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Abstract: Taking a multidimensional time-homogeneous dynamical sys-
tem and adding a randomly perturbed time-dependent deterministic sig-
nal to some of its components gives rise to a high-dimensional system
of stochastic differential equations which is driven by possibly very low-
dimensional noise. Equations of this type are commonly used in biology
for modeling neurons or in statistical mechanics for certain Hamiltonian
systems. Assuming that the signal depends on an unknown shape parame-
ter ϑ and also has an unknown periodicity T , we prove Local Asymptotic
Normality (LAN) jointly in ϑ and T for the statistical experiment arising
from (partial) observation of this diffusion in continuous time. The local
scale turns out to be n−1/2 for ϑ and n−3/2 for T . Our approach unifies
and extends existing results on LAN in variants of the signal in noise model
where the parameters ϑ and T are treated separately. Consequently, we can
establish the same efficiency bounds in our more complex model and make
use of efficient estimators known from these submodels.
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1. Introduction of the model and the problem

Let U ⊂ RN+L be a σ-compact set and let f : U → RN and g : U → RL

be locally Lipschitz continuous functions. Finally, let S : [0,∞) → RN be a
continuous periodic signal and consider the deterministic dynamical system

dXt = f(Xt, Yt)dt+ S(t)dt,

dYt = g(Xt, Yt)dt.
(1)

This system is divided into two groups of variables: The N components of X
whose dynamics depend directly on the signal and the L components of Y which
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are affected by the signal only indirectly through the influence of X. Intuitively
speaking, we can think of (1) as a dynamical system with no intrinsic time-
inhomogeneity which then receives an additional time-dependent external input
S in some of its variables, while the remaining variables merely describe an
interior mechanism. This is why we sometimes refer to X as the adjustable
variable(s) and Y as the internal variable(s). Note that the only source of time-
inhomogeneity is indeed the signal – if the system receives constant external
input S ≡ c ∈ RN (or none at all, i.e. c = 0), it is homogeneous in time.
Systems of this kind frequently arise in the context of neuroscience and statistical
mechanics (see Examples 1.1 and 1.2 below).

We construct a stochastic model by following the idea that the signal is not
actually received in its original shape, but is subject to random perturbations
by external noise (i.e. noise that is independent of the rest of the system). To
take account of this notion, it seems natural to substitute the signal term S(t)dt
in (1) with the increment dZt of a process taking values in a closed set U ′ ⊂ RN

and satisfying an SDE of the type

dZt = [S(t) + b(Zt)]dt+ σ(Zt)dWt,

where W is an M -dimensional standard Brownian Motion, while b : U ′ → RN

and σ : U ′ → RN×M are locally Lipschitz continuous drift and volatility func-
tions. Note that this SDE can be viewed as a generalized Ornstein-Uhlenbeck
type process with time-dependent mean-reversion level (think of b(Zt) = −βZt

with β ∈ (0,∞)). A particularly prominent special case is the classical signal in
noise model (take M = N = 1, b ≡ 0, and σ ≡ 1, see for example [24, Example
I.7.3, Chapter III.5]), which arises in a wide variety of fields including commu-
nication, radiolocation, seismic signal processing, or computer-aided diagnosis
and has been the subject of extensive study.

Perturbing S(t) randomly in this way leads to the stochastic dynamical sys-
tem

dXt = f(Xt, Yt)dt+ dZt,

dYt = g(Xt, Yt)dt,

dZt = [S(t) + b(Zt)]dt+ σ(Zt)dWt,

(2)

with state space

E := U × U ′ ⊂ RN+L+N .

This system can be thought of as degenerate in the following sense: Firstly, the
equation for Y does not incorporate the driving Brownian Motion W explicitly,
making it rather unclear which effect noise has on these components. Secondly,
the dimension M of the driving Brownian Motion can (and will usually) be
much lower than the dimension N +L+N of the system. This is why we call a
stochastic process satisfying a system of stochastic differential equations of the
type (2) a degenerate diffusion with internal variables and randomly perturbed
time-inhomogeneous deterministic input.
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We now have three groups of variables: The entirely autonomous external
input governed by dZt (the “noisy signal”), the components of X that are di-
rectly adjusted by the noisy signal, and the components of the internal variable
Y whose dynamics are only indirectly affected by noise, since the respective
differential equations incorporate neither Z nor the driving Brownian Motion
W explicitly. Note that, for this reason, Y is conditionally deterministic given
X and has continuously differentiable trajectories.

The system (2) is a generalization of the one introduced in equation (18) of
Section 4.1 of [22], which is a probabilistic version of a class of dynamical systems
that are well-known in the mathematical modeling of neurons (see Example 1.1
below). In [13] (which can be viewed as a companion article to the present
one), we study the model (2) from a purely probabilistic standpoint and use
methods from [23] to discuss sufficient conditions for the process (X,Y, Z) to be
positive Harris recurrent. Before we explain the focus of the current article, let
us introduce two major examples.

Example 1.1. Let N = 1, L = 3, U = R × [0, 1]3 and consider the coefficient
functions

f(x, y) = −36y41(x+ 12)− 120y32y3(x− 120)− 0.3(x− 10.6)

and

g(x, y) =

⎛
⎝α1(x)(1− y1)− β1(x)y1
α2(x)(1− y2)− β2(x)y2
α3(x)(1− y3)− β3(x)y3

⎞
⎠

with

α1(x) =

{
0.1−0.01x

exp(1−0.1x)−1 , x �= 10,

0.1, else,
β1(x) = 0.125 exp(−x/80),

α2(x) =

{
2.5−0.1x

exp(2.5−0.1x)−1 , x �= 25,

1, else,
β2(x) = 4 exp(−x/18),

α3(x) = 0.07 exp(−x/20), β3(x) = 1
exp(3−0.1x)+1 .

for all (x, y) = (x, y1, y2, y3)
� ∈ U . The corresponding dynamical system (1) is

known as the Hodgkin-Huxley system and it was first introduced by Hodgkin
and Huxley in 1952 (see [11], note however that we use the slightly different
model constants from [26]) with the aim of describing the initiation and propa-
gation of action potentials in the cell membrane of a neuron in response to an
external stimulus. While X is the membrane potential itself (usually labeled V
in the literature), the internal variables Y1, Y2, and Y3 (commonly denoted by n,
m, and h) correspond to the ionic mechanism underlying its evolution. The two
predominant ion currents in the cell membrane are import of sodium Na+ and
export of potassium K+ through the membrane. Each of the internal variables
signifies the probability that a specific type of gate in the respective ion channel
is open at a given time. It is for this reason that n, m, and h are often called
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gating variables. In the context of this model, the signal S represents the den-
dritic input which the neuron receives from a large number of other neurons,
transported by an even larger number of synapses located on the respective
dendritic tree. The resulting “total dendritic input” can then be thought of as
an average of interdependent and repeating similar currents, which is why S
is usually assumed to be periodic (or even constant). When modeling neurons,
particular interest lies in the typical spiking behaviour of the membrane poten-
tial, a feature that is commonly agreed upon to be adequately described by the
Hodgkin-Huxley model. For a more detailed modern introduction, interpreta-
tion, and an in-depth comparison with other neuron models, see for example
[26] and [6].

Adding noise in the sense of (2) by choosing σ ∈ C∞(U ′) and b(Zt) = −βZt

with β ∈ (0,∞), we acquire the so-called stochastic Hodgkin-Huxley model (with
mean reverting Ornstein-Uhlenbeck type input). It was first introduced and stud-
ied by Höpfner, Löcherbach, and Thieullen in the series of the three papers [21],
[22], and [23]. The constant β is determined by the so-called time constant of the
membrane which represents spontaneous voltage decay not related to the input.
For many types of neurons, the time constant is known from experiments (see
[7]). A degree of freedom lies in the choice of the volatility σ which reflects the
nature of the influence of noise. In the past, mean reverting Ornstein-Uhlenbeck
type equations with various volatilities have been used to model the membrane
potential itself (see for example [30] or [16]), and in a sense our stochastic
Hodgkin-Huxley model can be viewed as a refinement of this kind of model. If
σ is Lipschitz continuous, existence of a unique non-exploding strong solution
taking values in E = R× [0, 1]3 ×U ′ follows from the same arguments as in [21,
Proposition 1] and [22, Proposition 2].

Analogously, one can introduce stochastic versions of simpler neuron models
such as the FitzHugh-Nagumo model (see [26, equations (4.11) and (4.12)]) or
the Morris-Lecar model (see [33] or, for a modern version, [35]).

Example 1.2. Systems of coupled oscillators are particularly intuitive Hamil-
tonian systems and several different stochastic models have been subject to
research in the past (see e.g [10], [2], [34], [3]). The following example is in-
spired by the model from [4] to which we add a time-inhomogeneity and the
corresponding external variables.

Let us think of three rotors, each given by their angle qi(t) ∈ R and mo-
mentum pi(t) ∈ R at the time t ∈ [0,∞) for each i ∈ {1, 2, 3}. Assuming their
respective masses to be all equal to 1 and not taking into account units, the
laws of classical mechanics imply

q̇i = pi for all i ∈ {1, 2, 3}. (3)

We suppose that these rotors are coupled in row, i.e.

ṗ1 = w1(q2 − q1)− u1(q1),

ṗ2 = −[w1(q2 − q1) + w3(q2 − q3)]− u2(q2), (4)

ṗ3 = w3(q2 − q3)− u3(q3),
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where w1, w2, w3 : R → R and u1, u2, u3 : R → R are related to interaction po-
tentials and pinning potentials, respectively. A classical model is the one that
arises if we let one or both of the outer rotors receive external torques and inter-
act with Langevin type heat baths. In order to give a mathematical description
of this, we fix i ∈ {1, 3} for the remainder of this paragraph. Applying an exter-
nal time-dependent torque Si : [0,∞) → R to the i-th rotor means expanding
the equation for pi to

dpi = [wi(q2 − qi)− ui(qi)] dt+ Sidt,

which turns (3) and (4) into a system like (1). On top of that, we want to add
interaction with a heat bath, i.e. for a temperature τi ∈ (0,∞) and a dissipation
constant δi ∈ (0,∞), the equation for pi is further expanded to

dpi = [wi(q2 − qi)− ui(qi)] dt+ Sidt− δipidt+
√
2δiτidW

(i)
t

= [wi(q2 − qi)− ui(qi)− δipi] dt+
[
Sidt+

√
2δiτidW

(i)
t

]
,

where the last term in parentheses is the total sum of external influences. Fol-
lowing the spirit of (2), we may replace this term with the increments of a more
general random perturbation of the torque: We take

dpi = [wi(q2 − qi)− ui(qi)− δipi] dt+ dZ
(i)
t

with

dZ
(i)
t =

[
Si(t) + bi(Z

(i)
t )
]
dt+ σi(Z

(i)
t )dW

(i)
t

for some volatility σi : R → R and a drift bi : R → R. What we end up with is
indeed a degenerate diffusion with internal variables and randomly perturbed
time-inhomogeneous deterministic input as in (2). If only the first rotor in the
chain receives an external input, the dimensions are M = N = 1 and L = 5,
U = R6, U ′ = R. If both of the outer rotors receive an external input, the
dimensions are M = N = 2 and L = 4, U = R6, U ′ = R2.

In this article, we want to study a statistical model in which the deterministic
signal S depends on a set of parameters. More precisely, we assume that there
is an open set Θ ⊂ RD such that

S = S(ϑ,T ) with (ϑ, T ) ∈ Θ× (0,∞),

where T is the signal’s periodicity and ϑ is a D-dimensional shape parameter.
A natural goal is to estimate ϑ and T simultaneously from continuous observa-
tion of the process. However, observing the process (X,Y, Z) entirely may not
make sense in many models: The external variable Z can be of a rather abstract
nature and, for example, in the Hodgkin-Huxley model from Example 1.1 the
only variable that is arguably observable is the membrane potential X. In spite
of that, Section 3.1 shows:
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Result 1. As long as the initial configuration (X0, Y0, Z0) is deterministic
and known, it does not matter whether we can observe the entire process
(X,Y, Z), only the adjustable variable X, or only the external variable Z.

This is the content of Remark 3.1 and Proposition 3.2. Since Z is the most
convenient process to handle statistically among all of these, our considerations
in the sequel are confined to this external variable. Being able to relate statistical
problems entirely to Z means that as long as this variable fits our setting, we can
treat any example of (2) (including in particular those that were introduced in
Examples 1.1 and 1.2). In Section 3.2, we prove an LAN result for the external
variable (Theorem 3.7), generalizing [12, Theorem 2.3] in which we only treated
the case M = N = 1. This can then be combined with the previous results in
order to obtain:

Result 2. Under reasonable regularity conditions on the parametrization
and under some non-degeneracy and ergodicity of the external variable Z,
the sequence of statistical experiments corresponding to continuous obser-
vation of (X,Y, Z) over growing time intervals [0, n] for n → ∞ has the
LAN property. The local scales are identified as n−1/2 for the shape and
n−3/2 for the periodicity.

The rigorous and precise corresponding statement is Theorem 2.3. It allows for
application to simultaneous estimation of shape and periodicity, as under LAN
we can use Hájek’s Convolution Theorem and the Local Asymptotic Minimax
Theorem in order to establish optimality for estimators when the rescaled esti-
mation errors are stochastically asymptotically equivalent to the central statis-
tic of the experiment (see [31], [5], [29] or [15] for a detailed presentation of the
relevant theory). While this is not the focus of the present article, we briefly
comment on specific estimators in relevant submodels in Remark 3.10 and 3.11.

2. Main results and applications

First, let us recall and collect the basic assumptions that were mentioned in the
introduction.

(A0) Basic setting: The state space is E = U × U ′ where U ⊂ RN+L is σ-
compact and U ′ ⊂ RN is closed. All of the coefficient functions f , g, b,
σ are locally Lipschitz continuous and the signal S(ϑ,T ) is continuous, T -
periodic with T ∈ (0,∞) and depends on some parameter ϑ taken from
an open set Θ ⊂ RD.

Throughout this article, (A0) will be a tacit standing assumption.

Using the notation Φt = (Xt, Yt, Zt) for all t ∈ [0,∞) and incorporating the
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parameters, we rewrite the equation (2) as

dΦt = B(ϑ,T )(t,Φt)dt+Σ(Φt)dWt, (5)

where

B(ϑ,T ) : [0,∞)× E → RN+L+N , (t, x, y, z) �→

⎛
⎝f(x, y) + S(ϑ,T )(t) + b(z)

g(x, y)
S(ϑ,T )(t) + b(z)

⎞
⎠ ,

for each (ϑ, T ) ∈ Θ× (0,∞), while

Σ: E → R(N+L+N)×M , (x, y, z) �→

⎛
⎝ σ(z)
0L×M

σ(z)

⎞
⎠ .

We fix some probability space (Ω,F ,P), and we consider the following assump-
tions about the SDE (5):

(A1) Unique solvability: For all (ϑ, T ) ∈ Θ × (0,∞) and all deterministic
starting points Φ0 ∈ E, the SDE (5) has a unique strong solution Φ(ϑ,T ) =(
X(ϑ,T ), Y (ϑ,T ), Z(ϑ,T )

)
: [0,∞) → E under P.

(A2) Bounded diffusion matrix: The mapping σσ� : U ′ → RN×N is uni-
formly bounded away from 0 and from ∞ in the sense that there are
σ0, σ∞ ∈ (0,∞) such that

σ0 |x|2 ≤ x� (σσ�(z)
)
x ≤ σ∞ |x|2 for all x ∈ RN and z ∈ U ′.

(A3) Transition densities for the external variable: For all (ϑ, T ) ∈ Θ×
(0,∞) and t > s ≥ 0, there is a measurable function p

(ϑ,T )
s,t : U ′ × U ′ →

[0,∞) such that

P

(
Z

(ϑ,T )
t ∈ B

∣∣∣Z(ϑ,T )
s = z

)
=

∫
B

p
(ϑ,T )
s,t (z, w)dw

for all z ∈ U ′ and measurable sets B ⊂ U ′.
(A4) Periodic recurrence of the external variable: For all (ϑ, T ) ∈ Θ ×

(0,∞), the grid chain
(
Z

(ϑ,T )
nT

)
n∈N0

is positive Harris recurrent.

Remark 2.1. 1.) As we know from linear algebra, (A2) also yields that the

inverse
(
σσ�(z)

)−1
exists for all z ∈ U ′, is symmetric and positive definite (and

hence possesses a square root
(
σσ�(z)

)−1/2 ∈ RN×N ), and we have

σ−1
∞ |x|2 ≤ x� (σσ�(z)

)−1
x ≤ σ−1

0 |x|2 for all x ∈ RN . (6)

2.) Note that σ� (σσ�)−1
(z) ∈ RM×N is a right inverse of σ(z). Thus, the

linear mapping σ(z) : RM → RN is surjective and hence M ≥ N . In this sense,
(A2) is a non-degeneracy condition on the external equation for Z. It is also
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“almost sufficient” for (A3) (it is sufficient e.g. in the case that b and σ are
smooth with bounded derivatives of any order, compare [9]).

3.) Together with (A3), the recurrence assumption (A4) allows us to make
use of certain variants of classical limit theorems (see [18], [19]) which we will
need for Lemma 3.4 below. Note that (A4) is weaker than the assertion that the
entire process Φ(ϑ,T ) is positive Harris-recurrent (compare [13]).

Let (ϑ, T ) ∈ Θ× (0,∞). We define the probability measure

P(ϑ,T ) := L
(
[0,∞) � t �→ Φ

(ϑ,T )
t

∣∣∣P)
on B

(
C([0,∞); E)

)
such that for the canonical process π = (πt)t∈[0,∞) on

C([0,∞); E) we have

L
(
π
∣∣∣P(ϑ,T )

)
= L
(
Φ(ϑ,T )

∣∣∣P) .
Observing the process continuously then means working with the filtration given
by

Ft :=
⋂

r∈(t,∞)

σ(πs | s ∈ [0, r]) ⊂ B
(
C([0,∞); E)

)
for all t ∈ [0,∞),

and gives rise to the sequence of statistical experiments defined by

E(X,Y,Z) :=
(
C([0,∞); E),Fn,

{
P(ϑ,T )|Fn

∣∣∣ (ϑ, T ) ∈ Θ× (0,∞)
})

n∈N
.

As is proved in Section 3, for all (ϑ̃, T̃ ) ∈ Θ × (0,∞) the corresponding log-
likelihood ratios are given by

log
dP(ϑ̃,T̃ )|Ft

dP(ϑ,T )|Ft

=

∫ t

0

(
(σσ�(πZ

s ))
−1/2
(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)
)�

dB(ϑ,T )
s

− 1

2

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)�
(s)
(
σσ�(πZ

s )
)−1

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)ds,

where B(ϑ,T ) is a Brownian Motion and πZ = (π(N+L+1), . . . , π(N+L+N)). Ex-
amining its structure suggests that in order to find a suitable quadratic expan-
sion for LAN we have to impose appropriate smoothness conditions on the signal
with respect to the parameters. The following set of conditions (S1)–(S5) turns
out to be sufficient:

(S1) Basic regularity: For each ϑ ∈ Θ, we have a 1-periodic function

Sϑ =

⎛
⎜⎜⎝

S
(1)
ϑ
...

S
(N)
ϑ

⎞
⎟⎟⎠ ∈ C2

(
[0,∞);RN

)
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such that

S·(s) ∈ C1
(
Θ;RN

)
for every s ∈ [0,∞)

and

∂ϑiSϑ(·) ∈ L2
loc

(
[0,∞);RN

)
for every ϑ ∈ Θ and i ∈ {1, . . . , D}.

(S2) L2
loc-differentiability with respect to (ϑ, T ): The mapping

S : Θ× (0,∞) → L2
loc

(
[0,∞);RN

)
,

(ϑ, T ) �→ S(ϑ,T ) := Sϑ

( ·
T

)
,

is L2
loc-differentiable with the derivative

Ṡ : Θ× (0,∞) → L2
loc

(
[0,∞);RN×(D+1)

)
,

(ϑ, T ) �→ Ṡ(ϑ,T ) :=

⎛
⎜⎜⎝
∂ϑ1S

(1)
(ϑ,T ) · · · ∂ϑD

S
(1)
(ϑ,T ) ∂TS

(1)
(ϑ,T )

...
. . .

...
...

∂ϑ1S
(N)
(ϑ,T ) · · · ∂ϑD

S
(N)
(ϑ,T ) ∂TS

(N)
(ϑ,T )

⎞
⎟⎟⎠ ,

in the sense that for every t ∈ (0,∞) and (ϑ, T ) ∈ Θ× (0,∞) we have1

lim
(ϑ̃,T̃ )→(ϑ,T )

∫ t

0

∣∣∣∣∣∣
S(ϑ̃,T̃ )(s)− S(ϑ,T )(s)− Ṡ(ϑ,T )(s)

(
(ϑ̃, T̃ )− (ϑ, T )

)
∣∣∣(ϑ̃, T̃ )− (ϑ, T )

∣∣∣
∣∣∣∣∣∣
2

ds = 0.

(S3) L2
loc-continuity of the (ϑ, T )-derivative: The mapping Ṡ is continuous

in the sense that for all t ∈ (0,∞) and (ϑ, T ) ∈ Θ× (0,∞) we have

lim
(ϑ̃,T̃ )→(ϑ,T )

∫ t

0

∣∣∣Ṡ(ϑ̃,T̃ )(s)− Ṡ(ϑ,T )(s)
∣∣∣2 ds = 0,

where the notation | · | is used for the Frobenius norm of a matrix.
(S4) L2

loc-Hölder condition with respect to T for the ϑ-derivative: For
any fixed ϑ ∈ Θ, the mapping

(0,∞) � T �→ DϑS(ϑ,T ) ∈ L2
loc

(
[0,∞);RN×D

)
with

DϑS(ϑ,T ) :=

⎛
⎜⎜⎝
∂ϑ1S

(1)
(ϑ,T ) · · · ∂ϑD

S
(1)
(ϑ,T )

...
. . .

...

∂ϑ1S
(N)
(ϑ,T ) · · · ∂ϑD

S
(N)
(ϑ,T )

⎞
⎟⎟⎠

1In the context of vector operations, we often write (ϑ, T ) instead of the formally correct
but awkward (ϑ�, T )�.
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satisfies the following local Hölder condition: For each T ∈ (0,∞), there
are

α ∈ (0, 2] and β ∈ [0, 1 + 3α/2)

such that for suitable ε > 0 and t0 ∈ [0,∞) we have∫ t

t0

∣∣∣DϑS(ϑ,T̃ )(s)−DϑS(ϑ,T )(s)
∣∣∣2 ds ≤ Ctβ

∣∣∣T̃ − T
∣∣∣α

for all t > t0, T̃ ∈ (T − ε, T + ε), and for some constant C ∈ (0,∞) that
does not depend on T̃ or t.

(S5) Linearly independent derivatives: For all ϑ ∈ Θ, the functions

∂ϑ1Sϑ, . . . , ∂ϑD
Sϑ, S

′
ϑ

are linearly independent.

Remark 2.2. 1.) If (S1) holds and Ṡ(ϑ,T )(s) is continuous (and thus also locally
bounded) with respect to ϑ, T , and s, (S2) and (S3) follow by dominated conver-
gence. Note that in general, (S1) does not require that for example ∂ϑ1S(ϑ,T )(s)
is continuous (or even locally bounded) in T or s.

2.) Suppose that (S1) holds and that for every ϑ ∈ Θ and t ∈ (0,∞) there are
δ = δ(ϑ) ∈ (0, 1] and C(ϑ, t) ≤ cst tζ with ζ ∈ [0, δ/2) such that the mapping

[0,∞) � s �→ DϑSϑ(s) :=

⎛
⎜⎜⎝

∂ϑ1S
(1)
ϑ (s) · · · ∂ϑD

S
(1)
ϑ (s)

...
. . .

...

∂ϑ1S
(N)
ϑ (s) · · · ∂ϑD

S
(N)
ϑ (s)

⎞
⎟⎟⎠ ∈ RN×d

is Hölder-δ-continuous on [0, t] with Hölder-constant C(ϑ, t). If T ∈ (0,∞), we
get that for sufficiently small ε > 0 and for all T̃ ∈ (T − ε, T + ε)

∫ t

0

∣∣∣DϑS(ϑ,T̃ )(s)−DϑS(ϑ,T )(s)
∣∣∣2 ds = ∫ t

0

∣∣∣∣DϑSϑ

(
s

T̃

)
−DϑSϑ

( s
T

)∣∣∣∣
2

ds

≤ sup
T ′∈(T−ε,T+ε)

C

(
ϑ,

t

T ′

)2∫ t

0

∣∣∣∣ sT̃ − s

T

∣∣∣∣
2δ

ds

≤ cst

(
t

T − ε

)2ζ
⎛
⎝
∣∣∣T̃ − T

∣∣∣
(T − ε)2

⎞
⎠

2δ∫ t

0

s2δds

≤ cst t2ζ+2δ+1
∣∣∣T̃ − T

∣∣∣2δ .
Setting α := 2δ, we can choose

β := 2(δ + ζ) + 1 < 2

(
δ +

δ

2

)
+ 1 = 1 + 3α/2,

and hence the Hölder condition (S4) is fulfilled.
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3.) As a consequence of the two preceding observations, all of the hypotheses
(S1)–(S4) are fulfilled if the mapping Θ× [0,∞) � (ϑ, s) �→ Sϑ(s) is in C2

b

(
Θ×

[0,∞);RN
)
and 1-periodic with respect to s. Existence and boundedness of

∂sDϑSϑ(s) ensure that we can choose δ = 1 and ζ = 0 above.
4.) Note that the choice of the matrix norm in (S3) and (S4) is of course

arbitrary. We decided to go with the Frobenius norm, because it is commonly
used and it is convenient to handle in our calculations.

The main result is the following one. For a detailed explanation and proof, as
well as an explicit introduction of the Fisher Information, we refer to Section 3.

Theorem 2.3 (Local Asymptotic Normality for E(X,Y,Z)). Grant all of the
hypotheses (A1)–(A4) and (S1)–(S5) and fix (ϑ, T ) ∈ Θ× (0,∞). Set

δn :=

⎛
⎜⎜⎜⎜⎝
n−1/2 0 · · · 0

0
. . .

. . .
...

...
. . . n−1/2 0

0 · · · 0 n−3/2

⎞
⎟⎟⎟⎟⎠ ∈ R(D+1)×(D+1) for all n ∈ N,

and fix any bounded sequence (hn)n∈N ⊂ RD+1. Then P(ϑ,T )-almost surely we
have

log
dP(ϑ,T )+δnhn |Fn

dP(ϑ,T )|Fn

= h�
n S(ϑ,T )

n − 1

2
h�
n I(ϑ,T )hn + oP(ϑ,T )(1), as n → ∞, (7)

with Fisher Information I(ϑ,T ) = I(ϑ,T )(1) as introduced in (21) and score

S(ϑ,T )
n = δn

∫ n

0

(
(σσ�)−1/2(πZ

s )Ṡ(ϑ,T )(s)
)�

dB(ϑ,T )
s for all n ∈ N

such that weak convergence

L
(
S(ϑ,T )
n

∣∣∣P(ϑ,T )
)

n→∞−−−−→ N
(
0, I(ϑ,T )

)
holds.

Proof of Theorem 2.3. This is an immediate conequence of Theorem 3.7, Propo-
sition 3.2 and (17). In particular, the assumptions (A2) and (S5) can in fact be
replaced by the slightly weaker but more technical conditions (A2’) and (S5’)
which are introduced in Section 3 below and are discussed in Remark 3.5.

Note that other than the basic existence and uniqueness assumption (A1), the
conditions for Theorem 2.3 incorporate only the external variable and the deter-
ministic signal. Before we proceed to the proof section, we would like to collect
some comments on relevant examples in which these conditions are fulfilled.

Example 2.4. A simple yet important example for the external variable is
the multidimensional Ornstein-Uhlenbeck process with time-dependent mean



LAN for a signal in a degenerate diffusion with internal variables 4895

reversion level S(ϑ,T ). This process corresponds to (12) with b(z) = −βz for all
z ∈ U ′ = RN with some positive definite β ∈ RN×N and a constant volatility
σ ∈ RN×M such that σσ� ∈ RN×N is positive definite. Assumption (A2) is
then trivially fulfilled, and in complete analogy to the case M = N = 1 (see
[18, Example 2.3]), one can calculate explicitly its transition densities, yielding
(A3). These can then be used to apply Theorem 3.2 and Theorem 4.6 (with

f ≡ 1 and V (z) = |z|2) from [32] in order to check (A4).

Example 2.5. 1.) Let Sϑ(s) = F (ϑ, ϕ(s)), where ϕ ∈ C2
(
[0,∞);RK

)
is 1-

periodic and

F : Θ× RK � (ϑ, ξ) = (ϑ1, . . . , ϑD, ξ1, . . . , ξK) �→ F (ϑ, ξ) =

⎛
⎜⎝

F1(ϑ, ξ)
...

FN (ϑ, ξ)

⎞
⎟⎠ ∈ RN

is continuously differentiable with respect to ϑ ∈ Θ and twice continuously
differentiable with respect to ξ ∈ RK . Clearly, the property (S1) holds, and
since Ṡ(ϑ,T )(s) is given by⎛
⎜⎝

(∂ϑ1F1)(ϑ, ϕ(
s
T )) · · · (∂ϑD

F1)(ϑ, ϕ(
s
T )) −sT−2(∇ξF1)(ϑ, ϕ(

s
T ))

�ϕ′( s
T )

...
. . .

...
...

(∂ϑ1FN )(ϑ, ϕ( s
T )) · · · (∂ϑD

FN )(ϑ, ϕ( s
T )) −sT−2(∇ξFN )(ϑ, ϕ( s

T ))
�ϕ′( s

T )

⎞
⎟⎠

which is continuous with respect to ϑ, T , and s, we also have (S2) and (S3).
Moreover, we see that the Hölder property from part 2.) of Remark 2.2 is fulfilled
if it is fulfilled by the mapping

RK � ξ �→

⎛
⎜⎝

(∂ϑ1F1)(ϑ, ξ) · · · (∂ϑD
F1)(ϑ, ξ)

...
. . .

...
(∂ϑ1FN )(ϑ, ξ) · · · (∂ϑD

FN )(ϑ, ξ)

⎞
⎟⎠ .

In that case, all of the hypotheses (S1)–(S4) hold.
2.) If the signal has a product structure Sϑ(s) = G(ϑ)ϕ(s) with some ϕ ∈

C2
(
[0,∞);RK

)
1-periodic and G ∈ C1

(
Θ;RN×K

)
, we can treat it as a special

case of the preceding example. As for all s, s̃ ∈ [0,∞) we have

|DϑSϑ(s)−DϑSϑ(s̃)|2 =

N∑
n=1

D∑
d=1

(
K∑

k=1

(∂ϑd
Gn,k)(ϑ)

(
ϕk(s)− ϕk(s̃)

))2

≤
(

N∑
n=1

D∑
d=1

K∑
k=1

(∂ϑd
Gn,k)

2(ϑ)

)
|ϕ(s)− ϕ(s̃)|2

≤
(

N∑
n=1

D∑
d=1

K∑
k=1

(∂ϑd
Gn,k)

2(ϑ)

)
‖ϕ′‖2∞ |s− s̃|2 ,

no further conditions are needed to ensure the Hölder property from part 2.) of
Remark 2.2 to hold with δ = 1 and ζ = 0.
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3.) In particular, the example above secures that (S1)–(S4) are fulfilled for
signals of the form

Sϑ(s) =

K∑
k=1

(
sin(2kπs)Gk(ϑ) + cos(2kπs)Hk(ϑ)

)
for all s ∈ [0,∞) (8)

with K ∈ N and Gk, Hk ∈ C1
(
Θ;RN

)
for all k ∈ {1, . . . ,K}.

4.) Taking K = D, N = 1 and Gk(ϑ) = ϑk, Hk(ϑ) = 0 for all ϑ ∈ Θ and
k ∈ {1, . . . ,K}, the signal from (8) clearly also satisfies (S5), as long as 0 /∈ Θ.

3. Proofs and supplementary results

3.1. Observing (X,Y, Z), X, or Z

We start this section with a fundamental observation: If the starting point is
known, observing only the adjustable variable X is actually no restriction, since
we can successively reconstruct the remaining variables Y and Z. Let us explain
this step for step in the following remark.

Remark 3.1. Assume that the starting point (X0, Y0, Z0) ∈ E is known. Fix a
finite time horizon t0 ∈ (0,∞) and assume that the trajectory (Xt)t∈[0,t0] has
been observed and is thus also known. Then the function (t, y) �→ g(Xt, y) is
completely known, and given the structure of the internal equation in (2), the
trajectory (Yt)t∈[0,t0] is now given as the solution to the ordinary differential
equation

dYt = g(Xt, Yt)dt for all t ∈ [0, t0].

Now we know both (Xt)t∈[0,t0] and (Yt)t∈[0,t0], and by rearranging the first line
of (2), this information allows us to calculate

Zt = Z0 +Xt −X0 −
∫ t

0

f(Xs, Ys)ds for all t ∈ [0, t0].

All in all, we have reconstructed every component of (Xt, Yt, Zt)t∈[0,t0] just from
(Xt)t∈[0,t0] and the starting point (X0, Y0, Z0).

Remark 3.1 is the legitimation for us to work with the idealized assumption
that we can in fact observe the entire process (X,Y, Z) even in situations where
realistically one could only observe the adjustable variable X. This enables us
to lift known results about estimators (compare Remarks 3.10 and 3.11). Next,
we will formally describe the corresponding statistical experiment.

In order to make Proposition 3.2 more apprehensible, we will do this very
carefully and with much attention to measure-theoretic subtleties. A look at (5)
reveals that the drift coefficient depends on the parameter (ϑ, T ) ∈ Θ× (0,∞),
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while the volatility does not. Hence, we can use [15, Theorem 6.10]2 in order to
determine the log-likelihood ratios. Let (t, x, y, z) ∈ [0,∞) × E. Comparing the
drift coefficients of (5) with different parameters (ϑ̃, T̃ ), (ϑ, T ) ∈ Θ× (0,∞), we
see that (

B(ϑ̃,T̃ ) −B(ϑ,T )

)
(t, x, y, z) = ΣΣ�(x, y, z)Γ(t, x, y, z),

where

Γ(t, x, y, z) :=

(
0(

σσ�)−1
(z)
(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(t)

)
∈ RN+L+N .

Thanks to (A2) and (6),∫ t

0

(
Γ�ΣΣ�Γ

)
(s, πs)ds ≤ σ−1

0

∫ t

0

∣∣∣S(ϑ̃,T̃ )(s)− S(ϑ,T )(s)
∣∣∣2 ds < ∞, (9)

because the signals are continuous. Thence, both conditions (+) and (++) of
[15, Theorem 6.10] are fulfilled. Writing mΦ,(ϑ,T ) for the local martingale part
of π under P(ϑ,T ), we can conclude that

log
dP(ϑ̃,T̃ )|Ft

dP(ϑ,T )|Ft

=

∫ t

0

Γ(s, πs)
�dmΦ,(ϑ,T )

s − 1

2

∫ t

0

(
Γ�ΣΣ�Γ

)
(s, πs)ds.

Setting πZ :=
(
π(N+L+1), . . . , π(N+L+N)

)�
and writing mZ,(ϑ,T ) for its local

martingale part under P(ϑ,T ), the expression for the log-likelihood ratio can be
rewritten as∫ t

0

( (
σσ�(πZ

s )
)−1 (

S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)
)�

dmZ,(ϑ,T )
s

− 1

2

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)�
(s)
(
σσ�(πZ

s )
)−1 (

S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)ds.

In order to eliminate the rather unintuitive integral with respect to mZ,(ϑ,T ),

we introduce the local
(
P(ϑ,T ), (Ft)t∈[0,∞)

)
-martingale B(ϑ,T ) :=

(
B

(ϑ,T )
t

)
t∈[0,∞)

given by

B
(ϑ,T )
t =

∫ t

0

(σσ�)−1/2(πZ
s )dm

Z,(ϑ,T )
s for all t ∈ [0,∞). (10)

2Note that we do not assume – as in this theorem – that B and Σ are defined on the entire
euclidean space and are globally Lipschitz continuous. By our assumptions, E = U × U ′ is
σ-compact and hence we can find a sequence (Kn)n∈N of compact sets increasing to E. Using
Kirszbraun’s Theorem ([28, Hauptsatz I]), the restriction to each Kn of B(t, ·) and Σ can be
extended to globally Lipschitz continuous functions on RN+L+N (which also satisfy a linear
growth condition). Hence, the proof of [15, Theorem 6.10] needs only a slight adjustment to
work in our case: Using the notation from there, the stopping time �n has to be replaced by
�n ∧ inf{t > 0 | ηt /∈ Kn}, and in equation (II(n)) and thereafter the coefficients b, σ and c
have to be altered in analogy to γ. The rest of the proof then needs no further changes.
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Its quadratic variation process is〈∫ ·

0

(σσ�)−1/2(πZ
s )dm

Z,(ϑ,T )
s

〉
t

=

∫ t

0

(σσ�)−1(πZ
s )d

(∫ s

0

σσ�(πZ
r )dr

)
= t · 1N×N

for all t ∈ [0,∞), so Lévy’s Characterization Theorem [25, Theorem II.6.1]
yields that B(ϑ,T ) is an N -dimensional

(
P(ϑ,T ), (Ft)t∈[0,∞)

)
-Brownian Motion.

Incorporating this process, we can write

log
dP(ϑ̃,T̃ )|Ft

dP(ϑ,T )|Ft

=

∫ t

0

(
(σσ�(πZ

s ))
−1/2
(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)
)�

dB(ϑ,T )
s

− 1

2

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)�
(s)
(
σσ�(πZ

s )
)−1

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)ds.

(11)

We note immediately that the only component of π that is featured explicitly in
this expression is the πZ -component. It seems plausible that we should get the
same expression for the log-likelihood ratio in an experiment that does not even
know that any variables other than Z exist. Let us make this formally rigorous.

Let η = (ηt)t∈[0,∞) be the canonical process on C
(
[0,∞);U ′), and write

Q(ϑ,T ) := L
(
[0,∞) � t �→ Z

(ϑ,T )
t

∣∣∣P)
for the law on B

(
C
(
[0,∞);U ′)

)
of the unique strong solution Z(ϑ,T ) on (Ω,F)

under P of
dZt = [S(ϑ,T )(t) + b(Zt)]dt+ σ(Zt)dWt, (12)

when issued from Z0 ∈ RN with the parameter (ϑ, T ) ∈ Θ × (0,∞). For any
t ∈ [0,∞), let

Gt :=
⋂

r∈(t,∞)

σ(ηs | s ∈ [0, r]) ⊂ B
(
C
(
[0,∞);U ′))

and consider the sequence of experiments given by

EZ :=
(
C
(
[0,∞);U ′),Gn,

{
Q(ϑ,T )|Gn

∣∣∣ (ϑ, T ) ∈ Θ× (0,∞)
})

n∈N
. (13)

Using the same arguments as above and writing m̃Z,(ϑ,T ) for the local martingale
part of η under Q(ϑ,T ), we can again use [15, Theorem 6.10] and conclude

log
dQ(ϑ̃,T̃ )|Gt

dQ(ϑ,T )|Gt

=

∫ t

0

(
(σσ�)−1/2(ηs)

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)
)�

dB̃(ϑ,T )
s

− 1

2

∫ t

0

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)�
(s)
(
σσ�(ηs)

)−1

(
S(ϑ̃,T̃ ) − S(ϑ,T )

)
(s)ds,

(14)
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where the process B̃(ϑ,T ) :=
(
B̃

(ϑ,T )
t

)
t∈[0,∞)

given by

B̃
(ϑ,T )
t =

∫ t

0

(σσ�)−1/2(ηs)dm̃
Z,(ϑ,T )
s for all t ∈ [0,∞) (15)

is again an N -dimensional
(
Q(ϑ,T ), (Gt)t∈[0,∞)

)
-Brownian Motion.

We now have calculated the log-likelihood ratios for both E(X,Y,Z) and EZ .
Comparing them leads to the following result.

Proposition 3.2. Grant assumptions (A1) and (A2). The sequences E(X,Y,Z)

and EZ corresponding to continuous observation of (X,Y, Z) or Z respectively,
with the same deterministic starting point (X0, Y0, Z0) ∈ E, are statistically
equivalent in the sense that

L

⎛
⎝(log dQ(ϑ̃,T̃ )|Gt

dQ(ϑ,T )|Gt

)
t∈[0,∞)

∣∣∣∣∣∣Q(ϑ,T )

⎞
⎠ = L

⎛
⎝(log dP(ϑ̃,T̃ )|Ft

dP(ϑ,T )|Ft

)
t∈[0,∞)

∣∣∣∣∣∣P(ϑ,T )

⎞
⎠
(16)

for all (ϑ, T ), (ϑ̃, T̃ ) ∈ Θ×(0,∞). In particular, we have LAN for E(X,Y,Z) if and
only if we have it for EZ with the same local scale, the same Fisher Information
and an identically distributed Score.

Proof. Due to the definition of P(ϑ,T ) and Q(ϑ,T ), we have

L
(
η
∣∣Q(ϑ,T )

)
= L
(
πZ
∣∣P(ϑ,T )

)
, (17)

and in view of (10), (11), (14), and (15), this implies (16) from which the second
statement of this proposition follows immediately.

In view of Theorem 2.3, Proposition 3.2 is the justification for us to re-
strict ourselves to studying the simpler process Z instead of the more complex
(X,Y, Z) in the following section.

3.2. Local Asymptotic Normality for Z

This section centres around the sequence of statistical experiments defined by EZ
in (13) which corresponds to continuous observation over growing time intervals
of the N -dimensional diffusion Z following the parameter-dependent SDE (12).
As mentioned in Section 1, taking M = N = 1, b ≡ 0, and σ ≡ 1 leads to
the classical “signal in white noise” model. For this special case, Ibragimov and
Khasminskii proved LAN with rate n−3/2 for a smooth signal with known ϑ
and unknown T , and discussed asymptotic efficiency for certain estimators (see
[24, Sections II.7 and III.5]). In [8], Golubev extended their approach with L2-
methods in order to estimate T at the same rate for unknown shape (see Remark
3.11 below) which in turn was the basis for Castillo, Lévy-Leduc and Matias for
non-parametric estimation of the shape under unknown T (see [1]). For our more
general diffusion (12), we will stay within the confines of parametric estimation.
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The main result of this section is LAN for the sequence of experiments EZ with
unknown ϑ and unknown T (Theorem 3.7). For M = N = 1, Höpfner and
Kutoyants had already solved this problem both for known T with unknown ϑ
(see [17]) and for known ϑ with unknown T (see [19]). A result on LAN jointly
in ϑ and T was presented more recently in [12], but still only in dimension one.
Theorem 3.7 extends all of these results (compare Remark 3.9) and allows for
application to simultaneous estimation of the shape and the periodicity in any
dimension.

In the context of this subsection, we replace the assumption (A1) with the
following weaker analogue.

(A1’) Unique solvability: For all (ϑ, T ) ∈ Θ × (0,∞) and all deterministic
starting points Z0 ∈ U ′, the SDE (12) has a unique strong solution
Z(ϑ,T ) : [0,∞) → U ′ under P.

We also work with the following slight relaxation of (A2).

(A2’) Uniform ellipticity: The mapping σσ� : U ′ → RN×N is uniformly
elliptic, i.e. there is some σ0 ∈ (0,∞) such that

x� (σσ�(z)
)
x ≥ σ0 |x|2 for all x ∈ RN and z ∈ U ′.

Note that so far, the only use of (A2) occured in (9), and there (A2’) would also
suffice. Let us also give an equivalent reformulation of (A4) which incorporates
the notation we introduced in the previous section.

(A4) Periodic recurrence of (12): For all (ϑ, T ) ∈ Θ × (0,∞), the grid
chain (ηkT )k∈N0

under Q(ϑ,T ) is positive Harris recurrent with invariant

probability measure μ(ϑ,T ).

Periodicity of the signal is the reason why (A4) even makes sense at all: Since
S(ϑ,T ) and therefore the entire drift term of (12) is T -periodic, the grid chain is
a U ′-valued time-homogeneous discrete-time Markov process. Another impor-
tant process that is embedded in η in a similar way is the C([0, T ];U ′)-valued
time-homogeneous path segment chain ηps := (ηpsk )

k∈N0
defined by taking an

arbitrary ηps0 ∈ C
(
[0, T ];U ′) with ηps0 (T ) = Z0 and then setting

ηpsk :=
(
[0, T ] � t �→ η(k−1)T+t

)
for all k ∈ N.

As we know from [18, Theorem 2.1 (a)]3, the path segment chain ηps inherits
positive Harris recurrence under Q(ϑ,T ) from the grid chain, and its invariant
distribution m(ϑ,T ) is the unique measure on B

(
C([0, T ];U ′)

)
such that for all

l ∈ N, 0 = t0 < t1 < . . . < tl = T , and B0, . . . , Bl ∈ B
(
U ′) we have

m(ϑ,T )(ηti ∈ Bi for all i ∈ {0, . . . , l})

=

∫
B0

μ(ϑ,T )(dx0)

∫
B1

Q
(ϑ,T )
t0,t1 (x0, dx1) . . .

∫
Bl

Q
(ϑ,T )
tl−1,tl

(xl−1, dxl),
(18)

3Note that even though this theorem is only explicitly stated for R-valued processes, the
authors remark at the beginning of the section that it remains valid for any polish state space,
in particular for the cloed set U ′ ⊂ RN .
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where
(
Q

(ϑ,T )
s,t

)
t>s≥0

is the transition semi-group of η under Q(ϑ,T ).

We will make use of the following strong law of large numbers for the path
segment chain which we cite from [18, Theorem 2.1 (b)].

Proposition 3.3. Let (A1’), (A3) and (A4) hold and fix some (ϑ, T ) ∈ Θ ×
(0,∞). Assume that (At)t∈[0,∞) is a

(
Q(ϑ,T ), (Gt)t∈[0,∞)

)
-increasing process. If

there is a non-negative function F ∈ L1
(
m(ϑ,T )

)
such that

AkT =

k∑
j=1

F
(
ηpsj

)
Q(ϑ,T )-almost surely for all k ∈ N,

then

1

t
At

t→∞−−−→ 1

T

∫
C([0,T ];U ′)

F (ϕ)m(ϑ,T )(dϕ) Q(ϑ,T )-almost surely.

Proof. See Section 2 of [18].

Proposition 3.3 is the key to the following Lemma 3.4 which is a slightly
modified multi-dimensional version of Lemmas 2.1 and 2.2 from [19].

Lemma 3.4. Grant assumptions (A1’), (A3) and (A4). Further assume that
the measurable mapping G : U ′ → RN×N has values only in the set of symmetric
matrices and is uniformly elliptic. We define the mapping

B
(ϑ,T )
G :

(
L2
(
[0, 1];RN

))2 → R,

(u, v) �→
∫ 1

0

u(s)�
(
μ(ϑ,T )Q

(ϑ,T )
0,sT (G−1)

)
v(s)ds,

(19)

where

μ(ϑ,T )Q
(ϑ,T )
0,sT (G−1) =

∫
U ′

μ(ϑ,T )(dz)

∫
U ′

Q
(ϑ,T )
0,sT (z, dz̃)G−1(z̃) ∈ RN×N

is understood as a matrix-valued integral. Then the following statements are
true.

(i) B
(ϑ,T )
G is a non-negative definite and symmetric bilinear form.

(ii) If we consider u, v ∈ L2
(
[0, 1];RN

)
as 1-periodic functions on [0,∞), then

for any k ∈ N0 we have

k + 1

tk+1

∫ t

0

sku(s/T )�G−1(ηs)v(s/T )ds
t→∞−−−→ B

(ϑ,T )
G [u, v] (20)

Q(ϑ,T )-almost surely.

Proof. For the sake of simplicity and as (ϑ, T ) is fixed anyway, we drop all corre-
sponding superscripts. First, we check that BG is indeed a well-defined mapping
with values in R. Let the lower bound for the eigenvalues of G(·) be denoted by
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G0 ∈ (0,∞). Recall that G−1(·) always exists, is positive definite, and G−1
0 is

an upper bound for its eigenvalues. Then by linearity and contractivity of the
operator μQ0,sT , we can estimate

0 ≤ BG[u, u] =

∫ 1

0

μQ0,sT

(
u(s)�G−1(·)u(s)

)
ds ≤ G−1

0

∫ 1

0

|u(s)|2 ds < ∞.

Thanks to the symmetry of G−1, we can polarize the integrand and thus the
whole expression, which allows us to use the above in order to conclude that

|BG[u, v]| =
1

2
|BG[u, u] + BG[v, v]− BG[u+ v, u+ v]| < ∞,

and hence BG is well-defined. It is then trivial to see that it is a non-negative
definite and symmetric bilinear form, and the proof for (i) is complete.

We note that the left hand side of (20) is bilinear in u and v as well. Thanks
to this and (i), the proof of the second statement of the lemma can be reduced
to the case u = v, since the general case then follows by polarization.

Let us fix u ∈ L2
(
[0, 1];RN

)
and define the process A := (At)t∈[0,∞) with

At :=

∫ t

0

u(s/T )�G−1(ηs)u(s/T )ds for all t ∈ [0,∞).

Since G−1(·) is positive definite, the integrand is non-negative, and therefore A
is an increasing process whose trajectories are obviously continuous. Note that
the expression on the left hand side of (20) can be rewritten as

k + 1

tk+1

∫ t

0

skdAs.

For k = 0, this is simply 1
tAt, which we will handle with the help of Proposition

3.3. The general statement then follows from this special case by elementary
calculus (compare Lemma 3.17 of [14]).

In order to establish the functional relation between A and η that is needed
in Proposition 3.3, we define the function

F : C
(
[0, T ];U ′)→ [0,∞), ϕ �→

∫ T

0

u(s/T )�G−1(ϕ(s))u(s/T )ds,

which is bounded by TG−1
0 ‖u‖L2([0,1]), and thus it is integrable with respect to

the probability measure m. Since u is 1-periodic, we see that

k∑
j=1

F
(
ηpsj

)
=

k∑
j=1

∫ T

0

u(s/T )�G−1(η(j−1)T+s)u(s/T )ds

=

∫ kT

0

u(s/T )�G−1(ηs)u(s/T )ds

= AkT
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for all k ∈ N, and consequently Proposition 3.3 allows to deduce Q-almost sure
convergence

lim
t→∞

1

t
At =

1

T

∫
C([0,T ];U ′)

∫ T

0

u(s/T )�G−1(ϕ(s))u(s/T )dsm(dϕ)

=
1

T

∫ T

0

u(s/T )�

(∫
C([0,T ];U ′)

G−1(ϕ(s))m(dϕ)

)
u(s/T )ds

=
1

T

∫ T

0

u(s/T )�
(∫

U ′
G−1(x)μQ0,s(dx)

)
u(s/T )ds

= BG[u, u],

where the use of Fubini’s Theorem in the second step is justified by the non-
negativity of the integrand, and the third step makes use of (18). This completes
the proof.

Using the notation from (19), for each (ϑ, T ) ∈ Θ× (0,∞) and t ∈ [0,∞) we
define the symmetric (D + 1)× (D + 1)-dimensional block matrix

I(ϑ,T )(t) :=

⎛
⎝t
(
B
(ϑ,T )

σσ� [∂ϑiSϑ, ∂ϑjSϑ]
)D
i,j=1

− t2

2T 2

(
B
(ϑ,T )

σσ� [∂ϑiSϑ, S
′
ϑ]
)D
i=1

· · · t3

3T 4B
(ϑ,T )

σσ� [S′
ϑ, S

′
ϑ]

⎞
⎠ .

(21)
Its derivative with respect to t is given by

I ′
(ϑ,T )(t) =

⎛
⎝
(
B
(ϑ,T )

σσ� [∂ϑiSϑ, ∂ϑjSϑ]
)D
i,j=1

−tT−2
(
B
(ϑ,T )

σσ� [∂ϑiSϑ, S
′
ϑ]
)D
i=1

· · · t2T−4B
(ϑ,T )

σσ� [S′
ϑ, S

′
ϑ]

⎞
⎠ .

We make the following assumption.

(S5’) Regularity of the signal with respect to B
(ϑ,T )

σσ� : For all (ϑ, T ) ∈
Θ× (0,∞) and t ∈ (0,∞), we have

(i) I(ϑ,T )(t) is invertible, (ii) I ′
(ϑ,T )(t) is invertible.

While part (ii) of (S5’) is merely needed for technical reasons (as will become
clear in the proof of Theorem 3.7 below), part (i) is of more general importance,
since I(ϑ,T )(1) will turn out to be the Fisher Information. We will discuss these
conditions in detail in the following remark.

Remark 3.5. 1.) Note that I ′
(ϑ,T )(t) is the Gramian matrix of the vectors

∂ϑ1Sϑ, . . . , ∂ϑD
Sϑ,−tT−2S′

ϑ with respect to the non-negative definite symmetric

bilinear form B
(ϑ,T )

σσ� . Hence, it is non-negative definite. The same is true for
I(ϑ,T )(t), since it is “almost a Gramian matrix”. Indeed, setting

u1 := t1/2∂ϑ1Sϑ, . . . , uD := t1/2∂ϑD
Sϑ, uD+1 := − t3/2

2T 2
S′
ϑ,
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we can write

I(ϑ,T )(t) =

⎛
⎜⎜⎜⎜⎜⎝

B
(ϑ,T )

σσ� [u1, u1] · · · · · · B
(ϑ,T )

σσ� [u1, uD+1]
...

. . .
...

... B
(ϑ,T )

σσ� [uD, uD] B
(ϑ,T )

σσ� [uD, uD+1]

B
(ϑ,T )

σσ� [uD+1, u1] · · · B
(ϑ,T )

σσ� [uD+1, uD] 4
3B

(ϑ,T )

σσ� [uD+1, uD+1]

⎞
⎟⎟⎟⎟⎟⎠ ,

and we see that for all x ∈ RD+1

x�I(ϑ,T )(t)x =

D+1∑
i,j=1

xiB
(ϑ,T )

σσ� [ui, uj ]xj +
1

3
x2
D+1B

(ϑ,T )

σσ� [uD+1, uD+1]

≥ B
(ϑ,T )

σσ�

⎡
⎣D+1∑

i=1

xiui,

D+1∑
j=1

xjuj

⎤
⎦

which is non-negative.
2.) In particular, 1.) implies that I(ϑ,T )(t) and I ′

(ϑ,T )(t) are invertible if and
only if they are positive definite.

3.) If B
(ϑ,T )

σσ� is positive definite (and hence an inner product), the same reason-
ing as in 1.) yields that linear independence of ∂ϑ1Sϑ, . . . , ∂ϑD

Sϑ, S
′
ϑ is equivalent

to invertibility of I ′
(ϑ,T )(t), and sufficient for invertibility of I(ϑ,T )(t).

4.) If (A2) holds, for all u ∈ L2
(
[0, 1];RN

)
we can use (6) and estimate

B
(ϑ,T )

σσ� [u, u] =

∫ 1

0

μ(ϑ,T )Q
(ϑ,T )
0,sT

(
u(s)�

(
σσ�)−1

(·)u(s)
)
ds ≥ σ−1

∞

∫ 1

0

|u(s)|2 ds,

i.e. B
(ϑ,T )

σσ� is positive definite (in fact even coercive). Thus, (A2) and (S5) to-
gether imply (S5’).

5.) A very simple and seemingly natural sufficient condition for (S5’) is or-

thogonality of the functions ∂ϑ1Sϑ, . . . , ∂ϑD
Sϑ, S

′
ϑ with respect to B

(ϑ,T )

σσ� (with-
out assuming this bilinear form to be positive definite). This is equivalent to
both I(ϑ,T )(t) and I ′

(ϑ,T )(t) being diagonal matrices with non-vanishing di-
agonal entries and as such they are invertible. However, this is not a very
likely scenario, since Sϑ has D degrees of freedom, determines the D functions
∂ϑ1Sϑ, . . . , ∂ϑD

Sϑ, and then S′
ϑ – while adding no further degree of freedom –

would have to be orthogonal to these as well.

Example 3.6. 1.) If the signal is of the form

Sϑ =

D∑
i=1

ϑiϕi,

where ϕ1, . . . , ϕD ∈ L2
(
[0,∞);RN

)
are 1-periodic and orthonormal with respect
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to B
(ϑ,T )

σσ� , we have

I(ϑ,T )(t) =

⎛
⎝t · 1D×D − t2

2T 2

(∑D
j=1 ϑjB

(ϑ,T )

σσ� [ϕi, ϕ
′
j ]
)
i=1,...,D

· · · t3

3T 4

∑D
i,j=1 ϑiϑjB

(ϑ,T )

σσ� [ϕ′
i, ϕ

′
j ]

⎞
⎠

which is invertible for all t ∈ (0,∞) whenever

4

3

D∑
i,j=1

ϑiϑjB
(ϑ,T )

σσ� [ϕ′
i, ϕ

′
j ] �=

D∑
i=1

⎛
⎝ D∑

j=1

ϑjB
(ϑ,T )

σσ� [ϕi, ϕ
′
j ]

⎞
⎠

2

. (22)

Similarly,

I ′
(ϑ,T )(t) =

⎛
⎝1D×D −tT−2

(∑D
j=1 ϑjB

(ϑ,T )

σσ� [ϕi, ϕ
′
j ]
)
i=1,...,D

· · · t2T−4
∑D

i,j=1 ϑiϑjB
(ϑ,T )

σσ� [ϕ′
i, ϕ

′
j ]

⎞
⎠

is invertible for all t ∈ (0,∞) whenever

D∑
i,j=1

ϑiϑjB
(ϑ,T )

σσ� [ϕ′
i, ϕ

′
j ] �=

D∑
i=1

⎛
⎝ D∑

j=1

ϑjB
(ϑ,T )

σσ� [ϕi, ϕ
′
j ]

⎞
⎠

2

. (23)

If B
(ϑ,T )

σσ� is positive definite, part 3.) of Remark 3.5 gives the condition

S′
ϑ =

D∑
i=1

ϑiϕ
′
i �=

D∑
i,j=1

ϑjB
(ϑ,T )

σσ� [ϕi, ϕ
′
j ]ϕi

for invertibility of both I(ϑ,T )(t) and I ′
(ϑ,T )(t).

2.) For M = N , let σ ≡ 1N×N , then B
(ϑ,T )

σσ� is just the standard L2-inner
product with respect to Lebesgue’s measure. If N = 1, D = 2d with d ∈ N, and
the signal has a finite Fourier expansion

Sϑ(s) =

d∑
k=1

√
2 (ϑk sin(2kπs) + ϑd+k cos(2kπs)) for all s ∈ [0,∞),

it is both of the type from the first part of this example and of the type in-
troduced in part 3.) of Example 2.5 (so in particular it satisfies (S1)–(S4)).
Elementary calculations show that the conditions (22) and (23) then become

d∑
k=1

k(ϑ2
k + ϑ2

k+d) �= α

d∑
k=1

k2ϑ2
k+d for all α ∈ {3, 4}.

If for example there are no cos-terms involved, i.e. ϑd+1 = . . . = ϑD = 0, these
inequalities are valid for all (ϑ1, . . . , ϑd) �= 0.



4906 S. Holbach

Having introduced all relevant objects and assumptions, and having illus-
trated them by examples, we can now give the main result of this section.

Theorem 3.7 (Local Asymptotic Normality for EZ). Grant all of the hypotheses
(A1’), (A2’), (A3), (A4), (S1)–(S4) and (S5’) and fix (ϑ, T ) ∈ Θ× (0,∞). Set

δn :=

⎛
⎜⎜⎜⎜⎝
n−1/2 0 · · · 0

0
. . .

. . .
...

...
. . . n−1/2 0

0 · · · 0 n−3/2

⎞
⎟⎟⎟⎟⎠ ∈ R(D+1)×(D+1) for all n ∈ N,

and fix any bounded sequence (hn)n∈N ⊂ RD+1. Then Q(ϑ,T )-almost surely we
have

log
dQ(ϑ,T )+δnhn |Gn

dQ(ϑ,T )|Gn

= h�
n S(ϑ,T )

n −1

2
h�
n I(ϑ,T )hn+oQ(ϑ,T )(1), as n → ∞, (24)

with Fisher Information

I(ϑ,T ) =

⎛
⎝
(
B
(ϑ,T )

σσ� [∂ϑiSϑ, ∂ϑjSϑ]
)D
i,j=1

−1
2T

−2
(
B
(ϑ,T )

σσ� [∂ϑiSϑ, S
′
ϑ]
)D
i=1

· · · 1
3T

−4B
(ϑ,T )

σσ� [S′
ϑ, S

′
ϑ]

⎞
⎠ .

and score

S(ϑ,T )
n = δn

∫ n

0

(
(σσ�)−1/2(ηs)Ṡ(ϑ,T )(s)

)�
dB̃(ϑ,T )

s for all n ∈ N

such that weak convergence

L
(
S(ϑ,T )
n

∣∣∣Q(ϑ,T )
)

n→∞−−−−→ N
(
0, I(ϑ,T )

)
holds.

Proof of Theorem 3.7. We fix (ϑ, T ) ∈ Θ × (0,∞), and in order to reduce no-
tational complexity we drop corresponding indices whenever there is no risk

of ambiguity: We write Q := Q(ϑ,T ), B̃ := B̃(ϑ,T ) (see (15)), Sn := S(ϑ,T )
n ,

I := I(ϑ,T ), I(t) := I(ϑ,T )(t) for all t ∈ [0,∞) (see (21)), and B := B
(ϑ,T )

σσ� (see
(19)). Moreover, we set

(ϑn, Tn) := (ϑ, T ) + δnhn for all n ∈ N. (25)

We now proceed to give the proof, divided into several steps.
1.) The main idea is to introduce a time step size t ∈ (0,∞) into the log-

likelihood ratio and then interpret(
log

dQ(ϑ,T )+δnhn |Gtn

dQ(ϑ,T )|Gtn

)
t∈[0,∞)

, n ∈ N,
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as a sequence of continuous-time stochastic processes. Splitting them into sev-
eral parts and applying Lemma 3.4 together with tools from continuous-time
martingale theory will eventually lead to the desired quadratic expansion. In-
deed, adding and subtracting the term Ṡ(ϑ,T )(s)δnhn to the difference of the
signals yields

log
dQ(ϑ,T )+δnhn |Gtn

dQ(ϑ,T )|Gtn

=

∫ tn

0

(
(σσ�)−1/2(ηs)

(
S(ϑn,Tn) − S(ϑ,T )

)
(s)
)�

dB̃s

− 1

2

∫ tn

0

(
S(ϑn,Tn) − S(ϑ,T )

)�
(s)
(
σσ�(z)

)−1(
S(ϑn,Tn) − S(ϑ,T )

)
(s)ds

= h�
n

(
δn

∫ tn

0

(
(σσ�)−1/2(ηs)Ṡ(ϑ,T )(s)

)�
dB̃s

)

− 1

2
h�
n

(
δn

∫ tn

0

Ṡ(ϑ,T )(s)
�(σσ�(ηs)

)−1
Ṡ(ϑ,T )(s)ds δn

)
hn

+

∫ tn

0

(
(σσ�)−1/2(ηs)

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)
(s)
)�

dB̃s

− 1

2

∫ tn

0

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)�
(s)
(
σσ�(ηs)

)−1

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)
(s)ds

−
∫ tn

0

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)�
(s)
(
σσ�(ηs)

)−1(
Ṡ(ϑ,T )δnhn

)
ds

=: h�
nSn(t)−

1

2
h�
n In(t)hn +Rn(t)−

1

2
Un(t)− Vn(t),

and in order to prove the theorem, we will study convergence in distribution
of Sn(t) for n → ∞ and show almost sure convergence of In(1) to I = I(1).
Finally, we show that Rn(t), Un(t), and Vn(t) converge to zero in probability.

2.) For any fixed n ∈ N, the process

Mn := (Sn(t))t∈[0,∞) =
(
δn

∫ tn

0

(
(σσ�)−1/2(ηs)Ṡ(ϑ,T )(s)

)�
dB̃s

)
t∈[0,∞)

is obviously an RD+1-valued local martingale with respect to Q. In order to
determine its weak limit for n → ∞ in the Skorohod space D

(
[0,∞);RD+1

)
, we

study its quadratic variation process 〈Mn〉 := (〈Mn〉t)t∈[0,∞) with

〈Mn〉t :=

⎛
⎜⎜⎜⎝
〈
M

(1)
n ,M

(1)
n

〉
t

· · ·
〈
M

(1)
n ,M

(D+1)
n

〉
t

...
. . .

...〈
M

(D+1)
n ,M

(1)
n

〉
t

· · ·
〈
M

(D+1)
n ,M

(D+1)
n

〉
t

⎞
⎟⎟⎟⎠ ∈ R(D+1)×(D+1).
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As follows from basic stochastic calculus, 〈Mn〉 is equal to (In(t))t∈[0,∞). Con-
sequently, for i, j ∈ {1, . . . , D} we have

〈
M (i)

n ,M (j)
n

〉
t
=

1

n

∫ tn

0

(
∂ϑiS(ϑ,T )(s)

)�(
σσ�(ηs)

)−1
∂ϑjS(ϑ,T )(s)ds

= t · 1

tn

∫ tn

0

(∂ϑiSϑ(s/T ))
�(

σσ�(ηs)
)−1

∂ϑjSϑ(s/T )ds,

and due to the periodicity of Sϑ and by part (ii) of Lemma 3.4 with g = σσ�

and k = 0, this expression converges to

t · B[∂ϑiSϑ, ∂ϑjSϑ] = Ii,j(t)

Q-almost surely for n → ∞. Since

∂TS(ϑ,T )(s) = ∂TSϑ(s/T ) = −sT−2S′
ϑ(s/T ) for all s ∈ (0,∞),

the same argument with k = 1 yields〈
M (i)

n ,M (D+1)
n

〉
t
=
〈
M (D+1)

n ,M (i)
n

〉
t

=
1

n2

∫ tn

0

(
∂ϑiS(ϑ,T )(s)

)�(
σσ�(ηs)

)−1
∂TS(ϑ,T )(s)ds

=
−t2

2T 2
· 1

1
2 (tn)

2

∫ tn

0

s · (∂ϑiSϑ(s/T ))
�(

σσ�(ηs)
)−1

S′
ϑ(s/T )ds

n→∞−−−−→ −t2

2T 2
· B[∂ϑiSϑ, S

′
ϑ] = Ii,D+1(t) = ID+1,i(t)

Q-almost surely, and analogously (with k = 2)

〈
M (D+1)

n ,M (D+1)
n

〉
t
=

1

n3

∫ tn

0

(
∂TS(ϑ,T )(s)

)�(
σσ�(ηs)

)−1
∂TS(ϑ,T )(s)ds

=
t3

3T 4
· 1

1
3 (tn)

3

∫ tn

0

s2 · S′
ϑ(s/T )

�(σσ�(ηs)
)−1

S′
ϑ(s/T )ds

n→∞−−−−→ t3

3T 4
· B[S′

ϑ, S
′
ϑ] = ID+1,D+1(t)

Q-almost surely. In other words,

〈Mn〉t n→∞−−−−→ I(t) Q-almost surely for all t ∈ [0,∞),

and hence the Martingale Convergence Theorem [27, Corollary VIII.3.24] implies
weak convergence

L(Mn|Q)
n→∞−−−−→ L(M |Q) in D

(
[0,∞);RD+1

)
(26)
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to some limit martingale M = (M(t))t∈[0,∞) with quadratic variation process
〈M〉 = (I(t))t∈[0,∞).

4 As noted in Remark 3.5, I ′(t) is symmetric and non-

negative definite, so it possesses a square root
√

I ′(t) ∈ R(D+1)×(D+1). By

(S5’), I ′(t) is invertible and hence
√

I ′(t) is invertible as well. Thus, the Rep-
resentation Theorem [25, Theorem II.7.1] yields that M can be expressed as

M(t) =

∫ t

0

√
I ′(s)dB′

s for all t ∈ [0,∞)

with some (D + 1)-dimensional Brownian Motion B′. Together with (26), this
also implies weak convergence

L(Mn(t)|Q)
n→∞−−−−→ L(M(t)|Q) = N

(
0,

∫ t

0

I ′(s)ds

)
= N (0, I(t))

for all t ∈ [0,∞). In particular, choosing t = 1 yields weak convergence of the
score

L(Sn|Q) = L(Mn(1)|Q)
n→∞−−−−→ N (0, I(1)) = N (0, I),

which completes this step of the proof.
3.) In the second step, we have shown on the fly that

In(1) = 〈Mn〉1 n→∞−−−−→ 〈M〉1 = I(1)

Q-almost surely.
4.) It remains to show convergence to zero in Q-probability of the remainder

terms Rn(t), Un(t), and Vn(t) introduced at the very beginning of this proof.
Therefore, we consider the sequence (Rn)n∈N of the local Q-martingales defined
by

Rn(t) =

∫ tn

0

(
(σσ�)−1/2(ηs)

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)
(s)
)�

dB̃s

for all t ∈ [0,∞). Their quadratic variation processes are obviously given by
(Un(t))t∈[0,∞). Exploiting the uniform ellipticity assumption (A2’), we can esti-
mate

〈Rn〉t =
∫ tn

0

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)�
(s)
(
σσ�(ηs)

)−1

(
S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

)
(s)ds

≤ σ−1
0

∫ tn

0

∣∣∣S(ϑn,Tn) − S(ϑ,T ) − Ṡ(ϑ,T )δnhn

∣∣∣2 ds
= σ−1

0

∫ tn

0

∣∣S(ϑn,Tn) − S(ϑ,T ) −DϑS(ϑ,T )(ϑn − ϑ)

− ∂TS(ϑ,T )(s)(Tn − T )
∣∣2ds.

(27)

4To be exact, M is actually defined on some arbitrary probability space, but in order to
avoid making things more complicated than necessary, we assume without loss of generality
that M is in fact defined on (a standard extension of) the same probability space as the
sequence (Mn)n∈N.
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Note that this upper bound is entirely deterministic. In order to prove that it
in fact converges to zero, we will separate the dependence on the parameters ϑ
and T in such a way that we can use the periodicity and (S1)–(S4) efficiently.
This can be achieved by continuing the inequality (27) with

〈Rn〉t ≤ 3σ−1
0

(∫ tn

0

∣∣S(ϑn,Tn)(s)− S(ϑ,Tn)(s)−DϑS(ϑ,Tn)(s)(ϑn − ϑ)
∣∣2 ds

+

∫ tn

0

∣∣(DϑS(ϑ,Tn) −DϑS(ϑ,T )(s)
)
(ϑn − ϑ)

∣∣2 ds
+

∫ tn

0

∣∣S(ϑ,Tn)(s)− S(ϑ,T )(s)− ∂TS(ϑ,T )(s)(Tn − T )
∣∣2 ds)

=: 3σ−1
0 (An +Bn + Cn).

We will treat convergence of An, Bn, and Cn step for step. For this purpose, set
H := supn∈N |hn| and note that due to (25) we have

|ϑn − ϑ| ≤ Hn−1/2 and |Tn − T | ≤ Hn−3/2

for all n ∈ N.
Starting with An, we observe that for sufficiently large n ∈ N we have Tn ∈

[T/2, 2T ] and thus An can be estimated by

(
tn

Tn
+ 1

)∫ Tn

0

∣∣S(ϑn,Tn)(s)− S(ϑ,Tn)(s)−DϑS(ϑ,Tn)(s)(ϑn − ϑ)
∣∣2 ds

=

(
tn

Tn
+ 1

)
|ϑn − ϑ|2

∫ Tn

0

∣∣∣∣S(ϑn,Tn)(s)− S(ϑ,Tn)(s)−DϑS(ϑ,Tn)(s)(ϑn − ϑ)

|ϑn − ϑ|

∣∣∣∣
2

ds

≤
(

tn

T/2
+ 1

)
H2n−1

∫ 2T

0

∣∣∣∣S(ϑn,Tn)(s)− S(ϑ,Tn)(s)−DϑS(ϑ,Tn)(s)(ϑn − ϑ)

|ϑn − ϑ|

∣∣∣∣
2

ds,

where the factor in front of the integral is obviously convergent. Using the L2-
continuity condition (S3) and a simple application of the Mean Value Theorem
(compare Lemma 3.18 of [14]), one sees that the integral itself tends to zero.

Next, using the Hölder condition (S4), we obtain for sufficiently large n ∈ N

that

Bn ≤ |ϑn − ϑ|2
∫ tn

0

∣∣DϑS(ϑ,Tn)(s)−DϑS(ϑ,T )(s)
∣∣2 ds

≤ H2n−1

(∫ t0

0

∣∣DϑS(ϑ,Tn)(s)−DϑS(ϑ,T )(s)
∣∣2 ds+ C(tn)β |Tn − T |α

)

≤ H2n−1

∫ t0

0

∣∣∣Ṡ(ϑ,Tn)(s)− Ṡ(ϑ,T )(s)
∣∣∣2 ds+ CH2+αtβnβ−(1+3α/2).

The particular conditions on α and β from (S4) make the second summand
vanish for n → ∞, while the first summand converges to zero because of (S3).
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In order to estimate Cn, we make explicit use of the C2-property (S1) which
is readily translated into the condition that the mapping

(0,∞) � T �→ S(ϑ,T )(s)

is twice continuously differentiable for any fixed s ∈ (0,∞). Consequently, for
every s ∈ (0,∞) and any i ∈ {1, . . . , N} Taylor expansion with the Lagrange
form of the remainder provides a �i = �i(s, ϑ, T, Tn, hn) between T and Tn such
that for sufficiently large n ∈ N we can infer that∣∣S(ϑ,Tn)(s)− S(ϑ,T )(s)− (Tn − T )∂TS(ϑ,T )(s)

∣∣2
=

N∑
i=1

(
1

2
(Tn − T )2∂2

TS
(i)
(ϑ,T )(s)|T=�i

)2

=
1

4
(Tn − T )

4
N∑
i=1

(
s2

�4i

(
S
(i)
ϑ

)′′
(s/�i) +

2s

�3i

(
S
(i)
ϑ

)′
(s/�i)

)2

≤ 1

4
H4n−62N

[(
s2

‖S′′
ϑ‖∞

(T − n−3/2H)4

)2

+

(
s

2 ‖S′
ϑ‖∞

(T − n−3/2H)3

)2
]

≤ cstn−6(s4 + s2)

for some positive constant not depending on s or n. Integrating yields

Cn ≤ cstn−6

∫ tn

0

(s4 + s2)ds

and hence Cn vanishes for n → ∞.
So far, we have shown that the sequence of random variables (Un(t))n∈N not

only vanishes in probability under Q for n → ∞, but is even bounded by a
deterministic sequence which goes to zero. Therefore,

EQ[Rn(t)
2] = EQ[〈Rn〉t] = EQ[Un(t)]

n→∞−−−−→ 0, (28)

and in particular, Rn(t) also vanishes in probability under Q for n → ∞. Finally,
the same is true for the last remainder variable Vn(t), as by the Cauchy-Schwarz
inequality we get that

|Vn(t)|2 ≤ Un(t)h
�
n In(t)hn ≤ Un(t)H

2 |In(t)| n→∞−−−−→ 0, (29)

since In(t) converges and Un(t) goes to zero. Taking t = 1 completes the
proof.

Remark 3.8. The convergence in probability for n → ∞ of the remainder
terms Rn(t), Un(t), and Vn(t) (which determine the term oQ(ϑ,T )(1) in (24)) is
in fact even uniform with respect to t ∈ [0, t0] for every t0 ∈ (0,∞). This is clear
for Un(t), since it only increases with t. Using the Burkholder-Davis-Gundy
inequality, the estimation (28) can be improved to

EQ

[
sup

t∈[0,t0]

|Rn(t)|2
]
≤ 4EQ[〈Rn〉t0 ] = 4EQ[Un(t0)]

n→∞−−−−→ 0,
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which also takes care of Rn(t). For Vn(t), we notice that the bound given in
(29) only depends on t via In(t) and Un(t) which are both non-decreasing with
respect to t.

Remark 3.9. In the one-dimensional caseM = N = 1, there are already known
variants of Theorem 3.7 that treat shape and periodicity separately.

For the submodel in which the shape parameter ϑ is known and the only
parameter of interest is the periodicity T , Theorem 3.7 includes [19, Theorem
1.1] as a special case (for this purpose, our assumptions can be reduced to (A1’),
(A2’), (A3), (A4) and the C2-property from (S1)).

For the submodel for known periodicity and unknown shape on the other
hand, Theorem 3.7 leads to the same conclusion as [17, Theorem 2.1] (note
that Score and Fisher Information are given on the time scale of the known
periodicity T there). In [17], the L2-smoothness conditions on the signal are not
assumed to hold with respect to Lebesgue’s measure ds as in (S2) and (S3) but
with respect to the measure

νϑ(ds) := μ(ϑ,T )P
(ϑ,T )
0,sT (σ−2)ds

which is assumed to be locally finite. In practice, the latter property will es-
sentially always be checked via uniform ellipticity (A2’). Assuming (A2’), the
density of νϑ is bounded, and hence the corresponding L2-smoothness assump-
tions can most naturally be checked via our conditions (S2) and (S3). In this
sense, the difference between our assumptions and those in [17] is negligible.

The key to bringing these results together in Theorem 3.7 is the Hölder con-
dition (S4) which is crucial for dealing with the term Bn in step 3.) of its proof.
This is the only instant where (in contrast to the terms An and Cn) we have
to impose more than just “joint smoothness”, but a more specific relation of
the interplay between T and ϑ. It should also be noted that (A2’) is essential
for this step, as it yields a purely deterministic bound for the remainder terms.
Otherwise, even if we restated (S2)–(S4) with L2-convergence replaced by con-

vergence with respect to the semi-norm induced by B
(ϑ,T )

σσ� , we could not treat
this term with the methods used in Lemma 3.4 due to the occurrence of different
periodicities in the integrand.

Remark 3.10. In the two submodels corresponding to a separate treatment
of shape and periodicity, the following is known about estimators achieving the
efficiency bounds following from Theorem 3.7. Keep in mind that by Remark
3.1 the same estimators can be used for the richer process (X,Y, Z), even if only
X is actually observable, and by Theorem 2.3 the same efficiency bounds hold
in this case.

First assume that T is known, and that we would like to estimate the unknown
shape parameter ϑ. In this case, Section 4 of [17] (the general assumptions of
which are covered by ours, as already noted in Remark 3.9) provides a minimum
distance estimator that can be made efficient via one-step-modification (see [17,
Theorem 4.1], and discusses efficiency of the maximum likelihood and Bayesian
estimator (see [17, Remark 4.2]).
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Next assume that ϑ is known, and that we would like to estimate the unknown
periodicity T . In this situation, [20, Theorem 1] states that the corresponding
maximum likelihood and Bayesian estimator are efficient in the sense of [20,
Equation (21)]. Note that this property is slightly different from efficiency in
the sense of LeCam (see [15, p. 194]) and that it is proved under the assumption
that the convergence of certain functionals (similar to (20) in our setting) is
locally uniform with respect to T .

Remark 3.11. ForM = N , σ ≡ 1N×N , and any drift b : RN → RN , the process
Z̃ = (Z̃t)t∈[0,∞) defined by

Z̃t := Zt −
∫ t

0

b(Zs)ds for all t ∈ [0,∞)

fulfills the “signal in white noise” equation

dZ̃t = S(ϑ,T )(t)dt+ dWt.

This transformation removes some complexity from the model and relates it to
a well-studied equation. Note however that even if Z satisfies the recurrence
assumption (A4), Z̃ does not.

For Z̃ with M = N = 1, Golubev (see [8], or compare [1] for a more detailed
probabilistic explanation) proposes an estimator for T under unknown infinite-
dimensional ϑ (the vector of the Fourier-coefficients of the signal) which he
proves to be asymptotically normal and efficient, where the normalisation factor
(translated into our notation) is given by

n3/2

(
1

12T 4

∫ 1

0

(S′
ϑ(s))

2ds

)1/2

= (δn)
−1
d+1,d+1

(
1

4
Id+1,d+1

)−1/2

.

This corresponds to what is indeed the optimal limit variance in Theorem 3.7:
The factor 1

4 stems from the fact that [8] deals with a two-sided model which is
statistically equivalent to two independent copies of our one-sided model (com-
pare [12, Example 2.7]).
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[28] M. Kirszbraun: Über die zusammenziehende und Lipschitzsche Transfor-
mationen. In: Fundamenta Mathematicae Vol. 22 (1935), pp. 77–108.

[29] Y. A. Kutoyants: Statistical Inference for Ergodic Diffusion Processes.
Springer, 2004. MR2144185

[30] P. Lánský, L. Sacerdote, F. Tomassetti: On the comparison of Feller
and Ornstein-Uhlenbeck models for neural activity. In: Biological Cybernet-
ics Vol. 73 (1995), pp. 457–465.

[31] L. LeCam, G. Yang: Asymptotics in Statistics. Some Basic Concepts.
Springer, 1990. MR1066869

[32] S. Meyn, R. Tweedie: Stability of Markovian processes I: criteria for
discrete-time chains. In: Advances in Applied Probability Vol. 24 (1992),
pp. 542–574. MR1174380

[33] C. Morris, H. Lecar: Voltage oscillations in the barnacle giant muscle
fiber. In: Biophysical Journal Vol. 35 (1981), pp. 193–213.

[34] L. Rey-Bellet, L. E. Thomas: Exponential convergence to non-
equilibrium stationary states in classical statistical mechanics. In: Com-
munications in Mathematical Physics Vol. 225 (2002), pp. 309–329.
MR1889227

[35] J. Rinzel, B. Ermentrout: Analysis of neural excitability and oscil-
lations. In: Methods in Neuronal Modeling: From Ions to Networks, 2nd
edition (1998), pp. 251–291.

http://www.ams.org/mathscinet-getitem?mr=3226954
http://www.ams.org/mathscinet-getitem?mr=3449311
http://www.ams.org/mathscinet-getitem?mr=3648039
http://www.ams.org/mathscinet-getitem?mr=3581833
http://www.ams.org/mathscinet-getitem?mr=0620321
http://www.ams.org/mathscinet-getitem?mr=1011252
http://www.ams.org/mathscinet-getitem?mr=2263523
http://www.ams.org/mathscinet-getitem?mr=1943877
http://www.ams.org/mathscinet-getitem?mr=2144185
http://www.ams.org/mathscinet-getitem?mr=1066869
http://www.ams.org/mathscinet-getitem?mr=1174380
http://www.ams.org/mathscinet-getitem?mr=1889227

	Introduction of the model and the problem
	Main results and applications
	Proofs and supplementary results
	Observing (X,Y,Z), X, or Z
	Local Asymptotic Normality for Z

	References

