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1. Introduction

In this paper we are interested in using simple geometrical objects to build
inference and testing procedures to recover global characteristics of a two-
dimensional stationary isotropic random field by using a sparse information.
Assume that we only have access to the excursion set of one realization of a
field over one (or two) level, namely we observe a black-and-white image de-
picting where the field is above or below some level u (see, e.g., the second and
third images of the first row of Figures 1, 3, 5, 7 and 8). From this image, it is
possible to compute several Lipschitz-Killing (LK) curvatures of the given ex-
cursion set. In our bivariate framework, there are three LK curvatures available.
Roughly speaking, they are the following quantities: surface area, half perime-
ter and Euler characteristic. Each of these three functionals carries a different
information on the geometry or topology of the excursion set. Intuitively, the
surface area is related to its occupation density, the perimeter to its regularity
and the Euler characteristic to its connectivity. In the present paper we have
multiple objectives. Firstly, we aim at proposing a unified definition of these
quantities for a large class of stationary and isotropic random fields that can
be either smooth or present discontinuities. We jointly use these quantities to
build unbiased estimators for the expected values of the LK curvatures of the
excursion sets by solving a triangular system. In the whole paper, the use of
the term unbiased means that our estimators take into account the observation
bias due to the fact that the excursion set is observed on some finite (large)
window and not on the whole plane. Moreover, we construct a test procedure to
determine whether the excursion sets of a given field come from the realization
of a Gaussian field.

The Lipschitz-Killing curvatures, depending on the scientific domain under
consideration, are also called intrinsic volumes or Minkowski functionals, they
can also be assimilated to genus types. Considering real-life data as a realization
of a random field and analyzing them with the help of LK curvatures is an effec-
tive approach that has already been successfully applied in various disciplines
in the past decades. For instance, in cosmology, the question of Gaussianity and
anisotropy of the Cosmic Microwave Background (CMB) radiation has been
tackled in a huge amount of publications (see [10] for a recent overview) and
part of them are explicitly based on Minkowski functionals (see, e.g., [31] or
[17]). The methodology of these studies is often the following: choose a spe-
cific parametric model for the CMB signal and fit the parameters so that the
observed Minkowski functional matches the theoretical one. A similar method-
ology is also applied for analyzing the distribution of galaxies (see, for instance
[18]), where again the best-fitting model is the target. Another domain where
the LK curvatures are used as methodological tools is in brain imaging (see [2],
Section 5, and references therein). In this context, the main purpose is to find
the locations of high brain activity assuming the brain is a manifold with very
complex geometry. The tools that are involved concern both the LK curvatures
of high level excursions of the signal and the LK curvatures of the brain itself.

As seen in the aforementioned domains of application, the field of interest can
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be either a smooth (e.g. Gaussian or transformations of Gaussian fields) or a dis-
continuous object (e.g. shot noise fields). A shot noise field is a multidimensional
extension of one dimensional models such as compound Poisson processes. It is
obtained by throwing random shapes at random locations and counting how
many shapes cover each point of the space with eventually random weights.
Those models are very popular since explicit computations can (sometimes) be
performed and simulations are rather simple. They are natural alternatives to
Gaussian fields both for theoretical and applicative purposes. This underlines
the need for a framework that remains robust if the nature of the field changes.
That is why we focus our study on providing tools and methods that can be
applied to both Gaussian or transformations of Gaussian and shot noise fields.
The same objective can be found in [6] and [7], which have also inspired the
present study. Note that all the random fields that we will consider are defined
on the continuous space R2.

There is clearly an abundant literature on parameter estimation and tests for
multidimensional stationary random fields. Inference methods and tests usually
rely on the estimation of the covariance function and/or on the estimation of the
finite dimensional distributions of the field (see [14], [28] or [27] among others).
This usually requires the observation of the entire field and/or independent
copies of the field. In the present paper, we have a completely different approach
based on the observation of the geometry of a single excursion set above a fixed
level, considering the random field as a random surface. Let us mention some
famous precursors, for instance [25], [37] or [24], who mainly worked on the
modeling of sea waves considering them as realizations of a two-dimensional
random field. Let us also mention two major books on this topics, [1] and [3].

In the mathematical domain, the LK curvatures are the subject of several
works studying their probabilistic and statistical properties. We mainly refer to
[32] and [35] for a precise definition of these geometrical and topological objects.
They have been applied to the excursion sets of random fields in many situations.
For instance, in [9], [6] and [5], the length of the level sets (i.e. the perimeter
of the excursion sets) is taken into account, while several limit theorems are
obtained for the area in [8] and [33]. In [12] and [16], the Euler characteristic of
excursion sets is used to test Gaussianity or isotropy. In the second reference,
looking simultaneously at the intersections of excursion sets with rectangles and
segments is a way to get additional information. Although the studies often focus
on one of the LK curvatures, considering all the LK curvatures of the excursion
sets at the same time is the purpose of recent papers such as [19], [20], [26] or
[7]. With the same objective -joint study of all Minkowski functionals-, but in
another context -excursion sets of random fields defined on a discrete space-
, one can also quote the recent papers [29] and [13]. The present paper lies
within the same scope since we provide three unbiased estimators, one for each
LK curvature, valid for a wide class of stationary isotropic random fields. The
estimator of the LK curvature corresponding to the Euler characteristic allows
us to construct a test to determine if two observed excursion sets result from
a Gaussian field or not. The strength of this test is that it is independent of
a specific choice of the correlation function of the considered random field, in
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particular it does not depend on its second spectral moment. Since this function
is unknown in many applications, it is an important and very useful property
of the proposed test. In this sense, it can be considered as more efficient than
the Gaussianity test introduced in [12].

To summarize, the originality of the present study is threefold. First, we
use a very sparse information on the field, namely excursion sets above one or
two levels, to recover global characteristics of the considered random field. Our
second asset is to gather in the same study smooth Gaussian type fields and
shot noise fields, which are archetypes of non continuous fields. The third key
point of our paper is the joint use of several LK curvatures for a given excursion
set.

Outline of the paper. The paper is organized as follows. In the remaining
of this section we define the three objects of interest, i.e., the Lipschitz-Killing
densities for the excursion set of a two-dimensional random field. Section 2 is
devoted to the study of unbiased estimators with edge correction of these LK
densities from the observation of one excursion set. We examine a wide range of
random fields, namely fields of Gaussian type and shot noise fields. Moreover,
we show how the knowledge of the LK densities permits to recover and to infer
on parameters of the considered fields. The problem of the consistency of the
proposed estimators is studied, when it is possible. Furthermore, their perfor-
mances are numerically analyzed. In Section 3 we build a test to detect whether
a given field is Gaussian or not based on the knowledge of two excursion sets
corresponding to two different levels. A variant of this test is put into practice
in Section 4 on synthesized 2D digital mammograms provided by GE Health-
care France (department Mammography). Finally, Appendix section gathers the
proofs of the technical results.

1.1. Lipschitz-Killing densities of excursion sets

There are three additive functionals, Lj for j = 0, 1, 2, defined on subsets of
Borelians in R2 that are extensively used in the literature. Depending on the
mathematical domain, they are called either intrinsic volumes, Minkowski func-
tionals or Lipschitz-Killing curvatures. Roughly speaking, for A a Borelian set in
R2, L0(A) stands for the Euler characteristic ofA, L1(A) for the half perimeter of
the boundary of A and L2(A) is equal to the area of A, i.e. the two-dimensional
Lebesgue measure.

All over the paper, we will denote by | · | the two-dimensional Lebesgue
measure of any Borelian set in R2 and by | · |1 its one-dimensional Hausdorff
measure. In particular, when T is a bounded rectangle in R2 with non empty
interior,

L0(T ) = 1, L1(T ) =
1

2
|∂T |1, L2(T ) = |T |, (1)

where ∂T stands for the frontier of the set T . The rest of this section is dedicated
to precisely define the Lipschitz-Killing (LK) curvatures of excursion sets as well
as the associated LK densities.
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Let T be a bounded rectangle in R2 with non empty interior and u be a real
number. For X a real-valued stationary random field defined on R2, we consider
the excursion set within T above level u:

{t ∈ T : X(t) ≥ u} = T ∩ EX(u), where EX(u) := X−1([u,+∞)).

We are interested in the mean of the three LK curvatures of the excursion
set, assuming they are well defined. The case of the area L2 is particularly
easy to handle with. Actually, since X is stationary, Fubini’s Theorem gives
immediately

E [ |T ∩ EX(u)| ] = |T |P(X(0) ≥ u).

This formula is valid without any further assumption on X, whereas the
existence and the exact value of the two other LK curvatures is more involving.
In particular it is often needed to make strong regularity assumptions on the
field in order that one can consider the LK curvatures of its excursion sets.

In the following definitions, we introduce positive reach sets and curvature
measures for those sets (see [35], based on the seminal work of Federer [15]).

Definition 1.1 (Positive reach sets). For a set A ⊂ R2 and r a positive real
number, let Ar = {x ∈ R2 : dist(A, x) ≤ r}, with dist the Euclidean distance.
Then, the reach of A is defined as

reach(A) := sup{r ≥ 0 : ∀ y ∈ Ar, ∃ a unique x ∈ A nearest to y}.

The set A is said to have positive reach, if reach(A) > 0.

Intuitively, A is a positive reach set if one can roll a ball of positive radius
along the exterior boundary of A keeping in touch with A. Let us remark that
positive reach sets are necessarily closed sets. Moreover, convex sets in R2 and
compact C2 submanifolds of R2 have positive reach, see e.g., Proposition 14 in
[35]).

Definition 1.2 (Curvature measures). Let A be a positive reach set. Its cur-
vature measures Φi(A, ·), for i = 0, 1, 2, are defined for any Borel set U ⊂ R2

by

Φ0(A,U) =
1

2π
TC(∂A,U), Φ1(A,U) =

1

2
|∂A ∩ U |1 and Φ2(A,U) = |A ∩ U |,

where TC(∂A,U) denotes the integral over U of the curvature along the posi-
tively oriented curve ∂A.

For a compact positive reach set A such that A ⊂ U , with U an open set,
let us note that Φ0(A,U) coincides with the Euler characteristic of A. For more
details on the total curvature TC, we refer to Definition 9 and Theorem 31 in
[35] or to Definition 1 and Theorem 1 in [7].

Since the curvature measures Φi(A, ·) are additive functionals with respect to
A, it is natural to deal with unions of positive reach sets. Therefore, we introduce
the next definition (see [35] again).
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Definition 1.3 (UPR class). Let UPR be the class of locally finite unions of
sets with positive reach.

In the sequel, we are interested in the curvature measures of the excursions
above the level u of the random field X, namely we consider A = T ∩ EX(u).
Note that the random set T ∩ EX(u) belongs to the UPR class a.s. when,
for instance, the random field X is of class C2 a.s., (actually, in this case the
random set T ∩ EX(u) has positive reach, as EX(u) is a C2 submanifold of
R2 and its intersection with the rectangle T provides compactness and positive
reach property), or when EX(u) is locally given by a finite union of disks.

Definition 1.4 (LK curvatures and associated densities for UPR excursion
sets). Let X be a stationary random field defined on R2 and let T be a bounded
rectangle in R2 with non empty interior. Assuming that T ∩ EX(u) is a UPR
set, define the LK curvatures of the excursion set EX(u) within T by

Ci(X,u, T ) := Φi(T ∩ EX(u), T ), for i = 0, 1, 2.

Define the normalized LK curvatures by

C
/T
i (X,u) :=

Ci(X,u, T )

|T | , for i = 0, 1, 2, (2)

and, assuming the limits exist, the associated LK densities are

C∗
i (X,u) := lim

T↗R2
E[C

/T
i (X,u)], for i = 0, 1, 2, (3)

where lim
T↗R2

stands for the limit along any sequence of bounded rectangles that

grows to R2.

As already noticed, the case i = 2 in the above definition boils down to

C∗
2 (X,u) = E[C

/T
2 (X,u)] = P(X(0) ≥ u). (4)

2. Kinematic formulas and inference

From now on, all the rectangles T in R2 are bounded with non empty interior.
Notation T ↗ R2 stands for the limit along any sequence of bounded rectangles

that grows to R2. Then, |∂T |1
|T | always goes to 0 as T ↗ R2.

In this section, we build unbiased estimators of the LK densities in (3), for
i ∈ {0, 1}. The problem is more involved than it appears. Actually, a naive
approach is to consider (2), that can be easily computed from T ∩EX(u), as an
estimator of (3). But, the main difference between theses quantities comes from
the boundary terms. Indeed, we can write

Ci(X,T, u) = Φi(T ∩ EX(u), T ) = Φi(EX(u), T̊ ) + Φi(T ∩ EX(u), ∂T ),

where, loosely speaking, |T |−1E
(
Φi(EX(u), T̊ )

)
contains all the information on

C∗
i (X,u) and boundary terms involving ∂T is blurring the estimation for fixed
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|T |. However, as |∂T |1/|T | → 0 when T ↗ R2, this bias term vanishes. Hereafter,
we derive the exact relations between (2) and (3) which are valid for a wide range
of fields, that are called standard in the sequel, and permit to build unbiased
estimators of C∗

i (X,u), i ∈ {0, 1} with an edge correction. Starting from those
estimators, we are able to infer on some parameters of the random field X.

2.1. Kinematic formulas

We use kinematic formulas to get unbiased estimators of C∗
i (X,u), i ∈ {0, 1}

as it is usual to proceed in convex geometry. To this aim, we first introduce the
definition of a standard random field. We borrow the adjective standard to [32]
because the fields we call standard have excursion sets that are standard in the
sense of Definition 9.2.1 in [32].

Definition 2.1 (Standard random field). Let X be a stationary isotropic ran-
dom field defined on R2. We say that X is standard at level u ∈ R if T ∩EX(u)
is UPR for any rectangle T in R2, if C∗

i (X,u), for i = 0, 1 in (3) exist, and if

E[C
/T
0 (X,u)] = C∗

0 (X,u) +
1

π
C∗

1 (X,u)
|∂T |1
|T | + C∗

2 (X,u)
1

|T | ,

E[C
/T
1 (X,u)] = C∗

1 (X,u) +
1

2
C∗

2 (X,u)
|∂T |1
|T | .

By using (4), no edge correction is necessary for estimating C∗
2 (X,u) whatever

the field X is. It explains why we do not include a third constraint in the
definition of a standard field. The first example of a standard field is given by
the large class of fields of Gaussian type defined below.

Definition 2.2 (Fields of Gaussian type). We call field of Gaussian type any
random field X = F (G), where for some k ∈ N∗, F : Rk → R is a C2 function
and G = (G1, . . . , Gk) is a family of i.i.d. Gaussian random fields defined on R2

that are C3, stationary, isotropic, centered, with unit variance, and such that
VarG′

i(0) = λI2 for some λ > 0, with G′
i denoting the gradient of Gi for all

i ∈ {1, . . . , k} and I2 the 2× 2 identity matrix.

Proposition 2.3. Let X be a field of Gaussian type as in Definition 2.2, then
X is standard at any level u ∈ R.

Proof. Following Definition 2.2, we write X = F (G) and we denote by λ the
second spectral moment of the Gaussian vectorial field G. The Gaussian kine-
matic formula provides the mean LK curvatures of excursion sets of X within
a rectangle T (see e.g. Theorem 15.9.5 in [1] or Theorem 4.8.1 in [2]), for u ∈ R

and i = 0, 1, 2,

E [Ci(X,T, u)] =

2−i∑
l=0

[
i+ l
l

]
(2π)−l/2 λl/2 Ml(X,u)Li+l(T ) (5)
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where Lj(T ), j = 0, 1, 2 are defined in (1),

[
i+ l
l

]
=

(
i+ l

l

)
ωl+i

ωlωi
with ωk the

Lebesgue measure of the k-dimensional unit ball (w0 = 1, w1 = 2 and w2 = π),
and, following Formula (3.5.2) in [2], the coefficients Ml(X,u), l = 0, 1, 2 are
obtained having an expansion in ρ at order 2 of the probability thatG(0) belongs
to

Tube(F, ρ) := {x ∈ Rk such that dist(x, F−1([u,∞))) ≤ ρ},
as ρ → 0+ . Namely, the expansion is given by

P

(
G(0) ∈ Tube(F, ρ)

)
= M0(X,u) + ρM1(X,u) +

1

2
ρ2M2(X,u) +O(ρ3).

(6)

Dividing Equation (5) by |T | and letting T grow to R2 imply the existence of
the LK densities and

C∗
0 (X,u) =

λ

2π
M2(X,u), C∗

1 (X,u) =
1

2

√
πλ

2
M1(X,u), C∗

2 (X,u) = M0(X,u).

(7)

Injecting these in (5) and dividing by |T | we obtain that X is standard at level
u.

Another way to get standard fields relies on convex geometry tools especially
developed for Boolean fields with convex grains.

Proposition 2.4. Let X be a stationary isotropic random field defined on R2

such that for u ∈ R, its excursion set EX(u) satisfies:

• a.s. T ∩EX(u) is the union of a finite number N(T ∩EX(u)) of compact
convex sets with non empty interior,

• E
(
2N(T∩EX(u))

)
< +∞.

Then, X is standard at level u.

Proof. First let us note that by stationarity and isotropy of X we have that
EX(u) is a stationary and isotropic random set and the assumptions imply that
EX(u) is a standard random set in the sense of Definition 9.2.1 of [32]. Following
the notations of this book, Ci(X,u, T ) = Vi(T ∩ EX(u)) with Vi the so-called
intrinsic volume and C∗

i (X,u) = Vi(EX(u)) with Vi the intrinsic density. It
holds according to Theorem 9.4.1 of [32], for i ∈ {0, 1, 2},

E(Ci(X,u, T )) =

2∑
k=i

ck,2−k+i
i C∗

k(X,u)L2−k+i(T ),

where, by Equation (5.5) of [32], c0,20 = c2,00 = c2,11 = c1,21 = 1 and c1,10 = 2
π . We

deduce that X is standard at level u.

When X is a random field that is standard at level u, we are now able to
build unbiased estimators of C∗

i (X,u), for i = 0, 1, 2.
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Proposition 2.5 (Unbiased estimators for LK densities). Let u ∈ R and let X
be a stationary isotropic random field defined on R2 that is standard at level u.
Assume we observe T ∩EX(u) for T a rectangle in R2. The following quantities
are unbiased estimator of C∗

i (X,u), i = 0, 1, 2,

Ĉ0,T (X,u) = C
/T
0 (X,u)− |∂T |1

π|T | C
/T
1 (X,u) +

(
1

2π

(
|∂T |1
|T |

)2

− 1

|T |

)
C

/T
2 (X,u),

(8)

Ĉ1,T (X,u) = C
/T
1 (X,u)− |∂T |1

2|T | C
/T
2 (X,u), (9)

Ĉ2,T (X,u) = C
/T
2 (X,u). (10)

We highlight that the term unbiased in Proposition 2.5 does not refer to the
pixelization error that arise numerically due to the discretized representation of
images. Here, the use of the term unbiased means that our estimation of the LK
densities takes into account the observation bias due to the intersection of the
excursion set with the observation window T . Other common edge correction
methods include for instance the toroidal correction, where the edge on one side
can be thought of as being wrapped around to the opposite edge. Numerically
for large data sets, the minus-sampling methods are often used (see e.g., [34];
[11]), where the points near the edges are ignored for the estimation but are still
considered as neighbours for interior points. However, it is statistically inefficient
because it discards a substantial amount of data.

In the following two sections we analyse how the unbiased estimators in
Proposition 2.5 for standard fields can be used for parameter inference pur-
poses. Section 2.2 is devoted to fields of Gaussian type whereas Section 2.3
concerns shot-noise fields.

2.2. Fields of Gaussian type

2.2.1. Gaussian field

We start by considering the simplest case of Gaussian type field, i.e. with no-
tation of Definition 2.2, k = 1 and F : x �→ x, then X = G1 := G. To compute
the LK densities, we use expansion (6) to write out

P

(
G(0) ≥ u− ρ

)
= ψ(u− ρ) = ψ(u)− ρψ′(u) +

1

2
ρ2ψ′′(u) +O(ρ3),

with ψ being the Gaussian tail distribution with zero mean and unit variance.
Hence, one easily gets

C∗
0 (G, u) = (2π)−3/2 λu e−u2/2, C∗

1 (G, u) =
1

4
λ1/2 e−u2/2, C∗

2 (G, u) = ψ(u),

(11)
where λ denotes the second spectral moment of G as in Definition 2.2.
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Parameter estimation. Suppose we observe T∩EG(u) for a given level u and
a given bounded rectangle T in R2. Then we can use the unbiased estimators of
Proposition 2.5 to propose a consistent estimator for the second spectral moment
of the Gaussian field G. Each of the quantities Ci(G, u, T ) satisfies a Central
Limit Theorem (CLT) with normalizing term equals to |T |1/2 (see, e.g., [20] or
[26]). Concerning various levels and/or various disjoint domains, a joint CLT
for the Euler characteristic is proved in [12]. To get the asymptotic normality of
the estimator of λ, we moreover assume that the Gaussian field G satisfies the
following condition.

(A) For any fixed x in R2, the covariance matrix of the random vector (G(x),
G

′
(x), G

′′
(x)) has full rank and r, the covariance function of G, is such

that,

Mr(x) → 0 when ‖x‖ → +∞ and Mr ∈ L1(R2) ,

where Mr(x) = max
(∣∣∣ ∂kr

∂xk (x)
∣∣∣ ; k = (k1, k2) ∈ N2, k1 + k2 ≤ 4

)
.

Proposition 2.6 (CLT for the spectral moment estimator). Assume that G

satisfies condition (A). Consider Ĉ0,T (G, u) the estimator defined in (8) built
on the observation T ∩ EG(u), u �= 0 being fixed. By using (11), we define the
estimator of λ as

λ̂T (u) :=
(2π)3/2

u
eu

2/2 Ĉ0,T (G, u), for u �= 0.

Then, it holds that√
|T |
(
λ̂T (u)− λ

)
d−−−−→

T↗R2
N (0,Σ(u)), for some Σ(u) < +∞, (12)

where
d−→ stands for the convergence in distribution.

Remark that for u = 0, the Euler density in (11) always vanishes, indepen-
dently of λ. The estimator is therefore not defined for u = 0 in Proposition
2.6.

Proof. It is sufficient to show that
√
|T |
(
Ĉ0,T (G, u)−C∗

0 (G, u)
) d−−−−→
T↗R2

N (0, V (u))

for some V (u) < +∞. Decompose this quantity as follows√
|T |
(
Ĉ0,T (G, u)− C∗

0 (G, u)
)
=
√

|T |
(
C

/T
0 (G, u)− E[C

/T
0 (G, u)]

)
− 1

π

√
|T |
(
C

/T
1 (G, u)− E[C

/T
1 (G, u)]

) |∂T |1
|T |

+
√

|T |
(
C

/T
2 (G, u)− E[C

/T
2 (G, u)]

)( 1

2π

|∂T |21
|T |2 − 1

|T |
)

:= I0(T ) + I1(T ) + I2(T ).
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Theorem 4 in [12] leads to I0(T )
d−−−−→

T↗R2
N (0, V (u)) with a finite asymptotic

variance V (u) given by Equation (9) in [12]. Furthermore, the CLT in [20]

gives that
√
|T |
(
C

/T
1 (G, u) − E[C

/T
1 (G, u)]

)
admits a Gaussian centered limit

distribution and therefore I1(T )
P−−−−→

T↗R2
0. Similar arguments hold for I2(T ).

Finally the convergence of λ̂T (u) is established with Σ(u) = V (u)(2π)3 eu
2

u2 .

Numerical illustration. Figure 1 displays a realization of a Gaussian ran-
dom field, two excursion sets and an illustration for the performance of the three
estimators Ĉ0,T (G, u), Ĉ1,T (G, u) and Ĉ2,T (G, u) in Proposition 2.5, for G with

covariance function r(x) = e−κ2‖x‖2

and second spectral moment λ = 2κ2. Let
us remark that the parameter κ is chosen such that |T |κ2 remains bounded,

which explains small values of κ and λ in Figure 1. The quantities C
/T
0 (G, u),

C
/T
1 (G, u) and C

/T
2 (G, u) are computed with the Matlab functions bweuler,

bwperim and bwarea, respectively. When it is required to specify the connectiv-
ity, we average between the 4th and the 8th connectivity. Since C∗

1 is defined as
the average half perimeter, we divide by 2 the output derived from bwperim.

From a numerical point of view, bweuler and bwarea functions seem very
precise contrary to the bwperim function which performs less well. It was ex-
pected due to the pixelisation effect. This behavior will be observed also in other
random field cases (see, for instance, Figures 7 and 8 in some shot-noise cases).

Figure 1 (center) illustrates that C
/T
1 (G, u) (green dashed line) does not well

approximate C∗
1 (G, u) (blue plain line), especially for small levels u and that

the correction induced by (9) (red stars) improves the approximation. In Figure
1 (left), we provide an analogous bias correction for the Euler characteristic
by using (8). However in this case, the discrepancy is less evident than in the
perimeter case.

In Figure 2 (left), we observe the unbiased estimator λ̂T (u) for different values
of u. The asymptotic variance Σ(u) in Proposition 2.6 is empirically estimated
onM = 100 sample simulations (Figure 2, right). This allows us to identify some
choices of levels u where the variance is minimum. Furthermore, we remark that
for small and large values of u, less statistics is available than for intermediate
values of |u|.

2.2.2. Chi-square field

We consider a chi-square random field with k degrees of freedom Zk defined
with Zk = F (G) for F : x ∈ Rk → ‖x‖2, with notations of Definition 2.2. In
order to deal with a random field with zero mean and unit variance, we also
introduce Z̃k as

Z̃k(t) :=
1√
2k

(Zk(t)− k), t ∈ R2.
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Fig 1. Gaussian random field as in Section 2.2.1 with covariance r(x) = e−κ2‖x‖2 , for
κ = 100/210 in a domain of size 210 × 210 pixels. First row: A realization of a Gaussian
random field (left) and two excursion sets for u = 0 (center) and u = 1 (right). Second row:

Ĉ0,T (G,u) (left), Ĉ1,T (G,u) (center) and Ĉ2,T (G,u) (right) as a function of the level u. We
display the averaged values on M = 100 sample simulations (red stars) and the associated
empirical intervals (vertical red lines). Theoretical u �→ C∗

0 (G, u), C∗
1 (G,u) and C∗

2 (G,u) in

(11) are drawn in blue lines. We also present u �→ C
/T
0 (G,u) and C

/T
1 (G,u) in green dashed

lines. These samples have been obtained with Matlab using circulant embedding matrix.

Hence, Z̃k is C3(R2), stationary, isotropic, centered, with unit variance and

Var Z̃ ′
k(0) = 2λI2.

We assume that Z̃k is observed on a rectangle T ⊂ R2 through its excursion
set above a fixed level u; T ∩EZ̃k

(u) = T ∩EZk
(k+ u

√
2k). Let us remark that

the above excursion is a proper subset only for a level u such that u > −
√

k/2.
Moreover, the LK densities satisfy

C∗
j (Z̃k, u) = C∗

j (Zk, k + u
√
2k), for j = 0, 1, 2.

The C∗
j (Zk, ·) can be computed using (7) in the framework of Gaussian type

fields described previously. Indeed, we have Zk = F (G) with G = (G1, . . . , Gk)
and F : x ∈ Rk �→ ||x||2. Hence, F−1([u,+∞)) = {x ∈ Rk; ||x|| ≥ √

u} and
Tube(F, ρ) = {x ∈ Rk; ||x|| ≥ √

u − ρ}, so that expansion in (6) has to be
written with

P

(
G(0) ∈ Tube(F, ρ)

)
= P

(√
χ2
k ≥

√
u− ρ

)
,
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Fig 2. Gaussian random field with covariance r(x) = e−κ2‖x‖2 , for κ = 100/210 in a

domain of size 210 × 210 pixels. Estimate λ̂T (u) with associated confidence intervals for
M = 100 sample simulations as prescribed by the CLT in (12), for different values of u (left).
Theoretical value λ = 0.019 is represented by the horizontal line. The empirically estimated
variance Σ̂(u) is displayed for different values of u in the right panel.

where χ2
k stands for a chi-square random variable with k degrees of freedom.

We recover the following formulas that can be found, for instance, in Theorem
15.10.1 in [1] or in Section 5.2.1 in [2]:

C∗
0 (Z̃k, u) =

λ

π2k/2Γ(k/2)

(
k + u

√
2k
)(k−2)/2 (

u
√
2k + 1

)
exp

(
−k + u

√
2k

2

)
,

(13)

C∗
1 (Z̃k, u) =

√
πλ

2(k+1)/2Γ(k/2)

(
k + u

√
2k
)(k−1)/2

exp

(
−k + u

√
2k

2

)
,

C∗
2 (Z̃k, u) = P

(
χ2
k ≥ k + u

√
2k
)
.

These formulas were originally established in [36]. Figure 3 displays a realization

of a normalized chi-square random field Z̃k with k = 2 degrees of freedom, two
excursion sets and an illustration of the performance of the three estimators
Ĉ0,T (Z̃k, u), Ĉ1,T (Z̃k, u) and Ĉ2,T (Z̃k, u).

Parameter estimation. Suppose we observe T ∩ EZ̃(u), the excursion of a

centered chi-square field Z̃ with unit variance, unknown degree of freedom K
and unknown Gaussian second spectral moment λ. Using that for a centered chi-
square field with unit variance and k degrees of freedom C∗

2 (Z̃, u) only depends
on k, we propose the following estimator of K:

K̂(u) = argmin
k∈ [1, kmax]

∣∣∣C∗
2 (Z̃k, u)− Ĉ2,T (Z̃, u)

∣∣∣ , (14)

with Ĉ2,T as in (10) and kmax a large positive integer. This estimator can be

plugged in C∗
0 (Z̃, u) to derive an estimator of the Gaussian second spectral
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Fig 3. Chi-square field as in Section 2.2.2 with 2 degrees of freedom and λ = 0.019 in a do-
main of size 210×210 pixels. First row: A realization of a normalized chi-square random field
(left) and two excursion sets for u = 0 (center) and u = 1 (right). Second row: Ĉ0,T (Z̃k, u)

(left), Ĉ1,T (Z̃k, u) (center) and Ĉ2,T (Z̃k, u) (right) as a function of the level u. We display
the averaged values on M = 100 sample simulations (red stars) and the associated empirical

intervals (vertical red lines). Theoretical u �→ C∗
0 (Z̃k, u), C

∗
1 (Z̃k, u) and C∗

2 (Z̃k, u) are draw
in blue lines.

moment of Z̃:

λ̂T,K̂(u)(u) =
Ĉ0,T (Z̃, u)

M2,Z̃(K̂(u), u)
, (15)

with Ĉ0,T given by (8), K̂(u) as in (14) and where M2,Z̃(k, u) does not depend

on λ and is derived from (13)

M2,Z̃(k, u) =
1

π2k/2Γ(k/2)

(
k + u

√
2k
)(k−2)/2 (

u
√
2k + 1

)
exp

(
−k + u

√
2k

2

)
.

An illustration of this inference procedure is provided in Figure 4 for a centered
chi-square field with K = 2 degrees of freedom.

2.2.3. Student field

Following Definition 2.2, let k ≥ 3 be an integer and consider F : Rk+1 → R as
follows, x = (x1, y) ∈ R × Rk �→ F (x) := x1/

√
‖y‖2/k, then Tk = F (G) is a



550 Biermé et al.

Fig 4. Chi-square field as in Section 2.2.2 with K = 2 degrees of freedom and λ = 0.019,
kmax = 15. Estimated K̂(u) as in Equation (14) (left) and associated λ̂

T,K̂(u)
(u) (right) as

in Equation (15). Theoretical values represented by horizontal lines.

Student random field with k degrees of freedom. Assumption k ≥ 3 ensures that
all the Gi(t), for i = 1, . . . , k, cannot vanish at some point t ∈ R2 with positive
probability. Then, Tk is C3(R2), stationary, isotropic, centered and Var Tk(0) =
k/(k−2). Furthermore, Tk and −Tk have the same distribution. In order to deal
with a centered and unit variance field, we introduce

T̃k(t) :=
√

(k − 2)/k Tk(t) , t ∈ R2.

We again assume that T̃k is observed on a rectangle T ⊂ R2 through its excursion
set above a fixed level u, i.e., T∩ET̃k

(u) = T∩ETk
(u
√
k/(k − 2)). Let us remark

that the symmetry property of the distribution of Tk allows us to only consider
levels u that are non-negative. Moreover

C∗
j (T̃k, u) = C∗

j (Tk, u
√
k/(k − 2)), j = 0, 1, 2,

and the LK densities are given in the following result.

Proposition 2.7 (Student LK densities). Let k ≥ 3 and T̃k be a centered
Student random field with unit variance and k degrees of freedom. Then, it holds
that

C∗
0 (T̃k, u) =

λ(k − 1)

4π
3
2

u√
k − 2

Γ
(
k−1
2

)
Γ
(
k
2

) (1 + u2

k − 2

) 1−k
2

,

C∗
1 (T̃k, u) =

√
λ

4

(
1 +

u2

k − 2

) 1−k
2

and

C∗
2 (T̃k, u) = P(Student(k) ≥ u

√
k/(k − 2)).

The proof of Proposition 2.7 is postponed to Appendix (see Section A.1) as
well as the proof of the following Lemma.
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Lemma 2.8. If k ≥ 5, the second spectral moment λStu(k) of Tk is finite and

λStu(k) =

⎧⎨⎩λ k
k−2 if k is even,

λ k

(
1

k−2 +
√
π

2k−3

(k−5)!

( k−5
2 )!Γ

(
k
2

)) else,
(16)

where λ is the spectral moment of the underlying Gaussian fields. Note that
λStu(k) → λ as k → ∞.

Figure 5 displays a realization of a normalized Student random field T̃k with
k = 4 degrees of freedom, two excursion sets and an illustration for the perfor-
mance of the three estimators Ĉ0,T (T̃k, u), Ĉ1,T (T̃k, u) and Ĉ2,T (T̃k, u).

Fig 5. Student field as in Section 2.2.3 with 4 degrees of freedom and λ = 0.019 in a domain
of size 210 × 210 pixels. First row: A realization of a normalized Student random field (left)

and two excursion sets for u = 0 (center) and u = 1 (right). Second row: Ĉ0,T (T̃k, u) (left),

Ĉ1,T (T̃k, u) (center) and Ĉ2,T (T̃k, u) (right) as a function of the level u. We display the
averaged values on M = 100 sample simulations (red stars) and the associated empirical

intervals (vertical red lines). Theoretical u �→ C∗
0 (T̃k, u), C∗

1 (T̃k, u) and C∗
2 (T̃k, u) are draw

in blue lines.

Parameter estimation. Suppose we observe T ∩ET̃ (u) the excursion at level

u of T̃ a centered Student field with unit variance, unknown degree of freedom
K and unknown second spectral moment λ of the underlying Gaussian fields.
As in Section 2.2.2, using that for a centered Student field with unit variance
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with k degrees of freedom C∗
2 (T̃k, u) only depends on k, we propose the following

estimator of K:

K̂(u) = argmin
k∈ [3, kmax]

∣∣∣C∗
2 (T̃k, u)− Ĉ2,T (T̃ , u)

∣∣∣ , (17)

with Ĉ2,T as in (10) and C∗
2 (T̃k, u) given by Proposition 2.7. Furthermore, the

Gaussian second spectral moment of the considered Student field can be esti-
mated by

λ̂T,K̂(u)(u) =
Ĉ0,T (T̃ , u)

M2,T̃k
(K̂(u), u)

,

with Ĉ0,T as in (8), K̂(u) as in (17) and where M2,T̃k
(k, u) does not depend on

λ and is given by

M2,T̃k
(k, u) =

(k − 1)

4π
3
2

u√
k − 2

Γ
(
k−1
2

)
Γ
(
k
2

) (1 + u2

k − 2

) 1−k
2

.

An illustration of the performance of this inference procedure is given in Figure
6 for a centered Student field with K = 4 degrees of freedom.

Moreover by using Lemma 2.8 and the two previous estimators one can derive
an estimator for λStu(k).

Fig 6. Student field as in Section 2.2.3 with K = 4 degrees of freedom, λ = 0.019 and
kmax = 20. Estimated K̂(u) as in Equation (17) (left) and associated λ̂

T,K̂(u)
(u) (right).

Theoretical values are represented by horizontal lines.

2.3. Shot-noise field

In this section, we consider a shot-noise field SΦ : R2 → R defined as in [6] and
[7]. It is prescribed by

SΦ(t) =
∑

(xi,bi,ri)∈Φ

bi1riD(t− xi) , for t ∈ R2,
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where Φ is a stationary Poisson point process on R2 × R∗ × R+ with intensity
measure ν LebR2 ⊗ dFB ⊗ dFR where ν > 0, FB is a probability measure on
R∗, FR is a probability measure on R+ and D is the unit disc in R2. Under the
condition∫

R2×R∗×R+

|b|1rD(x) dxFB(db)FR(dr) = π E[|B|] E[R2] < +∞,

with B and R two random variables with respective distributions FB and FR,
the field SΦ is well-defined, stationary and isotropic. It is moreover integrable
and, for any t ∈ R2,

E[SΦ(t)] = ν ā E[B],

with ā = π E[R2]. Furthermore, if E[B2] < +∞, SΦ is square integrable and
Var(SΦ(t)) = ν ā E[B2]. We also introduce p̄ = 2πE(R).

In the case B = 1 a.s., the marginals of SΦ are Poisson distributed with
parameter νā. In the case where B is uniformly distributed in {−1,+1}, the
field SΦ is symmetric and its marginals have a Skellam distribution with both
parameters equal to νā/2 (see [30]), that is to say that they coincide with the
difference of two independent Poisson random variables with parameter νā/2.
In that case, the marginal distribution of SΦ is given by k ∈ Z �→ e−νāI|k|(νā),
where I. denotes the modified Bessel function of the first kind, defined as follows:

In(x) =
∑∞

m=0
(x/2)2m+n

m!Γ(m+n+1) , for any n ∈ Z+ and any x ∈ R.

When B is positive a.s., we prove in the following result that the considered
shot-noise field SΦ is standard as in Definition 2.1.

Proposition 2.9. Let Rmax > 0. If B > 0 and R ≤ Rmax a.s., the random
field SΦ is standard at any level u ∈ R.

Proof. Since B > 0 a.s., T ∩ESΦ(u) = T , for any u ≤ 0. Hence we may assume
that u > 0. Since R ≤ Rmax a.s. the number of discs intercepting T is bounded
by NΦ(T ) := #{xi; d(xi, T ) ≤ Rmax} that is a Poisson random variable of
finite intensity. It follows that T ∩ ESΦ(u) must be given by the union of a
finite number N(T ∩ESΦ(u)) ≤ NΦ(T ) of some finite intersections of discs that
are convex bodies. Since NΦ(T ) is a Poisson random variable, we clearly have
E(2N(T∩ESΦ

(u))) < +∞ so that Proposition 2.4 allows us to conclude that SΦ

is standard at level u.

IfB changes sign, excursion sets T∩ESΦ(u) are no more a.s. closed, nor locally
convex, nor necessarily of positive reach, however they are elementary sets in
the sense of Definition 1 in [7], with boundaries included in the discontinuity set
of SΦ so that one can compute length and total curvature. Therefore, we still
define Φi and Ci as in Definitions 1.2 and 1.4. We state the following lemma, in
the same vein as Theorem 6 in [7].

Lemma 2.10. Let B be a discrete random variable with values in Z\{0}. Then,
for any level u, the LK densities C∗

1 (SΦ, u) and C∗
0 (SΦ, u) are well defined and

their Fourier transforms are given, for t �= 0, by∫
R

eiutC∗
1 (SΦ, u)du =

1

2
νp̄ ϕS(0)(t)

1

it
(ϕB+(t)− ϕB−(t)) , (18)
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R

eiutC∗
0 (SΦ, u)du = ν ϕS(0)(t)

1

it

(
ϕB(t)− 1 +

νp̄2

4π
(ϕB+(t)− ϕB−(t))2

)
,

(19)

where ϕZ(t) stands for the characteristic function E[eitZ ] of a random variable
Z, B+ = max(B, 0) and B− = min(B, 0).

The proof of Lemma 2.10 is established in the Appendix Section A.3. Turn-
ing back to the special cases where B = 1, a.s. or B uniformly distributed in
{−1,+1} and following the same inverse Fourier procedure as Theorem 6 in [7],
we obtain the explicit formulas below.

Proposition 2.11. If B = 1 and u ∈ R+ \ Z+, it holds that

C∗
0 (SΦ, u) = e−νā (νā)
u�

�u�! ν

(
1− ν

p̄2

4π
+ �u� p̄2

4πā

)
,

C∗
1 (SΦ, u) = e−νā (νā)
u�

2�u�! νp̄ and C∗
2 (SΦ, u) = e−νā

∑
k>u

(νā)k

k!
.

If B is uniformly distributed in {−1,+1} and u ∈ R \ Z, it holds that

C∗
0 (SΦ, u) =

ν

2
e−νā

(
(I|
u�| − I|
u�+1|)(νā)

+
νp̄2

8π
(I|
u�−1| + I|
u�| − I|
u�+1| − I|
u�+2|)(νā)

)
,

C∗
1 (SΦ, u) =

νp̄

4
e−νā (I|
u�| + I|
u�+1|)(νā) and C∗

2 (SΦ, u) = e−νā
∑
k>u

I|k|(νā),

where �·� denotes the greatest integer less than u.

Figure 7 (resp. Figure 8) displays two excursion sets and an illustration of the
shape of C∗

i (SΦ, u), for i ∈ {0, 1, 2} when B = 1, a.s. (resp. when B is uniformly
distributed in {−1,+1}). Remark that if B is uniformly distributed in {−1,+1}
we do not know if SΦ is a standard random field in the sense of Definition 2.1.
Therefore in Figure 8, we do not apply the unbiased formulas of Proposition 2.5

and we use C
/T
i (SΦ, u), for i ∈ {0, 1, 2}.

Let us quote general results of [21] that can be used to obtain CLT for the
volume, the perimeter and the Euler characteristic of shot noise excursion sets
(see especially Proposition 4.1 in [21]). In particular, in our setting, by Theorem
2.4 of [21], one can get for R ≤ Rmax and B ∈ R∗ that√

|T |
(
Ĉ2,T (SΦ, u)− C∗

2 (SΦ, u)
)

d−−−−→
T↗R2

N (0, σ2
2(u)), with 0 < σ2

2(u) < ∞.

A similar question is the purpose of [19] where a joint CLT is established for
all the intrinsic volumes of a Boolean model. Note that the occupied domain of
a Boolean model is nothing but the excursion set above level 1 of a shot-noise
field with B = 1, a.s.
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Fig 7. Shot-noise field as in Section 2.3 with B = 1, a.s., ν = 5× 10−4 with random disks
of radius R = 50 or R = 100 (each with probability 0.5) in a domain of size 210 × 210 pixels.
First row: Shot-noise field random field (left) and two excursion sets for u = 7.5 (center)

and u = 14.5 (right). Second row Ĉ0,T (SΦ, u) (left), Ĉ1,T (SΦ, u) (center) and Ĉ2,T (SΦ, u)
(right) as a function of the level u. We display the averaged values on M = 100 iterations (red
stars) and the associated empirical intervals (vertical red lines). Theoretical u �→ C∗

0 (SΦ, u),
C∗

1 (SΦ, u) and C∗
2 (SΦ, u) are draw with blue dots.

In our framework, we provide a non-asymptotic result to control the variance
on a finite domain T and prove consistency of Ĉi,T (SΦ, u), for i = 0, 1, 2.

Theorem 2.12. If B takes values in Z \ {0} and R ≤ Rmax a.s., there exists
a constant C, depending on ν, p, a and Rmax only, such that, for i = 0, 1, 2,(

E
[(
Ĉi,T (SΦ, u)− C∗

i (SΦ, u)
)2])1/2 ≤ C

(
1

|T |1/2 +
|∂T |1
|T |

)
.

We recover that choosing T such that |T | → +∞ and |∂T |1
|T | → 0, leads

to the consistency of Ĉi,T (SΦ, u). The proof of Theorem 2.12 is postponed to
Section A.4. To establish this result we first derive variance bounds for the weak
versions of the perimeter and the total curvature (see Proposition A.1, Section
A.2) which present interest on its own and is related to the framework of [21].

Parameter estimation. Suppose we observe T ∩ESΦ(u) for SΦ a shot-noise
with B = 1, a.s. and for u in R+ \ Z+ with unknown parameters ν, ā and p̄.
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Fig 8. Shot-noise field as in Section 2.3 with B uniformly distributed in {−1,+1}, ν =
3 × 10−5 and random disks of radius R = 150 or R = 100 (each with probability 0.5) in
a domain of size 210 × 210 pixels. First row: Shot-noise field random field (left) and two

excursion sets for u = −0.5 (center) and u = 1.5 (right). Second row C
/T
0 (SΦ, u) (left),

C
/T
1 (SΦ, u) (center) and C

/T
2 (SΦ, u) (right) as a function of the level u. We display the

averaged values on M = 100 iterations (red stars) and the associated empirical intervals
(vertical red lines). Theoretical u �→ C∗

0 (SΦ, u), C
∗
1 (SΦ, u) and C∗

2 (SΦ, u) are draw with blue
dots.

Define the estimator of νā, for some positive A,

ν̂ a(u) = argmin
ν a∈ (0, A]

∣∣∣C∗
2 (SΦ, u)− Ĉ2,T (SΦ, u)

∣∣∣ , (20)

with Ĉ2,T as in (10) and νā �→ C∗
2 (SΦ, u) given by Proposition 2.11. In the same

spirit, an estimator of νp̄ is obtained using Proposition 2.11

ν̂ p(u) = Ĉ1,T (SΦ, u)

(
e−ν̂ a(u) (ν̂ a(u))


u�

2�u�!

)−1

, (21)

with Ĉ1,T as in (9) and ν̂ a(u) as in (20). Then, we define the following estimator
for ν

ν̂(u) =
Ĉ0,T (SΦ, u)

e−ν̂ a(u) (ν̂ a(u))�u�


u�!

+

(
(ν̂ p(u))2

4π

)
−
(
�u�(ν̂ p(u))2

4π ν̂ a(u)

)
, (22)



LK curvatures of excursion sets for two-dimensional random fields 557

where Ĉ0,T (SΦ, u) is as in Equation (8), ν̂ a(u) as in (20) and ν̂ p(u) as in (21).

Finally, the obtained ν̂(u) can be used to isolate â(u) and p̂(u) in Equations (20)
and (21), respectively. An illustration of this inference procedure is provided in
Figure 9 (first row).

As mentioned earlier, the unsatisfactory quality of the Matlab function bwperim
for the estimation of C∗

1 (SΦ, u) strongly impacts the final performance of the
estimation of ν̂ p(u) (see Figure 9, center panel). For this reason, we also present

here the simplified case where R is constant. In this particular case νa = νp2

4π .

Then, we estimate ν̂ a(u) as in (20) and ν̂(u) by using the simplified version of
(22), i.e.,

ν̂(u) =

(
1

1 + �u� − ν̂ a(u)

)⎛⎝ Ĉ0,T (SΦ, u)

e−ν̂ a(u) (ν̂ a(u))�u�


u�!

⎞⎠ . (23)

An illustration of the performance of these inference procedures is provided in
Figure 9 (second row).

Fig 9. First row: Shot-noise field as in Section 2.3 with B = 1, a.s., ν = 5×10−4 with random
disks of radius R = 50 or R = 100 (each with probability 0.5) in a domain of size 210 × 210

pixels. Estimated ν̂ a(u) as in Equation (20) for A = 40 (left), ν̂ p(u) as in Equation (21)
(center) and ν̂(u) as in (22) (right). Theoretical values are represented by horizontal lines.
Second row: Shot-noise field with B = 1, a.s., ν = 5× 10−4 and R = 100 a.s., in a domain
of size 210 × 210 pixels. Estimated ν̂ a(u) as in Equation (20) with A = 40 (left) and ν̂(u) as
in (23) (right). Theoretical values are represented by horizontal lines.
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3. Using LK densities for testing Gaussianity

Let X be a stationary, isotropic, centered with unit variance random field. We
observe an excursion of X above some levels u on the domain T , namely T ∩
EX(u) and we aim at testing whether X is Gaussian.

3.1. Testing against a Student field

In this section we are interested in testing

H0 : X is Gaussian versus

H1 : ∃ k ≥ 3, X is Student with k degrees of freedom and unit variance,

where under H0 and H1 the fields are defined through Definition 2.2, where F :

x ∈ R �→ x, under H0 and F : (x1, y) ∈ Rk+1 �→
√

(k − 2)/k
(
x1/
√
‖y‖2/k

)
,

under H1.
Under H0 and H1 the field X is symmetric and then centered. Suppose that

for 1 ≤ u1 < u2 we observe T ∩ EX(u), for u ∈ {u1, u2}. Notice that the fact
that under H0 and H1 the fields have unit variance enables the comparison of
the LK densities of their excursions at the same meaningful levels. Assuming
u1 and u2 are positive and greater than 1 is not necessary. Indeed the test can
be easily modified for negative values of u1 or u2 by using the symmetry of X
under H0 and H1. Furthermore, under H1 we do not assume that k is known.
Unsurprisingly, the performance of the test will depend on the unknown k.
Moreover, we underline that under H0 and H1 we do not impose any constraint
on the shape of the covariance function nor on the spectral moment other than
(A). In particular, the spectral moments ofX underH0 andH1 can be different.

A test statistic. Our test statistics is built from the previously studied LK

densities. As the perimeter C
/T
1 is hard to evaluate in practice (see the earlier

comment on the Matlab function bwperim), we do not use it to build a test.
Moreover, Gaussian and Student distributions differ in the tails, which would
lead to consider large values for u2. But for large levels we do not observe many
excursion sets which deteriorates the estimation of C∗

2 . Therefore to work with
intermediate values of u1 and u2, we consider C∗

0 to build our test statistic: it
is well evaluated in practice at these levels. Finally, in order to get statistic free
in λ, we take the ratio of C∗

0 between to different levels u1 and u2. This is why
we need to observe two distinct excursion sets.

Without loss of generality assume that u2 = γ u1, for some γ > 1. For the
following empirically accessible ratios, we derive from Equation (11) and from
Proposition 2.7 that

C∗
0 (X,u2)

C∗
0 (X,u1)

= γ e
u2
1
2 (1−γ2) =: v(γ,∞) under H0, (24)

C∗
0 (X,u2)

C∗
0 (X,u1)

= γ

(
1− (γ2 − 1)u2

1

k − 2 + γ2u2
1

) k−1
2

=: v(γ, k) under H1. (25)
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Quantities v(γ,∞) and v(γ, k) in (24) and (25), for values of u1 and γ not too
large, are quite different. Furthermore, for all k it holds that v(γ, k) > v(γ,∞)
and k �→ v(γ, k) is decreasing. We build a non symmetric test where we reject
H0 whenever the associated empirical ratio is too large compared to its expected
behavior under H0. It is important to observe that v(γ,∞) does not depend on
the spectral moment of X nor on its covariance function. The choice of u1 ≥ 1
and γ > 1 are left to the practitioner, or might be imposed by the data-set.
We expect that the larger γ is and the smaller k is the better the test will be.
However, in practice γ should not be too large as we need to estimate C∗

0 (X,u2),
which requires to have sufficiently enough excursions above the level u2 = γ u1.

Let T1 and T2 be two rectangles in R2 such that dist(T1, T2) > 0 and |T1| =
|T2| > 0. For any positive integer N , we define T

(N)
i = {Nt : t ∈ Ti}, for

i = 1, 2. Consider the statistics

R̂γ,N :=
Ĉ

0,T
(N)
2

(X,u2)

Ĉ
0,T

(N)
1

(X,u1)
, (26)

with Ĉ0,T defined in (8).

Test with asymptotic level α. We can establish the asymptotic normality
of the statistics R̂γ,N .

Proposition 3.1. Assume that X satisfies condition (A). Let T
(N)
1 and T

(N)
2

defined as before and R̂γ,N as in (26). Then, under H0 it holds that√
|T (N)

1 |
(
R̂γ,N − v(γ,∞)

)
d−−−−→

N→∞
N (0,Σ(u1, u2)),

where Σ(u1, u2) < ∞.

Proof. As the sets T
(N)
1 and T

(N)
2 are such that dist(T

(N)
1 , T

(N)
2 ) → +∞ and

|T (N)
1 | = |T (N)

2 | → +∞, from Proposition 5a in [12] it holds that

√
|T (N)

1 |

⎛⎜⎝Ĉ
0,T

(N)
1

(X,u1)− E[C
/T

(N)
1

0 (X,u1)]

Ĉ
0,T

(N)
2

(X,u2)− E[C
/T

(N)
2

0 (X,u2)]

⎞⎟⎠ d,H0−−−−→
N→∞

N
((

0
0

)
,

(
V (u1) 0

0 V (u2)

))
,

where u �→ V (u) is defined in Equation (9) of [12]. Moreover, one can prove
that the limit of√

|T (N)|
1

(
C

/T
(N)
1

1 (X,u1)− E[C
/T

(N)
1

1 (X,u1)]

C
/T

(N)
2

1 (X,u2)− E[C
/T

(N)
2

1 (X,u2)]

)

is non degenerate (see [20] or [26]). Then, the same decomposition as in the
proof of Proposition 2.6 leads to√

|T (N)
1 |

⎛⎝Ĉ
0,T

(N)
2

(X,u2)− C∗
0 (X,u2)

Ĉ
0,T

(N)
1

(X,u1)− C∗
0 (X,u1)

⎞⎠ d,H0−−−−→
N→∞

N
((

0
0

)
,

(
V (u2) 0

0 V (u1)

))
. (27)
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Applying the delta method, we get the result with Σ(u1, u2)=

(
V (u2)+v(γ,∞)2 V (u1)

)
C∗

0 (X,u1)2
.

Consider the consistent empirical estimator Σ̂u1,u2 :=
̂

V(R̂γ,N ) |T (N)
1 | of Σ(u1, u2),

where
̂

V(R̂γ,N ) is the empirical variance of the considered ratio. Then, from
Proposition 3.1, it holds that√√√√ |T (N)

1 |
Σ̂u1,u2

(
R̂γ,N − v(γ,∞)

)
=

√√√√ 1

̂
V(R̂γ,N )

(
R̂γ,N − v(γ,∞)

) d,H0−−−−→
N→∞

N (0, 1).

Take a confidence level α ∈ (0, 1) and set q1−α such that P(N(0, 1) ≥ q1−α) = α.
We define the test φT (N) with asymptotic level α as

φT (N) = 1{√
1

̂
V(R̂γ,N )

(
R̂γ,N−v(γ,∞)

)
≥q1−α

} . (28)

Discussion on consistency. Suppose that X is a Student field with K de-
grees of freedom (K is fixed). Then, the test statistic can be decomposed as
follows√√√√ |T (N)

1 |
Σ̂u1,u2

(
R̂γ,N − v(γ,∞)

)
= Σ̂−1/2

u1,u2

(√
|T (N)

1 |
(
R̂γ,N − v(γ,K)

)
+

√
|T (N)

1 |
(
v(γ,K)− v(γ,∞)

))
: = Σ̂−1/2

u1,u2
(I1 + I2),

where I2
P, H1−−−−→
N→∞

+∞. Then, if we were able to establish that Σ
−1/2
u1,u2 is bounded

away from 0 and if a joint central limit theorem for
(
C

/T
i (X,u1), C

/T
i (X,u2)

)
,

i = 0, 1 for X a Student fields was known this would entail the consistency of
the test, i.e., PH1(φT (N) = 1) −→

N→∞
1. Remark that at least numerically, in our

simulations studies it seems to be the case (see Figure 10 below).

Numerical illustrations. In Figure 10 we show the empirical PH1(φT (N) =
1) with φT (N) as in (28) for two values of γ. We observe that when γ is larger the
power of the test increases. Remark that to perform this test, it is not necessary
to know the degree of freedom of the Student alternative. However, as illustrated
in Figure 10, if k gets too large or γ is too small the test fails to distinguish H1
from H0. It is easily explained by the following expansion as K → ∞,

v(γ,K) = v(γ,∞)
(
1 +O

(γ − 1

K

))
.

Additionally, under H0 several experiments have been reproduced to illustrate
that the test φT (N) with empirical Σ̂u1,u2 , has the desired asymptotic level α.
However, for the sake of brevity, we do not display these results here.
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Fig 10. Student random field with unit variance and different degrees of freedom in a domain
of size 210 × 210 pixels. We display the empirical PH1(φT (N) = 1) on M = 100 iterations.

Left: u1 = 1, γ = 2 and, under H0, R̂2,N = 0.4463. Right: u1 = 1, γ = 3 and, under H0,

R̂3,N = 0.0549. Threshold α = 0.05 is displayed by a dashed horizontal line.

3.2. Testing against a power of a Gaussian field

Consider the alternative

H1(η) : ∃ η > 0, η �= 1 such that X = sign(G) |G|ησ−1(η),

where G is a centered Gaussian random field with unit variance and σ2(η) :=

21−η Γ(2η)
Γ(η) , such that the field X has unit variance under H1(η). It is centered by

construction and it is unnecessary to impose any assumption on the covariance

function of G. It is straightforward to get C∗
0 (X,u) = C∗

0 (G, sign(u) |u| 1η σ(η))
and the statistics in (25) for these alternatives H1 becomes, for u2 = γu1 and
γ > 1,

C∗
0 (X,u2)

C∗
0 (X,u1)

= γ
1
η exp

(
− (γ2/η − 1)u

2/η
1 σ2(η)

2

)
:= ṽ(γ, η). (29)

Note that under H0, η = 1 and v(γ,∞) previously defined in (24) coincides
with ṽ(γ, 1). For γ > 1, the quantity in (29) is either smaller or larger than
(24) depending on η. Symmetrizing the previous test, it follows that to test
H0 : η = 1 against H1(η) : η �= 1 we may consider the test with asymptotic
level α

φ̃T (N) := 1{√
1

̂
V(R̂γ,N )

∣∣R̂γ,N−ṽ(γ,1)
∣∣≥q1−α

2

}

where P(N(0, 1) ≤ q1−α
2
) = 1− α

2 . In this case we have a better understanding
of the behavior of the test statistic under H1. Under (A), applying (27) and
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using that EX(u) = EG(sign(u) |u|1/ησ(η)), we derive ∀ η > 0

√
|T (N)

1 |

⎛⎝Ĉ
/T

(N)
2

0 (X,u2)− C∗
0 (X,u2)

Ĉ
/T

(N)
1

0 (X,u1)− C∗
0 (X,u1)

⎞⎠ d−−−−→
N→∞

N
((

0
0

)
,

(
V (fη(u2)) 0

0 V (fη(u1))

))
,

(30)

with fη(u) := sign(u)|u|1/ησ(η). If we suppose that X = sign(G) |G|ησ−1(η)
with η �= 1 it holds that√√√√ |T (N)

1 |
Σ̂u1,u2

(
R̂γ,N − ṽ(γ, 1)

)
= Σ̂−1/2

u1,u2

(√
|T (N)

1 |
(
R̂γ,N − ṽ(γ, η)

)
+

√
|T (N)

1 |
(
ṽ(γ, η)− ṽ(γ, 1)

))
:= Σ̂−1/2

u1,u2
(Ĩ1 + Ĩ2),

where from (30) we get Ĩ1
d−−−−→

N→∞
N (0,Σ) and Ĩ2

P,H1−−−−→
N→∞

∞. Then, if Σ̂u1,u2 is

bounded from below, which is not easy to establish, we would have PH1(φ̃T (N) =

1) −→
T↗R2

1, which would ensure the consistency of the test φ̃T (N) .

4. Illustration on 2D digital mammograms

In this section we consider images from a recent solid breast texture model
inspired by the morphology of medium and small scale fibro-glandular and adi-
pose tissue observed in clinical breast computed tomography (bCT) images (UC
Davis database). Each adipose compartment is modeled as a union of overlap-
ping ellipsoids and the whole model is formulated as a spatial marked point
process. The contour of each ellipsoid is blurred to render the model more re-
alistic (for details see [22], Section 2.2 and Figure 1). Finally, considered mam-
mograms images were simulated by x-ray projection. Evaluation provided in
[22] has shown that simulated mammograms and digital breast tomosynthesis
images are visually similar, according to medical experts.

Description of data-set. We consider 15 simulated 2D digital images gener-
ated by this texture model. The images were kindly provided by GE Healthcare
France, department Mammography. From a clinical point of view, radiologists
use the Breast Imaging Reporting and Data System (or BI-RADS) to classify
breast density into four categories. They go from almost all fatty tissue to ex-
tremely dense tissue with very little fat. In this latter category, it can be hard
to see small tumors in or around the dense tissue. The images we studied belong
to first three morphologic situation groups:

(A) Almost entirely adipose breasts;
(B) Scattered fibro-glandular dense breasts;
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(C) Heterogeneously dense breasts.

One image from each group is reported in Figure 11. As remarked in Section
3 in [22], the considered simulated digital mammograms from groups (A), (B)
and (C) show a high visual realism compared to real images in these 3 different
clinical situations.

Fig 11. One image from group (A) (left), group (B) (center) and group (C) (right). Image
size: 251× 251.

For a mathematical point of view, one difference between the considered 3
groups is the chosen intensity of the homogeneous spatial point process in [22]’s
model: νA = 3.5 × 10−3mm−3 for group (A), νB = 5 × 10−3mm−3 for group
(B) and νC = 2.3× 10−3mm−3 for the (C) one.

Gaussian test based on C∗
0 . We perform the test described in Section 3.1

for these 3 data-sets composed by N = 5 images and for u1 = 1. The test
is more difficult as it may seem, due to the blurring step in the procedure to
produce the images. Then, the excursion sets have more irregular contour than
a standard shot noise field as studied in Section 2.3. Moreover, due to the small
size of the considered images (251×251) and of the simulated samples (N = 5),
we relax the conditions to reject H0. First, we consider larger levels for the
test, i.e., α ∈ {0.2, 0.1, 0.05}. Second, as we have access to the entire image, we
consider 1000 different tests corresponding to different values of u2 ∈ [−3, 3] for
the excursion sets. Then, we have to symmetrize the test in Section 3.1 since
we consider both negative and positive values of u2. The test statistic in (28)
becomes

φT (N) = 1{
̂

V(R̂γ,N )
−1/2∣∣R̂γ,N−ṽ(γ,1)

∣∣≥q1−α
2

}
with q1−α

2
the (1− α

2 )-quantile of a N (0, 1). As the 5 images of each group
are random generations of the same parameter setting model, we estimate the
empirical variance of R̂γ based on the 5 images of each group.

We compute for each image in each group the 1000 p−values associated to
the considered u2. In Table 1, we display the number of the obtained p−values
smaller than the significant α-levels (α ∈ {0.2, 0.1, 0.05}). Furthermore, we high-
light in bold text the numbers that are larger than α× 1000 and for which H0
can be put in default.
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Table 1

Number of p−values associated to the 1000 different values of u2 ∈ [−3, 3] that are smaller
than the significant α-levels. In bold text the numbers larger than α× 1000 for which H0 is

rejected.

Group Level Image

α 1.A 2.A 3.A 4.A 5.A

A

0.2 84 76 248 683 651

0.1 41 41 136 613 565

0.05 27 8 57 491 467

α 1.B 2.B 3.B 4.B 5.B

B

0.2 65 119 58 43 900

0.1 19 71 28 12 858

0.05 10 35 15 6 797

α 1.C 2.C 3.C 4.C 5.C

C

0.2 389 230 347 575 468

0.1 267 164 210 411 312

0.05 190 126 142 288 242

We can remark the discrepancy with the Gaussianity hypothesis for all images
of group (C) and for all considered significant α-levels. The same consideration
holds true for the last three images of group (A). Conversely, some simulated
2D digital mammograms seem to be not so far from the Gaussianity in term
of the studied R̂γ,N ratio. Roughly speaking, images of group (B) are closer
to Gaussinity than group (A), which is itself closer to Gaussianity than (C).
This might be viewed in parallel with the intensities considered for each group:
νC < νA < νB . This chosen parameter setting may explain why our test rejects
Gaussianity more easily in group C than in group B. The interested reader is re-
ferred for instance to the first four images of group (B); a very different behavior
is realized by the last image of this group where the Gaussianity hypothesis is
rejected for almost all considered levels u2. Finally, the robustness with respect
to the chosen significant α-levels can be observed in Table 1.

5. Conclusions and discussion

We have presented new statistical tools for inferring parameters and testing
Gaussianity when only a sparse observation of a 2D random field is available,
namely only the excursion set(s) above one or two level(s) within a large window.
These tools are based on the three LK curvatures of the excursion sets, which
are loosely given by the Euler characteristic, the half perimeter and the area.

The idea of considering the statistical characteristics of the excursion sets has
been originally developed for one-dimensional processes with the powerful theory
of crossings. Let us comment how our two-dimensional results can be adapted
to dimension one. First, we recall that only two LK curvatures are available for
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Borelian subsets of R: the one-dimensional Lebesgue measure (i.e. the length)
and the Euler characteristic C0 (i.e. the number of connected components). A
similar statement as Proposition 2.5 provides an estimator of C∗

0 (X,u) for any
standard stationary process X.

In particular, when X is a Gaussian process defined on R, an adapted version
of Proposition 2.6 allows to build a consistent estimator of the second spectral
moment of X, which is asymptotically normal with known asymptotic variance.
Indeed, the latter variance can be computed from the asymptotic variance V (u)
appearing in [12] with an explicit formula in dimension one (see Proposition
8 in [12]). Let us again insist on the fact that the consistent estimator of the
second spectral moment that we propose only relies on the observation of a
single excursion of X. It would be interesting to compare it with more usual
estimators based for instance on the estimation of the covariance function of X,
which requires the observation of the whole process, or with the naive empirical
estimator based on the number of crossings at different levels that is described
in [23] and used in [12], Section 4.1.2.

In the same vein, for a chi-square process defined on R, the finiteness of the
asymptotic variance of the Euler characteristic of excursion sets is proved in
Proposition 7 in [12]. Using this result, one could expect to obtain the con-

sistency of the estimator K̂(u) of the degrees of freedom and the estimator

λ̂T,K̂(u)(u) of the Gaussian second spectral moment, which are obtained from

Equations (14) and (15) adapted to the univariate framework.

Turning back to the bivariate framework, let us discuss about the potential
improvement provided by the joint observations of several LK densities. In Sec-
tion 4, in order to analyse the simulated 2D digital mammograms data-set, we
have used C∗

0 (·, u). Let us now investigate the use of C∗
2 (·, u) and the associated

unbiased estimator in Proposition 2.5. In Figure 12 we display Ĉ2,T (·, u) for each
image in the 3 groups compared with the tail distribution with zero mean and
unit variance ψ(u) (see Equation (11)). In order to improve the readability for
extreme values of u, in Figure 12 we chose a logarithmic scale for the y−axis.

Fig 12. Ĉ2,T (·, u) in (10) for the 3 groups for different values u. The full black line represents
ψ(u) in Equation (11), i.e., the Gaussian tail distribution with zero mean and unit variance.
We take here a logarithmic scale for the y−axis.
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A clear assessment is that the two LK densities C∗
0 and C∗

2 bring two different
points of view on the 15 images. For instance, for extreme levels u, say above
level 2.5, the Ĉ2,T (·, u) of the mammograms clearly have a different behavior
than the Gaussian one (see Figure 12). Moreover, the difference is greater for
images of type (C) than for images of type (B), which is already greater than

images of type (A). A similar behavior was not observed with the Ĉ0,T (·, u). This
point clearly deserves to be studied. As it involves larger levels, it is certainly
related to extreme values theory.

Following the idea of taking advantage of the joint observation of several LK
densities, our study can be continued with the development of efficient numerical
tools adapted to different sorts of medical images. For instance, considering 2D
x-ray bone images in order to detect osteoporosis, one can expect getting infor-
mation on the bone density through C∗

2 and on the bone connectivity through
C∗

0 . Both quantities really affect the mechanical bone resistance and should be
both evaluated with the target of reducing the number of misclassified patients.
Another direction that merits to be explored in the use of 3D images that are
now quite common for medical diagnoses. Hence, one should improve our meth-
ods by including now four LK curvatures that are directly linked to the bone
tissue itself instead of projected images.

In this article, we have not fully used the joint estimation of two (nor three)
LK densities. Indeed, we are not aware of any joint central limit theorem for
the LK densities of excursion sets of stationary random fields on R2, except in
the case of a Boolean model in [19] or in the case of pixelated images in [29]
and binary images in [13]. Those results do not apply in our context. If it exists,
such a theorem would enable to build asymptotic confident regions that take
into account the whole information of LK densities of the observed excursion
set.

Finally, in the present study, we became aware that the Matlab function
bwperim seems to not perform very well on the excursion sets of the two-
dimensional fields we considered, yielding an overestimation of C∗

1 . The observed
pixelization errors arise numerically due to the discretized representation of the
smooth level set from a pixelated image, we mentioned this drawback in Section
2. It should be interesting to link our study with the numerous literature on
pixelization effects. The already mentioned papers [29] and [13] should provide
good tools for such an approach.

Appendix A: Technical proofs

A.1. Proof of Proposition 2.7

Computation of the LK densities for Tk. We use (7) after observing that
Tk = F (G) with G = (G0, G1, . . . , Gk) and F : (x, y) ∈ R×Rk �→ x

||y||/
√
k
. Then

F−1([u,∞))) =
{
(x, y) ∈ R× Rk : ||y|| ≤

√
k

u
x
}
, if u > 0. (31)
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Fig 13. Case k = 2. The domain F−1([u,∞)) in (31) (area delimited by plain lines) and

the tube Tube(F, ρ) around (area delimited by dotted lines), where ||y||2 =
∑k

i=1 y
2
i , x0 :=

ρ sin(θk) =

√
k

u√
1+ k

u2

and ρ̃ := ρ
cos θk

= ρ
√

1 + k
u2 with θk := arctan

(√
k

u

)
.

Denote by Fk the cumulative chi distribution (the square root of a chi-square
random variable) with k degrees of freedom. Using (31) and u > 0, we have that

P

(
G(0) ∈ Tube(F, ρ)

)
=

∫
x≥−x0

e−x2/2

√
2π

Fk

(√k

u
x+ ρ̃

)
dx+O(ρk),

where we have neglected the circular part of Tube(F, ρ). Then, using x0 =
√
k
u

(√
1 + k

u2

)−1

, ρ̃ = ρ
√

1 + k
u2 and that Fk(0) = F ′

k(0) = 0, we get

P

(
G(0) ∈ Tube(F, ρ)

)
=

∫
x≥0

e−x2/2

√
2π

Fk

(√k

u
x
)
dx

+ ρ

√
1 +

k

u2

∫
x≥0

e−x2/2

√
2π

F ′
k

(√k

u
x
)
dx

+
1

2
ρ2
(
1 +

k

u2

)∫
x≥0

e−x2/2

√
2π

F ′′
k

(√k

u
x
)
dx+O(ρk).

The latter formula is established for u > 0. The case u < 0 is derived using
symmetry arguments. If u = 0, F−1([0,∞)) = R+ × Rk and Equation (6)
becomes

P

(
G(0) ∈ Tube(F, ρ)

)
=

∫
x≥−ρ

e−x2/2

√
2π

× 1dx =
1

2
+ ρ

1√
2π

+
ρ2

2
× 0 +O(ρ3).

Then, we derive the following formulas, valid for k ≥ 3,

M0(Tk, u) = P(Student(k) ≥ u) =

⎧⎪⎪⎨⎪⎪⎩
∫ +∞
0

e−x2/2
√
2π

Fk(
√
k
u x) dx if u > 0,

1
2 if u = 0,

1−
∫ +∞
0

e−x2/2
√
2π

Fk(
√
k

−ux) dx else;
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M1(Tk, u) =
{
(1 + k

u2 )
1/2
∫ +∞
0

e−x2/2
√
2π

F ′
k(

√
k

|u| x) dx if u �= 0,
1√
2π

if u = 0;

M2(Tk, u) =
{
sign(u)(1 + k

u2 )
∫ +∞
0

e−x2/2
√
2π

F ′′
k (

√
k

|u| x) dx if u �= 0,

0 if u = 0.

These quantities can be simplified using the following result E[|N (0, 1)|k] =
1√
π
2

k
2 Γ
(
k+1
2

)
. It follows from simple computations that

M0(Tk, u) = P(Student(k) ≥ u), M1(Tk, u) =
1√
2π

(
1 +

u2

k

) 1−k
2

,

M2(Tk, u) =
k − 1

2
√
π

u√
k

Γ
(
k−1
2

)
Γ
(
k
2

) (1 + u2

k

) 1−k
2

.

Then, it is straightforward to derive the Student LK densities from (7). The
above quantities do not depend on the parameter dimension of the Student field
Tk, which is equal to 2 in our bivariate context. �

Computation of the second spectral moment of Tk (Formula (16)).
The Student field is isotropic, the second spectral moment is

λStu := [V(Tk(0)′)](1,1) = V(∂1Tk(0))

where for t = (T
(N)
1 , T

(N)
2 ), ∂1f(t) =

∂f

∂T
(N)
1

(t). Note that

Tk(t) =
√
k

G0(t)√
Zk(t)

, t ∈ R2,

where Zk =
∑k

i=1 Gi(t)
2 is a chi-square random field with k degrees of freedom

independent of the Gaussian field G0. We have

∂1Tk(t) =
√
k

∂1G0(t)
√

Zk(t)−G0(t)
∂1Zk(t)

2
√

Zk(t)

Zk(t)
=

√
k

(
∂1G0(t)√

Zk(t)
− 1

2
G0(t)

∂1Zk(t)

Zk(t)3/2

)
,

which is centered, as G0 and ∂1G0 are independent, centered and independent
of (Zk, ∂1Zk). Therefore, we get

λStu = E[(∂1Tk(0))2] = k

(
λE
( 1

Zk(0)

)
+

1

4
E

(∂1Zk(0)
2

Zk(0)3

))
,

where we used that G0 and ∂1G0 are independent, centered, with unit variance
and independent of (Zk, ∂1Zk) together with E[∂1G0(0)

2] := λ. To complete the

computation of λStu, we first have that, for k ≥ 3, E
(

1
Zk(0)

)
= 1

k−2 . Second,

using the definition of a chi-square distribution, it holds that

∂1Zk(0)
2

Zk(0)3
= 4

∑k
i,j=1 Gi(0)Gj(0)∂1Gi(0)∂1Gj(0)(∑k

i=1 Gi(0)2
)3 .
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Taking expectation and using that ∂1Gi is independent of
(
(∂1Gj , Gj)j �=i, Gi

)
and centered, together with the definition of λ, we derive that

E

(
∂1Zk(0)

2

Zk(0)3

)
= 4kλE

(
G1(0)

2(∑k
i=1 Gi(0)2

)3
)

= 4kλE

(
G1(0)

2(
G1(0)2 + Zk−1(0)

)3
)
,

where Zk−1 is a chi-square random field with k − 1 degrees of freedom and
independent of G1. Then,

I(k) := E

(
G1(0)

2(∑k
i=1 Gi(0)2

)3
)

=
1√
2π

∫
R

∫
R+

x2

(x2 + z)3
e−(x2+z)/2 z

k−1
2 −1

2
k−1
2 Γ
(
k−1
2

)dzdx
=

1
√
2π2

k−1
2 Γ
(
k−1
2

) ∫
R

∫
R+

x2

x6(1 + y)3
e−x2(1+y)/2 xk−3 y

k−1
2 −1 x2dydx

=
1

2
k−1
2 Γ
(
k−1
2

) ∫
R+

y
k−3
2

(1 + y)5/2

(∫
R

(1 + y)1/2√
2π

xk−5e−x2(1+y)/2dx

)
dy,

where we made the change of variable z = x2y. We recognize the (k − 5)-
th moment of a N(0, (1 + y)−1) random variable in the last line. Let μ(�) :=
E[N(0, 1)
] with � ∈ N, it holds that

I(k) =
μ(k − 5)

2
k−1
2 Γ
(
k−1
2

) ∫
R+

u
k−3
2

(1 + u)k/2
du =

μ(k − 5)

2
k−1
2 Γ
(
k−1
2

)B(k − 1

2
,
1

2

)
,

where B(x, y) denotes the beta function. It simplifies in

I(k) =
μ(k − 5)

2
k−1
2 Γ
(
k−1
2

) Γ(k−1
2

)
Γ
(
1
2

)
Γ
(
k
2

) =
√
πμ(k − 5)

1

2
k−1
2 Γ
(
k
2

) .
Finally, for k ≥ 5,

λStu = λ k

(
1

k − 2
+

√
π
E[N(0, 1)k−5]

2
k−1
2 Γ
(
k
2

) )

=

⎧⎨⎩λ k
k−2 if k is even,

λ k
(

1
k−2 +

√
π

2k−3

(k−5)!

( k−5
2 )!Γ

(
k
2

)) else.

�

A.2. An auxiliary result

In the following we state and prove an auxiliary result which is crucial in the
derivation of Proposition 2.11 and Theorem 2.12. In the sequel we will make
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extensive use of notations and definitions introduced in [7], some of them will
be redefined, for the others the reader can refer to [7]. As in Section 2.3, we
consider a shot-noise field SΦ prescribed by

SΦ(t) =
∑

(xi,bi,ri)∈Φ

bi1riD(t− xi) , t ∈ R2,

where Φ is a stationary Poisson point process on R2 × R∗ × R+ with intensity
measure ν LebR2 ⊗ dFB ⊗ dFR where ν > 0, FB is a probability measure on R∗,
FR is a probability measure on R+ and D is the unit disc in R2, well defined
under the condition E[|B|] E[R2] < +∞, with B and R two random variables
with respective distributions FB and FR.

Since excursion sets of SΦ are not always UPR, we need to introduce the level
perimeter LP and the level total curvature LTC integrals as introduced in [7].
Using this setting, the excursions ESΦ(u) are elementary sets (see Definition 1
[7]). Then, for a bounded open set U and h a continuous bounded function, one
can define

LPSΦ(h, U) := 2

∫
R

h(u)Φ1(ESΦ(u), U)du

LTCSΦ(h, U) :=

∫
R

h(u)TC(∂ESΦ(u), U)du = 2π

∫
R

h(u)Φ0(ESΦ(u), U)du.

Let us consider the distribution F (dm) = FB(db) × FR(dr) for m = (b, r) ∈
R × (0,+∞) ⊂ R2 and denote gm(x) = b1rD(x) with D the unit disk. The
function gm is an elementary function on R2 (see Definition 3 in [7]) with dis-
continuity set given by

Sgm = Rgm = ∂Dr,

where ∂Dr is the circle of radius r. According to Theorem 4 of [7], a.s. for any
U bounded open set, the shot noise field SΦ is an elementary function on U
with discontinuity set given by U ∩ SSΦ with

SSΦ = ∪
(x,m)∈Φ

τx∂Dr = RSΦ ∪ ISΦ ,

with

RSΦ = ∪
(x,m)∈Φ

τx∂Dr\ISΦ for ISΦ =
�=
∪

(x1,m1),(x2,m2)∈Φ
τx1∂Dr1 ∩ τx2∂Dr2 ,

where τxy = x+ y.
By Proposition 2 and Theorem 4 of [7], for H a primitive of h and H1 the

one dimensional Hausdorff measure (recall that H1(A) = |A|1), it follows that

LPSΦ(h, U) =
∑

(x,m)∈Φ

∫
τx∂Dr∩U

[H(SΦ\{(x,m)}(z) + b+)

−H(SΦ\{(x,m)}(z) + b−)]H1(dz)
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Fig 14. Illustration with an elementary function given by f = 1Dr1
+1Dr2

with 0 < r1 < r2.
Left: its discontinuity set Sf = Rf ∪ If with If given by the red crosses. Center and Right:
Ef (1) and Ef (2): the boundaries are regular except at corner points given by If .

where we use the fact that H1 (τx∂Dr ∩ τx′∂Dr′) = 0 a.s. for all different
points of Φ and denote b+ = max(b, 0) and b− = min(b, 0). Besides, we have
LTCSΦ(h, U) = RSΦ(h, U) + ISΦ(h, U), where

RSΦ(h, U) =
∑

(x,m)∈Φ

∫
τx∂Dr∩U

[H(SΦ\{(x,m)}(z) + b+)

−H(SΦ\{(x,m)}(z) + b−)] sign(b)κ∂Dr (z)H1(dz),

with κ∂Dr (z) =
1
r the curvature of the curve ∂Dr at point z ∈ ∂Dr, and

ISΦ(h, U) =
1

2

�=∑
(x1,m1)

(x2,m2)
∈Φ

∑
z∈ τx1∂Dr1

∩τx2∂Dr2∩U

Δb1,b2H(SΦ\{(x1,m1),(x2,m2)}(z))βb1,b2(z),

where Δb1,b2H(t) =
[
H(t+ b+1 + b+2 ) +H(t+ b−1 + b−2 )-H(t+ b+1 + b−2 )−H(t+

b−1 + b+2 )
]
and for z ∈ τx1∂Dr1 ∩ τx2∂Dr2 ,

βb1,b2(z) = dist

(
sign(b1)

x1 − z

r1
, sign(b2)

x2 − z

r2

)
,

with dist the geodesic distance on the circle.
We can now state the following result that has interest on its own: it allows to

obtain uniform bounds for the integral functionals, these bounds being usually
hard to obtain when considering an excursion set at a fixed level.

Proposition A.1 (Moments of LPSΦ and LTCSΦ). Assume that E(R2) < +∞
and E(|B|) < +∞ and recall that p = 2πE(R) and a = πE(R2). Then, for any
U bounded open set and any continuous function h with primitive H, one has

i). E (LPSΦ(h, U)))=νp|U |
∫
R
E ([H(SΦ(0)+b+)−H(SΦ(0)+b−)])FB(db);

ii).
E (LTCSΦ(h, U))= 2πν|U |

∫
R
E
(
[H(SΦ(0)+b+)−H(SΦ(0)+b−)]

)
sign(b)FB(db)

+ (νp)2

2
|U |
∫
R2 E (Δb1,b2H(SΦ(0)))FB(db1)FB(db2).

Moreover, when R ≤ Rmax a.s. for some positive constant Rmax and H is
bounded, one has

iii). Var (LPSΦ(h, U))) ≤ CH |U |
(
(Rmaxνp)

2
+ νa

)
;
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iv). Var (LTCSΦ(h, U)) ≤ CH |U |
{ (

(Rmaxν)
2 + ν

)
+ (νp)2

(
(Rmaxνp)

2 + νa+ 1
) }

,

for a constant CH that only depends on ‖H‖∞ and such that CH ≤ 27π‖H‖2∞.

Proof. i). Let us introduce

f
(1)
h ((x,m),Φ) =

∫
τx∂Dr∩U

[H(SΦ(z) + b+)−H(SΦ(z) + b−)]H1(dz)

such that LPSΦ(h, U) =
∑

(x,m)∈Φ f
(1)
h ((x,m),Φ\{(x,m)}). It follows from the

reduced Campbell formula (see e.g. [4] Theorem 1.4.3),

E
(
LPSΦ(h, U)

)
=

∫
R2×R2

E

(
f
(1)
h ((x,m),Φ)

)
νdxF (dm),

with E

(
f
(1)
h ((x,m),Φ)

)
= E ([H(SΦ(0)+b+)−H(SΦ(0)+b−)])H1 (τx∂Dr ∩ U)

by stationarity of SΦ. Hence,

ELPSΦ(h, U))=ν|U |
∫
R

H1(∂Dr)FR(dr)

∫
R

E([H(SΦ(0) + b+)−H(SΦ(0) + b−)])FB(db)

= |U |νp
∫
R

E
(
[H(SΦ(0) + b+)−H(SΦ(0) + b−)]

)
FB(db).

iii). It holds that

(LPSΦ(h, U))
2
=

∑
(x1,m1)∈Φ

f
(1)
h ((x1,m1),Φ\{(x1,m1)})2

+

�=∑
(x1,m1)

(x2,m2)
∈Φ

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)}),

where

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})
= f

(1)
h ((x1,m1),Φ\{(x1,m1)})f (1)

h ((x2,m2),Φ\{(x2,m2)})

=

∫
τx1∂Dr1∩U

∫
τx2∂Dr2∩U

Kh((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})(z1, z2)H1(dz2)H1(dz1)

for Kh((x1,m1), (x2,m2),Φ)(z1, z2) equals to

[H(SΦ(z1) + τx2gm2(z1) + b+1 )−H(SΦ(z1) + τx2gm2(z1) + b−1 )]

× [H(SΦ(z2) + τx1gm1(z2) + b+2 )−H(SΦ(z2) + τx1gm1(z2) + b−2 )].

Since R ≤ Rmax a.s, for any |z − z′| > 2Rmax, the variables SΦ(z) and SΦ(z
′)

are independent.
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Firstly, it holds

E

⎛⎜⎝ �=∑
(x1,m1)

(x2,m2)
∈Φ

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})

⎞⎟⎠
=

∫
R2×R2

∫
R2×R2

E(f
(2)
h ((x1,m1), (x2,m2),Φ)ν

2dx1F (dm1)dx2F (dm2) := I1 + I2,

where we split the integral over the domains |x1−x2| ≤ 4Rmax and |x1−x2| >
4Rmax. Indeed, for |x1 − x2| > 4Rmax we have |zj − xi| > 3Rmax for any
{i, j} = {1, 2} and zj ∈ τxj∂Drj so that τxigmi(zj) = 0. By independence,
we get that

I2 =
(
E(LPSΦ(h, U))

)2 − ∫
R2×R2

∫
R2×R2

1|x1−x2|≤4Rmax
E(f

(1)
h ((x1,m1),Φ)×

× E(f
(1)
h ((x2,m2),Φ)ν

2dx1F (dm1)dx2F (dm2).

Hence
I1 + I2 =

(
E(LPSΦ(h, U))

)2
+ ν2Δh(U),

with

Δh(U) =

∫
R2×R2

∫
R2×R2

1|x1−x2|≤4RmaxΔh(U, (x1,m1), (x2,m2))dx1F (dm1)dx2F (dm2),

for Δh(U, (x1,m1), (x2,m2)) equals to

E(f
(2)
h ((x1,m1), (x2,m2),Φ))− E(f

(1)
h ((x1,m1),Φ))E(f

(1)
h ((x2,m2),Φ)).

As H is bounded, we have |f (1)
h ((x,m),Φ)| ≤ 2‖H‖∞H1(τx∂Dr ∩ U), so that

|Δh(U, (x1,m1), (x2,m2))| ≤ 8‖H‖2∞H1(τx1∂Dr1 ∩ U)H1(τx2∂Dr2 ∩ U).

It follows that, for CH := 27π‖H‖2∞,

Δh(U) ≤ 8‖H‖2∞|U | × π(4Rmax)
2

(∫
R

H1(∂Dr)F (dr)

)2

≤ CHR2
max|U |p2.

Secondly,

E

( ∑
(x1,m1)∈Φ

f
(1)
h (x1,m1),Φ\{(x1,m1)})2

)
=

∫
R2×R2

E

(
f
(1)
h ((x,m),Φ)2

)
νF (dm)dx

≤ ν|U |4‖H‖2∞
∫
R

H1 (∂Dr)
2 F (dr) ≤ 16π‖H‖2∞|U |νa.

Hence, we obtain

Var (LPSΦ(h, U)) ≤ CH |U |
(
R2

maxν
2p2 + νa

)
.



574 Biermé et al.

ii). iv). Recall that LTCSΦ(h, U) = RSΦ(h, U) + ISΦ(h, U). Then, we bound
the expectation and variance of RSΦ(h, U) and ISΦ(h, U) separately.

First consider RSΦ(h, U), we prove similarly

E (RSΦ(h, U))

= ν|U |
∫
R

H1 (∂Dr)

r
F (dr)

∫
R

E
(
[H(SΦ(0) + b+)−H(SΦ(0) + b−)]

)
sign(b)FB(db),

= 2πν|U |
∫
R

E
(
[H(SΦ(0) + b+)−H(SΦ(0) + b−)]

)
sign(b)FB(db),

and

E((RSΦ(h, U))2)=E(RSΦ(h, U))2+Δ̃h(U), with |Δ̃h(U)|≤CH |U |
(
R2

maxν
2+ν

)
.

Now, let us focus on ISΦ(h, U). We have

ISΦ(h, U) =
1

2

�=∑
(x1,m1),(x2,m2)∈Φ

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)}),

where

f
(2)
h ((x1,m1), (x2,m2),Φ) =

∑
z∈τx1∂Dr1∩τx2∂Dr2∩U

Δb1,b2H(SΦ(z))βb1,b2(z).

It holds that

E (ISΦ(h, U))

=
1

2

∫
R4

∫
R4

E

(
f
(2)
h ((x1,m1), (x2,m2),Φ)

)
ν2dx1F (dm1)dx2F (dm2)

=
1

2

∫
R4

∫
R4

∑
z∈ τx1∂Dr1∩

τx2∂Dr2∩U

E(Δb1,b2H(SΦ(z)))βb1,b2(z)ν
2dx1F (dm1)dx2F (dm2)

=
ν2|U |
2

∫
R2

E(Δb1,b2H(SΦ(0)))×

×

⎛⎜⎜⎝∫
R4

∑
z∈ ∂Dr1

∩τx∂Dr2

dist(sign(b1)
−z

r1
, sign(b2)

x− z

r2
))dxdr1dr2

⎞⎟⎟⎠FB(db1)FB(db2)

with, by kinematic formula (see Lemma 1 in [7] for instance),∫
R2

∑
z∈∂Dr1∩τx∂Dr2

dist(sign(b1)
−z

r1
, sign(b2)

x− z

r2
))dx = H1(∂Dr1)H1(∂Dr2).

It follows that

E (ISΦ(h, U)) =
(νp)2|U |

2

∫
R2

E(Δb1,b2H(SΦ(0)))FB(db1)FB(db2).
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Let us write

(ISΦ(h, U))
2

=
1

4

⎛⎝ �=∑
(x1,m1),(x2,m2)∈Φ

f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})

⎞⎠2

=
1

4

�=∑
(x1,m1),...,(x4,m4)∈Φ

f
(4)
h ((x1,m1), . . . , (x4,m4),Φ\{(x1,m1), . . . , (x4,m4)}

+

�=∑
(x1,m1)
(x2,m2)

(x3,m3)
∈Φ

f
(3)
h ((x1,m1), (x2,m2), (x3,m3),Φ\{(x1,m1), (x2,m2), (x3,m3)}

+
1

4

�=∑
(x1,m1),(x2,m2)∈Φ

(
f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x2,m2)})

)2
:= I1(Φ) + I2(Φ) + I3(Φ),

where

f
(4)
h ((x1,m1), . . . , (x4,m4),Φ\{(x1,m1), . . . , (x4,m4)})

= f
(2)
h ((x1,m1), (x2,m2),Φ\{(x1,m1), (x1,m2)})

× f
(2)
h ((x3,m3), (x4,m4),Φ\{(x3,m3), (x4,m4)})

=
∑

z∈ τx1∂Dr1
∩τx2∂Dr2∩U

∑
z′∈ τx3∂Dr3

∩τx4∂Dr4∩U

Δb1,b2H(SΦ\{(x1,m1),...,(x4,m4)}(z) + τx3gm3(z) + τx4gm4(z))

× βb1,b2(z)Δb3,b4H(SΦ\{(x1,m1),...,(x4,m4)}(z
′) + τx1gm1(z

′) + τx2gm2(z
′))βb3,b4(z

′),

and, by symmetry,

f
(3)
h ((x1,m1), (x2,m2), (x3,m3),Φ\{(x1,m1), (x2,m2), (x3,m3)})
=
∑

z∈ τx1∂Dr1
∩τx2∂Dr2∩U

∑
z′∈ τx3∂Dr3

∩τx1∂Dr1∩U

Δb1,b2H(SΦ\{(x1,m1),...,(x3,m3)}(z) + τx3gm3(z))

× βb1,b2(z)Δb3,b1H(SΦ\{(x1,m1),...,(x3,m3)}(z
′) + τx1gm1(z

′))βb1,b3(z
′).

Hence, we can also write

E (I1(Φ)) =
(
E (ISΦ(h, U))

)2
+ ν4

˜̃
Δh(U),

with
˜̃
Δh(U) equals to

1

4

∫
R16

1|x1−x3|≤4Rmax

˜̃
Δh(U, (x1,m1), . . . , (x4,m4))dx1F (dm1) . . . dx4F (dm4),
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for∣∣∣ ˜̃Δh(U, (x1,m1), . . . , (x4,m4))
∣∣∣

≤ 2(4‖H‖∞)2
∑

z∈ τx1∂Dr1
∩τx2∂Dr2∩U

∑
z′∈ τx3∂Dr3

∩τx4∂Dr4∩U

βb1,b2(z)βb3,b4(z
′)dx1F (dm1) . . . dx4F (dm4),

Therefore, | ˜̃Δh(U)| ≤ CH |U |R2
maxp

4. Similar arguments lead to

|E(I2(Φ))| ≤ CHν3|U |p2a and |E(I3(Φ))| ≤ CHν2|U |p2..

Finally, since Var (ISΦ(h, U)) = E(I1(Φ))+E(I1(Φ))+E(I1(Φ))−
(
E(ISΦ(h, U))

)2
,

we obtain

Var (ISΦ(h, U)) ≤ CH |U |(νp)2
(
(Rmaxνp)

2 + νa+ 1
)
.

A.3. Proof of Lemma 2.10

From now on we assume that B is a discrete random variable with values in Z∗.
Then, the random field SΦ has values in Z, and it follows that for all u ∈ R,
ESΦ(u) = ESΦ(�u�). For u ∈ Z, choosing h a continuous function with compact
support in (0, 1) and such that

∫
R
h(t)dt = 1 one has

Φ1(ESΦ(u), U) =
1

2
LPSΦ(τu−1h, U) and Φ0(ESΦ(u), U) =

1

2π
LTCSΦ(τu−1h, U),

where τu−1h(t) = h(t− (u−1)) vanishes outside (u−1, u). Now, considering for
t �= 0, the function ht(u) = eiut we can compute the Fourier transforms of u �→
1
|U |E (Φj(ESΦ(u), U)) as 1

2|U |E (LPSΦ(ht, U)) for j=1 and 1
2π|U |E (LTCSΦ(ht, U))

for j = 0. We obtain the right members of (18) and (19) using Proposition A.1

i) and ii), with Ht(u) = eitu−1
it . The link with C∗

j (SΦ, u) is given in the next
proposition.

Proposition A.2. For all u ∈ Z,

•
(
E
(
C

/T
1 (SΦ, u)− Φ1(ESΦ

(u),T̊ )

|T |
)2)1/2 ≤ |∂T |1

|T | ;

•
(
E
(
C

/T
0 (SΦ, u)− Φ0(ESΦ

(u),T̊ )

|T |
)2)1/2 ≤ 2νp |∂T |1

|T | , as soon as νp|∂T |1 > 1.

As a consequence C∗
j (SΦ, u) exists for j ∈ {0, 1} and is equal to

E(Φj(ESΦ
(u),U))

|U | ,

for any bounded open set U .

Proof. Let us remark that the boundary contributions (see Figure 2 of [7]) may
be controlled using the fact that a.s.∣∣∣C1(SΦ, u, T )− Φ1(ESΦ(u), T̊ )

∣∣∣ ≤ |∂T |1
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and ∣∣∣C0(SΦ, u, T )− Φ0(ESΦ(u), T̊ )
∣∣∣ ≤ 1

2
# (SSΦ ∩ ∂T ) + 1,

where we use that T being a rectangle the curvature is 0 on its boundary except
at corner points where it is π

2 . Dividing by |T | we immediately get the first point.
For the second one, since SSΦ = ∪iτxi∂Dri , with τxi∂Dri ∩ τxj∂Drj ∩ ∂T = ∅
a.s. as soon as i �= j, we have

# (SSΦ ∩ ∂T ) =
∑
i

#(τxi∂Dri ∩ ∂T ) a.s.

It follows that

E (# (SSΦ ∩ ∂T )) =

∫
R2×R+

#(τx∂Dr ∩ ∂T ) νdxFR(dr).

But, again kinematic formula (see Lemma 1 of [7]) yields∫
R2

#(τx∂Dr ∩ ∂T ) dx = 4r|∂T |1,

so that

E (# (SSΦ ∩ ∂T )) =
2

π
νp|∂T |1.

Moreover,

Var (# (SSΦ ∩ ∂T )) =

∫
R2×R+

(#(τx∂Dr ∩ ∂T ))
2
νdxFR(dr) ≤

4

π
νp|∂T |1,

since # (τx∂Dr ∩ ∂T ) ≤ 2. Therefore,

E((#(SSΦ ∩ ∂T ))2) =Var(#(SSΦ ∩ ∂T )) + E(#(SSΦ ∩ ∂T ))2

≤ 4

π
νp|∂T |1(1 +

1

π
νp|∂T |1) ≤ 2 (νp|∂T |1)2 ,

as soon as νp|∂T |1 ≥ 1. The second bound is obtained dividing by |T | and
using the fact that

√
2/2 + 1 ≤ 2. Now we have

|E
(
C

/T
j (SΦ, u)

)
− E(Φj(ESΦ(u), T̊ ))

|T̊ |
| ≤ E

(∣∣∣∣∣‖C/T
j (SΦ, u)−

Φ1(ESΦ(u), T̊ )

|T |

∣∣∣∣∣
)

≤ max(1, νp)
|∂T |1
|T | ,

by the previous bound. This allows us to prove that C∗
j (SΦ, u), j = 0, 1 exist

as the limit of E(C
/T
j (SΦ, u)) when T ↗ R2.
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A.4. Proof of Theorem 2.12

We work under the same assumptions as in Sections A.2 and A.3. We further-

more assume that R ≤ Rmax a.s. Denote by ‖Z‖2 :=
(
E[Z2]

)1/2
, then we write

‖C/T
j (SΦ, u)− C∗

j (SΦ, u)‖2 ≤
∥∥∥∥∥C/T

j (SΦ, u)−
Φj(ESΦ(u), T̊ )

|T |

∥∥∥∥∥
2

+

∥∥∥∥∥Φj(ESΦ(u), T̊ )

|T | − C∗
j (SΦ, u)

∥∥∥∥∥
2

.

The first term is bounded by max(2νp, 1) |∂T |1
|T | by Proposition A.2. Moreover,

using R ≤ Rmax a.s. and choosing h a non-negative continuous function with
compact support in (0, 1) such that

∫
R
h(t)dt = 1,

∥∥∥∥∥Φ1(ESΦ(u), T̊ )

|T | −C∗
1 (SΦ, u)

∥∥∥∥∥
2

2

=
1

4|T |2Var
(
LPSΦ(τu−1h, T̊ )

)
≤ C

4|T |
(
R2

maxν
2p2+νa

)
,

by Proposition A.1, since we can choose a primitive of τu−1h uniformly bounded
by 1. Similarly, we obtain∥∥∥∥Φ0(ESΦ(u), T̊ )

|T | −C∗
0 (SΦ, u)

∥∥∥∥2
2

=
1

4π2|T |2Var
(
LTCSΦ(τu−1h, T̊ )

)
≤ C

2π2|T |
(
(Rmaxν)

2
+ ν + (νp)2

(
(Rmaxνp)

2 + νa+ 1
))

.

Finally,

‖C/T
2 (SΦ, u)− C∗

2 (SΦ, u)‖22 =
1

|T |2
∫
T×T

Cov
(
1SΦ(x)≥u, 1SΦ(y)≥u

)
dxdy ≤ 4πR2

max

|T | ,

using the fact that SΦ(x) and SΦ(y) are independent as soon as |x−y| > 2Rmax.

By the triangle inequality, we obtain the result for Ĉj,T (SΦ, u), j ∈ {0, 1, 2}.

Acknowledgments

The authors acknowledge Z. Li, (GE Healthcare France, departmentMammogra-
phy) for simulated 2D digital mammograms data-sets and the related discussion.
This work has been partially supported by the project LEFE-MANU MULTI-
RISK. The authors sincerely express their gratitude to the referees for their
valuable comments that helped to motivate the study, make the paper clearer
and correct a normalization constant in the previous version of this paper.



LK curvatures of excursion sets for two-dimensional random fields 579

References

[1] R. J. Adler and J. E. Taylor. Random fields and geometry. Springer Mono-
graphs in Mathematics. Springer, New York, 2007. MR2319516

[2] R. J. Adler and J. E. Taylor. Topological complexity of smooth random
functions, volume 2019 of Lecture Notes in Mathematics. Springer, Hei-
delberg, 2011. Lectures from the 39th Probability Summer School held in
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