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Solving mean field rough differential equations

Ismaël Bailleul* Rémi Catellier† François Delarue†

Abstract

We provide in this work a robust solution theory for random rough differential equa-
tions of mean field type

dXt “ V
`

Xt,LpXtq
˘

dt` F
`

Xt,LpXtq
˘

dWt,

where W is a random rough path and LpXtq stands for the law of Xt, with mean
field interaction in both the drift and diffusivity. We show that, in addition to the
enhanced path of W , the underlying rough path-like setting should also comprise an
infinite dimensional component obtained by regarding the collection of realizations
of W as a deterministic trajectory with values in some Lq space. This advocates for
a suitable notion of controlled path à la Gubinelli inspired from Lions’ approach to
differential calculus on Wasserstein space, the systematic use of the latter playing a
fundamental role in our study. Whilst elucidating the rough set-up is a key step in the
analysis, solving the mean field rough equation requires another effort: the equation
cannot be dealt with as a mere rough differential equation driven by a possibly infinite
dimensional rough path. Because of the mean field component, the proof of existence
and uniqueness indeed asks for a specific and quite elaborated localization-in-time
argument.
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1 Introduction

The first works on mean field stochastic dynamics and interacting diffusions/Markov
processes have their roots in Kac’s simplified approach to kinetic theory [28] and
McKean’s work [34] on nonlinear parabolic equations. They provide the description of
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Mean field rough equations

evolutions pµtqtě0 in the space of probability measures under the form of a pathspace
random dynamics

dXtpωq “ V
`

Xtpωq, µt
˘

dt` F
`

Xtpωq,LpXtq
˘

dWtpωq, (1.1)

(where LpAq stands for the law of a random variable A) and relate it to the empirical
behaviour of large systems of interacting dynamics. The main emphasis of subsequent
works has been on proving propagation of chaos and other limit theorems, and giving
stochastic representations of solutions to nonlinear parabolic equations under more
and more general settings; see [36, 37, 25, 17, 18, 35, 27, 7, 8] for a tiny sample.
Classical stochastic calculus makes sense of equation (1.1), in a probabilistic setting
pΩ,F ,Pq, only when the process W is a semi-martingale under P, for some filtration,
and the integrand is predictable. However, this setting happens to be too restrictive
in a number of situations, especially when the diffusivity is random. This prompted
several authors to address equation (1.1) by means of rough paths theory. Indeed, one
may understand rough paths theory as a natural framework for providing probabilistic
models of interacting populations, beyond the realm of Itô calculus. Cass and Lyons [13]
did the first study of mean field random rough differential equations and proved the
well-posed character of equation (1.1), and propagation of chaos for an associated system
of interacting particles, under the assumption that there is no mean field interaction
in the diffusivity, i.e. Fpx, µq “ Fpxq, and the drift depends linearly on the mean field
interaction, i.e. V px, µq “

ş

V px, yqµpdyq, for some function V p¨, ¨q on Rd ˆRd.
The method of proof of Cass and Lyons depends crucially on both assumptions.

Bailleul extended partly these results in [3] by proving well-posedness of the mean field
rough differential equation (1.1) in the case where the drift depends nonlinearly on the
interaction term and the diffusivity is still independent of the interaction, and by proving
an existence result when the diffusivity depends on the interaction. The naive approach
to showing well-posedness of equation (1.1) in its general form consists in treating the
measure argument as a time argument. However, this is of a rather limited scope since,
in this generality, one cannot expect the time dependence in F to be better than 1

p -Hölder

if the rough path W is itself 1
p -Hölder. Clearly, such a time regularity is not sufficient

to make sense of the rough integral
ş

Fp¨ ¨ ¨ q dW in the case p ě 2. This serious issue
explains why, so far in the literature, the coefficient F has been assumed to be a function
of the sole variable x.

Including the time component as one of the components of W brings back the study
of equation (1.1) to the study of equation

dXtpωq “ F
`

Xtpωq,LpXtq
˘

dWtpωq ; (1.2)

this is the precise purpose of the present paper. Treating the drift as part of the diffusivity
has the drawback that we shall impose on V some regularity conditions stronger than
needed. Our method accommodates the general case but we leave the reader the
pleasure of optimizing the details and concentrate on the new features of our approach,
working on equation (1.2). The raw driver

`

Wtpωq
˘

tě0
will be assumed to take values

in some Rm and to be 1
p -Hölder continuous, for p P r2, 3q, and the one form F will be

an L pRm,Rdq-valued function on Rd ˆ P2pR
dq, where L pRm,Rdq is the space of linear

mappings from Rm to Rd and P2pR
dq is the so-called Wasserstein space of probability

measures µ with a finite second-order moment. Inspired by Lions’ approach [31, 9, 10] to
differential calculus on P2pR

dq, one of the key point in our analysis is to lift the function
F into a function pF defined on the space Rd ˆ L2

`

Ω,F ,P;Rd
˘

, given by the formula

pF
`

x, Z
˘

“ Fpx,LpZq
˘

, (1.3)
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Mean field rough equations

for x P Rd and Z P L2pΩ,F ,P;Rdq, and then to use accordingly Lions’ calculus in order
to take care of the probability-measure valued mean field dependence of the dynamics.
So, we may rewrite equation (1.2) as

dXtpωq “ pF
`

Xtpωq, Xtp¨q
˘

dWtpωq. (1.4)

We used the notation Xtp¨q to distinguish the realization Xtpωq of the random variable Xt

at point ω from the random variable itself, seen as an element of the space L2
`

Ω,F ,P;Rd
˘

.
So, Xtp¨q is a random variable, and thus an infinite-dimensional object, whilst Xtpωq is a
finite-dimensional vector. We feel that this writing is sufficiently explicit to remove the
hat over F.

Our main well-posedness result is stated below, in a preliminary form only. The
precise statement requires additional ingredients that we introduce later on in the text.
In this first formulation

• the quantity wp¨, ¨q “
`

wps, tq
˘

0ďsăt
is a random control function that is used to

quantify the regularity of the solution path on subintervals rs, ts of a given finite
interval r0, T s, using some associated notion of p-variation for the same p as above,
see (2.10) for a more mathematical formulation,

• the quantity Npr0, T s, αq is some local accumulated variation of the ‘rough lift’ of
W that counts the increments of w of size α over a bounded interval r0, T s for a
given α ą 0, see (2.14) for the mathematical formulation;

We refer to Section 2 for a complete description of the set-up. The regularity assumptions
on the diffusivity F are spelled-out in Section 3.3 and in Section 4, see Regularity
assumptions 1 and Regularity assumptions 2 therein.

Theorem 1.1. Let F satisfy the regularity assumptions Regularity assumptions 1 and
Regularity assumptions 2. Assume there exists a positive time horizon T such that
the random variables wp0, T q and

`

N
`

p0, T q, α
˘˘

αą0
have sub and super exponential tails,

respectively,

• P
`

wp0, T q ě t
˘

ď c1 exp
`

´tε1
˘

,

• P
`

N
`

r0, T s, α
˘

ě t
˘

ď c2pαq exp
`

´t1`ε2pαq
˘

, α ą 0,

for some positive constants c1 and ε1 and possibly α-dependent positive constants c2pαq
and ε2pαq. Then for any d-dimensional square-integrable random variable X0, the mean
field rough differential equation

dXt “ F
`

Xt,LpXtq
˘

dWt

has a unique solution defined on the whole interval r0, T s.

Results of that form seem out of reach of the methods used in [13, 3]. Theorem 1.1
applies in particular to mean field rough differential equations driven by some fractional
Brownian motion with Hurst parameter greater than 1

3 , other Gaussian processes or
some Markovian rough paths; see Section 2. Importantly, the solution is shown to depend
continuously on the driving ‘rough path’, in a quantitative sense detailed in Theorem
5.4. As an example that fits our regularity assumptions, one can solve the above mean
field rough differential equation with Fpx, µq “

ş

fpx, yqµpdyq, for some fuction f of class
C3
b (meaning that f is bounded and has bounded derivatives of order 1, 2 and 3), or

with Fpx, µq “ g
`

x,
ş

Rd yµpdyq
˘

, for some function g of class C3
b . The Curie-Weiss model,

where F is of the form Fpx, µq “ ∇Upxq `
ş

px´ yqµpdyq, falls outside the scope of what is
written here, because of the linear growth rate in x, but is within reach of our method.

One of the difficulties in solving equation (1.2) comes from the fact that it happens
not to be sufficient to consider each signal W‚pωq as the first level of a rough path; one
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Mean field rough equations

somehow needs to consider the whole family
`

W‚pωq
˘

ωPΩ
as an infinite-dimensional rough

path. This leads us to defining in Section 2 a rough setting where
`

Wtpωq,Wtp¨q
˘

0ďtďT

is, for each ω, the first level of a rough path over Rm ˆ Lq
`

Ω,F ,P;Rm
˘

; seemingly,
the natural choice for q, as dictated by the aforementioned lifting procedure of the
Wasserstein space, is q “ 2; we shall actually need a larger value. Unlike the seminal
works [13, 3] that set the scene in Davie’s approach of rough differential equations, such
as reshaped by Friz-Victoir and Bailleul respectively, we use here Gubinelli’s versatile
approach of controlled paths to make sense of equation (1.2). Our mixed finite/infinite
dimensional setting introduces an interesting twist in the notion of controlled path
presented in Section 3.1. Defining the rough integral of a controlled path with respect
to a rough driver is done classically in Section 3.2 using the sewing lemma. We prove
stability of a certain class of controlled paths by nonlinear mappings in Section 3.3,
which is precisely the place where Lions’ differential calculus on P2pR

dq is of crucial
use. One then has all the ingredients needed to formulate in Section 4 equation (1.2) as
a fixed point problem in some space of controlled paths. It must be stressed here that
solving rough differential equations driven by random rough paths and solving mean field
rough differential equations are two different tasks. In the first setting, the solutions are
constructed up to a random time, say ζ, yielding a random path pxtq0ďtďζ defined up to
ζ, but, for such solutions, we can only make sense of Lpxt^ζq rather than Lpxtq, for t ě 0.
Of course, this is a serious drawback for solving mean field rough equations, unless we
know a priori that ζ is infinite, as is in fact the case in Cass and Lyons’ work. However,
we cannot hope to obtain for free ζ “ 8 in the general case that we investigate here
because the diffusivity is also mean field dependent. We are nonetheless able to prove
local well-posedness, and sufficient conditions on the law of the driver are given to get
well-posedness on any fixed time interval. As expected from any solution theory for rough
differential equations, the solution depends continuously on all the parameters in the
equation, most notably its law depends continuously on the law of the driving rough path,
as shown in Section 5. This latter point is used in the companion paper [4] to provide a
proof of propagation of chaos for an interacting particle system associated with equation
(1.2) and quantify the convergence rate1. Among others, it recovers Sznitman’ seminal
work [36] on the case where the noise is a Brownian motion. Interestingly, the striking
fact of the analysis performed in [4] is based upon an observation noticed first by Tanaka
in his seminal work [38] on limit theorems for mean field type diffusions, and used
crucially by Cass and Lyons in [13]. It says that, for a given ω P Ω, the aforementioned
particle system associated with (1.2) may be interpreted as a mean field rough equation
(in the sense of our Definition 4.1 below) but with respect to the empirical version of the
rough setting. The fact that Tanaka’s trick extends to the case under study sounds as an
a posteriori justification of our construction and demonstrates that our approach to (1.2)
is certainly the right one. In this regard, it is worth emphasizing that the proof of the
identification of the particle system with an equation of the same type as (1.2) is entirely
based upon the properties of Lions’ derivatives, hence revealing again the contribution
of Lions’ calculus to our analysis.

While Lyons formulated his theory in a Banach setting from the begining [32], the
theory has mainly been explored for finite dimensional drivers, with the noticeable
exception of the works of Ledoux, Lyons and Qian on Banach space valued rough paths
[30, 33], Dereich follow-up works [19, 20], Kelly and Melbourne application to homog-
enization of fast/slow systems of ordinary differential equations [29], and Bailleul and
Riedel’s work on rough flows [2]. One can see the present work as another illustration of
the strength of the theory in its full generality. However, although the underlying rough

1We also refer to Section 4 of the Arxiv deposit [5]; [5] encompasses the original versions of this work and
of the companion work [4].
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Mean field rough equations

set-up associated to pWtpωq,Wtp¨qq0ďtďT is a mixed finite/infinite dimensional object, a
solution to the mean field rough differential equation is more than a solution to a rough
differential equation driven by an infinite dimensional rough path. Indeed, the mean
field structure imposes an additional fixed point condition, which is to identify the finite
dimensional component of the solution as the ω-realization of the infinite dimensional
component. This is precisely this constraint that makes the equation difficult to solve
and that explains the need for a specific analysis.

Notations. We gather here a number of notations that will be used throughout the
text.

• We set S2 :“
 

ps, tq P r0,8q2 : s ď t
(

, and ST2 :“
 

ps, tq P r0, T s2 : s ď t
(

.

• We denote by pΩ,F ,Pq an atomless Polish probability space, F standing for the
completion of the Borel σ-field under P, and denote by x¨y the expectation operator,
by x¨yr, for r P r1,`8s, the Lr-norm on pΩ,F ,Pq and by ⟪¨⟫ and ⟪¨⟫r the expectation
operator and the Lr-norm on

`

Ω2,Fb2,Pb2
˘

. When r is finite, LrpΩ,F ,P;Rq is
separable as Ω is Polish.

• As for processes X‚ “ pXtqtPI , defined on a time interval I, we often write X for
X‚.

2 Probabilistic rough structure

We define in this section a notion of rough path appropriate for our purpose. It
happens to be a mixed finite/infinite dimensional object. Throughout the section, we
work on a finite time horizon r0, T s, for a given T ą 0.
‚ We define the first level of our rough path structure as an ω-indexed pair of paths

`

Wtpωq,Wtp¨q
˘

0ďtďT
, (2.1)

where
`

Wtp¨q
˘

0ďtďT
is a collection of q-integrable Rm-valued random variables on the

space pΩ,F ,Pq, which we regard as a deterministic LqpΩ,F ,P;Rmq-valued path, for
some exponent q ě 1, and

`

Wtpωq
˘

0ďtďT
stands for the realizations of these random

variables along the outcome ω P Ω; so the pair (2.1) takes values in RmˆLqpΩ,F ,P;Rmq.
As we already explained, a natural choice would be to take q “ 2, but for technical
reasons that will get clear below, we shall require q ě 8.
‚ The second level of the rough path structure includes a two-index path

`

Ws,tpωq
˘

0ďsďtďT
with values in Rmˆm, obtained as the ω-realizations of a collection of

q-integrable random variables
`

Ws,tp¨q
˘

0ďsďtďT
defined on Ω; importantly, this second

level also comprises the sections
`

WKK
s,tpω, ¨q

˘

0ďsďtďT
and

`

WKK
s,tp¨, ωq

˘

0ďsďtďT
of a collec-

tion of Rmˆm-valued random variables defined on the product space
`

Ω2,Fb2,Pb2
˘

and
considered as a deterministic Lq

`

Ω2,Fb2,Pb2;Rmˆm
˘

-valued path
`

WKK
s,tp¨, ¨q

˘

0ďsďtďT
.

Each WKK
s,tp¨, ¨q, for ps, tq P ST2 , belonging to the space Lq

`

Ω2,Fb2,Pb2;Rmˆm
˘

, we have

@

WKK
s,tpω, ¨q

D

q
ă 8,

@

WKK
s,tp¨, ωq

D

q
ă 8, (2.2)

for P-a.e. ω P Ω. Below, we shall assume (2.2) to be true for every ω P Ω. This is not
such a hindrance since we can modify in a quite systematic way the definition of the
rough path structure on the null event where (2.2) fails; this is exemplified in Proposition
2.3 below. Taken this assumption for granted, we can regard Ω Q ω ÞÑ WKK

s,tpω, ¨q

and Ω Q ω ÞÑ WKK
s,tp¨, ωq as random variables with values in LqpΩ,F ,P;Rmˆmq: Since

LqpΩ,F ,P;Rmˆmq is separable, it suffices to notice from Fubini’s theorem that, for
any Z P LqpΩ,F ,P;Rmˆmq, Ω Q ω ÞÑ

@

WKK
s,tpω, ¨q ´ Z

D

q
is measurable, and similarly for

WKK
s,tp¨, ωq.
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Mean field rough equations

Hence, the entire second level has the form of an ω-dependent two-index path with
values in

`

Rm ˆ LqpΩ,F ,P;Rmq
˘b2

and is encoded in matrix form as

ˆ

Ws,tpωq WKK
s,tpω, ¨q

WKK
s,tp¨, ωq WKK

s,tp¨, ¨q

˙

0ďsďtďT

. (2.3)

Here,

• Ws,tpωq is in pRmqb2 » Rmˆm,

• WKK
s,tpω, ¨q is in Rm b Lq

`

Ω,F ,P;Rm
˘

» Lq
`

Ω,F ,P;Rmˆm
˘

,

• WKK
s,tp¨, ωq is in Lq

`

Ω,F ,P;Rm
˘

bRm » Lq
`

Ω,F ,P;Rmˆm
˘

,

• WKK
s,tp¨, ¨q is in Lq

`

Ωb2,Fb2,Pb2;Rmˆm
˘

, the realizations of which read in the form
Ω2 Q pω, ω1q ÞÑ WKK

s,tpω, ω
1q P Rmˆm and the two sections of which are precisely

given by WKK
s,tpω, ¨q : Ω Q ω1 ÞÑ WKK

s,tpω, ω
1q, and WKK

s,tp¨, ωq Q ω
1 ÞÑ WKK

s,tpω
1, ωq, for

ω P Ω.

Below, we formulate several additional assumptions on the rough path structure, the
introduction of which is rather lengthy and is, for that reason, split into three distinct
subsections.

2.1 Algebraic conditions

As usual with rough paths, algebraic consistency requires that Chen’s relations

Wr,tpωq “Wr,spωq `Ws,tpωq `Wr,spωq bWs,tpωq,

WKK
r,tp¨, ωq “W

KK
r,sp¨, ωq `W

KK
s,tp¨, ωq `Wr,sp¨q bWs,tpωq,

WKK
r,tpω, ¨q “W

KK
r,spω, ¨q `W

KK
s,tpω, ¨q `Wr,spωq bWs,tp¨q,

WKK
r,tp¨, ¨q “W

KK
r,sp¨, ¨q `W

KK
s,tp¨, ¨q `Wr,sp¨q bWs,tp¨q,

(2.4)

hold for any 0 ď r ď s ď t ď T . We used here the very convenient notation fr,s :“ fs ´ fr,
for a function f from r0,8q into a vector space. In (2.4) and throughout, we denote
by Xp¨q b Y p¨q, for any two X and Y in LqpΩ,F ,P;Rmq, the random variable

`

ω, ω1q ÞÑ
`

XipωqYjpω
1q
˘

1ďi,jďm
defined on Ω2. It is in Lq

`

Ω2,Fb2,Pb2;Rmˆm
˘

.

Remark 2.1. The last three lines in Chen’s relations (2.4) are somewhat redundant.
Assume indeed that we are given a collection of random variables

`

WKK
s,tp¨, ¨q

˘

0ďsďtďT

satisfying the last line of (2.4). Then, for all 0 ď r ď s ď t ď T and for Pb2-a.e.
pω, ω1q P Ω2,

WKK
r,tpω, ω

1q “WKK
r,spω, ω

1q `WKK
s,tpω, ω

1q `Wr,spωq bWs,tpω
1q.

Clearly, for P-almost every ω P Ω, the second and third lines in (2.4) hold true as well.
This is slightly weaker than the formulation (2.4) as, therein, the second and third lines
are required to hold for all ω P Ω. As exemplified in the proof of Proposition 2.3, one may
modify the definition of WKK on a null event so that the second and third lines in (2.4)
hold true for all ω and for all 0 ď r ď s ď t ď T .

Definition 2.2. We shall denote by W pωq the rough set-up specified by the ω-depen-
dent collection of maps given by (2.1) and (2.3).

As for the component WKK of W pωq, the notation KK is used to indicate, as we shall
make it clear below, that WKK

s,tp¨, ¨q should be thought of as the random variable

pω, ω1q ÞÑ

ż t

s

´

Wrpωq ´Wspωq
¯

b dWrpω
1q.
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Since Ω2 Q pω, ω1q ÞÑ pWtpωqq0ďtďT and Ω2 Q pω, ω1q ÞÑ pWtpω
1qq0ďtďT are independent

under Pb2, we then understand WKK
s,t as an iterated integral of two independent copies of

the noise. While such a construction is elementary for a random C1 path, the well-defined
character of this integral needs to be proved for more general probability measures P.

Example 2.1. Let W be an Rm-valued Brownian motion, defined on pΩ,F ,Pq. Denote
by Wtp¨q the equivalence class of Ω Q ω ÞÑ Wtpωq in Lq

`

Ω,F ,P;Rm
˘

, and extend Wt on
the product space

`

Ω2,Fb2,Pb2
˘

, setting Wtpω, ω
1q :“Wtpωq. Define also on the product

space the random variable W 1
tpω, ω

1q :“ Wtpω
1q. Then, W and W 1 are two independent

m-dimensional Brownian motions under Pb2, and one can construct the time-indexed
stochastic integral (say of Stratonovich or Itô type, but this does not really matter here
since W and W 1 are independent)

Ω2 Q pω, ω1q ÞÑ

ˆ"
ż t

s

pWr ´Wsq b dW
1
r

*

pω, ω1q

˙

0ďsďtďT

P C
`

S2;Rmˆm
˘

.

The stochastic integral is uniquely defined up to an event of zero measure under Pb2.
Up to an exceptional event (of pΩ2,Fb2,Pb2q), we then let

WKK
s,tpω, ω

1q :“

ˆ
ż t

s

`

Wr ´Ws

˘

b dW 1
r

˙

pω, ω1q, 0 ď s ď t ď T.

We can specify the definition of WKK on the remaining exceptional event and then modify
the definition of W on a null event of pΩ,F ,Pq in such a way that Chen’s relations (2.4)
hold everywhere – see the end of the proof of Proposition 2.3 below for a detailed proof
of this fact. The process

`

Ws,tpωq
˘

0ďsďtďT
is defined in a standard way as a Stratonovich

or Itô (depending on the choice performed for the rough path) integral outside a set of
null measure:

Ws,tpωq :“

ˆ
ż t

s

pWr ´Wsq b dWr

˙

pωq, 0 ď s ď t ď T.

The principle underpinning the above example may be put in a more general frame-
work which will be useful to prove continuity of the Itô-Lyons solution map to the
equation (1.2). We state it in the form of a proposition that provides a quite systematic
way for constructing rough set-ups in practice. We advise the reader to come back to
this proposition later on.

Proposition 2.3. Let pΞ,G,Qq be a probability space, and W 1 :“
`

W 1
t

˘

0ďtďT
and W 2 :“

`

W 2
t

˘

0ďtďT
be two independent and identically distributed Rm-valued processes defined

on Ξ. Assume they have continuous trajectories and EQ
“

sup0ďtďT

ˇ

ˇW 1
t

ˇ

ˇ

q‰
ă 8.

Let also
`

pW i,j
s,t q0ďsătďT

˘

i,j“1,2
be four Rm b Rm – Rmˆm-valued continuous paths

such that EQ
”

sup0ďsătďT

ˇ

ˇW i,j
s,t

ˇ

ˇ

q
ı

ă 8, for i, j “ 1, 2, and
`

W 1,W 1,1
˘

is independent of

W 2. Last, assume that, for a.e. ξ P Ξ, the pair

ˆ

´ W 1pξq

W 2pξq

¯

,
´ W 1,1pξq W 1,2pξq

W 2,1pξq W 2,2pξq

¯

˙

satisfies Chen’s relation in the sense that W i,j
r,t pξq “W i,j

r,spξq `W
i,j
s,t pξq `W

i
r,spξq bW

j
s,tpξq

for any i, j P t1, 2u and 0 ď r ď s ď t ď T . Set Ω :“ Ξ ˆ r0, 1s with r0, 1s equipped
with its Borel σ-algebra B

`

r0, 1s
˘

, and denote by Leb the Lebesgue measure on r0, 1s.
Then we can find a triple of random variables

`

W,W,WKK
˘

, the first two components
being defined on

`

Ω,F b Bpr0, 1sq,Q b Leb
˘

, the last component being constructed on
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the product space Ω2, and the whole family satisfying all the above requirements for a
rough set-up, such that

P
´!

pξ, uq :
`

W,W
˘

pξ, uq “
`

W 1,W 1,1
˘

pξq
)¯

“ 1,

and, for P-a.e. ω “ pξ, uq, the law of WKKp¨, ωq is the same as the conditional law of W 2,1

given
`

W 1pξq,W 2pξq,W 1,1pξq
˘

.

The reader may worry about the fact that, in the statement, we only appeal to W 1,1

and W 2,1, and not to W 2,2 and W 1,2. The reason is that, in our construction of the
rough set-up, the processes WKKpω, ¨q, WKKp¨, ωq and WKKp¨, ¨q are intrinsically connected.
As made clear by the proof below, the relationships that hold true between WKKpω, ¨q,
WKKp¨, ωq and WKKp¨, ¨q must transfer to pW iqi“1,2 and pW i,jqi,j“1,2. In short, everything
works as if the pair pW 2,W 2,2q was a mere independent copy of pW 1,W 1,1q and the
conditional law of W 1,2 given pW 2,W 1,W 2,2q was the same as the conditional law of
W 2,1 given pW 1,W 2,W 1,1q, in which case the only needed ingredients are W 1, W 1,1, W 2

and W 2,1. The latter is consistent with the statement.

Proof. Recall first from [6] the following form of Skorokhod representation theorem.
There exists a function Ψ : r0, 1s ˆ P

`

CpST2 ;Rm bRmq
˘

Ñ C
`

ST2 ;Rm bRm
˘

such that

‚ for every probability µ on CpST2 q, equipped with its Borel σ-field, r0, 1s Q u ÞÑ Ψpu, µq

is a random variable with µ as distribution – r0, 1s being equipped with Lebesgue
measure,

‚ the map Ψ is measurable.

Let now
`

qpw1, w2, w1,1, ¨q
˘

w1,w2PCpr0,T s;Rmq;w1,1PCpST
2 ;RmbRmq

be a regular conditional

probability of W 2,1 given pW 1,W 2,W 1,1q. Define on Ω the random variables

W pξ, uq :“W 1pξq, Wpξ, uq :“W 1,1pξq,

and, on Ω2,

W 1
`

pξ, uq, pξ1, u1q
˘

:“W 1pξ1q,

WKK
`

pξ, uq, pξ1, u1q
˘

:“ Ψ
´

u1, q
`

W 1pξ1q,W 1pξq,W 1,1pξ1q, ¨
˘

¯

.

Since the law of
`

W,W 1,W
˘

under Pb2 is the same as the law of
`

W 1,W 2,W 1,1
˘

under
Q, we deduce that the law of

`

W,W 1,W,WJJ
˘

under Pb2, with WJJpω, ω1q :“WKKpω1, ωq,
is the same as the law of

`

W 1,W 2,W 1,1,W 2,1
˘

under Q. In particular, with probability 1
under Pb2, for all 0 ď r ď s ď t ď T ,

WJJ
r,tpω, ω

1q “WJJ
r,spω, ω

1q `WJJ
s,tpω, ω

1q `Wr,spω
1q bWs,tpωq,

that is
WKK

r,tpω, ω
1q “WKK

r,spω, ω
1q `WKK

s,tpω, ω
1q `Wr,spωq bWs,tpω

1q.

Call now A P F the set of those ω’s in Ω for which the above relation fails for ω1 in a set
of positive probability measure under P. Clearly, PpAq “ 0. Define in a similar way A1 by
exchanging the roles of ω and ω1. For ω P AYA1, set W pωq ” 0; and whenever ω P AYA1

or ω1 P AYA1, set WKKpω, ω1q ” 0. If ω R AYA1, we have, by definition of A and A1, the
third identity in (2.4) – pay attention that we use the fact that the identity is understood
as an equality between classes of random variables that are P-a.e. equal. If ω P AYA1,
it is also true since all the terms are zero. The second identity in (2.4) is checked in the
same way. As for the first one, it holds on the complementary BA of a null event B. We
then replace A by A Y B and A1 by A1 Y B in the previous lines and set W p¨q ” 0 and
Wp¨q ” 0 on AYA1 YB and WKKpω, ω1q “ 0 when ω P AYA1 YB or ω1 P AYA1 YB.
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2.2 Analytical conditions

We use in this work the notion of p-variation to handle the regularity of the various
trajectories in hand. The choice of the p-variation, instead of the simplest Hölder (semi-)
norm, is dictated by the arguments we use below to prove well-posedness of (1.4). We
shall indeed invoke some integrability results from [12], which are explicitly based
upon the notion of p-variation and are not proved in Hölder (semi-) norm. Several
types of p-variations are needed to handle differently the finite and infinite dimensional
components of a rough set-up W . Throughout, p is taken in the interval r2, 3q. For a
continuous function G from the simplex ST2 into some R`, we set, for any p1 ě 1,

}G}
p1

r0,T s,p1´var :“ sup
0“t0ăt1¨¨¨ătn“T

n
ÿ

i“1

|Gti´1,ti |
p1 ,

and define for any function g from r0, T s into R`, }g}p
r0,T s,p´var :“ }G}

p
r0,T s,p´var where

Gs,t :“ gt ´ gs. Similarly, for a random variable Gp¨q on Ω with values in CpST2 ;R`q, and
p1 ě 1, we define its p1-variation in Lq as

xGp¨qy
p1

q;r0,T s,p1´var :“ sup
0“t0ăt1¨¨¨ătn“T

n
ÿ

i“1

@

Gti´1,tip¨q
Dp1

q
, (2.5)

and define for a random variable Gp¨q on Ω, with values in Cpr0, T s;R`q,
@

Gp¨q
Dp

q;r0,T s,p´var
:“

@

Gp¨q
Dp

q;r0,T s,p´var
,

as the p-variation semi-norm in Lq of ST2 Q ps, tq ÞÑ Gs,tp¨q “ Gtp¨q ´ Gsp¨q. Last, for a
random variable Gp¨, ¨q from pΩ2,Fb2q into CpST2 ;R`q, we set

⟪Gp¨, ¨q⟫pq;r0,T s,p´var :“ sup
0“t0ăt1¨¨¨ătn“T

n
ÿ

i“1

⟪Gti´1,tip¨, ¨q⟫
p

q
. (2.6)

Given these definitions, we require from the rough set-up W that

• For any ω P Ω, the path W pωq is in the space Cpr0, T s;Rmq, and the map W : Ω Q

ω ÞÑW pωq P Cpr0, T s;Rmq is Borel-measurable and q-integrable (meaning that the
supremum of W over r0, T s is q-integrable).

• For any ω P Ω, the two-index path Wpωq is in CpST2 ;Rmˆmq, and the map W :

Ω Q ω ÞÑ Wpωq P CpST2 ;Rmˆmq is Borel-measurable and q-integrable (i.e., the
supremum of W over ST2 has a finite q-moment).

• For any pω, ω1q P Ω2, the two-index path WKKpω, ω1q is an element of CpST2 ;Rmˆmq,
and the map WKK : Ω2 Q pω, ω1q ÞÑ WKKpω, ω1q P CpST2 ;Rmˆmq is Borel-measurable
and q-integrable. In particular, for a.e. ω P Ω, the two-index path WKKpω, ¨q belongs
to C

`

ST2 ;LqpΩ,F ,P;Rmˆmq
˘

, and the map Ω Q ω ÞÑWKKpω, ¨q is Borel-measurable
and q-integrable, and similarly for WKKp¨, ωq; as before, we assume the latter to be
true for every ω P Ω. Also, the two-index deterministic path WKKp¨, ¨q is a continuous
mapping from ST2 into Lq

`

Ω2,Fb2,Pb2;Rmˆm
˘

.

We then set, for all 0 ď s ď t ď T and ω P Ω,

vps, t, ωq :“
›

›W pωq
›

›

p

rs,ts,p´var
`
@

W p¨q
Dp

q;rs,ts,p´var
`
›

›Wpωq
›

›

p{2

rs,ts,p{2´var

`
@

WKKpω, ¨q
Dp{2

q;rs,ts,p{2´var
`
@

WKKp¨, ωq
Dp{2

q;rs,ts,p{2´var
` ⟪WKKp¨, ¨q⟫p{2

q;rs,ts,p{2´var
,

(2.7)

and we assume that, for any T ą 0 and ω P Ω, vp0, T, ωq is finite. Then, we have the super-
additivity property: For any 0 ď r ď s ď t ď T , and ω P Ω, vpr, t, ωq ě vpr, s, ωq ` vps, t, ωq.
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Observe also from [24, Proposition 5.8] that ω ÞÑ pvps, t, ωqqps,tqPST
2

is a random

variable with values in CpST2 ;R`q. Throughout the analysis, we assume xvp0, T, ¨qyq ă
8, for any rough set-up considered on the interval r0, T s. By Lebesgue’s dominated
convergence theorem, the function ST2 Q ps, tq ÞÑ xvps, t, ¨qyq is continuous. We shall
actually assume that it is of bounded variation on r0, T s, i.e.,

xvp¨qyq;rs,ts,1´var :“ sup
0ďt1ă¨¨¨ătnďT

n
ÿ

i“1

xvpti´1, ti, ¨qyq ă 8.

Below, we call a control any family of random variables pω ÞÑ wps, t, ωqqps,tqPST
2

that is
jointly continuous in ps, tq and that satisfies,

wps, t, ωq ě vps, t, ωq ` xvp¨qyq;rs,ts,1´var, (2.8)

together with

xwps, t, ¨qyq ď 2wps, t, ωq,

wpr, t, ωq ě wpr, s, ωq ` wps, t, ωq, r ď s ď t.
(2.9)

Of course, a typical choice to get (2.8) and (2.9) is to choose

wps, t, ωq :“ vps, t, ωq ` xvp¨qyq;rs,ts,1´var. (2.10)

Example 2.2 (Gaussian processes). Start from an Rm-valued tuple W :“ pW 1, ¨ ¨ ¨ ,Wmq

of independent and centred continuous Gaussian processes, defined on some finite time
interval r0, T s, such that for a constant K and for any subinterval rs, ts Ă r0, T s and any
k “ 1, ¨ ¨ ¨ ,m, one has

sup
ÿ

i,j

ˇ

ˇ

ˇ
E
”

`

W k
ti`1

´W k
ti

˘`

W k
sj`1

´W k
sj

˘

ı
ˇ

ˇ

ˇ

ρ

ď K|t´ s|, (2.11)

where the supremum is taken over all dissections ptiqi and psjqj of the interval rs, ts.
Without any loss of generality, we may assume that the process W is constructed on
the canonical space pΩ,F ,Pq, where Ω “ W, with W :“ Cpr0, T s;Rmq, F is the Borel
σ-field, and W is the coordinate process. We then denote by pΩ “W,H,Pq the abstract
Wiener space associated with W , see [24, Appendix D], where H is a Hilbert space,
which is automatically embedded in the subspace C%´var

`

r0, T s;Rm
˘

of C
`

r0, T s;Rm
˘

consisting of continuous paths of finite %-variation. By Theorem 15.33 in [24], we know
that, for ω outside an exceptional event, the trajectory W pωq may be lifted into a rough
path pW pωq,Wpωqq with finite p-variation for any p P p2ρ, 3q, namely W pωq has a finite
p-variation and Wpωq has a finite p{2-variation. We lift arbitrarily (say onto the zero path)
on the null set where the lift is not automatic. The pair pW,Wq, indexed by ω is part of
our rough set-up. In this regard, we recall from Theorem 15.33 in [24] that the random
variables

Ω Q ω ÞÑ
›

›W pωq
›

›

r0,T s,p´var
, Ω Q ω ÞÑ

›

›Wpωq
›

›

r0,T s,p{2´var
, (2.12)

have respectively Gaussian and exponential tails, and thus have a finite Lq-moment.
One can proceed as follows to construct the other elements

`

WKKpω, ¨q
˘

ωPΩ
,

`

WKKp¨, ωq
˘

ωPΩ
, WKKp¨, ¨q of our rough set-up. We extend the space into pΩ2,Fb2,Pb2q,

with Ω embedded in the first component say, and denote by pW,W 1q the canonical coordi-
nate process on Ω2. They are independent and have independent Gaussian components
under P2. The associated abstract Wiener space is nothing but

`

Ω2,H ‘H,Pb2
˘

. The
process pW,W 1q also satisfies Theorem 15.33 in [24] for the same exponent ρ as before,
so, we can enhance pW,W 1q into a Gaussian rough path, with some arbitrary extension
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outside the Pb2-exceptional event on which we cannot construct the enhancement. To
ease the notations, we merely write W pωq for W pω, ω1q as it is independent of ω; similarly,
we write W 1pω1q for W 1pω, ω1q. Proceeding as before, we call

`

WKKpω, ω1q
˘

ω,ω1PΩ
, the

upper off-diagonal mˆm block in the decomposition of the second-order tensor of the
rough path in the form of a p2mq ˆ p2mq-matrix with four blocks of size mˆm. Chen’s
relationship then yields, for Pb2-a.e. pω, ω1q,

WKK
r,tpω, ω

1q “WKK
r,spω, ω

1q `WKK
s,tpω, ω

1q `Wr,spωq bWs,tpω
1q,

for all r ď s ď t. As before, we know from Theorem 15.33 in [24] that the 1{p-Hölder semi-
norm of W pωq, which we denote by }W pωq

›

›

r0,T s,p1{pq´Höl
, and the 2{p-Hölder semi-norm

of WKKpω, ω1q, which we denote by
›

›WKKpω, ω1q
›

›

r0,T s,p2{pq´Höl
, have respectively Gaussian

and exponential tails, when considered as random variables on the spaces pΩ,F ,Pq and
`

Ω2,Fb2,Pb2
˘

. In particular, for a.e. ω P Ω, we may consider
`

WKK
s,tpω, ¨q

˘

ps,tqPST
2

as a

continuous process with values in Lq. Moreover,

@

WKKpω, ¨q
Dp{2

q;r0,T s,p{2´var

“ sup
0“t0ăt1ă¨¨¨ătn“T

n
ÿ

i“1

@

WKK
ti´1,tipω, ¨q

Dp{2

q

ď T
A

}WKKpω, ¨q}r0,T s,p2{pq´Höl

Ep{2

q
ď T

A

}WKKpω, ¨q}
p{2
r0,T s,p2{pq´Höl

E

q
,

which shows that the left-hand side has finite moments of any order. Arguing in the same
way for

`

WKKp¨, ωq
˘

ωPΩ
and for WKK, we deduce that v in (2.7) is almost surely finite and

q-integrable. Obviously, by replacing r0, T s by rs, ts Ă r0, T s, we obtain that the q-moment
of v is Lipschitz (and thus of finite 1-variation), as required.

All these properties (that hold true on a full event) may be extended to the full set Ω2

by arguing as in the proof of Proposition 2.3.

2.3 Local accumulation

To use that rough set-up in our machinery, we need a version of an integrability result
of [12] whose proof is postponed to Appendix A. Given a nondecreasing2 continuous
positive valued function $ on S2 “ tps, tq P r0,8q

2 : s ď tu, a parameter s ě 0 and a
threshold α ą 0, we define inductively a sequence of times

τ0ps, αq :“ s, and τ$n`1ps, αq :“ inf
!

u ě τ$n ps, αq : $
`

τ$n ps, αq, u
˘

ě α
)

, (2.13)

with the understanding that infH “ `8. For t ě s, set

N$
`

rs, ts, α
˘

:“ sup
!

n P N : τ$n ps, αq ď t
)

. (2.14)

Below, we call N$ the local accumulation of $ (of size α if we specify the value
of the threshold): N$prs, ts, αq is the largest number of disjoint open sub-intervals pa, bq
of rs, ts on which $pa, bq is greater than or equal to α. When $ps, tq “ wps, t, ωq1{p with
w a control satisfying (2.8) and (2.9) and when the framework makes it clear, we just
write Nprs, ts, ω, αq for N$prs, ts, αq. Similarly, we also write τnps, ω, αq for τ$n ps, αq when
$ps, tq “ wps, t, ωq1{p. We will also use the notation τ$n ps, t, αq :“ τ$n ps, αq ^ t.

The proof of the following statement is given in Appendix A. Recall that a positive
random variable A has a Weibull tail with shape parameter 2{% if A1{ρ has a Gaussian
tail.

2In the sense that $pa, bq ě $pa1, b1q if pa1, b1q Ă pa, bq.
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Theorem 2.4. Let W be a continuous centred Gaussian process, defined over some
finite interval r0, T s. Assume it has independent components, and denote by pW,H,Pq
its associated Wiener space. Suppose that the covariance function satisfies the Lipschitz
estimate (2.11). Then, for p P p2%, 3q and α ą 0, the process Np¨, αq :“ pNpr0, T s, ω,αqqωPΩ
associated to the rough-set up built from W , with w being defined as in (2.10), has a
Weibull tail with shape parameter 2{%.

As a corollary, we deduce that the estimate on N required in Theorem 1.1 is satisfied
in the above setting. For the same value of p, the quantity wp0, T q in (2.10) also satisfies
the integrability statement of Theorem 1.1; the latter then applies in the above Gaussian
setting. Building on the work [14] on Markovian rough paths one can prove a similar
result as Theorem 2.4 for Markovian rough paths.

3 Controlled trajectories and rough integral

Following [26], we now define a controlled path and the corresponding rough integral.
Throughout the section, we are given a control w satisfying (2.8) and (2.9).

3.1 Controlled trajectories

We first define the notion of controlled trajectory for a given outcome ω P Ω.

Definition 3.1. An ω-dependent continuous Rd-valued path pXtpωqq0ďtďT is called an
ω-controlled path on r0, T s if its increments can be decomposed as

Xs,tpωq “ δxXspωqWs,tpωq ` E
“

δµXspω, ¨qWs,tp¨q
‰

`RXs,tpωq, (3.1)

where
`

δxXtpωq
˘

0ďtďT
belongs to the space C

`

r0, T s;Rdˆm
˘

,
`

δµXtpω, ¨q
˘

0ďtďT
to the

space C
`

r0, T s;L4{3pΩ,F ,P;Rdˆmq
˘

,
`

RXs,tpωq
˘

s,tPST
2

is in the space CpST2 ;Rdq, and

~Xpωq~‹,r0,T s,w,p :“ |X0pωq| `
ˇ

ˇδxX0pωq
ˇ

ˇ`
@

δµX0pω, ¨q
D

4{3
` ~Xpωq~r0,T s,w,p ă 8,

where ~Xpωq~r0,T s,w,p :“ }Xpωq}r0,T s,w,p ` }δxXpωq}r0,T s,w,p `
@

δµXpω, ¨q
D

r0,T s,w,p,4{3
`

}RXpωq}r0,T s,w,p{2, with

}Xpωq}r0,T s,w,p :“ sup
rs,tsĂr0,T s

ˇ

ˇXs,tpωq
ˇ

ˇ

wps, t, ωq1{p
, }δxXpωq}r0,T s,w,p :“ sup

rs,tsĂr0,T s

ˇ

ˇδxXs,tpωq
ˇ

ˇ

wps, t, ωq1{p
,

@

δµXpω, ¨q
D

r0,T s,w,p,4{3
:“ sup

rs,tsĂr0,T s

@

δµXs,tpω, ¨q
D

4{3

wps, t, ωq1{p
,

}RXpωq}r0,T s,w,p{2 :“ sup
rs,tsĂr0,T s

ˇ

ˇRXs,tpωq
ˇ

ˇ

wps, t, ωq2{p
.

We call δxXpωq and δµXpω, ¨q in (3.1) the derivatives of the controlled path Xpωq3.

The value 4{3 is somewhat arbitrary here. Our analysis could be managed with
another exponent strictly greater than 1, but this would require higher values for the
exponent q than that one we use in the definition of the rough set-up – recall q ě 8. It
seems that the value 4{3 is pretty convenient, as 4{3 is the conjugate exponent of 4. It
follows from the fact that ~Xpωq~‹,r0,T s,p is finite that an ω-controlled path is controlled
in the usual sense by the first level

`

Wtpωq,Wtp¨q
˘

0ďtďT
of our rough set-up, provided

the latter is considered as taking values in an infinite dimensional space, see Section 3.2
below.

3As usual when working in a controlled rough path setting, a path cannot be considered by itself, but rather
together with its derivatives. In our case, the good object is the triple pXpωq, BxXpωq, BµXpωqq.
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We now define the notion of random controlled trajectory, which consists of a collec-
tion of ω-controlled trajectories indexed by the elements of Ω.

Definition 3.2. A family of ω-controlled paths pXpωqqωPΩ such that the maps

Ω Q ω ÞÑ
`

Xtpωq
˘

0ďtďT
P C

`

r0, T s;Rd
˘

, Ω Q ω ÞÑ
`

δxXtpωq
˘

0ďtďT
P C

`

r0, T s;Rdˆm
˘

Ω Q ω ÞÑ
`

δµXtpωq
˘

0ďtďT
P C

`

r0, T s;L4{3pΩ,F ,P;Rdˆmq
˘

,

Ω Q ω ÞÑ
`

RXs,tpωq
˘

ps,tqPST
2
P C

`

ST2 ;Rd
˘

,

are measurable and satisfy
@

X0p¨q
D

2
`
@

~Xp¨q~r0,T s,w,p
D

8
ă 8 (3.2)

is called a random controlled path on r0, T s.

Note from (2.9) the following elementary fact, whose proof is left to the reader.

Lemma 3.3. Let
`

pXtpωqq
˘

0ďtďT
qωPΩ be a random controlled path on a time interval

r0, T s. Then, for any 0 ď s ă t ď T , we have

@

Xs,tp¨q
D

2
ď

A

~Xp¨q~2
r0,T s,w,p wps, t, ¨q

2{p
E1{2

ď
@

~Xp¨q~r0,T s,w,p
D

4

@

wps, t, ¨q
D1{p

4
ď 2

@

~Xp¨q~r0,T s,w,p
D

4
wps, t, ωq1{p.

Similarly,

@

Xs,tp¨q
D

4
ď

@

~Xp¨q~r0,T s,w,p
D

8

@

wps, t, ¨q
D1{p

8
ď 2

@

~Xp¨q~r0,T s,w,p
D

8
wps, t, ωq1{p.

A straightforward consequence of Lemma 3.3 is that a random controlled trajectory
induces a continuous path from r0, T s to L2pΩ,F ,P;Rdq.

3.2 Rough integral

Set U :“ RmˆLqpΩ,F ,P;Rmq and note that U bU can be canonically identified with

`

Rm bRm
˘

‘

´

Rm b LqpΩ,F ,P;Rmq
¯

‘

´

LqpΩ,F ,P;Rmq bRm
¯

‘

´

LqpΩ,F ,P;Rmqb2
¯

.

We take as a starting point of our analysis the fact that W pωq may be considered as a
rough path with values in U ‘ Ub2, for any given ω. Indeed the first level W p1q

pωq :“
`

Wtpωq,Wtp¨q
˘

tě0
of W pωq is a continuous path with values in U and its second level

W p2q
pωq :“

ˆ

W0,tpωq WKK
0,tpω, ¨q

WKK
0,tp¨, ωq WKK

0,tp¨, ¨q

˙

tě0

is a continuous path with values in U b U , with W0,tpωq seen as an element of Rm b
Rm, WKK

0,tpω, ¨q as an element of Rm b LqpΩ,F ,P;Rmq, WKK
0,tp¨, ωq as an element of

LqpΩ,F ,P;Rmq bRm, and WKK
0,tp¨, ¨q as an element of LqpΩ,F ,P;Rmq b LqpΩ,F ,P;Rmq.

Condition (2.4) then reads as Chen’s relation for W pωq.
We can then use sewing lemma [22], in the form given in [15, 16], to construct the

rough integral of an ω-controlled path and a Banach-valued rough set-up.

Theorem 3.4. There exists a universal constant c0 and, for any ω P Ω, there exists a
continuous linear map

`

Xtpωq
˘

0ďtďT
ÞÑ

ˆ
ż t

s

Xs,upωq b dW upωq

˙

ps,tqPST
2
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Mean field rough equations

from the space of ω-controlled trajectories equipped with the norm ~ ¨ ~‹,r0,T s,p, onto
the space of continuous functions from ST2 into Rd bRm (that are equal to zero on the
diagonal) with finite norm } ¨ }r0,T s,w,p{2, with w in the latter norm being evaluated along
the realization ω, that satisfies for any 0 ď r ď s ď t ď T the identity

ż t

r

Xr,upωq b dW upωq

“

ż s

r

Xr,upωq b dW upωq `

ż t

s

Xs,upωq b dW upωq `Xr,spωq bWs,tpωq,

together with the estimate

ˇ

ˇ

ˇ

ˇ

ż t

s

Xs,upωq b dW upωq ´
!

δxXspωqWs,tpωq ` E
“

δµXspω, ¨qW
KK
s,tp¨, ωq

‰

)

ˇ

ˇ

ˇ

ˇ

ď c0 ~Xpωq~r0,T s,w,p wps, t, ωq
3{p.

(3.3)

Here, δxXspωqWs,tpωq is the product of two dˆm and mˆm matrices, so it gives back
a d ˆ m matrix, with components

`

δxXspωqWs,tpωq
˘

i,j
“

řm
k“1

`

δxX
i
spωq

˘

k

`

Ws,tpωq
˘

k,j
,

for i P t1, ¨ ¨ ¨ , du and j P t1, ¨ ¨ ¨ ,mu. We stress that the notation E
“

δµXspω, ¨qW
KK
s,tp¨, ωq

‰

,

which reads as the expectation of a matrix of size d ˆm, can be also interpreted as a
contraction product between an element of Rd b L4{3pΩ,F ,P;Rmq and an element of
LqpΩ,F ,P;Rmq bRm. This remark is important for the proof below.

Proof. The proof is a consequence of Proposition 2 in Coutin and Lejay’s work [15],
except for one main fact. In order to use Coutin and Lejay’s result, we consider W pωq as
a rough path with values in U ‘ Ub2 and

`

Xpωq, δxXpωq, δµXpωq, R
Xpωq

˘

as a controlled
path; this was explained above. When doing so, the resulting integral is constructed
as a process with values in Rd b U , whilst the integral given by the statement of
Theorem 3.4 takes values in Rd. We denote the Rd b U -valued integral by pItsXs,upωq b

dW upωqqps,tqPST
2

. We use a simple projection to pass from the infinite dimensional-

valued quantity ItsXs,upωqbdW upωq to the finite dimensional-valued quantity
şt

s
Xs,upωqb

dW upωq. Indeed, we may use the canonical projection from Rd b U –
`

Rd b Rm
˘

‘
`

Rd b LqpΩ,F ,P;Rmq
˘

onto Rd b Rm to project ItsXs,upωq b dW upωq onto
şt

s
Xs,upωq b

dW upωq.

As usual, we define an additive process setting

ż t

s

Xupωq b dW upωq :“

ż t

s

Xs,upωq b dW upωq `Xspωq bWs,tpωq,

for 0 ď t ď T . We can thus consider the integral process
` şt

0
Xspωq b dW spωq

˘

0ďtďT
as

an ω-controlled trajectory with values in Rdˆm, with x-derivative a linear map from Rm

into Rdˆm, and entries

ˆ

δx

„
ż ¨

0

Xspωq b dW spωq



t

˙

pi,jq,k

“
`

Xtpωq
˘

i
δj,k,

for i P t1, ¨ ¨ ¨ , du and j, k P t1, ¨ ¨ ¨ ,mu, where δj,k stands for the usual Kronecker symbol,
and with null µ-derivative, namely

δµ

„
ż ¨

0

Xspωq b dW spωq



t

“ 0. (3.4)
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Mean field rough equations

This property is fundamental. The remainder R
ş

XbdW can be estimated by combining
Definition 3.1 and (3.3) together with the inequality

ˇ

ˇ

ˇ
δxXspωqWs,tpωq ` E

“

δµXspω, ¨qW
KK
s,tp¨, ωq

‰

ˇ

ˇ

ˇ

ď

#

sup
rPr0,T s

|δxXrpω, ¨q| ` sup
rPr0,T s

xδµXrpωqy4{3

+

wps, t, ωq2{p

ď ~Xpωq~‹,r0,T s,w,p

´

1` wp0, T, ωq1{p
¯

wps, t, ωq2{p,

so that, with the notation of Definition 3.1,
�

�

�

�

ż ¨

0

Xspωq b dW spωq

�

�

�

�

r0,T s,w,p

ă 8. (3.5)

When Xpωq is given as the ω-realization of a random controlled path pXpω1qqω1PΩ, the
integral may be defined for any ω1 P Ω. For the integral

ş¨

0
Xspωq b dW spωq to define a

random controlled path, its ~ ¨ ~r0,T s,w,p-semi-norm needs to have finite 8-th moment,
see (3.2) (we give later on more precise estimates to guarantee that this may be indeed
the case). In this respect, it is worth noticing that the measurability properties of
the integral with respect to ω can be checked by approximating the integral with
compensated Riemann sums, see once again (3.3). This gives measurability of Ω Q

ω ÞÑ
şt

0
Xspωq b dW spωq for any given time t P r0, T s. Measurability of the functional

Ω Q ω ÞÑ
ş¨

0
Xspωq b dW spωq P Cpr0, T s;Rd bRmq then follows from the continuity of the

paths. When the trajectory Xpωq takes values in Rd bRm rather than Rd, the integral
şt

0
Xspωq b dW spωq P R

d bRm bRm may be identified with a tuple

˜

ˆ
ż t

0

Xspωq b dW spωq

˙

i,j,k

¸

pi,j,kqPt1,¨¨¨ ,duˆt1,¨¨¨ ,muˆt1,¨¨¨ ,mu

.

We then set for i P t1, ¨ ¨ ¨ , du

ˆ
ż t

0

XspωqdW spωq

˙

i

:“
m
ÿ

j“1

ˆ
ż t

0

Xspωq b dW spωq

˙

i,j,j

,

and consider
şt

0
XspωqdW spωq as an element of Rd.

3.3 Stability of controlled paths under nonlinear maps

We show in this section that controlled paths are stable under some nonlinear,
sufficiently regular, maps and start by recalling the reader about the regularity notion
used when working with functions defined on Wasserstein space. We refer the reader to
Lions’ lectures [31], to the lecture notes [9] of Cardaliaguet or to Carmona and Delarue’s
monograph [10, Chapter 5] for basics on the subject.
‚ Recall that pΩ,F ,Pq stands for an atomless probability space, with Ω a Polish

space and F its Borel σ-algebra. Fix a finite dimensional space E “ Rk and denote by
L2 : “ L2pΩ,F ,P;Eq the space of E-valued random variables on Ω with finite second
moment. We equip the space P2pEq :“

 

LpZq ; Z P L2
(

with the 2-Wasserstein distance

d2pµ1, µ2q :“ inf
!

}Z1 ´ Z2}2 ; LpZ1q “ µ1, LpZ2q “ µ2

)

.

An Rk-valued function u defined on P2pEq is canonically extended into L2 by setting, for
any Z P L2,

UpZq :“ u
`

LpZq
˘

.
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‚ The function u is then said to be differentiable at µ P P2pEq if its canonical lift is
Fréchet differentiable at some point Z such that LpZq “ µ; we denote by ∇ZU P pL

2qk

the gradient of U at Z. The function U is then differentiable at any other point Z 1 P L2

such that LpZ 1q “ µ, and the laws of ∇ZU and ∇Z1U are equal, for any such Z 1.
‚ The function u is said to be of class C1 on some open set O of P2pEq if its canonical

lift is of class C1 in some open set of L2 projecting onto O. It is then of class C1 in the
whole fiber in L2 above O. If u is of class C1 on P2pEq, then ∇ZU is σpZq-measurable
and given by an LpZq-dependent function Du from E to Ek such that

∇ZU “ pDuqpZq; (3.6)

we have in particular Du P L2
µpE;Ekq:“ L2pE,BpEq, µ;Ekq, where BpEq is the Borel

σ-field on E. In order to emphasize the fact that Du depends upon LpZq, we shall
write DupLpZqqp¨q instead of Dup¨q. Sometimes, we shall put an index µ and write
DµupLpZqqp¨q in order to emphasize the fact that the derivative is taken with respect
to the measure argument; this will be especially useful for functionals u depending on
additional variables. Importantly, this representation is independent of the choice of
the probability space pΩ,F ,Pq; in fact, it can be easily transported from one probability
space to another. (Simpler proofs of the structural equation (3.6) can be found in [1, 39].)
‚ As an example, take u of the form upµq “

ş

Rd fpyqdµpyq for a continuously dif-
ferentiable function f : Rd Ñ R such that ∇f is at most of linear growth. The lift
Z ÞÑ UpZq “ ErfpZqs has differential pdZUqpHq “ Er∇fpZqHs and gradient ∇fpZq.
Hence, DUpµqpzq “ f 1pzq. Another example (to which we come back below) is upµq “
f
` ş

Rd |x|
2µpdxq

˘

, for a continuously differentiable function f :RÑ R. The lift Z ÞÑUpZq “
f
`

Er|Z|2s
˘

has differential pdZUqpHq “ 2f 1
`

Er|Z|2
˘

ErZHs and gradient 2f 1
`

Er|Z|2s
˘

Z,
so Dupµqpzq “ 2f 1

` ş

Rd |x|
2µpdxq

˘

z here. We refer to [9] and [10, Chapter 5] for further
examples.
‚ Back to controlled paths. Let F stand here for a map from Rd ˆ L2pΩ,F ,P;Rdq

into the space L pRm,Rdq – Rd b Rm of linear mappings from Rm to Rd. Intuitively,
F should be thought of as the lift of the coefficient driving equation (1.2), or, with the
same notation as in (1.3), as pF itself, with the slight abuse of notation that it requires to
identify F and pF. Our goal now is to expand the image of a controlled trajectory by F.

Regularity assumptions 1. Assume that F is continuously differentiable in the joint
variable px, Zq, that BxF is also continuously differentiable in px, Zq and that there is
some positive finite constant Λ such that

sup
xPRd, µPP2pRdq

ˇ

ˇFpx, µq
ˇ

ˇ_
ˇ

ˇBxFpx, µq
ˇ

ˇ_
ˇ

ˇB2
xFpx, µq

ˇ

ˇ ď Λ,

sup
xPRd,LpZqPP2pRdq

›

›∇ZFpx, Zq
›

›

2
_
›

›Bx∇ZFpx, Zq
›

›

2
ď Λ,

(3.7)

and

∇ZFpx, ¨q : L2pΩ,F ,P;Rdq Ñ L2pΩ,F ,P; L pRd,Rd bRmqq

Z ÞÑ ∇ZFpx, Zq “ DµF px,LpZqqpZq

is a Λ-Lipschitz function of Z P L2pΩ,F ,P;Rdq, uniformly in x P Rd.

Importantly, the L2-Lipschitz bound required in the second line of (3.7) may be formu-
lated as a Lipschitz bound on P2pR

dq equipped with d2. Moreover, notice that the space
L2

`

Ω,F ,P; L pRd,Rd bRmq
˘

can be identified with L2pΩ,F ,P;Rdqdˆm; also, BxFpx, Zq
and ∇ZFpx, Zq will be considered as random variables with values in L pRd,Rd bRmq –

Rd bRm bRd. As an example, the functions Fpx, µq “
ş

Rd fpx, yqµpdyq for some function
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f of class C2
b , and Fpx, µq “ g

`

x,
ş

Rd yµpdyq
˘

for some function g of class C2
b , both satisfy

Regularity assumptions 1. A counter-example is the function Fpx, µq “
ş

Rd |z|
2dµpzq.

We expand below the path
`

FpXtpωq, Ytp¨qq
˘

0ďtďT
, which we write FpXpωq, Y p¨qq,

where Xpωq is an ω-controlled path and Y p¨q is an Rd-valued random controlled path,
both of them being defined on some finite interval r0, T s. Identity (3.4) tells us that a
fixed point formulation of (1.2) will only involve pairs pXpωq, Y p¨qq such that

δµXpωq ” 0, δµY p¨q ” 0, (3.8)

which prompts us to restrict ourselves to the case when Xpωq and Y have null µ-
derivatives in the expansion (3.1).

Proposition 3.5. Let Xpωq be an ω-controlled path and Y p¨q be an Rd-valued random
controlled path. Assume that condition (3.8) hold together with the ω-independent
bound

M :“ sup
0ďtďT

´

ˇ

ˇδxXtpωq
ˇ

ˇ_
@

δxYtp¨q
D

8

¯

ă 8.

Then, F
`

Xpωq, Y p¨q
˘

is an ω-controlled path with

δx

´

F
`

Xpωq, Y p¨q
˘

¯

t
“ BxF

`

Xtpωq, Ytp¨q
˘

δxXtpωq,

which is understood as
`
řd
`“1Bx`

Fi,j
`

Xtpωq, Ytp¨q
˘`

δxX
`
t pωq

˘

k

˘

i,j,k
, with i P t1, ¨ ¨ ¨ , du and

j, k P t1, ¨ ¨ ¨ ,mu, and (with a similar interpretation for the product)

δµ

´

F
`

Xpωq, Y p¨q
˘

¯

t
“ ∇ZF

`

Xtpωq, Ytp¨q
˘

δxYtp¨q “ DµF
`

Xtpωq,LpYtq
˘`

Ytp¨q
˘

δxYtp¨q,

and one can find a constant CΛ,M , depending only on Λ and M , such that

�

�F
`

Xpωq, Y p¨q
˘
�

�

‹,r0,T s,w,p
ď CΛ,M

´

1` ~Xpωq~2
r0,T s,w,p `

@

~Y p¨q~r0,T s,w,p
D2

8

¯

.

Proof. For 0 ď s ă t, expand FpXpωq, Y p¨qqs,t into

FpXpωq, Y p¨qqs,t “ F
`

Xtpωq, Ytp¨q
˘

´ F
`

Xspωq, Ysp¨q
˘

“

!

F
`

Xtpωq, Ytp¨q
˘

´ F
`

Xspωq, Ytp¨q
˘

)

`

!

F
`

Xspωq, Ytp¨q
˘

´ F
`

Xspωq, Ysp¨q
˘

)

“:
!

(1)` (2)` (3)
)

`

!

(4)` (5)
)

,

(3.9)

where

(1) :“ BxF
`

Xspωq, Ysp¨q
˘

!

δxXspωqWs,tpωq `R
X
s,tpωq

)

,

(2) :“

ż 1

0

”

BxF
´

X
pλq
s;ps,tqpωq, Ytp¨q

¯

´ BxF
´

X
pλq
s;ps,tqpωq, Ysp¨q

¯ı

Xs,tpωq dλ,

(3) :“

ż 1

0

”

BxF
´

X
pλq
s;ps,tqpωq, Ysp¨q

¯

´ BxF
`

Xspωq, Ysp¨q
˘

ı

Xs,tpωq dλ,

(4) :“
A

∇ZF
`

Xspωq, Ysp¨q
˘

Ys,tp¨q
E

“

A

∇ZF
`

Xspωq, Ysp¨q
˘

!

δxYsp¨qWs,tp¨q `R
Y
s,tp¨q

)E

,

(5) :“

ż 1

0

A´

∇ZF
`

Xspωq, Y
pλq
s;ps,tqp¨q

˘

´∇ZF
`

Xspωq, Ysp¨q
˘

¯

Ys,tp¨q
E

dλ;

we used here the fact that Xpωq and Y p¨q have null µ-derivative and where we let

X
pλq
s;ps,tqpωq “ Xspωq ` λXs,tpωq, Y

pλq
s;ps,tqp¨q “ Ysp¨q ` λYs,tp¨q. (3.10)
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We read on (3.9) the formulas for the x and µ-derivatives of FpXpωq, Y p¨qq. The remainder

R
FpX,Y q
s,t in the controlled decomposition of the path FpXpωq, Y p¨qq is

BxF
`

Xspωq, Ysp¨q
˘

RXs,tpωq `
A

∇ZF
`

Xspωq, Ysp¨q
˘

RYs,tp¨q
E

` (2)` (3)` (5). (3.11)

We now compute
�

�F
`

Xpωq, Y p¨q
˘
�

�

‹,r0,T s,w,p
.

• We have first from the assumptions on F that the initial conditions for the quanti-
ties F

`

Xpωq, Y p¨q
˘

, δx
`

F
`

Xpωq, Y p¨q
˘˘

, δµ
`

F
`

Xpωq, Y p¨q
˘˘

, are all bounded above by
Λp1`Mq, the bound for δµ

`

F
`

Xpωq, Y p¨q
˘˘

being understood in L4{3pΩ,F ,P;Rd b

Rm bRmq.
• Variation of FpXpωq, Y p¨qq. Using the Lipschitz property of F and Lemma 3.3, we

havě
ˇ

ˇ

“

F
`

Xpωq, Y p¨q
˘‰

s,t

ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

“

F
`

Xpωq, Y p¨q
˘‰

t
´
“

F
`

Xpωq, Y p¨q
˘‰

s

ˇ

ˇ

ˇ

ď Λ
´

ˇ

ˇXs,tpωq
ˇ

ˇ`
@

Ys,tp¨q
D

2

¯

ď 2Λ
´

~Xpωq~r0,T s,w,p `
@

~Y p¨q~r0,T s,w,p
D

4

¯

wps, t, ωq1{p.

• Variation of δx
`

FpXpωq, Y p¨qq
˘

and δµ
`

FpXpωq, Y p¨qq
˘

. The Lipschitz properties of
BxF and ∇ZFpx, ¨q also give

ˇ

ˇ

ˇ
δx
“

F
`

Xpωq, Y p¨q
˘‰

s,t

ˇ

ˇ

ˇ

ď 2ΛM
´

~Xpωq~r0,T s,w,p `
@

~Y p¨q~r0,T s,w,p
D

4

¯

wps, t, ωq1{p

` Λ~Xpωq ~r0,T s,w,p wps, t, ωq
1{p,

and, applying Hölder inequality with exponents 3{2 and 3,
A

δµ
“

F
`

Xpωq, Y p¨q
˘‰

s,t

E

4{3

ď
@

δxYtp¨q
D

8

A

“

DµF
`

Xpωq, Y p¨q
˘‰

s,t

E

2
`

A

DµF
`

Xspωq, Ysp¨q
˘

E

2

@

δxYs,tp¨q
D

4

ď 2Λ
@

δxYtp¨q
D

8

´

~Xpωq~r0,T s,w,p ` x~Y p¨q~r0,T s,w,py4

¯

wps, t, ωq1{p

` Λ xδxYs,tp¨qy4

ď 2ΛM
´

~Xpωq~r0,T s,w,p ` x~Y p¨q~r0,T s,w,py4

¯

wps, t, ωq1{p

` 2Λ
@

~Y p¨q~r0,T s,w,p
D

8
wps, t, ωq1{p.

• Remainder (3.11). The first two terms in (3.11) are less than

Λ~X~r0,T s,w,p wps, t, ωq
2{p ` Λ

@

RYs,tp¨q
D

2

ď Λ~X~r0,T s,w,p wps, t, ωq
2{p ` Λ

@

~Y p¨q~r0,T s,w,p wps, t, ¨q
2{p

D

2

ď Λ~X~r0,T s,w,p wps, t, ωq
2{p ` Λ

@

~Y p¨q~r0,T s,w,p
D

4

@

wps, t, ¨q
D2{p

4

ď Λ~X~r0,T s,w,p wps, t, ωq
2{p ` 2Λ

@

~Y p¨q~r0,T s,w,p
D

4
wps, t, ωq2{p,

from Lemma 3.3 and the fact that p P r2, 3q. We also have
ˇ

ˇ(2)
ˇ

ˇ ď Λ
ˇ

ˇXs,tpωq
ˇ

ˇ

@

Ys,tp¨q
D

2
ď 2Λ

�

�Xpωq
�

�

r0,T s,w,p

@

~Y p¨q~r0,T s,w,p
D

4
wps, t, ωq2{p,

ˇ

ˇ(3)
ˇ

ˇ ď Λ
ˇ

ˇXs,tpωq
ˇ

ˇ

2
ď Λ

�

�Xpωq
�

�

2

r0,T s,w,p
wps, t, ωq2{p.

Last, since ∇ZF is a Lipchitz function of its second argument,

(5) ď Λ
@

Ys,tp¨q
D2

2
ď 4Λ

@

~Y p¨q~r0,T s,w,p
D2

4
wps, t, ωq2{p.

Collecting the various terms, we complete the proof.
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Mean field rough equations

4 Solving the equation

We now have all the tools to formulate the equation (1.4) (or (1.2)) as a fixed point
problem and solve it by Picard iteration. Our definition of the fixed point is given in the
form of a two-step procedure: The first step is to write a frozen version of the equation,
in which the mean field component is seen as an exogenous collection of ω-controlled
trajectories; the second step is to regard the family of exogenous controlled trajectories
as an input and to map it to the collection of controlled trajectories solving the frozen
version of the equation. In this way, we define a solution as a collection of ω-controlled
trajectories. In order to proceed, recall the generic notation

`

Xpωq; δxXpωq; BµXpω, ¨q
˘

for an ω-controlled path and its derivatives; we sometimes abuse notations and talk
of Xpωq as an ω-controlled path. In all the following, W and its enhancement W are
assumed to form a rough-set up as defined in Section 2 and to satisfy all the conditions
prescribed in this section.

Definition 4.1. Let W together with its enhancement W satisfy the assumption of
Section 2 on a finite interval r0, T s, and let Y p¨q stand for some Rd-valued random
controlled path on r0, T s, with the property that δµY p¨q ” 0 and sup0ďtďT xδxYtp¨qy8 ă 8.
For a given ω P Ω, let Xpωq be an Rd-valued ω-controlled path on r0, T s, with the
properties that δµXpωq ” 0 and sup0ďtďT |δxXtpωq| ă 8. We associate to ω and Xpωq an
ω-controlled path by setting

Γ
`

ω,Xpωq, Y p¨q
˘

:“

ˆ

X0pωq `

ż t

0

F
`

Xspωq, Ysp¨q
˘

dW spωq ; F
`

Xtpωq, Ytp¨q
˘

; 0

˙

0ďtďT

.

A solution to the mean field rough differential equation dXt “ F
`

Xt,LpXtq
˘

dW t,

on the time interval r0, T s, with given initial condition X0p¨q P L
2pΩ,F ,P;Rdq is a random

controlled path Xp¨q starting from X0p¨q and satisfying the same prescription as Y p¨q,
such that for P-a.e. ω the path Xpωq and Γ

`

ω,Xpωq, Xp¨q
˘

coincide.

We should more properly replace Xpωq in Γ
`

ω,Xpωq, Y p¨q
˘

by
`

Xpωq ; δxXpωq ; 0
˘

and
Y p¨q by

`

Y p¨q ; δxY p¨q ; 0
˘

, but we stick to the above lighter notation. Observe also that
our formulation bypasses any requirement on the properties of the map Γ itself. To
make it clear, we should be indeed tempted to check that, for a random controlled path
Xp¨q, the collection

`

Γpω,Xpωq, Y p¨qq
˘

ωPΩ
, for Y p¨q as in the statement, is also a random

controlled path. Somehow, our definition of a solution avoids this question; however, we
need to check this fact in the end; below, we refer to it as the stability properties of Γ,
see Section 4.1.

What remains of the above definition when W is the Itô or Stratonovich enhancement
of a Brownian motion? The key point to connect the above notion of solution with the
standard notion of solution to mean field stochastic differential equation is to observe
that the rough integral therein should be, if a solution exists, the limit of the compensated
Riemann sums

n´1
ÿ

j“0

ˆ

F
`

Xtj pωq, Xtj p¨q
˘

Wtj ,tj`1
pωq ` BxF

`

Xtj pωq, Xtj p¨q
˘

F
`

Xtj pωq, Xtj p¨q
˘

Wtj ,tj`1
pωq

`

A

DµF
`

Xtj pωq, Xtj p¨q
˘`

Xtj p¨q
˘

F
`

Xtj pωq, Xtj p¨q
˘

WKK
tj ,tj`1

p¨, ωq
E

˙

,

as the step of the dissection 0 “ t0 ă ¨ ¨ ¨ ă tn “ t tends to 0. When the solution is
constructed by a contraction argument, such as done below, the process pXtp¨qq0ďtďT is
adapted with respect to the completion of the filtration pFtq0ďtďT generated by the initial
condition X0p¨q and the Brownian motion W p¨q. Returning if necessary to Example 2.2,
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we then check that E
“

WKK
tj ,tj`1

p¨, ωq |Ftj
‰

“ 0, whatever the interpretation of the rough
integral, Itô or Stratonovich. Pay attention that the conditional expectation is taken with
respect to “¨”, while ω is kept frozen. This implies that, for any j P t0, ¨ ¨ ¨ , n´1u, we have

A

DµF
`

Xtj pωq, Xtj p¨q
˘`

Xtj p¨q
˘

F
`

Xtj pωq, Xtj p¨q
˘

WKK
tj ,tj`1

p¨, ωq
E

“ 0.

This proves that the solution to the rough mean field equation coincides with the solution
that is obtained when (1.2) is interpreted in the standard McKean-Vlasov sense (the
stochastic integral in the McKean-Vlasov equation being usually understood in the Itô
sense and the iterated integral W being defined accordingly).

We formulate here the regularity assumptions on Fpx, µq needed to show that Γ

satisfies the required stability properties and to run Picard’s iteration for proving the
well-posed character of (1.4) (or (1.2)) in small time, or in some given time interval. Recall
from (3.6) the definition of DµFpx, ¨qp¨q as a function from P2pR

dqˆRd to L pRd,Rd b

Rmq – Rd b Rm b Rd such that DµFpx,LpZqqpZq “ ∇ZFpx, Zq, where we emphasize
the dependence of DµFpx, ¨q on µ “ LpZq by writing DµFpx, µqp¨q. On top of Regularity
assumptions 1, we assume

Regularity assumptions 2.

• The function BxF is differentiable in px, µq in the same sense as F itself.

• For each px, µq P Rd ˆ P2pR
dq, there exists a version of DµFpx, µqp¨q P L2

µpR
d;Rd b

Rmq such that the map px, µ, zq ÞÑ DµFpx, µqpzq from Rd ˆ P2pR
dq ˆ Rd to Rd b

RmbRd is of class C1, the derivative in the direction µ being understood as before.

• The function
`

x, Z
˘

ÞÑ B2
xF

`

x,LpZq
˘

fromRdˆL2pΩ,F ,P;Rdq toRdbRmbRdbRd –
L pRd bRd,Rd bRmq is bounded by Λ and Λ-Lipschitz continuous.

• The three functions px, Zq ÞÑ BxDµF
`

x,LpZq
˘

pZp¨qq, px, Zq ÞÑ DµBxF
`

x,LpZq
˘

pZp¨qq,
and px, Zq ÞÑ BzDµF

`

x,LpZq
˘

pZp¨qq from Rd ˆ L2pΩ,F ,P;Rdq to L2
`

Ω,F ,P;Rd b

RmbRdbRd
˘

, are bounded by Λ and Λ-Lipschitz continuous. (By Schwarz’ theorem,
the transpose of BxDµFi,j is in fact equal to DµBxFi,j , for any i P t1, ¨ ¨ ¨ , du and
j P t1, ¨ ¨ ¨ ,mu.)

• For each µ P P2pR
dq, we denote by D2

µFpx, µqpz, ¨q the derivative of DµFpx, µqpzq
with respect to µ – which is indeed given by a function. For z1 P Rd, D2

µFpx, µqpz, z1q
is an element of Rd bRm bRd bRd.

Denote by
`

rΩ, rF , rP
˘

a copy of pΩ,F ,Pq, and given a random variable Z on pΩ,F ,Pq,
write rZ for its copy on prΩ, rF , rPq. We assume that px, Zq ÞÑ D2

µF
`

x,LpZq
˘`

Zp¨q, rZp¨q
˘

,

from Rd ˆ L2pΩ,F ,P;Rdq to L2
`

Ω ˆ rΩ,F b rF ,P b rP;Rd bRm b Rd bRd
˘

, is bounded
by Λ and Λ-Lipschitz continuous.

The two functions Fpx, µq “
ş

fpx, yqµpdyq for some fuction f of class C3
b , and Fpx, µq “

g
`

x,
ş

yµpdyq
˘

for some function g of class C3
b , both satisfy Regularity assumptions 2.

We refer to [10, Chapter 5] and [11, Chapter 5] for other examples of functions that satisfy
the above assumptions and for sufficient conditions under which these assumptions are
satisfied. We feel free to abuse notations and write Zp¨q for LpZq in the argument of the
functions BxDµF, BzDµF and D2

µF. We prove in Section 4.1 that the map Γ sends some
large ball of its state space into itself for a small enough T . The contractive character
of Γ is proved in Section 4.2, and Section 4.3 is dedicated to proving the well-posed
character of (1.4).
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4.1 Stability of balls by Γ

Recall Λ was introduced in Regularity assumptions 1 and 2 as a bound on F and
some of its derivatives. Recall also from (2.14) the definition of N

`

r0, T s, ω;α
˘

. We also
use below the notations ~ ¨ ~ra,bs,w,p and ~ ¨ ~‹,ra,bs,w,p, for some interval ra, bs, to denote
the same quantity as in Definition 3.2 but for paths defined on ra, bs rather than on r0, T s
(the initial condition is then taken at time a).

Proposition 4.2. Let F satisfy Regularity assumptions 1 and w be a control satisfying
(2.8) and (2.9). Consider an ω-controlled path Xpωq together with a random controlled
path Y p¨q, both of them satisfying (3.8) together with

sup
0ďtďT

´

ˇ

ˇδxXtpωq
ˇ

ˇ_
@

δxYtp¨q
D

8

¯

ď Λ. (4.1)

‚ Assume that there exists a positive constant L such that we have

@

~Y p¨q~r0,T s,w,p
D2

8
ď L, (4.2)

and
�

�Xpωq
�

�

2

rti,ti`1s,w,p
ď L, (4.3)

for all 0 ď i ď N , with N :“ Npr0, T s, ω, 1{p4Lqq, and for the sequence of times
`

ti :“

τip0, T, ω, 1{p4Lqq
˘

i“0,¨¨¨ ,N`1
given by (2.13) with $ps, tq “ wps, t, ωq1{p.

Then:
‚ There exists a constant c ą 1, which depends only on Λ, such that (4.2) and (4.3)

remain true if we replace L by L1, provided that L1 ě cL and the partition ptiqi“0,¨¨¨ ,N`1 is
recomputed accordingly (since L enters the definition of the partition). Also, we can find
a constant L10, only depending on L, such that for the same constant c and for L1 ě L10,
the path Γ

`

ω,Xpωq, Y p¨q
˘

satisfies for each ω the size estimate (4.3), L being replaced by
c in the right-hand side and the partition ptiqi“0,¨¨¨ ,N`1 in the left-hand side being defined
with respect to L1 instead of L.
‚ Moreover, there exist two constants L0 and C, only depending on Λ, such that, if L

in (4.2) and (4.3) is greater than L0, the following estimates hold for each ω:

�

�Γ
`

ω,Xpωq, Y p¨q
˘
�

�

2

r0,T s,w,p
ď C

!

1`N
´

r0, T s, ω, 1{p4Lq
¯2p1´1{pq)

,

�

�Γ
`

ω,Xpωq, Y p¨q
˘
�

�

2

‹,r0,T s,w,p
ď C

ˇ

ˇX0pωq
ˇ

ˇ

2
` C

"

1`N
´

r0, T s, ω, 1{p4Lq
¯2p1´1{pq

*

;
(4.4)

‚ Lastly, if Xpωq is the ω-realization of a random controlled path Xp¨q “
`

Xpω1q
˘

ω1PΩ1

such that the estimate
�

�Xpω1q
�

�

2

rti,ti`1s,w,p
ď L holds for all ω1, for the ω1-dependent

partition
`

ti :“ τip0, T, ω
1, 1{p4Lqq

˘

i“0,¨¨¨ ,N`1
of r0, T s, with L in (4.2) satisfying L ě L0

and with N :“ Npr0, T s, ω1, 1{p4Lqq, and if T is small enough to have

A

N
`

r0, T s, ¨, 1{p4Lq
˘

E

8
ď 1;

then

@

~Γp¨, Xp¨q, Y q~r0,T s,w,p
D2

8
ď 2C ď L,

and
A

�

�Γp¨, Xp¨q, Y q
�

�

‹,r0,T s,w,p

E2

2
ď C

´

2`
@

X0p¨q
D2

2

¯

.

Following the discussion after (3.5), the measurability properties of the map ω ÞÑ

Γ
`

ω,Xpωq, Y p¨q
˘

implicitly required above can be checked by approximating the integral
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in the definition of Γ
`

ω,Xpωq, Y p¨q
˘

, using (3.3). We also notice that the constraint L ě L0

required in the second and third bullet points may be easily circumvented. Indeed, the
first claim in the statement guarantees that, for L satisfying (4.2) and (4.3), L1 ě cL also
satisfy (4.2) and (4.3), see footnote4. In particular, we can always apply the second and
third bullet points with L1 ě cL0 instead of L itself, which is a good point since L1 is here
a free parameter while the value of L is prescribed by the statement.

Proof. We first explain the reason why (4.3) remains true for possibly larger values of
L provided that the right-hand side is multiplied by a universal multiplicative constant.
Take L1 ą L and call pt1jqj“0,¨¨¨ ,N 1`1 the corresponding dissection. It is clear that any
interval rt1j , t

1
j`1s must be included in an interval of the form rti, ti`2 ^ T s. If rt1j , t

1
j`1s Ă

rti, ti`1s, the proof is done. If ti`1 P pt
1
j , t
1
j`1q, it is an easy exercise5 to check that

~ ¨ ~rt1j ,t
1
j`1s,w,p

ď γ~ ¨ ~rt1j ,ti`1s,w,p ` γ~ ¨ ~rti`1,ti`2^T s,w,p, for some universal constant γ.

This yields ~ ¨ ~rt1j ,t1j`1s,w,p
ď 2γL1{2, which is indeed less than pL1q1{2 if L1 ě 22γ2L.

Given this preliminary remark, the proof proceeds in three steps.
‚ For ω P Ω, consider a subdivision ptiq0ďiďN`1 of r0, T s such that wpti, ti`1, ωq ď 1

for all i P t0, ¨ ¨ ¨ , Nu, for some integer N ě 0. Then, following [16, Proposition 4]
(rearranging the terms therein), we know that6

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ ` γwpti, ti`1, ωq
1{p

�

�

�
F
`

Xpωq, Y p¨q
˘

�

�

�

rti,ti`1s,w,p
,

for a universal constant γ that may depend on Λ. By Proposition 3.5 and (4.1), we deduce

4While the reader may find it obvious, she/he must be aware of the fact that, in (4.3), ti and ti`1 themselves
depend on L, which forces to recompute the subdivision when L is changed.

5The proof is as follows. By the super-addivitiy of w, see (2.9), and the inequality a1{p ` b1{p ď 21´1{ppa`
bq1{p, the terms }Xpωq}rt1j ,t

1
j`1s,w,p

, }δxXpωq}rt1j ,t
1
j`1s,w,p

and xδµXpω, ¨qyrt1j ,t
1
j`1s,w,p,4{3

are easily handled.

So, the only difficulty is to handle }RX}rt1j ,t
1
j`1s,w,p

. By (3.1), we have, for any 0 ď r ď s ď t ď T ,

RXr,tpωq “ RXr,spωq `R
X
s,tpωq ` δxXr,spωqWs,tpωq ` E

“

δµXr,spω, ¨qWs,tp¨q
‰

, which suffices for our purpose.
6In fact, the inequality may be checked directly. Identity (3.3) together with Proposition 3.5 and Regularity

assumptions 1 say that the remainder R
ş

F in the ω-controlled expansion of
ş¨

ti
F
`

Xrpωq, Yrp¨q
˘

dW rpωq
satisfies

›

›R
ş

F
›

›

rti,ti`1s,w,p{2
ď 2 sup

sPrti,ti`1s

´

ˇ

ˇδx
“

F
`

Xspωq, Ysp¨q
˘‰ˇ

ˇ`
@

δµ
“

F
`

Xspωq, Ysp¨q
˘‰D

4{3

¯

` γ~FpXpωq, Y p¨qq~rti,ti`1s,w,pwpti, ti`1, ωq
1{p

ď γ ` γ~FpXpωq, Y p¨qq~rti,ti`1s,w,pwpti, ti`1, ωq
1{p,

for a constant γ that may depend on Λ. This permits to handle R
ş

F. As the Gubinelli derivative of
ş¨

ti
F
`

Xrpωq, Yrp¨q
˘

dW rpωq is exactly given by FpX¨pωq, Y¨p¨qq itself, we get from (3.1) with X “ F that

›

›FpXpωq, Y p¨qq
›

›

rti,ti`1s,w,p
ď 2 sup

sPrti,ti`1s

´

ˇ

ˇδx
“

F
`

Xspωq, Ysp¨q
˘‰ˇ

ˇ`
@

δµ
“

F
`

Xspωq, Ysp¨q
˘‰D

4{3

¯

` }RF}rti,ti`1s,w,p{2wpti, ti`1, ωq
1{p,

where RF is the remainder in the expansion of F. We conclude as for R
ş

F. In order to control the variation of
ş¨

ti
F
`

Xrpωq, Yrp¨q
˘

dW rpωq itself, it suffices to invoke (3.1) again, but with X “
ş

F, which yields

›

›

›

›

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq

›

›

›

›

rti,ti`1s,w,p

ď sup
sPrti,ti`1s

ˇ

ˇF
`

Xspωq, Ysp¨q
˘ˇ

ˇ` }R
ş

F}rti,ti`1s,w,p{2wpti, ti`1, ωq
1{p.

The conclusion is the same.
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that (for a new value of CΛ,Λ)
�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ ` CΛ,Λ γ wpti, ti`1, ωq
1{p

´

1` ~Xpωq~2
rti,ti`1s,w,p

`
@

~Y p¨q~r0,T s,w,p
D2

8

¯

.

(4.5)

By the first conclusion in the statement (see also the discussion after the statement
itself), we can assume that L differs from the value prescribed in the statement and
is as large as needed. So, for the time being, we take L ě 1 and we assume that
wpti, ti`1, ωq

1{p ď 1{p4Lq ď 1 and
@

~Y p¨q~r0,T s,w,p
D2

8
ď L, (4.6)

and
�

�Xpωq
�

�

2

rti,ti`1s,w,p
ď L, (4.7)

but we are free to increase the value of L if needed. Then, by (4.5),
�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď p1` CΛ,Λqγ.

Hence, changing γ into p1` CΛ,Λqγ,
�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq

�

�

�

�

2

rti,ti`1s,w,p

ď γ2 ă L, (4.8)

if L ą γ2, in which case Γ
`

ω,Xpωq, Y p¨q
˘

satisfies (4.3). This completes the proof of the
first bullet point in the conclusion of the statement.
‚ We now use a concatenation argument to get an estimate on the whole interval

r0, T s. For all s ă t in r0, T s, we have
ˇ

ˇ

ˇ

“

Γ
`

ω,Xpωq, Y p¨q
˘‰

s,t

ˇ

ˇ

ˇ
(4.9)

ď

N
ÿ

j“0

ˇ

ˇ

ˇ

“

Γ
`

ω,Xpωq, Y p¨q
˘‰

t1j ,t
1
j`1

ˇ

ˇ

ˇ

ď γ
N
ÿ

j“0

w
`

t1j , t
1
j`1, ω

˘1{p

ď γ

˜

N
ÿ

j“0

wpt1j , t
1
j`1, ωq

¸1{p
`

N ` 1
˘pp´1q{p

ď γ wps, t, ωq1{p
`

N ` 1
˘pp´1q{p

,

where we let t1i “ maxps,minpt, tiqq and where used the super-additivity of w in the last
line. In the same way,

ˇ

ˇ

ˇ
δx
“

Γ
`

ω,Xpωq, Y p¨q
˘‰

s,t

ˇ

ˇ

ˇ
ď γ wps, t, ωq1{p

`

N ` 1
˘pp´1q{p

. (4.10)

Setting, abusively, Fpω, ¨q :“
`

Frpω, ¨q
˘

0ďrďT
:“

`

FpXrpωq, Yrp¨qq
˘

0ďrďT
, we have

RΓ
s,tpωq “

ż t

s

Frpω, ¨qdW rpωq ´ Fspω, ¨qWs,tpωq

“

N
ÿ

j“0

ˆ
ż t1j`1

t1j

Frpω, ¨qdW rpωq ´ Fspω, ¨qWt1j ,t
1
j`1

˙

(4.11)

“

N
ÿ

j“0

!

RΓ
t1j ,t

1
j`1
pωq `

`

Ft1j pω, ¨q ´ Fspω, ¨q
˘

Wt1j ,t
1
j`1
pωq

)

.
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Mean field rough equations

The most difficult term in (4.11) is
řN
j“0

`

Ft1j pω, ¨q ´ Fspω, ¨q
˘

Wt1j ,t
1
j`1
pωq. By Abel trans-

formation, this is the same as

N
ÿ

j“1

j´1
ÿ

k“0

`

Ft1k`1
pω, ¨q ´ Ft1kpω, ¨q

˘

Wt1j ,t
1
j`1
pωq “

N´1
ÿ

k“0

`

Ft1k`1
pω, ¨q ´ Ft1kpω, ¨q

˘

N
ÿ

j“k`1

Wt1j ,t
1
j`1
pωq

“

N´1
ÿ

k“0

`

Ft1k`1
pω, ¨q ´ Ft1kpω, ¨q

˘

Wt1k`1,t
pωq.

We notice that
`

Ft1k`1
pω, ¨q ´ Ft1kpω, ¨q

˘

“ δxrΓpω,Xpωq, Y p¨qqst1k,t1k`1
, for k “ 0, ¨ ¨ ¨ , N ´ 1,

can be bounded by γwpt1k, t
1
k`1, ωq

1{p. Hence the sum
řN
j“0

`

Ft1j pω, ¨q´Fspω, ¨q
˘

Wt1j ,t
1
j`1
pωq

is bounded by

γ wps, t, ωq1{p
N´1
ÿ

k“0

wpt1k, t
1
k`1, ωq

1{p ď γpN ` 1qpp´1q{p wps, t, ωq2{p.

To proceed with the other term in (4.11), we note that the remainder term RΓ
t1j ,t

1
j`1
pωq

can be also estimated by means of (4.8). We have |RΓ
t1j ,t

1
j`1
pωq| ď γwpt1j , t

1
j`1, ωq

2{p. Since

1´ 2{p ď 1´ 1{p, we deduce that there exists a constant Cγ depending only on γ such
that

ˇ

ˇRΓ
s,tpωq

ˇ

ˇ ď Cγ pN ` 1qpp´1q{p wps, t, ωq2{p.

Changing the value of Cγ from line to line, we end up with

�

�

�
Γ
`

ω,Xpωq, Y p¨q
˘

�

�

�

2

r0,T s,w,p
ď Cγ pN ` 1q2pp´1q{p

ď Cγ
`

1`N2pp´1q{p
˘

,

which proves the bound (4.4) by choosing ptiqi“0,¨¨¨ ,N`1 “
`

τip0, T, ω, 1{p4Lqq
˘

i“0,¨¨¨ ,N`1
,

as defined in (2.13), and N “ N
`

r0, T s, ω, 1{p4Lq
˘

. Recall that the above is true for
L ą γ2.
‚ Assume now that Xpωq is the ω-realization of a random controlled path Xp¨q “

pXpω1qqω1PΩ1 satisfying (4.3) for any ω1, for the ω1-dependent partition ptiqi“0,¨¨¨ ,N`1.
Then, taking the fourth moment with respect to ω in the conclusion of the second point
we get

A
�

�

�
Γ
`

¨, Xp¨q, Y
˘

�

�

�

r0,T s,w,p

E2

8
ď Cγ

´

1`
A

N
`

r0, T s, ¨, 1{p4Lq
˘

E2pp´1q{p

8

¯

.

We get the conclusion of the statement if one assumes that
@

N
`

r0, T s, ¨, 1{p4Lq
˘D

8
ď 1, by

choosing L such that 2Cγ ď L.

Remark that if
@

N
`

r0, 1s, ¨, 1{p4Lq
˘D

8
is finite, then we can choose T ď 1 small enough

such that
@

N
`

r0, T s, ¨, 1{p4Lq
˘D

8
ď 1. (Since N

`

r0, ts, ω, 1{p4Lq
˘

converges to 0 as t Œ 0,
for any ω P Ω, the result follows from dominated convergence.)

4.2 Contractive property of Γ

Proposition 4.3. Let F satisfy Regularity assumptions 1 and Regularity assump-
tions 2 and w be a control satisfying (2.8) and (2.9). Consider two ω-controlled paths
Xpωq and X 1pωq, defined on a time interval r0, T s, together with two random controlled
paths Y p¨q and Y 1p¨q, all of them satisfying (3.8) together with

ˇ

ˇδxXpωq
ˇ

ˇ_
ˇ

ˇδxX
1pωq

ˇ

ˇ_
@

δxY p¨q
D

8
_
@

δxY
1p¨q

D

8
ď Λ, (4.12)
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Mean field rough equations

together with the size estimates

@

~Y p¨q~r0,T s,w,p
D2

8
ď L0,

@

~Y 1p¨q~r0,T s,w,p
D2

8
ď L0,

(4.13)

and
�

�Xpωq
�

�

2

rt0i ,t
0
i`1s,w,p

ď L0,
�

�X 1pωq
�

�

2

rt0i ,t
0
i`1s,w,p

ď L0, (4.14)

for i P t0, ¨ ¨ ¨ , N0u, for some L0 ě 1, with N0 “ N
`

r0, T s, ω, 1{p4L0q
˘

given by (2.14), and
for the sequence

`

t0i “ τip0, T, ω, 1{p4L0qq
˘

i“0,¨¨¨ ,N0`1
given by (2.13).

Then, we can find a constant γ, only depending on L0 and Λ, such that, for any
partition ptiqi“0,¨¨¨ ,N refining7 pt0i qi“0,¨¨¨ ,N0 and satisfying wpti, ti`1, ωq

1{p ď 1{p4Lq for
some L ě L0, we have

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq ´

ż ¨

ti

F
`

X 1rpωq, Y
1
r p¨q

˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ wp0, ti, ωq
1{p

`

1`
1

4L

˘

´

�

�∆Xpωq
�

�

r0,tis,w,p
`
@

~∆Y p¨q~r0,T s,w,p
D

8

¯

`
γ

4L

´

�

�∆Xpωq
�

�

rti,ti`1s,w,p
`
@

~∆Y p¨q~r0,T s,w,p
D

8

¯

,

where ∆Xtpωq :“ Xtpωq ´X
1
tpωq, ∆Ytp¨q :“ Ytp¨q ´ Y

1
t p¨q, t P r0, T s.

Proof. We get the conclusion after four steps. Following the statement, we are given
a subdivision ptiqi“0,¨¨¨ ,N`1 of r0, T s such that wpti, ti`1, ωq

1{p ď 1{p4Lq, for a frozen
ω P Ω and for L ě L0. We assume that ptiqi“0,¨¨¨ ,N`1 refines the subdivision

`

t0i “

τip0, T, ω, 1{p4L0qq
˘

i“0,¨¨¨ ,N0`1
, where N0pωq “ N

`

r0, T s, ω, 1{p4L0q
˘

. Like in the first step

of the proof of Proposition 4.2 (see in particular footnote6), we start from the estimate
�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq ´

ż ¨

ti

F
`

X 1rpωq, Y
1
r p¨q

˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ
´

sup
sPrti,ti`1s

ˇ

ˇF ps,Xspωq, Ysp¨q
˘

´ F ps,X 1spωq, Y
1
sp¨q

˘
ˇ

ˇ

` sup
sPrti,ti`1s

ˇ

ˇδx
“

F ps,Xspωq, Ysp¨q
˘

´ F ps,X 1spωq, Y
1
sp¨q

˘‰
ˇ

ˇ

` sup
sPrti,ti`1s

A

δµ
“

F ps,Xspωq, Ysp¨q
˘

´ F ps,X 1spωq, Y
1
sp¨q

˘‰

E

4{3

¯

` γ wpti, ti`1, ωq
1{p

�

�F
`

Xpωq, Y p¨q
˘

´ FpX 1pωq, Y 1p¨q
˘
�

�

rti,ti`1s,w,p
,

for a universal constant γ ě 1. Modifying the constant γ if necessary, we may easily
change s into ti in the first three lines of the right-hand side. We obtain

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq ´

ż ¨

ti

F
`

X 1rpωq, Y
1
r p¨q

˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ
´

ˇ

ˇF
`

Xtipωq, Ytip¨q
˘

´ F
`

X 1tipωq, Y
1
tip¨q

˘
ˇ

ˇ

`
ˇ

ˇδx
“

F pXtipωq, Ytip¨q
˘

´ F
`

X 1tipωq, Y
1
tip¨q

˘‰
ˇ

ˇ

`

A

δµ
“

F
`

Xtipωq, Ytip¨q
˘

´ F
`

X 1tipωq, Y
1
tip¨q

˘‰

E

4{3

¯

` γ wpti, ti`1, ωq
1{p

�

�F
`

Xpωq, Y p¨q
˘

´ F
`

X 1pωq, Y 1p¨q
˘
�

�

,rti,ti`1s,w,p
.

(4.15)

7This means that ptiqi“0,¨¨¨ ,N is included in pt0i qi“0,¨¨¨ ,N0 .
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Mean field rough equations

The first point is to bound the quantity
�

�F
`

Xpωq, Y p¨q
˘

´ F
`

X 1pωq, Y 1p¨q
˘
�

�

‹,rti,ti`1s,w,p
,

which contains all the terms that appear in the above inequality.
Step 1. We first analyse the term

∆Fpω, ¨q :“ F
`

Xpωq, Y p¨q
˘

´ F
`

X 1pωq, Y 1p¨q
˘

:“
´

F
`

Xtpωq, Ytp¨q
˘

´ F
`

X 1tpωq, Y
1
t p¨q

˘

¯

0ďtďT
.

‚ Initial condition of ∆Fpω, ¨q. As
ˇ

ˇr∆Fpω, ¨qsti
ˇ

ˇ ď Λ
`

|∆Xtipωq| ` x|∆Ytip¨q|y2
˘

, we
have, from Lemma 3.3 and from the two identities ∆X0pωq “ 0 and ∆Y0p¨q “ 0,

ˇ

ˇr∆Fpω, ¨qsti
ˇ

ˇ ď 2Λwp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

.

‚ Variation of ∆Fpω, ¨q. Using the notations (3.10) together with similar ones for the
processes tagged with a prime, we have

“

∆Fpω, ¨q
‰

s,t

“

ż 1

0

!

BxF
´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯

Xs,tpωq ´ BxF
´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯

X 1s,tpωq
)

dλ

`

ż 1

0

E
!

∇ZF
´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯

Ys,tp¨q ´∇ZF
´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯

Y 1s,tp¨q
)

dλ.

We now use the following three facts. First, X0pωq “ X 10pωq and Y0p¨q “ Y 10p¨q; second,
from Regularity assumptions 1, for any x P Rd and Z P L2pΩ,F ,P;Rdq, |BxFpx, Zq|
and

@

∇ZFpx, Zqy2 are bounded by Λ; last, px, Zq ÞÑ BxFpx, Zq and px, Zq ÞÑ ∇ZFpx, Zq are
Λ-Lipschitz continuous. Hence, allowing γ to depend on Λ and to increase from line to
line, we get, for s, t in the interval rti, ti`1s,

ˇ

ˇr∆Fpω, ¨qss,t
ˇ

ˇ ď Λ
´

ˇ

ˇ∆Xs,tpωq
ˇ

ˇ`
@

∆Ys,tp¨q
D

2

¯

` Λ
´

|Xs,tpωq| `
@

Ys,tp¨q
D

2

¯

ˆ

!

|∆Xspωq| ` x∆Ysp¨qy2 ` |∆Xs,tpωq| `
@

∆Ys,tp¨q
D

2

)

ď (a)` (b),

where (a) :“ γ wps, t, ωq1{p
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

, and (b) “

(b1)ˆ (b2) with

(b1) :“ γ wps, t, ωq1{p
´

~Xpωq~rti,ti`1s,w,p `
@

~Y p¨q~rti,ti`1s,w,p

D

4

¯

(b2) :“ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

` wpti, ti`1, ωq
1{p

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

.

It follows that we have
›

›∆Fpω, ¨q}rti,ti`1s,w,p ď γ
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

` γ
´

~Xpωq~rti,ti`1s,w,p `
@

~Y p¨q~rti,ti`1s,w,p

D

4

¯

ˆ (b2).

Allowing the constant γ to depend on L0 and Λ, and using (4.13) and (4.14) together
with the bound wpti, ti`1, ωq

1{p ď 1{p4Lq, we get

›

›∆Fpω, ¨q}rti,ti`1s,w,p ď γ
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

` γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

.
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Step 2. We now handle the Gubinelli derivative δxr∆Fpω, ¨qs. We start from

δxr∆Fpω, ¨qst “
“

BxF
`

Xtpωq, Ytp¨q
˘

´ BxF
`

X 1tpωq, Y
1
t p¨q

˘‰

δxXtpωq

` BxF
`

X 1tpωq, Y
1
t p¨q

˘

∆δxXtpωq.
(4.16)

‚ Initial condition of δx
“

∆Fpω, ¨q
‰

. By Regularity assumptions 1, (4.12) and the
fact that ∆δxXt “ δx∆Xt,

ˇ

ˇδx
“

∆Fpω, ¨q
‰

ti

ˇ

ˇ ď γ
´

ˇ

ˇδx∆Xtipωq
ˇ

ˇ`
ˇ

ˇ∆Xtipωq
ˇ

ˇ`
@

∆Ytip¨q
D

2

¯

ď γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

.

‚ Variation of Bx
“

∆Fpω, ¨q
‰

. Similarly, using formula (4.16), we get
ˇ

ˇ

ˇ
δx
“

∆Fpω, ¨q
‰

s,t

ˇ

ˇ

ˇ
ď Λ

ˇ

ˇrδxXpωqss,t
ˇ

ˇ

´

|∆Xspωq| `
@

∆Ysp¨q
D

2

¯

` Λ
ˇ

ˇ

ˇ

“

BxF
`

Xpωq, Y p¨q
˘

´ BxF
`

X 1pωq, Y 1p¨q
˘‰

s,t

ˇ

ˇ

ˇ

` Λ
ˇ

ˇ

ˇ

“

∆δxXpωq
‰

s,t

ˇ

ˇ

ˇ
` Λ

ˇ

ˇ∆δxXspωq
ˇ

ˇ

ˇ

ˇ

ˇ

“

BxF
`

X 1pωq, Y 1p¨q
˘‰

s,t

ˇ

ˇ

ˇ
.

(4.17)

The second term in the right-hand side is handled as r∆Fpω, ¨qss,t in the first step, with
s, t in rti, ti`1s. By the aforementioned identity ∆δxXpωq “ δx∆Xpωq, the third term is
less than Λwps, t, ωq1{p ~∆Xpωq~rti,ti`1s,w,p. The term

ˇ

ˇ∆δxXspωq
ˇ

ˇ

ˇ

ˇrBxFpX 1pωq, Y 1p¨qqss,t
ˇ

ˇ is
less than

γ wps, t, ωq1{p
´

wp0, ti, ωq
1{p~∆Xpωq~r0,tis,w,p ` wpti, ti`1, ωq

1{p~∆Xpωq~rti,ti`1s,w,p

¯

ˆ

´

~X 1pωq~rti,ti`1s,w,p `
@

~Y 1p¨q~rti,ti`1s,w,p

D

4

¯

(4.18)

ď γ wps, t, ωq1{p
´

wp0, ti, ωq
1{p~∆Xpωq~r0,tis,w,p ` ~∆Xpωq~rti,ti`1s,w,p

¯

,

where we used again (4.13) and (4.14). Now, the first term in (4.17) is less than

γ wps, t, ωq1{p ~X~rti,ti`1s,w,p

!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

` wpti, ti`1, ωq
1{p

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯)

.

Hence, by (4.14) and the fact that wpti, ti`1, ωq
1{p ď 1{p4Lq,

ˇ

ˇrδxXpωqss,t
ˇ

ˇ

´

|∆Xspωq| ` x|∆Ysp¨q|y2

¯

ď γ wps, t, ωq1{p
!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

`

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯)

.

So, the final bound for
›

›δx
“

∆Fpω, ¨q
‰
›

›

rti,ti`1s,w,p
is

γ
´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

4

¯

` γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

,

which yields the same bound as in the first step.
Step 3. We now handle the other Gubinelli derivative δµ

“

∆Fpω, ¨q
‰

, for which we have

δµ
“

∆Fpω, ¨q
‰

t
“

”

∇ZF
`

Xtpωq, Ytp¨q
˘

´∇ZF
`

X 1tpωq, Y
1
t p¨q

˘

ı

δxYtp¨q

`∇ZF
`

X 1tpωq, Y
1
t p¨q

˘

∆δxYtp¨q.
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Mean field rough equations

‚ Initial condition of δµ
“

∆Fpω, ¨q
‰

. Proceeding as before,

A

δµr∆Fpω, ¨qsti

E

4{3
ď γ

´

ˇ

ˇ∆Xtipωq
ˇ

ˇ`
@

∆Ytip¨q
D

4
`
@

δx∆Ytip¨q
D

4

¯

ď γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

,

where we used the Hölder inequality with exponents 3 and 3{2:

E
”

ˇ

ˇ∆δxYtp¨q
ˇ

ˇ

4{3ˇ
ˇ∇ZF

`

X 1tpωq, Y
1
t p¨q

˘
ˇ

ˇ

4{3
ı3{4

ď E
”

ˇ

ˇ∆δxYtp¨q
ˇ

ˇ

4
ı1{4

E
”

ˇ

ˇ∇ZF
`

X 1tpωq, Y
1
t p¨q

˘
ˇ

ˇ

2
ı1{2

.

‚ Variation of Bµr∆Fpω, ¨qs. Following (4.17) and using again Hölder inequality with
exponents 3 and 3{2,

A

“

δµr∆Fpω, ¨qs
‰

s,t

E

4{3
ď Λ

@

rδxY p¨qss,t
D

4

´

|∆Xspωq| `
@

∆Ysp¨q
D

2

¯

` Λ
A

“

∇ZF
`

Xpωq, Y p¨q
˘

´∇ZF
`

X 1pωq, Y 1p¨q
˘‰

s,t

E

4{3
(4.19)

` Λ
@

r∆δxY p¨qss,t
D

4
` Λ

@

∆δxYsp¨q
D

4

A

“

∇ZF
`

X 1pωq, Y 1p¨q
˘‰

s,t

E

2
.

As for the fourth term, we get, following (4.18),

@

∆δxYsp¨q
D

4

A

“

∇ZF
`

Xpωq, Y p¨q
˘‰

s,t

E

2

ď γ wps, t, ωq1{p
´

wp0, ti, ωq
1{p

@

~∆Y p¨q~r0,tis,w,p
D

8
`
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯

.

Recalling that ∆δxY p¨q “ δx∆Y p¨q, the third term in (4.19) is less than 2Λwps, t, ωq1{p ˆ
@

~∆Y p¨q~rti,ti`1s,w,p

D

8
. To handle the first term in (4.19), we proceed as in the second

step:

@

rδxY p¨qss,t
D

4

´

|∆Xspωq| `
@

∆Ysp¨q
D

2

¯

ď γ wps, t, ωq1{p
!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

4

¯

`

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯)

.

As for the second term in (4.19), we write
“

∇ZF
`

Xpωq, Y p¨q
˘

´∇ZF
`

X 1pωq, Y 1p¨q
˘‰

s,t
in

the form
“

DµF
`

Xpωq, Y p¨q
˘`

Y p¨q
˘

´DµF
`

X 1pωq, Y 1p¨q
˘`

Y 1p¨q
˘‰

s,t
and then expand it as

ż 1

0

!

BxDµF
´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯´

Y
pλq
s;ps,tqp¨q

¯

Xs,tpωq

´ BxDµF
´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯´

Y
pλq1
s;ps,tqp¨q

¯

X 1s,tpωq
)

dλ

`

ż 1

0

!

BzDµF
´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯´

Y
pλq
s;ps,tqp¨q

¯

Ys,tp¨q

´ BzDµF
´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯´

Y
pλq1
s;ps,tqp¨q

¯

Y 1s,tp¨q
)

dλ

`

ż 1

0

Ẽ
!

D2
µF

´

X
pλq
s;ps,tqpωq, Y

pλq
s;ps,tqp¨q

¯´

Y
pλq
s;ps,tqp¨q, Ỹ

pλq
s;ps,tq

¯

Ỹs,tp¨q

´ Ẽ
!

D2
µF

´

X
pλq1
s;ps,tqpωq, Y

pλq1
s;ps,tqp¨q

¯´

Y
pλq1
s;ps,tqp¨q, Ỹ

pλq1
s;ps,tq

¯

Ỹ 1s,tp¨q
)

dλ,

(4.20)
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Mean field rough equations

where the symbol „ is used to denote independent copies of the various random variables
and where, as before, we used the notation (3.10), with an obvious analogue for the
processes tagged with a prime or a tilde. By using Hölder inequality with exponents 3
and 3/2, we get

A

“

∇ZF
`

Xpωq, Y p¨q
˘

´∇ZF
`

X 1pωq, Y 1p¨q
˘‰

s,t

E

4{3
ď γ

!

ˇ

ˇ∆Xs,tpωq
ˇ

ˇ`
@

∆Ys,tp¨q
D

4

` |Xs,tpωq|
´

|∆Xspωq| `
@

∆Ysp¨q
D

2
`
ˇ

ˇ∆Xs,tpωq
ˇ

ˇ`
@

∆Ys,tp¨q
D

2

¯

`
@

Ys,tp¨q
D

4

´

ˇ

ˇ∆Xspωq
ˇ

ˇ`
@

∆Ysp¨q
D

2
`
ˇ

ˇ∆Xs,tpωq
ˇ

ˇ`
@

∆Ys,tp¨q
D

2

¯)

,

where, to get the first line, we used the boundedness and continuity assumptions of
the functions BxDµF, BzDµF and D2

µF. Up to the exponent 4 appearing on the first and
last lines of the right-hand side, we end up with the same bound as in the analysis of
r∆F pω, ¨qss,t in the first step, namely

@

δµr∆Fpω, ¨qs
D

rti,ti`1s,w,p,4{3
ď γ

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯

` γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

.

Step 4. We use (3.11) to write the remainder term R∆F in the form

R∆F
s,t “

´

BxF
`

Xspωq, Ysp¨q
˘

´ BxF
`

X 1spωq, Y
1
sp¨q

˘

¯

RXs,tpωq

` BxF
`

X 1spωq, Y
1
sp¨q

˘

´

RXs,tpωq ´R
X1

s,tpωq
¯

` E
”´

∇ZF
`

Xspωq, Ysp¨q
˘

´∇ZF
`

X 1spωq, Y
1
sp¨q

˘

¯

RYs,tp¨q
ı

` E
”

∇ZF
`

X 1spωq, Y
1
sp¨q

˘

´

RYs,tp¨q ´R
Y 1

s,tp¨q

¯ı

` (2)´ (2’)` (3)´ (3’)` (5)´ (5’),

with

(2) :“

ż 1

0

!

BxF
´

X
pλq
s;ps,tqpωq, Ytp¨q

¯

´ BxF
´

X
pλq
s;ps,tqpωq, Ysp¨q

¯)

Xs,tpωq dλ,

(3) :“

ż 1

0

!

BxF
´

X
pλq
s;ps,tqpωq, Ysp¨q

¯

´ BxF
`

Xspωq, Ysp¨q
˘

)

Xs,tpωq dλ,

(5) :“

ż 1

0

A!

∇ZF
`

Xspωq, Y
pλq
s;ps,tqp¨q

˘

´∇ZF
`

Xspωq, Ysp¨q
˘

)

Ys,tp¨q
E

dλ,

and similarly for (2’), (3’) and (5’), putting a prime on all the occurrences of X and Y .

We start with the first four lines in R∆F. Doing as before, the first line is less than

ˇ

ˇ

ˇ

”

BxF
`

Xspωq, Ysp¨q
˘

´ BxF
`

X 1spωq, Y
1
sp¨q

˘

ı

RXs,tpωq
ˇ

ˇ

ˇ

ď γ wps, t, ωq2{p
!

wp0, tiq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

`

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯)

.

We also have
ˇ

ˇ

ˇ
BxF

`

X 1spωq, Y
1
sp¨q

˘

´

RXs,tpωq ´R
X1

s,tpωq
¯
ˇ

ˇ

ˇ
ď Λwps, t, ωq2{p ~∆Xpωq~rti,ti`1s,w,p.
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Mean field rough equations

Similarly,
ˇ

ˇ

ˇ
E
”´

∇ZF
`

Xspωq, Ysp¨q
˘

´∇ZF
`

X 1spωq, Y
1
sp¨q

˘

¯

RYs,tp¨q
ı
ˇ

ˇ

ˇ

ď γ wps, t, ωq2{p
!

wp0, tiq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

`

´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯)

,
ˇ

ˇ

ˇ
E
”

∇ZF
`

Xspωq, Ysp¨q
˘

´

RYs,tp¨q ´R
Y 1

s,tp¨q

¯ı
ˇ

ˇ

ˇ
ď 2Λwps, t, ωq2{p

@

~∆Y p¨q~rti,ti`1s,w,p

D

8
.

Now,
ˇ

ˇ(2)´ (2’)
ˇ

ˇ is bounded above by

γ wps, t, ωq2{p
�

�∆Xpωq
�

�

rti,ti`1s,w,p

` γ wps, t, ωq1{p
ż 1

0

ż 1

0

ˇ

ˇ

ˇ

A

∇ZBxF
´

X
pλq
s;ps,tqpωq, Y

pλ1q
s;ps,tqp¨q

¯

Ys,tp¨q
E

´

A

∇ZBxF
´

X
pλq1
s;ps,tqpωq, Y

pλ1q1
s;ps,tqp¨q

¯

Y 1s,tp¨q
E
ˇ

ˇ

ˇ
dλdλ1,

so
ˇ

ˇ(2)´ (2’)
ˇ

ˇ is bounded above by

γ wps, t, ωq2{p
!

�

�∆Xpωq
�

�

rti,ti`1s,w,p
`
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

` wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯)

.

The difference (3) ´ (3’) can be handled in the same way. We end up with the term
(5)´ (5’). As Ys,t and Y 1s,t may be estimated in L4, it suffices to control

(5a) :“ ∇ZF
`

Xspωq, Y
pλq
s;ps,tqp¨q

˘

´∇ZF
`

Xspωq, Ysp¨q
˘

,

(5a)´ (5a’) :“
´

∇ZF
`

Xspωq, Y
pλq
s;ps,tqp¨q

˘

´∇ZF
`

Xspωq, Ysp¨q
˘

¯

´

´

∇ZF
`

X 1spωq, Y
pλq1
s;ps,tqp¨q

˘

´∇ZF
`

X 1spωq, Y
1
sp¨q

˘

¯

,

in L4{3. We have first
@

(5a)
D

L4{3 ď
@

(5a)
D

L2 ď γ wps, t, ωq1{p. In order to estimate
(5a)-(5a’), we rewrite (5a) in the form

(5a) “ DµF
´

Xspωq, Y
pλq
s;ps,tqp¨q

¯´

Y
pλq
s;ps,tqp¨q

¯

´DµF
´

Xspωq, Ysp¨q
¯

`

Ysp¨q
˘

“ λ

ż 1

0

BzDµF
´

Xspωq, Y
pλλ1q
s;ps,tqp¨q

¯´

Y
pλλ1q
s;ps,tqp¨q

¯

Ys,tp¨qdλ
1

` λ

ż 1

0

rE
”

D2
µF

´

Xspωq, Y
pλλ1q
s;ps,tqp¨q

¯´

Y
pλλ1q
s;ps,tqp¨q,

rY
pλλ1q
s;ps,tqp¨q

¯

rYs,tp¨q
ı

dλ1.

Then, using Hölder inequality with exponents 3 and 3{2 as in (4.20), we obtain that
@

(5a)-(5a’)
D

L4{3 is bounded above by

γ wps, t, ωq1{p
!

�

�∆Xpωq
�

�

rti,ti`1s,w,p
`
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

` wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯)

and end up with the bound
›

›

›
R∆Fpωq

›

›

›

rti,ti`1s,w,p{2
ď γ

!

wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

`
�

�∆Xpωq
�

�

rti,ti`1s,w,p
`
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

)

.
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Conclusion. Plugging the conclusion of the previous steps (including the analysis of
the various initial conditions) into equation (4.15), we get

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq ´

ż ¨

ti

F
`

X 1rpωq, Y
1
r p¨q

˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ
´

ˇ

ˇ∆Xtipωq
ˇ

ˇ`
ˇ

ˇδx∆Xtipωq
ˇ

ˇ`
@

∆Ytip¨q
D

4
`
@

δx∆Ytip¨q
D

4

` γ wpti, ti`1, ωq
1{p

�

�FpXpωq, Y p¨qq ´ FpX 1pωq, Y 1p¨qq
�

�

rti,ti`1s,w,p

¯

ď γ wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯

` γ wpti, ti`1, ωq
1{p

!´

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~rti,ti`1s,w,p

D

8

¯

` wp0, ti, ωq
1{p

´

~∆Xpωq~r0,tis,w,p `
@

~∆Y p¨q~r0,tis,w,p
D

8

¯)

.

(4.21)

Recalling that wpti, ti`1, ωq
1{p ď 1{p4Lq, we finally get

�

�

�

�

ż ¨

ti

F
`

Xrpωq, Yrp¨q
˘

dW rpωq ´

ż ¨

ti

F
`

X 1rpωq, Y
1
r p¨q

˘

dW rpωq

�

�

�

�

rti,ti`1s,w,p

ď γ wp0, ti, ωq
1{p

ˆ

1`
1

4L

˙

´

�

�∆Xpωq
�

�

r0,tis,w,p
`
@

~∆Y p¨q~r0,T s,w,p
D

8

¯

`
γ

4L

!

~∆Xpωq~rti,ti`1s,w,p `
@

~∆Y p¨q~r0,T s,w,p
D

8

)

.

This completes the proof.

4.3 Well-posedness

We first prove a well-posedness result in small time from which Theorem 1.1 follows.
Recall from Definition 4.1 the fact that the map Γ depends on X0pωq.

Theorem 4.4. Let F satisfy Regularity assumptions 1 and Regularity assump-
tions 2 and w be a control satisfying (2.8) and (2.9). Assume there exists a positive time
horizon T such that the random variables wp0, T, ¨q and

`

N
`

r0, T s, ¨, α
˘˘

αą0
have sub and

super exponential tails respectively, namely

P
`

wp0, T, ¨q ě t
˘

ď c1 exp
`

´tε1
˘

, P
`

Npr0, T s, ¨, αq ě t
˘

ď c2pαq exp
`

´t1`ε2pαq
˘

, (4.22)

for some positive constants c1 and ε1, and possibly α-dependent positive constants c2pαq
and ε2pαq. Then, there exist four positive reals γ, L0, L and η, only depending on Λ and
T , with the following property. For 0 ď S ď T such that

A

N
`

r0, Ss, ¨, 1{p4L0q
˘

E

8
ď 1, (4.23)

and
A”

γ
´

1` wp0, T, ¨q1{p
¯ıNpr0,Ss,¨,1{p4LqqE

32
ď η, (4.24)

and for any d-dimensional random square-integrable variable X0, there exists a ran-
dom controlled path Xp¨q “ pXpωqqωPΩ defined on the time interval r0, Ss satisfying
@

δxXp¨q
D

8
ď Λ, and

@

~Xp¨q~r0,Ss,w,p
D

8
ă 8 (the bound for the latter only depending

on Λ and the parameters in (4.22)), such that, for every ω P Ω, the paths Xpωq and
Γpω,Xpωq, Xp¨qq coincide on r0, Ss. Any other random controlled path X 1p¨q with X 10 “ X0

almost surely, and such that the paths X 1pωq and Γ
`

ω,X 1pωq, X 1p¨q
˘

coincide almost
surely, satisfies

P
´

~Xp¨q ´X 1p¨q~‹,r0,Ss,w,p “ 0
¯

“ 1.
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Proof. We construct a fixed point of Γ, see Definition 4.1, as the limit of the Picard
sequence

`

Xn`1pωq; δxX
n`1pωq; 0

˘

:“ Γ
´

ω,
`

Xnpωq; δxX
npωq; 0

˘

,
`

Xnpω1q; δxX
npω1q; 0

˘

ω1PΩ

¯

,
(4.25)

started from
`

X0pωq; BxX
0pωq; 0

˘

”
`

X0pωq; 0; 0
˘

, for each ω P Ω. By induction, for
any n ě 0, the pair pXpωq, Y p¨qq “ pXnpωq, Xnp¨qq satisfies (4.1) in the statement of
Proposition 4.2. Moreover, by the first bullet point in the conclusion of Proposition 4.2,
Xpωq “ Xnpωq satisfies (4.3) for any n ě 1, provided that L therein is taken large enough
(independently on n). By (4.4) and from the tail estimates (4.22), we deduce that, for
any n ě 0, ~Xnp¨q~r0,T s,w,p has finite moments of any order: According to Definition 3.2,
each Xnp¨q “ pXnpωqqωPΩ, n ě 1, is a random controlled trajectory.

Step 1. Instead of working with S such that
@

Npr0, Ss¨, 1{p4L0qq
D

8
ď 1, we directly

assume that
@

Npr0, T s, ¨, 1{p4L0qq
D

8
ď 1, with L0 as in Proposition 4.2. Recalling that we

may take L0 large enough so that (4.3) holds true with L “ L0 and X “ Xn for any n ě 0,
we deduce that, for any n ě 1, both Xn and Xn´1 satisfy (4.13) and (4.14): (4.13) follows
from the third item in the conclusion of Proposition 4.2, whilst (4.14) follows from the
first item. Hence, by Proposition 4.3,

�

�∆Xnpωq
�

�

rti,ti`1s,w,p
, with ∆Xn :“ Xn`1 ´Xn is

bounded above by

γ wp0, ti, ωq
1{p

´

1`
1

4L

¯!

�

�∆Xn´1pωq
�

�

r0,tis,w,p
`

A

~∆Xn´1p¨q~r0,T s,w,p

E

8

)

`
γ

4L

!

�

�∆Xn´1pωq
�

�

rti,ti`1s,w,p
`

A

~∆Xn´1p¨q~r0,T s,w,p

E

8

)

,

for any n ě 1, where γ depends on L0 and Λ, L is greater than L0, and the sequence
ptiqi“0,¨¨¨ ,N is as in the statement of Proposition 4.3. The precise value of L will be fixed
later on; the key fact is that it may be taken as large as needed. We start with the case
i “ 0. The above bound yields, for all n ě 1,

�

�∆Xnpωq
�

�

r0,t1s,w,p
ď

3γ

4L

!

�

�∆Xn´1pωq
�

�

r0,t1s,w,p
`

A

~∆Xn´1p¨q~r0,T s,w,p

E

8

)

.

So, recalling that ∆X0pωq “ X1pωq, we have, for any n ě 1,

�

�∆Xnpωq
�

�

r0,t1s,w,p

ď

´ 3γ

4L

¯n
�

�X1pωq
�

�

r0,t1s,w,p
`

n
ÿ

k“1

´ 3γ

4L

¯n`1´kA

~∆Xk´1p¨q~r0,T s,w,p

E

8
.

(4.26)

We proceed with a similar computation when i ě 1. By induction, we have, for n ě 1,

�

�∆Xnpωq
�

�

rti,ti`1s,w,p
ď

´ γ

4L

¯n
�

�X1pωq
�

�

rti,ti`1s,w,p

`

n
ÿ

k“1

´ γ

4L

¯n`1´k”

γwp0, ti, ωq
1{p

´

1`
1

4L

¯

�

�∆Xk´1pωq
�

�

r0,tis,w,p

ı

`

n
ÿ

k“1

´ γ

4L

¯n`1´k”

γ
! 1

4L
` wp0, ti, ωq

1{p
`

1`
1

4L

˘

)A

~∆Xk´1p¨q~r0,T s,w,p

E

8

ı

.

Following footnote5, we get, for a new value of γ,

�

�∆Xnpωq
�

�

r0,ti`1s,w,p
ď γ

�

�∆Xnpωq
�

�

r0,tis,w,p
` γ

�

�∆Xnpωq
�

�

rti,ti`1s,w,p
,
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so

�

�∆Xnpωq
�

�

r0,ti`1s,w,p
ď γ

�

�∆Xnpωq
�

�

r0,tis,w,p
` γ

´ γ

4L

¯n
�

�X1pωq
�

�

rti,ti`1s,w,p

` γ
n
ÿ

k“1

´ γ

4L

¯n`1´k”

γ wp0, ti, ωq
1{p

´

1`
1

4L

¯

�

�∆Xk´1pωq
�

�

r0,tis,w,p

ı

` γ
n
ÿ

k“1

´ γ

4L

¯n`1´k”

γ
! 1

4L
` wp0, ti, ωq

1{p
`

1`
1

4L

˘

)A

~∆Xk´1p¨q~r0,T s,w,p

E

8

ı

,

which we can rewrite as

�

�∆Xnpωq
�

�

r0,ti`1s,w,p
ď γ2ζpωq

"n`1
ÿ

k“1

´ γ

4L

¯n`1´k
�

�∆Xk´1pωq
�

�

r0,tis,w,p

`

´ γ

4L

¯n
�

�X1pωq
�

�

rti,ti`1s,w,p
`

n
ÿ

k“1

´ γ

4L

¯n`1´k A

~∆Xk´1p¨q~r0,T s,w,p

E

8

*

,

provided we choose γ ě 1, and with ζpωq :“ 1` wp0, T, ωq1{p
´

1` 1
4L

¯

.

Step 2. Combine the above estimate together with (4.26) to get

�

�∆Xnpωq
�

�

r0,t2s,w,p
ď γ2ζpωq

n`1
ÿ

k“1

´ γ

4L

¯n`1´k ´ 3γ

4L

¯k´1
�

�X1pωq
�

�

r0,t1s,w,p

` γ2ζpωq
n
ÿ

k“1

´ γ

4L

¯n´k k
ÿ

i“1

´ 3γ

4L

¯k`1´iA

~∆Xi´1p¨q
�

�

r0,T s,w,p

E

8

` γ2ζpωq
n
ÿ

k“1

´ γ

4L

¯n`1´kA

~∆Xk´1p¨q
�

�

r0,T s,w,p

E

8
` γ2ζpωq

´ γ

4L

¯n
�

�X1pωq
�

�

rt1,t2s,w,p
.

Hence we have

�

�∆Xnpωq
�

�

r0,t2s,w,p
ď γ2ζpωq

´ 3γ

4L

¯n´

1`
n`1
ÿ

k“1

`1

3

˘n`1´k
¯

�

�X1pωq
�

�

r0,t2s,w,p

` γ2ζpωq
´ γ

4L

¯n n
ÿ

i“1

´ 3γ

4L

¯1´iA

~∆Xi´1p¨q~r0,T s,w,p

E

8

n
ÿ

k“i

3k

` γ2ζpωq
n
ÿ

k“1

´ γ

4L

¯n`1´kA

~∆Xk´1p¨q

�

�

�

r0,T s,w,p

E

8
.

Therefore, using the bound
řn
k“i 3k ď 3n`1{2, we deduce

�

�∆Xnpωq
�

�

r0,t2s,w,p
ď 3γ2ζpωq

´ 3γ

4L

¯n
�

�X1pωq
�

�

r0,t2s,w,p

` 3γ2ζpωq
n
ÿ

i“1

´ 3γ

4L

¯n`1´iA

~∆Xi´1p¨q~r0,T s,w,p

E

8
.

We here assume that L is chosen big enough to have 3γ ă 4L. The above inequality may
be summed up into

�

�∆Xnpωq
�

�

r0,t2s,w,p
ď c2pωq

´ 3γ

4L

¯n
�

�X1pωq
�

�

r0,t2s,w,p

` c2pωq
n
ÿ

i“1

´ 3γ

4L

¯n`1´i A

~∆Xi´1p¨q~r0,T s,w,p

E

8
,
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where c2pωq: “ 3γ2ζpωq. Set now cipωq :“
`

3γ2ζpωq
˘i´1

.

Comparing the previous estimate of
�

�∆Xnpωq
�

�

r0,t2s,w,p
with (4.26) and iterating over

the time index ti from the conclusion of the first step, we obtain, as long as ti ď T ,

�

�∆Xnpωq
�

�

r0,tis,w,p
ď cipωq

´ 3γ

4L

¯n
�

�X1pωq
�

�

r0,tis,w,p

` cipωq
n
ÿ

k“1

´ 3γ

4L

¯n`1´k A

~∆Xk´1p¨q~r0,T s,w,p

E

8
.

Step 3. Noting that we can take N in Theorem 4.3 less than N
`

r0, T s, ω, 1{p4L0q
˘

`

N
`

r0, T s, ω, 1{p4Lq
˘

ď 2N
`

r0, T s, ω, 1{p4Lq
˘

, see definition (2.14), we deduce that

�

�∆Xnpωq
�

�

r0,T s,w,p
ď

´

3γ2ζpωq
¯2Npω,1{p4Lqq ´ 3γ

4L

¯n
�

�X1pωq
�

�

r0,T s,w,p

`

´

3γ2ζpωq
¯2Npω,1{p4Lqq n

ÿ

k“1

´ 3γ

4L

¯n`1´kA

~∆Xk´1p¨q~r0,T s,w,p

E

8
,

(4.27)

where we let N
`

ω, 1{p4Lq
˘

:“ N
`

r0, T s,ω, 1{p4Lq
˘

. It follows from the assumed tail
behaviour of N

`

¨, 1{p4Lq
˘

and wp0, T, ¨q that we have, for a ą 1 and any integer k, the
upper bound

P
´

 

ω P Ω : ζ2Npω,1{p4Lqqpωq ě a
(

¯

ď P
`

Np¨, 1{p4Lqq ě k
˘

` P
`

ζ2 ě a1{k
˘

ď c exp
`

´k1`ε2
˘

` c exp
´

´aε1p{p4kq
¯

,
(4.28)

for a constant c ě 1 depending on L and with ε2 “ ε2p1{p4Lqq. In order to derive the last
term right above, we used Markov inequality together with the fact that Erexppζε1p{2qs is
bounded by a constant depending on c1, ε1 and L. For k “ pln aq1{p1`ε2{2q,

@` P Nzt0u, P
´!

ω P Ω : ζ2Npω,1{p4Lqqpωq ě a
)¯

ď C`a
´`,

for a constant C` depending on `, from which we deduce that
@`

3γ2ζ
˘2Np¨,1{p4LqqD

16
ă 8.

Set now A :“ p3γ2ζq2Np¨,1{p4Lq. Importantly, A depends on the time horizon T through
ζ and Np¨, 1{p4Lqq (and this on L as well). In order to emphasize the dependance upon
the time argument, we expand the notation and write AT :“ p3γ2ζT q

2Npr0,T s,¨,1{p4Lqq.

Clearly, AS ď p3γ2ζT q
2Npr0,Ss,¨,1{p4Lqq, since γ and ζT are greater than 1. Since the

term N
`

r0, Ss, ¨, 1{p4Lq
˘

tends to 0 with S, we have limSŒ0

@`

3γ2ζT
˘2Npr0,Ss,¨,1{p4LqqD

16
“ 1,

so limSŒ0

@

AS
D

16
“ 1. Hence, taking the L8 norm in (4.27) with T replaced by S,

A

~∆Xnp¨q~r0,Ss,w,p

E

8
ď

`

1` δpSq
˘

´ 3γ

4L

¯nA
�

�X1p¨q
�

�

r0,Ss,w,p

E

16

`
`

1` δpSq
˘

n
ÿ

i“1

´ 3γ

4L

¯n`1´iA
�

�∆Xi´1p¨q
�

�

r0,Ss,w,p

E

8

“
`

1` δpSq
˘

´ 3γ

4L

¯nA
�

�X1p¨q
�

�

r0,Ss,w,p

E

16

`
`

1` δpSq
˘

n´1
ÿ

i“0

´ 3γ

4L

¯n´iA
�

�∆Xip¨q
�

�

r0,Ss,w,p

E

8
,
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where δpSq ą 0 tends to 0 with S. So, we have

n
ÿ

k“0

´ 3γ

4L

¯pn´kq{2A
�

�∆Xkp¨q
�

�

r0,Ss,w,p

E

8

ď
`

1` δpSq
˘

n
ÿ

k“0

´ 3γ

4L

¯pn´kq{2´ 3γ

4L

¯kA
�

�X1p¨q
�

�

r0,Ss,w,p

E

16

`
`

1` δpSq
˘

n´1
ÿ

i“0

´ 3γ

4L

¯pn´iq{2A
�

�∆Xip¨q
�

�

r0,Ss,w,p

E

8

n
ÿ

k“i`1

´ 3γ

4L

¯pk´iq{2

ď
`

1` δpSq
˘

´ 3γ

4L

¯n{2 n
ÿ

k“0

´ 3γ

4L

¯k{2A
�

�X1p¨q
�

�

r0,Ss,w,p

E

16

`
1` δpSq

1´
a

3γ{p4Lq

´ 3γ

4L

¯1{2 n
ÿ

i“0

´ 3γ

4L

¯pn´iq{2A
�

�∆Xip¨q
�

�

r0,Ss,w,p

E

8
.

Assuming that 3γ{p4Lq ď 1{16 and choosing S small enough, we may assume that

a :“
1` δpSq

1´
a

3γ{p4Lq

´ 3γ

4L

¯1{2

ă 1, (4.29)

we can find a positive constant C such that

n
ÿ

k“0

´ 3γ

4L

¯pn´kq{2A
�

�∆Xkp¨q
�

�

r0,Ss,w,p

E

8

ď C
´ 3γ

4L

¯n{2A
�

�X1p¨q
�

�

r0,Ss,w,p

E

16
` a

n
ÿ

i“0

´ 3γ

4L

¯pn´iq{2 A
�

�∆Xip¨q
�

�

r0,Ss,w,p

E

8
.

Changing the value of C if necessary, we obtain

n
ÿ

k“0

´ 3γ

4L

¯pn´kq{2 A

~∆Xkp¨q~r0,Ss,w,p

E

8
ď C

´ 3γ

4L

¯n{2 A
�

�X1p¨q
�

�

r0,Ss,w,p

E

16
.

Using (4.27), we eventually have, for a new value of C,

�

�∆Xnpωq
�

�

r0,Ss,w,p
ď C

`

3γ2ζpωq
˘2Npr0,T s,ω,1{p4Lqq

ˆ

”´ 3γ

4L

¯n
�

�X1pωq
�

�

r0,T s,w,p
`

´ 3γ

4L

¯n{2
@

~X1p¨q~r0,Ss,w,p
D

16

ı

.
(4.30)

In order to conclude, we notice the following two facts. First, the above estimate remains
true if we replace

�

�∆Xnpωq
�

�

r0,Ss,w,p
by

�

�∆Xnpωq
�

�

‹,r0,Ss,w,p
in the left-hand side. Second,

Proposition 4.2 guarantees that
@

~X1p¨q~r0,Ss,w,p
D

16
ă 8. Using a Cauchy like argument,

we deduce that, for any ω P Ω, the sequence
`

Xnpωq, BxX
npωq, RX

n

pωq
˘

ně0
is convergent

for the norm ~ ¨ ~‹,r0,Ss,w,p. Using Proposition 4.3, the limit is a fixed point of Γ.
Uniqueness. Let

`

X 1p¨q; δxX
1p¨q; 0

˘

stand for another fixed point of Γ, with δxX 1pωq “
F
`

X 1pωq, X 1p¨q
˘

, for almost every ω P Ω, together with x~X 1p¨q~r0,T s,w,p
D

8
ă 8. In par-

ticular, we have
@

δxX
1p¨q

D

8
ď Λ. Allowing the value of the constant L0 to increase,

we can assume that
@

~X 1p¨q~r0,T s,w,p
D2

8
ď L0. We can also assume that, for P-a.e. ω,

�

�X 1pωq
�

�

2

rt0i ,t
0
i`1s,w,p

ď L0, with
`

t0i
˘

i“0,¨¨¨ ,N0`1
as in the statement of Proposition 4.3. The

proof of the latter claim is as follows: For a given ω such that |δxX 1pωq| ď Λ and for a
given i P t0, ¨ ¨ ¨ , N0u, call t1i`1 the first time when ~X 1pωq~2

rt0i ,t
1
i`1s,w,p

“ L0. If t1i`1 ă t0i`1,

then (4.5) gives L0 ď ~X 1pωq~2
rt0i ,t

1
i`1s,w,p

ď γ ` CΛ,Λp2L0 ` 1q{p4L0q, which is indeed

impossible if L0 is large enough.
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Therefore, we can apply Proposition 4.3 in order to compare X and X 1 and then
duplicate the analysis of the convergence sequence, replacing ∆Xn by ∆X :“ X ´X 1.
Similar to (4.27) (recalling that X1 therein is understood as ∆X0),

�

�∆Xpωq
�

�

r0,T s,w,p
is

bounded above by

´

3γ2ζpωq
¯2Npω,1{p4Lqq

„

´ 3γ

4L

¯n
�

�∆Xpωq
�

�

r0,T s,w,p
`

n
ÿ

i“1

´ 3γ

4L

¯n`1´i
@

~∆Xp¨q~r0,T s,w,p
D

8



.

Letting n tend to 8, this yields

�

�∆Xpωq
�

�

r0,T s,w,p
ď

`

3γ2ζpωq
˘2Npω,1{p4Lqq 3γ{p4Lq

1´ 3γ{p4Lq

A

~∆Xp¨q~r0,T s,w,p

E

8
.

Taking the L8 norm, replacing T by S as in the third step and recalling from (4.29) that?
3γ{p4Lq

1´
?

3γ{p4Lq

@`

3γ2ζT
˘2Npr0,Ss,¨,1{p4LqqD

16
ă 1, we get uniqueness in small time.

Application to the proof of Theorem 1.1. Applying iteratively Theorem 4.4 along
a sequence pS0 “ 0, ¨ ¨ ¨ , S` “ T q (shifting in an obvious way r0, S1s into rS1, S2s, ¨ ¨ ¨ )
satisfying

A

NprSj´1, Sjs, ¨, 1{p4L0qq

E2pp´1q{p

8
ď 1,

and
A”

γp1` wp0, T, ¨q1{pq
ıNprSj´1,Sjs,¨,1{p4LqqE

32
ď η,

we get existence and uniqueness on the whole interval r0, T s. We notice that, at each node
pSjqj“1,¨¨¨ ,` of the subdivision, xXSj p¨qy2 ď xXSj´1p¨qy2 ` 2x~X~rSj´1,Sjs,w,py4xwp0, T, ¨qy4,
which is finite by a straightforward induction. By sticking the paths constructed on each
subinterval of the subdivision, we indeed obtain a random controlled path on the entire
r0, T s. This is Theorem 1.1. Importantly, uniqueness holds whatever the choice of w in
(2.8) and (2.9): If X and X 1 are two solutions, driven by different w and w1, then we may
easily work with w ` w1, which also satisfies (2.8) and (2.9). The control w ` w1 and the
accumulation Npw`w1q1{p also satisfy (4.22), see for instance (A.1) for a simple bound on
the local accumulation associated to the sum of two different controls w and w1.

5 Uniqueness and convergence in law

5.1 Uniqueness in law on strong rough set-ups

Since the solution given by Theorem 4.4 is constructed by Picard iteration on each
interval rSj´1, Sjs, for j “ 1, ¨ ¨ ¨ , `, we should expect its law to be somehow independent
of the probability space used to build the rough set-up W . Recall indeed from (3.3) the
following expansion, which holds true for any rank n in the Picard iteration (4.25) and
for any subdivision 0 “ t0 ă ¨ ¨ ¨ ă tK “ T ,

Xn`1
ti pωq “ X0pωq `

i
ÿ

j“1

F
`

Xn
tj´1

pωq, Xn
tj´1

p¨q
˘

Wtj´1,tj pωq

`

i
ÿ

j“1

BxF
`

Xn
tj´1

pωq, Xn
tj´1

p¨q
˘

´

F
`

Xn
tj´1

pωq, Xn
tj´1

p¨q
˘

Wtj´1,tj pωq
¯

`

i
ÿ

j“1

A

DµF
`

Xn
tj´1

pωq, Xn
tj´1

p¨q
˘`

Xn
tj´1

p¨q
˘

´

F
`

Xn
tj´1

p¨q, Xn
tj´1

p¨q
˘

WKK
tj´1,tj p¨, ωq

¯E

`

i
ÿ

j“1

Sn`1
tj´1,tj pωq;

(5.1)
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the last term converging to 0 as the step size of the subdivision tends to 0. In the sec-
ond line, the matrix product BxF

`

Xn
s pωq, X

n
s p¨q

˘`

F
`

Xn
s pωq, X

n
s p¨q

˘

Ws,tpωq
˘

should be un-

derstood as
`
řd
`“1

řm
j,k“1 Bx`

Fi,j
`

Xn
s pωq, X

n
s p¨q

˘`

F`,k
`

Xn
s pωq, X

n
s p¨q

˘

W
k,j
s,t pωq

˘˘

i“1,¨¨¨ ,d
and

similarly for the term on the third line. Our guess is that the above expansion should
permit to identify the law of Xn`1 and, passing to the limit, to express in a somewhat
canonical manner the law of the solution of the mean field rough equation in terms of
the law of the rough set-up.

However, although it seems to be a relevant concept in our context, uniqueness in law
requires some care as the rough set-up explicitly depends upon the underlying probability
space pΩ,F ,Pq; recall indeed that the random variables Ω Q ω ÞÑ WKKpω, ¨q and Ω Q

ω ÞÑWKKp¨, ωq are not only defined on pΩ,F ,Pq but also take values in LqpΩ,F ,P;Rmq.
The fact that the arrival spaces of both random variables explicitly depend upon the
probability space is a serious drawback to get a form of weak uniqueness. It is thus
relevant to identify the canonical information in the rough set-up that is needed to
determine the law of the solution. Somehow, we encountered a similar problem in the
example of a rough set-up given by Proposition 2.3. The difficulty therein is indeed
to reconstruct the iterated integral WKKpω1, ωq from the observation of W pωq, W pω1q
and Wpωq; in the proof of Proposition 2.3, this is made at the price of an extra source
of randomness. Interestingly, things become trivial when WKKpω1, ωq can be (almost
surely) written as the image of

`

W pωq,W pω1q
˘

by a measurable function. Fortunately,
all the examples we may have in mind in practice enter in fact this simpler setting.
For instance, both Examples 2.1 and 2.2 fall within this case. More generally, in the
framework of Proposition 2.3, we can write W 2,1 as the almost sure image of

`

W 1,W 2
˘

by a measurable function from C
`

r0, T s;Rm
˘2

into C
`

ST2 ;Rm bRm
˘

, when, for a.e. ξ P Ξ,
the quantity W 2,1pξq can be approximated by the iterated integral of mollified versions of
W 1pξq and W 2pξq, provided the mollification procedure defines a measurable map from
Cpr0, T s;Rmq into itself. The following proposition makes it clear.

Proposition 5.1. Within the framework of Proposition 2.3, define, for i P t1, 2u and
n ě 0, the linear interpolation W i,n of W i at dyadic points

`

tkn “ kT {2n
˘

k“0,¨¨¨ ,2n´1
of

r0, T s:

W i,n
t pξq :“

2n
´1
ÿ

k“0

ˆ

W i
tkn
pξq `W i

tkn,t
k`1
n
pξq

2npt´ tknq

T

˙

1
rtkn,t

k`1
n q

ptq.

If for Q-a.e. ξ P Ξ, for all ps, tq P ST2 ,

W 2,1
s,t pξq “ lim

nÑ8

ż t

s

´

W 2,n
r pξq ´W 2,n

s pξq
¯

b dW 1,n
r pξq,

then there exists a measurable function I from Cpr0, T s;Rmq2 into C
`

ST2 ;Rm bRm
˘

such
that

Q
´!

ξ P Ξ : W 2,1pξq “ I
`

W 2pξq,W 1pξq
˘

)¯

“ 1.

The scope of Proposition 5.1 is limited to so-called geometric rough paths, but the
underlying principle is actually more general. This prompts us to introduce the following
definition.

Definition 5.2. A rough set-up, as defined in Section 2, is called strong if there exists
a measurable mapping I from C

`

r0, T s;Rm
˘2

into C
`

ST2 ;Rm bRm
˘

such that

Pb2
´

 

pω, ω1q P Ω2 : WKKpω, ω1q “ I
`

W pωq,W pω1q
˘(

¯

“ 1. (5.2)

So, Proposition 5.1 provides a typical instance of strong set-up, which covers in
particular Examples 2.1 and 2.2. However, it is worth mentioning that strong set-ups
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may not fall within the scope of Proposition 5.1, since the latter is limited to geometric
rough paths, see footnote8.

Proposition 2.3 sheds a light on the rationale for the word strong in Definition 5.2.
Here strong has the same meaning as in the theory of strong solutions to stochastic
differential equations: The second level W 2,1 of the rough-path is a measurable function
of pW 2,W 1q. In contrast, the general set-up considered in the statement of Proposition
2.3 may not be strong as W 2,1 may carry, in addition to pW 1,W 2q, an additional external
independent randomization. If this additional randomization is not trivial, the set-up
should be called weak, see again footnote8 for a typical instance. Also, we refer the
reader to Deuschel et al. [21] for a related use of the notion of strong set-up, although
the terminology strong does not appear therein.

We now have all the ingredients to formulate a weak uniqueness property.

Theorem 5.3. Let X0p¨q :“
`

X0pωq
˘

ωPΩ
, X 10p¨q :“

`

X 10pωq
˘

ωPΩ1
and

W p¨q :“
`

W pωq,Wpωq,WKKpω, ω1q
˘

ωPΩ,ω1PΩ
,

W 1
p¨q :“

`

W 1pωq,W1pωq,WKK,1pω, ω1q
˘

ωPΩ1,ω1PΩ1
,

be two square integrable initial conditions and two strong rough set-ups with the same
parameters m, p and q, defined on two probability spaces pΩ,F ,Pq and pΩ1,F 1,P1q, such
that the random variables

Ω2 Q pω, ω1q ÞÑ
`

X0pωq,W pωq,Wpωq,W
KKpω, ω1q

˘

,

pΩ1q2 Q pω, ω1q ÞÑ
`

X 10pωq,W
1pωq,W1pωq,WKK,1pω, ω1q

˘

,

have the same law on Rdˆ Cpr0, T s;Rmqˆ CpST2 ;RmbRmqˆ CpST2 ;RmbRmq. Then, the
corresponding two solutions

`

Xpωq
˘

ωPΩ
and

`

X 1pωq
˘

ωPΩ1
to (1.2) have the same law on

Cpr0, T s;Rmq.
As the two set-ups have the same law, we can use the same mapping I in the

representations (5.2) of WKK and of WKK,1. Iterating on n in (5.1), the result easily follows
by proving, at each rank, that the law of pW,W, Xnq is uniquely determined.

5.2 Continuity of the Itô-Lyons map

As expected from a robust solution theory of differential equations, we have continuity
of the solution with respect to the parameters in the equation, most notably the rough
set-up itself. The next statement quantifies that fact.

Theorem 5.4. Let F satisfy the same assumptions as in Theorem 4.4. Given a time
interval r0, T s and a sequence of probability spaces pΩn,Fn,Pnq, indexed by n P N, let,
for any n, Xn

0 p¨q :“ pXn
0 pωnqqωnPΩn be an Rd-valued square-integrable initial condition

and
W n

p¨q :“
´

Wnpωnq,W
npωnq,W

n,KKpωn, ω
1
nq

¯

ωn,ω1nPΩn

be an m-dimensional rough set-up with corresponding control wn, as given by (2.10),
and local accumulated variation Nn, for fixed values of p P r2, 3q and q ą 8. Assume that

‚ the collection
`

Pn ˝ p|X
n
0 p¨q|

2q´1
˘

ně0
is uniformly integrable;

‚ for positive constants ε1, c1 and pε2pαq, c2pαqqαą0, the tail assumption (4.22) holds
for wn and Nn, for all n ě 0;

8A trivial example of rough set-up is given by the collection of real-valued rough paths W 1pξq “W 2pξq ” 0,
W 1,1pξq ” 0, W 2,1

s,t pξq “ apξqpt´ sq, ps, tq P ST2 , for ξ in a probability space pΞ,G,Qq, where a is a real-valued
random variable on pΞ,G,Qq. If a is deterministic and non-zero, the set-up is strong but is not geometric. If
the support of a does not reduce to one point, then the set-up induced by

`

W 1p¨q,W 2p¨q,W 1,1p¨q,W 2,1p¨q
˘

is
not strong.
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‚ associating a control vn with each W n
p¨q as in (2.7), the functions

`

ST2 Q ps, tq ÞÑ
xvnps, t, ¨qy2q

˘

ně0
are uniformly Lipschitz continuous, in the sense that, uniformly

in n ě 0, supps,tqPST
2 ,s­“t

xvnps, t, ¨qy2q{pt´ sq is finite.

Assume also that there exist, on another probability space pΩ,F ,Pq, a square integrable
initial condition X0p¨q with values in Rd and a strong rough set-up

W p¨q :“
´

W pωq,Wpωq,WKKpω, ω1q
¯

ω,ω1PΩ

with values in Rm, such that the law under the probability measure Pb2
n of the random

variable Ω2
n Q pωn, ω

1
nq ÞÑ

`

Xn
0 pωnq,W

npωnq,W
npωnq,W

n,KKpωn, ω
1
nq
˘

, seen as a random

variable with values in the space RdˆCpr0, T s;Rmq ˆ
 

CpST2 ;Rm bRmq
(2

, converges in
the weak sense to the law of Ω2 Q pω, ω1q ÞÑ

`

X0pωq,W pωq,Wpωnq,W
KKpω, ω1q

˘

.
Then, W p¨q satisfies the requirements of Theorem 4.4 for some p1 P pp, 3q and

q1 P r8, qq, with w therein being given by (2.10). Moreover, if Xnp¨q, resp. Xp¨q, is the
solution of the mean field rough differential equation driven by W n

p¨q, resp. W p¨q, then
Xnp¨q converges in law to Xp¨q on Cpr0, T s;Rdq.

The rationale for the framework and the assumptions used in the statement of
Theorem 5.4 is two-fold. First, it allows for a proof based on compactness arguments;
in particular, the proof completely bypasses any lengthy stability estimate of the paths
with respect to the rough structure, which, in our extended framework, would be
especially cumbersome. Also, this compactness argument is pretty interesting in itself
and complements quite well Section 5.1 on weak uniqueness; noticeably, it allows the
set-ups to be supported by different probability spaces. Second, our formulation of the
continuity of the Itô-Lyons map turns out to be well-fitted to the applications addressed
in our companion paper [4], see also Section 4 in the earlier version [5].

The assumption that the limiting rough set-up is strong is tailored-made to the
compactness arguments we use below as it permits to pass quite simply to the weak
limit along the laws of the rough set-ups pW n

p¨qqně0 and to identify the limiting law.

Proof. Throughout the proof, we call p P r2, 3q and q ą 8 the fixed indices used to define
the set-ups and, in particular, to control the variations in the definition (4.22) of each wn,
n ě 0, wn being associated with vn through (2.10). This is important because, at some
points of the proof, we will use other values p1 ą p and q1 ă q.

Step 1. We prove key properties on the tightness of the sequence pW n
p¨qqně0.

1a. For any n ě 0, we introduce the modulus of continuity of pWnp¨q,Wnp¨q,Wn,KKp¨qq,
namely we let, for any δ ą 0,

ςn
`

δ, ωn, ω
1
n

˘

:“ sup
|s´t|ďδ

|Wn
t pωnq ´W

n
s pωnq|

` sup
|s´s1|`|t´t1|ďδ

ˇ

ˇWn
s1,t1pωnq ´W

n
s,tpωnq

ˇ

ˇ` sup
|s´s1|`|t´t1|ďδ

ˇ

ˇW
n,KK
s1,t1pωn, ω

1
nq ´W

n,KK
s1,t1pωn, ω

1
nq
ˇ

ˇ,

where pωn, ω1nq P Ω2
n. Since the laws of the processes pWnp¨q,Wnp¨q,Wn,KKp¨, ¨qqně0 are

tight in the space Cpr0, T s;Rmq ˆ
 

CpST2 ;Rm bRmq
(2

, we deduce that

@ε ą 0, lim
δŒ0

sup
ně0

Pb2
n

´

 

pωn, ω
1
nq P Ω2

n : ςn
`

δ, ωn, ω
1
n

˘

ě ε
(

¯

“ 0.

1b. We now prove that, for any q1 P r8, qq, the laws of the processes
`

Ωn Q ωn ÞÑ

xWn,KKpωn, ¨qyq1
˘

ně0
are tight9, and similarly for the laws of the processes

`

Ωn Q ωn ÞÑ

9In the notation x¨yq1 , the expectation is implicitly taken under Pn.
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xWn,KKp¨, ωnqyq1
˘

ně0
. By (2.10), we have, for any ωn P Ωn,

sup
ps,tqPST

2

@

W
n,KK
s,t pωn, ¨q

D

q
ď

`

wnp0, T, ωnq
˘2{p

.

By the second bullet point in the assumption, the tails of the right-hand side are uniformly
dominated. So,

lim
AÑ8

sup
ně0

Pn

´

 

ωn P Ωn : sup
ps,tqPST

2

@

W
n,KK
s,t pωn, ¨q

D

q
ě A

(

¯

“ 0, (5.3)

which is one first step in the proof of tightness. For any a ą 0, we now consider the event

Enpδ, aq :“
!

ωn P Ωn : Pn

´

 

ω1n P Ωn : ςnpδ, ωn, ω
1
nq ě ε

(

¯

ě a
)

.

By Markov’s inequality and then Fubini’s theorem,

Pn
`

Enpδ, aq
˘

ď a´1Pb2
n

´

 

pωn, ω
1
nq P Ω2

n : ςnpδ, ωn, ω
1
nq ě ε

(

¯

,

the right-hand side converging to 0 as δ tends to 0 uniformly in n ě 0. Clearly, for any
ε ą 0, we can find a collection of positive reals paεpδqqδą0 such that

lim
δŒ0

aεpδq “ 0, and lim
δŒ0

sup
ně0

Pn

´

En
`

δ, aεpδq
˘

¯

“ 0.

Take now ωn P Enpδ, aεpδqq
A such that supps,tqPST

2

@

W
n,KK
s,t pωn, ¨q

D

q
ď A, for a given A ą 0.

Then, for any q1 P r8, qq and ps, tq, ps1, t1q P ST2 with |s´ s1| ` |t´ t1| ď δ,
ˇ

ˇ

ˇ

@

W
n,KK
s1,t1pωn, ¨q

D

q1
´
@

W
n,KK
s,t pωn, ¨q

D

q1

ˇ

ˇ

ˇ

ď

A

W
n,KK
s1,t1pωn, ¨q ´W

n,KK
s,t pωn, ¨q

E

q1
ď ε`Aaεpδq

1´q1{q.

For A fixed and δ small enough, the right-hand side is less than 2ε. We easily deduce
that, for any ε ą 0,

lim
δŒ0

sup
ně0

Pn

ˆ

!

ωn P Ωn : sup
|s´s1|`|t´t1|ďδ

ˇ

ˇ

ˇ

@

W
n,KK
s1,t1pωn, ¨q

D

q1
´
@

W
n,KK
s,t pωn, ¨q

D

q1

ˇ

ˇ

ˇ
ě ε

)

˙

“ 0,

which, together with (5.3), proves tightness. Clearly, the same holds for the family
`

Ωn Q

ωn ÞÑ xWn,KKp¨, ωnqyq1
˘

ně0
. Similarly, the two deterministic functions

`

xWnp¨qyq1
˘

ně0
and

`⟪Wn,Kp¨, ¨q⟫q1
˘

ně0
are relatively compact in Cpr0, T s;Rq and CpST2 ;Rq.

1c. For each coordinate of the family of processes
´

Ωn Q ωn ÞÑ
`

|Wn
s,tpωnq|, |W

n
s,tpωnq|,

@

W
n,KK
s,t pωn, ¨q

D

q1
,
@

W
n,KK
s,t p¨, ωnq

D

q1

˘

ps,tqPS2
T

¯

ně0
,

we know that the corresponding family of laws is tight in CpST2 ;Rq and that the associated
family of p-variations over r0, T s has tight laws in R (because of the second item in the
assumption). Hence, we can apply Lemma 5.5 below, with any p1 P pp, 3q instead of p
itself, and with Zns,tpωq equal to one of the coordinate of the above process.

We proceed in the same way with the coordinates of the deterministic sequence
`

zns,t “
`@

Wn
s,tp¨q

D

q1
, ⟪Wn,KK

s,t p¨, ¨q⟫q1
˘

ps,tqPST
2

˘

ně0
. We deduce that, for any p1 P pp, 3q, the

sequence of probability measures
´

P˝pST2 Q ps, tq ÞÑ vn,1ps, t, ¨qq´1
¯

ně0
is tight in CpS2

T ;Rq

and hence that

@ε ą 0, lim
δŒ0

sup
ně0

Pn

ˆ

sup
ps,tqPST

2 :t´sďδ

vn,1ps, t, ¨q ą ε

˙

“ 0,

EJP 25 (2020), paper 21.
Page 40/51

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP409
http://www.imstat.org/ejp/


Mean field rough equations

where vn,1 is associated with W n
p¨q through (2.7) using the pair of parameters pp1, q1q

instead of pp, qq.
1d. Obviously, vn,1ps, t, ¨q ď pvnps, t, ¨qqp

1
{p. Since p1{p ď 2 and the function ST2 Q

ps, tq ÞÑ xvnps, t, ¨qy2q is Lipschitz continuous, uniformly in n ě 0, we deduce that ps, tq ÞÑ
xvn,1ps, t, ¨qyq is Lipschitz continuous, uniformly in n ě 0. Hence,

@ε ą 0, lim
δÑ0

sup
ně0

Pn

ˆ

sup
ps,tqPST

2 :t´sďδ

wn,1ps, t, ¨q ą ε

˙

“ 0,

where, as above, wn,1 is associated with vn,1 and pp1, q1q through (2.10). Importantly, we
deduce from the bound pvn,1p0, T, ¨qq1{p

1

ď pvnp0, T, ¨qq1{p that, similar to wn and Nn (the
latter is associated with wn through (2.14)), the function wn,1 and the corresponding local
accumulated variation Nn,1 (given by (2.14) with $ “ wn,1) satisfy the tail assumption
(4.22), uniformly in n ě 0. The bound on the tails of Nn,1 is easily obtained by comparison
with the tails of Nn.

Step 2.
2a. The next step is to observe, as a corollary of the proof of Theorem 4.4, see (4.30),

that there exist a constant C and a real S ą 0 such that, for all n ě 0,
A

~Xnp¨q~r0,Ss,wn,1,p1

E

8
ď C.

The fact that C and S can be chosen independently of n is a consequence of the fact
that the tails of Nn and wn are controlled uniformly in n ě 0. Here S is chosen small
enough so that (4.23) and (4.24) in the statement of Theorem 4.4 are satisfied, uniformly
in n ě 0.

2b. Arguing as in the derivation of Theorem 1.1 from the statement of Theorem
4.4, we can iterate the argument and construct a sequence of deterministic times
0 “ S0 ă S “ S1 ă . . . ă SK “ T , for some deterministic K ě 1, such that, for
all n ě 0 and all j P t0, ¨ ¨ ¨ ,K ´ 1u,

@

~Xnp¨q~rSj ,Sj`1s,wn,1,p1
D

8
ď C. Up to a modifi-

cation of the constant C, we deduce that, for all n ě 1,
@

~Xnp¨q~r0,T s,wn,1,p1
D

8
ď C.

Recalling that
`

Pn ˝ p|X
n
0 p¨q|

2q´1
˘

ně0
is uniformly integrable, it is easily checked that

`

Pn ˝ psup0ďtďT |X
n
t p¨q|

2q´1
˘

ně0
is also uniformly integrable.

2c. As another result of the previous step, for any ε ą 0, we can find a ą 0 such that

sup
ně0

Pn

´

~Xnp¨q~r0,T s,wn,1,p1 ą a
¯

ď ε,

from which, we deduce that

@a ą 0, Dε ą 0 : sup
ně0

Pn

´

@ps, tq P ST2 , |Xn
s,t|

p1 ą awn,1ps, tq
¯

ď ε.

Combining with 1d, this yields

@ε ą 0, lim
δÑ0

sup
ně0

Pn

ˆ

sup
ps,tqPST

2 :t´sďδ

|Xn
s,t| ą ε

˙

“ 0.

From the conclusion of 2b, the sequence
`

Pn ˝ pX
np¨qq´1

˘

ně0
is tight in C

`

r0, T s;Rd
˘

.
Step 3.
3a. As a consequence of the assumptions of Theorem 5.4 and of Step 2, we have the

following tightness properties:

‚
`

Pn ˝ pW
np¨qq´1

˘

ně0
and

`

Pn ˝ pX
np¨qq´1

˘

ně0
are tight in the spaces C

`

r0, T s;Rm
˘

and C
`

r0, T s;Rd
˘

;
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‚
`

Pn ˝ pW
nq´1p¨q

˘

ně0
is tight in C

`

ST2 ;Rm bRm
˘

;

‚

´

Pb2
n ˝

´

Ω2
n Q pωn, ω

1
nq ÞÑ Wn,KKpωn, ω

1
nq P CpST2 ;Rm b Rmq

¯´1¯

ně0
is tight in

C
`

ST2 ;Rm bRm
˘

;

‚

´

Pn ˝
´

vn,1pωnq : Ωn Q ωn ÞÑ
`

ST2 Q ps, tq ÞÑ vn,1ps, t, ωnq
˘

P CpST2 ;Rq
¯´1¯

ně0
is tight

in C
`

ST2 ;R
˘

;

3b. By Skorokhod’s representation theorem, we can find an auxiliary Polish probabil-
ity space

`

pΩ, pF , pP
˘

, such that, up to a subsequence, for pP-a.e. pω P pΩ,

lim
nÑ8

´

xWn,1ppωq,xWn,2ppωq,xWn,1,1ppωq,xWn,2,1ppωq, pvn,1,1ppωq, pvn,2,1ppωq, pXn,1ppωq, pXn,2ppωq
¯

“

´

xW 1ppωq,xW 2ppωq,xW 1,1ppωq,xW 2,1ppωq, pv1,1ppωq, pv2,1ppωq, pX1ppωq, pX2ppωq
¯

, (5.4)

where
`

xWn,1,xWn,2,xWn,1,1,xWn,2,1, pvn,1,1ppωq, pvn,2,1ppωq, pXn,1ppωq, pXn,2ppωq
˘

has the same law
as the random variable

Ω2
n Q pωn, ω

1
nq

ÞÑ

´

Wnpωnq,W
npω1nq,W

npωnq,W
n,KKpω1n, ωnq, v

n,1pωnq, v
n,1pω1nq, X

npωnq, X
npω1nq

¯

,

which takes values in the space
 

Cpr0, T s;Rmq
(2
ˆ
 

CpST2 ;Rm bRmq
(2
ˆ
 

CpST2 ;Rq
(2
ˆ

 

Cpr0, T s;Rdq
(2

, and where
`

xW 1p¨q,xW 2p¨q,xW 1,1p¨q,xW 2,1p¨q, X1
0 p¨q

˘

has the same law as
the random variable

Ω2 Q pω, ω1q ÞÑ
´

W pωq,W pω1q,Wpωq,WKKpω1, ωq, X0pωq
¯

. (5.5)

3c. At this point of the proof, the difficulty is that
`

xW 1p¨q,xW 2p¨q,xW 1,1p¨q,xW 2,1p¨q
˘

does
not form a rough set-up. Still, we have the following two properties. First, using the fact
that the limiting set-up is strong, we have

pP
´!

pω P pΩ : xW 2,1ppωq “ I
`

W 2ppωq,W 1ppωq
˘

)¯

“ 1,

for a measurable mapping I : Cpr0, T s;Rmq2 Ñ CpST2 ;Rm bRmq, which follows from the
identification with the law of (5.5). Also, passing to the limit in Chen’s relations satisfied
by each W n, we have, for pP-a.e. pω P pΩ, and all 0 ď r ď s ď t ď T ,

xW 1,1
r,t ppωq “ xW 1,1

r,s ppωq `
xW 1,1
s,t ppωq `xW 1

r,sppωq b
xW 1
s,tppωq,

xW 2,1
r,t ppωq “ xW 2,1

r,s ppωq `
xW 2,1
s,t ppωq `xW 2

r,sppωq b
xW 1
s,tppωq.

Obviously, pxW 2, pX2q is independent of
`

xW 1,xW 1,1, pX1, pv1,1
˘

. Following the proof of Propo-
sition 2.3, but in a simpler setting here since the limiting rough set-up is strong, we can
find

‚ four random variables xW p¨q, xWp¨q, pv1p¨q and pXp¨q from
`

pΩ, pF , pP
˘

into Cpr0, T s;Rmq,
C
`

ST2 ;Rm bRm
˘

, C
`

ST2 ;R
˘

and Cpr0, T s;Rdq such that

pP
´!

pω P pΩ :
`

xW,xW, pv1, pX
˘

ppωq “
`

W 1,W 1,1, pv1,1, pX1
˘

ppωq
)¯

“ 1;

‚ a random variable xWKKp¨, ¨q from
`

pΩ2, pFb2, pPb2
˘

into C
`

ST2 ;Rm bRm
˘

such that

pPb2
´!

ppω, pω1q P pΩ2 : xWKKppω, pω1q “ I
`

xW ppωq,xW ppω1q
˘

)¯

“ 1; (5.6)
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Mean field rough equations

the rough set-up xW p¨q :“
`

xW p¨q,xWp¨q,xWKKp¨, ¨q
˘

satisfying (2.4) with probability 1 and
pΩ2 Q ppω, pω1q ÞÑ

`

xW ppωq,xW ppω1q,xWppωq,xWKKppω1, pωq, pv1ppωq, pv1ppω1q, pXppωq, pXppω1q
˘

having the

same law as
`

xW 1p¨q,xW 2p¨q,xW 1,1p¨q,xW 2,1p¨q, pv1,1p¨q, pv2,1p¨q, pX1p¨q, pX2p¨q
˘

on the product
space

 

C
`

r0, T s;Rm
˘(2

ˆ
 

C
`

ST2 ;Rm bRm
˘(2

ˆ
 

C
`

ST2 ;R
˘(2

ˆ
 

C
`

r0, T s;Rd
˘(2

.

Pay attention that, at this stage, we do not whether pX solves the mean field rough
equation.

3d. We know from the previous step that the limiting set-up satisfies (at least outside
an exceptional event) the required algebraic conditions. We now check that xW p¨q satisfies
the required regularity properties.

We start with the variations of xW ppωq, xxW p¨qyq1 , xWppωq, xxWKKppω, ¨qyq1 , xxWKKp¨, pωqyq1 and

⟪xWKKp¨, ¨q⟫q1 . To do so, we recall that, for a.e. pω P pΩ, pv1ppωq is the limit of pvn,1ppωq. By
passage to the limit, pv1 inherits the super-additive property of the pvn,1qně0’s, see step 1d,
and its tails satisfy (uniformly in n ě 0) a bound similar to that satisfied by the pvnqně0’s
in the first item of the assumption. Also, ST2 Q ps, tq ÞÑ xpv1ps, t, ¨qyq1 is Lipschitz.

Passing once more to the limit, we get that, for a.e. pω P pΩ, for any ps, tq P ST2 ,
|xWs,tppωq|

p1 ď pv1ps, t, ωq, from which we deduce that the p1-variation of xW ppωq is dominated

(in an obvious sense) by pv1. A similar augment applies for xxW p¨qyq1 , xWppωq and ⟪xWKKp¨, ¨q⟫q1 .
It thus remains to handle

@

xWKKppω, ¨q
D

q1
and

@

xWKKp¨, pωq
D

q1
. In order to control their

variations, we proceed as follows. For any non-negative valued bounded continuous
function g on Cpr0, T s;Rmq ˆ CpST2 ;Rq and for every ps, tq P ST2 , we have

ż

pΩ

”

g
`

xW ppωq, pv1ppωq
˘@

xWKK
s,tppω, ¨q

Dq1

q1

ı

dpPppωq

“

ż

pΩ2

”

g
`

xW ppω1q, pv1ppω1q
˘
ˇ

ˇxWKK
s,tppω

1, pωq
ˇ

ˇ

q1
ı

dpPb2ppω, pω1q

“ lim
nÑ8

ż

Ω2
n

”

g
`

Wnpω1nq, v
n,1pω1nq

˘
ˇ

ˇW
n,KK
s,t pωn, ω

1
nq
ˇ

ˇ

q1
ı

dPb2
n pω

1
n, ωnq,

where we used Fubini’s theorem to pass from the first to the second term together with
(5.4) to pass from the first to the second line. Now, we use the very definition of vn,1 and
the second item in the assumption to deduce that

ż

pΩ

”

g
`

xW ppωq, pv1ppωq
˘

xxWKK
s,tppω, ¨q

Dq1

q1

ı

dpPppωq

ď lim
nÑ8

ż

Ωn

”

g
`

Wnpωnq, v
n,1pωnq

˘`

vn,1ps, t, ωnq
˘q1{p1

ı

dPnpωnq

“

ż

pΩ

”

g
`

xW ppωq, pv1ppωq
˘`

pv1ps, t, pωq
˘q1{p1

ı

dpPppωq.

Recalling from (5.6) that pΩ Q pω ÞÑ xxWKK
s,tppω, ¨q

D

q1
is σtxW p¨qu-measurable, we get, for any

ps, tq P ST2 and for a.e. pω P pΩ, xxWKK
s,tppω, ¨q

Dp1

q1
ď pv1ps, t, pωq. Obviously, the latter is true

for a.e. ω̂, for any ps, tq P ST2 X Q2. By almost sure (in ppω, pω1q) continuity of the paths
ST2 Q ps, tq ÞÑ xWKK

s,tppω, pω
1q and by Fatou’s lemma, we deduce that it holds true for a.e. pω,

for any ps, tq P ST2 . The same holds for xxWKK
s,tp¨, pωq

D

q1
.

Associating with the rough set-up xW a (random) control function sv1 through the
definition (2.7) with pp, qq replaced by pp1, q1q, we deduce that, for pP-a.e. pω P pΩ, for all
ps, tq P ST2 , sv1ps, t, pωq is less than pv1ps, t, pωq.

EJP 25 (2020), paper 21.
Page 43/51

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP409
http://www.imstat.org/ejp/


Mean field rough equations

Modifying the definition of the set-up on the possibly non-empty null event where one
of the aforementioned properties fails (see the proof of Proposition 2.3 for details), we
can assume without any loss of generality that, for any pω P pΩ, the variation of xW ppωq is
dominated by pv1ppωq and that the latter is finite for all pω P pΩ. Also, we can assume that
Chen’s relationship, see (2.4), is satisfied for every pω P pΩ.

3e. We let pw1ps, t, pωq :“ pv1ps, t, pωq`Cpt´sq, where C is the Lipschitz constant in the sec-
ond item of the assumption. Clearly, pw1 satisfies the first tail estimate in (4.22). Moreover,
if we associate with pw1 the (random) local accumulation pN 1p¨, αq :“ Np pw1q1{ppr0, T s, αq as

in (2.14), then we must have10
pN 1pr0, T s, αq ď 2 lim infnÑ8Np pwn,1q1{ppr0, T s, αq ` 1, where

pwn,1ps, t, pωq “ pvn,1ps, t, pωq`Cpt´sq. In particular, pN 1p¨, αq satisfies the second tail estimate
in (4.22) (for possible new constants c2pαq and ε2pαq). Obviousy, the same holds for the
counter sN 1p¨, αq associated with sv1p¨q. In the end, xW p¨q satisfies all the requirements of
Theorems 4.4 and 1.1.

Step 4.
4a. For each n ě 0, we define δx pXnp¨q and R

xXn

p¨q as

δx pX
n
t ppωq :“ F

`

pXn
t ppωq,LpXn

t q
˘

, pR
xXn

s,t ppωq :“ pXn
t ppωq ´

pXn
s ppωq ´ δx

pXn
s ppωq

xWn
s,tppωq,

ps, tq P ST2 , pω P pΩ, from which we easily deduce that
`

δx pX
np¨q, pR

xXn

p¨q
˘

ně0
converges with

probability to 1 to
`

δx pXp¨q, pR
xXp¨q

˘

defined as

δx pXtppωq :“ F
`

pXtppωq,Lp pXtq
˘

, pR
xX
s,tppωq :“ pXtppωq ´ pXsppωq ´ δx pXsppωqxWs,tppωq,

ps, tq P ST2 , pω P pΩ. In order to pass to the limit in the measure argument of F, we use the
fact that, for any t P r0, T s, pLpXn

t qqně0 converges in the weak sense to Lp pXtq. By the
uniform integrability property 2b, the convergence also holds in 2-Wasserstein distance
d2. By continuity of F with respect to d2, we easily conclude.

4b. By the second step,
`

Pn ˝ p~X
np¨q~r0,T s,wn,1,p1q

´1
˘

ně0
is tight in R, where we take

wn,1ps, t, ωnq “ vn,1ps, t, ωnq `Cpt´ sq, for the same C as in 3e. Hence, we can add a new
coordinate to the almost surely converging subsequence (5.4) inherited from Skorokhod
theorem. This new coordinate represents p~Xnp¨q~r0,T s,wn,1,p1qně0. In fact, since Pn ˝
`

Xnp¨q, δxX
np¨q, RX

n

p¨q, vn,1p¨q
˘´1

coincides with pP˝
`

pXnp¨q, δx pX
np¨q, pR

xXn

p¨q, pvn,1p¨q
˘´1

for
each n ě 0, the new coordinate in the Skorokhod subsequence may be chosen as
`

~ pXnp¨q~r0,T s, pwn,1,p1
˘

ně0
itself, where, as before, pwn,1ps, t, pωq “ pvn,1ps, t, pωq ` Cpt´ sq. We

thus assume that the latter sequence is almost surely convergent. Moreover, identity in
law of

`

Wnp¨q, Xnp¨q
˘

under Pn and of
`

xWnp¨q, pXnp¨q
˘

under pP also says that, for pP-a.e.

pω P pΩ and any ps, tq P ST2 , | pXn
s,tppωq| ď

�

� pXnppωq
�

�

r0,T s, pwn,1,p1

`

pwn,1ps, t, pωq
˘1{p1

. By (5.4) and

3c, we get, for pP-a.e. pω P pΩ, for all ps, tq P ST2 ,

| pXs,tppωq| ď
`

lim
nÑ8

�

� pXnppωq
�

�

r0,T s, pwn,1,p1

˘`

pw1ps, t, pωq
˘1{p1

.

Proceeding similarly for δx pXnp¨q and R
xXn

p¨q, we deduce that, for pP-a.e. pω P pΩ,

~ pXppωq~r0,T s, pw1,p1 ď lim
nÑ8

~ pXnppωq~r0,T s, pwn,1,p1 ,

10The proof is as follows. Call N 1 “ pN 1p¨, αq. Without any loss of generality, we may assume N 1 ě 2. Define
pti :“ τ$i p0, αqqi“0,¨¨¨ ,N 1´1 as in (2.13), with $ “ p pw1q1{p, and let tN 1 :“ T . We also let K :“ tN 1{2u ě 1.
By super-additivity, we have, for any k P t0, ¨ ¨ ¨ ,K ´ 1u, pwpt2k, t2k`2q ě 2αp. Recall now that, almost
surely, pwn,1 converges uniformly to pw1 on ST2 . Hence, almost surely, for n large enough, we must have
pwn,1pt2k, t2k`2q ą αp, which implies that N

p pwn,1q1{p
pr0, T s, αq ě K.
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which shows in particular by Fatou’s lemma, see step 2b, that
@

~ pXp¨q~r0,T s, pw1,p1
D

8
ă 8.

Although pv1ppωq (and thus pw1ppωq) is not associated with xW ppωq through (2.7), we shall say
that, for a.e. pω P pΩ, pXppωq is an pω-controlled trajectory for the rough set-up xW p¨q. (We
come back to this point right below.)

Step 5.
5a. So far, we have constructed

`

pXppωq; F
`

pXppωq, pXp¨q
˘

; 0
˘

as an pω-controlled trajectory

for the limit rough set-up xW p¨q, but for pω in a full event pΩ1 Ă pΩ. For free, we can
modify the definition of pXppωq for pω P pΩzpΩ1 and define δx pXppωq accordingly so that
`

pXppωq; δx pXppωq; 0
˘

is an pω-controlled trajectory for any pω. Then,
`

pXppωq
˘

pωPpΩ
forms a

random controlled trajectory.
5b. In order to conclude, it remains to identify

`

pXppωq; F
`

pXppωq, pXp¨q
˘

; 0
˘

, for pP-a.e.

pω P pΩ, with Γ
xW

´

pXppωq; F
`

pXppωq, pXp¨q
˘

; 0
¯

, where the index xW in Γ
xW

is to emphasize the

rough set-up upon which the map Γ in Definition 4.1 is constructed. To do so, we recall
from (3.3) the expansion (see also (5.1))

Xn
tipωnq “ Xn

0 pωnq `
i
ÿ

j“1

F
`

Xn
tj´1

pωnq,LpXn
tj´1

q
˘

Wn
tj´1,tj pωnq

`

i
ÿ

j“1

BxF
`

Xn
tj´1

pωnq,LpXn
tj´1

q
˘

´

F
`

Xn
tj´1

pωnq,LpXn
tj´1

q
˘

Wn
tj´1,tj pωnq

¯

(5.7)

`

i
ÿ

j“1

A

DµF
`

Xn
tj´1

pωnq,LpXn
tj´1

q
˘`

Xn
tj´1

p¨q
˘

´

F
`

Xn
tj´1

p¨q,LpXn
tj´1

q
˘

W
n,KK
tj´1,tj p¨, ωnq

¯E

`

i
ÿ

j“1

Sntj´1,tj pωnq,

that holds true for any ωn P Ωn, any n ě 0 and any subdivision 0 “ t0 ă t1 ă ¨ ¨ ¨ ă tK “ T ,
with K ě 1, and with (see Theorem 3.4, Proposition 3.5 and 2b)

ˇ

ˇSntj´1,tj pωnq
ˇ

ˇ ď C
´

1` ~Xnpωnq~
2
r0,T s,wn,1,p1

¯

wn,1ptj´1, tj , ωnq
3{p1 .

In order to pass to the limit in (5.7), we consider a non-negative valued bounded
continuous function g on Cpr0, T s;Rmq ˆ CpST2 ;Rm bRmq ˆ CpST2 ;Rq ˆ Cpr0, T s;Rdq. We
then multiply both sides of (5.7) by g

`

Wnpωnq,W
npωnq, v

n,1pωnq, X
npωnq

˘

and integrate
ωn with respect to Pn. It is absolutely obvious that

lim
nÑ8

En

”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘

Xn
tip¨q

ı

“ pE
”

g
`

xW p¨q,xWp¨q, pv1p¨q, pXp¨q
˘

pXtip¨q

ı

,

and similarly with ti replaced by 0. In the same way,

lim
nÑ8

En

”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘

F
`

Xn
tj´1

p¨q,LpXn
tj´1

q
˘

Wn
tj´1,tj p¨q

ı

“ pE
”

g
`

xW p¨q,xWp¨q, pv1p¨q, pXp¨q
˘

F
`

pXtj´1
p¨q,Lp pXtj´1

q
˘

xWtj´1,tj p¨q

ı

,

and similarly for the terms on the second line. As for the fifth term in the right-hand
side, we have

lim sup
nÑ8

En

”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘
ˇ

ˇSntj´1,tj p¨q
ˇ

ˇ

ı

ď C lim sup
nÑ8

En

”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘

ˆ

´

1` ~Xnp¨q~2
r0,T s,wn,1,p1

¯

wn,1ptj´1, tj , ¨q
3{p1

ı

.
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Transferring the right-hand side into an expectation on ppΩ, pF , pPq and using obvious
uniform integrability properties, see 2b, we deduce from 4b that

lim sup
nÑ8

En

”

g
`

Wnp¨q,Wnp¨q, vn,1p¨q, Xnp¨q
˘

|Sntj´1,tj p¨q|

ı

ď CpE
”

g
`

xW p¨q,xWp¨q, pv1p¨q, pXp¨q
˘

´

1` lim
nÑ8

~ pXnp¨q~2
r0,T s, pwn,1,p1

¯

pw1ptj´1, tj , ¨q
3{p1

ı

.

Of course, the most difficult term to treat in (5.7) is the fourth one in the right-hand side.
This can be done by using Fubini’s theorem:

ż

Ωn

dPnpωnq
”

g
`

Wnpωnq,W
npωnq, v

n,1pωnq, X
npωnq

˘

¨

A

DµF
`

Xn
tj´1

pωnq,LpXn
tj´1

q
˘`

Xn
tj´1

p¨q
˘

´

F
`

Xn
tj´1

p¨q,LpXn
tj´1

q
˘

W
n,KK
tj´1,tj p¨, ωnq

¯Eı

“

ż

Ω2
n

dPb2
n pωn, ω

1
nq

”

g
`

Wnpωnq,W
npωnq, v

n,1pωnq, X
npωnq

˘

¨DµF
`

Xn
tj´1

pωnq,LpXn
tj´1

q
˘`

Xn
tj´1

pω1nq
˘

´

F
`

Xn
tj´1

pω1nq,LpXn
tj´1

q
˘

W
n,KK
tj´1,tj pω

1
n, ωnq

¯ı

“ pE
”

g
`

xWn,1p¨q,xWn,1,1p¨q, pv1,n,1p¨q, pXn,1p¨q
˘

¨DµF
`

pXn,1
tj´1

p¨q,LpXn
tj´1

q
˘`

pXn,2
tj´1

p¨q
˘

´

F
`

pXn,2
tj´1

p¨q,LpXn
tj´1

q
˘

xWn,2,1
tj´1,tj p¨q

¯ı

.

We now use (5.4) in order to pass to the limit. The only slight difficulty is that we must
ensure that the regularity conditions satisfied by DµF are compatible with the almost
sure convergence property (5.4). Recall indeed that the continuity property Regularity
assumptions 1 is formulated in L2. By [10, Proposition 5.36], this implies that the
mapping v ÞÑ DµFpx, µqpvq is Lipschitz continuous, uniformly in x and µ. The latter

guarantees that, for a.e. pω P pΩ,

lim
nÑ8

DµF
`

pXn,1
tj´1

ppωq,LpXn
tj´1

q
˘`

pXn,2
tj´1

ppωq
˘

“ DµF
`

pX1
tj´1

ppωq,Lp pXtj´1q
˘`

pX2
tj´1

ppωq
˘

.

So, the limit of the summand on the fourth line of (5.7) is

pE
”

g
`

xW 1p¨q,xW 1,1p¨q, pv1,1p¨q, pX1p¨q
˘

¨DµF
`

pX1
tj´1

p¨q,Lp pX1
tj´1

q
˘`

pX2
tj´1

p¨q
˘

´

F
`

pX2
tj´1

p¨q,Lp pX1
tj´1

q
˘

xW
2,1
tj´1,tj p¨q

¯ı

,

and our reconstruction of the limiting set-up permits to rewrite it in the form
ż

pΩ

dpPppωq
”

g
`

xW ppωq,xWppωq, pv1ppωq, pXppωq
˘

¨

A

DµF
`

pXtj´1
ppωq,Lp pXtj´1

q
˘`

pXtj´1
p¨q

˘

´

F
`

pXtj´1
p¨q,Lp pXtj´1

q
˘

xWKK
tj´1,tj p¨, pωq

¯Eı

.

Importantly, since the limiting set-up is strong, the term in bracket in the last line is
σtxW, pXu-measurable.

5c. Let now

J ppωq :“ pXtippωq ´
pX0ppωq ´

i
ÿ

j“1

F
`

pXtj´1
ppωq,Lp pXtj´1

q
˘

xWtj´1,tj ppωq

´

i
ÿ

j“1

BxF
`

pXtj´1
ppωq,Lp pXtj´1

q
˘

´

F
`

pXtj´1
ppωq,Lp pXtj´1

q
˘

xWtj´1,tj ppωq
¯

´

i
ÿ

j“1

A

DµF
`

pXtj´1
ppωq,Lp pXtj´1

q
˘`

pXtj´1
p¨q

˘

´

F
`

pXtj´1
p¨q,Lp pXtj´1

q
˘

xWKK
tj´1,tj p¨, pωq

¯E

.
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By the conclusion of 5b, it is σtxW,xW, pXu-measurable and it satisfies, for any g as in the
previous step,

pE
”

g
`

xW p¨q,xWp¨q, pv1p¨q, pXp¨q
˘
ˇ

ˇ pJ p¨q
ˇ

ˇ

ı

ď pE
”

g
`

xW p¨q,xWp¨q, pv1p¨q, pXp¨q
˘

´

1` lim
nÑ8

~ pXnp¨q~2
r0,T s, pwn,1,p1

¯

i
ÿ

j“1

pw1ptj´1, tj , ¨q
3{p1

ı

.

Therefore, for pP-a.e. pω,

ˇ

ˇJ ppωq
ˇ

ˇ ď C
´

i
ÿ

j“1

pw1ptj´1, tj , pωq
3{p1

¯

pE
”

lim
nÑ8

~ pXnp¨q~2
r0,T s, pwn,1,p1 |σ

 

xW,xW, pv1, pX
(

ı

ppωq.

By super-additivity of pw1, pXtppωq and pX0ppωq `
şt

0
Fp pXspωq, pXsp¨qqdxW spωq coincide. Note

that this is true although the functionals pv1ppωq and pw1ppωq that control the variations
of pX are not associated with xW ppωq through (2.7); the sole fact that pv1ppωq dominates
sv1ppωq (which is associated with xW ppωq through (2.7)) and that pw1ppωq satisfy (2.8) and (2.9)
suffices.

The domination of sv1ppωq by pv1ppωq, the latter satisfying the tail properties in Theorem
4.4, suffices to duplicate the uniqueness argument. In words, pXp¨q is the solution to the
mean field rough equation driven by xW and, by uniqueness in law, pXp¨q has the same
law as Xp¨q.

We used the following lemma in the proof of Theorem 5.4.

Lemma 5.5. For a separable Banach space pE, | ¨ |q, call Cp´var
0 pST2 ;Eq the space of

continuous paths G from ST2 into E that are null on the diagonal, i.e. Gt,t “ 0 for all
t P r0, T s, and have a finite p-variation, i.e.

}G}p
r0,T s,p´var “ sup

0ďt1ă¨¨¨ătN“T

N´1
ÿ

i“0

|Gti,ti`1 |
p ă 8.

For each n ě 0, let Zn “ pZns,tqs,tPST
2

be a process defined on pΩn,Fn,Pnqwith trajectories

in Cp´var
0

`

ST2 ;E
˘

. Assume that the family of distributions
`

Pn ˝ pZ
nq´1

˘

ně0
is tight in

CpST2 ;Eq, and that the family of distributions
`

Pn ˝ p}Z
n}r0,T s,p´varq

´1
˘

ně0
is tight in R.

Then, for p1 ą p, the family of distributions
`

Pn ˝ pST2 Q ps, tq ÞÑ }Zn}rs,ts,p1´var P

Rq´1
˘

ně0
is tight in CpST2 ;Rq. In particular, for any ε ą 0, there exists δ ą 0, such that

Pn

ˆ

sup
ps,tqPST

2 :t´sďδ

}Zn}rs,ts,p1´var ą ε

˙

ă ε.

Proof. The first part is an adaptation of Proposition 5.28 and Corollary 5.29 in [24]. The
second part is a consequence of the fact that }z}rt,ts,p1´var “ 0, for z P Cp´var

0 pST2 ;Eq.

A Proof of Theorem 2.4

We provide here the proof of Theorem 2.4. We follow the proof of Theorem 11.13
in [23], see also the proof of Proposition 6.2 in [12]. Throughout the proof, we use the
same notations as in the statement of Theorem 2.4.

Notice first that handling the local accumulation of w1{p is the same as handling
the local accumulation of w. This amounts to change the argument α into αp in (2.14).
Recall now that wps, t, ωq is given by (2.10) and vps, t, ωq therein consists in six different
terms, see (2.7). It is an easy exercice to check that it suffices to control the local
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accumulation associated with each of these six terms. To make it clear, we have the
following property. For a given threshold α ą 0 and for any two nondecreasing continuous
functions v1 : ST2 Ñ R` and v2 : ST2 Ñ R`, set Nipαq :“ Nvi

`

r0, T s, α
˘

, for 1 ď i ď 2, and
Npαq :“ Nv1`v2

`

r0, T s, α
˘

; see (2.14) for the original definition. Then

max
´

N1

´α

2

¯

, N2

´α

2

¯¯

ě Npαq. (A.1)

For sure, the result is true with the first and third terms in (2.7) as this fits the original
property established in [12]. Also, it is obviously true for the second and sixth terms
since they are completely deterministic. Hence, the only difficulty is to control the local
accumulation associated with the fourth and fifth terms.

The strategy is as follows. As we work with Gaussian rough paths, the set-up, as
defined in Section 2, is strong. So, we can transfer it to any arbitrarily fixed probability
space (provided that the letter is rich enough). Hence, we can choose Ω as the path
space W, see the notation in the statement of Theorem 2.4.

We denote by W pω, ω1q the enhanced Gaussian rough path associated to
`

W pωq,

W 1pω1q
˘

along the lines of Example 2.2, for Pb2-a.e. pω, ω1q P Ω2. The second level of
W pω, ω1q reads

W r2s
pω, ω1q :“

ˆ

Wpωq I
`

W pωq,W 1pω1q
˘

I
`

W 1pω1q,W pωq
˘

Wpω1q

˙

,

where I is as in Definition 5.2, and where we used the same symbol W as in Section 2 for
the enhanced path although the meaning here is not exactly the same. Here, W pω, ω1q

is a function of both ω and ω1 and takes values in R2m ‘ pR2mqb2. Following Section 3
in [12], see also (11.5) in [23], we define, for h‘ k P H ‘H the translated rough path
pTh‘kW qpω, ω1q, where, as in Example 2.2, H is the underlying Cameron-Martin space.
We then recall that, with probability 1 under Pb2,

Th‘kW pω, ω1q “W pω ` h, ω1 ` kq.

Following the argument given in Proposition 6.2 in [12], see also Lemma 11.4 in [23],
we have, for any h P H and any ps, tq P ST2 ,

8W pω, ω1q8p
rs,ts,p´var ď c

´

8Th‘0W pω, ω1q 8p
rs,ts,p´var `}h}

p
rs,ts,%´var

¯

,

where we recall that 1{p` 1{% ą 1 and c only depends on p and %, and where

8W pω, ω1q8rs,ts,p´var :“ }pW,W 1qpω, ω1q}rs,ts,p´var `

b

}W r2s
pω, ω1q}rs,ts,pp{2q´var,

and similarly for 8Th‘0W pω, ω1q8rs,ts,p´var. Taking the power q, allowing the constant c
to depend on q and integrating with respect to ω1, we get

A

}WKKpω, ¨q}
p{2
rs,ts,pp{2q´var

E

q
ď c

´A

8Th‘0W pω, ¨q8p
rs,ts,p´var

E

q
` }h}p

rs,ts,%´var

¯

.

We now let

8 W pω, ω1q8rs,ts,p1{pq´Höl

:“ }pW,W 1qpω, ω1q}rs,ts,p1{pq´Höl `

b

}W r2s
pω, ω1q}rs,ts,p2{pq´Höl,

for the standard Hölder semi-norm of the rough path, see Theorem 11.9 in [23]. Then,

A

}WKKpω, ¨q}rs,ts,pp{2q´var

Ep{2

q
ď c

´A

8Th‘0W pω, ¨q8p
r0,T s,p1{pq´Höl

E

q
pt´ sq ` }h}p

rs,ts,%´var

¯

.
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Therefore, if }h}rs,ts,%´var ď 1, then

A

WKKpω, ¨q
Ep{2

q;rs,ts,pp{2q´var
ď c

´A

8Th‘0W pω, ¨q8p
r0,T s,p1{pq´Höl

E

q
pt´ sq ` }h}%

rs,ts,%´var

¯

.

Observe that if the left-hand side is equal to or less than α, the above statement remains
true even if }h}rs,ts,%´var ą 1; it suffices to change the constant c accordingly. Define

now Npr0, T s, ω, αq :“ N$pr0, T s, αq, when $ps, tq “
@

WKKpω, ¨q
Dp{2

q;rs,ts,pp{2q´var
. Then, by

super-additivity of } ¨ }%%´var,

Npr0, T s, ω, αqα ď c
´A

8Th‘0W pω, ¨q8p
r0,T s,p1{pq´Höl

E

q
T ` }h}%

r0,T s,%´var

¯

.

By Proposition 11.2 in [23], we get (for a new value of c)

Npr0, T s, ω, αqα ď c
´A

8Th‘0W pω, ¨q8p
r0,T s,p1{pq´Höl

E

q
T ` }h}%H

?
T
¯

,

where } ¨ }H is the standard norm on the reproducing Hilbert space H, see again for in-
stance Appendix D in [24]. We conclude by recalling that the quantity
⟪ 8W p¨, ¨q8p

r0,T s,p1{pq´Höl ⟫q is finite, by observing that

E :“
!

pω, ω1q P Ω2 : Th‘0W pω, ω1q “W pω ` h, ω1q, h P H
)

,

is of full Pb2-probability measure, see Theorems 11.5 and 11.9 in [23], and then by
invoking Theorem 11.7 in [23].

As for the sub exponential integrability of wp0, T, ¨q, we just proceed with the tails

of Ω Q ω ÞÑ
@

WKKpω, ¨q
Dp{2

q;r0,T s,p{2´var
. To do so, it suffices to prove that the integral

ş

Ω
exp

`@
›

›WKKpω, ¨q
›

›

q

r0,T s,p2{pq´Höl

Dε{q˘
dPpωq is finite, for some ε ą 0. We then notice that

the function p0,`8q Q x ÞÑ exp
`

xε{q
˘

, is convex on rAε,8q, for some Aε ą 0. Therefore,
Jensen’s inequality says that it suffices to prove that

ż

Ω2

exp
`

Aε{qε _
›

›WKKpω, ω1q
›

›

ε

r0,T s,p2{pq´Höl

˘

dPpωqdPpω1q ă 8,

which follows from Proposition 6.2 in [12] and Theorem 11.13 in [23], provided we
choose ε small enough.
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