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Abstract: We study nonparametric maximum likelihood estimation of
a log-concave density function f0 which is known to satisfy further con-
straints, where either (a) the mode m of f0 is known, or (b) f0 is known
to be symmetric about a fixed point m. We develop asymptotic theory for
both constrained log-concave maximum likelihood estimators (MLE’s), in-
cluding consistency, global rates of convergence, and local limit distribution
theory. In both cases, we find the MLE’s pointwise limit distribution at m
(either the known mode or the known center of symmetry) and at a point
x0 �= m. Software to compute the constrained estimators is available in the
R package logcondens.mode.

The symmetry-constrained MLE is particularly useful in contexts of lo-
cation estimation. The mode-constrained MLE is useful for mode-regression.
The mode-constrained MLE can also be used to form a likelihood ratio test
for the location of the mode of f0. These problems are studied in separate
papers. In particular, in a separate paper we show that, under a curvature
assumption, the likelihood ratio statistic for the location of the mode can
be used for hypothesis tests or confidence intervals that do not depend on
either tuning parameters or nuisance parameters.
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1. Introduction and overview

The classes of log-concave densities on R (and on R
d) have great importance in

statistics for a variety of reasons including their many natural closure proper-
ties, including closure under convolution, affine transformations, convergence in
distribution, and marginalization. These classes are also unimodal and serve as
important nonparametric generalizations of the class of Gaussian distributions.

Nonparametric estimation in the unconstrained classes of log-concave densi-
ties has developed rapidly in the past 10–15 years. Existence of maximum likeli-
hood estimators for log-concave densities on R was provided by Walther (2002),
while Pal, Woodroofe and Meyer (2007) established consistency. Dümbgen and
Rufibach (2009) gave rates of convergence in certain uniform metrics, and pro-
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vided efficient algorithms based on “active set” methods (see also Dümbgen and
Rufibach (2011)). Balabdaoui, Rufibach and Wellner (2009) established point-
wise limit distribution theory for the MLE’s, while Doss and Wellner (2016)
established rates of convergence of the MLE in the Hellinger metric. There has
also been rapid progress in estimation of log-concave densities on R

d; see e.g.
Cule, Samworth and Stewart (2010), Cule and Samworth (2010), Dümbgen,
Samworth and Schuhmacher (2011), Seregin and Wellner (2010), and Han and
Wellner (2016).

Interesting uses of the unconstrained log-concave MLE’s in more complicated
models, mostly in mixture modeling and clustering, have been considered by
Chang and Walther (2007), Eilers and Borgdorff (2007), Walther (2009), and
Cule and Samworth (2010).

On the other hand, for a number of important statistical problems it is of
great interest to understand estimation in several important sub-classes of the
class of all log-concave densities on R.

• For testing that a log-concave density on R is symmetric about a known
point, for example 0, we need know how to estimate the log-concave density
both with and without the constraint of symmetry.

• For the basic problem of estimation of location with a symmetric error
density, it is important to know how to estimate a symmetric log-concave
density with mode (and median and mean) equal to 0.

• For inference about the mode of a log-concave density it is necessary to
understand how to estimate a log-concave density with a known mode m
(but without the constraint of symmetry).

Once the properties of nonparametric estimators within these sub-classes is
understood, then the estimators can be used to develop statistical methods with
known properties for other more complex statistical problems. For example: the
basic procedures we study here can be viewed as building blocks to be used for,
among others:

(a) Testing the hypothesis of symmetry of a log-concave density.
(b) Estimation of the location of a symmetric log-concave density.
(c) Inference about the mode of a log-concave density.
(d) Nonparametric modal regression (as in Chen et al. (2016), but using log-

concavity).
(e) Semiparametric estimation in mixture models based on symmetric log-

concave distributions; see e.g. Balabdaoui and Doss (2018), Pu and Arias-
Castro (2017), and Eilers and Borgdorff (2007).

(f) Modal clustering (as in Chacón (2018a), but using log-concavity).
(g) Estimation of a spherically symmetric multivariate log-concave density,

which is pursued in Xu and Samworth (2017).
(h) Inference about the center of an elliptical multivariate distribution based

on the assumption of a log-concave underlying shape.

Thus our focus here is on estimation of a log-concave density in two important
sub-classes: Let LC denote the class of all log-concave densities on the real line R.
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The two subclasses we study here are:

(1) The class LC(m) = LCm of all log-concave densities with mode a fixed
number m.

(2) The class SLC(0) = SLC0 of all log-concave densities symmetric at 0.

We let f̂0
n denote the maximum likelihood estimator of f0 ∈ LCm based on an

i.i.d. sample X1, . . . , Xn from f0; and we let ĝ0n denote the maximum likelihood
estimator of g0 ∈ SLC0, based on an i.i.d. sample from g0.

We rely on the methods and properties developed here for the subclass LC(m)
to derive new inference procedures for the mode in Doss and Wellner (2019).
The sub-class SLC(0) has already been used in Balabdaoui and Doss (2018) to
study semiparametric mixture models. The methods developed here for SLC(0)
are also being used in an on-going study by Laha (2019) of efficient estima-
tion of a location parameter in the classical semiparametric symmetric location
model with the (very natural) assumption of a symmetric log-concave error dis-
tribution. Methodology based on modes or local maxima of nonparametrically
estimated functions has seen a resurgence in recent years; see, e.g., Chen et al.
(2016), Chen, Genovese and Wasserman (2015), and Qiao and Polonik (2016).
A recent survey on estimation and inference for the mode and on mode-based
methodology is given by Chacón (2018b).

Thus our main goals here are the following:

(a) To show that the mode-constrained MLE’s f̂0
n ∈ LC(m) and ĝ0n ∈ SLC(0)

exist and to provide useful characterizations thereof.
(b) Establish useful finite-sample properties of f̂0

n and ĝ0n.
(c) Establish consistency of the mode-constrained and symmetric mode-con-

strained MLE’s with respect to the Hellinger metric.
(d) Establish local rates of convergence of the constrained estimators f̂0

n and ĝ0n
and establish the (pointwise) asymptotic distributions of the constrained
estimators.

(e) Establish global rates of convergence of the constrained estimators.

Here is a brief summary of the paper: In Section 2 we show that the con-
strained estimators exist and satisfy useful characterizations. Section 3 provides
plots of the constrained estimators and provides comparisons to each other and
to the unconstrained maximum likelihood estimators f̂n ∈ LC. In Section 4
we summarize results concerning consistency and global rates of convergence,
while Section 5 addresses local rates of convergence and limiting distributions
at fixed points. Section 6 summarizes some problems and difficulties concerning
extensions to higher dimensions. All the proofs are given in Sections 7 and 8.

Many of our theorems have parts labeled “A”, “B”, and “C.” In general
the “A parts” of results here have been proved by other authors (as noted in
the theorem statements), the “B parts” were proved (for the most part) in the
University of Washington Ph.D. dissertation of the first author, Doss (2013b).
The “C parts” are new findings by the present authors, whose proofs are in
some cases (as noted in text near the corresponding results) related to proofs
developed by Balabdaoui and Doss (2018).
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2. Maximum likelihood estimator finite sample properties:
Unconstrained and mode-constrained

2.1. Notation and terminology

Several classes of concave functions will play a central role in this paper. In
particular, we let

C := {ϕ : R → [−∞,∞) | ϕ is concave, closed, and proper} (2.1)

and, for any fixed m ∈ R,

Cm := {ϕ ∈ C | ϕ(m) ≥ ϕ(x) for all x ∈ R} (2.2)

is the class of concave functions on R with mode at m. We also let

SC0 := {ϕ ∈ C0 | ϕ(−x) = ϕ(x) for all x ∈ R}. (2.3)

Here proper and closed concave functions are as defined in Rockafellar (1970),
pages 24 and 50. We will follow the convention that all concave functions ϕ are
defined on all of R and take the value −∞ off of their effective domains where
dom(ϕ) := {x : ϕ(x) > −∞} (Rockafellar (1970), page 40). The classes of
unconstrained and constrained log-concave densities are then

LC :=

{
eϕ :

∫
eϕdλ = 1, ϕ ∈ C

}
,

LCm :=

{
eϕ :

∫
eϕdλ = 1, ϕ ∈ Cm

}
, and

SLC0 :=

{
eϕ :

∫
eϕdλ = 1, ϕ ∈ SC0

}
,

where λ is Lebesgue measure on R. We let X1, . . . , Xn be the observations, in-
dependent and identically distributed with density f0 with respect to Lebesgue
measure. Here we assume throughout that f0 ∈ LC and frequently that f0 =
eϕ0 ∈ LCm for some m ∈ R or f0 = eϕ0 ∈ SLC0. We let X(1) < · · · < X(n)

denote the order statistics of the Xi’s, and write |X|(1) < · · · < |X|(n) for the or-
der statistics of |X1|, . . . , |Xn|. We let Pn = n−1

∑n
i=1 δXi denote the empirical

measure, let Fn(x) = n−1
∑n

i=1 1(−∞,x](Xi) denote the empirical distribution
function, and let Gn(x) = n−1

∑n
i=1 1[0,x](|Xi|) denote the empirical distribu-

tion function of |X1|, . . . , |Xn|.
We define the log-likelihood criterion function Ψn : C → R by

Ψn(ϕ) =
1

n

n∑
i=1

ϕ(Xi)−
∫
R

eϕ(x)dx = Pnϕ−
∫
R

eϕdλ (2.4)

where we have used the standard device of including the Lagrange term∫
R
eϕ(x)dx in Ψn to avoid the normalization constraints involved in the classes
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LCm and SLC0. This is as in Silverman (1982), Dümbgen and Rufibach (2009),
and other current literature.

We will denote the unconstrained MLE’s of ϕ0, f0, and F0 by ϕ̂n, f̂n, and
F̂n respectively. The corresponding constrained estimators with mode m and
symmetric estimators with mode at 0 will be denoted by ϕ̂0

n, f̂
0
n, F̂

0
n , and ψ̂0

n,

ĝ0n, Ĝ
0
n respectively. Thus

ϕ̂n ≡ argmax
ϕ∈C

Ψn(ϕ), ϕ̂0
n ≡ argmax

ϕ∈Cm

Ψn(ϕ), and ψ̂0
n ≡ argmax

ψ∈SC0

Ψn(ψ).

Before proceeding to results concerning existence and uniqueness of the con-
strained estimators ϕ̂0

n and ψ̂0
n, we first explain some undesirable properties of

“naive” constrained estimators based on the unconstrained MLE’s f̂n and ϕ̂n.

2.2. Naive estimators

We can easily construct “naive” estimators under our two classes of constraints.
For instance, a naive mode-constrained estimator based on the unconstrained
log-concave MLE is f̃0

n(x) = f̂n(x − (m − m̂n)), where m̂n is the mode of f̂n.
Then f̃0

n indeed has mode m. Let ϕ̃0
n = log f̃0

n. Unfortunately, these estimators
have quite undesirable properties. For example, when ϕ′

0(x0) �= 0, we can see
that

n2/5
(
ϕ̃0
n(x0)− ϕ0(x0)

)
= n2/5

(
ϕ̂n(x0 + (m̂n −m))− ϕ0(x0)− ϕ′

0(x0)(m̂−m)
)

+ n2/5ϕ′
0(x0)(m̂−m)

= Op(1) + n1/5Op(1)

since m̂n−m = Op(n
−1/5) by Theorem 3.6 of Balabdaoui, Rufibach and Wellner

(2009), so the first summand is Op(1) by Corollary 2.2 of Balabdaoui, Rufibach
and Wellner (2009) (and its proof, see their (4.34)). Thus, away from the mode,
this naive estimator in fact converges at a slower rate than n−2/5.

Similarly, a naive 0-symmetric estimator can be constructed. Let g̃sn(y) =

(f̂n(m̂n + y)f̂n(m̂n − y))1/2. Then g̃sn is symmetric about its mode 0. (It is not
necessarily a bona fide density that integrates to 1, but its integral converges to
1.) Again, unfortunately, a similar analysis as above shows that if x0 �= m, then

n2/5(log g̃sn(x0)− ϕ0(x0)) = Op(1) + n2/5m̂nϕ
′
0(x0)

since ϕ′
0(x0) = −ϕ′

0(−x0). Since n1/5m̂n = Op(1) and ϕ′
0(x0) �= 0, we again see

that the naive estimator converges at a slower rate than n−2/5.

In summary, naive plug-in estimation for the mode and symmetry constraints
does not work. The poor performance of these and other “naive” or “plug-in”
estimators motivates study of the constrained MLE’s, which we now pursue.
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2.3. The unconstrained and the constrained MLE’s

To develop theory for the mode-constrained estimators ϕ̂0
n, f̂

0
n, and F̂ 0

n it will
be helpful to consider mode-augmented data Z1, . . . , ZN with N = n or n + 1
as follows:

(1) If m = X(k) for some k ∈ {1, . . . , n} then Zj ≡ X(j) for j ∈ {1, . . . , n} and
N = n.

(2) If m ∈ (X(k−1), Xk) for some k ∈ {1, . . . , n + 1} (where X(0) ≡ −∞
and X(n+1) ≡ +∞), then we define Zi ≡ X(i) for i ∈ {1, . . . , k − 1},
Zk ≡ m, and Zi ≡ X(i−1) for i ∈ {k + 1, . . . , n + 1}. In this case
Z = (X(1), . . . , X(k−1),m,X(k), . . . , X(n)) ∈ R

n+1 and N = n+ 1.

Theorem 2.1. The following statements hold almost surely when X1, . . . , Xn

are i.i.d. from a density on R.

A. (Pal, Woodroofe and Meyer (2007), Rufibach (2006)) For n ≥ 2 the (un-
constrained) nonparametric MLE ϕ̂n exists and is unique. It is linear on all

intervals [X(j), X(j+1)], j = 1, . . . , n. Moreover, ϕ̂n = −∞ and f̂n = 0 on
R \ [X(1), X(n)].

B. (Doss (2013b)) For N ≥ 2 the mode-constrained MLE ϕ̂0
n exists and is

unique. It is piecewise linear with knots at the Zi’s and domain [Z1, ZN ]. If
m is not a data point, then at least one of (ϕ̂0

n)
′(m+) or (ϕ̂0

n)
′(m−) is 0.

C. The constrained MLE ψ̂0
n ∈ SC0 exists for n ≥ 1 and is unique. It is piece-

wise linear with knots contained in the set of 2n + 1 points −|X|(n), . . . ,
−|X|(1), 0, |X|(1), . . . , |X|(n), and is −∞ for x /∈ [−|X|(n), |X|(n)]. Further-
more, (ψ̂0

n)
′(0±) = 0.

The previous result shows that the MLE’s exist. Unfortunately, there is no
closed form expression for the MLE’s. However, since they are solutions to op-
timization problems, they satisfy certain optimality conditions. Thus, the next
two theorems we present provide systems of inequalities and equalities that
characterize the MLE’s.

Theorem 2.2.

A. (Rufibach (2006), Dümbgen and Rufibach (2009) ) Let ϕ̂n be a concave func-

tion such that {x : ϕ̂n(x) > −∞} = [X(1), X(n)]. Then f̂n = eϕ̂n ∈ LC is
the unconstrained MLE if and only if∫

Δ(x)dFn(x) ≤
∫

Δ(x) exp(ϕ̂n(x))dx =

∫
Δ(x)dF̂n(x)

for any function Δ : R → R such that ϕ̂n + λΔ is concave for some λ > 0.
B. (Doss (2013b)) Suppose that f̂0

n = eϕ̂
0
n ∈ LCm. Then f̂0

n is the MLE over
LCm if and only if ∫

ΔdFn ≤
∫

ΔdF̂ 0
n (2.5)

for all Δ such that ϕ̂0
n + tΔ ∈ Cm for some t > 0.
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C. Suppose that ĝ0n = eψ̂
0
n ∈ SLC0 and Ĝ0

n(x) ≡
∫ x

−∞ ĝn(y)dy. Then ĝ0n is the
MLE over SLC0 if and only if∫

ΔdFn ≤
∫

ΔdĜ0
n (2.6)

for all Δ such that ψ̂0
n + tΔ ∈ SC0 for some t > 0.

To state the second characterization theorem for the MLE’s, we first introduce
some further notation and definitions. For a continuous and piecewise linear
function h : [A,B] → R we define its knots to be

Sn(h) := {t ∈ (A,B) : h′(t−) �= h′(t+)} ∪ {A,B}.

Note that ϕ̂n, ϕ̂0
n, and ψ̂0

n are all continuous and piecewise linear functions
(with A = X(1), B = X(n) in the case of ϕ̂n and ϕ̂0

n, and with A = −|X|(n),
B = |X|(n) in the case of ψ̂n), and we have

Sn(ϕ̂n) ⊂ {X(1), X(2), . . . , X(n)},
Sn(ϕ̂

0
n) ⊂ {X(1), X(2), . . . , X(n)},

Sn(ψ̂
0
n) ⊂ {−|X|(n), . . . , |X|(n)}.

Now suppose that ϕ̂0
n is piecewise linear with knots at the (mode-augmented)

data, let m ∈ R, and assume that f̂0
n ≡ exp(ϕ̂0

n) ∈ LCm. For t ∈ R define

Fn,L(t) ≡
∫
(−∞,t]

dFn(y), Fn,R(t) ≡
∫
[t,∞)

dFn(y),

Yn,L(t) ≡
∫ t

X(1)
Fn,L(x)dx, Yn,R(t) ≡

∫X(n)

t
Fn,R(x)dx,

F̂ 0
n,L(t) ≡

∫ t

−∞ f̂0
n(y)dy, F̂ 0

n,R(t) ≡
∫X(n)

t
f̂0
n(y)dy,

Ĥ0
n,L(t) ≡

∫ t

X(1)
F̂ 0
n,L(x)dx, Ĥ0

n,R(t) ≡
∫X(n)

t
F̂ 0
n,R(x)dx.

(2.7)

Definition 2.3. With m considered as a possible knot of ϕ̂0
n we say that m

is a left knot (or LK) if (ϕ̂0
n)

′(m−) > 0 and that m is a right knot (or RK) if
(ϕ̂0

n)
′(m+) < 0. We say that m is not a knot (or NK) if (ϕ̂0

n)
′(m) = 0. All other

knots are considered to be left knots (LKs) or right knots (RKs) depending on
whether they are strictly smaller or strictly larger than m.

Theorem 2.4.

A. (Rufibach (2006), Dümbgen and Rufibach (2009)) Let F̂n(x)≡
∫ x

−∞ eϕ̂n(y)dy,

and assume further that f̂n = eϕ̂n ∈ LC. Then f̂n is the MLE in LC if and
only if

Ĥn(t) ≡
∫ t

X(1)

F̂n(y)dy ≤
∫ t

X(1)

Fn(y)dy ≡ Yn(t) for all t ∈ R

with equality if t ∈ Sn(ϕ̂n).
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B. (Doss, 2013b) With the notation in (2.7), f̂0
n = eϕ̂

0
n is the MLE of f0 ∈ LCm

if and only if

Ĥ0
n,L(t) ≤ Yn,L(t) for X(1) ≤ t ≤ m (2.8)

Ĥ0
n,R(t) ≤ Yn,R(t) for m ≤ t ≤ X(n) (2.9)

with equality in (2.8) if t is a left knot of ϕ̂0
n and equality in (2.9) if t is a

right knot of ϕ̂0
n.

C. ĝ0n = eψ̂
0
n ∈ SLC0 is the MLE if and only if ĝ+n ≡ 2ĝ0n satisfies, with

Ĝ+
n,R(x) ≡

∫ |X|(n)

x
ĝ+n (y)dy and F

+
n,R(x) ≡ n−1

∑n
i=1 1{|X|(i) ≥ x},∫ |X|(n)

t

Ĝ+
n,R(x)dx

{
≤
∫ |X|(n)

t
F
+
n,R(x)dx, if t ∈ [0, |X|(n)],

=
∫ |X|(n)

t
F
+
n,R(x)dx, if t ∈ Sn(ψ̂

0
n) ∩ [0, |X|(n)].

Remark 2.5. The conditions (2.8) and (2.9) only involve data from the left and
right sides of m, and hence are separate characterizations in a sense. But they
are coupled by way of the (global) constraint F̂ 0

n(X(n)) = 1 (or, equivalently,
ϕ̂0
n ∈ Cm) which involves the data on both sides of m.

Remark 2.6. The “C parts” of Theorems 2.1, 2.2, and 2.4 will be proved here in
detail via methods similar to those introduced briefly in Balabdaoui and Doss
(2018) in the course of a study of two-component mixture models based on
symmetric log-concave components.

These characterization theorems have two important corollaries. (Recall that
Gn denotes the empirical distribution function of the |Xi|’s.)
Corollary 2.7 (MLE’s related to Fn at knot points). Each of the following
holds almost surely.

A. Fn − n−1 ≤ F̂n ≤ Fn on Sn(ϕ̂n).

B. Fn − n−1 ≤ F̂ 0
n ≤ Fn on Sn(ϕ̂

0
n) \ {m}.

C. Gn − n−1 ≤ Ĝ+
n ≤ Gn on Sn(ψ̂

0
n) ∩ [0, |X|(n)].

Now for any distribution function F on R let μ(F ) ≡
∫
xdF (x) and Var(F ) =∫

(x− μ(F ))2dF (x).

Corollary 2.8 (Mean and variance inequalities).

A. μ(F̂n) = μ(Fn) and Var(F̂n) ≤ Var(Fn).

B. μ(Ĝ0
n) = 0 and Var(Ĝ0

n) ≤
∫
x2dFn(x).

Because Δ±(x) = ±x does not have mode m, and because −(x − μ)2 only
has mode m if μ = m, we cannot make comparisons between the mean and
variances of Fn and F̂ 0

n .

3. Hellinger consistency and rates

Pal, Woodroofe and Meyer (2007) showed that the unconstrained MLE’s {f̂n}
are a.s. consistent in the Hellinger metric H where H2(p, q) ≡ (1/2)

∫
{√p −
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√
q}2dλ, and their methods also yield consistency for the MLE’s over any sub-

class S ⊂ LC for which the MLE’s {ĝn} exist and satisfy

sup
n

sup
x

log ĝn(x) < ∞ a.s..

This nicely includes the subclass S = LCm when f0 ∈ LCm; i.e. the mode m
has been correctly specified. Further consistency results are due to Cule and
Samworth (2010), Rufibach (2006), and Dümbgen and Rufibach (2009). To the
best of our knowledge, this is the first treatment of the consistency and global
rate properties of the constrained estimators.

Theorem 3.1 (Hellinger consistency and rates of convergence).

A. (Doss and Wellner (2016)) If f0 ∈ LC, then H(f̂n, f0) = Op(n
−2/5).

B. (Doss (2013b)) If f0 ∈ LCm, then H(f̂0
n, f0) = Op(n

−2/5).
C. (Balabdaoui and Doss (2018)) If f0 ∈ SLC0, then H(ĝ0n, f0) = Op(n

−2/5).

Remark 3.2. Kim and Samworth (2016) extend Part A of Theorem 3.1 by

upper bounding the maximal risk of f̂n: their Theorem 5 implies that
supf∈LC EfH

2(f̂n, f) is O(n−4/5) (considering squared Hellinger rather than
Hellinger distance). They also provide a matching lower bound: their Theorem 1
implies

inf
f̃n

sup
f∈LC

EfH
2(f̃n, f) ≥ cn−4/5,

for some c > 0, where the infimum is over all (measurable) estimators f̃n of
f . Neither upper nor lower bounds for the (Hellinger) minimax risk are known
for either of the constrained density classes we consider in the present paper,
although we conjecture that n−4/5 is the minimax rate of convergence in both
cases.

Remark 3.3. When f0 ∈ LC \ LCm, then we can show that H2(f̂0
n, f

∗
0 ) →a.s. 0

where f∗
0 satisfies

K(f0, f
∗
0 ) = inf

g∈LCm

K(f0, g).

Similarly, when f0 ∈ LC \ SLC0, then we can show that H2(ĝ0n, g
∗
0) →a.s. 0

where g∗0 satisfies
K(f0, g

∗
0) = inf

g∈SLC0

K(f0, g);

but we will not pursue this here since our goal in this paper is to understand the
null hypothesis (or correctly specified) behavior of the constrained estimators

ϕ̂0
n, f̂

0
n, and F̂ 0

n . See Doss and Wellner (2019) for some initial steps concerning
the power of a likelihood ratio test based on 2 log λn when f0 ∈ LC \ LCm.

In addition to considering Hellinger distance, one can consider the sup norm
(on compact sets) as a metric for global convergence. It turns out that the
proofs in Doss and Wellner (2019) rely crucially on knowing the rate of sup-
norm convergence for ϕ̂0

n (as well as for ϕ̂n). Thus we study the sup-norm rate
of convergence for ϕ̂0

n in that paper. In Theorem 4.1 of that paper we find, when
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the true log-density satisfies a Hölder condition of order 2 and ϕ
(2)
0 (m) < 0, that

the rate of convergence is (logn/n)2/5 on compact sets interior to the support
of f0.

4. Local limit processes and limiting distributions at fixed points

Our goal in this section is to describe the limiting distributions of our estimators,
both unconstrained and constrained, at fixed points x0 (and m and 0) at which
the true density f0 satisfies a curvature condition. We also want to compare and
contrast the behavior of the three different estimators.

4.1. The limit processes, unconstrained and constrained

We first need to introduce the local limit proceses which are needed to treat
the local (at a single point or in a neighorhood of a point) limiting distributions
of the estimators, unconstrained and constrained. For all of our estimators (in-
cluding the unconstrained and the two different mode-constrained estimators),
the limit distributions are not Gaussian. Rather, they are defined in terms of
so-called invelope processes of integrated Brownian motion. We first recall the
invelope process related to the limit distribution for the unconstrained esti-
mators; this process was first presented and studied in Groeneboom, Jongbloed
and Wellner (2001a) (and shown to yield the limit distribution in several convex
function estimation problems in Groeneboom, Jongbloed and Wellner (2001b)).
Let W be a two-sided standard Brownian motion starting at 0 and for any t ∈ R

let

X(t) = W (t)− 4t3, Y (t) =

∫ t

0

X(s)ds =

∫ t

0

W (s) ds− t4. (4.1)

Theorem 4.1 (Groeneboom, Jongbloed and Wellner (2001a)). Let W , X, and
Y be as in (4.1). Then there exists an almost surely uniquely defined random
continuous function H satisfying the following conditions:

(i) The function H is everywhere below Y :

H(t) ≤ Y (t) for all t ∈ R.

(ii) H has a concave second derivative.
(iii) H satisfies ∫ ∞

−∞
(H(t)− Y (t))d(H(3))(t) = 0.

The random variables H(2)(0) and H(3)(0) give the universal component of

the limit distribution of f̂n(x0) and (f̂n)
′(x0); see Theorem 4.5, below.

Theorem 4.1 concerns a process H, related to the unconstrained concave es-
timation problem. In the mode constrained estimation problem, f0 ∈ LCm, in-
stead of having one process we have two, one for the left-hand side of 0 (negative



2402 C. R. Doss and J. A. Wellner

axis) and one for the right-hand side of 0 (positive axis). (Here, 0 corresponds
to the mode m, by a translation.) The definitions of the left- and right-hand
processes depend on a random starting point for the corresponding integrals
involved, which we will eventually denote τL and τR (this is made clear in
(4.3)–(4.5), below). To define τL and τR, we must define rigorously the possible
‘bend points’ of ϕ̂0. To describe the situation exactly, we also will define ‘bend
points’ τ0+ and τ0−, satisfying τ0+ ≤ τR and τ0− ≥ τL, where the inequality may or
may not be strict; these bend points arise in (4.10) below. For a concave function
g, we let g′(·−) and g′(·+) be the left and right derivatives, respectively (which
are always well defined).

Theorem 4.2. Assume that {HL(t) : t ≤ 0} and {HR(t) : t ≥ 0} are random

processes with concave second derivatives so that ϕ̂0(t) ≡ H
(2)
L (t)1(−∞,0)(t) +

H
(2)
R (t)1[0,∞)(t) satisfies ϕ̂0 ∈ C0. Define the ‘bend points’ Ŝ0 by

(Ŝ0(ϕ̂0))c ≡ (Ŝ0)c :=
{
t ∈ R : (ϕ̂0)(2)(t±) = 0

}
. (4.2)

Next, define

τ0−(ϕ̂
0) ≡ τ0− = sup

{
t ∈ Ŝ0 : (ϕ̂0)′((t− ε)−) > 0 for all ε > 0

}
, (4.3)

τ0+(ϕ̂
0) ≡ τ0+ = inf

{
t ∈ Ŝ0 : (ϕ̂0)′((t+ ε)+) < 0 for all ε > 0

}
, (4.4)

τL = sup
(
Ŝ0 ∩ (−∞, 0)

)
and τR = inf

(
Ŝ0 ∩ (0,∞)

)
. (4.5)

Let W be a standard two-sided Brownian motion with W (0) = 0, and for t ∈ R

let
X(t) = W (t)− 4t3,

YL(t) =

∫ τL

t

∫ τL

u

dX(v)du and YR(t) =

∫ t

τR

∫ u

τR

dX(v)du. (4.6)

With these definitions, we assume that:

(i) −∞ < τL ≤ 0 and 0 ≤ τR < ∞ and∫ τR

τL

(ϕ̂0(v)dv − dX(v)) = 0. (4.7)

(ii)

HL(t)− YL(t) ≤ 0 for t ≤ 0, (4.8)

HR(t)− YR(t) ≤ 0 for t ≥ 0, (4.9)

(iii) ∫
(−∞,τ0

−]

(HL(u)−YL(u))d(ϕ̂
0)′(u)= 0=

∫
[τ0

+,∞)

(HR(u)−YR(u))d(ϕ̂
0)′(u).

(4.10)
Then, HL and HR are unique, as are τL and τR.
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Theorem 4.2 shows that processes with the given properties are unique; that
they exist follows from the proofs of Theorem 4.8 and Theorem 4.9, which show
that HL and HR exist since they are limit versions of certain finite sample
processes (Ĥϕ

n,L, Ĥ
ϕ
n,R).

If ϕ̂0 is, in fact, piecewise linear, then τ0− is just the last knot point τ of ϕ̂0

with (ϕ̂0)′(τ−) > 0. By Theorem 23.1 of Rockafellar (1970), a finite, concave
function on R such as ϕ̂0 has well-defined right- and left-derivatives at all of R;
the specification of left- and right- derivatives in the definitions of τ0− and τ0+
are for concreteness but not necessary since we consider all ε > 0.

The distinction between τR and τ0+ depends only on the behavior of ϕ̂0 at
0, and can be understood by considering the case where the infima in (4.4)
and in (4.5) are actually minima (the infima are attained). In that case, we see
that τ0+ can be thought of as the smallest “right-knot” in the sense that ϕ̂0

has a strictly negative slope to the right of τ0+. And τR can be thought of as
the smallest positive knot. Note that (by concavity) all positive knots are right-
knots, so that τR ≥ τ0+. Note that the infimum defining τR in (4.5) is taken over
knots that are strictly larger than 0, so that (when the infima are attained) we
have τR > 0. On the other hand, if 0 is a right-knot then τ0+ = 0, so that then
τR and τ0+ are distinct. If 0 is not a right-knot, then we will have τ0+ = τR. These
statements are slightly complicated by the fact that τ0+ and τR are defined as
infima rather than minima, but the intuitive differences are captured by the
previous description. Corresponding statements hold for τL and τ0−.

The distinction between the two sets of knots pairs is important because many
of our arguments depend on constructing “perturbations” of ϕ̂0, and we can use
different types of perturbations at each pair. This means that the different knot
pairs have different properties: if we replace τL, τR by τ0−, τ

0
+ in (4.7), then that

display may not hold, and similarly, if we replace τ0−, τ
0
+ by τL, τR in (4.10),

then that display may not hold. The following lemma holds for τ0−, τ
0
+ but not

necessarily for τL, τR.

Lemma 4.3. With the definitions and assumptions as in Theorem 4.2,

(ϕ̂0)′(t) = 0 for t ∈ (τ0−, τ
0
+). (4.11)

Now we introduce the appropriate limit processes for the symmetric about
0 mode-constrained estimators. The characterization is similar to that for the
mode-constrained (but not symmetric) processes, but since it is defined only on
[0,∞) the processes are not the same.

Theorem 4.4. Assume H+ is a random process on [0,∞), and assume that

ψ̂0 ≡ (H+)(2) ∈ C0. Define

(Ŝ+)c ≡ S(ψ̂0)c =
{
t ≥ 0 : (ψ̂0)(2)(t±) = 0

}
\ {0} ,

τ++ = inf
{
t ∈ Ŝ+ : (ψ̂0)′(t+ ε+) < 0 for all ε > 0

}
, and

τ+R = inf Ŝ+ ∩ (0,∞).
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For t ≥ 0, let W (t) be a one-sided standard Brownian motion with W (0) = 0,
let X(t) = W (t)− 4t3, and let

Y +(t) =

∫ t

τ+
R

∫ u

τ+
R

dX(v)du.

Suppose that τ+R < ∞ and

(i) ∫ τ+
R

0

(ψ̂0(u)du− dX(u)) = 0, (4.12)

(ii)

H+(t)− Y +(t) ≤ 0 for all t ≥ 0, (4.13)

(iii) ∫
[τ+

+ ,∞)

(H+ − Y +)d(ψ̂0)′ = 0. (4.14)

Then H+ is unique.

4.2. Unconstrained and constrained pointwise limit theory at
x0 �= m

The two main limit theorems below will concern the limiting distributions of our

estimators and their derivatives. Recall, we assume that X1, . . . , Xn
iid∼ f0 = eϕ0 ,

where f0 is a non-degenerate density on R. The three sets of estimators of f0,
ϕ0, f

′
0, and ϕ′

0 to be considered are:

A f̂n, ϕ̂n, (f̂n)
′, and (ϕ̂n)

′.

B f̂0
n, ϕ̂

0
n, (f̂

0
n)

′, and (ϕ̂0
n)

′.

C ĝ0n, ψ̂
0
n, (ĝ

0
n)

′, and (ψ̂0
n)

′.

Then the corresponding curvature assumptions are:

Curvature Assumption 1. ϕ′′
0(x0) < 0, where x0 ∈ int {x : f0(x) > 0}.

Curvature Assumption 2a. ϕ′′
0(x0) < 0 with x0 �= m and x0 ∈ int {x : f0(x) > 0}.

Curvature Assumption 2b. ϕ′′
0(m) < 0.

Note that Hall (1984) shows that Curvature Assumption 2b holds for the class
of symmetric α-stable densities on R for all 0 < α < 2. Assumption 1 will be
used for the estimators in A, whereas for the estimators in B and C we will use

Assumptions 2a and 2b. In all three cases we assume X1, . . . , Xn
iid∼ f0.

To state our theorem we first define some constants as follows:

c(x0, ϕ0) =

(
f0(x0)

3|ϕ(2)
0 (x0)|

4!

)1/5

, d(x0, ϕ0) =

(
f0(x0)

4|ϕ(2)
0 (x0)|3

(4!)3

)1/5
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C(x0, ϕ0) =

(
|ϕ(2)

0 (x0)|
f0(x0)24!

)1/5

, D(x0, ϕ0) =

(
|ϕ(2)

0 (x0)|3
f0(x0)(4!)3

)1/5

.

Theorem 4.5 (Limiting distributions at a fixed point x0 �= m).

A. Balabdaoui, Rufibach and Wellner (2009). Suppose that f0 ∈ LC and that
the Curvature Assumption 1 holds at x0. Then with H as in Theorem 4.1
and ϕ̂ ≡ H ′′,⎛⎜⎜⎝

n2/5(f̂n(x0)− f0(x0))

n1/5(f̂ ′
n(x0)− f ′

0(x0))
n2/5(ϕ̂n(x0)− ϕ0(x0))
n1/5(ϕ̂′

n(x0)− ϕ′
0(x0))

⎞⎟⎟⎠ d→

⎛⎜⎜⎝
c(x0, ϕ0)ϕ̂(0)
d(x0, ϕ0)ϕ̂

′(0)
C(x0, ϕ0)ϕ̂(0)
D(x0, ϕ0)ϕ̂

′(0)

⎞⎟⎟⎠ , (4.15)

B. Suppose that f0 ∈ LCm and that the Curvature Assumption 2a holds at x0

with x0 �= m. Then (4.15) continues to hold with f̂n, ϕ̂n, (f̂n)
′, and (ϕ̂n)

′

replaced by f̂0
n, ϕ̂

0
n, (f̂

0
n)

′, and (ϕ̂0
n)

′.
C. Suppose that f0 ∈ SLC0 and that the Curvature Assumption 2a holds at x0

with x0 �= 0. Then (4.15) continues to hold with f̂n, ϕ̂n, (f̂n)
′, and (ϕ̂n)

′

replaced by ĝ0n, ψ̂0
n, (ĝ0n)

′, and (ψ̂0
n)

′; and c(x0, ϕ0), d(x0, ϕ0), C(x0, ϕ0),
and D(x0, ϕ0) replaced by 2−2/5c(x0, ϕ0), 2−1/5d(x0, ϕ0), 2−2/5C(x0, ϕ0),
and 2−1/5D(x0, ϕ0).

Remark 4.6. (i) Comparing the MLE’s for LC and LCm: Note that the limiting
distributions in A and B at a point x0 �= m are the same. At a fixed point
x0 �= m, the constraint that the mode is known does not help in estimating the
function at x0. As we will see below, this picture changes when x0 = m.

(ii) Note that the rate of convergence of f̂0
n and ĝ0n as x0 �= m (or x0 �= 0

in the case of ĝ0n) is n−2/5 in contrast to the n−1/5 rate achieved by the naive
estimators discussed in Subsection 2.2.

(iii) Comparing the MLE’s for LC and LCm with the MLE for SLCm: The
limiting distributions for the symmetric log-concave class SLC in C are smaller
than the limiting distributions of the MLE’s for the possibly asymmetric log-
concave classes LC and LCm by a factor of 2−2/5 ≈ .757858 . . . for the functions
themselves and by a factor of 2−1/5 ≈ .870551 . . . for the derivatives of the
functions. Thus the symmetry constraint substantially reduces the variability of
the estimators (see also Figure 3).

4.3. Mode-constrained and symmetry-constrained pointwise limit
theory at x0 = m

The limit distribution of the mode-constrained estimators at a point x0 depends
on whether x0 = m or x0 �= m. In the latter case the asymptotics are the same
as the unconstrained estimator, but in the former case they depend on the
mode-constrained limit process.
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Theorem 4.7 (Limiting distributions at m).

B. Let Curvature Assumption 2b hold. Let constants c(x0, ϕ0), d(x0, ϕ0),
C(x0, ϕ0), and D(x0, ϕ0) be as given in Theorem 4.5. Let ϕ̂0 be as in The-
orem 4.2. Then⎛⎜⎜⎝

n2/5(f̂0
n(m)− f0(m))

n1/5((f̂0
n)

′(m)− f ′
0(m))

n2/5(ϕ̂0
n(m)− ϕ0(m))

n1/5((ϕ̂0
n)

′(m)− ϕ′
0(m))

⎞⎟⎟⎠ d→

⎛⎜⎜⎝
c(m,ϕ0)ϕ̂

0(0)
d(m,ϕ0)(ϕ̂

0)′(0)
C(m,ϕ0)ϕ̂

0(0)
D(m,ϕ0)(ϕ̂

0)′(0)

⎞⎟⎟⎠ . (4.16)

C. Suppose that f0 ∈ SLC0 and that the Curvature Assumption 2b holds at
m = 0. Then(

n2/5(ĝ0n(0)− f0(0))

n2/5(ψ̂0
n(0)− ψ0(0))

)
d→
(

2−2/5c(0, ϕ0)ψ̂
0(0)

2−2/5C(0, ϕ0)ψ̂
0(0)

)
(4.17)

where ψ̂0 is given by Theorem 4.4.

We label the parts of Theorem 4.7 as “B” and “C” to be in parallel with
the labeling in Theorem 4.5. Notice that for the symmetric MLE, ((ĝ0n)

′(0)

and ((ψ̂0
n)

′(0) are always both equal to 0, the value of f ′
0(0) and of ϕ′

0(0), so
we do not state a limit theorem for these estimators. Theorems 4.5 and 4.7
follow from more general theorems about the estimators not just at x0 but in
local n−1/5 neighborhoods of x0, stated below as Theorems 4.8 and 4.9. The
“local neighborhood” Theorem 4.8 is the version from which we can derive
the limit distribution of the mode likelihood ratio statistic 2 log λn studied in
Doss and Wellner (2019). Monte Carlo estimates of the distribution functions
of ϕ̂′(0) and of (ϕ̂0)′(0) are presented in Figure 1 (left plot). Note that (ϕ̂0)′(0)
is stochastically smaller than ϕ̂′(0).

4.4. Local process limit theory, mode- and symmetry-constrained

Here we state the local process limit theorems behind Theorem 4.7 B, where
x0 = m. In this subsection we will formulate a more general version of that
theorem which applies to our estimators in n−1/5 neighborhoods of m.

Recall the definition of Y in (4.1). Now, for positive numbers a and σ, Let

Ya,σ(t) ≡ σ

∫ t

0

W (s)ds− at4
d
= σ(σ/a)3/5Y ((a/σ)2/5t), (4.18)

Y (1)
a,σ (t) = σW (t)− 4at3

d
= σ(a/σ)1/5Y (1)((a/σ)2/5t). (4.19)

Let Ha,σ, HL,a,σ, and HR,a,σ denote the unconstrained and mode-constrained
left- and right-processes for Ya,σ. Then

Ha,σ(t)
d
= σ(σ/a)3/5H((a/σ)2/5t),
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H(1)
a,σ(t)

d
= σ(σ/a)1/5H(1)((a/σ)2/5t),

and

ϕ̂a,σ = H(2)
a,σ

d
= σ4/5a1/5H(2)((a/σ)2/5·) (4.20)

Identical scaling relationships hold for HL,a,σ, HR,a,σ, and the corresponding

derivatives, including ϕ̂0
a,σ ≡ H

(2)
R,a,σ:

ϕ̂0
a,σ = H

(2)
R,a,σ

d
= σ4/5a1/5H

(2)
R ((a/σ)2/5·). (4.21)

Theorem 4.8. Let Curvature Assumption 2b hold. Let H be as in Theorem 4.1
and let ϕ̂ ≡ H ′′ and let ϕ̂0 be as in Theorem 4.2. Let σ ≡ 1/

√
f0(m) and

a = |ϕ(2)
0 (m)|/4!. Then⎛⎜⎜⎝

n2/5(ϕ̂n(m+ n−1/5t)− ϕ0(m))
n1/5(ϕ̂′

n(m+ n−1/5t)− ϕ′
0(m))

n2/5(ϕ̂0
n(m+ n−1/5t)− ϕ0(m))

n1/5((ϕ̂0
n)

′(m+ n−1/5t)− ϕ′
0(m))

⎞⎟⎟⎠ d→

⎛⎜⎜⎝
ϕ̂a,σ(t)
ϕ̂′
a,σ(t)

ϕ̂0
a,σ(t)

(ϕ̂0
a,σ)

′(t)

⎞⎟⎟⎠
as processes in (C∞ × D∞)2, where C∞ is the set of continuous functions on
(−∞,∞) with the topology of uniform convergence on compact sets and D∞
is the set of right-continuous with limits from the left (“cadlag”) functions on
(−∞,∞) with the topology of M1 convergence on compacta. (The M1 topology
is discussed in detail in Subsection 8.2.4).

A similar useful result for the symmetry constrained problem which general-
izes or extends Theorem 4.7 part C is as follows.

Theorem 4.9. Suppose that the Curvature Assumption 2b holds and f0 ∈
SLC0. Let σ ≡ 1/

√
2f0(0), and a ≡ |ϕ(2)

0 (0)|/4!. We let Ya,σ and Y
(1)
a,σ be as

in (4.18) and (4.19), and H+
a,σ(|t|) be the corresponding symmetry-constrained

process for t ∈ R as in Theorem 4.4, and let ψ̂0
a,σ(|t|) ≡ (H+

a,σ)
′′(|t|). Then(

n2/5(ψ̂0
n(n

−1/5t)− ϕ0(0))

n1/5((ψ̂0
n)

′(n−1/5t)− ϕ′
0(0))

)
→d

(
ψ̂0
a,σ(|t|)

(ψ̂0
a,σ)

′(|t|)

)
(4.22)

as processes in C∞ ×D∞ with the topology of uniform convergence on compacts
on C∞ and the M1 topology on D∞.

Remark 4.10. To this point we have focused on the case in which the point
of symmetry m is known (and equal to 0). If m is unknown (and possibly
different from 0) and f0 ∈ SLCm, then it is well-known that m is also the mean
and median of f0 and hence it can be estimated in several different ways by
estimators m̂ satisfying

√
n(m̂−m) = Op(1). For example, we could take m̂ =

Xn or m̂ = F
−1
n (1/2), the sample median. Then we can proceed by assuming

that f0 ∈ SLCm̂ and carrying out the estimation as described above with the

Xi’s shifted by m̂. Denote the resulting estimators of g and ψ by ˆ̂g0n and
ˆ̂
ψ0
n.

Then since n−1/2 = o(n−2/5) it is easily seen that that Theorems 4.5 C, 4.7 C

and 4.9 continue to hold with ĝ0n replaced by ˆ̂g0n and ψ̂0
n replaced by

ˆ̂
ψ0
n.
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Fig 1. Monte Carlo estimates of limit distributions for estimation of the derivative and the
maximum. The left plot gives Monte Carlo estimates of distribution functions of |ϕ̂′(0)| and
|(ϕ̂0)′(0)|. The right plot gives density estimates of N(ϕ̂) and N(ϕ̂0). The number of Monte
Carlos used is 103, each with sample size 104. Here, we sampled from N(0, 1) (although this
is inconsequential).

4.4.1. Asymptotics for the maximum

We now consider the asymptotic distribution of estimators of the maximum
functional N(f) ≡ supx∈R

f(x). The maximum functional is of interest, for
instance, in Polonik (1995) (see page 872). An estimate of N(f0) is needed for
estimation of functionals of the form

∫
fk
0 (x)dx. In the mode constrained case

where f0 ∈ LC0, n
2/5(N(f̂0

n)−N(f0)) = n2/5(f̂0
n(m)−f0(m)). In the symmetry-

constrained case with f0 ∈ SLC0, n
2/5(N(ĝ0n) − N(f0)) = n2/5(ĝ0n(0) − f0(0)).

Thus the asymptotic distribution in those two cases is given by Theorem 4.7.
We present the asymptotic distribution in the unconstrained case here. In fact,
in the unconstrained case, we can present a somewhat stronger result, where we
allow the possibility of increasingly flat modal regions.

Theorem 4.11. Let W denote two-sided Brownian motion starting at 0, and
define Yk(t) =

∫ t

0
W (s)ds − tk+2 for k ≥ 2 an even integer. Let Hk be the

lower invelope of Yk, as defined in Theorem 2.1 of Balabdaoui, Rufibach and

Wellner (2009), and let ϕ̂k ≡ H
(2)
k . Suppose f0 ∈ LC and that ϕ

(j)
0 (m) = 0 for

j = 2, . . . , k − 1, ϕ
(k)
0 (m) < 0 and ϕ

(k)
0 is continuous in a neighborhood of m.

Then (
n1/(2k+1)(M̂n −M(f0))

nk/(2k+1)(N̂n −N(f0))

)
→d

(
ek(ϕ0)M(ϕ̂k)
ck(ϕ0)N(ϕ̂k)

)
where

ek(ϕ0)
2k+1 =

(
(k + 2)!2

f0(m)|ϕ(k)
0 (m)|2

)
, ck(ϕ0)

2k+1 =

(
f0(m)k+1|ϕ(k)

0 (m)|
(k + 2)!

)
.

We compared, by Monte Carlo, the densities of N(ϕ̂) (note ϕ̂ ≡ ϕ̂2) and of
N(ϕ̂0). See estimates in Figure 1 (right plot); those estimates are log-concave
MLE’s (based on Monte Carlo simulations, as described in the caption).
Additionally, simulations not presented here indicate that P (|N(ϕ̂0)| ≤ t) ≥
P (|N(ϕ̂)| ≤ t) for all t ≥ 0 (i.e., |N(ϕ̂0)| is stochastically smaller than |N(ϕ̂)|).
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The estimated density of N(ϕ̂) in Figure 1 should be compared with the es-
timated density of ϕ̂(0) given in Figure 1 of Azadbakhsh, Jankowski and Gao
(2014), noting that their C(0) is our ϕ̂(0).

Remark 4.12. As is well known, one can see from Theorem 4.11 that the rate of
convergence of the mode decreases as k increases, while the rate of convergence
of the maximum increases (and gets closer to n1/2). One can also check that
ek(log f) ↘ 1 and ck(log f) ↗ 1 when f(x) = Ck exp(−|x|k/k) where k is an
even integer.

5. Simulation results

Software to compute the mode-constrained estimator, and also to implement
the likelihood ratio test and corresponding confidence intervals studied in Doss
and Wellner (2019), is available in the package logcondens.mode (Doss, 2013a)
in R (R Core Team, 2016). Here we illustrate the existence and characterization
results on simulated data in Figure 2. There are two columns of four plots. The
left column includes the mode-constrained log-concave MLE. The right column
includes the 0-symmetric log-concave MLE. The data points are represented by
vertical hash lines along the bottom of each plot. The density, log density, and
distribution function are plotted in the top three rows, with the unconstrained
log-concave MLE in red and the true (unknown) function in black. On the left
the mode-constrained MLE is in blue, and on the right the 0-symmetric MLE
is in blue. The empirical df Fn is plotted in green in the third row. In the last
row, we plot Yn,L − Ĥ0

n,L (blue) and Yn,R − Ĥ0
n,R (purple) to illustrate The-

orem 2.4 B (left plot), the corresponding symmetry-constrained process (blue)

to illustrate Theorem 2.4 C (right plot), and Yn − Ĥn in red (both plots) to
illustrate Theorem 2.4 A. In all the plots, dashed vertical red lines give Sn(ϕ̂n)
and dashed vertical blue lines give knots of the constrained estimator (which
frequently overlap). The solid blue line is the specified mode value for the mode-
constrained MLE.

Figure 3 gives plots of
√
n(Ĝ0

n−F0) (“SC”),
√
n(F̂ 0

n −F0) (“MC”),
√
n(F̂n−

F0) (“UC”), and
√
n(Fn − F0) (“E”). The left and right plot are each one

simulation with sample size n = 200 and n = 2000, respectively, from a N(0, 1)

distribution. The plots show improvements by Ĝ0
n and F̂ 0

n over F̂n. The MC and
UC lines are indistinguishable when n = 2000 since one needs to plot locally to
the mode 0 to see differences between F̂ 0

n and F̂n when n is large.

6. Outlook and further problems

Motivated by likelihood ratio test considerations as well as potential uses in sev-
eral semiparametric settings, we have introduced estimators for a log-concave
density known to satisfy a further constraint of either having a known mode or
of being symmetric (about 0). Our estimators are based on the maximum like-
lihood principle. The constrained MLE’s that we develop are more challenging
to compute and to study theoretically than certain näıve estimators discussed
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Fig 2. Left: Log-concave MLE and mode-constrained MLE of Gamma with density xe−x,
x ≥ 0, with n = 50 and m = 1 well-specified. Right: Log-concave MLE and 0-symmetric MLE
of N(0, 1) with n = 50.

in Subsection 2.2, but have much better theoretical behavior. We developed a
fast algorithm for computation of the estimators which is made available in the
logcondens.mode package for the R programming language. We found that the
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Fig 3. Empirical processes for the symmetry constrained (SC) log-concave MLE, mode con-
strained (MC) log-concave MLE, unconstrained (UC) log-concave MLE, and empirical (E)
distribution. We used a sample of n = 200 (left) and n = 2000 (right) from a N(0, 1) distri-
bution.

constrained MLE’s are consistent and indeed we presented the n−2/5 rate of
convergence, globally and locally (with some proofs given in Doss (2013b)). We
found the pointwise asymptotic distribution of the MLE’s, in fact; this necessi-
tated studying and characterizing certain limit processes that govern the limit
distributions of the MLE’s. Studying the limit processes in the constrained cases
seems to be somewhat more challenging than in the unconstrained case (i.e.,
than in the case given in Theorem 4.1), because the definitions and characteriz-
ing conditions for the constrained limit processes depend on certain knots (of the
limit process) in complicated ways. Nonetheless, our proofs of Theorem 4.2 and
Theorem 4.4 are different and shorter than the proof of Theorem 4.1; for the
latter, Groeneboom, Jongbloed and Wellner (2001a) initially characterized the
process on an interval [−c, c] and then through further tightness-type arguments
they showed that one can let c → ∞. In the proofs of Theorem 4.2 and Theo-
rem 4.4, we argue directly about a process on (−∞,∞), skipping the step of con-
sidering the process on [−c, c] and allowing for more direct proofs of the results.

The following are interesting questions beyond those already posed in the
introduction that are motivated by the present work.

(a) One motivation for the study of f̂0
n given here has been the likelihood ra-

tio tests and confidence intervals for the mode introduced in Doss and Wellner
(2019). But the constrained estimators may be of interest for the study of semi-
parametric two- and k−sample problems with (constrained) log-concave errors.

For example suppose that X1, . . . , Xm are i.i.d. with Xi
d
= μ+ εi, i = 1, . . . ,m,
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while Y1, . . . , Yn are i.i.d. with Yj
d
= ν + δj where μ, ν ∈ R and εi, δj are i.i.d.

with log-concave density f with mode at 0. Other variants of this problem might
involve constraining f to be log-concave with mean or median at 0 rather than
mode at 0. Constraining f to be symmetric about its mode of 0 and log-concave,
as in Balabdaoui and Doss (2018), is also of interest.

(b) In Balabdaoui and Doss (2018), a mixture density g0(x) =
∑k

i=1 πif0(x−
μi) is estimated where f0 is constrained to be in SLC0, k = 2, μ1 < μ2, and
π1 = 1−π2 /∈ {0, 1/2, 1}. Restriction to the case k = 2 is made for identifiability
reasons. Can the asymptotic distribution theory we developed in the present
paper be extended to the MLE of f0 (and of g0) in the semiparametric mixture
setting? Extensions to the case k > 2 could also be possible and would certainly
be interesting.

7. Proof sketches and outlines

In this section we give some outlines of the proofs of the results in Section 4. Full
proofs are given in Section 8. Here we outline the material in each subsection of
Section 8.

Subsection 8.2.1:
The main goal of Subsection 8.2.1 is to show the following proposition.

Proposition 7.1. Suppose either Assumption 2a holds (at x0 �= m) or Assump-
tion 2b holds (at x0 = m). Let C > 0 and let In = [x0 − Cn−1/5, x0 + Cn−1/5].
Then

sup
t∈In

∣∣(ϕ̂0
n)

′(t)− ϕ′
0(x0)

∣∣ = Op(n
−1/5), (7.1)

where (ϕ̂0
n)

′ denotes either the right or left derivative, and

sup
t∈In

∣∣ϕ̂0
n(t)− ϕ0(x0)− (t− x0)ϕ

′
0(x0)

∣∣ = Op(n
−2/5). (7.2)

We may replace the interval In by [ξn −Cn−1/5, ξn +Cn−1/5] for any ξn → m.
Then the random variables implied by the Op upper bounds depend on C but not
on ξn.

This proposition is of crucial importance for showing the results in Subsec-
tion 4.3 (Theorems 4.7, 4.8, and 4.9). The proof of Proposition 7.1 depends on
the following two propositions.

Proposition 7.2. Let K = [b, c] be a closed interval contained in the interior
of the support of f0 ∈ LCm. Then

sup
t∈K

|ϕ̂0
n(t)− ϕ0(t)| →a.s. 0 and sup

t∈K
|f̂0

n(t)− f0(t)| →a.s. 0 as n → ∞.

Proposition 7.3. Suppose that Curvature Assumption 2b holds so ϕ′′
0(m) < 0.

Let τ0+(ξn) denote the smallest knot of ϕ̂0
n strictly greater than ξn, and let τ0−(ξn)
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denote the largest knot of ϕ̂0
n strictly smaller than ξn. Then for all ε > 0 there

exists C0 > 0 such that for any random variables ξn →p m

P (n1/5(τ0+(ξn)− τ0−(ξn)) ≥ C0) ≤ ε

for n ≥ N0 for some N0. The integer N0 may depend on ξm but C0 does not
depend on ξm.

Proposition 7.2 is proved in Doss (2013b). It is needed to show Proposi-
tion 7.3, which is needed to prove Proposition 7.1. The proof of Proposition 7.1
depends on Proposition 7.3, finding points of closeness of ϕ̂n and ϕ̂0

n, and prop-
erties of convex functions. The full proof of Proposition 7.1 is given in Doss
(2013b) (see Corollary 4.2.7 there). Thus the main goal of Subsection 8.2.1 is
to prove Proposition 7.3 about the “gap problem” (a term coined in Balab-
daoui and Wellner (2007)) for the constrained MLE near m. The proof depends
on constructing certain (somewhat complicated) classes of perturbation func-
tions which can be related to τ0+(ξn)− τ0−(ξn), and then applying an argument
pioneered by Kim and Pollard (1990) to these perturbations (see Lemma 8.2).

Subsections 8.2.1 and 8.2.3:
Subsection 8.2.1 is devoted to the proof of Theorem 4.2. The proof proceeds

by defining an “objective function”

φa,b(g) =
1

2

∫ b

a

g2(t)dt−
∫ b

a

g(t)dX(t) (7.3)

for a < 0 < b. Now, ϕ̂0 is not a minimizer of this objective function (which
has finite bounds of integration) but we can show that ϕ̂0 behaves in a sense
as if it were a minimizer of φa,b over a the space of concave functions with
mode at 0. We show that, for certain values a < 0 < b, directional derivatives

of φa,b,
∫ b

a
Δ(t)(ϕ̂0(t)dt − dX(t)), in the direction of a function Δ (assumed to

be concave with mode at 0), are either nonnegative or in some cases are zero
(see Propositions 8.7 and 8.8 for exact statements). This allows us to argue as
follows. We want to show the uniqueness of any ϕ satisfying the characterizing
conditions of Theorem 4.2. We assume there exist ϕ1 and ϕ2 both satisfying the
characterizing conditions. We examine φa2,b2(ϕ1)− φa2,b2(ϕ2) and φa1,b1(ϕ2)−
φa1,b1(ϕ1) where ai, bi are certain knot points for ϕi. By Propositions 8.7 and
8.8, we are able to show that both of these differences are no smaller than∫ n

−n
(ϕ1(t) − ϕ2(t))

2dt > 0 for n > 0 related to the knot points ai, bi. On the
other hand, after deriving results about the knots ai, bi and relating the processes
ϕi to the “observed” process Y (see Lemma 8.9), we are able to show that
φa2,b2(ϕ1)−φa2,b2(ϕ2) and φa1,b1(ϕ2)−φa1,b1(ϕ1) are also nonpositive, by using
properties of Brownian motion. Thus the difference

∫ n

−n
(ϕ1(t) − ϕ2(t))

2dt = 0.
By letting n → ∞, we see ϕ1 = ϕ2 so the proof is complete. The proof is
somewhat complicated by the fact that the “knots” of the concave function
ϕ̂0 are not separated but rather could be a complicated “Cantor-type” set, as
described in Sinai (1992), and so their behavior requires careful analysis. The
proof of Theorem 4.4 in Subsection 8.2.3 follows a similar argument.
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Subsection 8.2.4:
Theorem 4.5 A about the unconstrained estimator is Theorem 2.1 of Balab-

daoui, Rufibach and Wellner (2009). Part B of the theorem is then proved in
an identical fashion as that theorem, because for n large enough, in an n−1/5

neighborhood of x0 �= m, the constrained and unconstrained estimators satisfy
the same characterization. Part C then follows from Part B. The main focus
of Subsection 8.2.4 is to show Theorem 4.8. Theorem 4.9 follows in a similar
fashion. Theorem 4.8 proves Theorem 4.7 B, which we show now. A similar
argument shows that Theorem 4.9 proves Theorem 4.7 C.

Proof of Theorem 4.7 B. Note that, now with σ = 1/
√
f0(m) and a =

|ϕ(2)
0 (m)|/4!, (4.21) equals

1

γ1γ2
2

H
(2)
R (·/γ2) ≡

1

γ1γ2
2

ϕ̂0(·/γ2), (7.4)

where

γ1 =

(
f0(m)4|ϕ(2)

0 (m)|3
(4!)3

)1/5

=
1

σ

(a
σ

)3/5
, (7.5)

γ2 =

(
(4!)2

f0(m)|ϕ(2)
0 (m)|2

)1/5

=
(σ
a

)2/5
, (7.6)

and we note that

γ1γ
3/2
2 = σ−1 =

√
f0(m), γ1γ

4
2 = a−1 =

4!

|ϕ(2)
0 (m)|

, (7.7)

1

γ1γ2
2

= C(m,ϕ0) ≡
(
4!f0(m)2

|ϕ(2)
0 (m)|

)−1/5

. (7.8)

This gives the constant in the limit distribution for ϕ̂0
n(m). For (ϕ̂0

n)
′(m), we

see from (7.4) that

(ϕ̂0
a,σ)

′ =d
1

γ1γ3
2

(ϕ̂0)′(·/γ2), (7.9)

and 1/γ1γ
3
2 = D(m,ϕ0). Thus Theorem 4.7 B follows from Theorem 4.8.

Next we briefly outline the proof of Theorem 4.8. We define two sets of
localized processes. We need to define left-side and right-side processes; for ease
of exposition, here we only discuss right-side processes. We let tn,b ≡ m+bn−1/5.
We let sn,R be any knot (sequence) of ϕ̂0

n strictly larger than m satisfying
n1/5(sn,R −m) = Op(1). The first set of localized processes is the “f -processes”
(written in terms of the densities and the empirical distribution):

Y
f
n,R(b) ≡ n4/5

∫ tn,b

sn,R

(∫ v

sn,R

(dFn − f0(m)dλ)

)
dv,
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Ĥf
n,R(b) ≡ n4/5

∫ tn,b

sn,R

(∫ v

sn,R

(f̂0
n − f0(m))dλ

)
dv +An,Rn

1/5(tn,b − sn,R),

where An,R = n3/5
(
Fn,R(sn,R)− F̂ 0

n,R(sn,R)
)
, and An,Rn

1/5(tn,b − sn,R) is

shown to be asymptotically negligible. These processes are needed because we
can show that

Y
f
n,R(·) ⇒

√
f0(m)

∫ ·

νn,R

∫ v

νn,R

dWdv − f
(2)
0 (m)

∫ ·

νn,R

∫ v

νn,R

u2

2
dudv (7.10)

where νn,R = n1/5(sn,R−m) andW is a standard Brownian motion withW (0) =
0 (see Lemma 8.17). Furthermore, the characterization from Theorem 2.4 B

applies to Y
f
n,R and Ĥf

n,R, so Y
f
n,R(b)− Ĥf

n,R(b) ≥ 0 for b > 0, with equality at
certain points (see Lemma 8.18).

On the other hand, the tightness proposition from above, Proposition 7.1,
applies to the log-densities. Thus we define the second set of processes, the
“ϕ-processes”, written in terms of log-densities:

Y
ϕ
n,R(b) =

Y
f
n,R(b)

f0(m)
− n4/5

∫ tn,b

sn,R

∫ v

sn,R

R0
n(u)dudv,

Ĥϕ
n,R(b) = n4/5

∫ tn,b

sn,R

∫ v

sn,R

(
ϕ̂0
n(u)− ϕ0(m)

)
dudv +

An,Rn
1/5(tn,b − sn,R)

f0(m)

where R0
n is a remainder term. These are related to the f -processes by a Taylor

expansion (the delta method). One can translate the characterizing inequalities

from the f -processes to the ϕ-processes, to see that Yϕ
n,R(b) − Ĥϕ

n,R(b) ≥ 0 for

b ≥ 0 with equality at certain points. By (7.10), Yϕ
n,R can be shown to converge

to a limiting Gaussian process. Furthermore, we can apply Proposition 7.1 and
the Arzela-Ascoli theorem (after analyzing various remainder terms) to see that

Ĥϕ
n,R is tight (Lemma 8.24).
Finally, we make a subsequence argument using tightness. By tightness, Pro-

horov’s theorem, and the Skorokhod construction, for any subsequence we can
find a further subsubsequence that converges almost surely to a limit process. By
using the characterization (Lemma 8.21, and by analysis of various remainder
terms), we show that the limit process must satisfy the unique characterizing
conditions given by Theorem 4.2. This shows the limit is the same along all
subsequences and so the unique process ϕ̂0 given in Theorem 4.2 is the limit,
which completes the proof. The argument showing that the characterizing con-
ditions pass from the finite sample processes to the limit process is somewhat
complicated by the fact that the integrands in question are defined to begin at
random knot points.

Another issue of note is that (ϕ̂0
n)

′ is a discontinuous function. We must
choose or find an appropriate metric space in which to study its convergence; the
metric we choose is the so-called M1 Skorokhod metric, which differs from the
(perhaps more standard) J1 Skorokhod metric (referred to as “the” Skorokhod
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metric in chapter 12 of Billingsley (1999)). The J1 metric unfortunately does not
allow multiple jumps to approximate a single jump, whereas theM1 metric does.
Since we do not have a proof that multiple jumps of (ϕ̂0

n)
′ do not approximate

a single jump in the limit, we must use the M1 metric. See Lemma 8.23 and the
preceding text for further discussion.

8. Proofs

8.1. Proofs for Section 2

Proofs of Theorems 2.1 A, 2.2 A, 2.4 A and Corollaries 2.7 A and 2.8 A may
be found in Pal, Woodroofe and Meyer (2007), Rufibach (2006), and Dümbgen
and Rufibach (2009). Proofs of parts B and C of Corollary 2.7 and part B of
Corollary 2.8 follow from the corresponding parts of Theorems 2.2 and 2.4, much
as in the unconstrained case, A. It remains to prove parts B and C of Theorems
2.1, 2.2, and 2.4.

In the following proofs, we let Cn,m denote the (random) class of concave
functions with knots at the Zi’s and support on [X(1), X(n)], and let Kn,m denote
the class of concave functions ϕ with knots at the Zi’s and where eϕ is a density
with support [X(1), X(n)].

Proof of Theorem 2.1. Proof of Theorem 2.1 B: As in the unconstrained case
(Theorem 2.1 of Dümbgen and Rufibach (2009)), it is easy to argue that the
solution is piecewise linear with knots at the Zi’s, and that ϕ̂0

n is flat either
directly to the left of the mode or directly to the right of the mode as long as
the mode is not a data point. If the mode is equal to one of the Xi’s then the
proof given by Rufibach (2006) for the unconstrained MLE existence applies
directly. Thus assume the mode is not one of the Xi. Consider a sequence {vj}
which has limit coordinates γ = (γ1, . . . , γN ) which may be ±∞. Let ϕγ be
the piecewise linear function given by linearly interpolating γ. Then ϕγ has a
flat modal region on [Zi, Zj ] for some i < j. Since

∫
eϕγ(x)dx = 1, we have

ϕγ(m) ≤ log(1/(Zj − Zi)). Since m is the mode of eϕγ no coordinate of γ is
positive infinity, if one of the coordinates is −∞ then Ψn(ϕγ) = −∞. This shows
we can consider the continuous function Ψn on a compact set so it achieves a

maximum. The proof that if ψ̂n maximizes Ψn over Cm then
∫
eψ̂n(x)dx = 1 as

well as the proof that ψ̂n is unique are as in the unconstrained case (Rufibach
(2006)).

For Theorem 2.1 C, note that

argmax
g∈SLC0

1

n

n∑
i=1

log g(Xi) = argmax
g∈SLC0

1

n

n∑
i=1

log g(|Xi|) = argmax
1

n

n∑
i=1

log g(|Xi|)

where the last argmax is over log-concave functions with mode at 0 and which
integrate to 1/2 on [0,∞).
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The proof of Theorem 2.2 B is standard. See Doss (2013b). For the proof of
Theorem 2.4 B we need to introduce a certain cone C ⊆ R

d (defined, e.g., on
page 13 of Rockafellar (1970)). We say the cone C is (finitely) generated by a

set {bi ∈ C : i = 1, . . . , k < ∞} if for all c ∈ C we can write c =
∑k

i=1 αibi for
some nonnegative numbers αi ≥ 0. Let (x)− = min(x, 0) and (x)+ = max(x, 0).

Proposition 8.1. Cn,m is a convex cone with finite generating set given by

{(x− Zi)−}2≤i≤k

⋃
{(Zi − x)−}k≤i≤N−1

⋃
{±1}.

Proof. It is clear that Cn,m is a cone because concavity and the mode are

preserved under positive scaling. For ϕ ∈ Cn,m, with ϕ′(Zi−) =
∑k

j=i aj for

i ≤ k, with, ϕ′(Zi+) =
∑i

j=k bj for i ≥ k, and with ϕ(m) = C, we can write

ϕ(x) = C +
∑k

i=2 ai(x− Zi)− +
∑n−1

i=k bi(Zi − x)−.

Proof of Theorem 2.4. Proof of Part B: First we assume ϕ̂0
n is the MLE and use

(2.5) to show that (2.8) and (2.9) hold. Using the generating functions described
in Proposition 8.1 as our Δ yields equations (2.8) and (2.9) via integration by
parts. That is, for t ≤ m, we choose Δ(x) = (x− t)− (which is concave withm as

a mode). Then integration by parts yields −
∫ t

X(1)
F (x)dx =

∫X(n)

X(1)
(x−t)−dF (x),

by Lemma 9.1 B, for F equal to either Fn or F̂ 0
n since Fn(X(1)−) = F̂ 0

n(X(1)−) =
0. Thus, by our initial characterization (2.5), we get (2.8). Similarly, for t ≥ m,
let Δ(x) = (t− x)−; this yields(

t−X(n)

)
Fn(X(n))−

∫ X(n)

t

Fn(x)d(−x)

≤
(
t−X(n)

)
F̂ 0
n(X(n))−

∫ X(n)

t

F̂ 0
n(x)d(−x),

and, recalling that we have already shown F̂ 0
n(X(n)) = 1, this is equivalent to∫X(n)

t
Fn(x)dx ≤

∫X(n)

t
F̂ 0
n(x)dx, so we have (2.9). We get equality at some knot

points also: set Δ(x) = (x− b)+ where b ≥ m is any RK. Then, by the definition
of a RK, Δ is an allowable perturbation because ϕ̂0

n(b+) − ϕ̂0
n(b−) > 0 so for

some δ small enough, ϕ̂0
n+ δΔ is still concave with mode at m. Using this Δ we

get

Fn(X(n))
(
X(n) − b

)
−
∫ X(n)

b

Fn(x)dx

=

∫ X(n)

X(1)

(x− b)+dFn(x) ≤
∫ X(n)

X(1)

(x− b)+dF̂
0
n(x)

= F̂ 0
n(X(n))

(
X(n) − b

)
−
∫ X(n)

b

F̂ 0
n(x)dx,

so that
∫X(n)

b
Fn(x)dx ≥

∫X(n)

b
F̂ 0
n(x)dx, and thus for any b ≥ m that is a RK we

have the inequality both ways,
∫X(n)

b
Fn(x)dx =

∫X(n)

b
F̂ 0
n(x)dx. We have thus

shown that (2.8) and (2.9) hold with the appropriate equalities.



2418 C. R. Doss and J. A. Wellner

Now we will show the reverse implication. We assume (2.8) and (2.9) hold
and consider Δ with support [X(1), X(n)] and piecewise linear with knots at the
Zi. These are all the Δ’s we need to consider, since the rest were ruled out
previously by elementary considerations. We also need ϕ̂0

n + εΔ to be concave
with mode m. Now, we do not know if m will be a NK or a LK or a RK, so we
argue by cases. If m is a knot for ϕ̂0

n in one direction, without loss of generality,

we can say that m is a RK and we have
∫ c

m
Fn(x)dx =

∫ c

m
F̂ 0
n(x)dx for any c > m

that is also a knot. Recall that we have defined the indices 1 = j1, . . . , jl0 = N
so that Zji are the knots. We write

Δ′(r−) =

l∑
i=2

−Ci1[Zji−1<r≤Zji
] +

ji∑
j=ji−1+1

βj1[Zji−1<r≤Zj ] (8.1)

with βj ≥ 0 and all Ci ≥ 0. Since m is a RK, m is not also a LK (otherwise
m is simply a knot and ϕ̂0

n coincides with the unconstrained MLE and the
characterization of the unconstrained MLE in (Dümbgen and Rufibach, 2009)
implies we are done). This forces Cp = 0 (which refers to the interval (Zjp−1,m =
Zjp ]). We thus have

∫
ΔdFn = Δ(X(n))−

⎡⎣ l∑
i=2

−Ci

∫ Zji

Zji−1

Fn (x) dx+

ji∑
j=ji−1+1

βj

∫ Zj

Zji−1

Fn (x) dx

⎤⎦
≤ Δ(X(n))−

⎡⎣ l∑
i=2

−Ci

∫ Zji

Zji−1

F̂ 0
n (x) dx+

ji∑
j=ji−1+1

βj

∫ Zj

Zji−1

F̂ 0
n (x) dx

⎤⎦
=

∫
ΔdF̂ 0

n

as desired, where the inequality follows from noting that −βj

∫ Zj

Zji−1
Fn(x)dx ≤

−βj

∫ Zj

Zji−1
F̂ 0
n(x)dx by assumption and because βj ≥ 0. We also have

Ci

∫ Zji

Zji−1

Fn (x) dx = Ci

∫ Zji

Zji−1

F̂ 0
n (x) dx

for all i except for i = p, by the equality-at-knots assumption. However, for
i = p, we have Ci = 0. An analogous argument holds for the case where m is an
LK and for the case where m is neither an LK nor an RK.

Part C follows as in the proof of Theorem 2.1 C; ĝ+n is the MLE over LC0

of |X1|, . . . , |Xn|. Thus we apply the result of Part B. Note that 0 ∈ Sn(ψ̂
0
n) ∩

[0, |X|(n)] only if (ψ̂0
n)

′(0+) < 0 (so that 0 is a right knot). This is only possible
if 0 is an observed data point.

Proof of Corollary 2.7 B and C follow as in the unconstrained case (Corol-
lary 2.5, Dümbgen and Rufibach (2009)).
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8.2. Proofs for local rates of convergence, limit processes, and limit
theory

8.2.1. Proofs for local rates of convergence

This section is devoted to showing, Proposition 7.1, stated above, which is
needed for proving Theorems 4.8, and 4.9. See 7 for a discussion of the proof
of Proposition 7.1, the full details of which are given in Doss (2013b) (Corol-
lary 4.2.7). Our main goal here is to prove Proposition 7.3.

Proof of Proposition 7.3. We first consider the case ξn = m. For ease of notation
and without loss of generality, we assume m = 0 and abbreviate τ0n,+(0) by τ0n,+
and τ0n,− by τ0n,−. We will argue via a family of perturbations which can be
separated into subfamilies, depending on whether 0 is a left-knot (LK), 0 is a
right-knot (RK), or 0 is not a knot (NK). If 0 is a one-sided knot (LK or RK),
we have different perturbation subfamilies depending on whether τ0n,+ > − τ0n,−
or not. We will start with the case in which 0 is a LK and we construct Δ that
has the two properties ∫ τ0

n,+

τ0
n,−

Δ(t)dt = 0, (8.2)

∫ 0

τ0
n,−

tΔ(t)dt = 0. (8.3)

Whereas in the unconstrained case construction of such an acceptable perturba-
tion function was straightforward (Balabdaoui, Rufibach and Wellner, 2009), in
the constrained case, construction of such a Δ that is an acceptable perturba-
tion (i.e. keeps the mode fixed) is much less straightforward. We consider several
cases separately.

Case 1 τ0n,+ > −τ0n,−. In this case we define

ΔLK,0(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ0
n,++m2·(−

τ0
n,−
4 )

τ0
n,−
4 −τ0

n,−

· (t− τ0n,−), τ0n,− ≤ t ≤ τ0
n,−
4

τ0n,+ +m2 · (−t),
τ0
n,−
4 ≤ t ≤ 0

(τ0n,+ − t), 0 ≤ t ≤ τ0n,+
0, otherwise,

(8.4)

where

m2 := m2(τ
0
n,−, τ

0
n,+) =

⎛⎜⎝−9− 3
τ0
n,+

−τ0
n,−

1− 5
τ0
n,+

−τ0
n,−

⎞⎟⎠(
τ0n,+
−τ0n,−

)
.

This function has integral

(τ0n,+)(5τ
0
n,+ − τ0n,−)(τ

0
n,+ − τ0n,−)

2(5τ0n,+ + τ0n,−)
≡ MLK,case1(τ

0
n,+ − τ0n,−).
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Case 2 τ0n,+ < −τ0n,−. In this case we define

ΔLK,0(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(t− τ0n,−), τ0n,− ≤ t ≤ τ0
n,−
2

τ0
n,−
2 − τ0n,− +m2 · (

τ0
n,−
2 − t),

τ0
n,−
2 ≤ t ≤ 0(

−
τ0
n,−
2 +m2

τ0
n,−
2

τ0
n,+

)
(τ0n,+ − t), 0 ≤ t ≤ τ0n,+

0, otherwise,

(8.5)

where

m2 := m2(τ
0
n,−, τ

0
n,+) =

2τ0n,− + τ0n,+
2τ0n,− − 5τ0n,+

is defined so that (8.3) holds. This function has integral

−τ0n,−(3τ
0
n,+ − τ0n,−)(τ

0
n,+ − τ0n,−)

10τ0n,+ − 4τ0n,−
≡ MLK,case2(τ

0
n,+ − τ0n,−).

Then we define

ΔLK,1(t) = ΔLK,0(t)−MLK1[τ0
n,−,τ0

n,+](t), (8.6)

where

MLK =
(τ0n,+)(5τ

0
n,+ − τ0n,−)

2(5τ0n,+ + τ0n,−)
1[τ0

n,+>τ0
n,−] +

−τ0n,−(3τ
0
n,+ − τ0n,−)

10τ0n,+ − 4τ0n,−
1[τ0

n,+≤τ0
n,−],

is op(1) by uniform consistency of ϕ̂0
n and is the appropriate shift so that (8.2)

holds. Then ΔLK,0 is an acceptable perturbation for ϕ̂0
n, since we can have

m2 > 1 when 0 is a LK, and ΔLK,1 has the properties (8.2) and (8.3). We also
define ΔRK,1 analogously as ΔLK,1, with analogous constant MRK .

Now consider the case in which 0 is not a knot (NK). In this case, because
(ϕ̂0

n)
′(t) = 0 for all t ∈ (τ0n,−, τ

0
n,+), we only need Δ to have the property∫ τ0

n,+

τ0
n,−

Δ(t)dt = 0. (8.7)

So, if τ0n,+ > −τ0n,− define

ΔNK,0(t) :=

⎧⎪⎪⎨⎪⎪⎩
τ0
n,+

−τ0
n,−

(t− τ0n,−), for t ∈ [τ0n,−, 0]

(τ0n,+ − t), for t ∈ [0, τ0n,+]

0, otherwise,

(8.8)

and if τ0n,+ < −τ0n,−, define

ΔNK,0(t) :=

⎧⎪⎪⎨⎪⎪⎩
(t− τ0n,−), for t ∈ [τ0n,−, 0]
−τ0

n,−
τ0
n,+

(τ0n,+ − t), for t ∈ [0, τ0n,+]

0, otherwise.

(8.9)
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Denote hl = max(τ0n,+,−τ0n,−) and hs = min(τ0n,+,−τ0n,−). We then compute∫
ΔNK,0(x)dx = hl(τ

0
n,+ − τ0n,−)/2, so set

ΔNK,1(x) := ΔNK,0(x)−
hl

2
1[τ0

n,−,τ0
n,+](x), (8.10)

so that (8.7) is satisfied. Let

Δ0(x) = ΔRK,0(x)1[m is RK] +ΔLK,0(x)1[m is LK] +ΔNK,0(x)1[m is NK],

Mn = MRK1[m is RK] +MLK1[m is LK] + hl1[m is NK],

and let

Δ1(x) = ΔRK,1(x)1[m is RK] +ΔLK,1(x)1[m is LK] +ΔNK,1(x)1[m is NK]

= Δ0(x)−Mn.
(8.11)

Note that Mn is op(1) by uniform consistency in a neighborhood of m. By the
characterization Theorem 2.2B and Corollary 2.7, we see that∫

Δ1d(Fn −F0) =

∫
Δ1d(Fn − F̂ 0

n) +

∫
Δ1d(F̂

0
n −F0)

=

∫
Δ0d(Fn − F̂ 0

n)−Mn

∫ τ0
n,+

τ0
n,−

d(Fn − F̂ 0
n) +

∫
Δ1d(F̂

0
n −F0)

≤ Mn

∣∣∣∣ ∫ τ0
n,+

τ0
n,−

d(Fn − F̂ 0
n)

∣∣∣∣+ ∫
Δ1(x)(f̂

0
n − f0)(x)dx

≤ 2Mn

n
+

∫
Δ1(x)(f̂

0
n − f0)(x)dx. (8.12)

Then Lemma 8.2 yields∣∣∣∣∫ Δ1d(Fn − F0)

∣∣∣∣ ≤ Op(n
−4/5) +

K

2
h4
l , (8.13)

∫
Δ1(x)(f̂

0
n − f0)(x)dx ≤ −Kh4

l + op(h
4
l ),

for some K > 0 and where we picked ε from Lemma 8.2 to be K/2. So, by
rearranging (8.12), we have

K(1 + op(1))h
4
l ≤ −

∫
Δ1(x)(f̂n − f0)(x)dx

≤ 2Mn

n
−
∫

Δ1d(Fn − F0) ≤
2Mn

n
+

∣∣∣∣ ∫ Δ1d(Fn − F0)

∣∣∣∣
≤ Op(n

−4/5) +
K

2
h4
l ,

and hence
(K/2 + op(1))h

4
l ) ≤ Op(n

−4/5)
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which yields 0 ≤ hl = Op(n
−1/5). Since τ0n,+ and −τ0n,− are both bounded by

hl, we are done for the case ξn = m.
Extending to the case where ξn → m rather than being fixed and equal to m

follows from considering the event m ∈ [τ0n,−(ξn), τ
0
n,+(ξn)] and its complement

separately, and then by showing on the event m /∈ [τ0n,−(ξn), τ
0
n,+(ξn)] that

τ0n,+(ξn)− τ0n,−(ξn) = Op(n
−1/5). This is straightforward.

The following lemmas were used.

Lemma 8.2. We continue with the setup of Proposition 7.3. That is, we define
hl = max(τ0n,+ − m,m − τ0n,−), hs = min(τ0n,+ − m,m − τ0n,−) and Δ1 as in
(8.11). Then for all ε > 0,∣∣∣∣∫ Δ1d(Fn − F0)

∣∣∣∣ ≤ εh4
l +Op(n

−4/5) (8.14)

and ∫
Δ1(x)(f̂

0
n − f0)(x)dx ≤ −f0(0)|ϕ′′

0(0)|
2

Kh4
l + op(h

4
l ), (8.15)

where K > 0 is from Lemma 8.3, and does not depend on f0.

Proof. We examine
∫
Δ1(x)(f̂

0
n−f0)(x)dx by repeated Taylor expansions, where

we let Δ1 be ΔLK,1 or ΔNK,1, and we will expand at m, which we again take to

be 0, without loss of generality. Write (f̂0
n−f0) = f0((f̂

0
n/f0)−1) = f0(exp{ϕ̂0

n−
ϕ0} − 1). Then write dn = ϕ̂0

n − ϕ0 so we can expand

exp(dn(t))− 1 =

1∑
i=1

dn(t)
i

i!
+ eξ1,n,t

dn(t)
2

2!
,

f0(t) =

1∑
i=0

f
(i)
0 (0)ti

i!
+

f
(2)
0 (ξ2,n,t)t

2

2!

for t ∈ [τ0n,−, τ
0
n,+], where ξ1,n,t is between 0 and dn(t) and ξ2,n,t is between 0

and t. So, writing ‖ · ‖∞ as the uniform norm over [τ0n,−, τ
0
n,,+], we can see that

f0(t)(e
dn(t) − 1) equals(

1∑
i=0

(f0)
(i)(0)ti

i!
+

(f0)
(2)(ξ2,n,t)t

2

2!

)(
1∑

i=1

dn(t)
i

i!
+ eξ1,n,t

dn(t)
2

2!

)
= f0(0)dn(t) + op(‖dn(t)‖∞)

since f0(0) > 0, f
(i)
0 is continuous and thus bounded on a neighborhood of 0 for

i ∈ {0, 1, 2}, and, by uniform consistency, dn(t)
i and ti both go to 0 uniformly

in a neighborhood of 0. Then we examine∫ τ0
n,+

τ0
n,−

Δ1(t)dn(t)dt =
1∑

i=0

d
(i)
n (0)

i!

∫ τ0
n,+

τ0
n,−

tiΔ1(t)dt+

∫ τ0
n,+

τ0
n,−

d
(2)
n (ξ3,n,t)

2!
t2Δ1(t)dt
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where ξ3,n,t ∈ [τ0n,−, τ
0
n,+]. Note that d

(2)
n (t) = −ϕ

(2)
0 (t), and that since d

(2)
n is

continuous at 0 we can write d
(2)
n (ξ3,n,t) = d

(2)
n (0)+ εn(t) where ‖εn(t)‖∞ →p 0

since τ0n,+ − τ0n,− →p 0. Now we consider the different possible forms Δ1 may
take.

If 0 is NK, then (ϕ̂0
n)

(2)(0) = 0 = ϕ′
0(0), so∫ τ0

n,+

τ0
n,−

ΔNK,1(t)dn(t)dt

=

2∑
i=0

d
(i)
n (0)

i!

∫ τ0
n,+

τ0
n,−

tiΔNK,1(t)dt+

∫ τ0
n,+

τ0
n,−

εn(t)

2!
t2ΔNK,1(t)dt

= −ϕ
(2)
0 (0)

2!

∫ τ0
n,+

τ0
n,−

t2ΔNK,1(t)dt+

∫ τ0
n,+

τ0
n,−

εn(t)

2!
t2ΔNK,1(t)dt. (8.16)

Now we show that we get the same expansion if 0 is a LK. Note that for t ∈
[0, τ0n,+], ϕ̂

0
n(t) = ϕ̂0

n(0) and for t ∈ [τ0n,−, 0], ϕ̂
0
n(t) = ϕ̂0

n(0) + (ϕ̂0
n)

′(0−)t. Thus∫ τ0
n,+

τ0
n,−

ΔLK,1(t)ϕ̂
0
n(t)dt =

∫ 0

τ0
n,−

ΔLK,1(t)ϕ̂
0
n(t)dt+

∫ τ0
n,+

0

ΔLK,1(t)ϕ̂
0
n(t)dt

= ϕ̂0
n(0)

∫ 0

τ0
n,−

ΔLK,1(t)dt+ (ϕ̂0
n)

′(0−)

∫ 0

τ0
n,−

tΔLK,1(t)dt

+ ϕ̂0
n(0)

∫ τ0
n,+

0

ΔLK,1(t)dt

= 0.

Hence,∫ τ0
n,+

τ0
n,−

ΔLK,1(t)dn(t)dt

=

∫ τ0
n,+

τ0
n,−

ΔLK,1(t)ϕ̂
0
n(t)dt−

∫ τ0
n,+

τ0
n,−

ΔLK,1(t)ϕ0(t)dt

= −
∫ τ0

n,+

τ0
n,−

ΔLK,1(t)ϕ0(t)dt

= −
2∑

i=0

ϕ
(i)
0 (0)

i!

∫ τ0
n,+

τ0
n,−

tiΔLK,1(t)dt+

∫ τ0
n,+

τ0
n,−

εn(t)

2!
t2ΔLK,1(t)dt

= −ϕ
(2)
0 (0)

2!

∫ τ0
n,+

τ0
n,−

t2ΔLK,1(t)dt+

∫ τ0
n,+

τ0
n,−

εn(t)

2!
t2ΔLK,1(t)dt. (8.17)

Since an analogous statement holds for ΔRK,1, we have shown∫ τ0
n,+

τ0
n,−

Δ1(t)dn(t)dt = −ϕ
(2)
0 (0)

2!

∫ τ0
n,+

τ0
n,−

t2Δ1(t)dt+

∫ τ0
n,+

τ0
n,−

εn(t)

2!
t2Δ1(t)dt
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where ‖εn‖∞ →p 0. Thus∫
Δ1(x)(f̂

0
n − f0)(x)dx = f0(0)(1 + op(1))

∫
Δ1(t)dn(t)

= f0(0)(1 + op(1))
2−ϕ0(2)(0)

2!

∫ τ0
n,+

τ0
n,−

t2Δ1(t)dt.

Lemma 8.3 shows that ∫ τ0
n,+

τ0
n,−

t2Δ1(t)dt ≤ −Kh4
l (8.18)

which yields (8.15), our desired conclusion:∫ τ0
n,+

τ0
n,−

Δ1(t)
(
f̂0
n − f0

)
(t)dt ≤ −f0(0)|ϕ(2)

0 (0)|
2

Kh4
l + o(h4

l ).

Now we show (8.14). First for a fixed δ > 0, we know that τ0n,+ and τ0n,− will
be in [−δ, δ] eventually, with high probability. Now we consider three families of
functions, analogous to ΔLK,1, ΔRK,1, and ΔNK,1, respectively. Define ΔLK,1,b,c

by replacing τ0n,− with b and τ0n,+ with c in (8.6). Define ΔNK,1,b,c by replacing
τ0n,− with b and τ0n,+ with c in (8.10). Define FLK,b,R := {ΔLK,b,y|b < a < y, 0 ≤
y − b ≤ R} and FNK,b,R := {ΔNK,b,y|b < a < y, 0 ≤ y − b ≤ R} for R > −b.
Define FRK,b,R analogously to FLK,b,R. Let F = FLK,b,R ∪ FRK,b,R ∪ FNK,b,R,
and note that F is VC-class with VC-index of 4. Thus Theorem 2.6.7 on page
141 of van der Vaart and Wellner (1996) shows that the entropy bound condition
in Lemma A.1 on page 2560 of Balabdaoui and Wellner (2007) holds for F . Then
the function Fb,R(x), defined to be constant equal to (7/4)R on [b, b + R] and
0 otherwise, is an envelope for F . That Fb,R is an envelope is immediate for
Δ ∈ FNK,b,R and for the setting where τ0n,+ < −τ0n,− and Δ ∈ FLK,b,R (and
analogously when τ0n,+ > −τ0n,− and Δ ∈ FRK,b,R). (For Δ ∈ FNK,b,R, the
longer interval has slope ±1 and the other interval has opposite sign slope. For
the case τ0n,+ < −τ0n,− and Δ ∈ FLK,b,R, the interval [τ0n,−, τ

0
n,−/2] has slope 1

and the slope on the rest is opposite sign (and analogously for FRK,b,R).) For
the case τ0n,+ ≥ −τ0n,− and Δ ∈ FLK,b,R, we need only note

0 ≤ m2 =
τ0n,+
−τ0n,−

⎛⎜⎝−9− 3
τ0
n,+

−τ0
n,−

1− 5
τ0
n,+

−τ0
n,−

⎞⎟⎠ ≤ 3,

so that (−τ0n,−/4)m2 ≤ (3/4)τ0n,+. Next, we compute the integral of the envelope
squared

EF 2
b,R(X) =

∫ b+R

b

R2f0(x)dx ≤ ‖f0‖∞R3,
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where ‖f0‖∞ is the supremum over R of the (log-concave) density f0, and is
thus universal across b and R. Thus, we can conclude from Lemma A.1 on page
2560 of Balabdaoui and Wellner (2007) that for ε > 0 and with s = 2 and d = 2,∣∣∣∣∫ Δ1d(Fn − F0)

∣∣∣∣ ≤ ε(τ0n,+ − τ0n,−)
4 +Op(n

−4/5),

≤ ε24h4
l +Op(n

−4/5)

as desired.

Lemma 8.3. For hl = max(τ0n,+−m,m− τ0n,−), hs = min(τ0n,+−m,m− τ0n,−)
and Δ1 defined by (8.11), we have∫

Δ1(t)(t−m)2dt ≤ −Kh4
l ,

for some K > 0.

Proof. First, we consider ΔLK,1, assume without loss of generality that m = 0,
and assume τ0n,+ > −τ0n,−. Direct computation shows∫ τ0

n,+

τ0
n,−

tΔLK,1(t)dt = − 5

12

(
(τ0n,+ − τ0n,−)(τ

0
n,+)

3

5τ0n,+ + τ0n,−

)

≤ − 5

12

(
(τ0n,+ − τ0n,−)(τ

0
n,+)

3

5(τ0n,+)

)
and this is bounded above by

− 5

12

(τ0n,+)
4

5τ0n,+
= −

(τ0n,+)
3

12
= −h3

l

12
,

since τ0n,+ > −τ0n,−.

We break
∫ τ0

n,+

τ0
n,−

t2ΔLK,1(t)dt into two pieces. First we see∫ 0

τ0
n,−

t2ΔLK,1(t)dt =
−3(τ0n,−)

4τ0n,+ − 19(−(τ0n,−))
3(τ0n,+)

2

96(5τ0n,+ + τ0n,−)
< 0.

Next we see that∫ τ0
n,+

0

t2ΔLK,1(t)dt =
−3(−τ0n,−)(τ

0
n,+)

4 − 5(τ0n,+)
5

12(5τ0n,+ + τ0n,−)

≤ −
3(−τ0n,−)(τ

0
n,+)

4 + 5(τ0n,+)
5

12 · 5(τ0n,+)
≤ −

(τ0n,+)
4

12
.

Thus, ∫ τ0
n,+

τ0
n,−

t2ΔLK,1(t)dt ≤ −
(τ0n,+)

4

12
= −h4

l

12
,
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as desired.
Now we consider ΔLK,1 when τ0n,+ < −τ0n,−, and again split the computation

into two pieces. First we see∫ τ0
n,+

0

t2ΔLK,1(t)dt = −
2(τ0n,−)

2(τ0n,+)
3 − 3(τ0n,+)

5

12(5τ0n,+ − 2τ0n,−)
.

Next we find that∫ a

τ0
n,−

t2ΔLK,1(t)dt = −
(−τ0n,−)

5 + 5(τ0n,−)
4τ0n,+

48(5τ0n,+ − 2τ0n,−)

so that∫ τ0
n,+

τ0
n,−

t2ΔLK,1(t)dt =
(τ0n,−)

5 − 5(τ0n,−)
4τ0n,+ − 8(τ0n,−)

3(τn,+)
3 + 12(τ0n,+)

5

48(5τ0n,+ − 2τ0n,−)

≤ −
(−τ0n,−)

4

48 · 7 (8.19)

and it remains only to prove the last inequality. To do this, let a ≡ τ0n,− < 0 <
τ0n,+ ≡ b where −a ≥ b. Thus we want to show that

K(a, b) = −5a5 + 30a4b+ 56a2b3 − 84b5 ≥ 0

for all a < 0 < b with −a ≥ b. But this holds if and only if J(v, c) ≡ K(−v, cv) ≥
0 holds for all v ≥ 0 and 0 ≤ c ≤ 1. But

J(v, c) = K(−v, cv) ≥ v5(5c5 + 30c5 + 56c5 − 84c5) = v5c5 · 7 ≥ 0.

Thus (8.19) holds.
Identical calculations hold for ΔRK,1. Now we examine ΔNK,1. Direct com-

putation shows∫ τ0
n,+

τ0
n,−

t2ΔNK,1(t)dt = − 1

12
(h3

shl + h4
l ) ≤ − 1

12
h4
l .

8.2.2. Proofs for mode-constrained limit process

This entire section is devoted to the proof of Theorem 4.2, and thus throughout
this section we take the definitions and assumptions as given in that theorem.

Proof of Lemma 4.3. If 0 ∈ Ŝ0 then one of τ0+ or τ0− is 0, because then (ϕ̂0)(2)

is not constant-equal-to-0 on any open neighborhood of 0; if it is not constant-
equal-to-0 on [0, δ) for any 0 < δ then (ϕ̂0)′ is also not constant on [0, δ), so since
0 ≥ (ϕ̂0)′(0+), we have (ϕ̂0)′(δ+) < 0 for all δ > 0, i.e. τ0+ = 0 (of course τ0+ ≥ 0

since 0 is the mode of ϕ̂0). Similarly, if (ϕ̂0)(2) is not 0 on any neighborhood
below 0, then τ0− = 0.
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Now, if 0 /∈ Ŝ0 then τ0− = sup Ŝ0∩ (−∞, 0] and τ0+ = inf Ŝ0∩ [0,∞). If 0 ∈ Ŝ0

then we have shown that one of τ0± equals 0. Thus, in either case, it is clear that

(ϕ̂0)(2)(t±) = 0 for 0 ≤ t < τ0+ and for τ0− < t ≤ 0. Thus, regardless of whether

0 ∈ Ŝ0, (ϕ̂0)(2) and so (ϕ̂0)′ are constant and equal to 0 on (τ0−, τ
0
+), i.e. (4.11)

holds (and so (τ0−, τ
0
+) is the modal interval of ϕ̂0).

The next lemma gives the sense in which ϕ̂0 is piecewise affine.

Lemma 8.4. Assume that HL, HR, and ϕ̂0 are as in Theorem 4.2. Define

SL = {t ≤ 0 : HL(t) = YL(t), H
′
L(t) = Y ′

L(t)},
SR = {t ≥ 0 : HR(t) = YR(t), H

′
R(t) = Y ′

R(t)},
and S0 = SL ∪ SR ∪ {0}. (8.20)

Then (ϕ̂0)′ is a monotonically nonincreasing function and the ‘bend points’ of

ϕ̂0, Ŝ0, defined in (4.2), satisfy Ŝ0 ⊂ S0. Additionally, with probability 1 the
following statements hold. The sets SL, SR, and S0 are all closed and have
Lebesgue measure 0. For any fixed t �= 0, t /∈ S0 and so (H0)(3)(t) is well-
defined.

The lemma says that for any knot τ ≤ τ0+, if τ < 0 then τ ∈ SL. Similarly
if τ ≥ τ0− and τ > 0 then τ ∈ SR. It is possible but not guaranteed that 0 is a
knot and lies in either SL or SR.

Proof. By Theorem 4.2, displays (4.8) and (4.9), H0 − Y 0 ≤ 0, which allows us
to conclude

{t < 0 : HL(t) = YL(t)} = {t < 0 : HL(t) = YL(t), H
′
L(t) = Y ′

L(t)} ,
{t > 0 : HR(t) = YR(t)} = {t > 0 : HR(t) = YR(t), H

′
R(t) = Y ′

R(t)} ;
(8.21)

the first line follows since HL − YL is differentiable on (−∞, 0), and a differen-
tiable function has derivative 0 at a local maximum (see, e.g., Dieudonné (1969),
page 153, Problem 3, part (a)). The same argument applies to the second line
of (8.21).

Now, the following argument holds with probability 1 and for any fixed c > 0.
On [0, c], HR has a bounded second derivative, so that there exists a constant
a > 0 such that H̃R(t) := HR(t)+at2 is convex on [0, c]. Let ỸR(t) := YR(t)+at2.

Now, YR + A = Y for an affine function A and where Y (t) =
∫ t

0

∫ u

0
dX(z)du.

Let Ỹ (t) = Y (t) + at2 = ỸR(t) +A(t) so that

{x ∈ [0, c] : HR(x) = YR(x)} = {x ∈ [0, c] : H̃R(x) +A(x) = ỸR(x) +A(x)}
= {x ∈ [0, c] : H̃R(x) +A(x) = Ỹ (x)} (8.22)

We also have H̃R+A ≤ ỸR+A = Ỹ by (4.9), so that, letting MỸ be the greatest

convex minorant of Ỹ on [0, c], we have H̃R + A ≤ MỸ ≤ Ỹ , since H̃R + A is

convex and below Ỹ .
Let T =

{
x ∈ [0, c] : MỸ (x) = Ỹ (x)

}
. By the proof of Corollary 2.1 of

Groeneboom, Jongbloed and Wellner (2001a) (see also Definition 1 and Theo-
rem 1 of Sinai (1992)), T is a (Cantor-type) set which has Lebesgue measure 0;
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(8.22) is contained in T , and thus (by (8.21) and) by letting c → ∞, we see that
SR is contained in a set which has Lebesgue measure 0. Finally, SR is closed
because HR − YR and (HR − YR)

′ are both continuous functions. By an analo-
gous argument, we can conclude that SL is closed and has Lebesgue measure 0
and thus also S0 is closed and has Lebesgue measure 0. By (4.10),∫

{t∈(−∞,τ0
−]:HL(t) �=YL(t)}

d(ϕ̂0)′(t) = 0 =

∫
{t∈[τ0

+,∞):HR(t) �=YR(t)}
d(ϕ̂0)′(t),

(8.23)
(regardless of whether one of τ0+ or τ0− is 0 or not).

Thus we now conclude that Ŝ0 ⊂ S0 as follows. If τ is an element of the set
Ŝ0 then for any ε > 0 (ϕ̂0)′(τ − ε, τ + ε) < 0 (here (ϕ̂0)′ refers to the signed
measure corresponding to (ϕ̂0)′). This is by the definition of derivative; since
(ϕ̂0)′ is nonincreasing, δ �→ (ϕ̂0)′(τ + δ) − (ϕ̂0)′(τ − δ) ≤ 0 is nonincreasing.
Thus if

(ϕ̂0)′(τ + δ)− (ϕ̂0)′(τ − δ)

2δ
(8.24)

does not converge to 0 as δ ↘ 0, then for all ε > 0 there is 0 < δ < ε such that
(8.24) is < const., i.e.,

(ϕ̂0)′(τ + ε)− (ϕ̂0)′(τ − ε) ≤ (ϕ̂0)′(τ + δ)− (ϕ̂0)′(τ − δ) < 0. (8.25)

Since HR − YR is continuous on all of R, if HR(τ)− YR(τ) < 0 for τ ≥ τ0+, then
on a neighborhood (τ − ε, τ + ε) for some ε > 0 we have HR − YR < 0 and
so the integral on the right-hand side of (8.23) is strictly less than 0. Thus if
τ ≥ τ0+, then (HR − YR)(τ) = 0. For τ > 0, this implies that τ ∈ SR by (8.21).
Similarly, if τ ≤ τ0− and τ < 0, then (HL − YL)(τ) = 0 and τ ∈ SL. We have

(τ0−, τ
0
+) ∩ Ŝ0 = ∅ by Lemma 4.3, so we have shown that if τ ∈ Ŝ0, then τ is

either 0 (if one of τ0− or τ0+ is 0) or is in SL or SR, i.e. τ ∈ S0.
Now, by the proof of Theorem 1 of Sinai (1992), any fixed point t ≥ 0 belongs

to T ⊃ SR with probability zero. An analogous statement holds for t ≤ 0 and
SL. Thus, if t �= 0, t �∈ S0 and so (HL)

(2) is concave and affine in a neighborhood
of t, so (HL)

(3)(t) is well-defined.

By Lemma 8.4,

HL(τL) = YL(τL) = 0, and H ′
L(τL) = Y ′

L(τL) = 0. (8.26)

This is because, by its definition, either τL < 0, in which case τL ∈ SL, or there
is a sequence

{
τ0L,n

}
⊂ SL with τ0L,n < 0 for all n. In this latter case, since

HL − YL and H ′
L − Y ′

L are both continuous, we still conclude that HL(τL) =
YL(τL) = 0, and H ′

L(τL) = Y ′
L(τL) = 0. Analogously, HR(τR) = YR(τR) and

H ′
R(τR) = Y ′

R(τR). This suggests the following definitions:

FL(u) =

∫ τL

u

ϕ̂0(v)dv and FR(u) =

∫ u

τR

ϕ̂0(v)dv, (8.27)

XL(u) =

∫ τL

u

dX(v) and XR(u) =

∫ u

τR

dX(v). (8.28)
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It is then true by definition that

YL(t) =

∫ τL

t

XL(u)du, and YR(t) =

∫ t

τR

XR(u)du. (8.29)

It is furthermore true that

HL(t) =

∫ τL

t

∫ τL

u

ϕ̂0(v)dvdu =

∫ τL

t

FL(u)du, (8.30)

HR(t) =

∫ t

τR

∫ u

τR

ϕ̂0(v)dvdu =

∫ t

τR

FR(u)du, (8.31)

since HL(t) =
∫ τL
t

∫ τL
u

ϕ̂0(v)dvdu+AL(t) where AL(t) is an affine function, and
we just verified in (8.26) that AL(t) ≡ 0. An analogous statement holds for HR.

Remark 8.5. Note that since S0 is closed, τ+, τ− are both elements of S0. Also,

it is possible for H
(3)
L to have a point of increase at 0 without H ′

L(0) = Y ′
L(0),

since the inequality (4.8) only holds on (−∞, 0], so not in an open neighborhood

of 0. Similarly for H
(3)
R . This is why we add the point 0 to S0.

Lemma 8.4 suggests that we can think of ϕ̂0 as being piecewise affine (with
a potentially uncountable number of knot points), because with probability 1,
the union of the open intervals on which ϕ̂0 is affine has full Lebesgue measure
on the real line (meaning its complement has Lebesgue measure 0). For t ∈ R,
we let τ0+(t) be the first knot larger than t, and analogously for τ0−(t),

τ0+(t) = inf
(
Ŝ0 ∩ [t,∞)

)
and τ0−(t) = sup

(
Ŝ0 ∩ (−∞, t]

)
. (8.32)

Lemma 8.6. We again assume the full setup of Theorem 4.2. Then, for any
(fixed or random) T ≥ 0, with probability 1 there are ‘knot points’ τ0+(T ) and

τ0−(T ) in Ŝ0.

Proof. We fix T ≥ 0, and we will show that there exists τ+(T ) ∈ Ŝ0 with
τ+(T ) > T ≥ 0. We assume for contradiction that ϕ̂0 has no knots on (T,∞),
and thus is linear. Thus HR is cubic on [T,∞), so can be written as HR(t) =∑3

i=0 Ai(t− T )i for some random Ai. By definition, we have

YR(t) =

∫ t

τR

XR(u)du =

∫ t

τR

(X(u)−X(τR))du

=

∫ t

0

X(u)du−
∫ τR

0

X(u)du− (t− τR)X(τR).

In other words, YR(t) is
∫ t

0
X(u)du = V (t) + t4 plus a random affine function,

where V (t) =
∫ t

0
W (u)du. Thus we can write

YR(t)−HR(t) = V (t) + t4 −
3∑

i=0

Bi(t− T )i,

for some new random coefficients, Bi (where only for i = 0, 1 are Bi not equal

to Ai). Now, let ϕ(t) =
√

2
3 t

3 log log t. Then by page 1714 of Lachal (1997) (or



2430 C. R. Doss and J. A. Wellner

from page 238 of Watanabe (1970)), we know that almost surely

lim sup
t→∞

∫ t

0
W (u)du

ϕ(t)
= 1.

Thus,

YR(t)−HR(t)

ϕ(t)
=

V (t)

ϕ(t)
+

t4 −
∑3

i=0 Bi(t− T )i

ϕ(t)
,

which gets larger than 0 for t large enough, as it is almost surely bounded
below by a quadratic polynomial (with positive first coefficient) minus 1. This
contradicts the fact that YR(t) − HR(t) ≤ 0 for all t, so we are done. Our
argument applies with probability 1 to any T ≥ 0, and thus to the entire sample
space of any random T ≥ 0. An identical argument works for showing there
exists a knot less than −T .

We will not speak of ϕ̂0 as a minimizer of an objective function, but we will
instead show that for acceptable Δ perturbations that

∫
Δ(t)(ϕ̂0(t)dt−dX(t)) ≥

0, i.e. ϕ̂0 behaves as we would expect a minimizer to behave.

Proposition 8.7. We assume the full setup of Theorem 4.2. Let Δ : R → R be
concave with maximum at 0. If a, b ∈ Ŝ0 with −∞ < a < 0 < b < ∞ then∫ b

a

Δ(t)(ϕ̂0(t)dt− dX(t)) ≥ 0, (8.33)

and thus, by Lemma 8.6, lim supa→∞
∫ a

−a
Δ(t)(ϕ̂0(t)dt− dX(t)) ≥ 0.

Proof. We use the notation g(a, b] = g(b)− g(a) here. We have∫ b

a

Δ(t)(ϕ̂0(t)dt− dX(t))

= −
∫ 0

a

Δ(t)(dFL(t)− dXL(t)) +

∫ b

0

Δ(t)(dFR(t)− dXR(t))

= −
[
(Δ(FL −XL))(a, 0]−

∫ 0

a

((FL −XL)Δ
′)(t)dt

]
+ (Δ(FR −XR))(0, b]−

∫ b

0

((FR −XR)Δ
′)(t)dt.

By Lemma 8.4, a ∈ SL, b ∈ SR, and since neither a nor b is 0, we have (FR −
XR)(b) = 0 = (FL−XL)(a) and we recall (4.10). Also recalling that (HL−YL)

′ =
−(FL −XL), we see that the above display equals

−Δ(0)((FL −XL)(0) + (FR −XR)(0))

−
[
((HR − YR)Δ

′(·+))(0, b]−
∫ b

0

(HR − YR)(t)dΔ
′(t)

]
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−
[
((HL − YL)Δ

′(·−))(a, 0]−
∫ 0

a

(HL − YL)(t)dΔ
′(t)

]
= −Δ(0)

(∫ τL

0

(ϕ̂0(t)dt− dX(t)) +

∫ 0

τR

(ϕ̂0(t)dt− dX(t))

)
+ (HR − YR)(0)Δ

′(0+)− (HL − YL)(0)Δ
′(0−)

+

∫ b

0

(HR − YR)(t)dΔ
′(t) +

∫ 0

a

(HL − YL)(t)dΔ
′(t)

≥ 0,

where the inequality follows because each of the three lines in the final expression
is ≤ 0, as follows. The first line is equal to 0 by (4.7); the third line is ≥ 0 by (4.8)
and (4.9), and the fact that Δ is concave so Δ′ is monotonically nonincreasing
so dΔ′ is a nonpositive measure; similarly, the second line is ≥ 0 because Δ has
maximum at 0, so that (HR − YR)(0), Δ

′(0+), (HL − YL)(0), and −Δ′(0−) are
nonpositive.

The above proof can be extended to Δ such that ϕ̂0(t) + εΔ(t) ∈ G0, where
G0 is the set of concave functions with maximum at 0, but we will not need this
per se. Rather, in the next result we will express the same idea by showing for

knots a < 0 < b that
∫ b

a
ϕ̂0(t)

(
ϕ̂0(t)dt− dX(t)

)
= 0, and re-express this via

integration by parts formulae.

Proposition 8.8. We again assume the full setup of Theorem 4.2 and assume
that a, b ∈ Ŝ0, and a < 0 < b. Then∫ b

a

ϕ̂0(t)(ϕ̂0(t)dt− dX(t))

=

∫ 0

a

((FL −XL)(ϕ̂
0)′)(t)dt−

∫ b

0

((FR −XR)(ϕ̂
0)′)(t)dt

=

∫ τL

a

(HL − YL)(t)d(ϕ̂
0)′(t) +

∫ b

τR

(HR − YR)(t)d(ϕ̂
0)′(t)

= 0.

Proof. Since a < 0 < b, we again have FL(a)−XL(a) = 0 = FR(b)−XR(b) by
Lemma 8.4, so∫ b

a

ϕ̂0(t)(ϕ̂0(t)dt− dX(t))

= −
∫ 0

a

ϕ̂0(t)d(FL(t)−XL(t)) +

∫ b

0

ϕ̂0(t)d(FR(t)−XR(t))

which equals

−
[
(ϕ̂0(FL −XL))(a, 0]−

∫ 0

a

((FL −XL)(ϕ̂
0)′)(t)dt

]
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+ (ϕ̂0(FR −XR))(0, b]−
∫ b

0

((FR −XR)(ϕ̂
0)′)(t)dt

which equals

−
[
(ϕ̂0(FL −XL))(0)−

∫ 0

a

((FL −XL)(ϕ̂
0)′)(t)dt

]
− (ϕ̂0(FR −XR))(0)−

∫ b

0

((FR −XR)(ϕ̂
0)′)(t)dt

=

∫ 0

a

((FL −XL)(ϕ̂
0)′)(t)dt−

∫ b

0

((FR −XR)(ϕ̂
0)′)(t)dt,

where the last equality is by (4.7). Since ϕ̂0 is constant on (τ0−, τ
0
+), and using

the notation g[c, d] = g(d)− g(c−), we can write the last expression above as∫ τ0
−

a

((FL −XL)(ϕ̂
0)′)(t)dt−

∫ b

τ0
+

((FR −XR)(ϕ̂
0)′)(t)dt

= ((ϕ̂0)′(HL − YL))[a, τ
0
−]−

∫
[a,τ0

−]

(HL − YL)(t)d(ϕ̂
0)′(t)

−
[
((ϕ̂0)′(HR − YR))[τ

0
+, b]−

∫
[τ0

+,b]

(HR − YR)(t)d(ϕ̂
0)′(t)

]

which equals

−
∫
[a,τ0

−]

(HL − YL)(t)d(ϕ̂
0)′(t) +

∫
[τ0

+,b]

(HR − YR)(t)d(ϕ̂
0)′(t) = 0,

using integration by parts formula (see Lemma 9.1) for the first equality since
HL − YL and HR − YR are continuous, and using (4.10) for the third equality.
The second equality follows from Lemma 8.4, since a knot a and limit of knots
τ− are elements of SL, and similarly b, τ+ are elements of SR.

Next we prove a representation lemma, analogous to the midpoint result for
the unconstrained (and compact support) case in Lemma 2.3 on page 1631 of
Groeneboom, Jongbloed and Wellner (2001a).

Lemma 8.9. We again assume the full setup of Theorem 4.2. Let τ1, τ2 ∈ Ŝ0be
such that ϕ̂0 is affine on [τ1, τ2], and let t ∈ [τ1, τ2]. For any function g, we define

Δg = g(τ2) − g(τ1) and ḡ = g(τ1)+g(τ2)
2 , including in particular, Δτ = τ2 − τ1

and τ̄ = (τ1 + τ2)/2. Then if 0 < τ1 < τ2, we can conclude

HR(t) =
(YR(τ2)(t− τ1) + YR(τ1)(τ2 − t))

Δτ

− 1

2

(
ΔXR

Δτ
+

4

(Δτ)3
(X̄RΔτ −ΔYR)(t− τ̄)

)
(t− τ1)(τ2 − t),

(8.34)
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and thus

HR(τ̄) = ȲR − 1

8
ΔXRΔτ. (8.35)

If τ1 < τ2 < 0, we can conclude

HL(t) =
YL(τ2)(t− τ1) + YL(τ1)(τ2 − t)

Δτ

− 1

2

(
−X̄L

Δτ
+

4

(Δτ)3
(−X̄LΔτ −ΔYL)(t− τ̄)

)
(t− τ1)(τ2 − t),

(8.36)

and thus

HL(τ̄) = ȲL +
1

8
ΔXLΔτ. (8.37)

Proof. We assume that on [τ1, τ2], that ϕ̂0 is linear and thus HL and HR are
cubic polynomials. Thus, taking τ1 < τ2 < 0, HL is defined by its values and its
derivative’s values at τi, for i = 1, 2. Thus, if we name the polynomial on the
right hand side of (8.36) PL, it suffices to check that PL(τi) and P ′

L(τi) equal
HL(τi) and H ′

L(τi), respectively, for i = 1, 2, to conclude that HL(t) = PL(t) for
t ∈ [τ1, τ2]. We know that HL(τi) = YL(τi) by (4.10) and it is immediate that
PL(τi) = YL(τi), so we only need to check the derivative values. To differentiate,
we denote

A(t) =
1

2

(
−X̄L

Δτ
+

4

(Δτ)3
(−X̄LΔτ −ΔYL)(t− τ̄)

)
,

so that

PL(t) =
YL(τ2)(t− τ1) + YL(τ1)(τ2 − t)

Δτ
−A(t)(t− τ1)(τ2 − t),

and

P ′
L(t) =

YL(τ2)− YL(τ1)

Δτ
−A′(t)(t− τ1)(τ2 − t)−A(t)((τ2 − t)− (t− τ1)),

so that

P ′
L(τ1) =

ΔYL

Δτ
−A(τ1)Δτ

=
ΔYL

Δτ
− 1

2

{
−ΔXL

Δτ
+

4

(Δτ)3
(−X̄LΔτ −ΔYL)

(
−Δτ

2

)}
Δτ

= −XL(τ1).

This equals H ′
L(τ1), as desired, since H

′
L(τ1) = Y ′

L(τ1) by Lemma 8.4 since τ1 is
strictly less than 0, and Y ′

L(τ1) = −XL(τ1). Similarly, P ′
L(τ2) = −XL(τ2) and,

letting PR be the polynomial on the right hand side of (8.36), P ′
R(τi) = XR(τi)

and PR(τi) = YR(τi). Then (8.35) and (8.37) follow immediately.
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Next, we show a tightness-type of results for the bend points. Recall the
definition (8.32) of τ0−(t) and τ0+(t).

Lemma 8.10. Let the assumptions of Theorem 4.2 hold. Then, for all ε > 0
there exists Mε such that for all t > 0,

P (τ0+(t) > t+Mε) < ε, (8.38)

P (τ0−(−t) < −t−Mε) < ε, (8.39)

P ((t−Mε) ∨ 0 ≤ τ0−(t) ∨ 0) > 1− ε, (8.40)

P (τ0+(−t) ∧ 0 ≤ (−t+Mε) ∧ 0) > 1− ε, (8.41)

where Mε does not depend on t.

Proof. We will show for all t, ε > 0 there exists M = Mε such that P (τ0+(t) >
t+M) < ε. The statement for τ0−(−t) is analogous. By Lemma 8.6, for any t we

can find τ2 ∈ Ŝ0 where τ2 < ∞ is taken to be τ0+(t); similarly, we can take t ≡ tε
large enough such that with probability 1− ε there exists a knot 0 < τ1 < t. To
match notation up with Lemma 8.9, we will define Δg and ḡ, for any function g,
as in the lemma. Since ϕ̂0 is affine on [τ1, τ2], Lemma 8.9 allows us to conclude
that YR(τ̄) ≤ HR(τ̄) = ȲR −ΔXRΔτ/8 which is if and only if

Y (τ̄) ≤ Ȳ − 1

8
ΔXΔτ, (8.42)

where Y (t) =
∫ t

0
X(u)du = V (t) + t4 and V (t) =

∫ t

0
W (u)du. The “if and only

if” follows because YR(t) = Y (t) +A(t) where A(t) is a random affine function.
Since for any affine function A(τ̄) =: Ā, we see that

YR(τ̄)− ȲR = Y (τ̄) +A(τ̄)− (Ȳ + Ā) = Y (τ̄)− Ȳ .

Since ΔX trivially equals ΔXR, we have shown (8.42). Let Mε > 0 and let Bt

be the event {0 < τ1 < t, τ2 > t+Mε}. We then see

P (τ2 > tε +Mε) ≤ P (τ1 ≤ 0) + P (Btε)

≤ ε+ P

(
YR(τ̄) ≤ HR(τ̄) = ȲR − 1

8
ΔXRΔτ, Btε

)
≤ 2ε, (8.43)

where we now show that the last inequality follows from page 1633 in the proof
of Lemma 2.4 in Groeneboom, Jongbloed and Wellner (2001a). We have al-
ready noted that YR(τ̄) ≤ ȲR − 1

8ΔXRΔτ if and only if Y (τ̄) ≤ Ȳ − 1
8ΔXΔτ .

Then Groeneboom, Jongbloed and Wellner (2001a) show algebraically that this
inequality can be rewritten as

V (τ̄)− V̄ +
1

8
ΔWΔτ ≤ −

(
Δτ

2

)4

.
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Thus we have shown for any t > 0,

P

(
YR(τ̄) ≤ HR(τ̄) = ȲR − 1

8
ΔXRΔτ, Bt

)
= P

(
V (τ̄)− V̄ +

1

8
ΔWΔτ ≤ −

(
Δτ

2

)4

, Bt

)
.

Groeneboom, Jongbloed and Wellner (2001a) show that

P

(
V (τ̄)− V̄ +

1

8
ΔWΔτ ≤ −

(
Δτ

2

)4

, τ1 < Mε, τ2 > Mε

)
< ε, (8.44)

and thus that

P

(
V (τ̄)− V̄ +

1

8
ΔWΔτ ≤ −

(
Δτ

2

)4

, τ1 < t−Mε, τ2 > t+Mε

)
< ε.

(8.45)
This independence from t follows because

{(W (s)−W (t), V (s)− V (t)− (s− t)W (t))}s∈R

is equal in distribution to
{
W (u− t),

∫ u

t
W (u− t) du)

}
u∈R

, since
∫ s

t
W (u)du =∫ s

t
(W (u)−W (t))du+ (s− t)W (t), and thus V (s̄)− V̄ + 1

8ΔWΔs equals

V (s̄)− V (t)−W (t)(s̄− t)

−
(
1

2
(V (s1)− V (t)−W (t)(s1 − t)) +

1

2
(V (s2)− V (t)−W (t)(s2 − t))

)
+

1

8
(W (s2)−W (t)− (W (s1)−W (t)))(s2 − t− (s1 − t))

=d V

(
r1 + r2

2

)
− V (r1) + V (r2)

2
+

1

8
(W (r2)−W (r1))(r2 − r1)

where s̄ = (s1 + s2)/2, V̄ = (V (s1) + V (s2))/2, ΔW = W (s2) − W (s1), and
Δs = s2 − s2 and ri = si − t for i = 1, 2. This shows that the left hand sides of
both of (8.44) and (8.45) are, regardless of t, bounded by

P

(
V (s̄)− V̄ +

1

8
ΔWΔs ≤ −

(
Δs

2

)4

, for some s1 < −Mε, s2 > Mε

)
.

(8.46)
This probability is defined in (2.27) on page 1633 of Groeneboom, Jongbloed
and Wellner (2001a), and is shown to be less than ε at the top of page 1634, so,
using this fact, we have now shown (8.44) and (8.45).

The probability we consider in (8.43) is on the event Btε = {0 < τ1 < tε, τ2 >
tε +Mε} rather than Ctε ≡ {0 < τ1 < tε −Mε, τ2 > tε +Mε}. The only cost for
this is we need to double our Mε for this to correspond with the probability in
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(8.45). Thus (8.43) holds, but we do not yet have independence from t because
of the tε in the expression. We easily circumvent this by replacing Mε by tε+Mε.
Now we have shown (8.38) holds with Mε independent of t.

Now we show (8.39). Note that we can write an analogous version of (8.43)
for t > Mε as

P (0 ≤ τ1 ≤ t−Mε) ≤ P (τ2 > t+Mε) + P (Ct) (8.47)

≤ ε+ P

(
YR(τ̄) ≤ HR(τ̄) = ȲR − 1

8
ΔXRΔτ, Ctε

)
≤ 2ε

because, by the argument we just went through, the probability in the third
line is again bounded by (8.46). Note we have t in place of tε in (8.47), so
the above statement is already independent of t as long as t > Mε. Thus we
have shown P ((t − M) ∨ 0 ≤ τ0−(t) ∨ 0 ≤ t) > 1 − ε, since if t < Mε this
probability is trivially 1. Showing the analogous statements for the left side, the
existence of M , not depending on t, such that P (τ0−(−t) < −t − M) < ε and
P (−t ≤ τ0+(−t) ∧ 0 ≤ (−t+M) ∧ 0) > 1− ε, can be done analogously.

The next result will relate the unconstrained and constrained limit estimators
in the Gaussian setting.

Corollary 8.11. Let the definitions and assumptions of Theorem 4.2 hold, and
let Y and H be as in Theorem 4.1. Let ϕ̂ ≡ H ′′. For any t ∈ R, define

s+(t) = inf{s ∈ [t,∞) : ϕ̂0(s) = ϕ̂(s)} (8.48)

s−(t) = sup{s ∈ (−∞, t] : ϕ̂0(s) = ϕ̂(s)}. (8.49)

Then we can say that for all ε > 0, there exists Mε, not depending on t, such
that

P (t− s−(t) > Mε) < ε (8.50)

P (s+(t)− t > Mε) < ε. (8.51)

Proof. Define a right-side sequence of knots to be a sequence of points

0 < ν1 < ν01 < ν2 < ν02 < ν3,

where νi are knots for ϕ̂ and ν0i are knots for ϕ̂0. Similarly, define a left-side
sequence of knots

ν−3 < ν0−2 < ν−2 < ν0−1 < ν−1 < 0.

Then we argue by the Intermediate Value Theorem and the Mean Value Theo-
rem. First, we assume we are given such a sequence, without loss of generality
take it to be a right-side sequence (on the probability 1 event on which Theo-
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rem 4.1 holds). Then we can say, by our hypotheses, that

(HR − YR)(ν
0
i ) = 0 ≤ (H − Y )(ν0i ) for i = 1, 2 (8.52)

(HR − YR)(νi) ≥ 0 = (H − Y )(νi) for i = 1, 2, 3. (8.53)

By the Intermediate Value Theorem we can pick points x1 ∈ [ν1, ν
0
1 ], x2 ∈

[ν01 , ν2], x3 ∈ [ν2, ν
0
2 ] such that (HR − YR)(xi) = (H − Y )(xi) for i = 1, 2, 3.

Since YR(t) − Y (t) = A(t) is a (random) affine function, we can conclude for
i = 1, 2, 3 that

HR(xi)−H(xi)−A(xi) = 0.

We apply the Mean Value Theorem and get ti ∈ (xi, xi+1) for i = 1, 2 such that

FR(ti)−H ′(ti)−A′(ti) = 0.

Again applying the Mean Value Theorem, we get s ∈ (t1, t2) ⊂ (x1, x3) ⊂
[ν1, ν

0
2 ] ⊂ [ν1, ν3].

Now we will construct right-side sequences or left-side sequences of knots
and be done. Note that by Lemma 8.10 and the analogous lemma for the un-
constrained case, Lemma 2.7, page 1638, of Groeneboom, Jongbloed andWellner
(2001a), there exists a large M > 0 such that with probability 1− ε there exists
a right-side sequence of knots contained in any interval of length ≥ M that lies
in [0,∞) and a left-side sequence of knots in any interval of length ≥ M that lies
in (−∞, 0]. For any t > 0, note that the interval [t− 2M, t] contains an interval
of length at least M which lies either entirely in (−∞, 0] or entirely in [0,∞).
Thus, [t− 2M, t] contains a one-sided sequence of knots, and thus an s < t such
that ϕ̂0(s) = ϕ̂(s), with probability 1 − ε. Similarly, there exists a one-sided
sequence of knots in [t, t+M ], and thus an s > t such that ϕ̂0(s) = ϕ̂(s), with
probability 1 − ε. Thus, for t > 0, we have shown (8.50) and (8.51). Similarly,
for t < 0, we consider intervals [t − M, t] and [t, t + 2M ] in which there exist
one-sided sequences of knots, which allows us to conclude that ϕ̂0(s) = ϕ̂(s) for
an s > t and an s < t.

Lemma 8.12. Let the assumptions of Theorem 4.2 hold. For all ε > 0 there
exists Mε, not depending on t, such that

P
(
|ϕ̂0(t)− ϕ̂(t)| > Mε

)
< ε and P

(
|(ϕ̂0)′(t)− ϕ̂′(t)| > Mε

)
< ε, (8.54)

where the derivatives can be taken to be right or left derivatives.

Proof. This follows from Lemma 8.10 and an argument similar to the finite
sample tightness results. We can pick, by Corollary 8.11, t−2M < s−2 < s−1 <
t < s1 < s2 < t+2M where ϕ̂0(si) = ϕ̂(si) for i = −2,−1, 1, 2, with probability
1− ε for M appropriately large. Then

(ϕ̂0)′(t) ≤ ϕ̂0(s2)− ϕ̂0(s1)

s2 − s1
=

ϕ̂(s2)− ϕ̂(s1)

s2 − s1
≤ ϕ̂′(s2),

and, similarly,
(ϕ̂0)′(t) ≥ ϕ̂′(s−2)
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where ϕ̂′ and (ϕ̂0)′ can be either the left or right derivatives. Thus

(ϕ̂0)′(t)− ϕ̂′(t) ≤ ϕ̂′(s2)− ϕ̂′(t) ≤ ϕ̂′(s2)− ϕ̂′(s−2)

and
(ϕ̂0)′(t)− ϕ̂′(t) ≥ ϕ̂′(s−2)− ϕ̂′(t) ≥ ϕ̂′(s−2)− ϕ̂′(s2),

that is,
|(ϕ̂0)′(t)− ϕ̂′(t)| ≤ ϕ̂′(s2)− ϕ̂′(s−2). (8.55)

Let h0(t) = −12t2. With high probability, the right side of (8.55) is bounded by

ϕ̂′(t+ 2M)− ϕ̂′(t− 2M)

≤ |ϕ̂′(t+ 2M)− h′
0(t+ 2M)|+ |h′

0(t+ 2M)− h′
0(t− 2M)|

+ |h′
0(t− 2M)− ϕ̂′(t− 2M)|,

(8.56)

which is less than M +M + 24 · 2M with probability 1− ε, independently of t,
by (2.36) or (2.37) of Lemma 2.7 on page 1638 of Groeneboom, Jongbloed and
Wellner (2001a). Thus we have shown the second statement in (8.54), which we
will now use to show the first statement in (8.54).

We first apply Lemma 9.2 to the difference |ϕ̂0(t)− ϕ̂(t)| by applying (9.1) to
both ϕ̂0− ϕ̂ and to ϕ̂− ϕ̂0, using the points s−1 and s1 as a and b, respectively.
Then by (9.1), we can bound both of these differences if we can bound both

(ϕ̂0)′(s1)− (ϕ̂0)′(s−1) ≤ (ϕ̂0)′(t+M)− (ϕ̂0)′(t−M) (8.57)

and
ϕ̂′(s1)− ϕ̂′(s−1) ≤ ϕ̂′(t+M)− ϕ̂′(t−M), (8.58)

since all the other terms are 0 by the definition of the si. Here we can take
the derivatives to be either left or right derivatives. As in (8.56), we can bound
(ϕ̂0)′(t+M)− (ϕ̂0)′(t−M) from above by

|(ϕ̂0)′(t+M)− ϕ̂′(t+M)|+ |ϕ̂′(t+M)− ϕ̂′(t−M)|
+ |ϕ̂′(t−M)− (ϕ̂0)′(t−M)|.

The first and last terms are bounded by the second statement in (8.54). The
middle term is shown to be bounded by (8.56). The middle term also bounds
(8.58). All of this is with probability 1−ε and uniformly in t, so we are done.

For the next lemma, let h0(t) = −12t2 be the “true” concave function.

Lemma 8.13. Let the definitions and assumptions of Theorem 4.2 hold. Then,
for all ε > 0 there exists Mε, independent of t, such that

P
(
|ϕ̂0(t)− h0(t)| > Mε

)
< ε (8.59)

P
(
|(ϕ̂0)′(t)− h′

0(t)| > Mε

)
< ε. (8.60)

where the derivatives can be right or left derivatives.
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Proof. This is immediate from Lemma 2.7, page 1638, of Groeneboom, Jong-
bloed and Wellner (2001a) and Lemma 8.12.

We are now in a position to prove Theorem 4.2.

Proof of Theorem 4.2. We define objective functions with variable bounds of
integration,

φa,b(g) =
1

2

∫ b

a

g2(t)dt−
∫ b

a

g(t)dX(t), (8.61)

where we will always take a < 0 < b. For i = 1, 2, we will take HL,i and HR,i to
satisfy the hypotheses stated in the theorem, and we need to show HL,1 ≡ HL,2

and HR,1 ≡ HR,2 almost surely. We will denote FL,i = −H ′
L,i and FR,i = H ′

R,i

and

ϕi = H ′′
L,i = H ′′

R,i. (8.62)

We also will use the notation dFi(t) = ϕi(t)dt. Now, using that ϕ2
1 − ϕ2

2 =
(ϕ1 − ϕ2)

2 + 2(ϕ1 − ϕ2)ϕ2, we see that

φa,b(ϕ1)− φa,b(ϕ2) =
1

2

∫ b

a

(ϕ1 − ϕ2)
2
dλ+

∫ b

a

(ϕ1(t)− ϕ2(t)) d(F2(t)−X(t))

where λ is Lebesgue measure. Now, we specify that ain and bin are knots for ϕi,
and, using Lemma 8.6, we take a2n < a1n < −n < 0 < n < b1n < b2n. Then

φa2
n,b

2
n
(ϕ1)− φa2

n,b
2
n
(ϕ2) ≥

1

2

∫ b2n

a2
n

(ϕ1 − ϕ2)
2
dλ ≥ 1

2

∫ n

−n

(ϕ1 − ϕ2)
2
dλ

by Propositions 8.7 and 8.8, and, similarly,

φa1
n,b

1
n
(ϕ2)− φa1

n,b
1
n
(ϕ1) ≥

1

2

∫ n

−n

(ϕ2(t)− ϕ1(t))
2
dt.

Now, we see directly from (8.61) that φa2
n,b

2
n
(ϕ1)− φa1

n,b
1
n
(ϕ1) equals

1

2

∫ b2n

a2
n

ϕ2
1(t)dt−

1

2

∫ b1n

a1
n

ϕ2
1(t)dt−

(∫ b2n

a2
n

ϕ1(t)dX(t)−
∫ b1n

a1
n

ϕ1(t)dX(t)

)

=
1

2

∫
An

ϕ2
1(t)dt−

∫
An

ϕ1(t)dX(t),

where An = [a2n, a
1
n] ∪ [b1n, b

2
n]. Thus we have∫ n

−n

(ϕ1 − ϕ2)
2
dλ ≤ φa2

n,b
2
n
(ϕ1)− φa1

n,b
1
n
(ϕ1)− (φa2

n,b
2
n
(ϕ2)− φa1

n,b
1
n
(ϕ2))

=
1

2

∫
An

(
ϕ2
1 − ϕ2

2

)
dλ−

∫
An

(ϕ1(t)− ϕ2(t)) dX(t).
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Recalling h0(t) = 12t2, we see the previous display equals∫
An

1

2

(
(ϕ1 − h0)

2 − (ϕ2 − h0)
2
)
dλ− (ϕ1 − ϕ2) dW.

Thus we can conclude that

0 ≤ lim
n

∫ n

−n

(ϕ1 − ϕ2)
2
dλ

≤ lim inf
n

(
1

2

∫
An

(
(ϕ1 − h0)

2 − (ϕ2 − h0)
2
)
dλ−

∫
An

(ϕ1 − ϕ2) dW

)
.

(8.63)

The proof will now proceed as follows. We first will show that the right hand
side of (8.63) is finite. For a function g : R → R, we let ‖g‖ba = supt∈[a,b] |g(t)|
and ‖g‖∞a = supt∈[a,∞) |g(t)|. Using that

∫∞
−∞ (ϕ1 − ϕ2)

2
dλ is finite we will then

conclude that ||ϕ1(t)−ϕ2(t)||∞n → 0 as n → ∞. We then will revisit our earlier
argument which showed the right hand side of (8.63) was finite and use this new
fact to show that (8.63) is, in fact, 0. This will finish the proof.

Thus, our next step is to show that
∫∞
−∞ (ϕ1(t)− ϕ2(t))

2
dt < ∞. Note that

we only need to control the lim infn of the right hand side of (8.63) since∫ n

−n
(ϕ1 − ϕ2)

2 dλ is non-negative and non-decreasing in n. We will first show

that
∫ b2n
b1n

(ϕ1−ϕ2) dW < ∞. An identical argument shows
∫ a2

n

a1
n
(ϕ1−ϕ2)dW < ∞.

By integration by parts,∫ b2n

b1n

(ϕ1 − ϕ2) (u)dW (u) =

∫ b2n

b1n

(ϕ1 − ϕ2) (u)d(W (u)−W (b1n))

=
(
W (b2n)−W (b1n

) (
ϕ1(b

2
n)− ϕ2(b

2
n)
)

−
∫ b2n

b1n

(
W (u)−W (b1n)

)
(ϕ′

1(u)− ϕ′
2(u)) du

(8.64)

where we can take ϕ′
i to be the right-derivative, but this choice is inconsequential

because of the almost sure continuity of W . Thus, by (8.69) and (8.70), for all

n, with probability 1 − ε, we can conclude that
∣∣ ∫ b2n

b1n
(ϕ1 − ϕ2) (u)dW (u)

∣∣ is
bounded above by

Kε

(∣∣W (b2n)−W (b1n)
∣∣+ ∣∣∣∣∣

∫ b2n

b1n

(W (u)−W (b1n))du

∣∣∣∣∣
)
.

Lemma 8.14 shows for i = 1, 2 that
∫ b2n
b1n

(ϕi−h0)
2dλ < Kε,2 with probability 1−ε.

Thus since, by (8.68),
(∣∣W (b2n)−W (b1n)

∣∣+ ∣∣∣∫ b2n
b1n

(W (u)−W (b1n))du
∣∣∣) is Op(1),

and since this argument is perfectly symmetrical and applies to the interval
[a1n, a

2
n], we have now shown that the right hand side of (8.63) is Op(1) and thus

finite almost surely, as desired.
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Now that we have shown that
∫∞
−∞(ϕ1 − ϕ2)

2dλ < ∞ almost surely, we can
conclude that

‖ϕ1 − ϕ2‖∞n → 0 (8.65)

almost surely as n → ∞, and now using (8.65) with arguments similar to

those used above, we will show
∫∞
−∞ (ϕ1 − ϕ2)

2
dλ = 0 almost surely. By (8.65),

Lemma 8.14 below allows us to conclude that almost surely
∫ b2n
b1n

|ϕ′
1−h′

0|dλ → 0.

Thus we can reexamine (8.64) and see that the right side is bounded above by

∣∣W (b2n)−W (b1n)
∣∣ ∣∣ϕ1(b

2
n)−ϕ2(b

2
n)
∣∣ + ||W (·)−W (b1n)||

b2n
b1n

∫ b2n

b1n

|ϕ′
1(u)−ϕ′

2(u)|du

≤ ε
(∣∣W (b2n)−W (b1n)

∣∣ + ||W (·)−W (b1n)||
b2n
b1n

)
,

where we may choose n large enough to make the inequality occur with probabil-

ity 1−ε for any positive ε. Thus, since
(∣∣W (b2n)−W (b1n)

∣∣+||W (·)−W (b1n)||
b2n
b1n

)
=

Op(1), we have shown that we may choose n large enough that with probability
1− ε ∣∣∣∣∣

∫ b2n

b1n

(ϕ1(u)− ϕ2(u)) dW (u)

∣∣∣∣∣ ≤ ε. (8.66)

Next we show that the other term in (8.63),
∫
An

(
(ϕ1 −h0)

2 − (ϕ2 −h0)
2
)
dλ/2,

is small. By Lemma 8.14, for any ε > 0 we may pick an Mε such that both

|
∫ b2n
b1n

(ϕ1 − h0) dλ| and b2n − b1n are bounded by Mε with probability 1− ε. Thus,

defining ε2 = ε/Mε we take n large enough such that with probability 1− ε we
have ||ϕ1 − ϕ2||∞n < ε2. Then let δ(t) = ϕ1(t)− ϕ2(t) and conclude that∫ b2n

b1n

(ϕ1 − h0)
2dλ =

∫ b2n

b1n

(ϕ2 − h0 + δ)2dλ

≤
∫ b2n

b1n

(ϕ2 − h0)
2dλ+ 2ε2

∫ b2n

b1n

|ϕ2 − h0|dλ+ ε22(b
2
n − b1n),

and that the above display is bounded above by∫ b2n

b1n

(ϕ2 − h0)
2 dλ+ ε+

(
ε

Mε

)2

Mε ≤
∫ b2n

b1n

(ϕ2 − h0)
2 dλ+ 2ε,

with probability 1 − 2ε and n large enough. Similarly,
∫ b2n
b1n

(ϕ2 − h0)
2dλ ≤∫ b2n

b1n
(ϕ1 − h0)

2dλ+ 2ε, and thus∣∣∣∣12
∫
An

(
(ϕ1 − h0)

2 − (ϕ2 − h0)
2
)
dλ

∣∣∣∣ ≤ ε (8.67)

with probability 1−2ε. Thus we have shown that with probability approaching 1
both terms in (8.63) are bounded by ε as n goes to infinity. Thus since

∫ n

−n
(ϕ1−



2442 C. R. Doss and J. A. Wellner

ϕ2)
2dλ is non decreasing in n,

∫ n

−n
(ϕ1 − ϕ2)

2dλ < ε with probability 1− ε and
thus it must be 0 almost surely.

The following lemma translates Lemma 8.13 into a more direct tightness
result.

Lemma 8.14. Let the definitions and assumptions of Theorem 4.2 hold and let
h0(t) = −12t2. Let ϕi, i = 1, 2, be as in (8.62) and ain and bin as defined on
page 2439. We then have

b2n − b1n = Op(1). (8.68)

Furthermore, for i = 1, 2 and any ε > 0 and k > 0, there exist Kε,Kε,k > 0
such that with probability greater than 1− ε we have

||ϕi − h0||b
2
n

b1n
< Kε (8.69)

||ϕ′
i − h′

0||
b2n
b1n

< Kε, (8.70)

(in which we take ϕ′
i to be either the right of the left derivative) and thus that∫ b2n

b1n

|ϕi − h0|kdλ < Kε,k, (8.71)

where Kε and Kε,k do not depend on n. Further, if almost surely ‖ϕ1−ϕ2‖∞n → 0
as n → ∞ then we can conclude that almost surely∫ b2n

b1n

|(ϕi)
′ − h′

0| dλ → 0 (8.72)

as n → ∞, for i = 1, 2. The statements also hold if we replace b1n by a2n and b2n
by a1n.

Proof. (8.68) follows immediately from Lemma 8.10.
Next we will show (8.69) and (8.70). Let g1 and g0 be monotone functions.

Then for any t ∈ [a, b], we have that

g1(t)− g0(t) ≤ g1(b)− g0(a) = g1(b)− g0(b) + g0(b)− g0(a)

and similarly g0(t)− g1(t) ≤ g0(b)− g0(a) + g1(a)− g0(a). Thus

|(g1 − g0)(t)| ≤ |(g1 − g0)(b)|+ |(g1 − g0)(a)|+ g0(b)− g0(a).

By monotonicity and Lemma 8.13, we can say

||ϕ′
i − h′

0||
b2n
b1n

< 2Mε + h′
0(n+Mε)− h′

0(n) = 2Mε + 24Mε,

where ϕ′
i refers to either the left or the right derivative. This is independent of

n thanks to the linearity of h′
0. Thus we have shown (8.70).

Now we establish (8.69). Fix i ∈ {1, 2}. We will apply Lemma 9.2 twice,
with ϕi as g1 and h0 as g0, and then with the reverse assignments. We let
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[a, b] = [n, n +M ]. Regardless of the choice of which is g1 and which is g0, we
can bound the first two terms in (9.1), the weighted differences λ(g1(n+M)−
g0(n+M))+(1−λ)(g1(n)−g0(n)), by 2Mε with probability 1−ε, independently
of n, by Lemma 8.13. If h0 is g0 then for the third term of (9.1) we have to
bound (h′

0(n+) − h′
0(n +M−)) = 24M which is independent of n. If ϕi is g0,

then for the third term of (9.1) we have that |ϕ′
i(n+M−)−ϕ′

i(n+))| is bounded
above by

|ϕ′
i(n+M−)− h′

0(n+M)|+ |h′
0(n)− ϕ′

i(n+)|+ h′
0(n+M)− h′

0(n)

which we can again bound independently of n by the linearity of h′
0 and Lemma

8.13 with probability 1 − ε. Since [b1n, b
2
n] ⊂ [n, n + M ] with probability 1 − ε

for appropriately large M , and since (n+M − t)(t−n)/M ≤ (M/2)2/M which
is independent of n and t, the bound is independent of n or t. Thus we have
shown (8.69). Then (8.71) follows immediately from (8.69) and (8.68), since we

can bound
∫ b2n
b1n

|ϕi − h0|kdλ ≤
∫ b2n
b1n

Kk
ε dλ ≤ Kk

ε ·Kε, with probability 1− ε.

Finally, we show that if for a random outcome ω, ||ϕω
1 − ϕω

2 ||∞n → 0 as

n → ∞ then (8.72) follows. First, note for any a, b that if ε <
∫ b

a
((ϕω

i )
′−h′

0)dλ =
(ϕω

i −h0)(b)−(ϕω
i −h0)(a), and if (ϕω

i −h0)(b) > ε/2 then (ϕω
i −h0)(a) < −ε/2.

Similarly, if −ε >
∫ b

a
((ϕω

i )
′−h′

0)dλ we can conclude that (ϕω
i −h0) at a or at b is

larger than ε/2 in absolute value. Since we can take n large enough that |ϕω
i −h0|

is less than ε/2 at any a, b > n, by contradiction we have that |
∫ b

a
((ϕω

i )
′ −

h′
0)dλ| < ε for such a and b. Now, since

{
t ∈ [b1n, b

2
n) : (ϕ

ω
1 )

′(t) > (ϕω
2 )

′(t)
}
and{

t ∈ [b1n, b
2
n) : (ϕ

ω
1 )

′(t) ≤ (ϕω
2 )

′(t)
}
are both intervals by monotonicity of (ϕω

1 )
′

and linearity of (ϕω
2 )

′ on [b1n, b
2
n], we can conclude that

∫ b

a
|(ϕω

i )
′ − h′

0|dλ < ε as
desired.

8.2.3. Proof for symmetric limit process

Proof of Theorem 4.4. The proof follows as in the proof of Theorem 4.2 in the
previous section, where we replace HR by H+, τ0+ by τ++ , τ0R by τ+R , and we take
HL to be 0, and also replace τL and τ0+ by 0.

In particular, we can see that analogs of the characterizing equalities and in-
equalities hold, and that an analog of Lemma 4.3 holds. The analog of Lemma 4.3
can immediately be seen to hold since by definition (ψ̂0)(2)(t) = 0 for t ∈ (0, τ++ ).
Proofs similar to the proofs of Proposition 8.8 and Proposition 8.7 show the fol-
lowing characterizing proposition holds.

Proposition 8.15. If Δ: [0,∞) → R is concave with maximum at 0 and if

0 ≤ b ∈ Ŝ+, then ∫ b

0

Δ(t)
(
ψ̂0(t)dt− dX(t)

)
≥ 0.

And if Δ = ψ̂0 then the inequality is an equality.
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In the proof of this proposition we define F+
R (u) =

∫ u

τ+
R
ψ̂0(v)dv and X+

R (u) =∫ u

τ+
R
dX(v) and then use the fact that by (4.12), (F+

R −X+
R )(0) = 0. The proof

of Theorem 4.4 then proceeds analogously to the proof of Theorem 4.2. This
completes the proof of Theorem 4.4.

8.2.4. Proofs for pointwise limit theory

Theorem 4.5 A about the unconstrained estimator is Theorem 2.1 of Balab-
daoui, Rufibach and Wellner (2009). Part B of the theorem is then proved in
an identical fashion as that theorem, because for n large enough, in an n−1/5

neighborhood of x0 �= m, the constrained and unconstrained estimators satisfy
the same characterization. Part C then follows from Part B. Thus we focus first
on proving Theorem 4.7 B, where x0 = m, which follows from Theorem 4.8.

The statements in (4.16) about the limit distribution of f̂0
n and (f̂0

n)
′ now

follow from the delta method (Taylor expansion). We devote the entire remain-
der of this subsection to proving Theorem 4.8. All the lemmas contained in the
proof use the same notation, and have the same hypotheses as the theorem. An
outline of the structure of the proof can be found in Section 7.

Proof of Theorem 4.8. Let b ∈ R denote our “local” parameter and let

tn,b ≡ m+ bn−1/5 (8.73)

be the “global” parameter. We also let sn,L be any knot (sequence) of ϕ̂0
n strictly

less than m satisfying n1/5(sn,L − m) = Op(1) and let sn,R be any knot (se-
quence) of ϕ̂0

n strictly larger than m satisfying n1/5(sn,R −m) = Op(1). Recall
λ is Lebesgue measure, and define

Y
f
n(b) ≡ n4/5

∫ tn,b

m

(∫ v

m

(dFn − f0(m)dλ)

)
dv,

Ĥf
n(b) ≡ n4/5

∫ tn,b

m

(∫ v

m

(f̂n − f0(m))dλ

)
dv +Anb+Bn,

and

Y
f
n,L(b) ≡ n4/5

∫ sn,L

tn,b

(∫ sn,L

v

(dFn − f0(m)dλ)

)
dv,

Y
f
n,R(b) ≡ n4/5

∫ tn,b

sn,R

(∫ v

sn,R

(dFn − f0(m)dλ)

)
dv,

Ĥf
n,L(b) ≡ n4/5

∫ sn,L

tn,b

(∫ sn,L

v

(f̂0
n − f0(m))dλ

)
dv +An,Ln

1/5(sn,L − tn,b),

Ĥf
n,R(b) ≡ n4/5

∫ tn,b

sn,R

(∫ v

sn,R

(f̂0
n − f0(m))dλ

)
dv +An,Rn

1/5(tn,b − sn,R),
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where

An = n3/5
(
F̂n(m)− Fn(m)

)
and Bn = n4/5

(
Ĥn(m)− Yn(m)

)
,

and

An,L = n3/5
(
Fn,L(sn,L)− F̂ 0

n,L(sn,L)
)
, (8.74)

An,R = n3/5
(
Fn,R(sn,R)− F̂ 0

n,R(sn,R)
)

(8.75)

(recalling the definitions of Fn,L and Fn,R from (2.7)). Additionally, let

X
f
n(b) := (Yf

n)
′(b) = n3/5

∫ tn,b

m

(dFn − f0(m)dλ) ,

X
f
n,L(b) := −(Yf

n,L)
′(b) = n3/5

∫ sn,L

tn,b

(dFn − f0(m)dλ) ,

X
f
n,R(b) := (Yf

n,R)
′(b) = n3/5

∫ tn,b

sn,R

(dFn − f0(m)dλ) .

The terms for the constrained processes which would correspond to Bn turn out
to be 0. Also, An,L and An,R appear to be off by a sign change when compared
with An: this is because of the definitions of our left- and right-processes, which
entails, e.g., (Ĥ0

n,R − Yn,R)
′(t) = −(F̂ 0

n,R − Fn,R)(t). Note that in Balabdaoui,

Rufibach and Wellner (2009), Yf
n is denoted by Y

loc
n and similarly for Ĥf

n .
The proof proceeds as follows. We will derive the limit distribution for the

empirical process-type Y and X terms. We will show that the estimator-type H
terms (and appropriate derivatives) are tight, and also satisfy characterizations
analogous to those given in Theorem 4.1 and Theorem 4.2. We argue then
(by a continuous mapping argument) that a characterization must hold in the
limit (along subsequences, using tightness of the H processes) and then apply
Theorem 4.1 and Theorem 4.2 to conclude that the limit is as desired.

For 0 < c ≤ ∞, define

Cc = {h|h : [−c, c] → R, h is continuous}
Dc = {h|h : (−c, c) → R, h is cadlag and bounded},

where “cadlag” means right-continuous functions which have limits from the
left. If c = ∞ then we we interpret the definition of C∞ to mean continuous
functions h defined on (−∞,∞). We let ‖f‖ be the supremum of f over its
domain, and this is the distance we use in Cc when c < ∞. When c = ∞
we use the topology of convergence on all compacta (see Whitt (1970)). For
Dc the uniform norm is too strong, so generally one uses a Skorokhod norm
(Skorokhod (1956), see also Billingsley (1999)). We endow, for the moment,
Dc with the J1 Skorokhod norm (referred to as “the” Skorokhod topology in
chapter 12 of Billingsley (1999)). When we come to proving tightness of our H-
type processes we will further discuss topological details. Now we focus on the
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empirical processes. We let “An ⇒ A” mean that An converges weakly to A in a
space that will be specified in each context (Billingsley, 1999). The proof of the
following lemma is standard but we will refer to it several times so we provide it
here. Recall tn,b = m+bn−1/5, for b ∈ R, and recall that sn,L, sn,R are chosen to
be of order n−1/5 from m in probability. Let Dn = Fn−F0, and define processes
An(b) ≡ (An,1(b),An,2(b),An,3(b)) and Bn(b) ≡ (Bn,1(b),Bn,2(b),Bn,3(b)) for
b ∈ R by

An(b) ≡
n3/5√
f0(m)

(∫ tn,b

m

dDn,

∫ sn,L

tn,b

dDn,

∫ tn,b

sn,R

dDn

)
,

and

Bn(b) ≡
n4/5√
f0(m)

(∫ tn,b

m

∫ v

m

dDndv,

∫ sn,L

tn,b

∫ sn,L

v

dDndv,

∫ tn,b

sn,R

∫ v

sn,R

dDndv

)
.

Let νn,R = n1/5(sn,R − m) and νn,L = n1/5(sn,L − m). For a (sequence of)
Brownian motion processes W ≡ Wn on R we also define corresponding approx-
imating (nearly Gaussian) processes Gn ≡ (Gn,1, . . . , Gn,6) by

(Gn,1, Gn,2, Gn,3) =

(∫ b

0

dW,

∫ νn,L

b

dW,

∫ b

νn,R

dW

)
,

and

(Gn,4, Gn,5, Gn,6) =

(∫ b

0

∫ v

0

dWdv,

∫ νn,L

b

∫ νn,L

v

dWdv,

∫ b

νn,R

∫ v

νn,R

dWdv

)
.

Lemma 8.16. The vector of processes (An(b),Bn(b)) can be defined on a com-
mon probability space with a sequence of Brownian motion processes W ≡ Wn

so that
sup

b∈[−c,c]

|(An(b),Bn(b))−Gn(b)| →p 0.

Proof. We prove that the difference of An,1(b) = n3/5
∫ tn,b

m
dDn and Gn,1 con-

verges to 0 in probability uniformly in |b| ≤ c and that the difference of Bn,1(b) =

n4/5
∫ tn,b

m

∫ v

m
dDndv and Gn,4(b) converges to 0 in probability uniformly in |b| ≤

c. The proofs for the other components are analogous. We can see n3/5
∫ tn,b

m
dDn

is equal in distribution to

n1/10 (Un(F0(tn,b))− Un(F0(m))) (8.76)

where Un(t) ≡
√
n(F∗

n(t)−t) is the empirical process corresponding to F
∗
n(t), the

empirical d.f. for n i.i.d. uniform random variables. By a Skorokhod construction
(see e.g. Theorem 12.3.4, page 502, of Shorack and Wellner (2009); or see Mason
and van Zwet (1987)) there exist a sequence of Brownian bridge processes Bn

such that ‖Un −Bn‖ = O(log(n)n−1/2) almost surely. Thus, (8.76) is equal to

n1/10(Bn(F0(tn,b))−Bn(F0(m))) + n−4/10 log(n)Mn(b), (8.77)
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where for all |b| ≤ c, 0 ≤ Mn(b) ≤ M = O(1) almost surely. Next we use that
Bn(t) = Wn(t)− tWn(1) where Wn(t) = Bn(t) + tN is a Brownian motion and
N is a standard Normal random variable. Thus (8.77) equals

n1/10 (Wn(F0(tn,b))−Wn(F0(m))− (F0(tn,b)− F0(m))Wn(1)) + op(1),

which is equal to

Wn(b)
√

n1/5(F0(tn,b)− F0(m))/b−Wn(1)f0(m)bn−1/10 + op(1)

= Wn(b)
√

f0(m) + op(1).

This shows that supb∈[−c,c] |An,1(b) − Gn,1(b)| = op(1). Using this, we see that

the process n4/5
∫ tn,b

m

∫ v

m
dDndv defined on this probability space equals

n1/5

∫ tn,b

m

(√
f0(m)Wn(n

1/5(v −m)) + op(1)
)
dv =

√
f0(m)

∫ b

0

Wn(v)dv+op(1)

with the op(1) error still uniform in |b| ≤ c. Thus supb∈[−c,c] |Bn,1(b)−Gn,4(b)| =
op(1). This completes the proof for two of the terms and the other four are
analogous.

Lemma 8.17. Let Pn ≡ (Pn,1, . . . , Pn,6) be a vector of drift terms where we let

Pn,1(b) =
1

6
b3, Pn,2(b) =

∫ n1/5(sn,L−m)

b

1

2
u2du,

Pn,3(b) =

∫ b

n1/5(sn,R−m)

1

2
u2du, Pn,4(b) =

1

24
b4,

and

Pn,5(b) =

∫ n1/5(sn,L−m)

b

∫ n1/5(sn,L−m)

v

1

2
u2dudv,

Pn,6(b) =

∫ b

n1/5(sn,R−m)

∫ v

n1/5(sn,R−m)

1

2
u2dudv.

Then the vector of processes (Xf
n,Y

f
n) ≡

(
Xf

n,X
f
n,L,X

f
n,R,Y

f
n,Y

f
n,L,Y

f
n,R

)
can

be defined on a common probability space with a sequence of Brownian motion
processes W ≡ Wn such that for 0 < c < ∞

sup
b∈[−c,c]

|(Xf
n(b),Y

f
n(b))−

√
f0(m)Gn(b)− f ′′

0 (m)Pn(b)| →p 0 as n → ∞,

where Gn is as in Lemma 8.16.

Proof. We will show that the statement holds for Xf
n,R. The proof for the other X

terms and for all the Y terms are similar. Now, n−3/5X
f
n,R(b) equals

∫ tn,b

sn,R
dDn+
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sn,R
(f0−f0(m))dλ; by a second-order Taylor expansion of f0, since f

′
0(m) = 0,

the second term equals∫ tn,b

sn,R

(f
(2)
0 (m) + o(1))

(w −m)2

2
dw = n−3/5(f

(2)
0 (m) + o(1))

∫ b

n1/5(sn,R−m)

u2

2
du

where the o(1) is uniform in |b| ≤ c. By Lemma 8.16, we have shown X
f
n,R has

the desired limit.

The next lemma shows that the localized processes still satisfy the char-
acterizing system of equalities/inequalities of the global estimators; once these
characterizing equalities/inequalities are carried over to the limit they will allow
us to identify the limit distribution, via Theorems 4.1 and 4.2.

Lemma 8.18. For b ∈ R,

Y
f
n,L(b)− Ĥf

n,L(b) ≥ 0, (8.78)

Y
f
n,R(b)− Ĥf

n,R(b) ≥ 0, (8.79)

and ∫ τ0
n,−

∞

(
Y

f
n,L(b)− Ĥf

n,L(b)
)
d(Ĥf

n,L)
(3)(b) = 0, (8.80)∫ ∞

τ0
n,+

(
Y

f
n,R(b)− Ĥf

n,R(b)
)
d(Ĥf

n,R)
(3)(b) = 0 (8.81)

where τ0n,− is the largest left-knot of ϕ̂0
n (no larger than m) and τ0n,+ is the

smallest right-knot of ϕ̂0
n (no smaller than m).

Proof. We consider the right-side process, and the left-side ones are analogous.
The difference Y

f
n,R(b)− Ĥf

n,R(b) equals

n4/5

∫ tn,b

sn,R

(∫ v

sn,R

dFn − f̂0
ndλ

)
dv − (b− n1/5(sn,R −m))An,R,

which, by the definition of An,R, equals

n4/5

∫ tn,b

sn,R

(∫ X(n)

sn,R

(dFn(u)− f̂0
n(u)du)−

∫ X(n)

v

(dFn(u)− f̂0
n(u)du)

)
dv

− n4/5 (tn,b − sn,R)

∫ X(n)

sn,R

(dFn(u)− f̂0
n(u)du),

which equals

−n4/5

∫ tn,b

sn,R

(∫ X(n)

v

(dFn(u)− f̂0
n(u)du)

)
dv,
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which equals

n4/5

∫ X(n)

tn,b

(∫ X(n)

v

(dFn(u)− f̂0
n(u)du)

)
dv, (8.82)

since Ĥ0
n,R(sn,R)− Yn,R(sn,R) = 0 by Theorem 2.4 B Thus,

Y
f
n,R(b)− Ĥf

n,R(b) = n4/5
(
Yn,R(tn,b)− Ĥ0

n,R(tn,b)
)
≥ 0

for all b ≥ 0, with equality if tn,b is a right-knot, by Theorem 2.4 B We have
thus shown (8.79) and (8.81). Showing (8.78) and (8.80) is analogous.

In order to show tightness of our H-processes, we want to apply Proposi-
tion 7.1, which is at the log-density level. To do this, we need to translate from
the f -processes to processes defined at the log level, which we will refer to as
ϕ-processes. Let

Y
ϕ
n(b) =

Y
f
n(b)

f0(m)
− n4/5

∫ tn,b

m

∫ v

m

R(u)dudv,

Ĥϕ
n (b) =

Ĥf
n(b)

f0(m)
− n4/5

∫ tn,b

m

∫ v

m

Rn(u)dudv,

Y
ϕ
n,L(b) =

Y
f
n,L(b)

f0(m)
− n4/5

∫ sn,L

tn,b

∫ sn,L

v

R0
n(u)dudv,

Y
ϕ
n,R(b) =

Y
f
n,R(b)

f0(m)
− n4/5

∫ tn,b

sn,R

∫ v

sn,R

R0
n(u)dudv,

Ĥϕ
n,L(b) =

Ĥf
n,L(b)

f0(m)
− n4/5

∫ sn,L

tn,b

∫ sn,L

v

R0
n(u)dudv,

Ĥϕ
n,R(b) =

Ĥf
n,R(b)

f0(m)
− n4/5

∫ tn,b

sn,R

∫ v

sn,R

R0
n(u)dudv,

(8.83)

where

Rn(u) =

∞∑
j=2

1

j!
(ϕ̂n(u)− ϕ0(m))

j
, and R0

n(u) =

∞∑
j=2

1

j!

(
ϕ̂0
n(u)− ϕ0(m)

)j
.

Also let

X
ϕ
n(v) = (Yϕ

n)
′(v) =

X
f
n(v)

f0(m)
− n3/5

∫ tn,v

m

Rn(u)du,

X
ϕ
n,L(v) = −(Yϕ

n,L)
′(v) =

X
f
n,L(v)

f0(m)
− n3/5

∫ sn,L

tn,v

R0
n(u)du,

X
ϕ
n,R(v) = (Yϕ

n,R)
′(v) =

X
f
n,R(v)

f0(m)
− n3/5

∫ tn,v

sn,R

R0
n(u)du.

The above definitions are motivated by the following identities.
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Lemma 8.19 (f to ϕ identities). We have

f0(m)−1
(
f̂n(u)− f0(m)

)
= ϕ̂n(u)− ϕ0(m) +Rn(u) (8.84)

f0(m)−1
(
f̂0
n(u)− f0(m)

)
= ϕ̂0

n(u)− ϕ0(m) +R0
n(u). (8.85)

The ϕ-processes thus satisfy

Ĥϕ
n (b) = n4/5

∫ tn,b

m

∫ v

m

(ϕ̂n(u)− ϕ0(m)) dudv +
Anb+Bn

f0(m)
(8.86)

Ĥϕ
n,L(b) = n4/5

∫ sn,L

tn,b

∫ sn,L

v

(
ϕ̂0
n(u)− ϕ0(m)

)
dudv +

An,Ln
1/5(sn,L − tn,b)

f0(m)

(8.87)

Ĥϕ
n,R(b) = n4/5

∫ tn,b

sn,R

∫ v

sn,R

(
ϕ̂0
n(u)− ϕ0(m)

)
dudv +

An,Rn
1/5(tn,b − sn,R)

f0(m)

(8.88)

Proof. The identities (8.84) and (8.85) are just the exponential series expansion
about the density at m,

ĝ(u)−f0(m) = f0(m)(e{ϕ̂(u)−ϕ0(m)}−1) = f0(m)

∞∑
j=1

1

j!
(ϕ̂(u)−ϕ0(m))j , (8.89)

where ĝ is either f̂n or f̂0
n, and ϕ̂ is either ϕ̂n or ϕ̂0

n, respectively. Now (8.86),
(8.87), and (8.88) follow directly from either (8.84) or (8.85) and the definitions
of the processes.

Lemma 8.20. Taking b ∈ [m− cn−1/5,m+ cn−1/5] for any c > 0, we have

Rn(b) = op(n
−2/5) and R0

n(b) = op(n
−2/5), (8.90)

uniformly for b ∈ [m− cn−1/5,m+ cn−1/5].

Proof. Note (ϕ̂(u)−ϕ0(m))j = Op(n
−2j/5), for j ≥ 2, from by (7.2) for ϕ̂ = ϕ̂0

n,
and the analogous (4.17) on page 1319 of Balabdaoui, Rufibach and Wellner
(2009) for ϕ̂ = ϕ̂n, since ϕ′

0(m) = 0. Thus, we have shown (8.90).

Lemma 8.21. We have

Y
ϕ
n,L(b)− Ĥϕ

n,L(b) ≥ 0, for b ≤ 0, (8.91)

Y
ϕ
n,R(b)− Ĥϕ

n,R(b) ≥ 0, for b ≥ 0, (8.92)

and ∫ τ0
n,−

∞

(
Y

ϕ
n,L(b)− Ĥϕ

n,L(b)
)
d(Ĥϕ

n,L)
(3)(b) = 0, (8.93)
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τ0
n,+

(
Y

ϕ
n,R(b)− Ĥϕ

n,R(b)
)
d(Ĥϕ

n,R)
(3)(b) = 0 (8.94)

where τ0n,− is the largest left-knot of ϕ̂0
n (no larger than m) and τ0n,+ is the

smallest right-knot of ϕ̂0
n (no smaller than m).

Proof. By the process definitions,

Y
ϕ
n,R(b)− Ĥϕ

n,R(b) =
1

f0(m)

(
Y

f
n,R(b)− Ĥf

n,R(b)
)
,

so by Lemma 8.18 we can conclude for b ≥ 0 that

Y
ϕ
n,R(b)− Ĥϕ

n,R(b) ≥ 0,

with equality if tn,b is a right-knot, as desired. We have thus shown (8.92) and
(8.94), and (8.91) and (8.93) are similar.

Lemma 8.22. The vector of processes (Xϕ
n,Y

ϕ
n) ≡

(
X

ϕ
n,X

ϕ
n,L,X

ϕ
n,R,Y

ϕ
n,Y

ϕ
n,L,

Y
ϕ
n,R

)
can be defined on a common probability space with a sequence of Brownian

motion processes W ≡ Wn such that for 0 < c < ∞

sup
b∈[−c,c]

∣∣∣∣∣(Xϕ
n(b),Y

ϕ
n(b))−

1√
f0(m)

Gn(b)− ϕ′′
0(m)Pn(b)

∣∣∣∣∣→p 0 as n → ∞,

(8.95)

where Gn and Pn are as in Lemma 8.16 and Lemma 8.17.

Proof. By (8.90), since ϕ′′
0(m) = f ′′

0 (m)/f0(m), we can conclude that (8.95)
holds.

We have established the appropriate characterizing properties of the ϕ-pro-
cesses, and the limit distribution of the Y

ϕ processes. It remains to prove tight-
ness of the Hϕ-processes. To begin, we discuss the spaces in which our conver-
gences will occur. For 0 < c ≤ ∞, define

Fc,M = {f ∈ Dc|f is non-increasing and ‖f‖ ≤ M} ,

where “cadlag” means right-continuous functions which have limits from the
left. Our H, H(1), and H(2) functions (for the constrained and unconstrained
estimators) are continuous and the uniform norm is appropriate for them. The
H(3) type functions lie in Fc,M , and the uniform norm is too strong. For the
convergence of the Y-processes we used the J1 Skorokhod metric. Unfortunately
this also is too strong as it does not allow multiple jumps to approximate a
single jump in Fc,M (see Remark B.0.10 in Appendix B of Doss (2013b)). Thus,
we will use the so-called M1 Skorokhod metric on Fc,M . This is defined in
Section 12.3 of Whitt (2002), and discussed in the following sections. We give a
brief introduction here. The M1 metric is defined as follows. For a set A ⊆ R, let
‖x−A‖ := infy∈A |x−y|. (Note that we have also taken ‖f‖ to be the supremum
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of a function f over its domain. It will be clear from context which usage is
intended.) For a function x and δ > 0, let ws(x, δ) = sup ‖x(t2)− [x(t1), x(t3)]‖,
where the sup is taken over t1, t2, and t3 such that −c∨(t2−δ) ≤ t1 < t2 < t3 ≤
c ∧ (t2 + δ).1 Note that since sequences that converge in the J1 topology also
converge in the M1 topology (Whitt (2002)), the weak convergences proved for
the empirical processes in Lemma 8.22 still hold when we use the M1 topology.
By Whitt (1980) (see Theorem B.0.2 of Doss (2013b)), Fc,M is a complete,
separable metric space. And furthermore we have the following.

Proposition 8.23 (Lemma B.0.9 of Doss (2013b)). Fc,M is precompact, mean-
ing that every sequence in Fc,M has a convergent subsequence (not necessarily
lying in Fc,M ).

This is the fundamental property we need for tightness arguments, to which
we now proceed.

Lemma 8.24. The processes (Ĥϕ
n,L)

′′′, (Ĥϕ
n,L)

′′, (Ĥϕ
n,L)

′ and Ĥϕ
n,L are tight in

Dc×C3
c when 0 < c < ∞. The same tightness holds if we replace the L-processes

by the R−processes.

Proof. We will discuss the tightness for the left-side processes. The argument for
the right-side processes is analogous. Proposition 7.1 shows that for any ε, we can
take M > 0 large enough that (Ĥϕ

n,L)
′′′ lies in Fc,M with probability 1−ε. Since

Fc,M is precompact in Dc by Proposition 8.23, (Ĥϕ
n,L)

′′′ is tight. Then (Ĥϕ
n,L)

′′

is uniformly bounded by Proposition 7.1, and since its derivative is uniformly
bounded, and since the set of functions with their values as well as the values
of their derivatives uniformly bounded by M is compact in Cc (via the Arzela-

Ascoli theorem, see e.g. Royden (1988)), we can conclude that (Ĥϕ
n,L)

′′ is tight
in Fc,M . Similarly, since integrals on bounded intervals of uniformly bounded
functions are also uniformly bounded, and by Lemma 8.25 below, together with
the fact that n1/5(sn,L−b) is Op(1) by assumption we see that (Ĥϕ

n,L)
′ and Ĥϕ

n,L

are uniformly bounded, and their respective derivatives are uniformly bounded,
so we can again conclude that they are tight. An identical argument works for
the right-side processes.

We will want to consider our processes in C∞ and in D∞. For the continuous
processes in C∞, Corollary 5 of Whitt (1970) says that processes that are tight
in Cc for all 0 < c < ∞ are then tight in C∞. By Theorem 12.9.3 of Whitt
(2002) (with Prohorov’s theorem, e.g. van der Vaart and Wellner (1996) page
21), processes that are tight in Dc, 0 < c < ∞, are tight in D∞. For the next
lemma, recall the definitions of An,L, An,R in (8.74) and (8.75).

Lemma 8.25. As n → ∞,

|An,L| → 0 and |An,R| → 0, almost surely. (8.96)

1Note that ws coincides with the definition of ΔM1 in Skorokhod (1956).
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Proof. Because sn,L is strictly less than m, we can apply Corollary 2.7 B, so that

|An,L| = n3/5
∣∣∣Fn,L(sn,L)− F̂ 0

n,L(sn,L)
∣∣∣ ≤ n−2/5 → 0 almost surely. Similarly,

since Fn,L(X(n)) = 1 = Fn(X(n)), by the same corollary, |An,R| → 0 almost
surely.

With Lemmas 8.21, 8.22, and 8.24 in hand, we can now finish the proof of
the theorem. Fix a subsequence n′. Let

Zn,L =
(
(Ĥϕ

n,L)
(3), (Ĥϕ

n,L)
(2), (Ĥϕ

n,L)
(1), Ĥϕ

n,L,X
ϕ
n,L,Y

ϕ
n,L

)
,

Zn,R =
(
(Ĥϕ

n,R)
(3), (Ĥϕ

n,R)
(2), (Ĥϕ

n,R)
(1), Ĥϕ

n,R,X
ϕ
n,R,Y

ϕ
n,R

)
,

By Lemmas 8.22 and 8.24, Zn,R and Zn,L are both tight in the space Ec ≡ Dc×
C3
c×Dc×Cc with 0 < c < ∞. This means they are also tight in E∞, by the discus-

sion after Lemma 8.24. Thus there exists a subsubsequence n′′ such that Zn′′,R

and Zn′′,L converge weakly. By the Skorokhod construction (see e.g., Chapter
14 of Shorack (2000)), we may assume that the convergence is almost sure (a.s.).

Let (Z0,L, Z0,R) be the limit and let Z0,L = (H
(3)
L , H

(2)
L , H

(1)
L , HL, XL, YL), and

Z0,R = (H
(3)
R , H

(2)
R , H

(1)
R , HR, XR, YR). Note that (Ĥϕ

n,R)
(2) = (Ĥϕ

n,L)
(2) and

this function is of course concave with mode at 0, so H
(2)
R = H

(2)
L must also be

concave with mode at 0. Let

τL = sup
(
Ŝ0(H

(2)
R ) ∩ (−∞, 0)

)
and τR = inf

(
Ŝ0(H

(2)
R ) ∩ (0,∞)

)
(8.97)

with Ŝ0(H
(2)
R ) defined as in (4.2). There must be a sequence of knots τn′′,R ∈

(Sn(ϕ̂
0
n) ∩ (m,∞)) such that n1/5(τn′′,R − m) → τR a.s. To see that we can

take τn′′,R strictly greater than m, by (8.97) we see the only way τR = 0 is if

there exists a sequence of points of Ŝ0(H
(2)
R ) strictly greater than 0 and con-

verging to 0. Similarly there is a sequence τn′′,L ∈ (Sn(ϕ̂
0
n) ∩ (−∞,m)) such

that n1/5(τn′′,L → τL a.s. In our definitions of the (f - and ϕ-) processes, sn,R
was any knot strictly greater than m satisfying n1/5(sn,R − m) = Op(1), and
analogously for sn,L. Take sn′′,R = τn′′,R and sn′′,L = τn′′,L. Then let

sn′′ = (n′′)1/5
(
τn′′,L −m, τn′′,R −m, τ0n′′,− −m, τ0n′′,+ −m

)
,

let sn′′ → (τL, τR, τ−, τ+) and let Z0 = (Z0,L, Z0,R, τL, τR, τ−, τ+), where τ− and
τ+ are the limits of the corresponding terms again by tightness from Proposi-
tion 7.3. By Lemma 8.22, if we let Y ≡ Ya,σ as defined in (4.18) with a =

|ϕ(2)
0 (m)|/4! and σ = 1/

√
f0(m), then

YR(b) =

∫ b

τR

∫ v

τR

dY ′(v)dv, XR(b) = Y ′
R(b) =

∫ b

τR

dY ′,

YL(b) =

∫ τL

b

∫ τL

v

dY ′(v)dv, XL(b) = −Y ′
L(b) =

∫ τL

b

dY ′.
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Let φ : E2
c × R

4 → R be defined by

φ(z1, . . . , z16) =

∫ z14

z13

z8dλ− dz11

giving

φ(Zn) =

∫ n1/5(τn,R−m)

n1/5(τn,L−m)

(Ĥϕ
n,R)

(2)dλ− d(Yϕ
n,R)

(1)

= (Ĥϕ
n,R − Y

ϕ
n,R)

′(n1/5(τn,R −m))− (Ĥϕ
n,R − Y

ϕ
n,R)

′(n1/5(τn,L −m)).

By Lemma 8.26 below, φ(Zn′′) → 0 a.s., and Zn′′ → Z0 a.s., and φ is continuous
at z such that z8 and z11 are continuous functions, so a.s. φ(Z0) = 0, i.e.∫ τR

τL

H
(2)
R dλ− d(Y

(1)
R ) = 0 a.s.,

so condition (4.7) of Theorem 4.2 holds. Now, let φc : E
2
c×R

4 → R be defined by

φc(z) = infb∈[0,c](z4(b)−z6(b))∧0 giving φc(Zn) = infb∈[0,c](Ĥ
ϕ
n,L(b)−Y

ϕ
n,L(b))∧

0. This φc is continuous since z4 and z6 are continuous, and φc(Zn) = 0 a.s. by
Lemma 8.21, so φc(Z0) = 0 a.s., for all c. An analogous argument holds for the
right-side processes. Thus,

(HL − YL)(b) ≤ 0 for b ≤ 0,

(HR − YR)(b) ≤ 0 for b ≥ 0,

so (4.8) and (4.9) hold. Now, let φR,c(z) =
∫

1[z16,c](z10 − z12)dz7 (where z16

corresponds to τ+, z10 to HR, z12 to YR, and z7 to H
(3)
R ). Let

φR(z) =

∫
[τ0

+(z2),∞)

(z10 − z12)dz7,

where τ0+(z2) is defined as in (4.4) (and thus Ŝ0(z2) is defined as in (4.2)). We
want to show φR(Z0) = 0 a.s. Note that τ+ ≤ τ0+(Z0,2), although a priori we may
not have equality. This is because a linear function may be well approximated by
a nonlinear function, but the reverse is not true. Thus ϕ̂0

n could potentially have
knots strictly between the limit knot τ0+(Z0,2) and m (on an n−1/5 scale) so τ+
could be smaller than τ0+(Z0,2), but ϕ̂

0
n must have knots approaching τ0+(Z0,2)

(on an n−1/5 scale), so τ+ cannot be larger than τ0+(Z0,2). By Lemma 8.21,
φR,c(Zn) = 0 a.s., and by Lemma 8.27 below we can conclude φR,c(Z0) = 0 a.s.
Now, let c → ∞ to see∫

1[Z0,16,∞)(Z0,10 − Z0,12)dZ0,7 = 0

and since the integrand is nonpositive and the integrating measure is nonposi-
tive, this implies ∫

1[τ0
+(Z0,2),∞)(Z0,10 − Z0,12)dZ0,7 = 0
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as desired. An analogous argument holds for the functional

φL(z) =

∫
(−∞,τ0

−(z2)]

(z4 − z6)dz1

with τ0−(z2) defined as in (4.3). Thus we can a.s. conclude φR(Z0) = 0 and
φL(Z0) = 0, so we have shown condition (4.10) of Theorem 4.2 holds. We have
shown that as n′′ → ∞, Zn′′,0 converge a.s., so weakly, to Z0 which satisfies
the uniqueness criteria of Theorem 4.2. Thus we conclude that the limit does
not depend on the choice of subsequence, and so can conclude Zn,L ⇒ Z0,L and
Zn,R ⇒ Z0,R both in E∞, as desired. This ends the proof of Theorem 4.8.

Here are the two remaining lemmas we used in the proof of Theorem 4.8.

Lemma 8.26. Let νn,R = n1/5(sn,R − m) and νn,L = n1/5(sn,L − m). Then
almost surely, recalling the notation g(a, b] = g(b)− g(a), we have∣∣∣∣(Ĥϕ

n,R − Y
ϕ
n,R

)′
(νn,L, νn,R]

∣∣∣∣ ≤ 4

f0(m)
n−2/5,

Proof. We have

(Ĥf
n,R − Y

f
n,R)

′(b) = n3/5

∫ tn,b

sn,R

(f̂0
n(u)du− dFn(u)) +An,R

so that

(Ĥf
n,R − Y

f
n,R)

′(νn,R)− (Ĥf
n,R − Y

f
n,R)

′(νn,L)

= n3/5

∫ sn,R

sn,L

(f̂0
n(u)du− dFn(u)).

Thus, (
Ĥϕ

n,R − Y
ϕ
n,R

)′
(νn,L, νn,R] =

n3/5

f0(m)

∫ sn,R

sn,L

(f̂0
n(u)du− dFn(u))

which is bounded in absolute value by 2n−2/5/f0(m) almost surely, by applying
Corollary 2.7 (recall, by definition, sn,R and sn,L are not equal to m).

In the definition of φR,c in the lemma below, z16 corresponds to τ+, z10 to

HR, z12 to YR, and z7 to H
(3)
R . The variables defining φL,c are the analogous

left-side terms.

Lemma 8.27. For n ≥ 0, assume zn ∈ E2
c ×R

4 is such that zn converges to z0.
Assume z0,1 and z0,7 are nonincreasing. Let φR,c(z) =

∫
1[z16,c](z10−z12)dz7 and

φL,c(z) =
∫

1[−c,z15](z4 − z6)dz1. Assume further that φR,c(zn) = 0, φL,c(zn) =
0, zn,10 − zn,12 ≤ 0 and zn,4 − zn,6 ≤ 0. Then for c > 0, φR,c(z0) = 0 if c is not
a discontinuity point of z0,7 and φL,c(z0) = 0 if −c is not a discontinuity point
of z0,1.
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Proof. We consider φR,c, the proof for φL,c is analogous. For convenience, let
hc(z) = 1[z16,c](z10 − z12), and then

∫
hc(zn)dzn,7 −

∫
hc(z0)dz0,7 equals∫

(hc(zn)− hc(z0)) dzn,7 −
∫

hc(z0)d(z0,7 − zn,7). (8.98)

The integrand of the first term in (8.98) is uniformly converging to 0. If we
let x1 and x2 be any fixed continuity points of z0 satisfying x1 ≤ z0,22 ≤
c ≤ x2 then, for large enough n the measure zn,7 has total mass bounded by
z0,7(x1) − z0,7(x2) + 2 < ∞. Thus the first term in (8.98) converges to 0 as
n → ∞ since dzn,7 is a nonpositive measure (Royden (1988), Chapter 11.5).
Now since zn,5 converges to z0,5 in the M1 topology, zn,5 converges weakly
to z5, in the sense that for all t ∈ (−c, c) that are continuity points of z0,5,
zn,5(t) → z0,5(t) as n → ∞ (Lemma 12.5.1, Whitt (2002)). The integrand of the
second term in (8.98) is uniformly bounded and has discontinuity points at z0,22
and c, so

∫
1(z0,16,c)hc(z0)d(z0,7 − zn,7) converges to 0. By assumption c is not

a discontinuity point of z0,7 so
∫

1{c}hc(z0)d(z0,7 − zn,7) goes to 0 as n → ∞. If
z0,16 is not a discontinuity point of z0,7 then similarly

∫
1{z0,16}hc(z0)d(z0,7 −

zn,7) goes to 0. Thus, assume z0,16 is a discontinuity point of z0,7. Then by the
M1 convergence of zn,7 to z0,7, there exists a sequence xn of discontinuity points
of zn,7 such that xn → z0,16. By the assumption that φR,c(zn) = 0, we know
(zn,10 − zn,12(xn) = 0 (since zn,10 − zn,12 ≤ 0), and by uniform convergence, we
see that (z0,10 − z0,12)(z0,16) = 0. Thus

∫
1{z0,16}hc(z0)d(z0,7 − zn,7) converges

to 0, and so (8.98) converges to 0 as n → ∞, so we are done.

Next we prove Theorem 4.9.

Proof of Theorem 4.9. We argue by considering |X1|, . . . , |Xn| iid∼ 2F0 − 1 on
[0,∞) with density g+0 = 2f01[0,∞). Note that g+0 is log-concave with mode
known to be at 0 and so we can use the results based on the mode-constrained
MLE. Let ψ+

0 = log g+0 = ϕ0 + log 2 on [0,∞). Recall that

F
+
n,R(x) = n−1

n∑
i=1

1{|Xi|≥x} and Ĝ+
n,R(x) =

∫ |X|(n)

x

ĝ+n (u)du

where ĝ+n = 2ĝ0n1[0,∞). Let ψ̂
+
n = log ĝ+n . Let sn,R > 0 be a knot of ψ̂+

n satisfying

n1/5sn,R = Op(1). The proof proceeds as in the proof of Theorem 4.8, except

we replace F̂ 0
n,R by Ĝ+

n,R, Fn,R by F
+
n,R, and f0 by g+0 , and we consider only

“right-side” processes on [0,∞). To make things line up fully, we can take sn,L
to be 0 and define left side analogs of Ĝ+

n,R and F
+
n,R to be identically 0.

See the scaling relations in (7.5) and (7.6), and the three following displays,
to see how Theorem 4.9 proves Theorem 4.7 C. Note that in Theorem 4.9,
σ = 1/

√
2f0(0), whereas in (7.8) and (7.9), σ is 1/

√
f0(0). This modification

yields the factors of 2−2/5 and 2−1/5 appearing (twice each) on the right side of
(4.15), as explained in Theorem 4.5 C.
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8.2.5. Proof for the maximum functional limit theory

Proof of Theorem 4.11. If {Fn} is a concave function sequence on R that con-
verges uniformly on compacta to a function F , where F has a unique maxi-
mizer, then N(Fn) → N(F ). Thus N is continuous on the subset of convex
functions in C∞ with the topology of uniform convergence on compacta. Let

σ = 1/
√
f0(m), a = |ϕ(2)

0 (m)|/4!, Fn(t) = n2/5(ϕ̂n(m + n−1/5t) − ϕ0(m)), and
F (t) = ϕ̂a,σ(t). Then by Theorem 4.8, Fn converges weakly to F so by the con-
tinuous mapping theorem N(Fn) →d N(F ). Now, by the scaling relationship
(4.20), N(F ) =d σ4/5a1/5N(ϕ̂((a/σ)2/5·)) = σ4/5a1/5N(ϕ̂). We can check that
σ4/5a1/5 = C(m,ϕ0). Thus we have shown

n2/5(logN(f̂n)− logN(f0)) →d C(m,ϕ0)N(ϕ̂)

since N(Fn) is the left side of the above display. Applying the delta rule, we see
also

n2/5(N(f̂n)−N(f0)) →d c(m,ϕ0)N(ϕ̂).

9. Technical lemmas

Here is a statement of the general integration by parts formulas for functions of
bounded variation, used in our proof of Proposition 8.8. See, e.g., page 102 of
Folland (1999) for the definition of bounded variation.

Lemma 9.1 (Folland (1999)). Assume that F and G are of bounded variation
on a set [a, b] where −∞ < a < b < ∞

A. If at least one of F and G is continuous, then∫
(a,b]

FdG+

∫
(a,b]

GdF = F (b)G(b)− F (a)G(a).

B. If there are no points in [a, b] where F and G are both discontinuous, then∫
[a,b]

FdG+

∫
[a,b]

GdF = F (b)G(b)− F (a−)G(a−).

The next lemma is proved in Doss (2013b), page 143, for convex rather than
concave functions.

Lemma 9.2 (Doss (2013b)). Let g1 and g0 be concave functions on [a, b], and
let t ∈ [a, b]. Then

g0(t)− g1(t) ≤
b− t

b− a
(g0(a)− g1(a)) +

t− a

b− a
(g0(b)− g1(b))

+
(b− t)(t− a)

b− a
(g′0(a+)− g′0(b−)).

(9.1)
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