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sample performance of the proposed methods is examined via numerical
simulations and a breast cancer data analysis.
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1. Introduction

With the development of science and technology, the problem with high di-
mensionality has become increasingly important over the recent years. Regu-
larization is fundamental in analysis of high-dimensional data. A well-known
example for regularization is Lasso ([33]), however, in some applications, such
as ANOVA or multi-task regression, the selection of important predictors cor-
responds to the selection of the groups of predictors. As a natural extension
of Lasso, the group Lasso, which is proposed by [1] and further developed by
[38], exploits a weighted sum of �2 norms of the coefficients associated with a
group of features and leads to feature selection at group level. For more details
about the group Lasso we refer to [13]. An obvious limitation of group Lasso is
the non-overlapping structure which introduces a barrier to its applicability in
practice where features may be encoded in more than one group. A solution to
this problem is the overlapping group Lasso which proposed by [15] and further
studied by [27] in the linear regression model setting.

In many studies, discrete data, such as categorical data or count data, is
frequently encountered. Generalized linear models (GLMs, [22]) are the most
commonly-used regression models for discrete data. Regularization method has
been proposed to manipulate the small n and big p problems in GLMs [30,
23, 29, 3, 40]. The main shortcoming of these procedures is that the group
structure of predictors must be pre-specified and this is not always possible in
practice. The graphical structure of predictors, however, can be obtained from
prior information, for example, in biological studies, the massive information
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about gene interaction can be used to construct the predictor graph where
nodes represent genes and edges indicate regulatory relationships [20, 31]. If the
prior information cannot be obtained in some applications, we can construct
the predictor graph by sparse estimation of the covariance (or precision) matrix
of the predictors [39, 11, 6]. On the other hand, it is reasonable to assume that
two neighboring genes in a network are more likely to participate together in
the same biological process than two genes far away in the network [28, 16]. In
particular, as demonstrated in cancer marker discovery [7], changes in expression
of some causal genes governing metastatic potential (e.g., ERBB2 and MYC)
may be only subtle and nonsignificant while some of their neighbors have much
stronger alterations. Hence, it is reasonable and helpful to take the neighbors of
a predictor in the graph as a group.

There are now a lot of methods to utilize the graphical information of predic-
tors. Recently, Yu and Liu [37] propose a node-by-node method to incorporate
the graphical information among predictors for linear regression model. By mo-
tivating by the least square estimator, they note that the true coefficients of the
model can be expressed as

β0 = Σ−1Σxy = ΩΣxy, (1)

where β0 is the true coefficients of the model, Ω = Σ−1 is the precision matrix,
Σxy is the cross-covariance vector. Thus, there are a natural relationship be-
tween the predictors and the graphical structures in the linear regression model
for the graphical structure of predictors can be defined by the precision matrix,
Ω. However, this strategy won’t work when we seek to construct such relation-
ship between the predictors and the graphical structures in generalized linear
models, since the closed form for the estimator of the generalized linear models,
such as logistic regression model or poisson regression model, usually is hard
to be obtained in practice. Hence, how to incorporate the graphical structure
among predictors for generalized linear models becomes a very interesting and
challenging problem. In this paper, we note that the true coefficients of the
generalized linear models can also be expressed as the form as (1) by using the
sufficient dimension reduction (SDR, [8]) techniques:

β∗ ∝ Σ−1(η(y)− μ) = Ω(η(y)− μ), (2)

where β∗ is the true coefficients of the generalized linear models, μ is the ex-
pectation of the predictors and η(y) is a function of y, which is a given value
of the response. Based on the equation (2) and motivated by Yu and Liu [37],
we propose a sparse generalized linear models incorporating graphical struc-
ture among predictors (sGLMg) to model the graphical structure information
of predictors for generalized linear models. The oracle inequality and the model
selection consistency of the proposed sGLMg method is presented in this paper
by assuming that the predictors graphical structure G is given. In fact, when
the graphical structure G is unknown, it also can be obtained by sparse es-
timation of the covariance (or precision) matrix of the predictors [39, 11, 6].
In simulation studies, we compare both cases when the graphical structure of
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predictors is given and it is estimated. The sGLMg method proposed in this
paper can utilize the neighborhood information of the graph directly and many
popular methods such as adaptive Lasso, group Lasso and ridge regression can
be included as special cases.

The remainder of this paper is organized as follows. In section 2, we introduce
our proposed sGLMg model. In section 3, we study the theoretical properties of
sGLMg. In section 4 and 5, Monte Carlo simulation studies and a breast cancer
data analysis are conducted to examine the performance of sGLMg method in
finite samples. Finally, we conclude this paper with some discussion in section 6.

2. Sparse generalized linear models incorporating graphical
structure

We consider the generalized linear models (GLMs) introduced by [22]. Let F be
a probability distribution on R not concentrated on a point and (X, Y ) be a pair
of random variables, where X ∈ R

p and Y ∈ R. We assume that X follows some
multivariate distribution with mean 0p×1 and covariance matrix Σ. The condi-

tional distribution of Y given X = x is P (Y |(β∗
0 , β

∗),x) = exp{y(β∗
0 + β∗�x)−

φ(β∗
0 +β∗�x)}, where β∗

0 +β∗�x ∈ Θ with Θ := {θ ∈ R :
∫
exp(θx)F (dx) < ∞}

and φ is normalized function. Note that μ = E(Y |X)
a.s.
= φ′(β∗

0 + β∗�X), that

is β∗
0 + β∗�X

a.s.
= g(μ), where g = φ′−1

is the so called link function. In fact,
the link function g can be any strictly monotone differentiable functions and we
only consider canonical link functions, that is, g(μ) = β∗

0 +β∗�X. The standard
linear regression model is obviously an example of GLMs, in addition, the com-
mon examples of GLMs including: logistic regression model, poisson regression
model, gamma model and exponential (or weibull) model.

Let (X1, Y1), · · · , (Xn, Yn) be the i.i.d. copies of the population (X, Y ), where
Xi = (Xi,1, · · · , Xi,p)

�, i = 1, · · · , n. We consider the case of high dimensional
regression and assume that

• (A1) the variable X is almost surely bounded by a counstant K, that is,
there exists a constant K > 0 such that ‖X‖∞ ≤ K a.s.;

• (A2) For all x ∈ [−K,K]p, β∗
0 +β∗�x ∈ Int(Θ), where Int(Θ) denote the

set of all interior point in Θ;

• (A3) the sample size n and the number of predictors p satisfy log(2p)
n ≤ 1.

Remark: Technically, Assumption (A1) is not a reasonable condition when the
graphical structure among predictors is considered, since, in that case, it usually
assume that X follows multivariate normal distribution in order to measure the
graphical structure by precision matrix conveniently. However, in fact, Assump-

tion (A1) may be extended to that X is bounded by O(
√

n
log(n) ) in the light of

the method described in [32]. In this paper, for the sake of simplicity, we assume

that X is bounded by a constant rather than a bound proportional to
√

n
log(n) .

Further, we note that Assumption (A1) is also a technique condition required
in [3, 34].
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The log-likelihood for GLMs is given by L(β0, β) =
∑n

i=1

{
Yi(β0 + β�Xi) −

φ(β0 + β�Xi)
}
. We denote the loss function for GLMs by �(β0, β) :=

�(β0, β;x, y) := −y(β0+β�x)+φ(β0+β�x). Notice that �(β0, β) is convex in β
(as φ is convex). The associated risk is denoted by P�(β0, β) := E�(β0, β;X, Y )
and the empirical risk by Pn�(β0, β) := 1

n

∑n
i=1{−Yi(β0 + β�Xi) + φ(β0 +

β�Xi)}. We consider

Ξ =
{
(β0, β) ∈ R

(p+1) : ∀x ∈ [−K,K]p, β0 + β�x ∈ Θ
}
,

and it is obvious that (β∗
0 , β

∗) = argmin(β0,β)∈Ξ P�(β).
From the theorem 2.1 of [9] and the condition 3.1 of [19] we have

E(X|Y = y) = E[E(X|β∗�X)|Y = y] = E

[{
μ+

Σβ∗β∗�(X− μ)

β∗�Σβ∗

}∣∣∣Y = y

]

= μ+
Σβ∗

E[β∗�(X− μ)|Y = y]

β∗�Σβ∗

= μ+Σβ∗k(y),

where μ = E(X),Σ = Var(X) and k(y) = E[β∗�(X−μ)|Y=y]

β∗�Σβ∗ . Let η(y) = μ +

Σβ∗k(y) then
β∗ ∝ Σ−1(η(y)− μ). (3)

Let Σ−1 = Ω = (ωij)i,j=1,2,··· ,p, where Ω is the precision matrix which measures
partial correlations among predictors, then by (3) we know that β∗ can be
reformulated as β∗ = Ωγ, thus we have

β∗
1 = γ1ω11 + γ2ω12 + · · ·+ γjω1j + · · ·+ γpω1p

β∗
2 = γ1ω21 + γ2ω22 + · · ·+ γjω2j + · · ·+ γpω2p

... (4)

β∗
p = γ1ωp1 + γ2ωp2 + · · ·+ γjω1j + · · ·+ γpωpp.

Notice that β∗ can be formulated as the sum of p parts, {(γjω1j , γjω2j , · · · ,
γjωpj)

� : 1 ≤ j ≤ p}, by (4). For the jth part, (γjω1j , γjω2j , · · · , γjωpj)
�,

there is a common factor γj . If γj is equal to 0, then all the components in
the jth part of β∗ will be 0 simultaneously. On the other hand, if γj is not
zero and the graphical structure of predictors is defined by Ω, then the sup-
port of (γjω1j , γjω2j , · · · , γjωpj)

� becomes the Nj , which is the set including
predictor j and its neighbors in the predictor graph. From the above analysis,
we can conclude that it is reasonable to incorporate the graphical structure of
the predictors into generalized linear models. Furthermore, the results in [41]
and [14] indicate that it is indeed helpful to incorporate the graphical struc-
ture among the predictors in logistic regression. In this paper, we treat the
neighbors of each predictor as a group, since the predictor graph can generally
not be represented as some no-overlapping groups, these groups are overlap-
ping. Therefore, we consider a latent decomposition of β∗ into p parts based on
the overlapping groups N1,N2, · · · ,Np. After choosing the non-zero candidate
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component in each part according to N1,N2, · · · ,Np, we use the ordinary group
Lasso penalty to encourage the selected components in each part to be zero or
nonzero simultaneously.

The above idea can be extended to arbitrary graphs constructed by the priori
information or estimated from the data. Now we suppose that the predictor
graph G is given. We define a p× p adjacency matrix E = (Eij)i,j=1,··· ,p where
Eij = 1 if the predictor i and j are connected and Eij = 0 otherwise. We
set Ejj = 1 for j = 1, · · · , p, then the neighborhood Nj can be defined as
Nj = {k : Ejk = 1}. We assume that β∗ can be decomposed into

β∗
1 = W

(1)
1 E11 +W

(2)
1 E12 + · · ·+W

(j)
1 E1j + · · ·+W

(p)
1 E1p

β∗
2 = W

(1)
2 E21 +W

(2)
2 E22 + · · ·+W

(j)
2 E2j + · · ·+W

(p)
2 E2p

... (5)

β∗
p = W (1)

p Ep1 +W (2)
p Ep2 + · · ·+W (j)

p Epj + · · ·+W (p)
p Epp.

According to the definition of Eij , the candidate nonzero components of the jth

part, (W
(j)
1 E1j , W

(j)
2 E2j , · · · ,W (j)

p Epj)
�, are {W (j)

k Ekj : k ∈ Nj}. Note that

the factor {W (j)
k : k ∈ Nj} in each part can be viewed as the effect arising form

the marginal correlation between the jth predictor and the response variable.

If they are uncorrelated, W
(j)
k will be zero for each k ∈ Nj and the components

in the set {W (j)
k Ekj : k ∈ Nj} will be zero together. Thus, it is reasonable to

use the group Lasso penalty to encourage the selected components in each part
to be zero or nonzero simultaneously if the the candidate nonzero components
in each part have been selected based on N1,N2, · · · ,Np. Based on this idea
which is motivated by [37], given the graph of the predictors and the training
data (X1, Y1), · · · , (Xn, Yn), we propose the following sparse generalized linear
models incorporating graphical structure among predictors (sGLMg).

• Find the neighborhoods N1,N2, · · · ,Np based on the predictor graph G
(note that j ∈ Nj , j = 1, · · · , p)

• Solve the following optimization problem:

min
(β0,β),W (1),··· ,W (p)

Pn�(β0, β) + λ

p∑
j=1

dj‖W (j)‖2, (6)

subject to
∑p

j=1 W
(j) = β and supp(W (j)) ⊂ Nj , ∀j = 1, · · · , p, where

supp(W (j)) is the support of vector W (j) and ‖ · ‖2 is the �2 norm.

Here, λ is a tuning parameter which can be determined by cross validation and
dj is the positive weight for the jth group and the choice of dj will be discussed
in section 4.

The optimization problem of (6) can be solved by the predictor duplication

method proposed in [26]. More precisely, let W
(j)
Nj

and XiNj denote the |Nj | × 1

sub-vector of W (j) and the |Nj | × 1 sub-vector of Xi with indices in Nj , re-

spectively, where i = 1, · · · , n, j = 1, · · · , p. Let X̃i = (X�
iN1

,X�
iN2

, · · · ,X�
iNp

)�
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and W̃ = (W
(1)
N1

�
,W

(2)
N2

�
, · · · ,W (p)

Np

�
)�, then, it is easy to verify that β�Xi =

W̃�X̃i. Therefore, the optimization problem (6) is equivalent to the following
ordinary group Lasso problem:

min
(β0,W̃ )

1

n

n∑
i=1

[
−Yi(β0 + W̃

�
X̃i) + φ(β0 + W̃

�
X̃i)
]
+ λ

p∑
j=1

dj‖W (j)
Nj

‖2. (7)

There are now a lot of efficient R packages, such as grpLasso [23], grpreg [4]
and gglasso [36], can be used to solve the optimal problem (7). Recently, Zeng
and Breheny [40] develop an R package called grpregOverlap based on grpreg,
which can be used to solve the overlapping group Lasso directly.

By setting Ŵ
(j)
N c

j
= 0 for j = 1, · · · , p, we can get β̂ =

∑p
j=1 Ŵ

(j). Notice

that in some special graphical structures, there may exists some exactly same

neighborhood. Then, the vector {W (j)
Nj

: j ∈ F} is indistinguishable and there-

fore the decomposition of β is not unique (i.e. {W (1),W (2), · · · ,W (p)} is not

unique). In this case, the vector in {W (j)
Nj

: j ∈ F} can not be estimated stably,

however, we can estimate
∑

j∈F W
(j)
Nj

directly and stably using the penalty term

(minj∈F dj)‖
∑

j∈F W
(j)
Nj

‖2. Because β̂ =
∑p

j=1 Ŵ
(j), different decompositions

of β lead to the same estimation of β.

3. Theoretical properties of sGLMg

In this section we study the theoretical properties of the proposed sGLMg and
the Oracle inequalities for the estimator of sGLMg will be presented in the finite
sample setting. Given the predictor graph G and positive weights dj , for β ∈ R

p,
we denote

‖β‖G,d = min∑p
j=1 W (j)=β,supp(W (j))⊂Nj

p∑
j=1

dj‖W (j)‖2. (8)

Note that ‖β‖G,d defined in (8) is similar to the latent group Lasso penalty
defined in [26], however, it is very different in motivation between them since
our proposed method is a graph based penalization problem. To give a geomet-
ric illustration of this norm we consider the case of p = 4. We consider that
N1 = {1, 2, 3},N2 = {1, 2},N3 = {1, 3, 4} and N4 = {3, 4}, then the norm
‖β‖G,d we defined is a unit ball in R

4 that has two circular sets of singularities
corresponding to cases where (β1, β2) only or (β3, β4) only is nonzero and two
spherical sets of singularities corresponding to cases where (β1, β2, β3) only or
(β1, β3, β4) only is nonzero. The graph of this norm in R

3 can refer to figure 2
of [26]. Thus, the minimum in (6) is equivalent to

min
(β0,β)∈R(p+1)

Pn�(β0, β) + λ‖β‖G,d. (9)

Note that the optimal decomposition of β minimizing ‖β‖G,d always exists, but
may not be unique [26]. We introduce the following notations: denote J∗ = {j :
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β∗
j 
= 0} as the true nonzero coefficient set and J∗c = {j : β∗

j = 0} as the true
zero coefficient set. Let s∗ = |J∗| denote the number of true nonzero coefficients.
For each β ∈ R

p, we denote W(β) as the set of all optimal decompositions of β.
Define KG(β) = min(W (1),W (2),··· ,W (p))∈W(β)

∣∣{j : ‖W (j)‖2 
= 0}
∣∣, which denotes

the number of nonzero W (j) in the optimal decomposition of β that has the
minimal number of nonzero W (j). Denote KG = supsupp(β)⊂J∗ KG(β). It is easy
to check that KG = s∗ if the graph G has no edge, KG = K0 if G consists of
some disconnected complete subgraph and J∗ is the union of K0 nodes sets of
those disconnected subgraph. Denote Nmax = max{|Nj | : j = 1, · · · , p} as the
number of variables in the neighborhood which contains the maximum number
of predictors. We make the following assumption for the neighborhood Nj :

• (A4) For each j ∈ J∗, Nj ⊂ J∗.

This condition assumes that predictors connected to the useful predictor are
also useful.

3.1. The sub-gradient conditions for sGLMg

We introduce the following sub-gradient conditions for the problem (9).

Proposition 1. A vector β ∈ R
p is a solution of (9) if and only if β can be

decomposed as β =
∑p

j=1 W
(j) where W (j) satisfy:

• (a) W
(j)
N c

j
= 0;

• (b) either W
(j)
Nj


= 0 and ∇NjL(β) = nλdj
W

(j)
Nj∥∥∥W (j)
Nj

∥∥∥
2

, or W
(j)
Nj

= 0 and

d−1
j ‖∇NjL(β)‖2 ≤ nλ, where ∇NjL(β) ∈ R

|Nj | denote as the gradient of
L(β) with respect to the predictors in Nj , j = 1, · · · , p.

The proof of Proposition 1 is similar to the Lemma 11 of [26]. The Proposition
1 shows that if (Ŵ (1), Ŵ (2), · · · , Ŵ (p)) is a solution of the problem (6), then

for each j, either Ŵ (j) = 0p×1 or supp(Ŵ (j)) = Nj . Thus, the estimate β̂ =∑p
j=1 Ŵ

(j) acquired by our proposed sGLMg has the same decomposition as
(5).

3.2. The connections between sGLMg and some existing methods

Some existing methods, such as the adaptive Lasso, group Lasso and ridge
regression, can be included as special cases of our proposed sGLMg method when
the given predictor graph has some special structures. The following proposition
shows this connections.

Proposition 2.

• (a) If the predictor graph has no edge, the proposed sGLMg method is
identical to the adaptive Lasso mehtod for each tuning parameter λ;
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• (b) If the predictor graph is composed of T disconnected complete sub-
graphs, our proposed sGLMg method is the same as the ordinary group
Lasso method for each λ;

• (c) If the predictor graph is a complete graph, our proposed sGLMg method
has the same nonzero solution set as the ridge regression, i.e. for each
nonzero solution acquired by ridge regression (or sGLMg), sGLMg (or
ridge regression) could acquired the same solution using a different tuning
parameter.

The proof of this proposition is parallel to [37]. The proposition 2 indicates
that our proposed sGLMg method is much more general than Adaptive Lasso,
Group Lasso and ridge regression and can deal with any arbitrary predictor
graph structures.

3.3. The oracle inequalities for sGLMg

In this section we study the finite properties of the estimator of our proposed
sGLMg method and present the oracle inequalities for estimation and prediction
of sGLMg. For each β ∈ Ξ, we need to prove the concentration inequalities for
the empirical process Pn�(β), i.e. we need to give an appropriate lower bonds

on (Pn−P)(�(β̂n)− �(β∗)). To do this, we decompose the empirical process into
a linear part and a part which depends on the normalized parameter φ, i.e.

(Pn − P)(�(β)) = (Pn − P)(�l(β)) + (Pn − P)(�φ(β)),

where �l(β) := �l(β,x, y) = −yβ�x and �φ(β) := �φ(β,x) = φ(β�x). In addi-
tion, we need to make the follow assumption for β∗:

• (A5) There exists a constant b > 0 such that ‖β∗‖G,d ≤ b.

We define the following events

A =

{∥∥∥∥∥ 1n
n∑

i=1

[
YiXiNj − E(YXNj )

]∥∥∥∥∥
2

≤ λdj
2

, j = 1, · · · , p
}
,

B =

{
sup

β:‖β−β∗‖G≤a

∣∣∣∣ (Pn − P)(�φ(β
∗)− �φ(β))

‖β − β∗‖G + εn

∣∣∣∣ ≤ λ

2

}
,

where a = 8b+ εn, εn = 1
n .

First, we want to show that the events A and B occur with high probability,
i.e., we will give a lower bound for the probabilities of the events A and B, which
is equivalent to prove the concentration inequalities for the linear and nonlinear
part of the empirical process.

Lemma 1. Let (X, Y ) be a pair of random variables whose conditional distri-
bution is P (Y ;β∗|X = x) = exp(yβ∗�x − φ(β∗�x)) and assume assumptions
(A.1)-(A.3) are fulfilled. For all l ∈ N

∗ there exists a constant CK,b (which
depends only on K and b) such that E(|Y |l) ≤ l!(CK,b)

l.
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Note that to prove this Lemma we need to use the assumption (A.1), the
details of the proof of this Lemma can refer to [3].

Theorem 1. Let λdj ≥ A216KCK,b
log(2p)

n ∨A8
√
2KCK,b

√
log(2p)

n , then

P(A) ≥ 1− 2Nmax(2p)
1−A2

,

where A > 1 and CK,b is the same as Lemma 1.

To prove the concentration inequalities for the nonlinear part of the empirical
process, we need to use the boundedness assumption for X and to show that
we can restrict the study of φ to a suitable compact set. Since φ is Lipchitzian
on this compact set, we can use the concentration results for Lipchitzian loss
funcitons [18] to bound the probability of event B. Thus, a lower bound for the
probability of event B can be obtained.

Theorem 2. Let dmin = min1≤j≤p dj and δn = 17b+ 2
n = 2a+ b. If

λdmin ≥ A20
√
NmaxKα max{

|x|≤K
√

Nmax
dmin

δn
}
∩Θ

{|φ′(x)|}
√

2 log(2p)

n
,

where A ≥ 1, then there exists a constant C such that

P(B) ≥ 1− C(2p)−
A2

2 .

After obtaining the lower bonds for the probability of events A and B, the
following corollary can be easily inferred.

Corollary 1. If λdj ≥ AKμ
{
CK,b ∨max{|x|≤Kδn}∩Θ |φ′(x)|

}√2 log(2p)
n then

P(A ∩B) ≥ 1− (2Nmax + C)(2p)−
A2

2 ,

where μ and C are universal constants and A ≥
√
2. The definition of CK,b is

the same as Lemma 1.

Thus, according to the Theorem 1 and Corollary 1 we can deduce the upper
bounds for the linear part and nonlinear part of the empirical process, i.e.,
‖(Pn − P)(�l(β

∗)− �l(β̂n))‖2 and (Pn − P)(�φ(β
∗)− �φ(β̂n)), respectively.

Theorem 3. On the event A,

(Pn − P)(�l(β
∗)− �l(β̂n)) ≤

λ

2
‖β̂n − β∗‖G,d.

Theorem 3 shows that the difference between the linear part of the empirical
process and its expectation is bounded above by the tuning parameter multiplied
by the norm (defined by (8)) of the difference between the estimator of sGLMg
and the true parameter. Note that the norm defined by (8) is associated to the
predictor graph. A similar result for the nonlinear part of the empirical process
can be also stated, the key of the proof is based on the following lemma which
show that the estimator of sGLMg, β̂n, is in the neighborhood of the target
parameter β∗ on the event A ∩B.
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Lemma 2. On the event A ∩B, we have ‖β̂n − β∗‖G,d ≤ a where a = 8b+ εn
and εn = 1

n .

An upper bound for (Pn−P)(�φ(β
∗)−�φ(β̂n)) can be directly obtained based

on the definition of the event B and the Lemma 2.

Theorem 4. On the event A ∩B we have

(Pn − P)(�φ(β
∗)− �φ(β̂n)) ≤

λ

2

(
‖β̂n − β∗‖G,d + εn

)
.

According to the restricted strong convexity condition for M-estimators in
[25], we need to ensure that the the loss function is not too flat after stating the
concentration of the loss function around its mean, i.e., there exists ε > 0, when
|�(β̂n) − �(β∗)| ≤ ε, the corresponding estimation error satisfies |β̂n − β∗| ≤ ε.
Notice that the boundedness assumption on the components of X is not re-
quired to obtain such kind of strong convexity, however, we need it to establish
Theorem 1. As stated by [25], if the tail of the covariates is sub-gaussian and the
covariance matrix is positive definite then the loss function satisfies a kind of re-
stricted strong convexity property with high probability. Therefore, the primary
condition to prove the oracle inequalities for the estimator of sGLMg rests on
the correlation between the covariates, i.e., on the behaviour of the Gram matrix
1
n

∑n
i=1 XiX

�
i which is necessarily singular when p > n. Meire et al. [23] show

that the group lasso is consistent under the logistic regression model and give
an upper bound for the prediction error under the assumption that E(XX�) is
nonsingular. Blazere et al. [3] present the oracle inequalities for the estimation
and prediction error of the generalized linear models under the group satbil
condition which is similar to the restricted eigenvalue conditions in [24] and
[21]. However, the group structure in [3] must be non-overlapping and specified
in advance. The same stabil conditions are used by [27] and [37] who proved
the theoretical properties of overlapping group Lasso and of linear regression
model incorporating the graphical structure among predictors, respectively. In
this paper, we will present the oracle inequalities for the estimation and predic-
tion error of our proposed sGLMg under the similar conditions as we discussed
above.

For a given graph G, positive weights dj ’s and subset J ⊂ {1, 2, · · · , p},
denote Ω(β, J) as the set of all optimal decomposition of β such that∑

j∈Jc

dj‖W (j)‖2 ≤ 3
∑
j∈J

dj‖W (j)‖2 + ε,

for all ε > 0. Denote Σ := E(XX�) as p× p covariance matrix and consider the
following assumption:

• (A6) Let β ∈ R
p \ {0}, |J | ≤ s∗, then for all (W (1),W (2), · · · ,W (p)) ∈

Ω(β, J) there exists ε > 0 and 0 < κ < 1 such that

β�Σβ ≥ κ
∑
j∈J

d2j‖W (j)‖22 − ε.
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Note that assumption (A6) plays a key role in the proof of the oracle inequalities
for the estimator of sGLMg. This assumption is similar to the restricted strong
convexity in [25], which is considered as a key condition for ensuring the fast
convergence rates and well theoretical properties of the regularized M-estimators
in high dimension scaling.

The next theorem is the most important result in this paper, which present
the finite sample bounds for estimation and prediction of the estimator of our
proposed sGLMg.

Theorem 5. Suppose that assumptions (A1)-(A6) are satisfied. Let Nmax =
max1≤j≤p Nj and dmin = min1≤j≤p dj. If we choose

λdmin ≥ AKμ

{
CK,b ∨ max

{|x|≤Kδn}∩Θ
|φ′(x)|

}√
2 log(2p)

n
,

where μ is the universal constant, A ≥
√
2 and the definition of CK,b is similar

as Lemma 1, then, for any optimal solution β̂n of problem (9), we have

‖β̂n − β∗‖G,d ≤ 4λKG

cnκ
+ (1 +

1

λ
)
εn
2
,

‖β̂n − β∗‖2 ≤ 4λKG

cnκdmin
+ (1 +

1

λ
)

εn
2dmin

,

E(β̂�
n X− β∗�X)2 ≤ 12

c2nκ
λ2KG +

(3 + 4λ)

cn

εn
2
,

with probability at least 1− (2Nmax + C)(2p)−
A2

2 .
Where cn = max{ |x|≤K

√
Nmax

dmin
(α+b)

}
∩Θ

|φ′′(x)| and C is the universal con-

stant.

The results presented in Theorem 5 are very general for some existing results
have close connections with it if the predictor graph has some special structure.
For example, the oracle inequalities for the prediction and estimation error of
GLMs obtained by group Lasso and Lasso methods, respectively, in [3] are
special cases of Theorem 5. In fact, when the given graph G has no edge, we
have KG = s∗ and ‖β̂n−β∗‖G,d = ‖β̂n−β∗‖1 if dj = 1 for j = 1, · · · , p. Theorem
5 indicates that the same results of the estimation and prediction error in [3] for
the Lasso method can be re-derived (Theorem III.8). When the predictor graph
G consists of some disconnected complete subgraphs and J∗ is the union of K0

node sets of those disconnected subgraphs, we have KG = K0. In this setting,
the results presented in [3] for the group Lasso can be also recovered (Theorem
III.6). In addition, the results about the linear regression model in [2], [24], [21]
and [37] are also connected with the result shown in Theorem 5.

Notice that if KG = O(1) then the bond of the estimation error in Theorem 5

is of the order O

(√
log p
n

)
and the sGLMg estimator β̂n still remains consistent

for the estimation error ‖β̂n − β∗‖G,d and prediction error E(β̂�
n X − β∗�X)2
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under the key assumption (A6) if the number of predictors p increases almost
as fast as O(exp(n)). Under the similar conditions, the estimation error for
the linear model in [37] is of the order O(exp(n)). Compare to this, the term√

log(p) in the GLMs is the price to pay for having a large number factors and
not knowing where are the nonzero ones.

4. Model selection consistency

In this section we discuss model selection consistency for the case with a fixed
dimension p. For every β ∈ R

p, denote βJ∗ and βJ∗c as sub-vectors of β with
indices in J∗ and J∗c respectively.

Theorem 6. Assume assumption (A2) and (A4) hold. Suppose the tuning pa-
rameter λ and di are chosen such that

√
nλ → 0 and n(γ+1)/2λ → ∞ for some

γ > 0. Furthermore, dj = O(1) for each j ∈ J∗ and lim infn→∞ n−γ/2dj > 0 for
each j ∈ J∗c. Then, with dimension p fixed, as n → ∞, we have

√
n(β̂J∗ − β∗

J∗)
d−→ N(0, I−1

J∗,J∗(β))

and
β̂J∗c

p−→ 0,

where IJ∗,J∗(β) is the sub-matrix of I(β) consisting of the entries with row and
column indices in J∗ and I(β) is the Fisher information matrix of the model.

Note that Theorem 6 shows that our proposed sGLMg method is model
selection consistent for the fixed p case. It also provide a guideline on how to
choose the positive weight dj . In fact, the choice of weights of overlapping groups
is much more important and complicated than in the case of disjoint groups.
Obozinski et al. [26] have made a thorough discussion on the choice of weights for
the overlapping groups and proposed some guidelines on the choice of weights.
They suggest to consider weights of the form dj = mγ

j , where mj = |Nj | is
the number of predictors in the neighborhood Nj and γ ∈ (0, 1

2 ). And, γ = 0
and γ = 1

2 correspond to two extreme cases that only the largest and only the
smallest groups are active, respectively. Furthermore, they give a critical value

with γ = log(2)
2 log(3) , which is the smallest value that it is possible to select two

singleton only. In our simulation studies, we suggest to choose dj = mγ
j , γ =

log(2)
2 log(3) .

5. Simulation study

We consider the Logistic model. In order to examine the performance of our
proposed sGLMg, we compare it with some popular penalized methods such
as Lasso, ridge regression, adaptive Lasso and elastic net. In the simulation,
the predictor graph is defined by the precision matrix of the predictors. The
performance of sGLMg using both the estimated predictor graph and the oracle
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true predictor graph are evaluated on all examples. We denote sGLMg-O as the
sGLMg method using the true predictor graph.

The response Y of Logistic regression is generated by Y ∈ {0, 1} and P (Y =

1|X) = exp(Xβ∗)
1+exp(Xβ∗) . We divide the data set X into three separate subsets: a

training data set, a validation data set and a testing data set. All the models
are fitted on the training data set only. The validation data set are used to
choose the tuning parameter and the test data set is used to evaluate different
methods. We use the notation ./././ to show the sample size in the training,
validation and test sets, respectively. For each example, we consider three cases:
(A) 40/40/400, (B) 80/80/400 and (C) 120/120/400. For each case, we repeat
the simulation 100 times. The predictor graph is estimated by the graphical
Lasso method [11] only using the training data in all cases.

Example 1 (Ω is block diagonal). p = 100, s∗ = 15, and the true coefficient
vector β∗ = (0.3, 0.3, · · · , 0.3, 0, 0, · · · , 0)�. The predictors are generated as:

Xj = Z1 + 0.4εj , Z1 ∼ N(0, 1), 1 ≤ j ≤ 5;

Xj = Z2 + 0.4εj , Z2 ∼ N(0, 1), 6 ≤ j ≤ 10;

Xj = Z3 + 0.4εj , Z3 ∼ N(0, 1), 11 ≤ j ≤ 15;

Xj
i.i.d∼ N(0, 1), 16 ≤ j ≤ 100,

where εj
i.i.d∼ N(0, 1), j = 1, 2, · · · , 15.

Example 2 (Ω is banded). p = 100 and β∗ is the same as β∗ used in Exam-
ple 1. The predictors (X1, X2, · · · , Xp)

� ∼ N(0,Σ), with Σij = 0.5|i−j|. For this
example, we have ωii = 1.333, ωij = −0.677, if|i−j| = 1 and ωij = 0, if|i−j| > 1.

Example 3 (Ω is sparse). p = 100 and the predictors (X1, X2, · · · , Xp)
� ∼

N(0,Ω−1) where Ω−1 = B + δI. Each off-diagonal entry in B is generated
independently and equals to 0.5 with probability 0.05, or 0 with probability
0.95. The diaonal entry of B is 0. Here, δ is chosen such that the conditional
number of Ω is equal to p. Finally, Ω is standardized to have unit diagonals. We
set β∗ = Ωγ, where γ = (γ1, γ2, · · · , γp)� with γi = 0.1, i = 1, 2, 3, 4 and γi = 0
otherwise.

To evaluate the different methods, we use the following measures:

• �2 distance: ‖β̂ − β∗‖2;
• Prediction error: 1

Ntest
(β̂−β∗)�X�

testXtest(β̂−β∗), where Xtest is the test
samples and Ntest is the number of test samples;

• False Positive Rate (FPR: the rate of irrelevant variables incorrectly iden-
tified as relevant) and False Negaive Rate (FNR: the rate of relevant vari-
ables incorrectly identified as irrelevant);

• Nonzero match ratio:

NMR =
|{(i, j) : Ωij 
= 0, β̂i 
= 0, β̂j 
= 0}|
|{(i, j) : Ωij 
= 0, β∗

i 
= 0, β∗
j 
= 0}| ;
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Zero match ratio:

ZMR =
|{(i, j) : Ωij 
= 0, β̂i = 0, β̂j = 0}|
|{(i, j) : Ωij 
= 0, β∗

i = 0, β∗
j = 0}| ,

where NMR (or ZMR) is used to check whether the estimated coefficients
of two connected useful (or useless) predictors are both nonzero (or zero).
Note that we use NMR and ZMR when there is at least one edge connect-
ing two useful predictors and one edge connecting two useless predictors.
Thus, these two ratios are well defined and always between 0 and 1.

Table 1

Performance comparison of estimation and prediction for Example 1

Methods
�2 distance Prediction error

(A) (B) (C) (A) (B) (C)

Lasso 2.211(0.109) 1.989(0.112) 1.977(0.171) 6.127(0.464) 4.489(0.536) 3.810(0.950)
Ridge 1.029(0.002) 0.999(0.001) 0.972(0.039) 5.291(0.045) 5.081(0.042) 2.535(0.102)
Alasso 2.557(0.142) 2.129(0.118) 2.013(0.245) 8.336(0.790) 4.866(0.631) 3.449(0.519)
Enet 1.756(0.067) 1.614(0.081) 1.543(0.103) 4.715(0.232) 3.876(0.313) 3.203(0.147)

sGLMg-O 1.091(0.041) 0.933(0.036) 0.836(0.026) 2.252(0.111) 1.297(0.060) 0.924(0.039)
sGLMg 1.106(0.044) 0.935(0.036) 0.836(0.026) 2.322(0.123) 1.298(0.060) 0.924(0.039)

Table 2

Performance comparison of model selection for Example 1

Methods
FPR FNR

(A) (B) (C) (A) (B) (C)

Lasso 0.151(0.007) 0.228(0.009) 0.281(0.013) 0.679(0.010) 0.542(0.010) 0.468(0.010)
Ridge 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
ALasso 0.091(0.005) 0.113(0.006) 0.194(0.009) 0.723(0.012) 0.554(0.010) 0.532(0.010)
ENet 0.301(0.011) 0.365(0.014) 0.420(0.014) 0.317(0.017) 0.234(0.011) 0.191(0.010)

SGLMG-O 0.097(0.006) 0.129(0.007) 0.155(0.007) 0.020(0.008) 0.000(0.000) 0.000(0.000)
SGLMG 0.102(0.006) 0.130(0.007) 0.155(0.007) 0.048(0.011) 0.001(0.001) 0.000(0.000)

Figure 2, 3 and 4 in Appendix A show the true predictor graphs (defined by
Ω) of these three examples. The numbers of edges for these three graphs are
30, 99 and 256. Such graphs are also studied in Yang et al. (2012), [6] and [37].
Table 1 and Table 2 show the performance comparison of estimation, predic-
tion and model selection of Example 1. The comparison results indicate that
the ridge regression method obtains the better estimation than Lasso, adpa-
tive Lasso and Elastic net methods, however, the ridge regression method can
not select the predictors automatically. Comparing with Lasso, adaptive Lasso
and ridge regression methods, the Elastic net method acquires the overall opti-
mal estimation, prediction and model selection by using the combination of �1
and ridge penalty. Specifically, the estimation acquired by elastic net method
is almost the same with ridge regression and the prediction obtained by elas-
tic net method is better than Lasso and adaptive Lasso. Although the elastic
net method has relatively high FPR than Lasso and adaptive Lasso, the FNR
of elastic net is the smallest of the three. Compared with the other methods
our proposed sGLMg method delivers the best performance of estimation and
prediction. For the cases with smaller sample sizes (condition A and B), our pro-
posed sGLMg (sGLMg-O) method has slightly higher FPR than adaptive Lasso
method, however, with the increase of the sample size (C), our proposed sGLMg
(sGLMg-O) method acquire the lowest FPR than the other methods compared
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with it. Especially, the FNR obtained by our proposed sGLMg (sGLMg-O)
method is much lower than the other methods. The reason is that our proposed
sGLMg (sGLMg-O) method using the information of the predictor graph and
the predictors connected in the graph has much more chances to be selected or
removed simultaneously.

When the signal strength is weak, the sGLMg (sGLMg-O) method tend to
select more predictors as the significant predictors. If the signal strength be-
comes stronger, the FPR of our proposed sGLMg (sGLMg-O) method will be
decreased gradually even smaller than the adaptive Lasso method. The results
of Table 10 in Appendix A indicates that the the performance of the model
selection of our proposed sGLMg (sGLMg-O) method may be achieved the op-
timal results compared with the other methods when the signal is increased
properly. For this example, since the estimated predictor graph is almost the
same as the true predictor graph, the performance of sGLMg method is similar
to sGLMg-O method.

Table 3

Performance comparison of estimation and prediction for Example 2

Methods
�2 distance Prediction error

(A) (B) (C) (A) (B) (C)

Lasso 2.175(0.125) 2.075(0.140) 2.003(0.229) 6.751(0.684) 6.219(0.894) 6.010(0.446)
Ridge 1.048(0.002) 1.017(0.002) 1.421(0.042) 2.911(0.025) 2.751(0.024) 2.363(0.122)
ALasso 2.310(0.127) 2.158(0.124) 2.439(0.296) 7.372(0.749) 6.437(0.877) 6.105(0.673)
ENet 1.829(0.077) 1.932(0.101) 1.763(0.162) 4.717(0.324) 4.969(0.486) 4.090(0.446)

SGLMG-O 1.468(0.050) 1.363(0.053) 1.268(0.055) 3.325(0.173) 2.477(0.150) 2.075(0.161)
SGLMG 1.463(0.051) 1.474(0.056) 1.301(0.050) 3.292(0.160) 2.725(0.161) 2.004(0.127)

Table 4

Performance of model selection for Example 2

Methods
FPR FNR

(A) (B) (C) (A) (B) (C)

Lasso 0.138(0.006) 0.228(0.010) 0.294(0.013) 0.636(0.013) 0.426(0.011) 0.310(0.010)
Ridge 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
ALasso 0.083(0.004) 0.136(0.006) 0.195(0.010) 0.677(0.013) 0.453(0.011) 0.395(0.011)
ENet 0.276(0.012) 0.381(0.014) 0.408(0.016) 0.437(0.016) 0.284(0.011) 0.193(0.010)

SGLMG-O 0.292(0.013) 0.416(0.015) 0.484(0.016) 0.354(0.018) 0.168(0.011) 0.109(0.007)
SGLMG 0.272(0.011) 0.368(0.013) 0.437(0.014) 0.436(0.019) 0.282(0.012) 0.187(0.009)

The performance comparison for Example 2 is displayed in Table 3 and Ta-
ble 4. As Example 1, the ridge regression method has better performance of
estimation and prediction than the other methods when the sample size is rel-
ative small. However, our proposed sGLMg (sGLMg-O) method may acquire
better performance of estimation or prediction than the ridge regression for the
relative large sample size. For example, for the case C, the sGLMg (sGLMg-
O) method obtains better performance of estimation than the ridge regression
method; for the cases B and C, the sGLMg (sGLMg-O) method acquires better
performance of prediction than the ridge regression method.

Compared with Lasso, adaptive Lasso and Elastic net methods, the adap-
tive Lasso and Elastic net method acquire the lowest FPR and FNR respec-
tively. Our proposed sGLMgsGLMg (sGLMg-O) method has the lowest FNR
in the performance of model selection than the other methods, although the
FPR obtained by sGLMg (sGLMg-O) is little higher than the other methods,
which is mainly because of the weak signal strength. The results of Table 11
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in Appendix A shows that the performance of model selection of our proposed
sGLMg (sGLMg-O) method may be significantly improved if the signal inten-
sity is increased, especially the FNR is almost 0 when the sample size is relative
large. However, the other methods can benefit a little from increasing the sig-
nal strength. For example, the performance of FPR obtained by the Elastic net
method will be worse when the signal strength is increased. Overall, the perfor-
mance of sGLMg-O method is better than the sGLMg method in estimation,
prediction and model selection.

Table 5

Performance comparison of estimation and prediction for Example 3

Methods
�2 distance Prediction error

(A) (B) (C) (A) (B) (C)

Lasso 0.771(0.089) 0.517(0.088) 0.382(0.032) 2.246(0.544) 1.449(0.698) 0.297(0.081)
Ridge 0.271(0.003) 0.257(0.002) 0.237(0.020) 0.108(0.007) 0.075(0.005) 0.018(0.043)
ALasso 0.971(0.127) 0.475(0.067) 0.435(0.062) 4.309(1.027) 1.019(0.443) 0.653(0.368)
ENet 0.644(0.067) 0.496(0.080) 0.438(0.125) 1.603(0.379) 1.282(0.516) 1.103(0.371)

SGLMG-O 0.478(0.044) 0.368(0.028) 0.339(0.032) 0.861(0.203) 0.337(0.084) 0.316(0.077)
SGLMG 0.606(0.065) 0.428(0.046) 0.369(0.041) 1.539(0.341) 0.552(0.206) 0.389(0.160)

Table 6

Performance comparison of model selection for Example 3

Methods
FPR FNR

(A) (B) (C) (A) (B) (C)

Lasso 0.086(0.009) 0.074(0.013) 0.073(0.013) 0.915(0.012) 0.921(0.013) 0.910(0.014)
Ridge 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
ALasso 0.059(0.007) 0.039(0.008) 0.035(0.010) 0.953(0.007) 0.949(0.009) 0.937(0.012)
ENet 0.137(0.015) 0.093(0.017) 0.088(0.019) 0.864(0.018) 0.897(0.019) 0.870(0.020)

SGLMG-O 0.250(0.023) 0.212(0.027) 0.208(0.030) 0.757(0.026) 0.805(0.026) 0.743(0.030)
SGLMG 0.398(0.033) 0.315(0.033) 0.307(0.031) 0.639(0.030) 0.733(0.029) 0.720(0.027)

Table 5 and Table 6 display the results for Example 3. Our proposed sGLMg
(sGLMg-O) method delivers the best performance of estimation and prediction
compared with the other methods (not including the ridge regression method).
Note that all the methods here are not good at the performance of model selec-
tion, especially the FNR acquired by these methods is too high, however, our
proposed sGLMg (sGLMg-O) method still has the lowest FNR than the other
methods. This results indicates that it is more difficult to do model selection for
generalized linear models than for linear regression model when the predictor
graph is complicated. The reason may be that the generalized linear models have
larger number of unknowing factors than the linear regression factors. As the
previous two examples, our proposed sGLMg methods has the overall optimal
results for both estimation, prediction and model selection compared with the
other methods.

The comparison results on NMR and ZMR for the cases with sample sizes
40/40/400, 80/80/400 and 120/120/400 are shown in Table 7, 8 and 9. Com-
pared with the other methods, our proposed sGLMg-O method acquires the
best performance in NMR and competitive performance in ZMR. From the
above analysis, the reason for that the sGLMg-O method acquires the lower
NMR than the other methods may be that our proposed sGLMg method tend
to select more predictors as significant predictors, which lesson the zero match
ratio of the predictors. Our proposed sGLMg method acquires very competitive
performance in NMR and ZMR when the predictor graph is not very compli-
cated (Example 1 and 2). However, even in these cases the NMR acquired by
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Table 7

Performance comparison of NMR and ZMR (Sample size: 40/40/400)

Methods
NMR ZMR

Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

Lasso 0.083(0.007) 0.130(0.011) 0.016(0.004) - 0.817(0.014) 0.847(0.016)
Ridge 1.000(0.000) 1.000(0.000) 1.000(0.000) - 0.000(0.000) 0.000(0.000)
ALasso 0.068(0.011) 0.120(0.014) 0.003(0.001) - 0.925(0.011) 0.902(0.012)
ENet 0.501(0.022) 0.356(0.019) 0.042(0.009) - 0.476(0.020) 0.777(0.023)

SGLMG-O 0.980(0.008) 0.545(0.017) 0.140(0.020) - 0.671(0.017) 0.614(0.034)
SGLMG 0.942(0.012) 0.427(0.019) 0.237(0.024) - 0.676(0.018) 0.467(0.041)

Table 8

Performance comparison of NMR and ZMR (Sample size: 80/80/400)

Methods
NMR ZMR

Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

Lasso 0.184(0.009) 0.315(0.016) 0.017(0.004) - 0.629(0.016) 0.880(0.020)
Ridge 1.000(0.000) 1.000(0.000) 1.000(0.000) - 0.000(0.000) 0.000(0.000)
ALasso 0.176(0.010) 0.295(0.016) 0.009(0.003) - 0.784(0.013) 0.939(0.013)
ENet 0.582(0.017) 0.524(0.017) 0.040(0.012) - 0.416(0.020) 0.858(0.023)

SGLMG-O 1.000(0.000) 0.749(0.015) 0.114(0.020) - 0.499(0.018) 0.694(0.035)
SGLMG 0.997(0.002) 0.565(0.017) 0.202(0.025) - 0.536(0.018) 0.577(0.043)

Table 9

Performance comparison of NMR and ZMR (Sample size: 120/120/400)

Methods
NMR ZMR

Example 1 Example 2 Example 3 Example 1 Example 2 Example 3

Lasso 0.258(0.011) 0.460(0.017) 0.028(0.008) - 0.521(0.018) 0.864(0.020)
Ridge 1.000(0.000) 1.000(0.000) 1.000(0.000) - 0.000(0.000) 0.000(0.000)
ALasso 0.192(0.010) 0.348(0.015) 0.019(0.006) - 0.680(0.017) 0.912(0.016)
ENet 0.648(0.016) 0.660(0.016) 0.055(0.016) - 0.381(0.018) 0.822(0.026)

SGLMG-O 1.000(0.000) 0.825(0.010) 0.168(0.027) - 0.417(0.018) 0.610(0.036)
SGLMG 1.000(0.000) 0.681(0.015) 0.215(0.023) - 0.444(0.018) 0.533(0.040)

Lasso and adaptive Lasso is almost 0, which because that the Lasso method
tend to select only some predictors from the highly correlated predictors. When
the predictor graph is complicated (Example 3), the NMR acquired by all these
methods is not very well, however, our proposed sGLMg method is still the
best. The NMR’s and ZMR’s of sGLMg-O indicate that our proposed sGLMg
method incorporate the predictor graph information to group the predictors and
make use of most edges between useful and useless predictors efficiently. There-
fore, our proposed sGLMg method can choose those connected useful predictors
simultaneously and exclude those connected useless predictors jointly.

In conclusion, the simulation results indicate that when the group structure
is unknown our proposed sGLMg method can make use of the structure infor-
mation among predictors to group the predictors efficiently and performs well
for both estimation, prediction and model selection.

6. Application

In this section, we consider a real example to compare the performance of
our proposed sGLMg method with Lasso, adaptive Lasso, ridge regression and
Elastic net. The breast cancer data consists of 22,283 gene expression levels of
133 subjects, including 34 subjects with pathological complete response (pCR)
and 99 subjects with residual disease (RD). The dataset were analysed by
[12] and are available at http://bioinformatics.mdanderson.org/pubdata.
html. The pCR is defined as no evidence of viable, invasive tumor cells left
in surgical specimen, which has been considered to have a high chance of can-

http://bioinformatics.mdanderson.org/pubdata.html
http://bioinformatics.mdanderson.org/pubdata.html
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cer free survival in the long term, justifying its use as a surrogate marker of
chemosensitivity [17]. Thus, it is of considerable interest to study the response
states of the patients (pCR or RD) to neoadjuvant (preoperative) chemotherapy.
[10] and [6] apply linear discriminant analysis to predict wether or not a sub-
ject can achieve the pCR state by estimating the inverse covariance matrix (or
precision matix) of the gene expression levels. In this paper, we follow the same
analysis scheme used by [10] and [6] to estimate the precision matrix and then
compare the performance of our proposed sGLMg method with Lasso, adaptive
Lasso, ridge regression and Elastic net based on the estimated precision matrix.

To estimate the precision matrix, we randomly divide the data into the train-
ing and testing sets of sizes 112 and 21, respectively, and repeat the whole process
100 times. A stratified sampling method is used in order to maintain a similar
class proportion for the training and testing datasets. We randomly select 5
pCR subjects and 16 RD subjects each time from the corresponding groups to
form the the testing data (both are roughly 1/6 of the subjects in each group)
and the remaining subjects will be used to constitute the the training set. For
each training set, a two-sample t test is performed between the two groups and
the most significant 113 genes that have the smallest p-values are selected as
the predictors for prediction. We note that the training sample size n = 112
is slightly smaller than the variable dimensionality p = 113, which allows us
to examine the performance when p > n. Then, a gene-wise standardization
is performed by dividing the data with the corresponding standard deviation,
estimated from the training dataset. Finally, we estimate the precision matrix Ω
using the training data and the predictor graph G is estimated by the graphical
Lasso [11] based on the estimated precision matrix. Note that all the models
are fitted using training data and evaluated by the mean squared error (MSE)
calculated from the testing data. We perform a 10-fold CV to choose the tuning
parameters of different methods. Figure 1 shows the box plot of the averaged
mean squared errors of different methods. The results indicates that our pro-
posed sGLMg method acquires better performance on MSE score than Lasso,
adaptive Lasso and Elastic net methods and slightly worse than the ridge re-
gression method, which consistent with the simulation results.

7. Conclusion

In this paper, we propose the sparse generalized linear models incorporating
graphical structure among predictors (sGLMg) which can be used to analysis
the sparse graphical or overlapping structure data with generalized linear mod-
els. For sGLMg model, the overlapping structure does not need to be specified
in advance and it can be obtained by the graphical structure among predictors.
Even the graphical structure is unknown, we can also construct it by the sparse
estimation of the covariance matrix of predictors. Since the closed form of esti-
mator for generalized linear models usually can not be obtained, the graphical
structure among predictors can not be incorporated into the estimation process
of GLMs as the linear regression model where the estimator can be formulated
as the multiplication of the inverse of covariance matrix, which can be defined
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Fig 1. Comparison of MSE for various methods on the Breast Cancer data

as the predictor graph, and a vector between predictors and the response from
least square estimation. In this paper, we use the sufficient dimension reduction
techniques to show that we can also formulate the estimators of GLMs as the
multiplication of the inverse of covariance matrix and a vector. Thus, the graph-
ical structure of predictors can be also incorporated into the GLMs. In order
to utilize the neighborhood information of the graph we apply a node-by-node
strategy to convert the graphical structure to the overlapping group structure.
Furthermore, our proposed method is very general and some popular methods
such as Lasso, group Lasso and ridge regression can be included as special cases.
The theoretical results we obtained are still true when the overlapping group
structure is pre-specified.

Appendix A: Additional figures and tables

Fig 2. True predictor graph of Example 1

Fig 3. True predictor graph of Example 2
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Fig 4. True predictor graph of Example 3

Table 10

Performance comparison of model selection for β∗ = (3, · · · , 3, 0, · · · , 0) in Example 1

Methods
FPR FNR

(A) (B) (C) (A) (B) (C)

Lasso 0.138(0.004) 0.220(0.004) 0.288(0.006) 0.548(0.009) 0.368(0.009) 0.263(0.009)
Ridge 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
ALasso 0.067(0.002) 0.074(0.003) 0.138(0.004) 0.560(0.010) 0.340(0.009) 0.277(0.009)
ENet 0.317(0.007) 0.399(0.006) 0.509(0.009) 0.100(0.007) 0.034(0.004) 0.012(0.002)

SGLMG-O 0.051(0.002) 0.046(0.002) 0.035(0.002) 0.000(0.000) 0.000(0.000) 0.000(0.000)
SGLMG 0.062(0.003) 0.046(0.002) 0.035(0.002) 0.018(0.005) 0.001(0.001) 0.000(0.000)

Table 11

Performance comparison of model selection for β∗ = (3, · · · , 3, 0, · · · , 0) in Example 2

Methods
FPR FNR

(A) (B) (C) (A) (B) (C)

Lasso 0.137(0.004) 0.221(0.004) 0.300(0.006) 0.419(0.011) 0.162(0.008) 0.068(0.006)
Ridge 1.000(0.000) 1.000(0.000) 1.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
ALasso 0.064(0.003) 0.082(0.003) 0.135(0.004) 0.000(0.000) 1.000(0.000) 1.000(0.000)
ENet 0.320(0.007) 0.394(0.006) 0.505(0.010) 0.182(0.010) 0.056(0.005) 0.013(0.002)

SGLMG-O 0.250(0.007) 0.342(0.008) 0.379(0.009) 0.158(0.011) 0.037(0.004) 0.006(0.002)
SGLMG 0.274(0.008) 0.314(0.008) 0.339(0.008) 0.286(0.011) 0.125(0.007) 0.052(0.006)

Appendix B: Proofs

Proof of Theorem 1. From the definition of A, we have

Ac =
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=
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>
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thus,

P(Ac) ≤
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P
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[
1

n
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P

{
1

n
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n∑

i=1

(YiXik − EYXk)

∣∣∣∣∣ > λdj
2

}
. (10)

For j = 1, · · · , p, i = 1, · · · , n, let

χ
Nj

ik = YiX
Nj

ik − EYX
Nj

k , k ∈ Nj .
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The random variables
{
χ
Nj

ik

}
i=1,··· ,n

are independent, identically distributed

and centered and for all m ≥ 2, we have

E
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m

l
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E|YiXik|l (E|YiXik|)m−l

, k ∈ Nj .

By using Jensen inequality, for each l ∈ N, we obtain

E

∣∣∣χNj

ik

∣∣∣m ≤ 2m max
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{
E|YiXik|lE|YiXik|m−l

}
.

By assumption (A1) and Lemma 1, we have

E|YiXik|l ≤ Kll!(CK,b)
l.

Thus,

E

∣∣∣χNj

ik

∣∣∣m ≤ m!(2KCK,b)
m.

Therefore, by the Bernstein concentration inequality (Bennett 1962), we obtain
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(11)
Finally, from (10) and (11), we have

P(Ac) ≤ 2pNmax

{
exp

(
− nλdj
16KCK,b

)
+ exp

(
−

nλ2d2j
32(2KCK,b)2
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.

Hence, if

λdj ≥ A216KCKb
log(2p)

n
∨A8

√
2KCK,b

√
log(2p)

n
,

with A > 1, then

P(Ac) ≤ 2Nmax(2p)
1−A2

. �
Proof of Theorem 2. First we prove the following Lemma:

Lemma S.1. Let α > 0 be given. Define

Zα := sup
‖β−β∗‖G≤α

{‖(Pn − P)(�φ(β
∗)− �φ(β))‖2}.

If A ≥ 1 then

P

(
Zα ≥ A5

√
NmaxKηα

dmin

√
2 log(2p)

n

)
≤ (2p)−A2

, (12)

where η = max{|x|≤K
√
Nmax/dmin(α+b)}∩Θ{|φ′(x)|}, dmin = min1≤j≤p dj .
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Proof of Lemma S.1. Let β ∈ Ξ satisfy ‖β − β∗‖G ≤ α. We note that if we
change Xi while keepinf the others fixed then Zα is modified of at most
2Kαη

√
Nmax

ndmin
. In fact, let Pn = 1

n

∑n
j=1 1Xj ,Yj and P
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n = 1
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,

then we have

‖(Pn − P)(�φ(β
∗)− �φ(β))‖2 − ‖(P′

n − P)(�φ(β
∗)− �φ(β))‖2

≤ ‖(Pn − P)(�φ(β
∗)− �φ(β))− (P′

n − P)(�φ(β
∗)− �φ(β))‖2

= ‖ 1
n
{�φ(β∗,Xi)− �φ(β,Xi)− �φ(β

∗,X′
i) + �φ(β,X

′
i)}‖2

≤ 1

n
‖φ′(β̃�Xi)‖2‖β∗�Xi − β�Xi‖2 +

1

n
‖φ′(β̃�X′

i)‖2‖β∗�X′
i − β�X′

i‖2

where β̃�Xi is an intermediate point between β�Xi and β∗�Xi. Let U
(1), U (2),

· · · , U (p) and V (1), V (2), · · · , V (p) are arbitrary optimal decompositions of β−β∗

and β∗, respectively, then,
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For β, β∗ ∈ Ξ, where Ξ is convex set, we have β̃ ∈ Ξ and β̃�Xi ∈ Θ, a.s. Hence,

‖(Pn − P)(�φ(β
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By McDiarmid inequality (Devroye and Lugosi 2001), we have

P(Zα − EZα ≥ t) ≤ exp

(
− nt2d2min

2K2α2η2Nmax

)
.
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Therefore, for A > 0, if we choose λ ≥ A
√
NmaxKαη
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√
log(2p)

n , then we have

P(Zα − EZα ≥ λ) ≤ (2p)−A2

. (13)

Now we have to bound the mean EZα. Let ε1, · · · , εn be Rademacher sequence
independent of X1, · · · ,Xn and let Sα := {β ∈ R

p : ‖β − β∗‖G,d ≤ α}. Then,
by the symmetrization theorem [35] and contraction theorem [18] (note that
|φ(x)− φ(x′)| ≤ η|x− x′|, i.e., φ is η-Lipschitz on the compact set Sα), we have
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To bound the mean E
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∣∣) we need the following
Lemma.

Lemma S.2. Let X1, · · · ,Xn be independent random variables on X and
f1, · · · , fn be real-valued functions on X which satisfies for all i = 1, · · · , n
and all j = 1, · · · , p

Efj(Xi) = 0, |fj(Xi)| ≤ aij .
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Proof of Lemma S.2. The proof of this Lemma can be directly deduced by Ho-
effding inequality. �
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By
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Therefore, we can conclude from (13) and (14) that if A ≥ 1 then for all α > 0,
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where we suppose that 2a ≥ εn. From Lemma S.1 with α = εn we obtain
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Similarly, on the event E2, with α = 2jεn (given that 2a ≥ 2jεn) for all j =
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P

⎛
⎝ sup

β∈E2

|νn(β, β∗)| ≥
A10

√
NmaxKΦ

(
K

√
Nmax

dmin
δn

)
dmin

√
2 log(2p)

n

⎞
⎠ ≤ C ′(2p)−A2

.

(17)
Let C = 1 + C ′, by (16) and (17) we have

P(Bc) ≤ C(2p)−A2

. �

Proof of Theorem 3. Let {W (1),W (2), · · · ,W (p)} be an optimal decomposition
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n

n∑
i=1

(YiXiNj − EYXNj )

]

=

p∑
j=1

djW
(j)
Nj

�
[

1

ndj

n∑
i=1

(YiXiNj − EYXNj )

]

≤
p∑

j=1

∥∥∥djW (j)
Nj

∥∥∥
2

∥∥∥∥∥ 1

ndj

n∑
i=1

(YiXiNj − EYXNj )

∥∥∥∥∥
2

On the event A, we have
∥∥∥ 1
ndj

∑n
i=1(YiXiNj − EYXNj )

∥∥∥
2
≤ λ

2 . �

Proof of Lemma 2. Define t := a
a+‖β̂n−β∗‖G,d

and β̃ = tβ̂n + (1− t)β∗. Then

‖β̃ − β∗‖G,d = t‖β̂n − β∗‖G,d =
a‖β̂n − β∗‖G,d

a+ ‖β̂n − β∗‖G,d

≤ a.
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On the event A ∩B, we have (Pn − P)(�(β∗)− �(β̃)) ≤ λ‖β̃ − β∗‖G,d + λ εn
2 . In

addition, by the definition of β̂n, we have

Pn�(β̂n) + 2λ‖β̂n‖G,d ≤ Pn�(β
∗) + 2λ‖β∗‖G,d.

Note that �φ(β) and ‖β‖G,d are both convex function, we have

Pn�(β̃) + 2λ‖β̃‖G,d ≤ Pn�(β
∗) + 2λ‖β∗‖G,d.

Thus,

P(�(β̃)− �(β∗)) + 2λ‖β̃‖G,d ≤ (Pn − P)(�(β∗)− �(β̃)) + 2λ‖β∗‖G,d

≤ λ‖β̃ − β∗‖G,d + λ
εn
2

+ 2λ‖β∗‖G,d.

Because P(�(β̃) − �(β∗)) ≥ 0, by adding to both sides of the above inequality
2λ‖β∗‖G,d we have

2λ‖β̃ − β∗‖G,d ≤ 2λ‖β̃‖G,d + 2λ‖β∗‖G,d

≤ λ‖β̃ − β∗‖G,d + 2λ‖β∗‖G,d + 2λ‖β∗‖G,d + λ
εn
2
,

that is,

‖β̃ − β∗‖G,d ≤ 4‖β∗‖G,d +
εn
2
.

Therefore, using assumption (A5), we have

‖β̃ − β∗‖G,d ≤ 4b+
εn
2

=
a

2
.

Note that β̃ − β∗ = t(β̂n − β∗), thus

t‖β̂n − β∗‖G,d ≤ a

2
.

Therefore, by the definition of t, we have

‖β̂n − β∗‖G,d ≤ a. �

Proof of Theorem 5. First we introduce the following Lemma.

Lemma S.3. For any predictor graph G and positive weights d1, d2, · · · , dp,
suppose W (1),W (2), · · · ,W (p) is an optimal decomposition of β ∈ R

p, then for
any S ⊂ {1, 2, · · · , p}, {W (j) : j ∈ S} is also an optimal decomposition of∑

j∈S W (j).

Proof of Lemma S.3. See Lemma 2 from [37]. �

Then we prove the oracle inequalities. By the definition of β̂n we have

Pn�(β̂n) + 2λ‖β̂n‖G,d ≤ Pn�(β
∗) + 2λ‖β∗‖G,d.
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By adding P(�(β̂n)− �(β∗)) to the both sides of the inequality above, we have

P(�(β̂n)− �(β∗)) + 2λ‖β̂n‖G,d ≤ (Pn − P)(�(β∗)− �(β̂n)) + 2λ‖β∗‖G,d. (18)

We decompose the empirical process (Pn − P)(�(β∗)− �(β̂n)) into a linear part
and a part which depends on the normalized parameter φ, then by Theorem 3
and Theorem 4 we have

(Pn − P)(�(β∗)− �(β̂n))

= (Pn − P)(�l(β
∗)− �l(β̂n)) + (Pn − P)(�φ(β

∗)− �φ(β̂n))

≤ λ

2
‖β̂n − β∗‖G,d +

λ

2
(‖β̂n − β∗‖G,d + εn)

= λ‖β̂n − β∗‖G,d +
λ

2
εn. (19)

Substituting (Pn − P)(�(β∗)− �(β̂n)) in (18) for (19) and adding λ‖β̂n − β∗‖G,d

to both sides of the resulting inequality we find that

P(�(β̂n)−�(β∗))+λ‖β̂n−β∗‖G,d ≤ 2λ(‖β̂n−β∗‖G,d+‖β∗‖G,d−‖β̂n‖G,d)+
λ

2
εn.

(20)
Denote U (1), U (2), · · · , U (p) and V (1), V (2), · · · , V (p) as the arbitrary optimal
decompositions of β̂n − β∗ and β∗, respectively. Applying assumption (A4), we
find that for each j ∈ J∗, Nj ⊂ J∗ we have

‖β̂n − β∗‖G,d + ‖β∗‖G,d − ‖β̂n‖G,d

=

∥∥∥∥∥∥
∑
j∈J∗

U (j)

∥∥∥∥∥∥
G,d

+

∥∥∥∥∥∥
∑

j∈J∗c

U (j)

∥∥∥∥∥∥
G,d

+

∥∥∥∥∥∥
∑
j∈J∗

V (j)

∥∥∥∥∥∥
G,d

− ‖β̂n‖G,d. (21)

Further, we note that

‖β̂n‖G,d = ‖β̂n − β∗ + β∗‖G,d =

∥∥∥∥∥∥
∑
j∈J∗

U (j) +
∑

j∈J∗c

U (j) +
∑
j∈J∗

V (j)

∥∥∥∥∥∥
G,d

≥

∥∥∥∥∥∥
∑

j∈J∗c

U (j) +
∑
j∈J∗

V (j)

∥∥∥∥∥∥
G,d

−

∥∥∥∥∥∥
∑
j∈J∗

U (j)

∥∥∥∥∥∥
G,d

=

∥∥∥∥∥∥
∑

j∈J∗c

U (j)

∥∥∥∥∥∥
G,d

+

∥∥∥∥∥∥
∑
j∈J∗

V (j)

∥∥∥∥∥∥
G,d

−

∥∥∥∥∥∥
∑
j∈J∗

U (j)

∥∥∥∥∥∥
G,d

, (22)

thus, by (21) and (22), we have

‖β̂n − β∗‖G,d + ‖β∗‖G,d − ‖β̂n‖G,d ≤ 2

∥∥∥∥∥∥
∑
j∈J∗

U (j)

∥∥∥∥∥∥
G,d

.
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By the definition of β∗ we have P(�(β̂n)−�(β∗)) ≥ 0, hence from (20) we deduce
that

‖β̂n−β∗‖G,d ≤ 2(‖β̂n−β∗‖G,d+‖β∗‖G,d−‖β̂n‖G,d)+
εn
2

≤ 4

∥∥∥∥∥∥
∑
j∈J∗

U (j)

∥∥∥∥∥∥
G,d

+
εn
2
.

By Lemma S.3 we have ‖
∑

j∈J∗ U (j)‖G,d =
∑

j∈J∗ dj‖U (j)‖2, further, we note
that

‖β̂n − β∗‖G,d =
∑
j∈J∗

dj‖U (j)‖2 +
∑

j∈J∗c

dj‖U (j)‖2.

This yields ∑
j∈J∗c

dj‖U (j)‖2 ≤ 3
∑
j∈J∗

dj‖U (j)‖2 +
εn
2
.

Now we have to bound the empirical process P(�(β̂n)− �(β∗)).

Lemma S.4. On the event A ∩B, we have

P(�(β̂n)− �(β∗)) ≥ cnE

[{
fβ̂n

(X)− fβ∗(X)
}2
]
,

where cn = max{ |x|≤K
√

Nmax
dmin

(α+b)
}
∩Θ

|φ′′(x)|.

Proof of Lemma S.4. We note that

P(�(β̂n))− �(β∗)) =− E

[
E(Y |X){fβ̂n

(X)− fβ∗(X)}
]

+ E

[
φ′(fβ∗(X)){fβ̂n

(x)− fβ∗(X)}
]

+ E

[
φ′′(fβ̃(X))

2
{fβ̂n

(X)− fβ∗(X)}2
]

where β̃�X is an intermediate point between β̂�
n X and β∗�X given by a second

order Taylor expansion of φ. Because φ′(fβ∗(X)) = E(Y |X) we find

P(�(β̂n))− �(β∗)) = E

[
φ′′(fβ̃(X))

2
{fβ̂n

(X)− fβ∗(X)}2
]
.

In addition, by using the same strategy in the proof of Lemma S1 we have

‖β̃�X‖2 ≤ K
√
Nmax

dmin
(α+ b) a.s.

Furthermore, β̂n and β∗ belong to Ξ which is a convex set. Thus, β̃ ∈ Ξ and
β̃�X ∈ Θ. Therefore, we have

P(�(β̂n)− �(β∗)) ≥ cnE

[{
fβ̂n

(X)− fβ∗(X)
}2
]
,

where cn = max{ |x|≤K
√

Nmax
dmin

(α+b)
}
∩Θ

|φ′′(x)|. �
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From Lemma S.4 and (20) we deduce that

λ‖β̂n − β∗‖G,d + cnE(β̂
�
n X− β∗�X)2 ≤ 4λ

∑
j∈J∗

dj‖U (j)‖2 +
λ

2
εn. (23)

Let Σ be p× p covariance matrix, we have

E(β̂�
n X− β∗�X)2 = (β̂n − β∗)�Σ(β̂n − β∗).

By (A6), we have

cn(β̂n − β∗)�Σ(β̂n − β∗) ≥ cnκ
∑
j∈J∗

d2j‖U (j)‖22 −
εn
2
. (24)

Hence, by applying (23) and (24), we have

λ‖β̂n − β∗‖G + cnκ
∑
j∈J∗

d2j‖U (j)‖22 ≤ 4λ
∑
j∈J∗

dj‖U (j)‖2 + (λ+ 1)
εn
2
. (25)

Further, for each j ∈ J∗, there is at most KG nonzero U (j), thus, we have∑
j∈J∗

dj‖U (j)‖2 ≤ K1/2
G

√∑
j∈J∗

d2j‖U (j)‖22. (26)

Therefore, by (25) and (26), we have

λ‖β̂n−β∗‖G,d+cnκ
∑
j∈J∗

d2j‖U (j)‖22 ≤ 4λK1/2
G

√∑
j∈J∗

d2j‖U (j)‖22+(λ+1)
εn
2
. (27)

Now the fact 2xy ≤ tx2 + y2/t for all t > 0 leads to the following inequality

λ‖β̂n − β∗‖G,d + cnκ
∑
j∈J∗

d2j‖U (j)‖22 ≤ 4tλ2KG +
1

t

∑
j∈J∗

d2j‖U (j)‖22 + (λ+ 1)
εn
2
.

(28)
Substituting t for 1

cnκ
in (28) we obtain

‖β̂n − β∗‖G,d ≤ 4λKG

cnκ
+ (1 +

1

λ
)
εn
2
.

Besides, we note that

‖β̂n − β∗‖2 =

∥∥∥∥∥∥
p∑

j=1

1

dj
djU

(j)

∥∥∥∥∥∥
2

≤ ‖β̂n − β∗‖G,d

dmin
≤ 4λKG

cnκdmin
+ (1 +

1

λ
)

εn
2dmin

.

Then, by (23), we have

λ‖β̂n − β∗‖G,d + cnE(β̂
�
n X− β∗�X)2 ≤ 4λ

∑
j∈J∗

dj‖U (j)‖2 +
λ

2
εn
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≤ 4λ

p∑
j=1

dj‖U (j)‖2 +
λ

2
εn.

Thus, we obtain

cnE(β̂
�
n X− β∗�X)2 ≤ 3λ‖β̂n − β∗‖G,d +

λ

2
εn.

Therefore, we conclude that

E(β̂�
n X− β∗�X)2 ≤ 12

c2nκ
λ2KG +

(3 + 4λ)

cn

εn
2
. �

Proof of Theorem 6. For each v ∈ R
p, defineMn=

n∑
i=1

log
�(β + v/

√
n;Xi, Yi)

�(β;Xi, Yi)︸ ︷︷ ︸
(I)

+

nλ(‖β∗ + v/
√
n‖G,d − ‖β∗‖G,d)︸ ︷︷ ︸
(II)

. By the argmax theorem ([35], Example 3.2.4),

we get

(I) = v′
1√
n

n∑
i=1

S(β;Xi, Yi)−
1

2
v′I(β)v + oP (1)

d−→ v′W − 1

2
v′I(β)v,

where S(β;X,Y ) = 1
L(β;X,Y )

∂L(β;X,Y )
∂β , L(β;X,Y ) = �(β+v/

√
n;X,Y )

�(β;X,Y ) , is the score

function, I(β) = −
∑n

i=1
∂2

∂β2 logL(β;Xi, Yi) is the Fisher information matrix

and W is a random variable with Np(0, I(β))-distribution.
Without loss of generality, assume that β∗ = ((β∗

J∗)�, 0), that is, the first
|J∗| elements of β∗ are nonzero and the other p− |J∗| elements are zero. Then
we have

(II) = (III) + (IV ),

where (III) = nλ(

∥∥∥∥
(

β∗
J∗ + 1√

n
vJ∗

0

)∥∥∥∥
G,d

−
∥∥∥∥
(

β∗
J∗

0

)∥∥∥∥
G,d

) and (IV ) =

√
nλ

∥∥∥∥
(

0
vJ∗c

)∥∥∥∥
G,d

.

Denote W (1),W (2), · · · ,W (p) as an arbitrary optimal decomposition of v.
Then, by the triangle inequality, we have

|(III)| ≤ nλ

∥∥∥∥
( 1√

n
vJ∗

0

)∥∥∥∥
G,d

=
√
nλ
∑
j∈J∗

dj‖W (j)‖2.

If
√
nλ → 0 and dj = O(1) for each j ∈ J∗, then for each fixed v, we have

|(III)| → 0 as n → ∞.
Furthermore, we observe that

|(IV )| =
√
nλ
∑

j∈J∗c

dj‖W (j)‖2 = (n(γ+1)/2λ)(n−γ/2
∑

j∈J∗c

dj‖W (j)‖2.
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If n(γ+1)/2λ → ∞, vJ∗c 
= 0 and lim infn→∞ n−γ/2dj > 0 for each j ∈ J∗c, then
|(IV )| → ∞, as n → ∞.

Therefore, we get Mn(v)
d−→ M(v), where

M(v) =

{
v′W − 1

2v
′I(β)v, if supp(v) ⊂ J∗

∞, else.

Since v∗ = (I−1
J∗,J∗(β)WJ∗ , 0)� = argmaxv∈Rp M(v), by the argmax theorem

([35], collary 3.2.3) and assumption (A4), we have

√
n(β̂J∗ − β∗

J∗)
d−→ N(0, I−1

J∗,J∗(β))

and √
nβ̂J∗c

d−→ 0 and therefore β̂J∗c
P−→ 0. �
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