > 0 for any given ¢ > 0 such that

sup{|W (s, &) —n*(s)| :s €0, 1], |&] > K} <e.

Now we divide the above integration domain into two parts |§| < K and || > K.
Case (i): On the region |£| < K, by Cauchy—Schwarz inequality and (3.1), we get for R > 2¢

1/2 1/2
fgoR(s,sH)wR(x,z)dzs (/ wﬁ(s,sﬂ)dz) (f ¢§<s,z>dz)
R R R

= [R<p%e(s,z)dz =2R(t —s)2<1 - t3_Rs>.

Since W (s, y —z) — n%(s) = T(s, v, z) is uniformly bounded for (s, y, z) € [0, t] x R?,

t
R—ZH/O /RZ <pR(s,§+z)§0R(s,z)|\I/(s,g)_,72(s)|1{|§|51<}|§|211_2d$dzds

t K
<CcRH / / ( / w(s,s+z>¢R(x,z>dz)|5|2H—2d5ds
0 —K R
1-2H ! 2 K 2H-2 R—+00
<CR t —s) E12H2 gg ds 222 ¢,
0 —K

Case (ii): On the region |£| > K, we know |W (s, £) — n?(s)| < € for s <. Thus,
t
R /0 /R L PR(5,E +D9r(s, D|W (s, 6) = ) [1ge- k) |22 dE dzds

e d _
< Rﬁfo fR PR(s,E + Dor(s, I 2 dE dzds
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R pR t
& 2H-2
= 4—R2H /;R /7R dx dx'/o /1;2 1{|X*Z|SI*S}1{|X/—z/\5t—s}’Z - Z/‘ deZdZ/

< a1 1 "PH2 gy
=arei | o) X | Miearsn (v—z1<n |z = 2] zdz
=: e3> A(R).
We can rewrite A(R), after a change of variables and supposing R > ¢, in the following form

2H-2

A(R) = Ry Ky ' dzdz dxdx’
(R) = Crap Jee 20 EsR T oy (v—z1=er1 ]2 = 7| taz dxax

; R—>+oc0

=/ 112(§R*82)(X,X/)dde — llgtliLiwe)
[—1.1]

where g, (z,7)) == |z — Z/|2H721{z¢z’}l{z,z’e[—m,m]}s for m = 1, 2, are integrable functions on R? and

R R
{é“R(x’x/) = 5 Lisisir-1y 5, Lwi<er-1), R > f}

defines an approximation of the identity. This leads to the asymptotic negligibility of the quantity (3.7), as ¢ > 0 is
arbitrary.
Therefore, it suffices to show that

t
. YH 2 2H-2
RILmOO —RZH,/O n (S)./RZ Or(s, &+ 2)or(s, 2)IE] d§dzds

t
:22H/ (t — 5)*n*(s) ds. (3.8)
0

The previous computations imply that

1
377 /H; (PR(,E +pr(s, 2)IEMTdE dz < 42 AR)

is uniformly bounded over s € [0, ¢]. Moreover, we can get

. ag 2H-2
REIEOORWA; Pr(s, )R (s, 2)|§ — 2 dédz

=t — ) ’anllgil g =22 —5)*, (3.9)

where the last equality follows from Lemma 2.1. Hence (3.8) follows by the dominated convergence theorem and this
concludes our proof. O

It follows from the above two propositions that for fixed ¢ > 0, the variance of G (t), denoted by al%, is O(R?*H).
The next lemma states that R>¥ is the exact order under our standing assumption o (1) # 0, which is also a necessary
condition to have this order. Moreover, o (1) # 0 is equivalent to og > 0 for all R > 0.

Lemma 3.4. The following four conditions are equivalent:

1) o(l)=0.

(i) or =0forall R > 0.
(iii) og =0 for some R > 0.
(iv) limg ooz R™2H =0.

Proof. If o (1) =0, then writing the solution as the limit of the Picard iterations starting with the constant solution 1, we
obtain that u(¢, x) =1 for all (¢, x). As a consequence, og = 0 for all R > 0 and (i) implies (ii). Clearly (ii) implies (iii)
and (iv). Now suppose that (iv) holds. Then Propositions 3.2 and 3.3 imply that for almost every s € [0, ¢],
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(@) E[o?(u(s, y))] =0 in the case H = 1/2,
(b) E[o(u(s,y))]=0inthe case H € (1/2, 1).

By the LZ(Q)-continuity of the process (s, y) € Ry x R+ u(s, y) (see e.g. [3, Theorem 13]), letting s tend to 0, we
deduce that o (1) =0 in both cases H =1/2 and H € (1/2, 1).

Finally, suppose that (iii) holds and assume that H € (1/2, 1) (the proof in the case H = 1/2 is similar). By L2-
continuity, we can see that the function W (s, y) := E[o (u(s, 0))o (u(s, ¥))] is continuous on R, x R. Note that, for
almost all s € [0, ¢],

fR PR R, )0 (us, )0 (uls, )y = 2 dydz =0 (3.10)

almost surely. In the above integral, the variables y and z have support contained in the interval [-R — ¢, R + ¢]. If
o (1) # 0, there exists a sufficiently small § > 0 such that for (s, y,z) € [0,8] x [-R —¢, R+ t]2

2
Eo (u(s, y))o (u(s, )] =W (s, y —2) = |o (D] /2,
which is a contradiction to (3.10). Therefore, o (1) = 0 and (iii) implies (i). U

Remark 1. It follows from Proposition 3.3 that, if H € (1/2, 1), the random variable Gy is not chaotic in the linear case.
More precisely, when o (x) = x, the above proposition gives us

t 4Ht3
Var(GR) ~ R2H22H/ (r— s)2 ds = TRZH as R — +oo.
0

Due to linearity, one can obtain the Wiener-chaos expansion of G g easily:

t
Gr =/ /@R(S,y)W(ds,dy)+ higher-order chaoses.
0o Jr

Then, the variance of the first chaos is equal to

t 4Hl‘3
/ OZH/2<PR(S, Woer(s, )y — 212 dydzds ~ TRZH as R — 400,
0 R

which is a consequence of (3.9) and dominated convergence. This shows that only the first chaos contribute to the limit,
that is, there is a non-chaotic behavior of the spatial average of the linear stochastic wave equation, when H € (1/2, 1).
For H =1/2 and o (x) = x, we obtain from Proposition 3.2

t
Var(Gg) ~ ZR/ (t — s)z]E[uz(s, x)]ds as R— +oo0,
0

whereas the variance of the projection on the first chaos is, using Lemma 3.1,

t 2 l4
/ /w%(s,y>dyds= SR — —.
0 Jr 3 6

Notice that E[u?(s, x)] > (E[u(s, x)])> = 1 and the inequality is strict for all s € (0, f] (otherwise u(s, x) would be a
constant). This implies that the first chaos is not the only contributor to the limiting variance.

Before we give the proof of Theorem 1.1, by using the same argument as in the proof of Propositions 3.2 and 3.3,
we obtain an asymptotic formula for E[Gg(#;)Gr(t;)] with t;,¢; € R4, which is a useful ingredient for our proof of

functional Central Limit Theorem.

Remark 2. Suppose #;,1; e Ry . If H =1/2, we have

1AL . .
E[Gr(t)Gr(t))] = /0 /R oD (s, )Y (s, )& (s) dy ds,



3030 FE. Delgado-Vences, D. Nualart and G. Zheng

where q)g)(s, y) = %LRR 1{jx—y|<i;—s) dx and we obtain

R—+

1 LN
lim EE[GR(@)GR(;,»)] = 2/0 (ti — 5)(tj — $)&(s) ds.

In the case H € (1/2, 1), we have E[G (t;)G r(t;)] equal to

LN X .
apy / /R oW (s, )0 (5, W (s, y — D)y — 2112 dydzds,
0
and we obtain

lim RHE[Gr(1)Gr(t))]
R—+o00

1Nt X .
— lim ay [ dsn(s) / 0D (s, e (s, )y — 2P 2 dydz
R—+o00 0 R2

LNt
=22H/O & — )@ —s)nz(s)ds.

Now let us prove Theorem 1.1.

Proof of Theorem 1.1. By Proposition 2.4, if F =§(v) € D2 with E(F?%) = 1, we have

drv(F,Z) <2,/Var[(DF,v)g].

Recall that in our case we have, as a consequence of Fubini’s theorem, that

1 R
Fr:=Fr(t) = —/ [u(t,x) — l]dx

OR J-R
1 t

=—/ /<pR(s,y)a(u(s,y))W(ds,dy)-
OR Jo JR

Similarly as in (2.5), we can write, for any fixed t > 0, Fg = 6(vg) with vg(s,y) = a;ll[o,,](s)(pR(s, y)o (u(s, y)).
Moreover,

1 R
Dy Fr =1[0,t](s)—/ Dy yu(t,x)dx.
OR J-R

Then, it follows from (2.6) and Fubini’s theorem that
R
/ Dy yu(t,x)dx
—-R

t
= r(s, Mo (uls, ) + / /R Or(r, 2)E(r, 2) Dy yu(r, D)W (dr, d2).

In what follows, we separate our proof into two cases: H =1/2 and H > 1/2.
Case H = 1/2. We write

(DFR,vR)p := B1 + By,

where

1 t
B = _z/ / §0%3(S, y)(rz(u(s, y)) dsdy
Orp J0O JR
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and

1 t
Bz=g/0 waR(s,y)o(u(s,y))
t
X <f [(pR(r, 2)X(r, 2) Dy yu(r, 2) W (dr, dz)) dyds.
s JR

Notice that for any process ® = {®(s), s € [0, 7]} such that v/ Var(®dy) is integrable on [0, ¢], it holds that

t t
/Var(/ <I>Sds)§/ V/Var(®y) ds. 3.11)
0 0

So we can write

\/Var[(DFR, vR)s] < V2(vVar(By) + v/Var(By)) < V2(A + A2),

with
172

1 t
e _2/0 </le PR ¢k (sY) COV[”Z(”(SsY))’UZ(M(S»y’))]dydy) ds

OR

1 [ !
Az:_Z/ (/ / OR(r, Der (s, V@R (s, )
og Jo \UR3 Js

172
X E[Zz(r, 2) Dy, yu(r,z) Dy, yu(r,z)o (u(s, y))o (u(s, y')) ] dydy'dz dr) ds.

and

Then the rest of the proof for this case (H = 1/2) consists in estimating A and A{. The proof will be done in two steps.
Step I: Let us proceed with the estimation of A;. As before, denote by L the Lipschitz constant of o and for p > 2, as
a consequence of stationarity, we write

Kp(t)zosup suﬂg”a(u(s,y))”p:osup lo (uts. 0)] - (3.12)
<s<t

<s<tye

Then,

‘]E(Ez(r, 2) Dy yu(r, 2) Dy yu(r, 2)o (u(s, y))o (u(s. y')))|
= KZ(I)LZ ” Dy, yu(r, z) ”4” Dy yu(r, 2) ”4 = CKf(’)Lzl{\y—zISr—s}l{ly’—zlfr—s}’

where the last inequality follows from Lemma 2.2. This implies, together with Proposition 3.2, that, for any R > 2¢,
C t t ’
AZSE (/ / QOR(’"»Z)QDR(S»)’)(PR(Say/)
0 R3 Js
12
X Ayjy—z<r—siyjy—zj<r—s) dy dy'dz dr) ds.
Using first g (s, y)@r(s, y') < (t — 5)* and then integrating in y and y’, we obtain

Cc ! t 1/2 C [t t 1/2
Ay < — (/ fcp,%(r,z)dzdr) dsg—/ (f 2R(t—r)2dr) ds,
R Jo \Js Jr R Jo \Js

where the last inequality follows from (3.1). Therefore, we have A> < C/+/R for any R > 2t.
Step 2: Consider now the term A. We begin with a bound for the covariance

Cov[az(u(s, y)), az(u(s, y’))].
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Using a version of Clark—Ocone formula for two-parameter processes, we write
o?(u(s, y)) = E[o* (u(s, »))] / f 2 (uls, )))IF W dr, d2).

Then, Cov[o2(u(s, y)), o> (u(s, y'))] is equal to

/ f 2 (u(s, )\ JE[ Drs (02 (u(s. ¥'))) | ]} dz .

By the chain rule, we have D, (02(u(s,y))) = 20 (u(s, y))Z(s, ) Dy .u(s, y), thus [|E[D, (0w (s, ))IF 1ll2 <
2K4(t)L|| Dy zu(s, y)|l4. Then, using Lemma 2.2, we can write

Corfe(uts ). (s3]
< [ [[1peauts | Drcuto ) zar

N
: C/o /}R1{|H\SH}1{|y/,z‘5s,,}dz dr = Clyjy—y|<25)-
This leads to the following estimate for A1, for any R > 2¢:
C [’ 2 2 V2
A < E/ </ (s, y)QOR(S» y/)l{\y—y’|§2s}dy dy/) ds.
0 \JR2

Since (,012e (s, y)(p%e (s,y)<(@— S)41{|y|v\y’|5R+z—s}, we get A] < C/\/ﬁ for R > 2t. This concludes our proof for the case
H=1/2.

The proof for the other case is more involved but we can proceed in similar steps.

Case H > 1/2. In this case, we write (D Fg, VR)g := B1 + Ba, where

t
=a—';// or (s, Yor (s, ¥)o (uls, »)o (u(s, )|y = y'|*7" > dydy' ds
o Jo Jr2

t t
:“_fzf/ / (/ ¢R(r,Z)z(r,Z)Ds,yu(r,z)W(dr,dz))
Or JO R2 s

x or(s,y)o (u(s,y'))|y — yﬂsz2 dydy'ds.

and

This decomposition implies /Var[{DFg, vg) 5] < v2(A| + Ay), with

t
A= a_le 0 (/m QR (s, VIO (S, Y )Pr(5, DR (5, 7) [y — yl}ZHfzw -

~12H=2
O'R Y |

12
x Cov[o (u(s, y))o (u(s, ")), o (u(s, ))o (u(s. 3'))]dydy' dy dff’) ds

and

3/2

A2= (/ / Pr(r, DR, DR (s, Y )or (s, ¥')

X ]E{E(r, 2) Dy, yu(r,2)E(r, 2) Dy 5u(r, 2o (u(s, 3'))o (u(s, ¥'))}

5)/|2H72

2H-2 12
x|ly=y["""75 - |z—2|2”Zdydy’dydy/dzdzdr) ds.

The proof will be done in two steps:
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Step I: Let us first estimate the term A;. Recall that L denotes the Lipschitz constant of o and recall the notation
K, (t) (p = 2) introduced in (3.12). We can write

|E{=(r, 2) Dy,yu(r,2)2(r, 2) Dy 5u(r, 2o (u(s, 5'))o (u(s, ¥')) }|
< K3OL?| Dy yu(r, )] | Dy 5u(r. D], < Cliy—zi<r—s) L i5-21<r—s)-

where the last inequality follows from Lemma 2.2.
Now we derive from Proposition 3.3 the following estimate: For fixed ¢ > 0, there exists a constant R, that depends on
t such that for any R > R;,

C

t t
Ay < W/ (/ / OR(r QR DR (5, ¥ )0 (S, 3 Lly—zi<r—s,[5-21=r—s5)
0 RO Js

2H72|§ . 5)/|2H72

1/2
x|y —| |z — 2|2”2dydy’dydy/dzdzdr> ds,

where C is a constant that depends on ¢, p, H and o.
The integral in the spatial variable term can be rewritten as

I'= E/ / Vlv—z)<t—r, [i—2l st =y |t =, [F =7/ <t—s.|y—z] <r—s,[§—F| =r —s)
[~R.RI* JRS

x|y =y 725 = 51 e - 2P 2 dx di dx' dF dy dy' d5 5 dzdz

R6H+4

r F-z)<l =S |3/_ 5/ <t=S =S |5_3|<F=S
/ LI /RG (lx—zl < =2 5 I =y |[< 5 1 = < 8 Iy —z I < 55 1T =21 < %7 )

x \y — VP53 = 5P e - 2P 2 dx di dx dF dy dy' dF d5 dzdz,

where the second equality follows from a simple change of variables. Assuming R > ¢ and integrating in the variables
x,x', %, % €[—1, 1], we have

6H ~ ~
I<R A@ l{ly 2=k 5-2<% }1[72,2](2)1[72,2](1)1[72,2]()’/)1[72,2](y/)

< |y =y 25 = 3P - 2P dy dy dy dF dzdz.

If K =sup,c(_33 ffz ly —y'|?#=2dy’, then for R > R, + 1,
I< K2R6H/ Ly—g< s 5-z< 22101 -2.2) @)z -z 2 dydydzdz.
Finally, integrating in y and y, yields for R > R; +¢,

I< 36K2R6H—2f Iz — 212 dzdz.
[-2,2]2
AS a consequence,

Ay, <CRH-!

for R big enough.
Step 2: It remains to estimate the term A;. We will show A; < CR¥~! for R big enough. We begin with a bound for
the covariance

COV[O’ (u(s, y))o(u(s, y/)), U(u(s, ﬁ))(f(u(s, y/))]

According to a version of Clark—Ocone formula for two-parameter processes, we write

o (u(s,»))o(u(s,y") =E[o (uls, »))o (u(s,y"))]
f/ o (us, »)o (u(s, Y))IF W (dr, d2).
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Then,

Cov[ u(s, y) ( (S y)) (”(S y)) ( (5’5/))]
—a [ [ E{E[Dc(o (u6s. »)o (u(s. )17

x E[ Dy (o (uls, 1)o (u(s, 7)) 15 |} |z = /[ dzd7 dr.
Applying the chain rule for Lipschitz functions (see [10, Proposition 1.2.4]), we have
Dy (o (uts. ) (u(s.5'))) = o (G5, ) E(5. ) Dy s )
+o(u(s.y)) (s, ) Drzuls, y)
and therefore, | E[D;. (o (u(s, y))o (u(s, y")))|F:1ll2 is bounded by
2K L{| Dycuts. ) + [ D53 ).

Applying Lemma 2.2, we get | Cov[o (u(s, y))o (u(s, y")), o (u(s, ¥))o (u(s, 3'))]| bounded by

32630 [ [ (10nats, 0]+ | D))

2H-2

< (| Drzuts, 9y + [ Drou(s, ) [, | = /|77 dzdz'dr

N
= C/ / My—zt<s—r} + Ly —zj<s—r))
o Jr?

2H-2
X (521 <5} + 1y—z1=s-m)|c = <[ " dzdd ar.

So the spatial integral in the expression of A can be bounded by

J:=C/0 /Rﬁ or(s, Y)or (s, Y)or(s, Nor(s.7')

[y =25 = 5= P Ay zemn + Lgy—zi o)

X (Lg—z1z5—r) + i~z 25— dy dy' d§ d§' dzd2' dr

s
=C// /1{|x—y|v|x’—y’\v\f—&\v\f’—y’|sr—s}
0 J[—R,R]* JRS

~/|2H=2 /12H=2
=

2H-2| ~
x|y =] |y - Ay—zj<s—r} + Ly —zj<5s—r})

X (Ly5—z)<s—r) T 15— 2| <s— r})dxdx dx dx' dydy'dydy dzdz7 dr

= 4C’/ / L yivix =y vig—sivie—i <o diy—z1<n15—z1<0
[—R,R]* JRO

2H— 2| y/’ZH—2| |2H 2

|y y| 72—z dxdx'dxdx'dydy' dydy dzdz,

due to symmetry. Then, it follows from the exactly the same argument as in the estimation of I in the previous step that J
is bounded by C R%=2 for R big enough. This gives us the desired estimate for A| and finishes the proof. |

4. Proof of Theorem 1.2
We begin with the following result that ensures tightness.

Proposition 4.1. Let u(t, x) be the solution to equation (1.1). Then for any 0 <s <t <T and any p > 2, there exists a
constant Cp, 1, depending on T and p, such that forany R > T,

R R
E(’/ u(t,x)dx—/ u(s, x)dx
—R —R

P
)gcp,TRI’H(z—s)l’. 4.1)




A CLT for the stochastic wave equation with fractional noise 3035

Proof. Let us assume that s < ¢. We can write

R T
2/ [u(t,x)—u(s,x)]dx=fo /R(cpz,ze(r, ¥) — @5, r(r, Y))o (u(r, )W (dr, dy),

—R

where ¢; r(r, y) = 1<) f_RR 1{jx—y|<t—r} dx. The rest of our proof consists of two parts.
Step 1: Suppose that H = 1/2. Using Burkholder-Davis—Gundy inequality and Minkowski’s inequality, we get, for
some absolute constant ¢, € (0, +00),
)

R R
E(‘/ u(t,x)dx—/ u(s, x)dx
—-R —-R

T 2, p/2
5CPE[<fO /R(wz,k(r, ) = @5 r(r, ¥)) 0 (ulr, y))dydr> }

T 5 5 p/2
501)(/0 /R(%,R(r, Y) = s, r(r, )" o (ur, y))”pdydr)

T ) p/2
gc,,K{,’(T)(/O /R((pt,R(rv)’)_(ps,R(raY)) dydr) ;

where K, (T') has been defined in (3.12). Now we notice that

‘Qﬁt,R(r’ Y) _(pS,R(rﬂ )’)’
R R
= 1{r5s}/ Lx—yl<r—r} = Yix—yl<s—r}l dx + 1{s<r§t}/ Ljx—y|<r—r) dx
—R —R

<2(t =54 (t = s <r<ny) Yy <Rt < 40 — )1y <Re+1)- (4.2)

This implies for R > T,

T
/ / ((pt,R(r, y) — ¢s.r(1, y))2 dyds <64TR(t — )2, and thus establishes (4.1).
0 R

Step 2: Suppose that H € (1/2, 1). In the same way, we write

R R p
E(‘/ u(t,x)dx —/ u(s, x)dx )
—R —R
T ) p/2
< ([N = onmeotur ) ) | .

As mentioned in Section 2, for H € (1/2, 1), the space LYH(R) is continuously embedded into $)o. Consequently, there
is a constant Cy > 0, depending on H, such that

(1. = g2 D)o () |,

2H
<Cpy (/R}wr,ze(n " = sk o (uir, ) dy) : (4.4)

Substituting (4.4) into (4.3) and applying Holder’s and Minkowski’s inequalities, we can write

R R p
E(‘/ u(t,x)dx—/ u(s,x)dx )
—-R —-R

T pH
5"11C1[;/2Tp/2_1/0 ]E[([RWLR(V,)’)—ws,R(V,y)|l/H|G(M(V, y))|1/de> i|dr

T pH
scpCZ”T”/z*‘/O (/Rm,;e(r,y)—sos,R(r,y)|””||o(u(r,y>)||j/”dy> dr
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n T 1/H pH
<c,Ch TP/Z‘IK,’,’(T)/ (/let,ze(r, ¥) — ¢s.r(r, Y)| dy) dr.
0

Finally, from (4.2), which holds true for any R > T, we can write

pH
( / o0& (r, y) — o5 ()| dy) <4p(+H) ( _ gy RPH.
R

It is then straightforward to get (4.1). |
Proof of Theorem 1.2. We need to prove tightness and the convergence of the finite-dimensional distributions. Notice

that tightness follows from Proposition 4.1 and the well-known criterion of Kolmogorov.
Let us now show the convergence of the finite-dimensional distributions. We fix 0 <#; < --- <, < T and consider

1 R ;
Fr(t;) = R—H</ u(t;, x)dx — 2R> =s(0%) fori=1,....m,
—R

where
o (u(s, y)) e
VR (5. 3) = Lo1(9) =0 (5.3) with @i (5.0 =5 [ Ljpeoyizy g do.
—R
Set Fr = (Fr(t1), ..., Fr(ty)) and let Z be a centered Gaussian vector on R™ with covariance (C; j)1<i j<m given by

o 2R @ =na—ngnaritH =172
DT 22 N 4 =y — Py dr i H e (172, 1),

We recall here that &(r) = E[o2(u(r, v))] and n(r) = E[o (u(r, y))]. Then, we need to show F g converges in distribution

to Z and in view of Lemma 2.5, it suffices to show that for each i, j, (DFg(%;), vR )5 converges to C; ; in L*(R), as
R — +4o00. The case i = j has been tackled before and the other case can be dealt with by using arguments similar to
those in the proof of Theorem 1.1. For the convenience of readers, we only sketch these arguments as follows.

We consider two cases: H =1/2 and H € (1/2,1). In each case, we need to show (i) E[Fr(#;) Fr(tj)] — C; ; and

(i) Var((D Fg(t;), v(] )) %) — 0, a8 R — +o0. Point (i) has been established in Remark 2. To see point (ii) for the case
H =1/2, we begin with the decomposition (D Fg(t;), UR )55 = B1(i, j) + Bx2(i, j) with

1 LN
BIG )= /0 / D (5,909 (s, )0 (u(s. y)) ds dy

and
Ba(i. j) = / / 09 (s, y)o (u(s, )

X (f’/(pg)(r, )X (r, 2) Dy yu(r, ) W(dr, dz)) dyds.
s JR

Then using (3.11) and going through the same lines as for the estimation of Ay, Ay, we can get

tiNLj ti
Var(Ba (i, ) < l/ ds(/ / Q.00 . ey (5. 5)
R Jo R3 Js

1/2
x E[22(r, 2) Dy yu(r, 2) Dy, yuu(r, 2)o (uls, y))o (u(s, y'))] dydy’dzdr)

i b 2 )
/
= (/ / op (r.2)%0R (s, e (s.Y)
0 R3 Js

<
=

12
X 1{|y*Z\V|)'/*Z|SV*S} dydy/dzdr> ds <
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That is, we have Var(B;(i, j)) — 0, as R — +00. We can also get

1 [N i ’
Var(Bi (i, j)) < E/o </ Ds, ey 5, 0P (5,30 (5,5

12
X Cov[az(u(s, ), 02(14 (s.y")]dy dy/> ds

C [ W) () (i) ) 172
/
=% (/ (5. )0R (s, )R (5. ¥')oR (S’y/)l{y—yw:zs}dydy) ds
C 1Nt 172 C
=R 0 (/R2 (i + 1)) Ly iy <R4s0) Ly -y <25) A dy’) ds < 75

That is, we have Var(B (i, j)) — 0, as R — +o0.
To see point (ii) for the case H € (1/2, 1), one can begin with the same decomposition and then use (3.11) to arrive at

similar estimations as those for I and J. Therefore the same arguments ensure Var({D Fr(t;), v(j )) §5) <C R2H=2 Now
the proof of Theorem 1.2 is completed. O

Appendix: Proof of Lemma 2.2

This appendix provides the proof of our technical Lemma and it consists of two parts. The first part proceeds assuming

£:= sup || Dy yu(r,z) || < 400 for almost every (s, y) e Ry xR (A1)
(r.2)€l0,t]xR P

and the second part is devoted to establishing the above bound. Note that a priori, we do not know whether Dy yu(r, z)
is a function of (s, y) or not in the case where H € (1/2, 1), so the assumption (A.1) also guarantees that D; yu(r, z) is
indeed a random function in (s, y); see Section A.2 for more explanation.

A.l. Proof of Lemma 2.2 assuming (A.1)

The proof will be done in two steps.
Step 1: Case H = 1/2. From (2.6), using Burkholder’s and Minkowski’s inequality, we can write

| Dsyut. 0],

K, () 172
< ,72 Ljx—y|<i— v}+—(/ /1{|x ejzi—r) | Dsyu(r, 2)| d’”d2>

with ¢, a constant that only depends on p. It follows from the elementary inequality (a + b)? < 24”4 2b? that

2(t) LZ 2

Ljv—z)<r—r}|| Ds,yu(, Z)|| drdz.

| Dy yute, 0|2 <

Iterating this inequality yields, for any positive integer M,

KZ
|Deyutr, w2 = 227

N

Kz(t) 2NL2N
P
Z fA o fRN [ T2 0e0os—zni=ras ) | Mizy—yi<ry—s) drdz
N(s

n=1

2M+2L2M+2 M
+ g / / | [ TIPSR | VI S
2M+1 AM_H(S‘ ) RM+1 ol 1 n 1 n

X || Ds yuCrms1, zm41) |5 drda,
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where Ay (s,t) :=={(r1,...,rN) € RNIS <rNy <ry—1<---<ry<t}l,dr=dry---dry,dz=dz;---dzy and with the
convention ro =t and zg = x.
Notice that if
N
(]_[ 1{zn1zn5rn1rn}> Loy —yl<ry—s) # 0,
n=1

thenon Ay(s,1), [x —y|=|z0 — yI < Z,}l\]:] |Zn—1 — Zn| + lzv — ¥| <t — s and similarly on Ay (s, 1), |z, — y| <t —s
forn=1,...,N.
Now we deduce from (A.1) that

00
)2N

”D u(t )C)H2<1 2() 1 ZNLZNL
syt 0 | < Yjxoyl<i—s) +Z NI

K5
2

= je—y|zi—s) exp(cy L),

which provides the desired estimate.
Step 2: Case H € (1/2,1). Proceeding as before, and using the inequality

| Dsyutr D5 yur D) | Doyt 2 + [ Desutr. D).

p/2 — 2(

we obtain

K2(1)
2
cp L2

| Deyute. ), =<

+

o / / Vemazr-ne—ziz—n | Doyutr, [ J2 = 227 2 dr dz dz.
By iteration, this leads to the following estimate. For any positive integer M,

T

Kg(t)l Kz(t) Z f,NLZN/ N/
= —yl<t— o
7 Hlv—yl=i=s) v T H Jean

N
~ (2H-2 =
x (1_[ 1{|Z,171—Zn|\/|2,171—Z,,|§rn,1—rn}|zrl - Zn' >l{|ZNy|SrNS} drdzdz

n=1

Lec 2M+2
+ % droM! dzdz
2M+1 H
Apy1(s.) R2M+2

M+1
> 2H-2 2
x (H Vjeu 12V Iznmt —znl <ra—i—ra} 120 = Zal >|| Dsyu(rus1,zm+) |

n=1

with the same convention as before. Note that Lemma 2.1 implies that on Ay (s, 1),
~ (2H-2 ~
ez /2 Vi1 —2uVizam1—Eal <t =} [0 = 2l ™7 d2n d2n
R

2H-2 H.2H
SOy /RZ iz, —2Viznos <1<} |2 = 7| dzdz <4717, (A2)

2This in particular implies that the contribution of the integration with respect to dz, is at most 2(¢ — s).
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and note that we again have the following implication:

N
[T Y —alzras i ey —ylzry—s) #0 = [x—y|<t—s,

n=1

which, together with (A.2), implies

K2(1) Kz(t) (Le, 2H HY2N (N

L —yl<i—s) Z v
2HtH)2M+2 ZMJrl

M1 (M +1)!

| Deyute 0, <

2 (LCp . .
+ £ (£ is defined in (A.1)).

Letting M — +o0 leads to

K2(1) K2(1) (Lep2H )N ¢N
2
| Dyyut. ), < ”2 5 Lr—yi=i- s}z Y T
K2(1)
S AN eXp(ZLz 2 2H+1)1{|x7y|§t7.¥}-

This concludes our proof of Lemma 2.2 assuming (A.1).
A.2. Proofof (A.1)

The proof will be done in two steps.
Step 1: Case H = 1/2. It is well known in the literature that for any p > 2, u(¢, x) € D'? and

sup  E[] Du(r, »|§] < +00; (A3)
(t,x)e[0,T1xR

indeed, in the Picard iteration scheme (see e.g. (A.6)), one can first prove the iteration u,, converges to the solution u in
L?(€2) uniformly in [0, T] x R, then we derive the uniform bounded for E[|| Du,, (¢, x)|| _’%], so that by standard Malliavin
calculus argument, we can get the convergence of Du,, (¢, x) to Du(t, x) with respect to the weak topology on L?(L2; )
and hence the desired uniform bound (A.3). We omit the details for this case (H = 1/2) and refer to the arguments for
the other case (H > 1/2).

Consider an approximation of the identity (M, e > 0) in L'(R; x R) satisfying M (s, y) = ¢ >M(s/e, y/e) for
some nonnegative M € C.(R; x R). Taking into account that (@, s, y) — Dj yu(t, x) belongs to L>(R; x R; L2(R)),
we deduce that the convolution Du(t, x) * M, converges to Du(z, x) in LZ(R+ x R; L%(£2)), as ¢ tends to zero. Therefore,
there exist a sequence {e,} such that ¢, |, 0 and (Du(z, x) * M,,)(s, y) converges almost surely to Dy yu(t, x) for almost
all (s, y) e Ry x R, as n — +400. By Fatou’s Lemma, this implies that for almost all (s, y) € Ry x R,

| Dyyut. ), < sug” (Du(t,x) * M, ) (s, V), (A4)

Now we fix (s, y) that satisfies (A.4) and put for ¢ > 0

Q: (1) :=sup|| (Dut, 2) + Me) s, )|
zeR

2
. tel0,T] (A.5)
p

= sup
zeR

f Dy, yu(t, 2)Me(s" —s,y" = y)ds'dy’
R+XR

In the following,

(1) we will prove for each ¢ > 0, Q; is uniformly bounded on [0, T'];
(2) we will obtain an integral inequality for Q;
(3) we will conclude with the classic Gronwall’s lemma.
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Recall from (2.6) and we can write
1
(DM(I, Z) * M&)(sﬂ )’) = E / l{lz—y’ISt—s’}O'(u(S/a y/))Mé‘ (S/ -, y/ - y) ds/dy,
R+XR

1 t
+§/0 /Rl{\z—é\St—a}E(a,E)(Du(a,é)*MS)(s,y)W(da,dé).

Then, using Burkholder’s inequality and Minkowski’s inequality in the same way as before, we can arrive at

K;(t) ! / / !/ 2
Q:(1) < ) (SUP/ Ly <i—sy Me (S -8,y — y) ds dY>
zeRJRy xR

t
+ Lt fo 0:(a)da

K2(t
_ K30
- 2

t
||M||21(R+XR) + chngo Q.(a)da, 1t€[0,T).
We know from (A.3) and Cauchy—Schwarz inequality that

0: (1) < IM.II%, suﬂg(E[H Du(t, )| 2])*".
S

which is uniformly bounded on [0, T']. Then it follows from Gronwall’s lemma that

2
K30 1o,

Q:(1) = —Z—e" W IM, V1 €10, T].

R4 xR)?

The above bound is independent of ¢, thus we can further deduce that

K2(t) ;2
p 6‘L cpt

sup || Dy yu(r,z) ||?7 < >

M|, < +o0.
(r,z)€[0,t]xR L' (R xR)

That is, claim (A.1) is established for the case H = 1/2.
Step 2: Case H € (1/2,1). In this case we have first to show that Du(z, x) is an element of L?(Q x R x R) and for
this we will use the Picard iterations. Let uq(¢, x) = 1 and for n > 0, set

1 t
w0 =13 [ Ve s, 30) Wids. ). (A6)
0 JR
It is routine to show that for any given T € R,

lim sup [|lut, x) —up (2, %) | ,=0. (A7)
R

n—>+00 (4 1)e[0,T]x

We know that for each n > 0, u,, (¢, x) € D7 with
1
D.v,yun+1(t7 x)= El{lx—yISt—s}U(”n(S, y))
1 t
+ E / / 1{|x—z\§l—r}2n (r, Z)Ds,yun (r,2)W(dr,dz),
s JR

with X, (r, z) being an adapted process bounded by L. Thus, using Burkholder’s inequality, Minkowski’s inequality and
the easy inequality

1 1
IXYllp2 = SUXI5 + SV (A.8)
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forany X,Y € LP(Q2), we get || Dy, yun11(t, x)||f, bounded by

K2(1) L 2H-2
S Liyizi—s) + ,,/ aH Ay Lpavix—zizi-n |2 = 7]
S

2 2
X | Dy yun(r, 2) |2 dr dzdz,

where I?,, (@) :=sup{llo (wn(s, )|l p:n >0, (s, x) €0, ] x R}. Iterating this procedure gives us

H Dy, yun41(t, x) ”12,

K2 K2(t) & 2L ,
< Ljx—yj<i—s) + 7 / draH/
2 2 I 2 A[(A“l) RZ(

=1

-1
, 2H-2 ,
X (1_[ 1{|Zk—Zk+l|V|Zk—Z;c+1|§rk—l—rk}‘Zk+1 _Zk-i-l’ )1{|Zzy|5ri,s}dz dz.
k=0

Again, it is easy to see the following implication holds:

£—1

1{\Zz—Y\§rz—S} 1_[ l{lzk—zk+1|v|zk—z2,+,|§rk_1—rk} #0 = |x—yl=<t-y,
k=0

therefore

H Dy yun41(t, x) ”i

E2 t EZ t n C2EL2€
_Kwo 2(0) / "
Ag(s,t)

P
Lr—yii—g + —3 1{|x—y|5z—s}27
=1

-1

L / 2H-2 ’
*%H /]RZe (1_[ 1{|Zk—Zk+1 IVIzk=2j g |<re—1-1%) |Zk+1 — Zk+1 | dz dz
k=0

EZ (t) EZ ([) n C2[L2€ 1
P P P H 2H+1\¢
5 1{|x—y|st—s}z—2g (@72 7

=1

<

Ljx—y|<r—s) +

where the last inequality is a consequence of (A.2). We conclude that

Ez(t) 2H+1 272
14 e2t Jrch

2 Ljx—yj<i—sy =1 CLjx—y|<i—s)- (A.9)

H Dy yup41(t, x) ”i =

It follows immediately from Minskowski’s inequality and (A.9) that

E[|| Dun(r, x) ||i2(R+xR)] = (/R

uniformly in n > 1 and uniformly in x € R. In particular, { Du, (¢, x), n > 1} is uniformly bounded in L? (£2; L*(R4 xR)).
Note that the convergence in (A.7) and standard Malliavin calculus arguments can lead us to the fact that up to some
subsequence, Du,(t, x) converges to Du(t, x) in the weak topology of L”(2; Lz(R+ x R)), so we can conclude that
Dy yu(t, x) is indeed a function in (s, y) and for any fixed T € R,

2 P2 2\1/2
S, n ’ =
| Ds, yun(t x)”pdsdy) <(cr?)
xR

+

E[| Du(, »)|; +00.
(fsx)es[l(l)PT]xR [” ult X)HLZ(R+xR)]< oo

Now we use the same approximation of the identity (M, ) and obtain for almost every (s, y) € Ry x R,

2

H Ds,yu(t,x)Hi <sup
e>0

/ Ds’,v’u(tsx)Ma(S/_S, y’—y)ds’dy/
R+XR : p
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Let ¢ > 0 be fixed and let Q. (¢) be defined as in (A.5), we have in this case, applying Lemma 2.1,

1
0:() < S Ky OIMIZ) g, oz

22
L cy 1 J12H -2
) {Ix—Z\V\x—Z’Ift—r}|Z -2 |

Q.(r)drdzd7

o0H
0

1 2 24H 2H
SEKE:(I)”M||%1(R+><R)+ / Qg(r)dr

Similarly as in previous case, we have

2 P 2/p
Qe (1) < [IMe ||L2(R+><R) (E[|| Dur, x) ||L2(R+><R)])
so that the same application of Gronwall’s lemma gives

sup | Dy yutr. ), < @eszcﬁﬂHnan <400
SYEA - 1 .
(r,2)€[0,t]xR P 2 L' (R4 xR)

That is, claim (A.1) is also established for the case H € (1/2, 1).
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