
The Annals of Applied Probability
2020, Vol. 30, No. 5, 2311–2354
https://doi.org/10.1214/20-AAP1559
© Institute of Mathematical Statistics, 2020

PROPAGATION OF CHAOS AND THE MANY-DEMES LIMIT FOR
WEAKLY INTERACTING DIFFUSIONS IN THE SPARSE REGIME
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Propagation of chaos is a well-studied phenomenon and shows that
weakly interacting diffusions may become independent as the system size
converges to infinity. Most of the literature focuses on the case of exchange-
able systems where all involved diffusions have the same distribution and
are “of the same size”. In this paper, we analyze the case where only a few
diffusions start outside of an accessible trap. Our main result shows that in
this “sparse regime” the system of weakly interacting diffusions converges
in distribution to a forest of excursions from the trap. In particular, initial
independence propagates in the limit and results in a forest of independent
trees.

1. Introduction. The notion of “propagation of chaos” was originally termed by Mark
Kac [15] and refers to a relation between microscopic and macroscopic models. Microscopic
descriptions, on the one hand, are based on molecules (or particles, individuals, subpopula-
tions, etc.) and model their interactions and driving forces. Macroscopic descriptions, on the
other hand, are based on macroscopic observables such as the density and model the dynam-
ics of these quantities. To connect microscopic and macroscopic descriptions, the density in
the D-molecule microscopic model should converge as D → ∞ to the density in the macro-
scopic model. Now Kac’s idea behind the terminology “propagation of chaos” is that if the
initial distribution is “chaotic” (e.g., positions and velocities of molecules are purely random
and independent), then the dynamics of the microscopic model destroys this independence,
but finitely many fixed molecules should in the limit as D → ∞ evolve independently (de-
pending on all other molecules only through deterministic macroscopic observables such as
the density). In this sense, independence of finitely many fixed molecules “propagates”.

Next we give a formal statement of “propagation of chaos” for weakly interacting dif-
fusions. Let I ⊆ R be a closed interval (we focus on one-dimensional cases), let the
set M1(I ) of probability measures on I be equipped with the 1-Wasserstein metric, let
b, σ̃ : I × M1(I ) → R be measurable functions, let W(i), i ∈ N, be independent standard
Brownian motions, for every D ∈ N let XD = {(XD

t (i))t∈[0,∞) : i ∈ {1, . . . ,D}} have state
space ID and be a solution of the stochastic differential equation (SDE)

dXD
t (i) = b

(
XD

t (i),
1

D

D∑
j=1

δXD
t (j)

)
dt

+ σ̃

(
XD

t (i),
1

D

D∑
j=1

δXD
t (j)

)
dWt(i),

t ∈ (0,∞), i ∈ {1, . . . ,D},

(1.1)
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and let M(i), i ∈ N, be independent and identically distributed (i.i.d.) and be a solution of the
SDE

dMt(i) = b
(
Mt(i),P

(
Mt(i) ∈ ·))dt

+ σ̃
(
Mt(i),P

(
Mt(i) ∈ ·))dWt(i), t ∈ (0,∞), i ∈ N.

(1.2)

Then under the additional assumptions that I = R, that b, σ̃ are globally Lipschitz contin-
uous, that σ̃ is bounded, that b satisfies a linear growth condition, and that for all D ∈ N it
holds that XD

0 and (M0(i))i∈{1,...,D} have the same distribution (in particular, the components
of XD

0 are i.i.d.), Theorem 1 in [22] implies for all k ∈ N that(
XD

t (1), . . . ,XD
t (k)

)
t∈[0,∞)

D→∞===⇒ (
Mt(1), . . . ,Mt(k)

)
t∈[0,∞)

(1.3)

in the sense of convergence in distribution on C([0,∞), I k) and that(
1

D

D∑
j=1

δXD
t (j)

)
t∈[0,∞)

D→∞===⇒ (
E[δMt (1)])t∈[0,∞)(1.4)

in the sense of convergence in distribution on C([0,∞),M1(I )). So although the
components of XD depend on each other through the empirical distribution process
( 1
D

∑D
j=1 δXD

t (j))t∈[0,∞) for every finite D ∈ N, in the limit as D → ∞ a finite number of
fixed components become independent since they only “depend” on each other through the
deterministic process (E[δMt (1)])t∈[0,∞). Theorem 4.1 in [8] implies (1.3) and (1.4) under
more general assumptions including strict positivity of σ̃ . Moreover, Proposition 4.29 in [11]
and Proposition 3.1 in [12] imply (1.3) and (1.4) for certain cases where σ̃ is locally Hölder-
1
2 -continuous in the first argument and does not depend on the second argument. For further
results on propagation of chaos see, for example, [1, 18, 20, 21, 23, 27]. The limit (1.4)
is also referred to as mean-field approximation. The SDE (1.2) is referred to as mean-field
SDE or SDE of McKean–Vlasov type. An essential observation for all of these results is that
XD(i), i ∈ {1, . . . ,D}, are exchangeable for every D ∈ N so that all components have the
same distribution and are—informally speaking—of the “same size”.

In this paper, we focus on the case I = [0,1] and interpret elements of [0,1] as frequencies
(e.g., of a certain property within a subpopulation) and think of a population which is spatially
separated into finitely many subpopulations (also denoted as “demes”) which are labeled by
the elements of {1, . . . ,D}, where D ∈ N. We assume that a subpopulation stays in frequency
0 as long as there is no immigration into this subpopulation. Our question is: What is the limit
of XD as D → ∞ if only one entry in the vector (XD

0 (i))i∈N is nonzero? We will assume
that X0 is a [0,1]N-valued random variable which is almost surely summable and that for
all D ∈ N and all i ∈ {1, . . . ,D} it holds almost surely that XD

0 (i) = X0(i). We will refer to
this case as sparse regime. In particular, in the sparse regime XD

0 cannot be exchangeable
(and nontrivial) for every D ∈ N. The puzzling question is now how does independence of
the initial frequencies propagate in the many-demes limit (cf., e.g., [28]) as D → ∞?

We will study this nontrivial question under the simplifying assumption that b is affine-
linear in the second argument and that σ̃ is constant in the second argument. More precisely,
let f : [0,1]2 → R, h : [0,1] → R, σ : [0,1] → [0,∞), and hD : [0,1] → R, D ∈ N, be
functions which satisfy Setting 1.1 below. In the special case where I = [0,1] and where for
all (x, ν) ∈ I ×M1(I ) it holds that b(x, ν) = ∫

I yf (y, x)ν(dy)+hD(x) and σ̃ (x, ν) = σ(x),
for every D ∈ N the solution XD of (1.1) solves the SDE

dXD
t (i) = 1

D

D∑
j=1

XD
t (j)f

(
XD

t (j),XD
t (i)

)
dt + hD

(
XD

t (i)
)
dt

+
√

σ 2
(
XD

t (i)
)
dWt(i), t ∈ (0,∞), i ∈ {1, . . . ,D}.

(1.5)
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We allow the function hD to depend on D ∈ N in order to include weak immigration (one
could think of hD(x) = h(x) + μ

D
where μ ∈ [0,∞) is the immigration rate into the total

population and where h(0) = 0).
Now we describe heuristically the propagation of initial independence in the many-demes

limit. For this, we assume for simplicity for all D ∈ N that hD = h (no immigration) and that
X0(i) = 0 for all i ∈ N ∩ [3,∞). The total mass is bounded in D for every time point. As a
consequence, the first summand on the right-hand side of (1.5) converges to zero and the first
deme XD(1) converges to the solution of the SDE

(1.6) dYt = h(Yt ) dt +
√

σ 2(Yt ) dWt(1), t ∈ (0,∞),

as D → ∞. Mass emigrates from this first deme. This mass will not migrate to deme 2
(or deme 1) since the immigration rate 1

D
XD

t (1)f (XD
t (1),XD

t (2)) at time t ∈ [0,∞) from
deme 1 to deme 2 vanishes as D → ∞. Thus, this mass migrates to a deme with index
in {3,4, . . . ,D} and there will be a finite number of demes where this mass immigrates and
founds a nonvanishing subpopulation. From these subpopulations again mass emigrates. This
mass again will not migrate to deme 1, 2, 3, or any other deme with fixed index i ∈ N since the
total migration rate into a deme with fixed index vanishes in the many-demes limit. Instead,
this mass migrates again to randomly chosen demes (which are “empty” with asymptotic
probability one) and founds nonvanishing subpopulations. Consequently, since every migrat-
ing mass populates “empty” demes (with asymptotic probability one), the subpopulations
which originate from descendants of migrants from deme 1 constitute a tree of independent
subpopulations. Analogously, the subpopulations which originate from descendants of mi-
grants from deme 2 constitute a tree of independent subpopulations. In addition, these two
trees are disjoint (and thus driven by independent families of Brownian motions) and there-
fore independent if X0(1) and X0(2) are independent random variables. In other words, in-
dependence of the family {X0(i) : i ∈ N} propagates in the many-demes limit and results in a
forest of independent trees of independent subpopulations. A formal statement of this “prop-
agation of chaos” result in the sparse regime will be proved in Theorem 1.4 below. We note
that, as opposed to the exchangeable regime, “propagation of independence” does not mean
that fixed demes (e.g., deme 3 and 4) become independent in the limit as D → ∞ (which is
rather trivial) but that the full progenies of individuals starting on deme 3 and on deme 4 do
not interfere in the limit as D → ∞.

In the literature, this type of “propagation of chaos” has already been established in two
special cases. Theorem 3.3 in [11] proves the analog of Theorem 1.4 below in the special
case where the infinitesimal variance σ 2 is additive (and where I = [0,∞) and for all x, y ∈
[0,∞) it holds that f (y, x) = 1) and this additivity of infinitesimal variances is a strong tool
for decomposing the total population into “loop-free” processes. Moreover, Proposition 2.9
in [5] proves an analog of Theorem 1.4 below in the special case where for all x, y ∈ [0,1] and
all D ∈ N it holds that σ 2(x) = dx(1−x), f (y, x) = c, hD(x) = −cx+sx(1−x)+ m

D
(1−x)

where c, d,m, s ∈ (0,∞) are positive constants and where the forest of excursions is replaced
by a dynamic description hereof which is a continuous atomic-valued Markov process and
where independence of disjoint trees is not obvious. In this special case of Wright–Fisher
diffusions with selection and rare mutation, there exists a duality with a particle jump process
and this duality is a very strong tool. Our more general setup allows for new applications,
one of which is carried out in Section 1.5 below. Moreover, there are many related results for
interacting particle systems or systems of interacting diffusions where branching processes
appear in “sparse” regimes. For example, it is a classical result that the number of alleles
of one type in a Wright–Fisher model (Moran model) converges to a branching process in
discrete (continuous) time as the population size converges to infinity if the initial numbers



2314 M. HUTZENTHALER AND D. PIEPER

of alleles of this type are bounded. For results with SuperBrownian motion appearing in
suitable rescalings see, for example, [2–4, 6].

The structure of this paper is as follows. In Section 1.2 we introduce the forest of excur-
sions, in Section 1.3 we state our main result Theorem 1.4, and in Section 1.5 we specify
an application to altruistic defense traits. The proof of Theorem 1.4 consists essentially of
two major steps. In Section 2 we prove that if ancestral lineages of individuals never come
back to a deme, then the resulting “loop-free” processes (see the SDE (2.4) below) converge
in the many-demes limit (see Lemma 2.17 below). Moreover, in Section 3 we show that the
distance between the D-demes process (1.5) and the corresponding “loop-free” process con-
verges suitably to zero as D → ∞ (see Lemma 3.8 below). The principal idea of reducing the
problem to loop-free processes stems from [11]. Throughout this paper, we use the notation
from Section 1.1 below without further mentioning.

1.1. Notation. For all x, y ∈ R we define x ∧ y := min{x, y}, x ∨ y := max{x, y}, x+ :=
x ∨ 0, x− := −(x ∧ 0), and sgn(x) := 1(0,∞)(x) − 1(−∞,0)(x). We define sup∅ := −∞
and inf∅ := ∞. We write N := {1,2,3, . . .} and N0 := N ∪ {0}. For all N ∈ N we write
[N ] := {1, . . . ,N} and [N ]0 := [N ] ∪ {0}.

For the remainder of this subsection, let (E,dE) and (F, dF ) be metric spaces and let d ∈N

and m ∈ N0. We denote by B(E) the Borel σ -algebra on (E,dE) and by Mf(E) the set of fi-
nite measures on (E,B(E)) endowed with the weak topology. For every s ∈ [0,∞) we denote
by D([s,∞),E) the set of all càdlàg functions f : [s,∞) → E endowed with the Skorokhod
topology. We denote by C(E,F ) the set of all continuous functions f : E → F and by
Lip(E,F ) the set of all Lipschitz continuous functions f : E → F . We denote by C2

b(R,R)

the set of twice continuously differentiable bounded functions ψ :R →R with bounded first
and second derivative. For every ψ : R → R we write ‖ψ‖∞ := supx∈R |ψ(x)| ∈ [0,∞].
We denote by Cm([0,1]d,R) the set of functions ψ : [0,1]d → R whose partial derivatives
of order 0 through m exist and are continuous on [0,1]d . For every ψ : [0,1]d → R we
define ‖ψ‖∞ := supx∈[0,1]d |ψ(x)| ∈ [0,∞]. For every multiindex α = (α1, . . . , αd) ∈ N

d
0

of length |α| := ∑d
k=1 αk we write ∂α := ∂ |α|

∂x
α1
1 ···∂x

αd
d

. For every ψ ∈ Cm([0,1]d,R) we set

‖ψ‖Cm := maxα∈Nd
0 ,|α|≤m ‖∂αψ‖∞.

By a solution of an SDE driven by Brownian motions we mean a stochastic process with
continuous sample paths which is adapted to the filtration generated by the Brownian motions
and the initial value and which satisfies the integrated SDE for every time point almost surely.

1.2. Setting and forest of excursions. In this subsection, we gather the assumptions that
we impose in our main result, Theorem 1.4 below, and we introduce the forest of excursions
which plays the role of a limiting object in our main result.

In the following Setting 1.1, we collect our assumptions on the coefficients of the
SDE (1.5). Under these assumptions, for every D ∈ N the SDE (1.5) has a unique strong
solution with continuous sample paths in [0,1]D ; see Theorem 3.2 in [26]. Moreover, under
these assumptions, the SDE (1.6) has a unique strong solution Y = (Yt )t∈[0,∞) with contin-
uous sample paths in [0,1] for which 0 is a trap, that is, for all t, s ∈ [0,∞) it holds that
(Yt = 0 implies Yt+s = 0).

SETTING 1.1 (Coefficient functions). Let μ ∈ [0,∞), f ∈ C3([0,1]2,R), h ∈
C3([0,1],R), and hD ∈ C3([0,1],R), D ∈ N, have the properties that supD∈N ‖hD‖C2 < ∞,
that limD→∞ DhD(0) = μ, for all x ∈ [0,1] that limD→∞ hD(x) = h(x), and for all D ∈ N

and all y ∈ (0,1] that yf (y,1)+hD(1) ≤ 0, that f (y,0) > 0, that 2μ ≥ DhD(0) ≥ 0 = h(0),
and that h(1) < 0.
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Let Lf ,Lh ∈ [0,∞) be such that for all D ∈ N and all x, y,u, v ∈ [0,1] it holds that
|f (y, x) − f (v,u)| ≤ Lf |y − v| + Lf |x − u|, that |f (y, x)| ≤ Lf , that |h(x) − h(y)| ≤
Lh|x − y|, and that |hD(x) − hD(y)| ≤ Lh|x − y|.

Let σ 2 ∈ C3([0,1],R) satisfy that σ 2(0) = 0 = σ 2(1) and for all x ∈ (0,1) that σ 2(x) > 0.
Let Lσ ∈ [0,∞) be such that for all x, y ∈ [0,1] it holds that |σ 2(x) − σ 2(y)| ≤ Lσ |x − y|.

For every D ∈ N, we denote by h̃D : [0,1] → R the function that satisfies for all x ∈ [0,1]
that h̃D(x) = hD(x) − hD(0).

In addition to Setting 1.1, we impose the following assumptions involving the scale func-
tion S of Y , which imply that Y hits zero in finite time almost surely (a straightforward
adaptation of Lemma 9.5 and Lemma 9.6 in [10] to the state space [0,1] shows that this is
ensured by (1.10) below) and that there exists an excursion measure for Y .

SETTING 1.2 (Scale function). Assume that Setting 1.1 holds and that

lim
(0, 1

2 )�ε→0

∫ 1
2

ε

h(x)

σ 2(x)
dx ∈ R.

We define the functions s, S : [0,1) → [0,∞) and ã : [0,1] → [0,∞) by

[0,1) � z �→ s(z) := exp
(
−
∫ z

0

h(x)
1
2σ 2(x)

dx

)
∈ [0,∞),(1.7)

[0,1) � y �→ S(y) :=
∫ y

0
s(z) dz ∈ [0,∞),(1.8)

[0,1] � y �→ ã(y) := yf (y,0) ∈ [0,∞).(1.9)

We further assume that

(1.10)
∫ 1

2

0

S(y)

σ 2(y)s(y)
dy +

∫ 1

1
2

ã(y)

σ 2(y)s(y)
dy < ∞.

We define the set of excursions from zero by

U :=
⎧⎨
⎩

η ∈ C
(
R, [0,1]) : there exists t0 ∈ (0,∞) such that

it holds for all t ∈ (0, t0) that ηt > 0 and
it holds for all t ∈ (−∞,0] ∪ [t0,∞) that ηt = 0

⎫⎬
⎭ .

Moreover, we denote by D(R, [0,1]) the set of all càdlàg functions f : R → [0,1] and we
define

V := {
η ∈ D

(
R, [0,1]) : ηt = 0 for all t ∈ (−∞,0)

}⊇ U.

In the situation of Setting 1.2, Theorem 1 in [10] adapted to the state space [0,1] shows
that there exists a unique σ -finite measure Q on U satisfying the following property: For
every bounded and continuous function F : C([0,∞), [0,1]) → R with the property that
there exists a δ > 0 such that for all χ ∈ C([0,∞), [0,1]) with supt∈[0,∞) χt < δ it holds that
F(χ) = 0, it holds that

lim
(0,1)�ε→0

1

S(ε)
E
[
F(Y ) | Y0 = ε

]= ∫
F(η)Q(dη).

The measure Q is called the excursion measure associated with Y ; see also [24]. A straight-
forward adaptation of Lemma 9.8 in [10] to the state space [0,1] and assumption (1.10) imply
that

(1.11)
∫ ∫ ∞

0
ã(χt ) dtQ(dχ) =

∫ 1

0

ã(y)
1
2σ 2(y)s(y)

dy < ∞.
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For the convergence result, we further assume the following Setting 1.3 for the initial
distributions.

SETTING 1.3 (Sparse initial condition). Assume that Setting 1.2 holds. For every i ∈ N

let X0(i) be a [0,1]-valued random variable and for every D ∈ N let {(XD
t (i))t∈[0,∞) : i ∈

[D]} be a solution of (1.5) such that a.s.
∑∞

i=1 X0(i) < ∞ and such that for all D ∈ N and all
i ∈ [D] it holds a.s. that XD

0 (i) = X0(i).

Under the assumption of Setting 1.3, we now construct the associated forest of excur-
sions. For that, let Y(i) = (Yt (i))t∈[0,∞), i ∈ N, be solutions of (1.6) driven by indepen-
dent Brownian motions which are independent of (X0(i))i∈N such that for all i ∈ N it holds
a.s. that Y0(i) = X0(i). These trajectories describe the demes of the initial population. Let
{�∅} ∪ {�(n,s,χ) : (n, s,χ) ∈ N0 × [0,∞) × V } be an independent family of Poisson point
processes on [0,∞) × U with intensity measures

E
[
�∅(dt ⊗ dη)

]= μdt ⊗ Q(dη)

and

E
[
�(n,s,χ)(dt ⊗ dη)

]= ã(χt−s) dt ⊗ Q(dη), (n, s,χ) ∈ N0 × [0,∞) × V.

The points of �∅ and �(n,s,χ) are interpreted as tuples of times and paths providing the pop-
ulation times of new demes and the evolution of the population inside these demes. Here, �∅

describes the demes whose founders immigrated into the system, while �(n,s,χ) describes
the demes which descend from a deme with population size trajectory (χt−s)t∈[0,∞) (which
is zero before its population time s) and where the ancestral lineages of individuals living on
these demes have exactly n ∈ N migration events (only counting migration events within the
system). The 0th generation is the random σ -finite measure on [0,∞) × V defined through
T (0) :=∑∞

i=1 δ(0,(1t∈[0,∞)Yt (i))t∈R) +�∅. For every n ∈ N0 the (n+ 1)th generation is the ran-
dom σ -finite measure on [0,∞) × U representing all the demes which have been colonized
from demes of the nth generation, that is, T (n+1) := ∫

�(n,s,χ)T (n)(ds ⊗ dχ). The forest of
excursions T is then the sum of all of these measures T :=∑

n∈N0
T (n).

A straightforward adaptation of Lemma 5.2, Lemma 9.9, and Lemma 9.10 in [10] to the
state space [0,1] shows for every t ∈ [0,∞) that the total mass

∫
χt−sT (ds ⊗ dχ) has finite

expectation and is thus finite almost surely. Moreover, in the case where μ = 0 (no immigra-
tion) and where there exists an x ∈ (0,1] such that for all i ∈ N it holds that X0(i) = x1i=1,
Theorem 5 in [10] yields that the total mass process dies out (i.e.,

∫
χt−sT (ds ⊗ dχ) con-

verges to zero in probability as t → ∞) if and only if

(1.12)
∫ ∫ ∞

0
ã(χt ) dtQ(dχ) ≤ 1.

1.3. Main result: Propagation of chaos in the sparse regime. In this subsection, we state
our main theorem.

THEOREM 1.4 (Convergence to a forest of excursions). Assume that Setting 1.3 holds
and let T be the forest of excursions constructed in Section 1.2. Then it holds that

(1.13)

(
D∑

i=1

XD
t (i)δXD

t (i)

)
t∈[0,∞)

D→∞===⇒
(∫

ηt−sδηt−sT (ds ⊗ dη)

)
t∈[0,∞)

in the sense of convergence in distribution on D([0,∞),Mf([0,1])).
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The form of the left-hand side in (1.13) might look unfamiliar at first glance. We note
that the sequence {(∑D

i=1 δXD
t (i))t∈[0,∞) : D ∈ N} has no chance of being relatively compact

as stochastic processes with values in Mf([0,1]), as the total masses diverge to infinity as
D → ∞. By weighting the point masses as in (1.13), we avoid this problem and retain a
well-understood state space. Alternatively, one can change the (topology of the) state space.
This is done in [11], where σ -finite measures on (0,1] with the vague topology are used to
prove convergence of {(∑D

i=1 δXD
t (i))t∈[0,∞) : D ∈ N} instead.

We emphasize that the limiting object T is easier to analyze than the solution of the
SDE (1.5) due to its tree structure and since general branching processes are very well under-
stood, resulting, for example, in the criterion (1.12). Further properties of the limiting process
in the case μ = 0 without immigration are investigated in [10].

1.4. Main ideas and structure of the proof of Theorem 1.4. In Section 2.1 we decom-
pose (1.5) into processes with migration levels in the sense that the next higher migration
level is driven by successful migrations essentially only from the migration level directly be-
low, see (2.1) below. We then couple these migration level processes to “loop-free” processes
which we obtain by pretending that on a fixed deme all individuals have the same migra-
tion level, which turns (2.1) into (2.4) below. We show in Section 2.4 that these loop-free
processes converge in the limit as D → ∞ to the forest of excursions. To prove this result,
we apply induction on the number of migration steps, which is useful since, conditionally
on the lower migration levels, the processes in the next higher migration level in the loop-
free processes evolve as independent diffusions. The convergence of independent diffusions
of this kind is obtained in Section 2.3 in Lemma 2.15 below. This result can be seen as a
functional Poisson limit theorem and follows essentially from Lemma 2.11 below which is
proved in [11] by reversing time.

The principal idea of a decomposition into loop-free processes is taken from [11]. There,
however, the considerations were restricted to the “classical” migration term of the form
1
D

∑D
j=1(X

D
t (j) − XD

t (i)), while here we allow for “nonlinear” migrations of the form
1
D

∑D
j=1 XD

t (j)f (XD
t (j),XD

t (i)). By considering the case where for all x, y ∈ [0,1] it holds
that f (y, x) = 1 and where for all x ∈ [0,1] and all D ∈ N we replace hD(x) by hD(x) − x

in (1.5), we recover the classical migration term in our framework.
To complete the proof of Theorem 1.4, it remains to show that the migration level processes

and the loop-free processes have the same limit as D → ∞. This is carried out in Section 3.2.
This has already been proved in [11] for the case where σ 2 is of the form σ 2(x) = βx for
a constant β ∈ (0,∞). This assumption crucially simplified the situation, as this completely
decouples the infinitesimal variances of the migration level processes and allows to prove that
the L1-distance between the migration level processes and the loop-free processes converges
to zero as D → ∞ using Gronwall’s inequality. In the more general situation of this paper, we
instead show that a certain form of a weak distance between the migration level processes and
the loop-free processes converges to zero as D → ∞, see Lemma 3.8 below. The proof relies
on applying Itô’s formula to suitable evaluations of the semigroup of the loop-free processes,
see (3.26) below.

1.5. Application: Altruistic defense traits. Let α,β, κ ∈ (0,∞), let μ∞ ∈ [0,∞), let
a ∈ (1,∞), let (μD)D∈N ⊆ [0,1] be such that limD→∞ DμD = μ∞ and such that for all
D ∈ N it holds that DμD ≤ 2μ∞, and let b ∈ C3([0,1],R) be such that b(1) = 0 ≤ b(0).
Let f : [0,1]2 → R, h : [0,1] → R, hD : [0,1] → R, D ∈ N, and σ 2 : [0,1] → [0,∞) be
the functions satisfying for all D ∈ N and all x, y ∈ [0,1] that f (y, x) = κ(a − x)a−x

a
1

a−y
,
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that h(x) = −κx(a − x) 1
a

− αx(1 − x), that hD(x) = h(x) + μDb(x), and that σ 2(x) =
β(a − x)x(1 − x). Then it holds for all x, y ∈ [0,1] that yf (y, x) + h(x) = κ a−x

a−y
(y − x) −

αx(1 − x). Thus, for every D ∈ N, (1.5) specializes to the SDE

dXD
t (i) = κ

D

D∑
j=1

a − XD
t (i)

a − XD
t (j)

(
XD

t (j) − XD
t (i)

)
dt

− αXD
t (i)

(
1 − XD

t (i)
)
dt + μDb

(
XD

t (i)
)
dt

+
√

β
(
a − XD

t (i)
)
XD

t (i)
(
1 − XD

t (i)
)
dWt(i),

t ∈ (0,∞), i ∈ [D].

(1.14)

Theorem 1.3 in [12] shows (in the case where for all D ∈ N it holds that μD = 0, that is, the
case of no mutation) that the solution process of the SDE (1.14) arises as a diffusion limit
of the relative frequency of altruistic individuals in the host population in a Lotka–Volterra
type host-parasite model. The reason for the functional form of the coefficient functions is as
follows. Since individuals migrate at fixed rate, altruistic individuals in the host population
(let H

D,N
t (i) denote the total number of hosts on deme i ∈ [D] at time t ∈ [0,∞)) migrate

at rate κ
N

m(i, j)
H

D,N
t (j)

H
D,N
t (i)

from deme j to deme i. The total host population sizes evolve much

faster (a separation of time scales occurs) than the relative frequencies and they stabilize
locally in time at 1

β(a−x)
if x is the current frequency of altruists, where a,β are suitable

parameters. Thus, if time is measured in multiples of N , the migration rates converge to

w- lim
N→∞N

κ

N
m(i, j)

H
D,N
tN (j)

H
D,N
tN (i)

= κm(i, j)
β(a − XD

t (i))

β(a − XD
t (j))

.

The resampling rate in the Wright–Fisher diffusion is inverse-proportional to the total mass
and this explains why the squared diffusion term is

w- lim
N→∞

1

H
D,N
tN (i)

A
D,N
tN (i)

H
D,N
tN (i)

(
1 − A

D,N
tN (i)

H
D,N
tN (i)

)
= β

(
a − XD

t (i)
)
XD

t (i)
(
1 − XD

t (i)
)
.

Define μ := μ∞b(0). We check the assumptions of Theorem 1.4: Indeed, μ ∈ [0,∞),
f ∈ C3([0,1]2,R), h,σ 2 ∈ C3([0,1],R), for all D ∈ N it holds that hD ∈ C3([0,1],R),
it holds that supD∈N ‖hD‖C2 ≤ ‖h‖C2 + ‖b‖C2 < ∞ and that limD→∞ DhD(0) =
limD→∞ DμDb(0) = μ∞b(0) = μ, for all x ∈ [0,1] it holds that limD→∞ hD(x) = h(x),
for all D ∈ N and all y ∈ (0,1] it holds that yf (y,1) + hD(1) = yf (y,1) + h(1) =
κy(a−1)2

a(a−y)
− κ(a−1)

a
≤ 0, that f (y,0) = κa

a−y
> 0, that DhD(0) = DμDb(0) ≤ 2μ∞b(0) = 2μ,

that DhD(0) = DμDb(0) ≥ 0, that h(0) = 0, and that h(1) = −κ(a−1)
a

< 0. Moreover, it
holds that σ 2(0) = 0 = σ 2(1) and for all x ∈ (0,1) that σ 2(x) > 0. Thus, Setting 1.1 is
satisfied. Furthermore, it holds that

lim
(0, 1

2 )�ε→0

∫ 1
2

ε

h(x)

σ 2(x)
dx = lim

(0, 1
2 )�ε→0

∫ 1
2

ε

−κx(a − x) 1
a

− αx(1 − x)

β(a − x)x(1 − x)
dx

= lim
(0, 1

2 )�ε→0

∫ 1
2

ε

−κ

aβ(1 − x)
− α

β(a − x)
dx

= lim
(0, 1

2 )�ε→0

(
κ

aβ

(
ln
(

1 − 1

2

)
− ln(1 − ε)

)
(1.15)
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+ α

β

(
ln
(
a − 1

2

)
− ln(a − ε)

))

= κ

aβ
ln
(

1 − 1

2

)
+ α

β

(
ln
(
a − 1

2

)
− ln(a)

)
∈ R.

Let s, S : [0,1) → [0,∞) and ã : [0,1] → [0,∞) be given by (1.7), (1.8), and (1.9), respec-
tively. Then it holds for all z ∈ [0,1) that

(1.16) s(z) = exp
(∫ z

0

2κ

aβ(1 − x)
+ 2α

β(a − x)
dx

)
= (1 − z)

− 2κ
aβ

(
a − z

a

)− 2α
β

and

(1.17) S(z) =
∫ z

0
s(x) dx ≤ zs(z).

We obtain from (1.17) that

(1.18)
∫ 1

2

0

S(y)

σ 2(y)s(y)
dy ≤

∫ 1
2

0

1

β(a − y)(1 − y)
dy ≤ 1

2β(a − 1
2)(1 − 1

2)
< ∞

and it follows from (1.16) and from the fact that 2κ
aβ

− 1 ∈ (−1,∞) that

∫ 1

1
2

ã(y)

σ 2(y)s(y)
dy =

∫ 1

1
2

κay
a−y

β(a − y)y(1 − y)
(1 − y)

2κ
aβ

(
a − y

a

) 2α
β

dy

= κa

β
a

− 2α
β

∫ 1

1
2

(1 − y)
2κ
aβ

−1
(a − y)

2α
β

−2
dy

≤ κa

β
a

− 2α
β

((
a − 1

2

) 2α
β

−2
+ (a − 1)

2α
β

−2
)∫ 1

1
2

(1 − y)
2κ
aβ

−1
dy

< ∞.

(1.19)

Hence, Setting 1.2 is satisfied. Therefore, Theorem 1.4 is applicable to the SDE (1.14) for
any initial configuration satisfying Setting 1.3.

For the remainder of this subsection we consider the case where μ∞ = 0 and where there
exists an x ∈ (0,1] such that for all D ∈ N and all i ∈ [D] it holds that XD

0 (i) = x1i=1. We ob-
tain from (1.16), (1.18), and (1.19) together with a straightforward adaptation of Lemma 9.6,
Lemma 9.9, and Lemma 9.10 in [10] to the state space [0,1] that the assumptions of Theo-
rem 5 in [10] are satisfied. An application of the latter theorem shows that the total mass pro-
cess (

∫
χt−sT (ds ⊗ dχ))t∈[0,∞) dies out (i.e., it converges to zero in probability as t → ∞)

if and only if (1.12) holds. Equations (1.11) and (1.16) yield that

∫ ∫ ∞
0

ã(χt ) dtQ(dχ) =
∫ 1

0

ã(y)
1
2σ 2(y)s(y)

dy

=
∫ 1

0

κay
a−y

1
2β(a − y)y(1 − y)

(1 − y)
2κ
aβ

(
a − y

a

) 2α
β

dy.
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This together with (1.12) and the fact that 2κ
aβ

∫ 1
0 (1 − y)

2κ
aβ

−1
dy = 1 proves that the total mass

process dies out if and only if

0 ≥
∫ 1

0

κay
a−y

1
2β(a − y)y(1 − y)

(1 − y)
2κ
aβ

(
a − y

a

) 2α
β

dy − 1

= 2κ

aβ

∫ 1

0
(1 − y)

2κ
aβ

−1
(

a − y

a

) 2α
β

−2
dy − 1

= 2κ

aβ

∫ 1

0
(1 − y)

2κ
aβ

−1
((

a − y

a

) 2α
β

−2
− 1

)
dy.

Consequently, the total mass process dies out if and only if α ≥ β . Our interpretation is that
the altruistic defense trait can spread in the host population in the many-demes limit if the
cost of defense α is smaller than the benefit of defense β .

2. Convergence of the loop-free processes.

2.1. Migration level processes and loop-free processes. Throughout this subsection, as-
sume that Setting 1.1 holds. To prove Theorem 1.4, we use a decomposition into migration
levels. We say that an individual has migration level k ∈N0 at time t ∈ [0,∞) if its ancestral
lineage up to time t contains exactly k migration steps (within the system). To formalize this,
we define for all D ∈ N that XD,−1 := 0 and consider for every D ∈ N the SDE

dX
D,k
t (i) = 1

D

D∑
j=1

X
D,k−1
t (j )f

( ∑
m∈N0

X
D,m
t (j),

∑
m∈N0

X
D,m
t (i)

)
dt

+ X
D,k
t (i)∑

m∈N0
X

D,m
t (i)

h̃D

( ∑
m∈N0

X
D,m
t (i)

)
dt + 1k=0hD(0) dt

+
√√√√√ X

D,k
t (i)∑

m∈N0
X

D,m
t (i)

σ 2
( ∑

m∈N0

X
D,m
t (i)

)
dWk

t (i),

t ∈ (0,∞), (i, k) ∈ [D] ×N0,

(2.1)

where {Wk(i) : (i, k) ∈ N×N0} is a set of independent standard Brownian motions. Through-
out this paper, we consider weak solutions of (2.1) with initial distribution and values in
{(xi,k)(i,k)∈[D]×N0 ∈ [0,1][D]×N0 :∑k∈N0

xi,k ∈ [0,1] for all i ∈ [D]}. The existence of such
solutions can be shown as in Lemma 4.3 in [11]. These processes will be referred to as mi-
gration level processes.

The following lemma shows that (1.5) can be recovered from (2.1) by summing over all
migration levels.

LEMMA 2.1 (Decomposition into migration levels). Assume that Setting 1.1 holds, let
D ∈ N, let {(XD,k

t (i),Wk
t (i))t∈[0,∞) : (i, k) ∈ [D] ×N0} be a weak solution of (2.1), and let

W(i) = (Wt(i))t∈[0,∞), i ∈ [D], be continuous adapted processes satisfying for all i ∈ [D]
and all t ∈ [0,∞) that a.s.

Wt(i) =
∫ t

0
1{∑m∈N0

X
D,m
s (i)>0}

∑
k∈N0

√√√√ X
D,k
s (i)∑

m∈N0
X

D,m
s (i)

dWk
s (i)

+
∫ t

0
1{∑m∈N0

X
D,m
s (i)=0} dW 0

s (i).

(2.2)
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Then W = {W(i) : i ∈ [D]} is a D-dimensional standard Brownian motion and the process
X̃D = {(X̃D

t (i))t∈[0,∞) : i ∈ [D]} defined for all i ∈ [D] and all t ∈ [0,∞) by

(2.3) X̃D
t (i) := ∑

k∈N0

X
D,k
t (i)

is the unique solution of (1.5) driven by the Brownian motion W .

PROOF. The processes W(i), i ∈ [D], are continuous local martingales whose cross-
variation processes satisfy for all i, j ∈ [D] and all t ∈ [0,∞) that 〈W(i),W(j)〉t = δij t .
Lévy’s characterization of Brownian motion (see, e.g., Theorem 3.3.16 in [16]) implies that
W is a D-dimensional standard Brownian motion. Moreover, it follows from summing (2.1)
over k ∈ N0 that X̃D satisfies (1.5) with Brownian motion given by (2.2). Pathwise uniqueness
of the SDE (1.5) in the situation of Setting 1.1 follows from Theorem 3.2 in [26]. This finishes
the proof of Lemma 2.1. �

In the limit as D → ∞, the migration level processes are essentially loop-free in the fol-
lowing sense. We define for all D ∈ N that ZD,−1 := 0 and consider for every D ∈ N the
SDE

dZ
D,k
t (i) = 1

D

D∑
j=1

Z
D,k−1
t (j )f

(
Z

D,k−1
t (j ),Z

D,k
t (i)

)
dt

+ h̃D

(
Z

D,k
t (i)

)
dt + 1k=0hD(0) dt

+
√

σ 2
(
Z

D,k
t (i)

)
dWk

t (i), t ∈ (0,∞), (i, k) ∈ [D] ×N0,

(2.4)

where {Wk(i) : (i, k) ∈ N×N0} is a set of independent standard Brownian motions. Existence
and uniqueness of strong solutions of (2.4) follow from Theorem 3.2 in [26]. These processes
will be referred to as loop-free processes.

SETTING 2.2 (Coupling of migration level and loop-free processes). Assume that Set-
ting 1.1 holds. For every D ∈ N let

{(
X

D,k
t (i),Wk

t (i)
)
t∈[0,∞) : (i, k) ∈ [D] ×N0

}
be a weak solution of (2.1) with initial distribution and values in{

(xi,k)(i,k)∈[D]×N0 ∈ [0,1][D]×N0 : ∑
k∈N0

xi,k ∈ [0,1] for all i ∈ [D]
}
.

For every D ∈N and every x ∈ [0,1][D]×N0 we denote by
{(

Z
D,k,x
t (i)

)
t∈[0,∞) : (i, k) ∈ [D] ×N0

}
continuous adapted processes that are defined on the stochastic basis given by the weak solu-
tion of (2.1), satisfy (2.4) with Brownian motion given by the Brownian motion of the weak
solution of (2.1), and further satisfy for all (i, k) ∈ [D]×N0 that a.s. Z

D,k,x
0 (i) = xi,k . When-

ever we omit the index x, we consider the solution of (2.4) satisfying for all (i, k) ∈ [D]×N0

that a.s. Z
D,k
0 (i) = X

D,k
0 (i). For notational simplicity, we do not distinguish notationally be-

tween the possibly different stochastic bases and Brownian motions for different D ∈ N.
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2.2. Moment and regularity estimates. In this subsection, we collect some preparatory
results. We start with the following lemma which provides an estimate for the first moment
of the total mass process.

LEMMA 2.3 (First moment). Assume that Setting 2.2 holds and let T ∈ [0,∞). Then we
have for all D ∈ N that

sup
t∈[0,T ]

E

[
D∑

i=1

∑
k∈N0

X
D,k
t (i)

]
≤ e(Lf +Lh)T

(
E

[
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

]
+ 2μT

)
(2.5)

and (2.5) holds with X
D,k
t (i) replaced by Z

D,k
t (i).

PROOF. For all D ∈ N let {W(i) : i ∈ [D]} and X̃D be as in Lemma 2.1. Setting 1.1
implies for all D ∈ N and all x, y ∈ [0,1] that f (y, x) ≤ Lf and hD(x) ≤ Lhx + 2μ/D.
Together with Lemma 2.1, this shows for all D ∈N and all t ∈ [0,∞) that a.s.

D∑
i=1

X̃D
t (i) ≤

D∑
i=1

X̃D
0 (i) + 2μt + (Lf + Lh)

∫ t

0

D∑
i=1

X̃D
s (i) ds

+
D∑

i=1

∫ t

0

√
σ 2
(
X̃D

s (i)
)
dWs(i).

(2.6)

The stochastic integrals on the right-hand side of (2.6) are martingales since the integrands are
globally bounded. Hence, (2.6) and Tonelli’s theorem imply for all D ∈ N and all t ∈ [0,∞)

that

E

[
D∑

i=1

X̃D
t (i)

]
≤ E

[
D∑

i=1

X̃D
0 (i)

]
+ 2μt + (Lf + Lh)

∫ t

0
E

[
D∑

i=1

X̃D
s (i)

]
ds.

Gronwall’s inequality then yields for all D ∈ N and all t ∈ [0,∞) that

E

[
D∑

i=1

X̃D
t (i)

]
≤ e(Lf +Lh)t

(
E

[
D∑

i=1

X̃D
0 (i)

]
+ 2μt

)
.

Taking the supremum over t ∈ [0, T ] and using (2.3) proves (2.5). The proof for the loop-free
processes is similar. The proof of Lemma 2.3 is thus completed. �

The following lemma is a variant of Lemma 2.3 and, heuristically speaking, shows that
uniformly in the number of demes essentially only finitely many migration levels contribute
to the total mass.

LEMMA 2.4 (Essentially only finitely many levels). Assume that Setting 2.2 holds and
that

(2.7)
∑
k∈N0

sup
D∈N

E

[
D∑

i=1

X
D,k
0 (i)

]
< ∞.

Then we have for all T ∈ [0,∞) that

∑
k∈N0

sup
D∈N

sup
t∈[0,T ]

E

[
D∑

i=1

X
D,k
t (i)

]
≤ e(Lf +Lh)T

(∑
k∈N0

sup
D∈N

E

[
D∑

i=1

X
D,k
0 (i)

]
+ 2μT

)
(2.8)

and (2.8) holds with X
D,k
t (i) replaced by Z

D,k
t (i).
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PROOF. In the situation of Setting 1.1, it holds for all D ∈ N and all x, y ∈ [0,1] that
f (y, x) ≤ Lf , that h̃D(x) ≤ Lhx, and that DhD(0) ≤ 2μ. Moreover, the stochastic integral
part of (2.1) yields a martingale. These facts, (2.1), and Tonelli’s theorem show for all k ∈ N0,
all D ∈ N, and all t ∈ [0,∞) that

E

[
D∑

i=1

X
D,k
t (i)

]
≤ E

[
D∑

i=1

X
D,k
0 (i)

]
+ 1k=02μt

+
∫ t

0
LfE

[
D∑

i=1

XD,k−1
s (i)

]
+ LhE

[
D∑

i=1

XD,k
s (i)

]
ds.

This implies for all T ∈ [0,∞) and all k ∈ N0 that

sup
D∈N

sup
t∈[0,T ]

E

[
D∑

i=1

X
D,k
t (i)

]
≤ sup

D∈N
E

[
D∑

i=1

X
D,k
0 (i)

]
+ 1k=02μT

+ Lf

∫ T

0
sup
D∈N

sup
u∈[0,s]

E

[
D∑

i=1

XD,k−1
u (i)

]
ds

+ Lh

∫ T

0
sup
D∈N

sup
u∈[0,s]

E

[
D∑

i=1

XD,k
u (i)

]
ds.

(2.9)

Lemma 2.3 and (2.7) show that the right-hand side of (2.9) is finite. For every K ∈ N a
summation of (2.9) over k ∈ [K]0 and Gronwall’s inequality yield for all T ∈ [0,∞) that

K∑
k=0

sup
D∈N

sup
t∈[0,T ]

E

[
D∑

i=1

X
D,k
t (i)

]

≤ e(Lf +Lh)T

(
K∑

k=0

sup
D∈N

E

[
D∑

i=1

X
D,k
0 (i)

]
+ 2μT

)
.

Taking the limit as K → ∞ proves (2.8). The proof for the loop-free processes is similar.
This completes the proof of Lemma 2.4. �

The following lemma gives an estimate for the second moment of the total mass process.

LEMMA 2.5 (Second moment). Assume that Setting 2.2 holds. Then we have for all
D ∈ N and all T ∈ [0,∞) that

E

[
sup

t∈[0,T ]

(
D∑

i=1

∑
k∈N0

X
D,k
t (i)

)2]

≤ e(8Lσ +4(Lf +Lh)2T )T

(
4E

[(
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

)2]
+ 8T

(
Lσ + 2μ2T

))(2.10)

and (2.10) holds with X
D,k
t (i) replaced by Z

D,k
t (i).

PROOF. For all D ∈ N let {W(i) : i ∈ [D]} and X̃D be as in Lemma 2.1. Setting 1.1
implies for all D ∈ N and all x, y ∈ [0,1] that |f (y, x)| ≤ Lf and |hD(x)| ≤ Lhx + 2μ/D.
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This and Lemma 2.1 yield for all D ∈ N and all t ∈ [0,∞) that a.s.∣∣∣∣∣
D∑

i=1

X̃D
t (i)

∣∣∣∣∣≤
∣∣∣∣∣

D∑
i=1

X̃D
0 (i)

∣∣∣∣∣+ (Lf + Lh)

∫ t

0

∣∣∣∣∣
D∑

i=1

X̃D
s (i)

∣∣∣∣∣ds

+ 2μt +
∣∣∣∣∣

D∑
i=1

∫ t

0

√
σ 2
(
X̃D

s (i)
)
dWs(i)

∣∣∣∣∣.
The Minkowski inequality then implies for all D ∈ N and all T ∈ [0,∞) that

E

[
sup

t∈[0,T ]

(
D∑

i=1

X̃D
t (i)

)2] 1
2

≤ E

[(
D∑

i=1

X̃D
0 (i)

)2] 1
2

+ 2μT

+ (Lf + Lh)

∫ T

0
E

[(
D∑

i=1

X̃D
s (i)

)2] 1
2

ds

+E

[
sup

t∈[0,T ]

∣∣∣∣∣
D∑

i=1

∫ t

0

√
σ 2
(
X̃D

s (i)
)
dWs(i)

∣∣∣∣∣
2] 1

2

.

(2.11)

Using Doob’s L2-inequality (see, e.g., Corollary 2.2.17 in [7]), the Itô isometry, Setting 1.1,
and the fact that for all x ∈ R it holds that 2x ≤ 1 + x2, we obtain for all D ∈ N and all
T ∈ [0,∞) that

E

[
sup

t∈[0,T ]

∣∣∣∣∣
D∑

i=1

∫ t

0

√
σ 2
(
X̃D

s (i)
)
dWs(i)

∣∣∣∣∣
2]

≤ 4
∫ T

0
LσE

[
D∑

i=1

X̃D
s (i)

]
ds ≤ 2LσT + 2Lσ

∫ T

0
E

[(
D∑

i=1

X̃D
s (i)

)2]
ds.

(2.12)

Equations (2.11) and (2.12), the fact that it holds for all x1, . . . , x4 ∈ R that (
∑4

i=1 xi)
2 ≤

4
∑4

i=1 x2
i , and Hölder’s inequality yield for all D ∈ N and all T ∈ [0,∞) that

E

[
sup

t∈[0,T ]

(
D∑

i=1

X̃D
t (i)

)2]

≤ 4E

[(
D∑

i=1

X̃D
0 (i)

)2]
+ 16μ2T 2

+ 4(Lf + Lh)
2

(∫ T

0
E

[(
D∑

i=1

X̃D
s (i)

)2] 1
2

ds

)2

+ 8LσT + 8Lσ

∫ T

0
E

[(
D∑

i=1

X̃D
s (i)

)2]
ds

≤ 4E

[(
D∑

i=1

X̃D
0 (i)

)2]
+ 8T

(
Lσ + 2μ2T

)

+ (
8Lσ + 4(Lf + Lh)

2T
) ∫ T

0
E

[
sup

u∈[0,s]

(
D∑

i=1

X̃D
u (i)

)2]
ds.
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This, Gronwall’s inequality, and (2.3) prove (2.10). The proof for the loop-free processes is
similar. This completes the proof of Lemma 2.5. �

The following lemma is a consequence of Lemma 2.5 and allows for a localization proce-
dure in the total mass uniformly in the number of demes.

LEMMA 2.6 (Localization argument). Assume that Setting 2.2 and

(2.13) sup
D∈N

E

[(
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

)2]
< ∞

hold and for every D,M ∈ N define the stopping time

(2.14) τD
M := inf

{
t ∈ [0,∞) :

D∑
i=1

∑
m∈N0

X
D,m
t (i) ≥ M

}
.

Then it holds for all T ∈ [0,∞) that

(2.15) lim
M→∞ sup

D∈N
E

[
sup

t∈[0,T ]

D∑
i=1

∑
m∈N0

X
D,m
t (i)1{τD

M≤T }

]
= 0.

PROOF. For all D,M ∈ N and T ∈ [0,∞) we have that

{
τD
M ≤ T

}=
{

sup
t∈[0,T ]

D∑
i=1

∑
m∈N0

X
D,m
t (i) ≥ M

}
.

This implies for all D,M ∈N and all T ∈ [0,∞) that

E

[
sup

t∈[0,T ]

D∑
i=1

∑
m∈N0

X
D,m
t (i)1{τD

M≤T }

]

≤ 1

M
E

[
sup

t∈[0,T ]

(
D∑

i=1

∑
m∈N0

X
D,m
t (i)

)2]
.

This, Lemma 2.5, and (2.13) show (2.15). The proof of Lemma 2.6 is thus completed. �

Throughout the rest of this subsection and in Section 2.3 below, the following Setting 2.7
will frequently be referred to. In the situation of Setting 2.7, for every D ∈ N the SDE (2.17)
below with g = gD has a unique strong solution with continuous sample paths in [0,1]; see,
for example, Theorem 5.4.22, Proposition 5.2.13, and Corollary 5.3.23 in [16]. This fact will
tacitly be used in the remainder of this paper.

SETTING 2.7 (Time-dependent immigration). Assume that Setting 1.1 holds and that
gD : [0,∞) × [0,1] → R, D ∈ N, are measurable functions that satisfy for all D ∈ N and all
t ∈ [0,∞) that gD(t,0) ≥ 0, that 1

D
gD(t,1) + h̃D(1) ≤ 0, that

sup
u∈[0,∞)

sup
x,y∈[0,1]

x �=y

|gD(u, x) − gD(u, y)|
|x − y| < ∞,

and that

(2.16) sup
M∈N

∫ t

0
sup

x∈[0,1]
∣∣gM(u, x)

∣∣2 du < ∞.
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For all s ∈ [0,∞), all D ∈ N, and all measurable functions g : [0,∞) × [0,1] → R we
consider the one-dimensional SDE

(2.17) dY
D,g
t,s = 1

D
g
(
t, Y

D,g
t,s

)
dt + h̃D

(
Y

D,g
t,s

)
dt +

√
σ 2
(
Y

D,g
t,s

)
dWt, t ∈ [s,∞),

where W is a standard Brownian motion. We adopt the same notation and write, for example,
Y

D,ζ
t,s (or Y

D,c
t,s ) when the function g : [0,∞) × [0,1] → R in (2.17) is replaced by a function

ζ : [0,∞) →R (or by a constant c ∈ R).
The following lemma estimates the L1-distance between certain solutions of (2.17).

LEMMA 2.8 (L1-regularity). Assume Setting 1.1, let gD : [0,∞) × [0,1] → R, D ∈ N,
and g̃D : [0,∞)×[0,1] → R, D ∈N, be two sequences of functions satisfying Setting 2.7, let

s ∈ [0,∞), and for every D ∈ N let (Y
D,gD
t,s )t∈[s,∞) and (Y

D,g̃D
t,s )t∈[s,∞) be solutions of (2.17)

with respect to the same Brownian motion. Then it holds for all D ∈N and all t ∈ [s,∞) that

E
[∣∣YD,gD

t,s − Y
D,g̃D
t,s

∣∣]
≤ eLh(t−s)

(
E
[∣∣YD,gD

s,s − YD,g̃D
s,s

∣∣]

+ 1

D

∫ t

s
E
[∣∣gD

(
u,YD,gD

u,s

)− g̃D

(
u,YD,g̃D

u,s

)∣∣]du

)
.

PROOF. As in Theorem 1 in [29] (see also, e.g., the proof of Lemma 3.3 in [14]) an
approximation of R � x �→ |x| ∈ R with C2-functions and exploiting that

sup
x,y∈[0,1],x �=y

|√σ 2(x) −
√

σ 2(y)|2
|x − y| < ∞

shows for all D ∈ N and all t ∈ [s,∞) that a.s.

∣∣YD,gD
t,s − Y

D,g̃D
t,s

∣∣= ∣∣YD,gD
s,s − YD,g̃D

s,s

∣∣
+
∫ t

s
sgn

(
YD,gD

u,s − YD,g̃D
u,s

)
d
(
YD,gD

u,s − YD,g̃D
u,s

)
.

(2.18)

For every D ∈ N and every t ∈ [s,∞) let MD
t be a real-valued random variable satisfying

a.s. that

(2.19) MD
t =

∫ t

s
sgn

(
YD,gD

u,s − YD,g̃D
u,s

)(√
σ 2
(
Y

D,gD
u,s

)−√
σ 2
(
Y

D,g̃D
u,s

))
dWu.

Then (2.18) and Setting 1.1 imply for all D ∈ N and all t ∈ [s,∞) that a.s.

∣∣YD,gD
t,s − Y

D,g̃D
t,s

∣∣≤ ∣∣YD,gD
s,s − YD,g̃D

s,s

∣∣
+ 1

D

∫ t

s

∣∣gD

(
u,YD,gD

u,s

)− g̃D

(
u,YD,g̃D

u,s

)∣∣du

+ Lh

∫ t

s

∣∣YD,gD
u,s − YD,g̃D

u,s

∣∣du + MD
t .

(2.20)

Since the integrand of the stochastic integral in (2.19) is globally bounded, it holds for all
D ∈ N and all t ∈ [s,∞) that E[MD

t ] = 0. Therefore, (2.20) and Tonelli’s theorem imply for
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all D ∈ N and all t ∈ [s,∞) that

E
[∣∣YD,gD

t,s − Y
D,g̃D
t,s

∣∣]≤ E
[∣∣YD,gD

s,s − YD,g̃D
s,s

∣∣]
+ 1

D

∫ t

s
E
[∣∣gD

(
u,YD,gD

u,s

)− g̃D

(
u,YD,g̃D

u,s

)∣∣]du

+ Lh

∫ t

s
E
[∣∣YD,gD

u,s − YD,g̃D
u,s

∣∣]du.

Gronwall’s inequality then finishes the proof of Lemma 2.8. �

The following lemma provides us with a second moment estimate for solutions of (2.17)
and is similar to Lemma 2.5. Its proof is completely analogous to that of Lemma 2.5 and thus
omitted here.

LEMMA 2.9 (Second moment). Assume that Setting 2.7 holds, let s ∈ [0,∞), let {W(i) :
i ∈ N} be a set of independent standard Brownian motions, and for every D ∈ N and every
i ∈ [D] let (Y

D,gD
t,s (i))t∈[s,∞) be a solution of (2.17) driven by W(i) such that it holds a.s. that

Y
D,gD
s,s (i) = 0. Then it holds for all D ∈ N and all T ∈ [s,∞) that

E

[
sup

t∈[s,T ]

(
D∑

i=1

Y
D,gD
t,s (i)

)2]

≤ 3(T − s)e(6Lσ +3L2
h(T −s))(T −s)

(∫ T

s
sup

x∈[0,1]
∣∣gD(u, x)

∣∣2 du + 2Lσ

)
.

The following lemma follows from a straightforward adaptation of Lemma 9.8 in [10] to
the state space [0,1].

LEMMA 2.10 (Finite excursion area). Assume that Setting 1.2 holds. Then it holds that∫ ∫ ∞
0

ηt dtQ(dη) =
∫ 1

0

y
1
2σ 2(y)s(y)

dy < ∞.

2.3. Poisson limit of independent diffusions with vanishing immigration. To show the
convergence of the loop-free processes in Section 2.4 below, we first prove a Poisson limit
for independent diffusions with vanishing immigration, see Lemma 2.15 below, based on the
following lemma which is essentially Lemma 4.19 in [11] and proved there utilizing a time
reversion argument.

LEMMA 2.11 (Poisson limit, constant case). Assume that Setting 1.2 holds, let c, s ∈
[0,∞), let D0 ∈ N be such that it holds for all D ∈ N ∩ [D0,∞) that c/D + h̃D(1) ≤ 0, for
every D ∈ N∩[D0,∞) let (Y

D,c
t,s )t∈[s,∞) be a solution of (2.17) satisfying a.s. that YD,c

s,s = 0,
and let φD : [0,1] → R, D ∈ N0, be functions with the property that

sup
x,y∈[0,1]

x �=y

sup
D∈N

|φD(x) − φD(y)|
|x − y| < ∞,

that limD→∞ D|φD(0)| = 0, and for all y ∈ [0,1] that limD→∞ φD(y) = φ0(y). Then it
holds for all t ∈ [s,∞) that

lim
D→∞DE

[
φD

(
Y

D,c
t,s

)]= c

∫ t

s

∫
φ0(ηt−u)Q(dη)du.
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For every T ∈ (0,∞) and every s ∈ [0, T ) we define

(2.21) Es,T :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C
([s, T ], [0,1]) � η �→

n∏
i=1

ψi(ηti ) ∈ R :
n ∈N, ψ1, . . . ,ψn ∈ Lip

([0,1],R),
and t1, . . . , tn ∈ [s, T ] with t1 ≤ · · · ≤ tn

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

From the Lipschitz continuity and boundedness of the involved functions in (2.21), it follows
for all T ∈ (0,∞) and all s ∈ [0, T ) that the elements of Es,T are globally Lipschitz continu-
ous in the sense of Lemma 2.12. The proof of Lemma 2.12 is straightforward and therefore
omitted.

LEMMA 2.12 (Lipschitz continuity). Let n ∈ N and let ψ1, . . . ,ψn ∈ Lip([0,1],R).
Then there exists a constant L ∈ [0,∞) such that it holds for all x1, . . . , xn ∈ [0,1] and
all y1, . . . , yn ∈ [0,1] that∣∣∣∣∣

n∏
i=1

ψi(xi) −
n∏

i=1

ψi(yi)

∣∣∣∣∣≤ L

n∑
i=1

|xi − yi |.

The following two lemmas generalize Lemma 2.11 in a suitable way. The proof of
Lemma 2.13 below is analogous to the proof of Lemma 4.20 in [11] and therefore omitted
here.

LEMMA 2.13 (Poisson limit, piecewise constant case). Assume that Setting 1.2 holds
and let T ∈ (0,∞). Then for all n ∈ N, all s ∈ [0, T ), all c1, . . . , cn ∈ [0,∞), all
ψ1, . . . ,ψn ∈ Lip([0,1],R), all t0, . . . , tn ∈ [s, T ] with s = t0 ≤ t1 ≤ · · · ≤ tn ≤ T , all
ζ : [0,∞) → [0,∞) satisfying for all t ∈ [0,∞) that ζ(t) =∑n

i=1 ci1[ti−1,ti )(t), all D0 ∈ N

such that it holds for all D ∈ N ∩ [D0,∞) that max{c1, . . . , cn}/D + h̃D(1) ≤ 0, all solu-
tions (Y

D,ζ
t,s )t∈[s,∞), D ∈N∩ [D0,∞), of (2.17) satisfying for all D ∈ N∩ [D0,∞) a.s. that

Y
D,ζ
s,s = 0, and all F ∈ Es,T satisfying for all η ∈ C([s, T ], [0,1]) that F(η) =∏n

i=1 ψi(ηti )

and F(0) = 0 it holds that

lim
D→∞DE

[
F
((

Y
D,ζ
t,s

)
t∈[s,T ]

)]= ∫ T

s
ζ(u)

∫
F
(
(ηt−u)t∈[s,T ]

)
Q(dη)du.

The following lemma generalizes Lemma 2.13 and is a crucial ingredient in the proof of
Lemma 2.15 below.

LEMMA 2.14 (Poisson limit, general case). Assume Setting 1.2 and Setting 2.7, let T ∈
(0,∞), let s ∈ [0, T ), for every D ∈ N let (Y

D,gD
t,s )t∈[s,∞) be a solution of (2.17) satisfying

a.s. that Y
D,gD
s,s = 0, and let g : [0,∞) × [0,1] → R be a measurable function satisfying for

all t ∈ [0,∞) that g(t,0) ≥ 0, that [0,1] � x �→ g(t, x) ∈R is continuous, and that

(2.22) lim
D→∞

∫ T

s
sup

x∈[0,1]
∣∣gD(u, x) − g(u, x)

∣∣du = 0.

Then it holds for all F ∈ Es,T with F(0) = 0 that

lim
D→∞DE

[
F
((

Y
D,gD
t,s

)
t∈[s,T ]

)]

=
∫ ∞
s

g(u,0)

∫
F
(
(ηt−u)t∈[s,T ]

)
Q(dη)du ∈ R.

(2.23)
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PROOF. In a first step, we assume that (gD)D∈N and g are uniformly bounded by
K ∈ N. Fix F ∈ Es,T with F(0) = 0 for the rest of the proof and let m ∈ N, ψ1, . . . ,ψm ∈
Lip([0,1],R), and t1, . . . , tm ∈ [s, T ] with t1 ≤ · · · ≤ tm be such that it holds for all η ∈
C([s, T ], [0,1]) that F(η) =∏m

i=1 ψi(ηti ). We choose step functions ζ (n) : [s, T ] → [0,∞),
n ∈N, with the property that ζ (n)(·) → g(·,0) almost everywhere as n → ∞ and such that it
holds for all n ∈ N that ζ (n) ≤ K . For every n ∈ N we extend ζ (n) to [0,∞) by setting it to
zero outside of [s, T ]. Setting 1.1 implies the existence of D0 ∈ N such that we have for all
D ∈ N ∩ [D0,∞) that K/D + h̃D(1) ≤ 0. For every n ∈ N and every D ∈ N ∩ [D0,∞) let

(Y
D,ζ (n)

t,s )t∈[s,∞) be a solution of (2.17) satisfying a.s. that Y
D,ζ (n)

s,s = 0. Since we may let F

depend trivially on further time points, Lemma 2.13 yields for every n ∈ N that

(2.24) lim
D→∞DE

[
F
((

Y
D,ζ (n)

t,s

)
t∈[s,T ]

)]= ∫ T

s
ζ (n)(u)

∫
F
(
(ηt−u)t∈[s,T ]

)
Q(dη)du.

We are going to show that (2.24) converges to (2.23) as n → ∞. Let LF ∈ [0,∞) be a
Lipschitz constant of F in the sense of Lemma 2.12. Then Lemma 2.12 and Lemma 2.8
applied with g̃D = ζ (n) imply for all n ∈ N and all D ∈ N∩ [D0,∞) that

∣∣DE
[
F
((

Y
D,gD
t,s

)
t∈[s,T ]

)]− DE
[
F
((

Y
D,ζ (n)

t,s

)
t∈[s,T ]

)]∣∣
≤ DLF

m∑
i=1

E
[∣∣YD,gD

ti ,s
− Y

D,ζ (n)

ti ,s

∣∣]

≤ mLF eLh(T −s)
∫ T

s
E
[∣∣gD

(
u,YD,gD

u,s

)− ζ (n)(u)
∣∣]du

≤ mLF eLh(T −s)

(∫ T

s
sup

x∈[0,1]
∣∣gD(u, x) − g(u, x)

∣∣du

+
∫ T

s
E
[∣∣g(u,YD,gD

u,s

)− g(u,0)
∣∣]du

+
∫ T

s

∣∣g(u,0) − ζ (n)(u)
∣∣du

)
.

(2.25)

The first summand on the right-hand side of (2.25) converges to zero as D → ∞ by (2.22).
The dominated convergence theorem and the fact that Y

D,gD·,s converges to zero in distribution
as D → ∞ yield that the second summand on the right-hand side of (2.25) converges to zero
as D → ∞. Finally, the dominated convergence theorem ensures that the third summand on
the right-hand side of (2.25) converges to zero as n → ∞. Altogether, it follows that

lim
n→∞ lim

D→∞
∣∣DE

[
F
((

Y
D,gD
t,s

)
t∈[s,T ]

)]− DE
[
F
((

Y
D,ζ (n)

t,s

)
t∈[s,T ]

)]∣∣= 0.

This proves convergence of the left-hand side of (2.24) to the left-hand side of (2.23) as n →
∞. Lemma 2.12, F(0) = 0, and Lemma 2.10 ensure that

∫ T
s

∫ |F((ηt−u)t∈[s,T ])|Q(dη)du <

∞. This, the fact that we have for all n ∈ N that ζ (n) ≤ K , and the dominated convergence
theorem show that

lim
n→∞

∫ T

s
ζ (n)(u)

∫
F
(
(ηt−u)t∈[s,T ]

)
Q(dη)du

=
∫ T

s
g(u,0)

∫
F
(
(ηt−u)t∈[s,T ]

)
Q(dη)du.

(2.26)
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It remains to note that F(0) = 0 ensures∫ T

s
g(u,0)

∫
F
(
(ηt−u)t∈[s,T ]

)
Q(dη)du

=
∫ ∞
s

g(u,0)

∫
F
(
(ηt−u)t∈[s,T ]

)
Q(dη)du.

(2.27)

Hence, (2.26) and (2.27) show that the right-hand sides of (2.24) and (2.23) are equal in the
limit n → ∞.

For the rest of the proof, we return to the case of general (gD)D∈N and g. For all D,K ∈N

let (Y
D,gD∧K
t,s )t∈[s,∞) be a solution of (2.17) satisfying a.s. that Y

D,gD∧K
s,s = 0. It holds for all

K ∈ N that

lim
D→∞

∫ T

s
sup

x∈[0,1]
∣∣gD(u, x) ∧ K − g(u, x) ∧ K

∣∣du

≤ lim
D→∞

∫ T

s
sup

x∈[0,1]
∣∣gD(u, x) − g(u, x)

∣∣du = 0.

(2.28)

We note that (2.16) and (2.22) imply that

(2.29)
∫ T

s
sup

x∈[0,1]
∣∣g(u, x)

∣∣du < ∞.

Lemma 2.8 applied with (g̃D)D∈N = (gD ∧ K)D∈N, arguments as in (2.25), the dominated
convergence theorem, and (2.29) then show that

lim
K→∞ lim

D→∞
∣∣DE

[
F
((

Y
D,gD
t,s

)
t∈[s,T ]

)]− DE
[
F
((

Y
D,gD∧K
t,s

)
t∈[s,T ]

)]∣∣
≤ mLF eLh(T −s) lim

K→∞

∫ T

s

∣∣g(u,0) − g(u,0) ∧ K
∣∣du = 0.

(2.30)

For all i ∈ [m] and x ∈ [0,1] we write ψi(x) = ψi(x)+ − ψi(x)− to obtain a decomposition
of F of the form F = F+ − F−, where F+ and F− are finite sums of nonnegative functions
in Es,T and satisfy F+(0) = 0 = F−(0). Due to this and (2.28), the first part of the proof
yields for all K ∈ N that

lim
D→∞DE

[
F+((YD,gD∧K

t,s

)
t∈[s,T ]

)]

=
∫ ∞
s

(
g(u,0) ∧ K

) ∫
F+((ηt−u)t∈[s,T ]

)
Q(dη)du.

(2.31)

The monotone convergence theorem ensures that

lim
K→∞

∫ ∞
s

(
g(u,0) ∧ K

) ∫
F+((ηt−u)t∈[s,T ]

)
Q(dη)du

=
∫ ∞
s

g(u,0)

∫
F+((ηt−u)t∈[s,T ]

)
Q(dη)du.

(2.32)

Moreover, Lemma 2.12, F(0) = 0, Lemma 2.8, (2.28), and (2.29) yield for all K ∈ N that

lim
D→∞DE

[
F+((YD,gD∧K

t,s

)
t∈[s,T ]

)]

≤ LF meLh(T −s)
∫ T

s
sup

x∈[0,1]
∣∣g(u, x) ∧ K

∣∣du

≤ LF meLh(T −s)
∫ T

s
sup

x∈[0,1]
∣∣g(u, x)

∣∣du < ∞,
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which together with (2.31) yields that

sup
K∈N

∫ ∞
s

(
g(u,0) ∧ K

) ∫
F+((ηt−u)t∈[s,T ]

)
Q(dη)du < ∞.

The same is true when we replace F+ by F−. This implies that∫ ∞
s

g(u,0)

∫
F
(
(ηt−u)t∈[s,T ]

)
Q(dη)du

is well defined as a real number. Hence, combining (2.30), (2.31), and (2.32) for F+ and F−
yields that

lim
D→∞DE

[
F
((

Y
D,gD
t,s

)
t∈[s,T ]

)]
= lim

K→∞ lim
D→∞DE

[
F
((

Y
D,gD∧K
t,s

)
t∈[s,T ]

)]

=
∫ ∞
s

g(u,0)

∫
F
(
(ηt−u)t∈[s,T ]

)
Q(dη)du ∈ R.

This finishes the proof of Lemma 2.14. �

With Lemma 2.14 in hand, we are ready to prove the following Poisson limit lemma for
independent diffusions with vanishing immigration, which generalizes Lemma 4.21 in [11]
to state-dependent g.

LEMMA 2.15 (Poisson limit for independent diffusions with vanishing immigration).
Assume that Setting 1.2 and Setting 2.7 hold, let s ∈ [0,∞), let {W(i) : i ∈ N} be a set of inde-
pendent standard Brownian motions, for every D ∈ N and every i ∈ [D] let (Y

D,gD
t,s (i))t∈[s,∞)

be a solution of (2.17) driven by W(i) such that it holds a.s. that Y
D,gD
s,s (i) = 0, let

g : [0,∞)×[0,1] → R be a measurable function satisfying for all t ∈ [0,∞) that g(t,0) ≥ 0,
that [0,1] � x �→ g(t, x) ∈ R is continuous, and that

lim
D→∞

∫ t∨s

s
sup

x∈[0,1]
∣∣gD(u, x) − g(u, x)

∣∣du = 0,

and let � be a Poisson point process on [s,∞)×U with intensity measure E[�(du⊗dη)] =
g(u,0) du ⊗ Q(dη). Then it holds that(

D∑
i=1

Y
D,gD
t,s (i)δ

Y
D,gD
t,s (i)

)
t∈[s,∞)

D→∞===⇒
(∫

ηt−uδηt−u�(du ⊗ dη)

)
t∈[s,∞)

in the sense of convergence in distribution on D([s,∞),Mf([0,1])).
PROOF. Fix ϕ ∈ C2([0,1],R) for the rest of this paragraph. We define the function φ :

[0,1] → R by [0,1] � x �→ φ(x) := xϕ(x) ∈ R and for all D ∈ N and all t ∈ [s,∞) we define
SD

t,s :=∑D
i=1 φ(Y

D,gD
t,s (i)). The fact that there exists a constant Lφ ∈ [0,∞) such that for all

x ∈ [0,1] it holds that |φ(x)| ≤ Lφx and Markov’s inequality yield for all D,K ∈ N and all
t ∈ [s,∞) that

P
(∣∣SD

t,s

∣∣≥ K
)≤ 1

K
E

[
D∑

i=1

∣∣φ(YD,gD
t,s (i)

)∣∣]

≤ Lφ

K
E

[
D∑

i=1

Y
D,gD
t,s (i)

]
= Lφ

K
DE

[
Y

D,gD
t,s (1)

]
.
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This, Lemma 2.8, and Setting 2.7 imply for all t ∈ [s,∞) that

(2.33) lim
K→∞ sup

D∈N
P
(∣∣SD

t,s

∣∣≥ K
)≤ lim

K→∞
Lφ

K
eLh(t−s) sup

D∈N

∫ t

s
sup

x∈[0,1]
∣∣gD(u, x)

∣∣du = 0.

For every T ∈ (s,∞) and every D ∈ N let SD
T be the set of all stopping times with respect

to the natural filtration of SD·,s that are bounded by T . For all y ∈ [0,1], all D ∈ N, and all
t ∈ [s,∞) we define

(
GD

t φ
)
(y) :=

(
1

D
gD(t, y) + h̃D(y)

)
φ′(y) + 1

2
σ 2(y)φ′′(y).

Setting 1.1 and φ ∈ C2([0,1],R) imply that there exists a constant Cφ ∈ [1,∞) such that it
holds for all y ∈ [0,1], all D ∈ N, and all t ∈ [s,∞) that

∣∣(GD
t φ

)
(y)

∣∣≤ Cφ

(
1

D
sup

x∈[0,1]
∣∣gD(t, x)

∣∣+ y

)
and σ 2(y)φ′2(y) ≤ C2

φy,

Jensen’s inequality implies for all x1, x2, x3 ∈ R that (
∑3

i=1 xi)
2 ≤ 3

∑3
i=1 x2

i , Hölder’s in-
equality shows for every δ ∈ [0,∞) and every integrable function α : [0, δ] → R that
(
∫ δ

0 α(u)du)2 ≤ δ
∫ δ

0 (α(u))2 du, and it holds for all x ∈ R that x ≤ 1 + x2. Itô’s formula, the
Itô isometry, and the preceding estimates show for all T ∈ (s,∞), all δ̄ ∈ [0,1], all D ∈ N,
all τ ∈ SD

T , and all δ ∈ [0, δ̄] that

E
[(

SD
τ+δ,s − SD

τ,s

)2]

= E

[(
D∑

i=1

∫ τ+δ

τ

(
GD

u φ
)(

YD,gD
u,s (i)

)
du +

D∑
i=1

∫ τ+δ

τ

(√
σ 2φ′)(YD,gD

u,s (i)
)
dWu(i)

)2]

≤ 3C2
φE

[(∫ τ+δ

τ
sup

x∈[0,1]
∣∣gD(u, x)

∣∣du

)2]
+ 3C2

φE

[(
D∑

i=1

∫ δ

0
Y

D,gD
τ+u,s(i) du

)2]

+ 3E

[
D∑

i=1

∫ δ

0
σ 2(YD,gD

τ+u,s(i)
)
φ′2(YD,gD

τ+u,s(i)
)
du

]

≤ 3C2
φδE

[∫ τ+δ

τ
sup

x∈[0,1]
∣∣gD(u, x)

∣∣2 du

]
+ 3C2

φδE

[∫ δ

0

(
D∑

i=1

Y
D,gD
τ+u,s(i)

)2

du

]

+ 3C2
φE

[∫ δ

0

D∑
i=1

Y
D,gD
τ+u,s(i) du

]

≤ 3C2
φδ̄

∫ T +1

s
sup

x∈[0,1]
∣∣gD(u, x)

∣∣2 du + 6C2
φδ̄E

[
sup

u∈[s,T +1]

(
D∑

i=1

YD,gD
u,s (i)

)2]

+ 3C2
φδ̄.

This, Lemma 2.9, and Setting 2.7 imply for all T ∈ (s,∞) that

(2.34) lim
δ̄→0

sup
D∈N

sup
τ∈SD

T

sup
δ∈[0,δ̄]

E
[(

SD
τ+δ,s − SD

τ,s

)2]= 0.

By Aldous’ tightness criterion (see, e.g., Theorem 3.8.6 in [7]), (2.33) and (2.34) ensure that

(2.35)

{(
D∑

i=1

Y
D,gD
t,s (i)ϕ

(
Y

D,gD
t,s (i)

))
t∈[s,∞)

: D ∈ N

}
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is relatively compact. Since ϕ ∈ C2([0,1],R) was arbitrary, it follows from (2.35), from
Theorem 2.1 in [25], and from Prokhorov’s theorem (see, e.g., Theorem 3.2.2 in [7]) that

(2.36)

{(
D∑

i=1

Y
D,gD
t,s (i)δ

Y
D,gD
t,s (i)

)
t∈[s,∞)

: D ∈ N

}

is relatively compact.
In the following, we identify the limit points of (2.36) by showing convergence of finite-

dimensional distributions. For that, fix n ∈ N, fix ϕ1, . . . , ϕn ∈ Lip([0,1], [0,∞)), and fix
t1, . . . , tn ∈ [s,∞) with t1 ≤ · · · ≤ tn. For every j ∈ [n] we define the function φj : [0,1] →
[0,∞) by [0,1] � x �→ φj (x) := xϕj (x) ∈ [0,∞). The fact that Y

D,gD·,s (i), i ∈ [D], are
i.i.d. for all D ∈N yields for all D ∈ N that

E

[
exp

(
−

n∑
j=1

D∑
i=1

φj

(
Y

D,gD
tj ,s (i)

))]

=
D∏

i=1

E

[
exp

(
−

n∑
j=1

φj

(
Y

D,gD
tj ,s (i)

))]

=
(

1 − DE[1 − exp(−∑n
j=1 φj (Y

D,gD
tj ,s (1)))]

D

)D

.

(2.37)

For all x1, . . . , xn ∈ [0,1] it holds that

(2.38) 1 − exp

(
−

n∑
j=1

φj (xj )

)
=

n∑
j=1

(
1 − exp

(−φj (xj )
))

exp

(
−

j−1∑
i=1

φi(xi)

)
.

This shows that (2.37) involves the expectation of a sum. Each summand has the form of
a functional F ∈ Es,tn with F(0) = 0. On compact subintervals of [0,∞), the sequence of
functions x �→ (1 − x

D
)D , D ∈ N, converges uniformly to the function x �→ e−x as D → ∞.

This, Lemma 2.14 applied to each summand of the sum obtained from (2.37) and (2.38), and
Campbell’s formula (see, e.g., Theorem 24.14 in [17]) show that

lim
D→∞E

[
exp

(
−

n∑
j=1

D∑
i=1

φj

(
Y

D,gD
tj ,s (i)

))]

= exp

(
− lim

D→∞DE

[
1 − exp

(
−

n∑
j=1

φj

(
Y

D,gD
tj ,s (1)

))])

= exp

(
−
∫ ∫ ∞

s

(
1 − exp

(
−

n∑
j=1

φj (ηtj−u)

))
g(u,0) duQ(dη)

)

= E

[
exp

(
−

n∑
j=1

∫
φj (ηtj−u)�(du ⊗ dη)

)]
.

This implies the convergence of finite-dimensional distributions of (2.36) and completes the
proof of Lemma 2.15. �

2.4. Convergence of the loop-free processes. In this subsection, we show convergence
of the loop-free processes using Lemma 2.15. For that, we make the following assumption,
which implies that the initial population has migration level zero and that its total mass has
finite second moment.
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SETTING 2.16 (Initial distribution). Assume that Setting 1.3 and Setting 2.2 hold, that

(2.39) E

[( ∞∑
i=1

X0(i)

)2]
< ∞,

and that it holds for all D ∈ N and all i ∈ [D] that L(X
D,0
0 (i)) = L(X0(i)) and for all D ∈ N

and all (i, k) ∈ [D] ×N that L(X
D,k
0 (i)) = δ0.

The following lemma establishes the convergence of the loop-free processes and is analo-
gous to Lemma 4.22 in [11]. Recall that by Setting 2.2, which is satisfied by assumption in
the following lemma, the loop-free processes fulfill for all D ∈ N and all (i, k) ∈ [D] × N0

that a.s. Z
D,k
0 (i) = X

D,k
0 (i).

LEMMA 2.17 (Convergence of the loop-free processes). Assume that Setting 2.16 holds
and let T be the forest of excursions constructed in Section 1.2. Then it holds that(

D∑
i=1

∑
k∈N0

Z
D,k
t (i)δ

Z
D,k
t (i)

)
t∈[0,∞)

D→∞===⇒
(∫

ηt−sδηt−sT (ds ⊗ dη)

)
t∈[0,∞)

in the sense of convergence in distribution on D([0,∞),Mf([0,1])).

PROOF. Fix ϕ ∈ C2([0,1],R) for the rest of this paragraph. We define the function φ :
[0,1] → R by [0,1] � x �→ φ(x) := xϕ(x) ∈ R and for all D ∈ N and all t ∈ [0,∞) we define
SD

t := ∑D
i=1

∑
k∈N0

φ(Z
D,k
t (i)). The fact that there exists a constant Lφ ∈ [0,∞) such that

for all x ∈ [0,1] it holds that |φ(x)| ≤ Lφx and Markov’s inequality yield for all D,K ∈ N

and all t ∈ [0,∞) that

P
(∣∣SD

t

∣∣≥ K
)≤ 1

K
E

[
D∑

i=1

∑
k∈N0

∣∣φ(ZD,k
t (i)

)∣∣]≤ Lφ

K
E

[
D∑

i=1

∑
k∈N0

Z
D,k
t (i)

]
.

This, Lemma 2.3, and Setting 2.16 imply for all t ∈ [0,∞) that

(2.40) lim
K→∞ sup

D∈N
P
(∣∣SD

t

∣∣≥ K
)≤ lim

K→∞ sup
D∈N

Lφ

K
E

[
D∑

i=1

∑
k∈N0

Z
D,k
t (i)

]
= 0.

For every T ∈ (0,∞) and every D ∈ N let SD
T be the set of stopping times with respect to the

natural filtration of SD that are bounded by T . For all D ∈ N and all x = (xi,k)(i,k)∈[D]×N0 ∈
[0,1][D]×N0 we define ψD(x) :=∑D

i=1
∑

k∈N0
φ(xi,k) and

(
GDψD)(x) :=

D∑
i=1

∑
k∈N0

(
1k>0

D

D∑
j=1

xj,|k−1|f (xj,|k−1|, xi,k)

+ h̃D(xi,k) + 1k=0hD(0)

)
φ′(xi,k)

+ 1

2

D∑
i=1

∑
k∈N0

σ 2(xi,k)φ
′′(xi,k).

Setting 1.1 and φ ∈ C2([0,1],R) imply that there exists a constant Cψ ∈ [1,∞) such
that it holds for all D ∈ N, all x = (xi,k)(i,k)∈[D]×N0 ∈ [0,1][D]×N0 , and all y ∈ [0,1] that
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|(GDψD)(x)| ≤ Cψ(2μ +∑D
i=1

∑
k∈N0

xi,k) and that σ 2(y)φ′2(y) ≤ C2
ψy, Jensen’s inequal-

ity ensures for all x1, x2 ∈R that (x1 +x2)
2 ≤ 2(x2

1 +x2
2), Hölder’s inequality yields for every

δ ∈ [0,∞) and every integrable function α : [0, δ] → R that (
∫ δ

0 α(u)du)2 ≤ δ
∫ δ

0 (α(u))2 du,
and it holds for all x ∈ R that 2x ≤ 1 + x2. Itô’s formula, the Itô isometry, and the preceding
estimates show for all T ∈ (0,∞), all δ̄ ∈ [0,1], all D ∈ N, all τ ∈ SD

T , and all δ ∈ [0, δ̄] that

E
[(

SD
τ+δ − SD

τ

)2]

= E

[(∫ τ+δ

τ

(
GDψD)(ZD,·

u (·))du +
D∑

i=1

∑
k∈N0

∫ τ+δ

τ

(√
σ 2φ′)(ZD,k

u (i)
)
dWk

u (i)

)2]

≤ 2C2
ψE

[(∫ δ

0
2μ +

D∑
i=1

∑
k∈N0

Z
D,k
τ+u(i) du

)2]

+ 2E

[
D∑

i=1

∑
k∈N0

∫ δ

0

(√
σ 2φ′)2(ZD,k

τ+u(i)
)
du

]

≤ 2C2
ψδE

[∫ δ

0

(
2μ +

D∑
i=1

∑
k∈N0

Z
D,k
τ+u(i)

)2

du

]
+ 2C2

ψE

[∫ δ

0

D∑
i=1

∑
k∈N0

Z
D,k
τ+u(i) du

]

≤ 3C2
ψ δ̄E

[
sup

t∈[0,T +1]

(
2μ +

D∑
i=1

∑
k∈N0

Z
D,k
t (i)

)2]
+ C2

ψ δ̄.

This, Lemma 2.5, and Setting 2.16 imply for all T ∈ (0,∞) that

(2.41) lim
δ̄→0

sup
D∈N

sup
τ∈SD

T

sup
δ∈[0,δ̄]

E
[(

SD
τ+δ − SD

τ

)2]= 0.

By Aldous’ tightness criterion (see, e.g., Theorem 3.8.6 in [7]), (2.40) and (2.41) ensure that

(2.42)

{(
D∑

i=1

∑
k∈N0

Z
D,k
t (i)ϕ

(
Z

D,k
t (i)

))
t∈[0,∞)

: D ∈ N

}

is relatively compact. Since ϕ ∈ C2([0,1],R) was arbitrary, it follows from (2.42), from
Theorem 2.1 in [25], and from Prokhorov’s theorem (see, e.g., Theorem 3.2.2 in [7]) that

(2.43)

{(
D∑

i=1

∑
k∈N0

Z
D,k
t (i)δ

Z
D,k
t (i)

)
t∈[0,∞)

: D ∈N

}

is relatively compact.
In the following, we identify the limit points of (2.43) by showing convergence of finite-

dimensional distributions. For that, fix n ∈ N, fix ϕ1, . . . , ϕn ∈ Lip([0,1], [0,∞)), and fix
t1, . . . , tn ∈ [0,∞) with t1 ≤ · · · ≤ tn. For every j ∈ [n] we define the function φj : [0,1] →
[0,∞) by [0,1] � x �→ φj (x) := xϕj (x) ∈ [0,∞). Next we show that it holds for all m ∈ N0
that

lim
D→∞E

[
exp

(
−

n∑
j=1

D∑
i=1

m∑
k=0

φj

(
Z

D,k
tj

(i)
))]

= E

[
exp

(
−

n∑
j=1

m∑
k=0

∫
φj (ηtj−s)T (k)(ds ⊗ dη)

)]
.

(2.44)
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We prove (2.44) by induction on m ∈ N0. For all η ∈ C([0,∞), [0,1]) we define F(η) :=∑n
j=1 φj (ηtj ) ∈R. For every D ∈ N let (Y

D,DhD(0)
t,0 (i))t∈[0,∞), i ∈ [D], be solutions of (2.17)

driven by independent Brownian motions such that for all i ∈ [D] it holds a.s. that
Y

D,DhD(0)
0,0 (i) = X0(i) and let (Ȳ

D,DhD(0)
t,0 (i))t∈[0,∞), i ∈ [D], be independent solutions

of (2.17) satisfying for all i ∈ [D] a.s. that Ȳ
D,DhD(0)
0,0 (i) = 0. Then Y

D,DhD(0)
·,0 is equal in dis-

tribution to ZD,0. Note that it holds for all x, y, z ∈ [0,∞) that |e−x − e−(y+z)| ≤ |e−x(1 −
e−y)|+ |e−y(e−x − e−z)| ≤ 1− e−y +|x − z|. Moreover, there exists a constant LF ∈ [0,∞)

such that it holds for all η, η̄ ∈ C([0,∞), [0,1]) that |F(η) − F(η̄)| ≤ LF

∑n
j=1 |ηtj − η̄tj |.

These facts and Lemma 2.8 imply that

lim
K→∞ lim

D→∞

∣∣∣∣∣E
[

exp

(
−

D∑
i=K+1

F
(
Y

D,DhD(0)
·,0 (i)

))]

−E

[
exp

(
−

D∑
i=1

F
(
Ȳ

D,DhD(0)
·,0 (i)

))]∣∣∣∣∣
≤ lim

K→∞ lim
D→∞E

[
1 − exp

(
−

K∑
i=1

F
(
Ȳ

D,DhD(0)
·,0 (i)

))]

+ lim
K→∞LF neLhtn

∞∑
i=K+1

E
[
X0(i)

]
.

(2.45)

The second summand on the right-hand side of (2.45) is zero due to Setting 2.16. For every
i ∈ N the process Ȳ

D,DhD(0)
·,0 (i) converges weakly to zero as D → ∞, so the first summand

on the right-hand side of (2.45) is also zero. On the other hand, for every i ∈ N the process
Y

D,DhD(0)
·,0 (i) converges weakly to Y(i) as D → ∞ (see, e.g., Theorem 4.8.10 in [7]). These

observations and Lemma 2.15 with s = 0, (gD)D∈N = (DhD(0))D∈N, and g = μ imply that

lim
D→∞E

[
exp

(
−

D∑
i=1

F
(
ZD,0(i)

))]

= lim
K→∞ lim

D→∞E

[
exp

(
−

K∑
i=1

F
(
Y

D,DhD(0)
·,0 (i)

))]

×E

[
exp

(
−

D∑
i=K+1

F
(
Y

D,DhD(0)
·,0 (i)

))]

= lim
K→∞E

[
exp

(
−

K∑
i=1

F
(
Y(i)

))]
lim

D→∞E

[
exp

(
−

D∑
i=1

F
(
Ȳ

D,DhD(0)
·,0 (i)

))]

= E

[
exp

(
−

∞∑
i=1

F
(
Y(i)

))]
E

[
exp

(
−
∫

F(η·−s)�
∅(ds ⊗ dη)

)]

= E

[
exp

(
−
∫

F(η·−s)T (0)(ds ⊗ dη)

)]
.

This establishes (2.44) in the base case m = 0. For the induction step N0 � m → m + 1 the
induction hypothesis and relative compactness for all m̃ ∈ [m]0 of{(

D∑
i=1

m̃∑
k=0

Z
D,k
t (i)δ

Z
D,k
t (i)

)
t∈[0,∞)

: D ∈ N

}
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imply for all m̃ ∈ [m]0 and all ϕ ∈ C([0,1],R) that

(
D∑

i=1

m̃∑
k=0

Z
D,k
t (i)ϕ

(
Z

D,k
t (i)

))
t∈[0,∞)

D→∞===⇒
(

m̃∑
k=0

∫
ηt−sϕ(ηt−s)T (k)(ds ⊗ dη)

)
t∈[0,∞)

.

(2.46)

By the Skorokhod representation theorem (see, e.g., Theorem 3.1.8 in [7]), we may assume
almost sure convergence in (2.46). Consequently, we may assume for all ϕ ∈ C([0,1],R) that

(
D∑

i=1

Z
D,m
t (i)ϕ

(
Z

D,m
t (i)

))
t∈[0,∞)

D→∞−−−−→
a.s.

(∫
ηt−sϕ(ηt−s)T (m)(ds ⊗ dη)

)
t∈[0,∞)

.

(2.47)

For every D ∈ N let gD,g : [0,∞) × [0,1] × � → R be functions which satisfy for
all (t, x) ∈ [0,∞) × [0,1] that gD(t, x) = ∑D

j=1 Z
D,m
t (j)f (Z

D,m
t (j), x) and g(t, x) =∫

ηt−sf (ηt−s, x)T (m)(ds ⊗ dη). The sequence of functions (gD)D∈N satisfies Setting 2.7 al-
most surely. Moreover, the function g satisfies almost surely for all t ∈ [0,∞) that g(t,0) ≥ 0.
Furthermore, the fact that it holds for all t ∈ [0,∞) that

∫
supx∈[0,1] |ηt−sf (ηt−s, x)| ×

T (m)(ds ⊗ dη) ≤ Lf

∫
ηt−sT (ds ⊗ dη), the fact that it holds for all t ∈ [0,∞) that

E[∫ ηt−sT (ds ⊗ dη)] < ∞, and the dominated convergence theorem yield that it holds al-
most surely for all t ∈ [0,∞) that [0,1] � x �→ g(t, x) ∈ R is continuous. Equation (2.47)
and the assumptions on f imply almost surely for all t ∈ [0,∞) that (gD(t, ·))D∈N is an
equicontinuous sequence and this together with (2.47) yields almost surely for all t ∈ [0,∞)

that

(2.48) lim
D→∞ sup

x∈[0,1]
∣∣gD(t, x) − g(t, x)

∣∣= 0.

It follows almost surely for all t ∈ [0,∞) from (2.47) that [0, t] � u �→ ∫
ηu−sT (m)(ds ⊗

dη) ∈ R is càdlàg and therefore square-integrable and thus that

sup
D∈N

∫ t

0

(
D∑

i=1

ZD,m
u (i)

)2

du < ∞.

This, the fact that for all D ∈ N and all u ∈ [0,∞) it holds that supx∈[0,1] |gD(u, x) −
g(u, x)| ≤ Lf (

∑D
i=1 ZD,m

u (i)+∫
ηu−sT (m)(ds⊗dη)), and Theorem 6.18 and Corollary 6.21

in [17] imply almost surely for all t ∈ [0,∞) that the family{
[0, t] � u �→ sup

x∈[0,1]
∣∣gD(u, x) − g(u, x)

∣∣ ∈ R : D ∈ N

}

is uniformly integrable. This, Theorem 6.25 in [17], and (2.48) show almost surely for all
t ∈ [0,∞) that

lim
D→∞

∫ t

0
sup

x∈[0,1]
∣∣gD(u, x) − g(u, x)

∣∣du = 0.
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Conditionally on (ZM,m)M∈N, for every D ∈ N a version of ZD,m+1 is given by Y
D,gD

·,0 sat-
isfying for all i ∈ [D] and all t ∈ [0,∞) that a.s.

Y
D,gD

t,0 (i) =
∫ t

0

1

D
gD

(
u,Y

D,gD

u,0 (i)
)+ h̃D

(
Y

D,gD

u,0 (i)
)
du

+
∫ t

0

√
σ 2
(
Y

D,gD

u,0 (i)
)
dWm+1

u (i).

Therefore, Lemma 2.15 yields that a.s.

lim
D→∞E

[
exp

(
−

D∑
i=1

F
(
ZD,m+1(i)

)) ∣∣∣ (ZM,m)
M∈N,T (m)

]

= lim
D→∞E

[
exp

(
−

D∑
i=1

F
(
Y

D,gD

·,0 (i)
)) ∣∣∣ (ZM,m)

M∈N,T (m)

]

= E

[
exp

(
−
∫

F(η·−s)�
(m+1)(ds ⊗ dη)

) ∣∣∣ T (m)

]
,

(2.49)

where �(m+1) conditioned on T (m) is a Poisson point process on [0,∞) × U with the prop-
erty that for all bounded measurable � : [0,∞) × U → [0,∞) it holds almost surely that∫

�(s, η)E
[
�(m+1)(ds ⊗ dη) | T (m)]

=
∫

�(s, η)

(∫
ã(χs−r )T (m)(dr ⊗ dχ)

)
ds ⊗ Q(dη)

=
∫ ∫

�(s, η)ã(χs−r ) ds ⊗ Q(dη)T (m)(dr ⊗ dχ)

=
∫ ∫

�(s, η)E
[
�(m,r,χ)(ds ⊗ dη)

]
T (m)(dr ⊗ dχ).

This shows that �(m+1) conditioned on T (m) is equal in distribution to
∫

�(m,r,χ)T (m)(dr ⊗
dχ) = T (m+1). This, (2.49), and the induction hypothesis show that

lim
D→∞E

[
exp

(
−

m+1∑
k=0

D∑
i=1

F
(
ZD,k(i)

))]

= E

[
lim

D→∞ exp

(
−

m∑
k=0

D∑
i=1

F
(
ZD,k(i)

))

×E

[
exp

(
−

D∑
i=1

F
(
ZD,m+1(i)

)) ∣∣∣ (ZM,m)
M∈N,T (m)

]]

= E

[
exp

(
−

m∑
k=0

∫
F(η·−s)T (k)(ds ⊗ dη)

)

×E

[
exp

(
−
∫

F(η·−s)T (m+1)(ds ⊗ dη)

) ∣∣∣ T (m)

]]

= E

[
exp

(
−

m+1∑
k=0

∫
F(η·−s)T (k)(ds ⊗ dη)

)]
.



INTERACTING DIFFUSIONS IN THE SPARSE REGIME 2339

This finishes the induction step N0 � m → m + 1 and hence proves (2.44). Lemma 2.4, the
fact that

lim
m→∞E

[
exp

(
−

m∑
k=0

n∑
j=1

∫
φj (ηtj−s)T (k)(ds ⊗ dη)

)]

= E

[
exp

(
−

∞∑
k=0

n∑
j=1

∫
φj (ηtj−s)T (k)(ds ⊗ dη)

)]
,

and (2.44) imply the convergence of finite-dimensional distributions of (2.43). Therefore, this
finishes the proof of Lemma 2.17. �

3. Convergence to a forest of excursions. To prove Theorem 1.4 in Section 3.3 below,
we first show that the migration level processes and the loop-free processes have the same
limit as D → ∞; see Lemma 3.8 below. Our method of proof is the integration by parts
formula for semigroups; see (3.22), (3.23), and (3.26) below. For this, we first derive moment
estimates in Section 3.1 and uniform bounds on the derivatives of the semigroups of the
loop-free processes in Lemma 3.3.

3.1. Results for the migration level processes. The following lemma implies that indi-
viduals on the same deme have essentially the same migration level in the limit D → ∞ and
is analogous to Lemma 4.24 in [11].

LEMMA 3.1 (Essentially one level per deme). Assume that Setting 2.2 holds, that

(3.1) sup
D∈N

E

[(
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

)2]
< ∞,

and that

(3.2) lim
D→∞E

[
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

∑
m∈N0\{k}

X
D,m
0 (i)

]
= 0.

Then it holds for all T ∈ (0,∞) that

(3.3) lim
D→∞ sup

t∈[0,T ]
E

[
D∑

i=1

∑
k∈N0

X
D,k
t (i)

∑
m∈N0\{k}

X
D,m
t (i)

]
= 0.

PROOF. Fix T ∈ (0,∞) for the rest of the proof. For every D,M ∈ N we consider the
stopping time τD

M defined in (2.14). Since it holds for all D ∈ N, all i ∈ [D], and all t ∈ [0, T ]
that

∑
m∈N0

X
D,m
t (i) ∈ [0,1], we obtain for all D,M ∈ N that

sup
t∈[0,T ]

E

[
D∑

i=1

∑
k∈N0

X
D,k
t (i)

∑
m∈N0\{k}

X
D,m
t (i)

]

≤ sup
t∈[0,T ]

E

[
D∑

i=1

∑
k∈N0

X
D,k
t (i)

∑
m∈N0\{k}

X
D,m
t (i)1{τD

M>T }

]

+E

[
sup

t∈[0,T ]

D∑
i=1

∑
k∈N0

X
D,k
t (i)1{τD

M≤T }

]
.

(3.4)
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Lemma 2.6 ensures that the second summand on the right-hand side of (3.4) converges to
zero uniformly in D ∈ N as M → ∞. To prove (3.3) it therefore suffices to show that the first
summand on the right-hand side of (3.4) converges to zero as D → ∞ for all M ∈ N. We
fix M ∈ N for the rest of the proof. For every D,K ∈ N and every t ∈ [0,∞) let M

D,K
t be a

real-valued random variable satisfying that a.s.

(3.5) M
D,K
t =

D∑
i=1

K∑
k,m=0
m�=k

∫ t

0
XD,k

s (i)

√√√√√ X
D,m
s (i)∑

l∈N0
X

D,l
s (i)

σ 2
(∑

l∈N0

X
D,l
s (i)

)
dWm

s (i).

Itô’s formula, (2.1), (3.5), and Setting 1.1 yield for all D,K ∈ N and all t ∈ [0,∞) that a.s.

D∑
i=1

K∑
k=0

X
D,k
t (i)

K∑
m=0
m�=k

X
D,m
t (i)

≤
D∑

i=1

K∑
k=0

X
D,k
0 (i)

K∑
m=0
m�=k

X
D,m
0 (i) + 2

∫ t

0

D∑
i=1

K∑
k=0

XD,k
s (i)hD(0) ds

+ 2
∫ t

0

D∑
i=1

K∑
k,m=0
m�=k

XD,k
s (i)

(
1

D

D∑
j=1

Lf XD,m−1
s (j) + LhX

D,m
s (i)

)
ds

+ 2M
D,K
t .

(3.6)

For every D,K ∈ N the fact that

D∑
i=1

K∑
k,m=0
m�=k

∫ T

0

(
XD,k

s (i)
)2 XD,m

s (i)∑
l∈N0

X
D,l
s (i)

σ 2
(∑

l∈N0

XD,l
s (i)

)
ds ≤ DT Lσ

implies that (M
D,K
t )t∈[0,T ] is a martingale. Using this, using for all D ∈ N and all s ∈ [0, T ]

that
∑D

i=1
∑

k∈N0
X

D,k

s∧τD
M

(i) ≤ M +∑D
i=1

∑
k∈N0

X
D,k
0 (i), and applying the optional sampling

theorem (see, e.g., Theorem 2.2.13 in [7]) and Tonelli’s theorem, we obtain from (3.6) for all
D,K ∈ N and all t ∈ [0, T ] that

E

[
D∑

i=1

K∑
k=0

X
D,k

t∧τD
M

(i)

K∑
m=0
m�=k

X
D,m

t∧τD
M

(i)

]

≤ E

[
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

∑
m∈N0\{k}

X
D,m
0 (i)

]

+ 2T hD(0)

(
M +E

[
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

])

+ 1

D
2T LfE

[(
M +

D∑
i=1

∑
k∈N0

X
D,k
0 (i)

)2]

+ 2Lh

∫ t

0
E

[
D∑

i=1

K∑
k=0

X
D,k

s∧τD
M

(i)

K∑
m=0
m�=k

X
D,m

s∧τD
M

(i)

]
ds.
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This, the fact that we have for all D ∈ N that hD(0) ≤ 2μ/D, Gronwall’s inequality, and the
monotone convergence theorem ensure for all D ∈ N that

sup
t∈[0,T ]

E

[
D∑

i=1

∑
k∈N0

X
D,k
t (i)

∑
m∈N0\{k}

X
D,m
t (i)1{τD

M>T }

]

≤ sup
t∈[0,T ]

E

[
D∑

i=1

∑
k∈N0

X
D,k

t∧τD
M

(i)
∑

m∈N0\{k}
X

D,m

t∧τD
M

(i)

]

≤ e2LhT

(
E

[
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

∑
m∈N0\{k}

X
D,m
0 (i)

]

+ 1

D
2T (2μ + Lf ) sup

N∈N
E

[(
M +

N∑
i=1

∑
k∈N0

X
N,k
0 (i)

)2])
.

Letting D → ∞ and applying (3.2) and (3.1) finishes the proof of Lemma 3.1. �

The following lemma implies that the total mass is not evenly distributed over all demes
and is analogous to Lemma 4.23 in [11].

LEMMA 3.2 (Concentration of mass). Assume that Setting 1.2 and Setting 2.2 hold, that

(3.7)
∑
k∈N0

sup
D∈N

E

[
D∑

i=1

X
D,k
0 (i)

]
< ∞,

that

(3.8) sup
D∈N

E

[(
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

)2]
< ∞,

and that

(3.9) lim
δ→0

sup
D∈N

E

[
D∑

i=1

∑
k∈N0

(
X

D,k
0 (i) ∧ δ

)]= 0.

Then it holds for all T ∈ (0,∞) that

(3.10) lim
δ→0

∑
k∈N0

sup
D∈N

sup
t∈[0,T ]

E

[
D∑

i=1

(
X

D,k
t (i) ∧ δ

)]= 0.

PROOF. Fix T ∈ (0,∞) for the rest of the proof. For every D,M ∈ N we consider the
stopping time τD

M defined in (2.14). Then it holds for all δ ∈ (0,∞), all K ∈ N0, and all
M ∈N that

∑
k∈N0

sup
D∈N

sup
t∈[0,T ]

E

[
D∑

i=1

(
X

D,k
t (i) ∧ δ

)]

≤
K∑

k=0

sup
D∈N

sup
t∈[0,T ]

E

[
D∑

i=1

(
X

D,k
t (i) ∧ δ

)
1{τD

M>T }

]
+

∞∑
k=K

sup
D∈N

sup
t∈[0,T ]

E

[
D∑

i=1

X
D,k
t (i)

]

+
K∑

k=0

sup
D∈N

E

[
sup

t∈[0,T ]

D∑
i=1

∑
m∈N0

X
D,m
t (i)1{τD

M≤T }

]
.

(3.11)
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Lemma 2.4 and (3.7) imply that the second summand on the right-hand side of (3.11) con-
verges to zero as K → ∞, while Lemma 2.6 and (3.8) ensure for all K ∈ N0 that the third
summand on the right-hand side of (3.11) converges to zero as M → ∞. To prove (3.10)
it therefore suffices to show for all K ∈ N0 and all M ∈ N that the first summand on the
right-hand side of (3.11) converges to zero as δ → 0. We fix k ∈ N0 and M ∈ N for the rest
of the proof. Setting 1.1 implies the existence of D0 ∈ N such that for all D ∈ N ∩ [D0,∞)

we have Lf M/D + hD(1) ≤ 0. For every D ∈ N ∩ [D0,∞) let X̃D be as in Lemma 2.1.

Moreover, for every D ∈N∩ [D0,∞) and every i ∈ [D] let (Ỹ
D,Lf M+DhD(0)

t,0 (i))t∈[0,∞) and

(Y
D,Lf M+DhD(0)

t,0 (i))t∈[0,∞) be two solutions of (2.17) with respect to the same Brownian mo-

tion satisfying a.s. that Ỹ
D,Lf M+DhD(0)

0,0 (i) = X̃D
0 (i) and Y

D,Lf M+DhD(0)

0,0 (i) = 0. Lemma 2.1
above, Setting 1.1 above, and Lemma 3.3 in [14] show for all D ∈ N ∩ [D0,∞), all i ∈ [D],
and all t ∈ [0, T ] that X̃D

t (i) is stochastically bounded from above by Ỹ
D,Lf M+DhD(0)

t,0 (i)

on the event {τD
M > T }. This, (2.3), the fact that for all a, b, δ ∈ [0,∞) it holds that

|a ∧ δ − b ∧ δ| = |a ∧ δ − b ∧ δ| ∧ δ ≤ |a − b| ∧ δ, and Jensen’s inequality for the conditional
expectation applied for all δ ∈ (0,∞) with the concave function [0,1] � x �→ x ∧ δ ∈ R yield
for all δ ∈ (0,∞), all t ∈ [0, T ], and all D ∈ N∩ [D0,∞) that

E

[
D∑

i=1

(
X

D,k
t (i) ∧ δ

)
1{τD

M>T }

]

≤
D∑

i=1

E
[(

X̃D
t (i) ∧ δ

)
1{τD

M>T }
]≤ D∑

i=1

E
[
Ỹ

D,Lf M+DhD(0)

t,0 (i) ∧ δ
]

≤
D∑

i=1

E
[
Y

D,Lf M+DhD(0)

t,0 (i) ∧ δ
]

+
D∑

i=1

E
[
E
[∣∣Ỹ D,Lf M+DhD(0)

t,0 (i) − Y
D,Lf M+DhD(0)

t,0 (i)
∣∣ | X̃D

0 (i)
]∧ δ

]
.

This, Lemma 2.8, and the fact that it holds for all t ∈ [0, T ] that eLht ≥ 1 ensure for all
δ ∈ (0,∞), all t ∈ [0, T ], and all D ∈ N∩ [D0,∞) that

E

[
D∑

i=1

(
X

D,k
t (i) ∧ δ

)
1{τD

M>T }

]
≤ DE

[
Y

D,Lf M+DhD(0)

t,0 (1) ∧ δ
]

+ eLht
D∑

i=1

E
[
X̃D

0 (i) ∧ δ
]
.

This, Lemma 2.14 with (gD)D≥D0 = (Lf M + DhD(0))D≥D0 and g = Lf M + μ, equa-
tion (2.3), and subadditivity for all δ ∈ (0,∞) of [0,1] � x �→ x ∧ δ ∈ R imply for all
δ ∈ (0,∞) that

sup
t∈[0,T ]

lim
D→∞E

[
D∑

i=1

(
X

D,k
t (i) ∧ δ

)
1{τD

M>T }

]

≤ (Lf M + μ)

∫ ∫ T

0
(χT −r ∧ δ) drQ(dχ)

+ eLhT sup
D∈N

E

[
D∑

i=1

∑
m∈N0

(
X

D,m
0 (i) ∧ δ

)]
.

(3.12)
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The first summand on the right-hand side of (3.12) converges to zero as δ → 0 by the dom-
inated convergence theorem and Lemma 2.10. The second summand on the right-hand side
of (3.12) converges to zero as δ → 0 due to (3.9). This completes the proof of Lemma 3.2.

�

3.2. The migration level processes and the loop-free processes have the same limit.
For the rest of this paragraph, we fix K ∈ N0 and assume that Setting 2.2 holds. For
all D ∈ N we denote by {SD

t : t ∈ [0,∞)} the strongly continuous contraction semigroup
on C([0,1][D]×[K]0,R) associated with {(ZD,k

t (i))t∈[0,∞) : (i, k) ∈ [D] × [K]0}; see Re-
mark 3.2 in [26]. Then for all D ∈ N, all t ∈ [0,∞), all ψ ∈ C([0,1][D]×[K]0,R), and all
x ∈ [0,1][D]×[K]0 it holds that

(3.13)
(
SD

t ψ
)
(x) = E

[
ψ
((

Z
D,k,x
t (i)

)
(i,k)∈[D]×[K]0

)]
.

For every D ∈ N the semigroup {SD
t : t ∈ [0,∞)} has as its generator the closure of the

operator GD acting on C2([0,1][D]×[K]0,R), given for all ψ ∈ C2([0,1][D]×[K]0,R) and all
x = (xi,k)(i,k)∈[D]×[K]0 ∈ [0,1][D]×[K]0 by

(
GDψ

)
(x) =

D∑
i=1

K∑
k=0

(
1k>0

D

D∑
j=1

xj,|k−1|f (xj,|k−1|, xi,k)

+ h̃D(xi,k) + 1k=0hD(0)

)
∂ψ

∂xi,k

(x)

+ 1

2

D∑
i=1

K∑
k=0

σ 2(xi,k)
∂2ψ

∂x2
i,k

(x).

(3.14)

The following lemma establishes uniform bounds on the derivatives of the semigroups of the
loop-free processes.

LEMMA 3.3 (Uniform C2-bound). Assume that Setting 2.2 holds, let K ∈ N0, and for
every D ∈ N let {SD

t : t ∈ [0,∞)} be as in (3.13). Then there exists c ∈ [0,∞) such that
it holds for all D ∈ N, all t ∈ [0,∞), and all ψD ∈ C2([0,1][D]×[K]0,R) that SD

t ψD ∈
C2([0,1][D]×[K]0,R) and

(3.15)
∥∥SD

t ψD
∥∥
C2 ≤ ect

∥∥ψD
∥∥
C2 .

PROOF. For every D ∈ N and every (i, k) ∈ [D] × [K]0 let the function bi,k :
[0,1][D]×[K]0 →R satisfy for all x = (xj,l)(j,l)∈[D]×[K]0 ∈ [0,1][D]×[K]0 that

bi,k(x) = 1k>0

D

D∑
j=1

xj,|k−1|f (xj,|k−1|, xi,k) + h̃D(xi,k) + 1k=0hD(0).

Then it holds for all D ∈ N and all α ∈ N
[D]×[K]0
0 with |α| = 1 that

D∑
i=1

K∑
k=0

∥∥∂αbi,k

∥∥∞

≤ ‖f ‖∞ +
∥∥∥∥ ∂f

∂x1

∥∥∥∥∞
+
∥∥∥∥ ∂f

∂x2

∥∥∥∥∞
+
∥∥∥∥dh̃D

dx

∥∥∥∥∞
≤ 3‖f ‖C1 + ‖h̃D‖C1
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and for all D ∈ N and all α ∈ N
[D]×[K]0
0 with |α| = 2 that

D∑
i=1

K∑
k=0

∥∥∂αbi,k

∥∥∞ ≤ 2
(∥∥∥∥ ∂f

∂x1

∥∥∥∥∞
+
∥∥∥∥ ∂f

∂x2

∥∥∥∥∞

)

+
∥∥∥∥∂2f

∂x2
1

∥∥∥∥∞
+ 2

∥∥∥∥ ∂2f

∂x1 ∂x2

∥∥∥∥∞
+
∥∥∥∥∂2f

∂x2
2

∥∥∥∥∞
+
∥∥∥∥d2h̃D

dx2

∥∥∥∥∞

≤ 8‖f ‖C2 + ‖h̃D‖C2 .

We define

c := 4
(
8‖f ‖C2 + sup

D∈N
‖h̃D‖C2

)
+ 1

2

∥∥σ 2∥∥
C2,

which is finite due to Setting 1.1. Then Theorem 4.1 in [13] shows for all D ∈ N, all
t ∈ [0,∞), and all ψD ∈ C2([0,1][D]×[K]0,R) that SD

t ψD ∈ C2([0,1][D]×[K]0,R) and
that (3.15) holds. The proof of Lemma 3.3 is thus completed. �

The following lemma follows immediately from Theorem 3.16 in [19] and Lemma 3.3
above.

LEMMA 3.4 (Kolmogorov backward equation). Assume that Setting 2.2 holds, let T ∈
(0,∞), let D ∈ N, let K ∈ N0, let ψ ∈ C2([0,1][D]×[K]0,R), let {SD

t : t ∈ [0,∞)} be as
in (3.13), let GD be as in (3.14), and define the function u : [0, T ] × [0,1][D]×[K]0 →R by

[0, T ] × [0,1][D]×[K]0 � (t, x) �→ u(t, x) := (
SD

T −tψ
)
(x) ∈ R.

Then it holds that u ∈ C1,2([0, T ] × [0,1][D]×[K]0,R) and it holds for all t ∈ [0, T ] and all
x ∈ [0,1][D]×[K]0 that u(T , x) = ψ(x) and

∂u

∂t
(t, x) + (

GDu
)
(t, x) = 0.

The following lemma shows that finitely many levels of the migration level processes and
of the loop-free processes have the same limit as D → ∞ at every fixed time point.

LEMMA 3.5 (Asymptotic equality for one-dimensional distributions). Assume that Set-
ting 1.2 and Setting 2.2 hold, that

(3.16)
∑
k∈N0

sup
D∈N

E

[
D∑

i=1

X
D,k
0 (i)

]
< ∞,

that

(3.17) sup
D∈N

E

[(
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

)2]
< ∞,

that

(3.18) lim
D→∞E

[
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

∑
m∈N0\{k}

X
D,m
0 (i)

]
= 0,

and that

(3.19) lim
δ→0

sup
D∈N

E

[
D∑

i=1

∑
k∈N0

(
X

D,k
0 (i) ∧ δ

)]= 0,
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let T ∈ (0,∞) and K ∈ N0, for every D ∈ N let ψD ∈ C2([0,1][D]×[K]0,R), and suppose
that supD∈N ‖ψD‖C2 < ∞. Then it holds that

lim
D→∞

∣∣E[ψD((XD,k
T (i)

)
(i,k)∈[D]×[K]0

)]
−E

[
ψD((ZD,k

T (i)
)
(i,k)∈[D]×[K]0

)]∣∣= 0.

(3.20)

PROOF. For every D ∈ N let {SD
t : t ∈ [0,∞)} be as in (3.13), let GD be as in (3.14), and

define the function uD : [0, T ] × [0,1][D]×[K]0 →R by

(3.21) [0, T ] × [0,1][D]×[K]0 � (t, x) �→ uD(t, x) := (
SD

T −tψ
D)(x) ∈R.

Equations (3.21) and (3.13) yield for all D ∈ N that

(3.22) E
[
uD(T ,

(
X

D,k
T (i)

)
(i,k)∈[D]×[K]0

)]= E
[
ψD((XD,k

T (i)
)
(i,k)∈[D]×[K]0

)]
and

(3.23) E
[
uD(0,

(
X

D,k
0 (i)

)
(i,k)∈[D]×[K]0

)]= E
[
ψD((ZD,k

T (i)
)
(i,k)∈[D]×[K]0

)]
.

This shows that (3.20) is implied by

lim
D→∞

∣∣E[uD(T ,
(
X

D,k
T (i)

)
(i,k)∈[D]×[K]0

)]
−E

[
uD(0,

(
X

D,k
0 (i)

)
(i,k)∈[D]×[K]0

)]∣∣= 0.

(3.24)

Lemma 3.4 implies for all D ∈ N that uD ∈ C1,2([0, T ]×[0,1][D]×[K]0,R) and for all D ∈ N,
all t ∈ [0, T ], and all x ∈ [0,1][D]×[K]0 that

(3.25)
∂uD

∂t
(t, x) + (

GDuD)(t, x) = 0.

For every D ∈ N (a small variation with different orders of differentiability of) Whitney’s
extension theorem (see, e.g., Theorem 2.3.6 in [9]) ensures that uD can be extended to a func-
tion in C1,2([0,∞) × R

[D]×[K]0,R). Then Itô’s formula, (2.1), (3.25), (3.14), and Tonelli’s
theorem yield for all D ∈ N that

E
[
uD(T ,

(
X

D,k
T (i)

)
(i,k)∈[D]×[K]0

)]−E
[
uD(0,

(
X

D,k
0 (i)

)
(i,k)∈[D]×[K]0

)]

=
∫ T

0
E

[
D∑

i=1

K∑
k=0

∂uD

∂xi,k

(
s,
(
XD,m

s (j)
)
(j,m)∈[D]×[K]0

)

×
{

1

D

D∑
j=1

XD,k−1
s (j)

(
f

( ∑
m∈N0

XD,m
s (j),

∑
m∈N0

XD,m
s (i)

)

− f
(
XD,k−1

s (j),XD,k
s (i)

))

+ XD,k
s (i)∑

m∈N0
X

D,m
s (i)

h̃D

( ∑
m∈N0

XD,m
s (i)

)
− h̃D

(
XD,k

s (i)
)}

+ 1

2

D∑
i=1

K∑
k=0

∂2uD

∂x2
i,k

(
s,
(
XD,m

s (j)
)
(j,m)∈[D]×[K]0

)

×
{

XD,k
s (i)∑

m∈N0
X

D,m
s (i)

σ 2
( ∑

m∈N0

XD,m
s (i)

)
− σ 2(XD,k

s (i)
)}]

ds.

(3.26)
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Setting 1.1 implies for all D ∈ N, all (x, y) ∈ {(x1, x2) ∈ [0,1]2 : x1 + x2 ≤ 1}, and all δ ∈
(0,1) that ∣∣∣∣ x

x + y
h̃D(x + y) − h̃D(x)

∣∣∣∣≤ x

x + y

∣∣h̃D(x + y) − h̃D(x)
∣∣+ y

x + y

∣∣h̃D(x)
∣∣

≤ 2Lh

xy

x + y

≤ 2Lh(x ∧ y)

≤ 1x≤δ2Lh(x ∧ δ) + 1x>δ2Lhy

≤ 2Lh(x ∧ δ) + 2Lh

δ
xy.

(3.27)

Analogously, Setting 1.1 implies for all (x, y) ∈ {(x1, x2) ∈ [0,1]2 : x1 + x2 ≤ 1} and all
δ ∈ (0,1) that

(3.28)
∣∣∣∣ x

x + y
σ 2(x + y) − σ 2(x)

∣∣∣∣≤ 2Lσ (x ∧ δ) + 2Lσ

δ
xy.

Equations (3.27) and (3.28) with x = XD,k
s (i) and y = ∑

m∈N0\{k} XD,m
s (i), Setting 1.1,

and (3.26) show for all δ ∈ (0,1) and all D ∈ N that∣∣E[uD(T ,
(
X

D,k
T (i)

)
(i,k)∈[D]×[K]0

)]−E
[
uD(0,

(
X

D,k
0 (i)

)
(i,k)∈[D]×[K]0

)]∣∣
≤ sup

t∈[0,T ]
∥∥uD(t, ·)∥∥C2T

×
(
Lf sup

t∈[0,T ]
E

[
D∑

j=1

∑
k∈N0

X
D,k−1
t (j )

∑
m∈N0\{k−1}

X
D,m
t (j)

]

+ Lf

D
E

[
sup

t∈[0,T ]

(
D∑

i=1

∑
k∈N0

X
D,k
t (i)

)2]

+ (2Lh + Lσ ) sup
t∈[0,T ]

E

[
D∑

i=1

∑
k∈N0

(
X

D,k
t (i) ∧ δ

)]

+ 2Lh + Lσ

δ
sup

t∈[0,T ]
E

[
D∑

i=1

∑
k∈N0

X
D,k
t (i)

∑
m∈N0\{k}

X
D,m
t (i)

])
.

(3.29)

Lemma 3.3 and supD∈N ‖ψD‖C2 < ∞ imply that

sup
D∈N

sup
t∈[0,T ]

∥∥uD(t, ·)∥∥C2 < ∞.

The first and the fourth summand on the right-hand side of (3.29) converge to zero as D → ∞
by Lemma 3.1 and assumptions (3.17) and (3.18). The second summand on the right-hand
side of (3.29) converges to zero as D → ∞ by Lemma 2.5 and assumption (3.17). The third
summand on the right-hand side of (3.29) converges to zero uniformly in D ∈ N as δ → 0
by Lemma 3.2 and assumptions (3.16), (3.17), and (3.19). By letting first D → ∞ and then
δ → 0, (3.24) follows. This finishes the proof of Lemma 3.5. �

The following lemma shows that in the situation of Setting 2.16, the assumptions of
Lemma 3.1 and Lemma 3.2 and some of the assumptions in Lemma 3.5 are satisfied.
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LEMMA 3.6 (Well-behaved initial distribution). Assume Setting 2.16. Then it holds that

(3.30)
∑
k∈N0

sup
D∈N

E

[
D∑

i=1

X
D,k
0 (i)

]
< ∞,

that

(3.31) sup
D∈N

E

[(
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

)2]
< ∞,

that

(3.32) lim
D→∞E

[
D∑

i=1

∑
k∈N0

X
D,k
0 (i)

∑
m∈N0\{k}

X
D,m
0 (i)

]
= 0,

and that

lim
δ→0

sup
D∈N

E

[
D∑

i=1

∑
k∈N0

(
X

D,k
0 (i) ∧ δ

)]= 0.

PROOF. Equations (3.30), (3.31), and (3.32) follow immediately from the structure of
the initial distribution given in Setting 2.16 and from (2.39). Moreover, Setting 2.16 and the
dominated convergence theorem show that

lim
δ→0

sup
D∈N

E

[
D∑

i=1

∑
k∈N0

(
X

D,k
0 (i) ∧ δ

)]= lim
δ→0

E

[ ∞∑
i=1

(
X0(i) ∧ δ

)]= 0.

This completes the proof of Lemma 3.6. �

The following lemma uses the Markov property in order to generalize Lemma 3.5 to
finitely many time points.

LEMMA 3.7 (Asymptotic equality for f.d.d.s). Assume Setting 2.16, let K ∈ N0, and
let t1, t2, . . . ∈ [0,∞) with t1 < t2 < · · · . Then for all n ∈ N and all (ψD

j )D,j∈N ⊆
C2([0,1][D]×[K]0,R) which satisfy for all j ∈N that supD∈N ‖ψD

j ‖C2 < ∞ it holds that

lim
D→∞

∣∣∣∣∣E
[

n∏
j=1

ψD
j

((
X

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)]

−E

[
n∏

j=1

ψD
j

((
Z

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)]∣∣∣∣∣= 0.

(3.33)

PROOF. We prove (3.33) by induction on n ∈ N. The base case n = 1 has been set-
tled in Lemma 3.5, where the conditions (3.16), (3.17), (3.18), and (3.19) are satisfied
due to Lemma 3.6. To show the induction step N � n → n + 1, we fix (ψD

j )D,j∈N ⊆
C2([0,1][D]×[K]0,R) which satisfy for all j ∈ N that supD∈N ‖ψD

j ‖C2 < ∞. For every D ∈N

we define the function ψD : [0,1][D]×[K]0 →R by

[0,1][D]×[K]0 � x �→ ψD(x) := ψD
n (x)E

[
ψD

n+1
((

Z
D,k,x
tn+1−tn

(i)
)
(i,k)∈[D]×[K]0

)]
.
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Then Lemma 3.3 proves for every D ∈ N that ψD ∈ C2([0,1][D]×[K]0,R). Moreover, it fol-
lows from Lemma 3.3 that supD∈N ‖ψD‖C2 < ∞. Therefore, the induction hypothesis (ap-
plied to ψD

1 , . . . ,ψD
n−1,ψ

D) yields that

lim
D→∞

∣∣∣∣∣E
[

n−1∏
j=1

ψD
j

((
X

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)
ψD((XD,k

tn (i)
)
(i,k)∈[D]×[K]0

)]

−E

[
n−1∏
j=1

ψD
j

((
Z

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)
ψD((ZD,k

tn (i)
)
(i,k)∈[D]×[K]0

)]∣∣∣∣∣= 0.

(3.34)

By the Markov property it holds for all D ∈ N that

E

[
n−1∏
j=1

ψD
j

((
Z

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)
ψD((ZD,k

tn (i)
)
(i,k)∈[D]×[K]0

)]

= E

[
n+1∏
j=1

ψD
j

((
Z

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)]
.

Moreover, we observe for all D ∈ N that

E

[
n−1∏
j=1

ψD
j

((
X

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)
ψD((XD,k

tn (i)
)
(i,k)∈[D]×[K]0

)]

= E

[
n∏

j=1

ψD
j

((
X

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)

×E
[
ψD

n+1
((

Z
D,k,x
tn+1−tn

(i)
)
(i,k)∈[D]×[K]0

)]∣∣
x=(X

D,k
tn

(i))(i,k)∈[D]×N0

]
.

When the initial distribution is given by (X
D,k
tn (i))(i,k)∈[D]×N0 , the conditions (3.16), (3.17),

(3.18), and (3.19) are fulfilled due to Lemma 3.6, Lemma 2.4, Lemma 2.5, Lemma 3.1, and
Lemma 3.2. Therefore, Lemma 3.5 implies that

lim
D→∞

∣∣∣∣∣E
[

n∏
j=1

ψD
j

((
X

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)

×E
[
ψD

n+1
((

Z
D,k,x
tn+1−tn

(i)
)
(i,k)∈[D]×[K]0

)]∣∣
x=(X

D,k
tn

(i))(i,k)∈[D]×N0

]

−E

[
n∏

j=1

ψD
j

((
X

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)

×E
[
ψD

n+1
((

X
D,k,x
tn+1−tn

(i)
)
(i,k)∈[D]×[K]0

)]∣∣
x=(X

D,k
tn

(i))(i,k)∈[D]×N0

]∣∣∣∣∣
= 0.
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The Markov property yields for all D ∈ N that

E

[
n∏

j=1

ψD
j

((
X

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)

×E
[
ψD

n+1
((

X
D,k,x
tn+1−tn

(i)
)
(i,k)∈[D]×[K]0

)]∣∣
x=(X

D,k
tn

(i))(i,k)∈[D]×N0

]

= E

[
n+1∏
j=1

ψD
j

((
X

D,k
tj

(i)
)
(i,k)∈[D]×[K]0

)]
.

(3.35)

Combining (3.34) through (3.35) proves the induction step N � n → n+ 1 and hence finishes
the proof of Lemma 3.7. �

The following lemma is the main result of Section 3.2 and shows that the migration level
processes and the loop-free processes have the same limit as D → ∞.

LEMMA 3.8 (Migration level and loop-free processes have the same limit). Assume that
Setting 2.16 holds, let n ∈ N, let φ1, . . . , φn ∈ C2([0,1],R) with the property that for all j ∈
[n] it holds that φj (0) = 0, let ψ ∈ C2

b(R,R), and let t1, . . . , tn ∈ [0,∞) with t1 < · · · < tn.
Then it holds that

lim
D→∞

∣∣∣∣∣E
[

n∏
j=1

ψ

(
D∑

i=1

∑
k∈N0

φj

(
X

D,k
tj

(i)
))]

−E

[
n∏

j=1

ψ

(
D∑

i=1

∑
k∈N0

φj

(
Z

D,k
tj

(i)
))]∣∣∣∣∣= 0.

(3.36)

PROOF. In a first step, we are going to reduce the considerations to k ∈ [K]0 for finite
K ∈ N0. The assumptions on φ1, . . . , φn, and ψ imply the existence of constants Lφ,Lψ ∈
[0,∞) such that it holds for all j ∈ [n] and all x ∈ [0,1] that |φj (x)| ≤ Lφx and for all
x1, . . . , xn ∈R and all y1, . . . , yn ∈ R that |∏n

j=1 ψ(xj )−∏n
j=1 ψ(yj )| ≤ Lψ

∑n
j=1 |xj −yj |.

It follows for all K ∈ N0 that

sup
D∈N

∣∣∣∣∣E
[

n∏
j=1

ψ

(
D∑

i=1

∑
k∈N0

φj

(
X

D,k
tj

(i)
))]

−E

[
n∏

j=1

ψ

(
D∑

i=1

K∑
k=0

φj

(
X

D,k
tj

(i)
))]∣∣∣∣∣

≤ LψLφ

n∑
j=1

∞∑
k=K+1

sup
D∈N

E

[
D∑

i=1

X
D,k
tj

(i)

]
.

(3.37)

The right-hand side of (3.37) converges to zero as K → ∞ by Lemma 3.6 and Lemma 2.4.
The analogous statement holds when X

D,k
tj

(i) is replaced by Z
D,k
tj

(i) in (3.37). To prove
(3.36) it therefore suffices to show for all K ∈ N0 that

lim
D→∞

∣∣∣∣∣E
[

n∏
j=1

ψ

(
D∑

i=1

K∑
k=0

φj

(
X

D,k
tj

(i)
))]

−E

[
n∏

j=1

ψ

(
D∑

i=1

K∑
k=0

φj

(
Z

D,k
tj

(i)
))]∣∣∣∣∣= 0.

(3.38)
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We fix K ∈ N0 for the rest of the proof. For every j ∈ [n] and D ∈ N we define the function
ψD

j : [0,1][D]×[K]0 →R by

[0,1][D]×[K]0 � (xi,k)(i,k)∈[D]×[K]0 = x �→ ψD
j (x) := ψ

(
D∑

i=1

K∑
k=0

φj (xi,k)

)
.

It follows for all j ∈ [n] that supD∈N ‖ψD
j ‖∞ ≤ ‖ψ‖∞. Since φ1, . . . , φn, and ψ are

twice continuously differentiable, it holds for all j ∈ [n] and all D ∈ N that ψD
j ∈

C2([0,1][D]×[K]0,R). Furthermore, the chain rule and the product rule imply for all j ∈ [n],
all D ∈ N, all (ĩ, k̃), (j̃ , l̃) ∈ [D] × [K]0, and all x ∈ [0,1][D]×[K]0 that

∣∣∣∣∂ψD
j

∂x
ĩ,k̃

(x)

∣∣∣∣=
∣∣∣∣∣ψ ′

(
D∑

i=1

K∑
k=0

φj (xi,k)

)
φ′

j (xĩ,k̃
)

∣∣∣∣∣≤ ∥∥ψ ′∥∥∞
∥∥φ′

j

∥∥∞

and ∣∣∣∣ ∂2ψD
j

∂x
j̃,l̃

∂x
ĩ,k̃

(x)

∣∣∣∣=
∣∣∣∣∣ψ ′′

(
D∑

i=1

K∑
k=0

φj (xi,k)

)
φ′

j (xj̃ ,l̃
)φ′

j (xĩ,k̃
)

+ 1
(ĩ,k̃)=(j̃ ,l̃)

ψ ′
(

D∑
i=1

K∑
k=0

φj (xi,k)

)
φ′′

j (x
ĩ,k̃

)

∣∣∣∣∣
≤ ∥∥ψ ′′∥∥∞

∥∥φ′
j

∥∥2
∞ + ∥∥ψ ′∥∥∞

∥∥φ′′
j

∥∥∞.

It follows for all j ∈ [n] that supD∈N ‖ψD
j ‖C2 < ∞. Then Lemma 3.7 shows (3.38) which in

turn finishes the proof of Lemma 3.8. �

3.3. Proof of Theorem 1.4. PROOF OF THEOREM 1.4. In a first step, we prove Theo-
rem 1.4 under the additional assumption that

(3.39) E

[( ∞∑
i=1

X0(i)

)2]
< ∞.

Analogously to the proofs of Lemma 2.15 and Lemma 2.17, one shows that

(3.40)

{(
D∑

i=1

XD
t (i)δXD

t (i)

)
t∈[0,∞)

: D ∈ N

}

is relatively compact. In the following, we identify the limit points of (3.40) by prov-
ing convergence of finite-dimensional distributions. For that, fix n ∈ N, fix ϕ1, . . . , ϕn ∈
C2([0,1],R), fix ψ ∈ C2

b(R,R), and fix t1, . . . , tn ∈ [0,∞) with t1 < · · · < tn. For every
j ∈ [n] we define the function φj : [0,1] → R by [0,1] � x �→ φj (x) := xϕj (x) ∈ R. For
every D ∈ N let {(

X
D,k
t (i),Wk

t (i)
)
t∈[0,∞) : (i, k) ∈ [D] ×N0

}
be a weak solution of (2.1) with initial distribution satisfying for all i ∈ [D] that L(X

D,0
0 (i)) =

L(X0(i)) and for all (i, k) ∈ [D]×N that L(X
D,k
0 (i)) = δ0 and let {(ZD,k

t (i))t∈[0,∞) : (i, k) ∈
[D] ×N0} be a solution of (2.4) on the same probability space with Brownian motion given
by the Brownian motion of the weak solution of (2.1) and started in (X

D,k
0 (i))(i,k)∈[D]×N0 .
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Due to this and assumption (3.39), Setting 2.2 and Setting 2.16 are satisfied. First, Lemma 2.1
shows for all D ∈ N that

(3.41) E

[
n∏

j=1

ψ

(
D∑

i=1

φj

(
XD

tj
(i)
))]= E

[
n∏

j=1

ψ

(
D∑

i=1

φj

(∑
k∈N0

X
D,k
tj

(i)

))]
.

The assumptions on ϕ1, . . . , ϕn imply the existence of a constant Lφ ∈ [0,∞) such that it
holds for all j ∈ [n] and all x, y ∈ [0,1] that

(3.42)
∣∣φj (x) − φj (y)

∣∣≤ Lφ|x − y|.
From this we obtain for all D ∈ N, all j ∈ [n], all t ∈ [0,∞), and all δ ∈ (0,∞) that

E

[∣∣∣∣∣
D∑

i=1

φj

( ∑
m∈N0

X
D,m
t (i)

)(
1 − ∑

k∈N0

1{XD,k
t (i)≥δ}

)∣∣∣∣∣
]

≤ LφE

[
D∑

i=1

∑
m∈N0

(
X

D,m
t (i) ∧ δ

)]

+ Lφ

δ2 E

[
D∑

i=1

∑
k∈N0

X
D,k
t (i)

∑
l∈N0\{k}

X
D,l
t (i)

]
;

(3.43)

cf. (4.114) and (4.115) in [11]. The fact that there exists a constant Lψ ∈ [0,∞) such that
it holds for all x1, . . . , xn ∈ R and all y1, . . . , yn ∈ R that |∏n

j=1 ψ(xj ) − ∏n
j=1 ψ(yj )| ≤

Lψ

∑n
j=1 |xj − yj | together with (3.42) and (3.43) proves for all D ∈ N and all δ ∈ (0,1) that

∣∣∣∣∣E
[

n∏
j=1

ψ

(
D∑

i=1

φj

( ∑
m∈N0

X
D,m
tj

(i)

))]

−E

[
n∏

j=1

ψ

(
D∑

i=1

∑
k∈N0

φj

(
X

D,k
tj

(i)
))]∣∣∣∣∣

≤ Lψ

n∑
j=1

E

[
D∑

i=1

∑
k∈N0

1{XD,k
tj

(i)≥δ}
∣∣∣∣φj

( ∑
m∈N0

X
D,m
tj

(i)

)
− φj

(
X

D,k
tj

(i)
)∣∣∣∣
]

+ Lψ

n∑
j=1

E

[∣∣∣∣∣
D∑

i=1

φj

( ∑
m∈N0

X
D,m
tj

(i)

)(
1 − ∑

k∈N0

1{XD,k
t (i)≥δ}

)∣∣∣∣∣
]

+ Lψ

n∑
j=1

E

[
D∑

i=1

∑
k∈N0

1{XD,k
tj

(i)<δ}
∣∣φj

(
X

D,k
tj

(i)
)∣∣]

≤ 2LψLφ

δ2

n∑
j=1

E

[
D∑

i=1

∑
k∈N0

X
D,k
tj

(i)
∑

m∈N0\{k}
X

D,m
tj

(i)

]

+ 2LψLφ

n∑
j=1

E

[
D∑

i=1

∑
k∈N0

(
X

D,k
tj

(i) ∧ δ
)]

.

(3.44)

Lemma 3.6 and Lemma 3.1 ensure that the first summand on the right-hand side of (3.44)
converges to zero as D → ∞, while Lemma 3.6 and Lemma 3.2 show that the second sum-
mand on the right-hand side of (3.44) converges to zero uniformly in D ∈ N as δ → 0. By



2352 M. HUTZENTHALER AND D. PIEPER

letting first D → ∞ and then δ → 0, we therefore obtain from (3.44) that

lim
D→∞

∣∣∣∣∣E
[

n∏
j=1

ψ

(
D∑

i=1

φj

(∑
k∈N0

X
D,k
tj

(i)

))]

−E

[
n∏

j=1

ψ

(
D∑

i=1

∑
k∈N0

φj

(
X

D,k
tj

(i)
))]∣∣∣∣∣= 0.

(3.45)

Lemma 2.17 shows that

lim
D→∞E

[
n∏

j=1

ψ

(
D∑

i=1

∑
k∈N0

φj

(
Z

D,k
tj

(i)
))]

= E

[
n∏

j=1

ψ

(∫
φj (ηtj−s)T (ds ⊗ dη)

)]
.

(3.46)

Combining (3.41), (3.45), Lemma 3.8, and (3.46) shows that

lim
D→∞E

[
n∏

j=1

ψ

(
D∑

i=1

φj

(
XD

tj
(i)
))]= E

[
n∏

j=1

ψ

(∫
φj (ηtj−s)T (ds ⊗ dη)

)]
.

This implies the convergence of finite-dimensional distributions of (3.40) and proves Theo-
rem 1.4 under the additional assumption (3.39).

It remains to prove Theorem 1.4 in the case when (3.39) fails to hold. Fix a bounded con-
tinuous function F : D([0,∞),Mf([0,1])) → R for the rest of the proof. Then Setting 1.3
and the previous step imply that a.s.

lim
D→∞E

[
F

((
D∑

i=1

XD
t (i)δXD

t (i)

)
t∈[0,∞)

) ∣∣∣ (X0(i)
)
i∈N

]

= E

[
F

((∫
ηt−sδηt−sT (ds ⊗ dη)

)
t∈[0,∞)

) ∣∣∣ (X0(i)
)
i∈N

]
.

Then it follows from taking expectations and from the dominated convergence theorem that

lim
D→∞E

[
F

((
D∑

i=1

XD
t (i)δXD

t (i)

)
t∈[0,∞)

)]

= E

[
F

((∫
ηt−sδηt−sT (ds ⊗ dη)

)
t∈[0,∞)

)]
.

This finishes the proof of Theorem 1.4. �
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