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There is a gap in the proof of (3.19) in [1, Theorem 3.6] in that the constant Ci4 in [1, (3.22)] depends on rl/ey,
rather than A > 0 and so when applying [1, Lemma 3.4] it gives a new Ao depending also on r. This gap affects
only the proof of (1.16) of [1, Theorem 1.1(v)] (or [1, (3.23)]). The rest of [1, Theorem 3.6] including the estimates
(3.20)—(3.21), (3.6) and (3.8) hold without any issue. The proof of (3.19) in [1, Theorem 3.6] works if we drop A and
replace My defined in [1, (1.13)] by ||| co-

In this errata, instead of establishing [1, (3.19)], we show directly that the estimate (1.16) of [1, Theorem 1.1(v)]
hold for every A > 0. We point out that all the main results stated in the Introduction of [1] remain true.

First note that by Lemma 0.1 below, Lemmas 3.1 and 3.4, Theorems 3.6 and 3.7 of [1] hold for A = 400 with (3.2),
(3.11), (3.12), (3.19) and (3.23) being replaced by

"] (t.x,y) < Cri(IbllocCrc) g1 (1, x, y), 1€(0,T],x,yeRY, (3.2)
g2, (1,2, 3)| < C132 " Iblloopi (1,x,y) fort € (0,1]and x, y € RY, 3.11)
824L (2, x, y)| < Ciallbllow2™ fot, x,y) forz e (0,1]and x, y € R?, (3.12))

b —n| ,—d/a ! 6]l oot ,
|6]n(t,x,y)|§C142 (t /\(|x—y|d+“+|x—y|d+ﬂ (3.19")

and

b Y ! 1Dl oot
FEGER)] §2C14<t *A (|x—y|d+°‘ + x5 ) ) (3.23)

respectively, where the constant c¢ is the one in Lemma 0.1 and that the constant Ag in [1, Lemma 3.4] can be chosen
to be smaller than 1/(2C12). This gives the existence and uniqueness of the fundamental solution qb (t,x,y) and all
the stated properties in [1, Theorem 1.1] except that we need to replace pu,, by pp|,, in the estimate [1, (1.16)].
For a > 0, denote by p,(¢, x, y) the fundamental solution of A%2 4 g AB/2 Recall that for each A > 0 and a > 0,
SJar(t,x,y) is defined as in [1, (2.6)], and that f, ~(f, x, y) = fo(¢, x, y), which is given by [1, (2.1)].
By a similar argument as [1, Lemma 2.5], one obtains the following inequality.

Lemma 0.1. There exists ¢ = c(d, «, ) > 0 such that for all t € (0,1] and x,y € R4,

t
//1p1(t—s,x,z)fo(s,z,y)dzdsScm(t,x,y).
0 JRRd
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Note that (3.23") in particular implies that for every A > 0, there is a positive constant Co = Co(d, a, B, A) > 1 so
that for any b with ||b|| < A,

lg"(t, %, y)| < Copi(t,x,y) on(0,1] x RY x RY. (0.1)
The following is an immediate consequence of [1, Lemma 2.4].

Lemma 0.2. For each A > 0, there is a constant C = C(d, «, B, ) > 0 such that for every a € [0, 1],
t
/ f fasr(s.z,y)dzds <Ct'=Pl% 1 €(0,1],y e R4, (0.2)
0 JRI

Lemma 0.3. For each A > 0, there exists C1 = C1(d, a, 8, A, A) > 0 such that for any b with ||bllcc < A and for
every a € [0, 1] and for everyt € (0, 1] and x,y € R4,

t t
/ / |qb(l—s,x,Z)|fa,A(SvZ’)’)dzdsEclpa(tsx:y)‘i‘/ / |qb(t_s1xvz)|fa,}x(svzvy)dzds'
0 JRd 0 Jix—z|>|x—y|/2

Proof. Let I = fot fRd lgb(t —s, x, | fas(s,2,y)dzds. By (0.1) and a similar proof as that for [1, Lemma 2.5], there
exists ¢; > 0 independent of a € [0, 1] such that I < et~ for [x —y| < t1/¢ Hence by [1, (1.10)], there exists
¢y > 0suchthat I <cpp,(t,x,y) foreverya € [0, 1] and |x — y| < e,

Next assume that [x — y| > 11/%. We divide I into two parts of the integrals on |[x —z| < |x — y|/2 and on |x — z| >
|x — y|/2. By (0.1) and a similar argument as that for [1, Lemma 2.5] with p; in place of g,, there exists c¢3 > 0
independent of a € [0, 1] such that the first integral

! t at
b
q°(t—5,x,2) f,x(s,z,y)dzds563< + )Ecw ,x,y).
/0 /|x_z|gx_y/z’ fa lx — yldte © |x — y|d+p ¢

This completes the proof. U

Lemma 0.4. For each A > 0 and A > 0, there exists Cy = Cx(d, o, 8, A, L) > 1,k = 2,3 such that for any b with
1blloc < A and for everyt € (0, 1] and x,y € RY,

t
lgb(t, x, )| < Capm,, a(t, x,y) + C3/ / lgb(t —5,%,2)| fu, /4,05, 2, y) dz ds. 0.3)
0 Jix—z|>|x—yl/2

Proof. By [1, Theorem 1.1(ii)], ¢°(z, x, y) satisfies the following Duhamel’s formula
t
qb(t,x, y) = po(t,x,y) —{-/ /d qh(t -8, X, z)Sfpo(s, z,y)dzds, t>0,x,y€ RY. 0.4)
0 JR

Note that since Mp /A < 1, there exists ¢; > 0, independent of A and A, such that po(t, x, y) < CLPMy ;AL X, Y)
fort € (0,1]and x,y € R4. Moreover, by [1, (3.1)], there exists ¢3 > 0 such that

1S pots.z, )| < eafumy,/an(s 2, y), s€(0,1],z,y eRY.

Then the desired conclusion follows from (0.4) and Lemma 0.3 with a = M, /A. O

Define |G (¢, x, y)| := C2pm, ,/a(t, x, y) and

t
\é,i’(t,x,y)\:=c3// 101t =5, %,2)| fupya (5,2, Y dzds, n>2.
0 Jlx—z|>|x—y|/2
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Define
! b
(. x. y) = C3f / 142Gt = 5%, )| ot 4 (52 2. ¥) deds
0 Jlx—z|>|x—y|/2
and
t
I, (t,x,y) = C3f / Iyt —s5,%,2) fmy;/40(5, 2, y)dzds, n>2.
0 Jlx—z|>|x—y|/2

Applying Lemma 0.4 recursively, we have for n > 1,
n
g, x, )] <D |ag @ x, )| + 1. ©0.5)
k=1

Lemma 0.5. For each A > 0, there exists C4 = C4(d, «, B, LX) > 0 such that for every a € [0, 1] and every t € (0, 1],
x,yeRe,

t
/ / Pa(t —5,%,2) fai(s,2,y)dzds < Cat'"™P/% p (1, x, y). (0.6)
0 J{lx—z|>|x—y|/2}

Proof. We consider the Lemma in two cases when |x — y| < 71/® and when |x — y| > /%, When |x — y| < ¢!/¢,
we can estimate the larger item fot fRd Pa(t —8,%,2) far(s,2,y)dzds. Then by an argument very similar to that for
[1, Lemma 2.5] but with p, and Lemma 0.2 in place of g, and [1, Lemma 2.4] there, we can obtain the desired
conclusion. O

By Lemma 0.5 with a = M, 5 /A and induction, we have the following result.

Lemma 0.6. For every A > 0 and n > 1, we have
- _ -1
G5t x, )| < Co(C3Cat"™P/*)"™ pag,  jalt. x.y) forte(0,11andx,y e RY.

By (0.1), lgb(z, x, y)| < Copi(t, x,y). On the other hand, it follows from the definition that Jaar(s,z,y) <
S1.a(s,z,y) for every a € [0, 1] and A > 0. Hence, by induction, we conclude again from Lemma 0.5 with a =1
the following estimate.

Lemma 0.7. For every A > 0 and n > 1, we have
H,(t,x,y) < Co(C3Cat ' ™P/*)" p1(t,x,y)  fort € (0,1]and x,y e R”.

Now we can show that [1, Theorem 1.1(v)] holds.

Theorem 0.8. For each A > 0 and A > 0, there exists a constant Cs = Cs(d, «, B, A, 1) > 0 such that for any b with
6]loc < A and for everyt € (0,11 and x,y e R?,

|qb(tvx1 y)| = CSPMb.)\(tv X, y).
Proof. Let 7 := (2C3C4)~%/©@=# By (0.5) and Lemmas 0.6 and 0.7, for r € (0, o] and x, y € R?,

n
", x, )] <C2 Y 27 D pu,, jat, x, 3) + Co27" pi(t, x, y).
k=1

Passing n — oo yields the desired estimate for ¢ € (0, #p). We then use Chapman—Kolmogrov equation to extend it to
all7 € (0,1] and x, y € R4, O
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