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Solving mean field rough differential equations

Ismaél Bailleul* Rémi Catellier' Francois Delarue’

Abstract

We provide in this work a robust solution theory for random rough differential equa-
tions of mean field type

dX: =V (X, L(Xy))dt + F(Xe, L(X¢))dWr,

where W is a random rough path and £(X;) stands for the law of X;, with mean
field interaction in both the drift and diffusivity. We show that, in addition to the
enhanced path of W, the underlying rough path-like setting should also comprise an
infinite dimensional component obtained by regarding the collection of realizations
of W as a deterministic trajectory with values in some L? space. This advocates for
a suitable notion of controlled path a la Gubinelli inspired from Lions’ approach to
differential calculus on Wasserstein space, the systematic use of the latter playing a
fundamental role in our study. Whilst elucidating the rough set-up is a key step in the
analysis, solving the mean field rough equation requires another effort: the equation
cannot be dealt with as a mere rough differential equation driven by a possibly infinite
dimensional rough path. Because of the mean field component, the proof of existence
and uniqueness indeed asks for a specific and quite elaborated localization-in-time
argument.
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1 Introduction

The first works on mean field stochastic dynamics and interacting diffusions/Markov
processes have their roots in Kac’s simplified approach to kinetic theory [28] and
McKean’s work [34] on nonlinear parabolic equations. They provide the description of
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Mean field rough equations

evolutions (u¢):=o in the space of probability measures under the form of a pathspace
random dynamics

dXt(w) = V(Xt(w),,ut)dt + F(Xt(LU),E(Xt))th(W), (11)

(where L(A) stands for the law of a random variable A) and relate it to the empirical
behaviour of large systems of interacting dynamics. The main emphasis of subsequent
works has been on proving propagation of chaos and other limit theorems, and giving
stochastic representations of solutions to nonlinear parabolic equations under more
and more general settings; see [36, 37, 25, 17, 18, 35, 27, 7, 8] for a tiny sample.
Classical stochastic calculus makes sense of equation (1.1), in a probabilistic setting
(Q, F,P), only when the process W is a semi-martingale under P, for some filtration,
and the integrand is predictable. However, this setting happens to be too restrictive
in a number of situations, especially when the diffusivity is random. This prompted
several authors to address equation (1.1) by means of rough paths theory. Indeed, one
may understand rough paths theory as a natural framework for providing probabilistic
models of interacting populations, beyond the realm of Itd calculus. Cass and Lyons [13]
did the first study of mean field random rough differential equations and proved the
well-posed character of equation (1.1), and propagation of chaos for an associated system
of interacting particles, under the assumption that there is no mean field interaction
in the diffusivity, i.e. F(z,u) = F(z), and the drift depends linearly on the mean field
interaction, i.e. V(z,pu) = {V(z,y) u(dy), for some function V(-,-) on R? x R%.

The method of proof of Cass and Lyons depends crucially on both assumptions.
Bailleul extended partly these results in [3] by proving well-posedness of the mean field
rough differential equation (1.1) in the case where the drift depends nonlinearly on the
interaction term and the diffusivity is still independent of the interaction, and by proving
an existence result when the diffusivity depends on the interaction. The naive approach
to showing well-posedness of equation (1.1) in its general form consists in treating the
measure argument as a time argument. However, this is of a rather limited scope since,
in this generality, one cannot expect the time dependence in F to be better than Z%-Hélder
if the rough path W is itself %-Hélder. Clearly, such a time regularity is not sufficient
to make sense of the rough integral SF( --)dW in the case p > 2. This serious issue
explains why, so far in the literature, the coefficient F has been assumed to be a function
of the sole variable x.

Including the time component as one of the components of W brings back the study
of equation (1.1) to the study of equation

this is the precise purpose of the present paper. Treating the drift as part of the diffusivity
has the drawback that we shall impose on V' some regularity conditions stronger than
needed. Our method accommodates the general case but we leave the reader the
pleasure of optimizing the details and concentrate on the new features of our approach,
working on equation (1.2). The raw driver (Wt (w))t;0 will be assumed to take values
in some R™ and to be ]%-Hf)lder continuous, for p € [2,3), and the one form F will be

an .Z(R™,R%)-valued function on R? x Py(R?), where .Z(R™,R?) is the space of linear
mappings from R™ to R¢ and Pz(]Rd) is the so-called Wasserstein space of probability
measures pu with a finite second-order moment. Inspired by Lions’ approach [31, 9, 10] to
differential calculus on Py(R?), one of the key point in our analysis is to lift the function
F into a function F defined on the space RY x 1.2 (2, F,P;R?), given by the formula

F(z,2) = F(z,L(Z)), (1.3)
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for r € R? and Z € L.2(Q, 7, P; R%), and then to use accordingly Lions’ calculus in order
to take care of the probability-measure valued mean field dependence of the dynamics.
So, we may rewrite equation (1.2) as

dX;(w) = F(X¢(w), X:(-))dWi(w). (1.4)

We used the notation X,(-) to distinguish the realization X;(w) of the random variable X,
at point w from the random variable itself, seen as an element of the space I? (2, 7, P; R?).
So, X;(-) is a random variable, and thus an infinite-dimensional object, whilst X;(w) is a
finite-dimensional vector. We feel that this writing is sufficiently explicit to remove the
hat over F.

Our main well-posedness result is stated below, in a preliminary form only. The
precise statement requires additional ingredients that we introduce later on in the text.
In this first formulation

<t
quantify the regularity of the solution path on subintervals [s,¢] of a given finite

interval [0, 7], using some associated notion of p-variation for the same p as above,
see (2.10) for a more mathematical formulation,

* the quantity N([0,T], «) is some local accumulated variation of the ‘rough lift’ of
W that counts the increments of w of size « over a bounded interval [0,T] for a
given a > 0, see (2.14) for the mathematical formulation;

* the quantity w(:,-) = (w(s,t))0<s is a random control function that is used to

We refer to Section 2 for a complete description of the set-up. The regularity assumptions
on the diffusivity F are spelled-out in Section 3.3 and in Section 4, see Regularity
assumptions 1 and Regularity assumptions 2 therein.

Theorem 1.1. Let F satisfy the regularity assumptions Regularity assumptions 1 and
Regularity assumptions 2. Assume there exists a positive time horizon T such that
the random variables w(0,T) and (N ((0,T),«)),__, have sub and super exponential tails,
respectively,

e P(w(0,T) >t) < cyexp(—t),
« P(N([0,T],a) > t) < ca() exp(—t'+=2(®)), a > 0,

for some positive constants ¢; and €, and possibly a-dependent positive constants cs(«)
and e9(«). Then for any d-dimensional square-integrable random variable X, the mean
field rough differential equation

dX, = F(X,;, L(X,)) dW;

has a unique solution defined on the whole interval [0, T].

Results of that form seem out of reach of the methods used in [13, 3]. Theorem 1.1
applies in particular to mean field rough differential equations driven by some fractional
Brownian motion with Hurst parameter greater than % other Gaussian processes or
some Markovian rough paths; see Section 2. Importantly, the solution is shown to depend
continuously on the driving ‘rough path’, in a quantitative sense detailed in Theorem
5.4. As an example that fits our regularity assumptions, one can solve the above mean
field rough differential equation with F(z, u) = { f(z, y)u(dy), for some fuction f of class
C’lf’ (meaning that f is bounded and has bounded derivatives of order 1, 2 and 3), or
with F(z, 1) = g(z, (3. yu(dy)), for some function g of class Cy. The Curie-Weiss model,
where F is of the form F(z, u) = VU(z) + {(z — y)u(dy), falls outside the scope of what is
written here, because of the linear growth rate in x, but is within reach of our method.

One of the difficulties in solving equation (1.2) comes from the fact that it happens
not to be sufficient to consider each signal W, (w) as the first level of a rough path; one
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somehow needs to consider the whole family (W. (w))wEQ as an infinite-dimensional rough
path. This leads us to defining in Section 2 a rough setting where (W;(w), Wt('))0<t<T
is, for each w, the first level of a rough path over R™ x 1.9 (Q,]—', P; R’”); seemingly,
the natural choice for ¢, as dictated by the aforementioned lifting procedure of the
Wasserstein space, is ¢ = 2; we shall actually need a larger value. Unlike the seminal
works [13, 3] that set the scene in Davie’s approach of rough differential equations, such
as reshaped by Friz-Victoir and Bailleul respectively, we use here Gubinelli’s versatile
approach of controlled paths to make sense of equation (1.2). Our mixed finite/infinite
dimensional setting introduces an interesting twist in the notion of controlled path
presented in Section 3.1. Defining the rough integral of a controlled path with respect
to a rough driver is done classically in Section 3.2 using the sewing lemma. We prove
stability of a certain class of controlled paths by nonlinear mappings in Section 3.3,
which is precisely the place where Lions’ differential calculus on P»(R%) is of crucial
use. One then has all the ingredients needed to formulate in Section 4 equation (1.2) as
a fixed point problem in some space of controlled paths. It must be stressed here that
solving rough differential equations driven by random rough paths and solving mean field
rough differential equations are two different tasks. In the first setting, the solutions are
constructed up to a random time, say ¢, yielding a random path (z;)o<:<¢ defined up to
¢, but, for such solutions, we can only make sense of L(x;,¢) rather than £(x,), for ¢ > 0.
Of course, this is a serious drawback for solving mean field rough equations, unless we
know a priori that ( is infinite, as is in fact the case in Cass and Lyons’ work. However,
we cannot hope to obtain for free ( = o0 in the general case that we investigate here
because the diffusivity is also mean field dependent. We are nonetheless able to prove
local well-posedness, and sufficient conditions on the law of the driver are given to get
well-posedness on any fixed time interval. As expected from any solution theory for rough
differential equations, the solution depends continuously on all the parameters in the
equation, most notably its law depends continuously on the law of the driving rough path,
as shown in Section 5. This latter point is used in the companion paper [4] to provide a
proof of propagation of chaos for an interacting particle system associated with equation
(1.2) and quantify the convergence rate!. Among others, it recovers Sznitman’ seminal
work [36] on the case where the noise is a Brownian motion. Interestingly, the striking
fact of the analysis performed in [4] is based upon an observation noticed first by Tanaka
in his seminal work [38] on limit theorems for mean field type diffusions, and used
crucially by Cass and Lyons in [13]. It says that, for a given w € (2, the aforementioned
particle system associated with (1.2) may be interpreted as a mean field rough equation
(in the sense of our Definition 4.1 below) but with respect to the empirical version of the
rough setting. The fact that Tanaka’s trick extends to the case under study sounds as an
a posteriori justification of our construction and demonstrates that our approach to (1.2)
is certainly the right one. In this regard, it is worth emphasizing that the proof of the
identification of the particle system with an equation of the same type as (1.2) is entirely
based upon the properties of Lions’ derivatives, hence revealing again the contribution
of Lions’ calculus to our analysis.

While Lyons formulated his theory in a Banach setting from the begining [32], the
theory has mainly been explored for finite dimensional drivers, with the noticeable
exception of the works of Ledoux, Lyons and Qian on Banach space valued rough paths
[30, 33], Dereich follow-up works [19, 20], Kelly and Melbourne application to homog-
enization of fast/slow systems of ordinary differential equations [29], and Bailleul and
Riedel’s work on rough flows [2]. One can see the present work as another illustration of
the strength of the theory in its full generality. However, although the underlying rough

1'We also refer to Section 4 of the Arxiv deposit [5]; [5] encompasses the original versions of this work and
of the companion work [4].
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set-up associated to (W;(w), We(-))o<t<r is a mixed finite/infinite dimensional object, a
solution to the mean field rough differential equation is more than a solution to a rough
differential equation driven by an infinite dimensional rough path. Indeed, the mean
field structure imposes an additional fixed point condition, which is to identify the finite
dimensional component of the solution as the w-realization of the infinite dimensional
component. This is precisely this constraint that makes the equation difficult to solve
and that explains the need for a specific analysis.

Notations. We gather here a number of notations that will be used throughout the
text.

* We set S; := {(s,t) € [0,00)? : s < t}, and ST := {(s,1) € [0,T]* : s < t}.

* We denote by (2, F,P) an atomless Polish probability space, F standing for the
completion of the Borel o-field under P, and denote by {-) the expectation operator,
by (-),., for r € [1, +0], the I."-norm on (2, 7, P) and by (-) and (-}, the expectation
operator and the L"-norm on (Q? F®2 P®?). When r is finite, L"(Q2, 7, P; R) is
separable as (2 is Polish.

* As for processes X, = (X¢)ies, defined on a time interval I, we often write X for
X..

2 Probabilistic rough structure

We define in this section a notion of rough path appropriate for our purpose. It
happens to be a mixed finite/infinite dimensional object. Throughout the section, we
work on a finite time horizon [0, 7], for a given T > 0.

e We define the first level of our rough path structure as an w-indexed pair of paths

(We(@)s Wi () gy 2.1)

where (Wt('))o <t<T is a collection of g-integrable R™-valued random variables on the
space (2, F,P), which we regard as a deterministic LZ(Q2, 7, P; R™)-valued path, for
some exponent ¢ > 1, and (Wt (w))OStST stands for the realizations of these random
variables along the outcome w € €2; so the pair (2.1) takes values in R™ x L¢(Q, F, P; R™).
As we already explained, a natural choice would be to take ¢ = 2, but for technical
reasons that will get clear below, we shall require ¢ > 8.

e The second level of the rough path structure includes a two-index path

(W&t(w))o <o<t<r With values in R™*™, obtained as the w-realizations of a collection of
defined on 2; importantly, this second
and (W2, (-,w)) of a collec-

0<s<t<T 0<s<t<T
tion of R™*™-valued random variables defined on the product space (22, F®?, P®?) and

considered as a deterministic IL7(Q?, 72 P®?; R™*"™)-valued path (W, (., '))ogsgth'

Each W{-,(-,-), for (s, ¢) € S, belonging to the space L7(Q? F®2 P®2; R™*™), we have

¢-integrable random variables (W (-)) .,

level also comprises the sections (W3, (w, -))

<W§Et(w7 )>q < 0, <Wj%t('aw)>q < 00, (22)

for P-a.e. w € Q2. Below, we shall assume (2.2) to be true for every w € ). This is not
such a hindrance since we can modify in a quite systematic way the definition of the
rough path structure on the null event where (2.2) fails; this is exemplified in Proposition
2.3 below. Taken this assumption for granted, we can regard ©? 3 w — W;,,'%t(w, )
and Q > w — Wsi,t(-,w) as random variables with values in I9(Q, F,P; R™*™): Since
Le(Q, F,P; R™*™) is separable, it suffices to notice from Fubini’s theorem that, for
any Z € L1(Q, F,P;R™*™), Q 5w — (W (w, ) — Z>q is measurable, and similarly for
Wi&t(-,w).
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Hence, the entire second level has the form of an w-dependent two-index path with
values in (R™ x L7(, F, P; IR"”))®2 and is encoded in matrix form as

W t(w) le_t (w7 ) > 2
; , . 3
( Wsﬁ(-,w) Wit(" ) 0<s<t<T =)

Here,

¢ W, ,(w)isin (R™)®2 ~ Rm*m,

W, (w,) is in R™ @ L9(Q, F, P; R™) ~ LI(Q, F, P; R™*m),
. wi (L w) is in L(Q, F, Py R™) @ R™ ~ L9(Q, F, P; R™*™),

} (-,-) is in L9 (Q®2, F&2 POZ, R™>™), the realizations of which read in the form
0% 5 (w,w) > W (w,w’) € R™*™ and the two sections of which are precisely
given by Wf:t(w, ) Q5w > Wh(w,w), and Wh(w) 3w — Wi, (o', w), for
w e .

Below, we formulate several additional assumptions on the rough path structure, the
introduction of which is rather lengthy and is, for that reason, split into three distinct
subsections.

2.1 Algebraic conditions

As usual with rough paths, algebraic consistency requires that Chen'’s relations

W, i(w) = W, s(w) + Wy (w) + W, s(w) @ W (w)

Wii() = Wik (5w) + Wi () + Wes () @ W (w), o
Wi (w, ) = Wik (w, ) + W (w, ) + W (@) © W), '
Wi () = Wit () + W () + Wos () @ Wi (),

hold for any 0 < r < s <t < T. We used here the very convenient notation f, ; := f; — f,
for a function f from [0, 0) into a vector space. In (2.4) and throughout, we denote
by X(-)® Y (:), for any two X and Y in L?(Q, F,IP; R™), the random variable (w,w’) —
(Xi(w)Yj(w’))Ki’jém defined on Q2. Itis in L?(Q?, F®2 PO% R™*™).

Remark 2.1. The last three lines in Chen’s relations (2.4) are somewhat redundant.
Assume indeed that we are given a collection of random variables (Wj%t(-7 -))0 coct<T
satisfying the last line of (2.4). Then, forall 0 < r < s < t < T and for P®?-a.e.
(w,w') € N2,

W#(w,w’) = Wifs(w,w/) + Wit(w, W)+ Wys(w) @ Wi ¢ (w').

Clearly, for P-almost every w € €2, the second and third lines in (2.4) hold true as well.
This is slightly weaker than the formulation (2.4) as, therein, the second and third lines
are required to hold for all w € ). As exemplified in the proof of Proposition 2.3, one may
modify the definition of WL on a null event so that the second and third lines in (2.4)
hold true forall wand forall 0 < r < s <t <T.

Definition 2.2. We shall denote by W (w) the rough set-up specified by the w-depen-
dent collection of maps given by (2.1) and (2.3).

As for the component WL of W (w), the notation L is used to indicate, as we shall
make it clear below, that Wj&t(«, -) should be thought of as the random variable

(w,w’) — f: (Wr(w) - Ws(w)) ® dW,.(w'").
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Since Q2 3 (w,w’) — (Wi(w))o<t<r and Q2 3 (w,w’) — (Wy(w'))o<i<r are independent
under P®2?, we then understand ijt as an iterated integral of two independent copies of
the noise. While such a construction is elementary for a random C' path, the well-defined
character of this integral needs to be proved for more general probability measures P.

Example 2.1. Let W be an R™-valued Brownian motion, defined on (2, 7, P). Denote
by W,(-) the equivalence class of Q 5w — W;(w) in L?(Q, 7, P;R™), and extend W, on
the product space (02, 72, P®?), setting Wy (w, w’) := W;(w). Define also on the product
space the random variable W} (w,w’) := Wy(w’). Then, W and W' are two independent
m-dimensional Brownian motions under P®2, and one can construct the time-indexed
stochastic integral (say of Stratonovich or Itd type, but this does not really matter here
since W and W' are independent)

t
2?3 (w,w') — ({J (W, — W) ®dWT’,} (w,w’)) € C(Sy; R™* ™).
s 0<s<t<T

The stochastic integral is uniquely defined up to an event of zero measure under PP®?2.
Up to an exceptional event (of (22, F¥2 P®2)), we then let

N

¢
Wi (w,w') = (f (W, — Wy) ®dW,f) (w,w'), 0<s<t<T.

S

We can specify the definition of W1 on the remaining exceptional event and then modify
the definition of W on a null event of (2, 7, P) in such a way that Chen’s relations (2.4)
hold everywhere - see the end of the proof of Proposition 2.3 below for a detailed proof
of this fact. The process (Ws,t(w))o <s<t<T 18 defined in a standard way as a Stratonovich
or It6 (depending on the choice performed for the rough path) integral outside a set of
null measure:

t
Woile)i= ([[0% - wy@aw ) @), o<s<isr
S

The principle underpinning the above example may be put in a more general frame-
work which will be useful to prove continuity of the It6-Lyons solution map to the
equation (1.2). We state it in the form of a proposition that provides a quite systematic
way for constructing rough set-ups in practice. We advise the reader to come back to
this proposition later on.

Proposition 2.3. Let (2,5, Q) be a probability space, and W* := (W}),_,_, and W? :=
(Wt2)0<t<T be two independent and identically distributed R™-valued processes defined
on E. Assume they have continuous trajectories and Eq [supy<,<r (W] < co.

Let also (W,])oss<t<r), i_1. be four R™ @ R™ =~ R™*™-valued continuous paths
such that Eq [Suposs<t<T (Wil q] <, fori,j = 1,2, and (W', W) is independent of

W?2. Last, assume that, for a.e. ¢ € Z, the pair
<( W) ) ( Whi(g) Wh2(¢) ))
W2(&) )7\ W2E) W23(E)

satisfles Chen’s relation in the sense that W7} (€) = Wi (&) + Wi (&) + Wi (&) @ W, (€)
foranyi,j e {1,2} and 0 < r < s <t < T. SetQ := = x [0,1] with [0,1] equipped
with its Borel o-algebra B([O, 1]) and denote by Leb the Lebesgue measure on [0, 1].
Then we can find a triple of random variables (W, W, W), the first two components

being defined on (Q, F ® B([0,1]), Q ® Leb), the last component being constructed on
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the product space 22, and the whole family satisfying all the above requirements for a
rough set-up, such that

P({cw: WW)(gw) = (WLwH)©}) = 1,

and, for P-a.e. w = (&, u), the law of W (-,w) is the same as the conditional law of W2
given (W*(£), W?(&), W' (€)).

The reader may worry about the fact that, in the statement, we only appeal to W:!
and W?2!, and not to W22 and W'2. The reason is that, in our construction of the
rough set-up, the processes W (w,-), WL (-,w) and W(., ) are intrinsically connected.
As made clear by the proof below, the relationships that hold true between W+ (w,),
W(-,w) and W(.,-) must transfer to (W?);_1 > and (W%%); ;_1 ». In short, everything
works as if the pair (W?, W?2?) was a mere independent copy of (W', W!!) and the
conditional law of W2 given (W2 W' W??2) was the same as the conditional law of
W21 given (W', W2, Wtl), in which case the only needed ingredients are W1, Wh1, W2
and W?2!. The latter is consistent with the statement.

Proof. Recall first from [6] the following form of Skorokhod representation theorem.
There exists a function ¥ : [0,1] x P(C(SF;R™ @ R™)) — C(S7; R™ ® R™) such that

e for every probability ;. on C(S1), equipped with its Borel o-field, [0,1] 3 u — ¥ (u, j1)
is a random variable with . as distribution - [0, 1] being equipped with Lebesgue
measure,

e the map V is measurable.

1,2 .11

Let now (q(w Swe wh be a regular conditional

))wl,wZEC([O,T];]R"");wlvle(:(Sg;]R’”@]R’")
probability of W21 given (W', W2 W), Define on () the random variables

W(gu) = WHE), W(Eu):= WH(E),
and, on Q2,
W' ((& ), (€)== WHE),
W (6w, (¢ w)) 1= w (', a(WHE), W€, WH(E), ).

Since the law of (W, W’, W) under P®? is the same as the law of (W', W2 W!) under
Q, we deduce that the law of (W, W/, W, WT) under P®?, with W' (w,w’) := W(w/, w),
is the same as the law of (W*, W2, W' W?21!) under Q. In particular, with probability 1
under P®?, forall 0 <r <s<t<T,

WIt(w,w') = WIS(w,w/) + WL(w,w/) + Wes(w') @ Wi 1 (w),

that is
W#(w,w’) = Wifs(w,w/) + Wit(w, W)+ Wy s(w) @ Wi ¢ (w').

Call now A € F the set of those w’s in ) for which the above relation fails for ' in a set
of positive probability measure under P. Clearly, P(A) = 0. Define in a similar way A’ by
exchanging the roles of w and w’. Forw e Au A’, set W(w) = 0; and whenever w e A u A’
orw' e Au A, set Wh(w,w') =0. Ifw¢ Au A, we have, by definition of A and A/, the
third identity in (2.4) — pay attention that we use the fact that the identity is understood
as an equality between classes of random variables that are P-a.e. equal. Ifwe AU A4,
it is also true since all the terms are zero. The second identity in (2.4) is checked in the
same way. As for the first one, it holds on the complementary B° of a null event B. We
then replace A by A u B and A’ by A’ U B in the previous lines and set W(-) = 0 and
W()=0onAu A uBand Wh(w,w')=0whenwe AvA UBorw' e AuA UB. O
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2.2 Analytical conditions

We use in this work the notion of p-variation to handle the regularity of the various
trajectories in hand. The choice of the p-variation, instead of the simplest Holder (semi-)
norm, is dictated by the arguments we use below to prove well-posedness of (1.4). We
shall indeed invoke some integrability results from [12], which are explicitly based
upon the notion of p-variation and are not proved in Holder (semi-) norm. Several
types of p-variations are needed to handle differently the finite and infinite dimensional
components of a rough set-up W. Throughout, p is taken in the interval [2,3). For a
continuous function G from the simplex S{ into some R, we set, for any p’ > 1,

)

n
/ /
HGHIEO T],p'—var *— sup Z |Gti—1ati P

O=to<ti<tn=T j

and define for any function g from [0,7] into RY,

0 T],p—var HGHI[’O,T]J)—VaI‘ where
Gs,t = g1 — gs. Similarly, for a random variable G(-) on Q with values in C(S7;R?), and

p’ = 1, we define its p’-variation in I.? as

<G(')>§;[0,T],puvar = sup Z;<Gt“17“<')>z , (2.5)

O=to<ty<t,=T ;_

and define for a random variable G(-) on Q, with values in C([0, T]; RY),

<G()>Z, [0,T],p—var = <G()>Z,[O,T] ,p—var’

as the p-variation semi-norm in I of 87 3 (s,t) — Gs+(-) = Gi(-) — Gs(+). Last, for a
random variable G(-,-) from (Q2, 792) into C(SY; RY), we set

n

(GO ooy pvar = s D (Goye () (2.6)

O=to<ti<tn=T ] a
Given these definitions, we require from the rough set-up W that

» For any w € €, the path W(w) is in the space C([0,7]; R™), and the map W : Q 5
w— W(w) e C([0,T]; R™) is Borel-measurable and ¢-integrable (meaning that the
supremum of W over [0, T] is ¢g-integrable).

 For any w € (), the two-index path W(w) is in C(S;R™*™), and the map W :
Q3w W) e C(ST;R™*™) is Borel-measurable and ¢-integrable (i.e., the
supremum of W over 82T has a finite g-moment).

* For any (w,w’) € 92, the two-index path W (w,w’) is an element of C(ST; R™*™),
and the map W+ : Q02 5 (w,w') —» W(w,w’) € C(ST; R™*™) is Borel-measurable
and ¢-integrable. In particular, for a.e. w € §, the two-index path W (w, -) belongs
to C(87;L4(Q, F,P;R™*™)), and the map 2 5 w — W (w, ) is Borel-measurable
and ¢-integrable, and similarly for W (-,w); as before, we assume the latter to be
true for every w € (2. Also, the two-index deterministic path W+(-,-) is a continuous
mapping from &7 into I7(Q?, F&2 POZ, R™*™),

We then set, forall0 < s <t < T and w € ,

D /2
(8 t w HW H [s,t],p—var + <W(')>f1;[s,t],p7var + HW ”p

[s,t],p/2—var

+ <WJL (w7 ' >Z§/[S’t]ap/27var + <WJL(.’ w) p~/2 + <<WJL(’ )>>p/2

q;[s,t],p/2—var q;[s,t],p/2—var’

(2.7)

and we assume that, for any 7' > 0 and w € Q, v(0, T, w) is finite. Then, we have the super-
additivity property: Forany 0 < r < s <t < T, and w € Q, v(r,t,w) = v(r, s,w) + v(s, t,w).
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Observe also from [24, Proposition 5.8] that w — (v(s,t,w))(syesy is a random
variable with values in C(S7; R ). Throughout the analysis, we assume (v(0,7, )y, <
o, for any rough set-up considered on the interval [0,7]. By Lebesgue’s dominated
convergence theorem, the function S7 5 (s,t) — (v(s,t,-)), is continuous. We shall
actually assume that it is of bounded variation on [0,71], i.e.,

<v(')>q§[s,t],1fvar = sup Z<'U(ti—1,ti; )>q < 0.

0<ti<-<tn,<T ;)

Below, we call a control any family of random variables (w — w(s,t,w))( y)esr that is
jointly continuous in (s, t) and that satisfies,

w(s, t,w) = v(s,t,w) + V()gi[s.1],1-var: (2.8)
together with
(w(s,t,-))g < 2w(s,t,w), 2.9)
w(r,t,w) = wr, s,w) + w(s, t,w), r<s<t.
Of course, a typical choice to get (2.8) and (2.9) is to choose
w(s,t,w) == v(s,t,w) + V() )g[s,6],1—var- (2.10)
Example 2.2 (Gaussian processes). Start from an R™-valued tuple W := (W', ... W™)

of independent and centred continuous Gaussian processes, defined on some finite time
interval [0,7], such that for a constant K and for any subinterval [s,t] < [0,7] and any
k=1,--- ,m, one has

p
Sup ) B|(WE, —wh)WE,, —wE)]|| < Kt - s, (2.11)
0,7

where the supremum is taken over all dissections (¢;); and (s;); of the interval [s,¢].
Without any loss of generality, we may assume that the process W is constructed on
the canonical space (2, F,P), where Q@ = W, with W := C([0,T]; R™), F is the Borel
o-field, and W is the coordinate process. We then denote by (2 = W, H,P) the abstract
Wiener space associated with W, see [24, Appendix D], where H is a Hilbert space,
which is automatically embedded in the subspace C¢~¥([0,T];R™) of C([0,T]; R™)
consisting of continuous paths of finite p-variation. By Theorem 15.33 in [24], we know
that, for w outside an exceptional event, the trajectory W(w) may be lifted into a rough
path (W (w), W(w)) with finite p-variation for any p € (2p,3), namely W(w) has a finite
p-variation and W (w) has a finite p/2-variation. We lift arbitrarily (say onto the zero path)
on the null set where the lift is not automatic. The pair (W, W), indexed by w is part of
our rough set-up. In this regard, we recall from Theorem 15.33 in [24] that the random
variables

Q3w |[W(

Qsw— |[W(w (2.12)

w)H[O,T],pfvaﬂ )H[O,T],p/vaar’
have respectively Gaussian and exponential tails, and thus have a finite L9-moment.
One can proceed as follows to construct the other elements (WJL (w, -))weﬂ,
(W (5,w)) eqr WE(:,-) of our rough set-up. We extend the space into (Q?, F&2, P®?),
with Q embedded in the first component say, and denote by (W, W’) the canonical coordi-
nate process on 2. They are independent and have independent Gaussian components
under P2. The associated abstract Wiener space is nothing but (Q2,H & #H,P®?). The
process (W, W’) also satisfies Theorem 15.33 in [24] for the same exponent p as before,
so, we can enhance (W, W) into a Gaussian rough path, with some arbitrary extension
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outside the P®2-exceptional event on which we cannot construct the enhancement. To
ease the notations, we merely write W (w) for W(w,w’) as it is independent of w; similarly,
we write W/ (w') for W/(w,w’). Proceeding as before, we call (Wi(w,w’))ww,eg, the
upper off-diagonal m x m block in the decomposition of the second-order tensor of the
rough path in the form of a (2m) x (2m)-matrix with four blocks of size m x m. Chen’s

relationship then yields, for P®?-a.e. (w,w’),
Wi%t(wvw/) = Wi%s(wvw/) + Wit(wa w/) + WT,S(W) ® Ws,t(w/)’

forall r < s < t. As before, we know from Theorem 15.33 in [24] that the 1/p-Holder semi-
norm of W (w), which we denote by \|W(w)||[07T]’(1 Jp)—niz and the 2/p-Holder semi-norm
of W (w,w’), which we denote by |[W(w, w/)H[QT],(Q/p)_HM,
and exponential tails, when considered as random variables on the spaces (2, 7, P) and
(Q2, F®2, P®?). In particular, for a.e. w € €2, we may consider (W2, (w, '))(s,t)esg as a

have respectively Gaussian

continuous process with values in IL.¢. Moreover,

L p/2
<W (W") q;[0,T],p/2—var

= s W)
=1

O=to<ti<---<tp=
p/2 2
<T <HWL(W» ')H[O,T],(Z/p)—H61>q <T <HWJL (w, )] %,T]’(g/p),m»q’

which shows that the left-hand side has finite moments of any order. Arguing in the same
way for (W (-,w)) _, and for W+, we deduce that v in (2.7) is almost surely finite and
g-integrable. Obviously, by replacing [0, 7] by [s,¢] < [0,T], we obtain that the ¢-moment
of v is Lipschitz (and thus of finite 1-variation), as required.

All these properties (that hold true on a full event) may be extended to the full set 2
by arguing as in the proof of Proposition 2.3.

2.3 Local accumulation

To use that rough set-up in our machinery, we need a version of an integrability result
of [12] whose proof is postponed to Appendix A. Given a nondecreasing® continuous
positive valued function @ on S = {(s,t) € [0,0)? : s < t}, a parameter s > 0 and a
threshold o > 0, we define inductively a sequence of times

To(s,a) :=s, and 7.,(s,a):= inf{u >77(s,a) : w(r7(s,0),u) = oz}, (2.13)
with the understanding that inf ¢§ = +o0. Fort > s, set
N ([s,t], ) := sup{n eN : 77(s,a) < t}. (2.14)

Below, we call N, the local accumulation of @ (of size a if we specify the value
of the threshold): N ([s,t], a) is the largest number of disjoint open sub-intervals (a, b)
of [s,t] on which w(a, b) is greater than or equal to a. When w(s,t) = w(s, t,w)"? with
w a control satisfying (2.8) and (2.9) and when the framework makes it clear, we just
write N([s,t],w, ) for N ([s,t], a). Similarly, we also write 7, (s, w, a) for 7.7 (s, ) when
w(s,t) = w(s,t,w)/?. We will also use the notation 77 (s,t, a) := 77 (s, @) A t.

The proof of the following statement is given in Appendix A. Recall that a positive
random variable A has a Weibull tail with shape parameter 2/p if A'/r has a Gaussian
tail.

2In the sense that @(a,b) = w(a’, V') if (a’, V') < (a,b).
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Theorem 2.4. Let W be a continuous centred Gaussian process, defined over some
finite interval [0,T]. Assume it has independent components, and denote by (W, H,P)
its associated Wiener space. Suppose that the covariance function satisfies the Lipschitz
estimate (2.11). Then, forp € (2¢,3) and o > 0, the process N(-,«) := (N([0,T], w,®))wen
associated to the rough-set up built from W, with w being defined as in (2.10), has a
Weibull tail with shape parameter 2/o.

As a corollary, we deduce that the estimate on N required in Theorem 1.1 is satisfied
in the above setting. For the same value of p, the quantity w(0,7') in (2.10) also satisfies
the integrability statement of Theorem 1.1; the latter then applies in the above Gaussian
setting. Building on the work [14] on Markovian rough paths one can prove a similar
result as Theorem 2.4 for Markovian rough paths.

3 Controlled trajectories and rough integral
Following [26], we now define a controlled path and the corresponding rough integral.

Throughout the section, we are given a control w satisfying (2.8) and (2.9).

3.1 Controlled trajectories
We first define the notion of controlled trajectory for a given outcome w € ).

Definition 3.1. An w-dependent continuous R%-valued path (X;(w))o<i<r is called an
w-controlled path on [0, T] if its increments can be decomposed as

Xop(w) = 6. X5 (W)Wt (w) + E[0,Xs(w, )We ()] + Ray (w), (3.1)

where (0, X:(w)),.,., belongs to the space C([0,T];R*™), (6,X(w,")),c,p to the

space C([0,T]; L¥3(, F,P; R¥™)), (th(w))&tesg is in the space C(SY;R?), and

X ()]

|*7[07T],w,p = |X0(w)| + ‘51X0(w)’ + <6MX0(wa ')>4/3 + ‘|‘X(W)H|[O,T]7w,p < 00,

where || X (@)llfo,ry.wp = 1X@)lfo,17.wp + 16X @)l 17,00 + GuX (@, )0 1.0 pass +
||RX(W)H[0,T],w,p/2, with

5. X,
) H(;a;X(w)H[O,T],w,p = sup | at(w)|

{Xst(w)|
X(@)ljo,r)wp = sup ’ w(s, t,w)/r’
1 (@) o730 N e T

[s,t]<[0,T7] ’LU(S7 t7 w)l/p

(0 X st (w, ')>4/3
sup @ ————————

[s,t]<[0,T] ’LU(S, L, W)l/p

R}y (w)]
IR (@) 10,77,w.,p/2 [S,ﬂsﬁﬁm w(s, t,w)??

(8 X (w ,

’ ')>[O,T],w,p,4/3 =

We call 6, X (w) and §,,X (w, ) in (3.1) the derivatives of the controlled path X (w)3.

The value 4/3 is somewhat arbitrary here. Our analysis could be managed with
another exponent strictly greater than 1, but this would require higher values for the
exponent ¢ than that one we use in the definition of the rough set-up - recall ¢ > 8. It
seems that the value 4/3 is pretty convenient, as 4/3 is the conjugate exponent of 4. It
follows from the fact that || X (w)||. [0,7],p is finite that an w-controlled path is controlled
in the usual sense by the first level (W, (w), Wt('))0 <1< Of our rough set-up, provided
the latter is considered as taking values in an infinite dimensional space, see Section 3.2
below.

3As usual when working in a controlled rough path setting, a path cannot be considered by itself, but rather
together with its derivatives. In our case, the good object is the triple (X (w), 0 X (w), 0, X (w)).
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We now define the notion of random controlled trajectory, which consists of a collec-
tion of w-controlled trajectories indexed by the elements of (.

Definition 3.2. A family of w-controlled paths (X (w))wecq such that the maps
eC([0,T];RY), Q3w — (5, X;(w))
ocrer € C([0, T LY (Q, F, P; RV ™)),
- €C(ST;RY),

eC([0,T]; R™™)

0<t<T

Qsw— (Xt(w))ostsT
Qow— (6HXt(LU))

Qowm— (Rgft(w))(s,t)es

are measurable and satisfy

(Xo())y + WX llto, 11,005 < © (3.2)

is called a random controlled path on [0, T].
Note from (2.9) the following elementary fact, whose proof is left to the reader.

Lemma 3.3. Let ((X;())),,.,)wee be a random controlled path on a time interval
[0,T]. Then, forany 0 < s <t < T, we have

(Xaa) < (IXO Nyl 1,770

<X Ollo.r109 w19y < 2 X O 077,104 (5,1, 0) 7.

Similarly,

(Xt (D) < UXO o105 (05,8005 " < 2IX O)llfo,r1.0p5 w(s, 1, 0) 7.

A straightforward consequence of Lemma 3.3 is that a random controlled trajectory
induces a continuous path from [0, 7] to L2(Q2, F, P; R%).

3.2 Rough integral
Set U := R™ x LL9(Q, F,IP; R"™) and note that U ® U can be canonically identified with

(R" @ R™) @ (Rm QLI(Q, F, P; Rm)) @ (]Lq(Q, F,P;R™ ® Rm)
® (ILQ(Q,]:,]P;Rm)®2>.

We take as a starting point of our analysis the fact that W (w) may be considered as a
rough path with values in U @ U®?, for any given w. Indeed the first level W(l)(w) =
(Wi(w), Wt(~))t>0 of W (w) is a continuous path with values in U and its second level

2 | Wyy(w) Wl»t(w’.)
W )(w) = ( W(J)J(:)t(,7w) W%Lt(v) )t>0

is a continuous path with values in U ® U, with Wy ;(w) seen as an element of R ®
R™, Wg,(w,-) as an element of R™ ® LI(Q, F,P;R™), Wé%t(-,w) as an element of
LY(Q, F,P;R™) ® R™, and W({t(-, -) as an element of LY(Q2, F,P; R™) ® L4(Q, F,P; R™).
Condition (2.4) then reads as Chen’s relation for W (w).

We can then use sewing lemma [22], in the form given in [15, 16], to construct the
rough integral of an w-controlled path and a Banach-valued rough set-up.

Theorem 3.4. There exists a universal constant ¢y and, for any w € €}, there exists a
continuous linear map

(Xe(w))geper = ( f t Xou(w) ® qu(w)>

(s,t)eST
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from the space of w-controlled trajectories equipped with the norm || - ||, o,77,,, onto
the space of continuous functions from 82T into RY® R™ (that are equal to zero on the
diagonal) with finite norm | - |{o,77,w,p/2, With w in the latter norm being evaluated along
the realization w, that satisfies for any 0 < r < s <t < T the identity

| X () @AW ()

_ J T X, () @ AW (w) + J X () @ AW (@) + X (0) @ W o (),

together with the estimate

[ Heale) @aW ) - {5, X Wil + B35, Wl

<o H|X(w) \H [0,T],w,p w(s7 t, w)?)/p.

Here, §, X, (w) W, ;(w) is the product of two d x m and m x m matrices, so it gives back
a d x m matrix, with components (5, X, (w)Ws,t(w))i,j = kazl(5IX§(w))k(Ws,t(w))k’j,
forie{l,---,d} and j € {1,--- ,m}. We stress that the notation E[§, X, (w, )W, (-,w)],
which reads as the expectation of a matrix of size d x m, can be also interpreted as a
contraction product between an element of R? @ L%/ 3(Q, F,P;R™) and an element of
LY(Q, F,P; R™) ® R™. This remark is important for the proof below.

Proof. The proof is a consequence of Proposition 2 in Coutin and Lejay’s work [15],
except for one main fact. In order to use Coutin and Lejay’s result, we consider W (w) as
a rough path with values in U @ U®? and (X (w), 6, X (w), 6, X (w), R* (w)) as a controlled
path; this was explained above. When doing so, the resulting integral is constructed
as a process with values in RY ® U, whilst the integral given by the statement of
Theorem 3.4 takes values in R?. We denote the R? ® U-valued integral by (1! X, (w) ®
dW 4 (w))(s,nesr- We use a simple projection to pass from the infinite dimensional-
valued quantity I' X , (w) @dW ,(w) to the finite dimensional-valued quantity S: Xsu(w)®
dW,(w). Indeed, we may use the canonical projection from R?® U =~ (R @ R™) ®
(RY®L(Q, F,P;R™)) onto R? @ R™ to project I X, ,(w) ® dW,(w) onto SZ Xsu(w)®
dW , (w). O

As usual, we define an additive process setting
t t
J Xu(w) ®dW, (w) = J Xon(w) @AW, (w) + Xs(w) @ Wy 1 (w),

for 0 < ¢t < T. We can thus consider the integral process (S(t) Xs(w) ®dW (w))0<t<T as
an w-controlled trajectory with values in R*™, with z-derivative a linear map from R™

into R4*™, and entries

(51- UO Xs(w)® dWs(w):L) - = (Xi(w)), 855

forie{1,---,d}and j,k e {1,--- ,m}, where J;, stands for the usual Kronecker symbol,
and with null p-derivative, namely

S, UO Xo(w) ® dWS(w)] = 0. (3.4)

t
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This property is fundamental. The remainder R} X®W can be estimated by combining
Definition 3.1 and (3.3) together with the inequality

5u X (W)W s (@) + E[6, X, (w, )WL (., w)](

g{ sup |59cX7"(w7')| + sup <5MX7"(W)>4/3} w(57t’w)2/p
ref0,T] r€[0,T]

< UK @) fo 1. (14 (0, T,0)17) w(s, )7,

so that, with the notation of Definition 3.1,

When X (w) is given as the w-realization of a random controlled path (X (w’))weq, the
integral may be defined for any '’ € ). For the integral So X;s(w) ® dW 4(w) to define a
random controlled path, its || - [|{0,77,.,,-semi-norm needs to have finite 8-th moment,
see (3.2) (we give later on more precise estimates to guarantee that this may be indeed
the case). In this respect, it is worth noticing that the measurability properties of
the integral with respect to w can be checked by approximating the integral with
compensated Riemann sums, see once again (3.3). This gives measurability of 2 3
w Sé Xs(w) ® dW 4(w) for any given time ¢ € [0,7]. Measurability of the functional
Q3w §) X(w) ®dW 4(w) € C([0, T]; R* ® R™) then follows from the continuity of the
paths. When the trajectory X (w) takes values in R? @ R™ rather than R, the integral
§o Xs(w) ® dW ¢ (w) € R? ® R™ ® R™ may be identified with a tuple

(( fo X, 0)® dWS(“)>i,j,k>

We then set fori e {1,--- ,d}

(f: Xs(w)dWs(w)>i = i(J: X, (w) @dWs(w)> :

< 0. (3.5)
[O,T],w,p

L X (w) ® AW 4 (w)

(i,5,k)e{1,--- ,d} x{1,--- ,;m}x{1,- ,m}

4,5,3
and consider Sé X, (w)dW ¢(w) as an element of R7.

3.3 Stability of controlled paths under nonlinear maps

We show in this section that controlled paths are stable under some nonlinear,
sufficiently regular, maps and start by recalling the reader about the regularity notion
used when working with functions defined on Wasserstein space. We refer the reader to
Lions’ lectures [31], to the lecture notes [9] of Cardaliaguet or to Carmona and Delarue’s
monograph [10, Chapter 5] for basics on the subject.

e Recall that (2, F,P) stands for an atomless probability space, with 2 a Polish
space and F its Borel o-algebra. Fix a finite dimensional space E = R* and denote by
L? . =12(Q, F,P; E) the space of E-valued random variables on ) with finite second
moment. We equip the space P,(E) := {£(Z); Z € L?} with the 2-Wasserstein distance

da(p1, p2) = inf{HZl — Zal2s L(Zy) = 1, L(Z2) = Mz}-

An R*-valued function u defined on P, (E) is canonically extended into L? by setting, for
any Z € L?,
U(Z):= u(E(Z)).
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e The function u is then said to be differentiable at ;. € Py (F) if its canonical lift is
Fréchet differentiable at some point Z such that £(Z) = u; we denote by VU € (L?)*
the gradient of U at Z. The function U is then differentiable at any other point Z’ € L?
such that £(Z’) = u, and the laws of VU and V2 U are equal, for any such Z'.

e The function v is said to be of class C'! on some open set O of P, (FE) if its canonical
lift is of class C'! in some open set of L? projecting onto O. It is then of class C' in the
whole fiber in L? above O. If u is of class C! on Py(E), then VU is o(Z)-measurable
and given by an £(Z)-dependent function Du from E to E* such that

VzU = (Du)(Z); (3.6)

we have in particular Du € L2 (E; E¥):= IL?(E, B(E), u; E*), where B(E) is the Borel
o-field on E. In order to emphasize the fact that Du depends upon £(Z), we shall
write Du(L(Z))(-) instead of Du(-). Sometimes, we shall put an index p and write
D,u(L(Z))() in order to emphasize the fact that the derivative is taken with respect
to the measure argument; this will be especially useful for functionals u depending on
additional variables. Importantly, this representation is independent of the choice of
the probability space (2, F,P); in fact, it can be easily transported from one probability
space to another. (Simpler proofs of the structural equation (3.6) can be found in [1, 39].)

e As an example, take u of the form u(u) = (. f(y)du(y) for a continuously dif-
ferentiable function f : R? — R such that Vf is at most of linear growth. The lift
Z — U(Z) = E[f(Z)] has differential (dzU)(H) = E[Vf(Z)H] and gradient Vf(Z).
Hence, DU (u1)(z) = f'(z). Another example (to which we come back below) is u(u) =
f(Sga lz|*1(dz)), for a continuously differentiable function f:R — R. The lift Z —U(Z) =
f(E[|Z|?]) has differential (dzU)(H) = 2f'(E[|Z|*) E[ZH] and gradient 2f'(E[|Z|*]) Z,
so Du(u)(z) = 2f'(§ga |#|*1u(dx)) z here. We refer to [9] and [10, Chapter 5] for further
examples.

e Back to controlled paths. Let F stand here for a map from R¢ x L2(Q, F, P; R%)
into the space .Z(R™, R%) =~ R? ® R™ of linear mappings from R™ to R?. Intuitively,
F should be thought of as the lift of the coefficient driving equation (1.2), or, with the
same notation as in (1.3), as F itself, with the slight abuse of notation that it requires to
identify F and F. Our goal now is to expand the image of a controlled trajectory by F.

Regularity assumptions 1. Assume that F is continuously differentiable in the joint
variable (z,Z), that 0, F is also continuously differentiable in (x,Z) and that there is
some positive finite constant A such that

wp (G| [0F G0 [E2E )] < A
zeR4, pePs(R4) (3.7)
Sup HVZF(QC’ Z>H2 v HavaF(x’ Z)HQ <A,

zeRE, L(Z)eP2(R%)
and

VzF(z,) : L2(Q, F,P;RY) - L2(Q, F,P; Z(RY, R @ R™))
Z — N ;F(x,Z) = D,F(x,L(2))(Z)

is a A-Lipschitz function of Z € 1.2(Q, F,P; R?%), uniformly in z € R¢.

Importantly, the IL2-Lipschitz bound required in the second line of (3.7) may be formu-
lated as a Lipschitz bound on Pz(]Rd) equipped with ds. Moreover, notice that the space
L?(Q, F,P; Z(RY, R* @ R™)) can be identified with I?(Q, 7, P; R%)?*™; also, 0,F(z, Z)
and VzF(z, Z) will be considered as random variables with values in .Z(R¢, R¢ @ R™) =~
R?®@R™ ® RY. As an example, the functions F(z, 1) = Sga [ (2, y)u(dy) for some function
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f of class CZ, and F(z, j1) = g (, §z. yu(dy)) for some function g of class C7, both satisfy
Regularity assumptions 1. A counter-example is the function F(z, 1) = {4 |z[*du(z).

We expand below the path (F(X;(w),Y:())) ., Which we write F(X(w),Y (")),
where X (w) is an w-controlled path and Y(-) is an R?valued random controlled path,
both of them being defined on some finite interval [0,7]. Identity (3.4) tells us that a
fixed point formulation of (1.2) will only involve pairs (X (w), Y(-)) such that

5 X(w)=0, §,Y()

0, (3.8)

which prompts us to restrict ourselves to the case when X(w) and Y have null pu-
derivatives in the expansion (3.1).

Proposition 3.5. Let X(w) be an w-controlled path and Y (-) be an R¢-valued random
controlled path. Assume that condition (3.8) hold together with the w-independent
bound

M := sup (}695Xt(w)| v <5th(')>OO) < 0.

o<t<T

Then, F(X (w),Y(-)) is an w-controlled path with
5 (F(X(w),y(.)))t = 0.F (X1 (w), Vi) 82X (w),

L d i o
which is understood as (>},_; 0., F"7 (X;(w), Y;(+)) (6fo(w))k)i’j’k, withie {1,---,d} and
J,ke{l,---,m}, and (with a similar interpretation for the product)

3, (F(X(@). Y1), = V2F(Xlw). Vi) 8:Yi() = DUF (Xu(w), £(4) (Yo())8:i()

and one can find a constant Cy s, depending only on A and M, such that

IE XY Ol o190 < Ot (1 1K@y 71,0 + Y Ollior100)?)-
Proof. For 0 < s < t, expand F(X (w),Y (")), into
F(X(w), Y () = F(Xu(w), ¥i()) — F(X, (@), Ya())
— {F(Xi(@), ¥i()) = F(X,(@), i) J+{F(X,(@), Yi()) = F(X,@)., ()} 3.9)
H{o+@+3f+{@+ 6}

where
(D) = (X, (@), Vo () {5 Xo (@) Weuw) + B, (@) },
@ = [ [uR (X0 1)) - 2B (X0, .70 [ Xer
@) = f: |20F (X500 @)Y ()) = 2F (X, (w), Vo) | Xt (@)
@ = (VR (X,(0), Y2 () Vau()) = (T2B(X,(), O Y. OWaa() + BLO D,
= [ (VAR V2L 0) - V2R (X Ve0) ) Vs i

we used here the fact that X (w) and Y'(-) have null y-derivative and where we let

X0 (@) = Xa() + AXo 4 (@), Y () = Ya() + AYas(). (3.10)
EJP 25 (2020), paper 21. http://www.imstat.org/ejp/
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We read on (3.9) the formulas for the = and u-derivatives of F(X (w), Y (). The remainder
RS,(tX’Y) in the controlled decomposition of the path F(X (w),Y (-)) is

8F (Xo(), V() B, (@) + (V2B (X,(@), ;) RL() + @ + @) + (). (B.11)

We now compute ||F(X(w),Y ()

*,[0,T],w,p"

¢ We have first from the assumptions on F that the initial conditions for the quanti-
ties F(X (w), Y (1)), 6, (F(X(w),Y(+))), 0, (F(X (w),Y(:))), are all bounded above by
A(1 + M), the bound for 4, (F(X (w),Y(-))) being understood in L*?(Q, F,P; R? ®

R™®@R™).
* Variation of F(X(w), Y (:)). Using the Lipschitz property of F and Lemma 3.3, we
have
[F).YO),,| = [FE@.YO), - [Fx). Y ()],

A (X o)+ Yar(D),)
<20 (IX @)l + Y Ollfo 11,0, ) w(s,60) 7.

* Variation of 4, (F(X(w),Y(:))) and 6, (F(X (w),Y(:))). The Lipschitz properties of
0.F and VzF(z,-) also give

02 [F(X(w), Y ()],

< 200 (IIX@)llfo, 30 + Y Olljo 11,04 ) w5, £,0) 7
+ A X (@) llo.77,0.p w(s, £ w) V7,

and, applying Hoélder inequality with exponents 3/2 and 3,

(8P (X (@), Y ()], >4/3
< @YD), ([DFX@).YO)],,), + (DuF(X,(@),Ya() ) (0.Yea (D),
<20(8:Yi()),, (mX(w)m[o,T],w,p + Yl ,w,p>4) w(s, t,w)"/”
+ A0 (-))a
< 20M (11X (@) o210 + Y (Vo 1,0004) s, £,0) 7
+ 20 Y (o000 D w55 1 00) 7P
* Remainder (3.11). The first two terms in (3.11) are less than
. J,w(s t w)Q/p +A<RY . >2
< AX lo.170p w(s, ,w)2P + ALY () )27,
2
< AX o270 (5, 6,6) %2 + AY Ol 170,900 {558, )D2T
<A H|XH|[O,T],w,p w(s’ t, w)2/p +2A <‘|‘Y(')H|[O,T],w,p>4 w(sv L, w)2/p7

from Lemma 3.3 and the fact that p € [2,3). We also have
(@] < A X ()] Vet (D < 2A X @) 107100 MY Ol 077,00 (s 2,07,
@] < A < AKX 1, 0058,
Last, since VzF is a Lipchitz function of its second argument,
(3) < ALYaa () ANNY Oll0.11,0,0); (s, 1,0)*P.

Collecting the various terms, we complete the proof. O
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4 Solving the equation

We now have all the tools to formulate the equation (1.4) (or (1.2)) as a fixed point
problem and solve it by Picard iteration. Our definition of the fixed point is given in the
form of a two-step procedure: The first step is to write a frozen version of the equation,
in which the mean field component is seen as an exogenous collection of w-controlled
trajectories; the second step is to regard the family of exogenous controlled trajectories
as an input and to map it to the collection of controlled trajectories solving the frozen
version of the equation. In this way, we define a solution as a collection of w-controlled
trajectories. In order to proceed, recall the generic notation (X (w); 6, X (w); 0, X (w,))
for an w-controlled path and its derivatives; we sometimes abuse notations and talk
of X (w) as an w-controlled path. In all the following, W and its enhancement W are
assumed to form a rough-set up as defined in Section 2 and to satisfy all the conditions
prescribed in this section.

Definition 4.1. Let W together with its enhancement W satisfy the assumption of
Section 2 on a finite interval [0,T], and let Y(-) stand for some R¢-valued random
controlled path on [0, T], with the property that 6,Y (-) = 0 and supg<;<7 (0 Y2(-) ) < 0.
For a given w € (, let X(w) be an R?-valued w-controlled path on [0,T], with the
properties that 6, X (w) = 0 and supg<,<7 |0.X¢(w)| < c0. We associate to w and X (w) an
w-controlled path by setting

I (w, X (@), Y ()

= <X0(w) +J F(Xs(w),Ys())dWS(w); F(Xt(w),Yt(~)) ; 0)

0 0<t<T

A solution to the mean field rough differential equation dX; = F(X;, L(X;)) dW,
on the time interval [0, T], with given initial condition X(-) € L?(Q2, F,P; R?) is a random
controlled path X (-) starting from X(-) and satisfying the same prescription as Y (+),
such that for P-a.e. w the path X (w) and I' (w, X (w), X (+)) coincide.

We should more properly replace X (w) in I'(w, X (w), Y (+)) by (X (w);0,X (w);0) and
Y(-) by (Y(:);6,Y(-);0), but we stick to the above lighter notation. Observe also that
our formulation bypasses any requirement on the properties of the map I' itself. To
make it clear, we should be indeed tempted to check that, for a random controlled path
X (-), the collection (I'(w, X (w), Y(-)))WEQ, for Y (-) as in the statement, is also a random
controlled path. Somehow, our definition of a solution avoids this question; however, we
need to check this fact in the end; below, we refer to it as the stability properties of T,
see Section 4.1.

What remains of the above definition when W is the It6 or Stratonovich enhancement
of a Brownian motion? The key point to connect the above notion of solution with the
standard notion of solution to mean field stochastic differential equation is to observe
that the rough integral therein should be, if a solution exists, the limit of the compensated
Riemann sums

ZE)(F(th (W), Xt, (D)W, 4,4, (W) + 0.F( Xy, (w), X, () F( Xy, (w), Xe, () Wy, 1,1, (w)

+ (DAF (X1, X0, 00) (X, ()P (X (0, X, ()W, () )

as the step of the dissection 0 = {5 < --- < t, = t tends to 0. When the solution is
constructed by a contraction argument, such as done below, the process (X:(*))o<t<7 1S
adapted with respect to the completion of the filtration (F;)o<:<7 generated by the initial
condition X(-) and the Brownian motion W (-). Returning if necessary to Example 2.2,
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we then check that E[W%7tj+l (-,w) | F,| = 0, whatever the interpretation of the rough
integral, It6 or Stratonovich. Pay attention that the conditional expectation is taken with

respect to “-”, while w is kept frozen. This implies that, for any j € {0,--- ,n— 1}, we have

(DUuF (X, (). X1, () (X1, O)F (X, (@), X1, )W, (1)) =0

This proves that the solution to the rough mean field equation coincides with the solution
that is obtained when (1.2) is interpreted in the standard McKean-Vlasov sense (the
stochastic integral in the McKean-Vlasov equation being usually understood in the It6
sense and the iterated integral W being defined accordingly).

We formulate here the regularity assumptions on F(z,u) needed to show that T’
satisfies the required stability properties and to run Picard’s iteration for proving the
well-posed character of (1.4) (or (1.2)) in small time, or in some given time interval. Recall
from (3.6) the definition of D,F(z,-)(:) as a function from P2(R%)xR? to (R4, R? ®
R™) ~ RY® R™ ® R? such that D,F(z, L(Z))(Z) = VzF(z,Z), where we emphasize
the dependence of D, F(z,-) on u = £(Z) by writing D,F(z, 1)(-). On top of Regularity
assumptions 1, we assume

Regularity assumptions 2.

 The function 0,F is differentiable in (x, ;1) in the same sense as F itself.

* For each (z, 1) € R? x Py(R?), there exists a version of D,F(z,u)(-) € L2(R: R ®
R™) such that the map (z,p,2) — D,F(z,u)(z) from R x P2(RY) x R? to RY®
R™®R? is of class C!, the derivative in the direction ;i being understood as before.

* The function (z, Z) — 02F (z, £(Z)) from R* xL?(Q, F,P; R?) to RI@R"QRI@R? =
ZRI@ R4, RY®@R™) is bounded by A and A-Lipschitz continuous.

* The three functions (z,Z) — 0, D,F(z, L(Z))(Z(-)), (z, Z) — D,0,F(x,L(Z))(Z(")),
and (z,Z) — 0.D,F(z,L(Z))(Z(-)) from R? x L*(Q, F,P;R%) to L*(Q, F,P;R¢ ®
R™®R?®@R*), are bounded by A and A-Lipschitz continuous. (By Schwarz’ theorem,
the transpose of d,D,F"’ is in fact equal to D,0,F"’, for any i € {1,--- ,d} and
je{l,---,m}.)

* For each p € P>(R?), we denote by D>F(x, 1)(z,-) the derivative of D,F(z, j1)(z)
with respect to y — which is indeed given by a function. For 2’ € R?, DZF(az, w)(z,2")
is an element of R ® R™ ® R? ® R?.

Denote by (Q,f, ]lND) a copy of (2, F,P), and given a random variable Z on (2, F,P),
write Z for its copy on (0, F,P). We assume that (z,Z) — D2F(z,L(2))(Z(), Z(")),
from R? x L2(Q, F,P;RY) to 12(Q x O, F® F,P®P; R @ R™ ® R? ® RY), is bounded
by A and A-Lipschitz continuous.

The two functions F(z, p) = § f(x, y)u(dy) for some fuction f of class C}, and F(z, u) =
g (557 Syu(dy)) for some function g of class C}, both satisfy Regularity assumptions 2.
We refer to [10, Chapter 5] and [11, Chapter 5] for other examples of functions that satisfy
the above assumptions and for sufficient conditions under which these assumptions are
satisfied. We feel free to abuse notations and write Z(-) for £(Z) in the argument of the
functions d, D,F, 0.D,F and D>F. We prove in Section 4.1 that the map I" sends some
large ball of its state space into itself for a small enough 7. The contractive character
of I is proved in Section 4.2, and Section 4.3 is dedicated to proving the well-posed
character of (1.4).
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4.1 Stability of balls by I

Recall A was introduced in Regularity assumptions 1 and 2 as a bound on F and
some of its derivatives. Recall also from (2.14) the definition of N([O, T, w; a). We also
use below the notations || - ||14,5],w,p @nd || - [|+,[a,b],w,p, fOr Some interval [a, b], to denote
the same quantity as in Definition 3.2 but for paths defined on [a, b] rather than on [0, 7]
(the initial condition is then taken at time a).

Proposition 4.2. Let F satisfy Regularity assumptions 1 and w be a control satisfying
(2.8) and (2.9). Consider an w-controlled path X (w) together with a random controlled
path Y (-), both of them satisfying (3.8) together with

sup (‘(5ZXt(w)| v <5wa(')>oo) < A. (4.1)

o<t<T

e Assume that there exists a positive constant L such that we have

Y Ollorywpya < Ly 4.2)
and ,
X @ e300 < Do (4.3)

forall0 < i < N, with N := N([0,T],w,1/(4L)), and for the sequence of times (t; :=
7:(0,T,w, 1/(4L))) N1 given by (2.13) with w (s, t) = w(s, t,w)"/?.

Then:

e There exists a constant ¢ > 1, which depends only on A, such that (4.2) and (4.3)
remain true if we replace L by L', provided that L' > cL and the partition (t;);—o,... N+1 1S
recomputed accordingly (since L enters the definition of the partition). Also, we can find
a constant Ly, only depending on L, such that for the same constant ¢ and for L' > L,
the path I'(w, X (w), Y (+)) satisfies for each w the size estimate (4.3), L being replaced by
c in the right-hand side and the partition (¢;);o,... ny+1 in the left-hand side being defined
with respect to L’ instead of L.

e Moreover, there exist two constants Ly and C, only depending on A, such that, if L
in (4.2) and (4.3) is greater than L, the following estimates hold for each w:

i=0,-,

2(1—1/1?)}

T (w0, X (@), V() <c{1+N([0,7),w,1/(41))

b

2
H| [0,T],w,p
(4.4)

I7 (w, X (@), Y () |

2 2 2(1-1/p)
2 oy < C1Xo@)|* +C {1 + N([O,T],w, 1/<4L)) } :

e Lastly, if X (w) is the w-realization of a random controlled path X (-) = (X(w’))w/eg,
such that the estimate || X ()| ?ti’tm]}w’p < L holds for all &/, for the w'-dependent
partition (t; := 7,(0,T,w’, 1/(4L)))i:0,-~-7N+1 of [0,T], with L in (4.2) satisfying L > Lo
and with N := N([0,T],w’,1/(4L)), and if T is small enough to have

(V.11 /(D)) <1
then
UTCX )Y o )wppas 20 < L,

*,[O,T],w,pi <2+ X()7).

Following the discussion after (3.5), the measurability properties of the map w —
F(w, X(w), Y()) implicitly required above can be checked by approximating the integral

and  {|I0(, X(),Y)]
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in the definition of I'(w, X (w), Y (+)), using (3.3). We also notice that the constraint L > L,
required in the second and third bullet points may be easily circumvented. Indeed, the
first claim in the statement guarantees that, for L satisfying (4.2) and (4.3), L’ > cL also
satisfy (4.2) and (4.3), see footnote?. In particular, we can always apply the second and
third bullet points with L’ > cL instead of L itself, which is a good point since L’ is here
a free parameter while the value of L is prescribed by the statement.

Proof. We first explain the reason why (4.3) remains true for possibly larger values of
L provided that the right-hand side is multiplied by a universal multiplicative constant.
Take L' > L and call (t});=o,..,n'+1 the corresponding dissection. It is clear that any
interval [t},#}, ] must be included in an interval of the form [t;,t;42 A T]. If [t} ¢}, ] =
[ti,ti+1], the proof is done. If ¢;;1 € (t;,t;H), it is an easy exercise® to check that
I Wt e 30 < A M tiatwip + Y- Nt tive aT7,0,p, fOr some universal constant .
This yields || - [l¢,¢7, Jwp < 2vL'Y?, which is indeed less than (L')Y/? if I/ > 22~2L.

Given this preliminary remark, the proof proceeds in three steps.

e For w € 2, consider a subdivision (¢;)o<i<n+1 Of [0,T] such that w(t;, t;41,w) < 1
for all i € {0,---, N}, for some integer N > 0. Then, following [16, Proposition 4]
(rearranging the terms therein), we know that®

for a universal constant + that may depend on A. By Proposition 3.5 and (4.1), we deduce

| P )aw, @)

[titi+1],w,p

<7+ yw(t, tiva, w)l/”MF(X(w), Y (") H

b
[tistiv1],w,p

4While the reader may find it obvious, she/he must be aware of the fact that, in (4.3), t; and ¢, themselves
depend on L, which forces to recompute the subdivision when L is changed.

5The proof is as follows. By the super-addivitiy of w, see (2.9), and the inequality a'/? + b'/? < 2'=1/P(q +
b)1/P, the terms \|X(w)||[t./]¢;+l]’w7p, \\590X(w)\\[t97t;+1]7w’p and (6, X (w, .)>[t97 , 4/3 are easily handled.

i lw,p,
i+l
So, the only difficulty is to handle |R¥ ||, ¢, lowp: BY (3.1), we have, forany 0 < r < s <t <T,
5t s

RX,(w) = R (w) + Rgft (W) + 6o X7, s (W)Wt (w) + E[6, X7 s(w, )Ws,¢(-)], which suffices for our purpose.
In fact, the inequality may be checked directly. Identity (3.3) together with Proposition 3.5 and Regularity

assumptions 1 say that the remainder RSF in the w-controlled expansion of §, F(Xr(w),Yr()dWr(w)
satisfies )

| R

otisrlwp2 <2 SUP (|6Z[F(Xs(w),Ys(-))]|+<6M[F(Xs(w),YS(-))]>4/3>

s€ltitiy]
A VNEX@), Y (Dt b1 1o (s tig1,0) P
<7+ '7|HF(X(‘*))7 Y()) H|[t1;,ti+1],w,pw(ti’ ti+17w)1/p7

for a constant v that may depend on A. This permits to handle RIF. As the Gubinelli derivative of
§, F(Xr(w),Yr(-))dW r(w) is exactly given by F(X.(w), Y.(-)) itself, we get from (3.1) with X = F that

|F(X(w),Y ()]

[tistit1],w,p < 2se[tsfg+1]<‘5m [F(XS(W%YS('))” + {0 [F(Xs(w),Yg(~))]>4/3>
+ HRF”[ti,ti+1],w,p/2w(ti7ti+lvw)l/p7

where RF is the remainder in the expansion of F. We conclude as for RIF . In order to control the variation of
5, F(Xr(w), Yr())dW(w) itself, it suffices to invoke (3.1) again, but with X = {F, which yields

[ Fx @y )aw, @

i

[tistit1],w,p

< sup ‘F(Xs(w),ys(')ﬂ+HRSFH[tiytiJrl]’wyp/Qw(ti,ti+1yw)1/p~
s€[ti,ti41

The conclusion is the same.
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| ey aw )

that (for a new value of Cj A)
[tistita],w,p 4.5)

: 2
<v+ CA,AWW(tutth)l/p(l F Xt o + <\|\Y(')H|[0,T],w,p>8)~

By the first conclusion in the statement (see also the discussion after the statement
itself), we can assume that L differs from the value prescribed in the statement and
is as large as needed. So, for the time being, we take L > 1 and we assume that
w(ti, tiv1,w)P < 1/(4L) < 1 and

Y Ollor1mps < L, 4.6)

and

2
H’X(W)H [titiv1],w,p <L, (4.7)

but we are free to increase the value of L if needed. Then, by (4.5),
[ @) w,
123

Hence, changing « into (1 + Ca a)7,

if L > ~?, in which case I'(w, X (w), Y (+)) satisfies (4.3). This completes the proof of the
first bullet point in the conclusion of the statement.

e We now use a concatenation argument to get an estimate on the whole interval
[0,T]. Forall s < tin [0,T], we have

[0, X (@), Y ()],

< (1+Cra)y-
[titit1],w,p

2
<+’ <L, (4.8)

[tistiva1],w,p

| ey )aw )

(4.9)

<> ’[F(W, X (), Y ()], 4

iti+1
=0

2 w(t;,t;-H,w)l/p

Jj=0

1/p
(2 w(t;,t}H’w)) (N + 1)(p_1)/p < 'yw(s,t,w)l/p(N + 1)(P—1)/p7

Jj=0

[

<

=2

<

=2

where we let t; = max(s, min(¢,¢;)) and where used the super-additivity of w in the last
line. In the same way,

61[F(w,X(w),Y(-))]St < yw(s, t,w)? (N + 1)(p_1)/p. (4.10)
Setting, abusively, F(w,) := (F (w,")) o, < = (F(X: (@), Y2()) gcpcpr We have

N/t
=y (f Fr(w,)dW(w) — Fy(w, .)Wt;%“) (4.11)
5=0 \Vt
N
B Z;){Rg’tgﬂ (w) + (th (w;-) = Fs(w, '))Wt;wt/jﬂ (w)}
j=
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The most difficult term in (4.11) is Z;.VZO (Fy (w,") = Fs(w,+)) Wy v, (w). By Abel trans-
formation, this is the same as

[

N N—
Z Z k+1 w, Ft/k (w’ )) Wt;"t./7'+l(w) - Z k+1 w, Ft, Z Wt; t7+1 (.d
j=1k=0

=0 j=k+1

<.
,_.

= N (B, (@,) = By (w, ) Wiy, o ().

We notice that (Fy;  (w,") — Fy (,")) = 6, [T(w, X (@), Y()]yep,,, fork =0,--- N — 1,

can be bounded by yw(t},t} , ;,w)"/?. Hence the sum Z;V:O (Fy (w,) =Fs(w, ")) Wy o1, (w)
is bounded by

N-1
(s, b)) w(th, thyr,w) P < (N + 1)EDP (s, 1, w) P,
k=0

To proceed with the other term in (4.11), we note that the remainder term Rt, 2t (w)

can be also estimated by means of (4.8). We have |Rt, a ( < ywt), t) 1, w) /p Slnce
1-2/p<1-1/p, we deduce that there exists a Constant C, depending only on v such
that

[RE ()] < €y (N + 1P (s, ).

Changing the value of C,, from line to line, we end up with

H’I‘(w,X(W),Y( ) <Cy (N + 1)2=1/p

H)[O,T],w,p
<0, (1+ N2=D/p))

which proves the bound (4.4) by choosing (t;)i—o,... n+1 = (7:(0, T, w, 1/(4L)))¢=0,--~ N4t
as defined in (2.13), and N = N([0,T],w ,1/(4L)). Recall that the above is true for
L >~2

e Assume now that X (w) is the w-realization of a random controlled path X(-) =
(X(w'))weq satisfying (4.3) for any «’, for the w’-dependent partition (¢;);—0... N+1-
Then, taking the fourth moment with respect to w in the conclusion of the second point
we get

QrexO, 000 <0 (1 Vo)) ).

We get the conclusion of the statement if one assumes that <N ([O, T],-,1/ (4L))>8 < 1, by
choosing L such that 2C, < L. O

Remark that if (N ([0,1],-,1/(4L)) ), is finite, then we can choose 7' < 1 small enough
such that (N ([0,7],-,1/(4L)) ), < 1. (Since N ([0,t],w,1/(4L)) converges to 0 as t \, 0,
for any w € €2, the result follows from dominated convergence.)

4.2 Contractive property of I

Proposition 4.3. Let F satisfy Regularity assumptions 1 and Regularity assump-
tions 2 and w be a control satisfying (2.8) and (2.9). Consider two w-controlled paths
X (w) and X'(w), defined on a time interval [0,T], together with two random controlled
paths Y (-) and Y'(+), all of them satisfying (3.8) together with

0. X ()| v 6. X" ()| v (6.Y (1)), v (6Y'()), <A, (4.12)

EJP 25 (2020), paper 21. http://www.imstat.org/ejp/
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together with the size estimates

Y o170 e < Lo

(4.13)
<H|Y |H [0,T],w ,p>8 < LOa

and

X (w) <Ly, |[|X'(w) < Ly, (4.14)

M[t‘J 2, Jw,p W[to 9, 1],w,p

forie {0,---,N°}, for some Lo > 1, with N° = N([0,T],w,1/(4Lo)) given by (2.14), and
for the sequence (1 = 7,(0,T,w, 1/(4L0)))i20,”_ Nosy Given by (2.13).

Then, we can find a constant v, only depending on Ly and A, such that, for any
partition (t;)i—o,... y refining’ (t9);—o.. xo and satisfying w(t;,t;+1,w)"? < 1/(4L) for
some L > Ly, we have

L P K 0)IW, @)~ | P Y0)aW, ()

[tistis1],w,p

w(0,1,0)" (14 22) (18X @) g7, + A Olli 11,0
2 (12X @1+ VA Ollior1005):

where AX,(w) i= X, (w) — X}(w), AY(-) := Yi(-) — Y/(-),t € [0, T7.

Proof. We get the conclusion after four steps. Following the statement, we are given
a subdivision (t;)i=o,... 41 Of [0,T] such that w(t;,t;+1,w)"? < 1/(4L), for a frozen
w e Qand for L > Ly. We assume that (¢;);—o,.. y4+1 refines the subdivision (t? =
73(0,T,w,1/(4Lo))),_ ... yo,,» Where N°(w) = N([0,T],w,1/(4Lo)). Like in the first step
of the proof of Proposition 4.2 (see in particular footnote®), we start from the estimate

| Py )aw o - f F(X (), Y, () AW, ()

[tistiv1],w,p
+ [tsutp ]|5r[F(5,Xs(w),YS(.)) _ F(S,X;(w),Y’(.))]’

+  sup <5 (5, Xs(w), Ys(+)) 7F(5,X;(w),§f!('))]>4/3)

s€[ti,tita]

+ywlti,tisn,w)? |[F(X (), Y () = F(X'(w),Y'("))|

[tistita],w,p’

for a universal constant v > 1. Modifying the constant v if necessary, we may easily
change s into ¢; in the first three lines of the right-hand side. We obtain

| PO Y 0)aW ) = | B )Y 0)aw (@)

t;

[tistis1],w,p

<7 (jF(x, (wmc)) F(X],(@).Y, ( ]
+ 6. [ F( Xy, (), Y, () — F(X] Ytﬁ )] (4.15)
+<6M[F<th< >> P Vi), )
+yw(ts,tip, @) ||[F(X(w), Y(: >) ( LR EON KPS
7This means that (ti)i=o0,... .~ is included in (t?)izoy... NO-
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The first point is to bound the quantity ||F(X(w),Y(:)) = F(X'(w),Y’("))|
which contains all the terms that appear in the above inequality.
Step 1. We first analyse the term

AF(w,-) := F(X(w),Y(-)) - F(X/(w),Y'(-))
= (F(Xu(), Y0) ~F(X1(@), Y/0)) .

e Initial condition of AF(w,"). As |[[AF(w,")]s,| < A(|AXy, (w)] + {JAY;, ()])2), W
have, from Lemma 3.3 and from the two identities AX((w) = 0 and AYy(-) =0,

[AF(@, )], | < 28 w(0,t5,0) " (JAX @000 + DAY Ol ),

e Variation of AF(w, ). Using the notations (3.10) together with similar ones for the
processes tagged with a prime, we have

[AF(w, ‘)]s,t

o [ {R(X Y 2 0) Kl = 2R (XL 1, VL2 () XL e

’*7[ti7ti+1];w7p

+ LlE{VZF(X“& @Y ) Yaa() = VoF (X @), Y8, () Y20 bax.

We now use the following three facts. First, Xo(w) = X{(w) and Yy(-) = Y;(-); second,
from Regularity assumptions 1, for any » € R? and Z € L.2(Q, F,P;R%), |0,F(z, Z)
and {V;F(z, Z)), are bounded by A; last, (z, Z) — 0,F(z, Z) and (z, Z) — V zF(z, Z) are
A-Lipschitz continuous. Hence, allowing v to depend on A and to increase from line to
line, we get, for s, t in the interval [t;, t;1+1],

[AF(w, Vod] < A (|AX o0 (@)] + (AYi()),)
A (X (@) + (Vo))
x {IAX ()] + (DY (D2 + 18X (@) + (AYea(), }
< (a) + (b),

where (a) i= yuw(s,t,w)"? (JAX @)l 0,0 + AV
(b1) x (b2) with

(bl) = ")/’U)(S, ta w)l/p (‘HX(W)M[U,twle}p + <‘HY(')|H[ti,ti+1]7w,p>4>
(b2) 1= (0,11 (IAX@) ot + TAY 0000,

+ w(ti,ti+17w)1/p (HlAX( H' tistit1],w,p + <|HAY |H [tistiv1],s 1P>4)

It follows that we have

[AF @, it taop <7 (IAX @)l 11000 frotenhwp)s)

+7(H|X(w) teteston + Y Olliigwp),) % B2).

Allowing the constant v to depend on Ly and A, and using (4.13) and (4.14) together
with the bound w(t;, t;11,w)"? < 1/(4L), we get

[tistiv1],s ,p>4), and (b) =

+{llaY ()]

|AF @, i teiataon < T (IAX @) tesi1a0m + DAY Olltistp)s)
+yw(0,t,w) 7 (mewnu[o,ti],w,p - <|HAY<->|\\[o,ti],w,p>4).
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Step 2. We now handle the Gubinelli derivative §,[AF(w,-)]. We start from

5 [AF (@, )i = [0:F (X, (w), Yi()) — & F(X](w), /()] 8, X, (w)

+ 0, F (X[(w), Y/ () A8, X4 (w). (4.16)

e Initial condition of ¢, [AF(w, )] By Regularity assumptions 1, (4.12) and the
fact that Ad, X; = 6, AX,,

0, [AF(@, )], | < (|8 AX0, ()] + [AXe, (@)] + (AY5()),)
it + UAY Ol tgp))-

e Variation of 0,[AF(w, -)]. Similarly, using formula (4.16), we get

w(0,1;,w) VP (H|AX(w)

695 [AF(wﬂ ')]s,t’ < A’[éxX(w)]s,t‘ (|AXS(W)‘ + <A}/S()>2)

FA[[2F(X().Y () = &F(X' (@)Y O)],,
)| |[2F (X'(@). ()]

(4.17)

+ A’[A(SJX(w)]S_’t

s,t|”

The second term in the right-hand side is handled as [AF(w, -)]s  in the first step, with
s,t in [t;,t;+1]. By the aforementioned identity Ad, X (w) = §,AX (w), the third term is
less than Aw(s, t,w)"? || AX (W) |[(t:4:41],0,p- The term |Ady X (w)]|[0F(X' (w), Y(-))]s,¢ is
less than

’Vw(& t, w)l/p (w(ov ti, w)l/pmAX(w) tilw,p T w(tiv ti+17w)1/pmAX(w) H\ [ti7ti+1]7u’7p)

% (X @) et + Y Ol s) (4.18)

< yu(s,t,w)? (w(O,ti,w)VPH\AX(w)m[o,t,.,],w,p +|AX(w)

[ts, i+1]7w,p)7
where we used again (4.13) and (4.14). Now, the first term in (4.17) is less than
(s, ) X 1 {00, 6,02 (IAX @) 00000 + LAY OVl ti1007, )
witistis1,0) " (IAX @)ty + A Ol trtnsds) }

Hence, by (4.14) and the fact that w(t;, t;1,w)"? < 1/(4L),

18X @))oa| (|8 X @) +AY,()])2)
<yw(s, t,w)/? {w(O,ti7w)1/p (lAaxX(w)
+ (IAX @)lr 0 + NAY ()]

So, the final bound for |§,[AF(w, )]

+{JlaY ()

Jer)s)

,w,p
[ti,tiv1], ’P>4)}

is
[tistiva],w,p

Y (‘HAX(W) H|[ti7t7‘,+1]7“17p + <|HAY()|H [tjyti+1]771)7p>4)
700, 400)" (AKX @00 + DAY Ollfodonsds):

which yields the same bound as in the first step.
Step 3. We now handle the other Gubinelli derivative §,, [AF(w7 )] for which we have

0u[AF(w,)], = [VZF(Xt(w),Yt(-)) - sz(Xg(w%Y;%))] 5 Y3(+)
+ V2F(X[(), Y/ (1)) A, Vi ().
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e Initial condition of §,[AF(w, -)]. Proceeding as before,

(OulAF @, ), < (A% )]+ AV, (), + (5AY:,(),)
< w0, 0)" (IAX @0 ¢ + LAY Oll0.7,050% )

where we used the Holder inequality with exponents 3 and 3/2:

|80, v,0) "9 R (g, v ) )

< Bljas. 0] B[1v R o))

e Variation of J,[AF(w,-)]. Following (4.17) and using again Holder inequality with
exponents 3 and 3/2,

(IulaF@], ), | < MY (), (18X @) + (AY(),)
+ A<[VZF(X(w),Y(-)) _ VZF(X/(W),Y’(.))]SJ%/B (4.19)
+ AALY (N, + MAGY (), [V2F(X'@). Y ()], , )

As for the fourth term, we get, following (4.18),

(A8, (D, [V2F(X@). Y ()],,),
< Y U)(S, ta w)l/p ('lU(O, tiv w)l/p <H|AY() H| [O,ti],ﬂ]ap>8 + <|HAY() |H [ti,ti+1],w,P>8) :
Recalling that AS,Y(-) = §,AY (), the third term in (4.19) is less than 2Aw(s, t,w)"? x

IAY ()it t:447,0.5- To handle the first term in (4.19), we proceed as in the second
step:

67 ()]s, (18X, (@) + (AY()),)
< (s, t,w) " {w(0,t5,0) 7 (IAX @) ot + AY Ollp )
+ (IAXE i1 + UIAY Ollptipatannds) |

As for the second term in (4.19), we write [V;F(X(w),Y (")) = VZF(X'(w),Y'("))] , in

s,t

the form [D,F(X(w),Y (")) (Y (")) = D,F(X'(w),Y'(")) (Y’(~))]s’t and then expand it as

L 1 {amg(xﬁ%t) (@), Ysﬁ?;t)(o) (Ysﬂﬁﬁyt)(-))Xs,t(w)

= 2 DuF (X @), Y ) (Y () XL al) fax
[ o DB (2 0) (72 0) o)
= 0 DuF (X () Y 0) (Vi 0) Ve () fr
# [ B{DRR (X0 @030 0) (Y0 O T ) Far)
~B{DIF (X (@) Y 0) (Yt O il ) i)
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where the symbol ~ is used to denote independent copies of the various random variables

and where, as before, we used the notation (3.10), with an obvious analogue for the

processes tagged with a prime or a tilde. By using Holder inequality with exponents 3
and 3/2, we get

([V2F(X(@).Y () = V2F(X'@). Y'O)],,), 5 S HIAXo(w)] + (AYia()),

Xt @) (JAX(@)] + AV (D), + [AX g (@)] + (AYa0(),)

#Yaal Dy (IAXa ()] + (AYL()), + [AXea(w)] +(AYas()),) |

where, to get the first line, we used the boundedness and continuity assumptions of
the functions 0,D,F, 0,D,F and DﬁF. Up to the exponent 4 appearing on the first and

last lines of the right-hand side, we end up with the same bound as in the analysis of
[AF(w,-)]s, in the first step, namely

OulAF@, Dy g <7 (IAX @)1

+ 7 w(0,ti,w) (\HAX(w) [

7+1 w,p +<H|AY

wp>8)
Jua)s):

dawp T <H\AY

Step 4. We use (3.11) to write the remainder term RAF in the form

RAT = (0.F(X,(w), Ya() = F (X)), YI()) ) Ry (@)

+ 0,F (X)), V() (B @) - BY/ (@)

B[ (V2F (X (@), Yo()) = V2F (X} (), Y/()) ) 20|
+ B[ V2R (X,(), Y/() (RY,() - RY()]
+@2)-2)+B)-@3)+(6B)-B),
with

@) = Ll{a F(XG 0 @),%i0)) = 2F (XL @), Vo)) }Xoaw) d,
3) = f {a F( e (®): YS(')> _axF(XS(“’)’m'))}XS’t(W) d)"
(5) —J < VZF (w), v t)())—VZF(Xs(w),Ye(-))}Yg,t(-)>dA,

and similarly for (2’), (3’) and (5’), putting a prime on all the occurrences of X and Y.
We start with the first four lines in R2F. Doing as before, the first line is less than

[[0:F (Xe@), Ya() = 0. F(X0(w), YI() | R (w)
< yw(s, t,w)?? {w(O,ti)l/” (\HAX(UJ)

+ (Ilax ()l

o.:1w.p + IIAY ()

[0, 7‘]7w71’>8)

wtsstnn + AY Ollisteatanns )

We also have

VF(XU@), Y1) (B ) = RS @)] < Aw(s, t,w)?7 [|AX (w)

istit1],w,pe
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Similarly,
B[ (V2F (X, (@), () = V2F(X1(w), YI()) ) RY, ()
< yw(s, t,w)?” {w(0,t)"" (|\|Ax<w>m[o,ti],w,p + NAY Ollo s
+ (IAX @ttt + DAY Ollitirtavn)s)
B[ V2P (X, (@), V() (RY() - Rz,t(-))]\ < 2Aw<s,t,w>2/P<\|\AY(~>

is i+1]1w1p>8.

yw(s,t,w) 2/1’ H‘AX H

[titi+1],w,p

trvutst? [ (2o (X0 .70 0) Ve
— (920, (X0 @), Y4 () VL) Y]arav,

s0 [(2)

yu(s,t,w)?? {[[AX @)]

+ NAY Ol 11000

o.t:1wp + CIAY ()

[tistiva],w,p

+ w(0, )" (JJAX (@)

odwn)s) |-

The difference (3) — (3’) can be handled in the same way. We end up with the term
(5) — (5"). As Y, ; and Y/, may be estimated in L4, it suffices to control

(52) := VF(X,(w), Y Q) () = V2F(Xa(w), Ya(),
(5a) — (5a’) = (VZF( (@), Y 0)) —VzF(Xs(w),Ys(-)))
— (V2F(X1w), Y1) () = V2 (X[(). Y.()) )

in T4/3, We have first <(5a)>]L4/3 < <(5a)>IL2 < yw(s,t,w)"?. In order to estimate
(5a)-(5a’), we rewrite (5a) in the form

(5a) = D;LF(Xs(w),Y;(;?;t)(.)) (ys(;’(\s))t)(.)) _ DMF(Xs(w),YS()) .0)
_ ALI 0.D,F(X.(0). YO 0) (YO 0) Vel
+ AfolE[DZF(XS(w)’}Q("?:’?)(~)) (Y(?A%() PO (. )) ()]d/\,

Then, using Holder inequality with exponents 3 and 3/2 as in (4.20), we obtain that
((5a)-(5a") ), ,, is bounded above by

[tistiv1],w,p + <|HAY |H [titir1] ,w,p>8
+ w(0,t5,0)"7 (IAX @)llo a1 + NAY ()

s, )7 { X ()

[0,t:] ,P>g)}

and end up with the bound

I <7 {w(o,t,w)1 (||\Ax<w>m[o,ti],w,p + AY Ollo s
[tistiva1],w,p/2
X @ s + TAY Ollte s
EJP 25 (2020), paper 21. http://www.imstat.org/ejp/
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Conclusion. Plugging the conclusion of the previous steps (including the analysis of
the various initial conditions) into equation (4.15), we get

| PO Y )aW ) = [ P, ¥()aW ()

ti

[tistita],w,p

< (JAX, (@)] + 84X, ()] + (AL (), + (LAY, (),

+ Y w(tistien,w) P |[F(X (@), Y () = F(X'(w), Y'(-))]

[ti;tiJrl]vwap) (4.21)
< yw(0,t;,w) " (HIAX(w)H\[o,ti],w.,p + <\HAY('>\H[o,ti],w,p%)

+ Y w(ti7 tiJrl 9 w)l/p { (‘HAX(W) |H [tistiv1],w,p + <H|AY() H' [ti,t71+1]7’w,l)>8)
0,1, (JAX @010 + DAY Ol sms)

Recalling that w(t;, t;41,w)"? < 1/(4L), we finally get

| pex@ v )aw @) - [ P v)aw @

tq

[tistis1],w,p

1
< ’y’LU(O, ti7 w)l/p <1 * 4L> (H‘AX(M)H}[O,M],W@ + <|HAY(')|H[0,T],w,p>8)

.
+ 2 IAX @)t srtmp + AT Ollio )5 -

This completes the proof. O

4.3 Well-posedness

We first prove a well-posedness result in small time from which Theorem 1.1 follows.
Recall from Definition 4.1 the fact that the map I" depends on Xy (w).

Theorem 4.4. Let F satisfy Regularity assumptions 1 and Regularity assump-
tions 2 and w be a control satisfying (2.8) and (2.9). Assume there exists a positive time
horizon T such that the random variables w(0, T, -) and (N ([0,T],-,«)),_, have sub and
super exponential tails respectively, namely

P(w(0,T, ) > t) < crexp(—t7), P(N([0,T],-,a)>1) < cz(oz)exp(—ﬁ”sz(’l))7 (4.22)

for some positive constants ¢; and 1, and possibly a-dependent positive constants cs(«)
and e3(«). Then, there exist four positive reals vy, Ly, L and 7, only depending on A and
T, with the following property. For 0 < S < T such that

<N([0,S], y 1/(4L0))> <1, (4.23)

8
and

<[W(1 +w(0,T, .)1/11)]N([O,S],.’l/(4L))>32< 0. (4.24)

and for any d-dimensional random square-integrable variable X, there exists a ran-
dom controlled path X(-) = (X(w))weq defined on the time interval [0, S] satisfying
(6. X(-)), < A, and {| X ()|llo,5],wp)g < © (the bound for the latter only depending
on A and the parameters in (4.22)), such that, for every w € (Q, the paths X (w) and
I'w, X(w), X (+)) coincide on [0, S]. Any other random controlled path X'(-) with X, = X,
almost surely, and such that the paths X’'(w) and T'(w, X'(w), X'()) coincide almost
surely, satisfies

P(IX() = X'O)lle 0,570 = 0) = 1.
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Proof. We construct a fixed point of I', see Definition 4.1, as the limit of the Picard
sequence

(Xn+1(w); 5$Xn+1(w); 0)

(4.25)
= I‘(w, (X™(w); 6, X" (w); 0), (X" (w'); 0o X" (w); O)w’eQ>’
started from (X°(w); 0, X%w);0) = (Xo(w);0;0), for each w € Q. By induction, for
any n > 0, the pair (X(w),Y(:)) = (X™(w), X™(-)) satisfies (4.1) in the statement of
Proposition 4.2. Moreover, by the first bullet point in the conclusion of Proposition 4.2,
X (w) = X™(w) satisfies (4.3) for any n > 1, provided that L therein is taken large enough
(independently on n). By (4.4) and from the tail estimates (4.22), we deduce that, for
any n =0, [|X™(-)|l{o,r],w,p has finite moments of any order: According to Definition 3.2,
each X"(-) = (X" (w))weq, n = 1, is a random controlled trajectory.

Step 1. Instead of working with S such that (N([0,5]-,1/(4L)) ), < 1, we directly
assume that (N ([0,T],-,1/(4Lo))), < 1, with Ly as in Proposition 4.2. Recalling that we
may take L large enough so that (4.3) holds true with L = Ly and X = X" for any n > 0,
we deduce that, for any n > 1, both X™ and X"~ E satisfy (4.13) and (4.14): (4.13) follows
from the third item in the conclusion of Proposition 4.2, whilst (4.14) follows from the
first item. Hence, by Proposition 4.3, , with AX™ .= X"t — X" is
bounded above by

i>tit1],w,p

w0t >1/P(1+ )ﬂuwl Mioa s+ (IAX Ol 10, }

+l{|\|AX" Y +IAX" Ol a10), )

i+1],W,D

4L
for any n > 1, where v depends on Ly and A, L is greater than L(, and the sequence
(t;)i=0,... .~ is as in the statement of Proposition 4.3. The precise value of L will be fixed
later on; the key fact is that it may be taken as large as needed. We start with the case
1 = 0. The above bound yields, foralln > 1

n 3 n— e
lax (w)m[o,tl],w,p S 4L {H‘AX 1<w)H|[0,t1],w,P + <H|AX 1(')H|[07T]v“”p>s}'
So, recalling that AX%(w) = X!(w), we have, for any n > 1,

[AX™(w)

0,617,000
3v7\" " 3\ ntl—k
< (ﬁ) H‘Xl(w)m[o,tl],w,p + };1(42) <‘HAX]€71(')‘H[O,T],w,p>8~

We proceed with a similar computation when ¢ > 1. By induction, we have, forn > 1,

Y \"
[tostisalwp S (E> X ()]

()" Pt (1 2 a1

(4.26)

lax™ (@)

[tistit1],w,p

2 [
> (1) g+ w0 0 g JIAX T Ollores), )

Following footnote®, we get, for a new value of v,

[AX™(w) |AX™(w) +9[|AX™ (W)

‘H[O,ti+1],w7p < fYH H|[O,ti],’w,p [ti,ti+1],w,p7
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SO
n n YA\
IAX" @lo 0,1 < TNAX @l 0305 + 7 (7)1 @Ml 100

n n+l—k 1 -
+ ’ykZl(ZL) [’y w(0, t;,w)"/P (1 + E> |ax* 1(w)H|[0,ti]7w7p]

o 2 ()" I w2 (14 2 KIAX Oy,

which we can rewrite as

n+1

n 5 n+l—k _
18X @l <760 {21<4L> X5l

() I s+ D) AP Ol |

k=1

ol

provided we choose v > 1, and with ¢(w) := 1 + w(0, T, w)"/? (1 + &
Step 2. Combine the above estimate together with (4.26) to get

n+1
185" @y <76 2 (77) () I @long

(2)" i(j})k“%nw1<->H[O,T],w,,,>8
( A Ol gy )+ () 1K @iy

+ 7w

+ 9% ((w

i

Hence we have
. 3\t 1 gk
IAX" @) 10100 < 726@) (57) (”,;(3) NI Mo s

22w ()" Z (j—z)1_i<mAXH<->|H[O,T],w,p>8 s
k=1

e B el ),

Therefore, using the bound ', _, 3* < 3"*1/2, we deduce

IAX" @)l 10 < 376 (1) 1K @) 010700
+392¢) Y () AX T Ol )

We here assume that L is chosen big enough to have 3y < 4L. The above inequality may
be summed up into

1AX @l a0 < 2 (7)) IX @l 00

+ o) ;(j}) T AKX Ol
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where ¢ (w): = 37%((w). Set now ¢;(w) := (373 (w ))z '

Comparing the previous estimate of || AX™(w H|[O to]wp With (4.26) and iterating over
the time index t; from the conclusion of the first step, we obtain, as long as t; < T,

H|AX (W)M[O,ti],wm < ci(w) (E) |HX1(M)|H[OM]#U7P

o) 3 () IAX S Ol ),
k=1

Step 3. Noting that we can take N in Theorem 4.3 less than N ([0,T],w,1/(4Lo)) +
N([0,T],w,1/(4L)) < 2N ([0,T],w,1/(4L)), see definition (2.14), we deduce that

y 2N (@.1/(4)) /3y n
IAX" @) g 71 < (317¢)) (G2) 1 @l 1.0

N <3W2C( )2N(w ,1/(4L)) zn: (3’)/)”4‘ <H|AX]€71(')|H[0,T],w,p> 7

k= 8

(4.27)

—

where we let N(w,1/(4L)) := N([0,T],w,1/(4L)). It follows from the assumed tail
behaviour of N(-,1/(4L)) and w(0,7,-) that we have, for a > 1 and any integer k, the
upper bound

IP({w cQ - C2N(w,1/(4L))(w) > a}) < IP(N(-, 1/(4L)) = k:) + IP(C2 > al/k)
(4.28)
< cexp(—k1+52) + cexp (_aelp/(4k)) ,

for a constant ¢ > 1 depending on L and with €3 = £2(1/(4L)). In order to derive the last
term right above, we used Markov inequality together with the fact that ]E[exp(gslpﬂ)] is
bounded by a constant depending on ¢;, £; and L. For k = (Ina)/(1+22/2),

vee o}, P({wen: VOV w) > al) < Cat,

2N(~,1/(4L))>
16

for a constant C; depending on ¢, from which we deduce that {(372() < 0.

Set now A := (372¢)?N(-1/(4L) Importantly, A depends on the time horizon 7 through
¢ and N(-,1/(4L)) (and this on L as well). In order to emphasize the dependance upon
the time argument, we expand the notation and write Ay := (3y2¢p)2N{0T]1/(4L),

Clearly, Ag < (37%¢r)?N0.51:-1/(4L) 'since v and (r are greater than 1. Since the
term N ([0, S],-,1/(4L)) tends to 0 with S, we have limg- o <(372@)QN([O’S]"’l/(4L))>16 =1,
so lims\0<As>16 = 1. Hence, taking the I8 norm in (4.27) with T replaced by S,

(IAX" Ol st ), < 1+ 368) C1) DX Ollg sy
(11 8(9) i ()X Ol sy,
(1+56) (30) "X Olly sy,
9) 5 (7)) WA Ol 1.,

+ (1+6(9)
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where §(S) > 0 tends to 0 with S. So, we have

n

) (Z%)(”*’“”<H|Mk<->Hl[o,ﬂ,w,p%

(1+4(S i ( ) Y /2<37) <H| |H[075],va>16

-1

+(1+6(5 ) ( ) )/2<}|AX1'(-)|[o,S],w,p>8ki1(iz>(k

k‘

—i)/2

=0
( )X Ol 5y,

()"

) 8 Ol

Assuming that 3v/(4L) < 1/16 and choosing S small enough, we may assume that
1/2
a = 1+—5(S)<3i) <1, (4.29)
1—+/37/(4L)

we can find a positive constant C' such that

kzg(;’jg) A Ollg gy,
<o(F) X Olpspn)yy +« B UK Ollg sy,

Changing the value of C if necessary, we obtain

n

S " ax Oliosie), < ()" X Ol s

Using (4.27), we eventually have, for a new value of C,
AX™@)]l0,57.,p < C(37¢(w))

X[(E) |HX1(°J)H|[0,T],w,p ( ) <H|X (o, 57, ,p>16]

In order to conclude, we notice the following two facts. First, the above estimate remains
true if we replace [|AX"(w)|| (0.5 DY [AX™(w)]|, [0.5].wp 10 the left-hand side. Second,

Proposition 4.2 guarantees that {[| X (-)[|(0,s7,. p>1 ¢ < . Using a Cauchy like argument,
we deduce that, for any w € §, the sequence (X" (w), 9, X" (w), RX" (w ))nZO is convergent
for the norm || - ||, [0,5],w,p- Using Proposition 4.3, the limit is a fixed point of I'.
Uniqueness. Let (X'(-);,X’(-);0) stand for another fixed point of I, with 6, X'(w) =
F(X'(w),X'(-)), for almost every w € ©, together with (|| X’(-)| (0,7],w,p)g < . In par-
ticular, we have <5 X'( )>OO < A. Allowing the value of the constant L, to increase,

2N ([0,T),w,1/(4L))

(4.30)

we can assume that || X’ (-)|H[07T],w7p>z < Lg. We can also assume that, for P-a.e. w,

15 @) g i, < Lo WitD (82) .. oy
proof of the latter claim is as follows: For a given w such that |§, X’'(w)| < A and for a
given i € {0,--- , N°}, call ¢}, the first time when || X' (w)||? 0,10, = Lo. It < 9,4,
then (4.5) gives Ly < [| X' (w)]|? 0.,
impossible if Ly is large enough.

as in the statement of Proposition 4.3. The

1Jw.p

Jwp ST Caa(2Lg + 1)/(4L0), which is indeed
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Therefore, we can apply Proposition 4.3 in order to compare X and X’ and then
duplicate the analysis of the convergence sequence, replacing AX" by AX X -X'.
Similar to (4.27) (recalling that X I therein is understood as AX9), is
bounded above by

(372C(w))2N(w,1/(4L))[( ) [AX @) —_— Z(ZZ)nHi<||AX(.)|[O’T]’w’p>8]'

i=1

|HOT wp

Letting n tend to oo, this yields

w, 3v/(4L)
‘HAX M 0T < (372<(w))2N( 1/(4L))# <\||AX o1, wp>

Taking the L8 norm, replacing T by S as in the third step and recalling from (4.29) that
\/3v/(4L) <( ~2(r )2N [0,51,, 1/(4L))>
—/37/(4L) 16
Application to the proof of Theorem 1.1. Applying iteratively Theorem 4.4 along
a sequence (Sp = 0,---,S; = T) (shifting in an obvious way [0, S1] into [S1,S2], -+-)
satisfying

< 1, we get uniqueness in small time. O

(NS850 1/am)) <

]N([ i-1,5 ]’,1/(4L))>

<7
32

and <[7(1 +w(0,T,-)"P)
we get existence and uniqueness on the whole interval [0, T]. We notice that, at each node
(S;)j-1,. . of the subdivision, (Xs, (-))s < (Xs,_, (-2 + 20/|XIl{s, .5,].up)aCw(0, T, s,
which is finite by a straightforward induction. By sticking the paths constructed on each
subinterval of the subdivision, we indeed obtain a random controlled path on the entire
[0,T]. This is Theorem 1.1. Importantly, uniqueness holds whatever the choice of w in
(2.8) and (2.9): If X and X’ are two solutions, driven by different w and w’, then we may
easily work with w + w’, which also satisfies (2.8) and (2.9). The control w + w’ and the
accumulation N(w Fw)i/p also satisfy (4.22), see for instance (A.1) for a simple bound on
the local accumulation associated to the sum of two different controls w and w’.

5 Uniqueness and convergence in law

5.1 Uniqueness in law on strong rough set-ups

Since the solution given by Theorem 4.4 is constructed by Picard iteration on each
interval [S;_1, 5], for j = 1,--- , ¢, we should expect its law to be somehow independent
of the probability space used to build the rough set-up W. Recall indeed from (3.3) the
following expansion, which holds true for any rank n in the Picard iteration (4.25) and
for any subdivision 0 =ty < --- <tg =T,

X7 w) Z X (W), X7 () Wy, (w)
j=1
+ Z 0 F(XE_, (), X1, O) (FXT (@), X7, 0) W,y (@)
i (5.1)
¥ _2<D,LF<X5,1<w>,Xg,1<->) (X7, O) (F(XE_ (. X2 ()WE, ()
+ 2 n+1
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the last term converging to 0 as the step size of the subdivision tends to 0. In the sec-
ond line, the matrix product 0, F (X7 (w), X7 (-)) (F(X!(w), X?(-))W,+(w)) should be un-
derstood as (37_; X7y 0u F™ (X7 (w), X2 () (FOF (X2 (w), X2 ()W (@))),_, .. , and
similarly for the term on the third line. Our guess is that the above expansion should
permit to identify the law of X™*! and, passing to the limit, to express in a somewhat
canonical manner the law of the solution of the mean field rough equation in terms of
the law of the rough set-up.

However, although it seems to be a relevant concept in our context, uniqueness in law
requires some care as the rough set-up explicitly depends upon the underlying probability
space ({2, F,P); recall indeed that the random variables 2 3 w — W (w,:) and Q >
w — W(-,w) are not only defined on (92, F, P) but also take values in L¢(Q2, 7, P; R™).
The fact that the arrival spaces of both random variables explicitly depend upon the
probability space is a serious drawback to get a form of weak uniqueness. It is thus
relevant to identify the canonical information in the rough set-up that is needed to
determine the law of the solution. Somehow, we encountered a similar problem in the
example of a rough set-up given by Proposition 2.3. The difficulty therein is indeed
to reconstruct the iterated integral W+ (w’,w) from the observation of W (w), W (w')
and W(w); in the proof of Proposition 2.3, this is made at the price of an extra source
of randomness. Interestingly, things become trivial when W+ (w’,w) can be (almost
surely) written as the image of (W (w), W(«')) by a measurable function. Fortunately,
all the examples we may have in mind in practice enter in fact this simpler setting.
For instance, both Examples 2.1 and 2.2 fall within this case. More generally, in the
framework of Proposition 2.3, we can write W?! as the almost sure image of (W*, W?)
by a measurable function from C([0,T; IR’”)2 into C(S7;R™ @ R™), when, fora.e. { € 5,
the quantity W21 (¢) can be approximated by the iterated integral of mollified versions of
W1(¢) and W2(¢), provided the mollification procedure defines a measurable map from
C([0,T];R™) into itself. The following proposition makes it clear.

Proposition 5.1. Within the framework of Proposition 2.3, define, for i € {1,2} and

n = 0, the linear interpolation W*" of W' at dyadic points (t}, = kT/2"), _,  ,. , of
[0,T1]:
2" —1
i,n i i 2" (t — t]rcz)
W) = 5 (Wi + W @) 1, 0
k=0

If for Q-a.e. £ € Z, for all (s,t) € ST,

t

W2HE) = tim | (W2n(€) - W2()) @ dW " (€),

L —>
n—0o0 s

then there exists a measurable function Z from C([0, T]; R™)? into C (87 ; R™ ® R™) such
that

Q({§ €= W) = I(W2(§),W1(§))}) .

The scope of Proposition 5.1 is limited to so-called geometric rough paths, but the
underlying principle is actually more general. This prompts us to introduce the following
definition.

Definition 5.2. A rough set-up, as deﬁned21'n Section 2, is called strong if there exists
a measurable mapping 7 from C([0, T); R™)" into C(S7;R™ @ R™) such that

]P®2<{(w,w’) e Whw,u) = Z(W(w), W(w’))}) = 1. (5.2)

So, Proposition 5.1 provides a typical instance of strong set-up, which covers in
particular Examples 2.1 and 2.2. However, it is worth mentioning that strong set-ups
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may not fall within the scope of Proposition 5.1, since the latter is limited to geometric
rough paths, see footnote?®.

Proposition 2.3 sheds a light on the rationale for the word strong in Definition 5.2.
Here strong has the same meaning as in the theory of strong solutions to stochastic
differential equations: The second level W?2! of the rough-path is a measurable function
of (W2, W1). In contrast, the general set-up considered in the statement of Proposition
2.3 may not be strong as W?2'! may carry, in addition to (W', W?), an additional external
independent randomization. If this additional randomization is not trivial, the set-up
should be called weak, see again footnote® for a typical instance. Also, we refer the
reader to Deuschel et al. [21] for a related use of the notion of strong set-up, although
the terminology strong does not appear therein.

We now have all the ingredients to formulate a weak uniqueness property.

Theorem 5.3. Let Xo(-) := (Xo(w)) . X0() := (X4(w)) oy and
W():= (W<w)7W(w)awl(w7wl))weg,w/ega
WI() = (W’(w)’W’(w)’WJL-,’(w7w/))w€Q/’w/€Q”

be two square integrable initial conditions and two strong rough set-ups with the same
parameters m, p and q, defined on two probability spaces (2, F,P) and (€', F',P’), such
that the random variables

0?3 (w,w) — (Xo(w),W(wLW(w), Wl(w,w/)),
()2 2 (w,0) = (Xg(w), W' (W), W (w), W (w, ),
have the same law on R¢ x C([0, T]; R™) x C(ST; R™ @R™) x C(S¥;R™ @ R™). Then, the
corresponding two solutions (X (w))__, and (X'(w)) to (1.2) have the same law on
c([o,TT;R™).
As the two set-ups have the same law, we can use the same mapping Z in the

representations (5.2) of WL and of WL, Iterating on n in (5.1), the result easily follows
by proving, at each rank, that the law of (W, W, X") is uniquely determined.

we!

5.2 Continuity of the It6-Lyons map

As expected from a robust solution theory of differential equations, we have continuity
of the solution with respect to the parameters in the equation, most notably the rough
set-up itself. The next statement quantifies that fact.

Theorem 5.4. Let F satisfy the same assumptions as in Theorem 4.4. Given a time
interval [0,T] and a sequence of probability spaces (2,,, F,,P,,), indexed by n € NN, let,
for any n, X2(-) := (X% (wn))w,cq, be an R¥-valued square-integrable initial condition
and

W () 1= (W7 (wn), WP (), WO (o, ) )

’
W W, EQp

be an m-dimensional rough set-up with corresponding control w", as given by (2.10),
and local accumulated variation N, for fixed values of p € [2,3) and ¢ > 8. Assume that

e the collection (P, o (|X{'(-)|*)™"), ., is uniformly integrable;
e for positive constants 1, ¢; and (g2(), c2(a))a=0, the tail assumption (4.22) holds
for w™ and N™, for alln = 0;

8A trivial example of rough set-up is given by the collection of real-valued rough paths W1 (&) = W2(¢) = 0,
W) =0, W2 (&) = a(€)(t — s), (s,t) € ST, for £ in a probability space (Z, G, Q), where a is a real-valued
random variable on (8,6, Q). If a is deterministic and non-zero, the set-up is strong but is not geometric. If
the support of a does not reduce to one point, then the set-up induced by (W?(-), W2(:), Wh1(:), W21(.)) is
not strong.
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e associating a control v with each W"(-) as in (2.7), the functions (8] > (s,t) —
(v (s, t, -)>2q)n>0 are uniformly Lipschitz continuous, in the sense that, uniformly
mn =0, sup(, yesr o+:V" (8,1, +))2q/(t — ) is finite.

Assume also that there exist, on another probability space (2, F,IP), a square integrable
initial condition X, (-) with values in R¢ and a strong rough set-up

W() = (W(w),W(w),wi(w,w')) »
with values in R™, such that the law under the probability measure P®? of the random
variable Q2 3 (wy,w),) — (X (wy), W™(wn), W (wy,), WL (w,,w],)), seen as a random
variable with values in the space R*xC([0,T]; R™) x {C(S7;R™ ® Rm)}z, converges in
the weak sense to the law of 2 5 (w,w') — (Xo(w), W (w), W(w,), W (w,w’)).

Then, W (-) satisfies the requirements of Theorem 4.4 for some p' € (p,3) and
q € [8,q), with w therein being given by (2.10). Moreover, if X" (), resp. X(-), is the
solution of the mean field rough differential equation driven by W"(-), resp. W (-), then
X"() converges in law to X (-) on C([0, T]; R%).

The rationale for the framework and the assumptions used in the statement of
Theorem 5.4 is two-fold. First, it allows for a proof based on compactness arguments;
in particular, the proof completely bypasses any lengthy stability estimate of the paths
with respect to the rough structure, which, in our extended framework, would be
especially cumbersome. Also, this compactness argument is pretty interesting in itself
and complements quite well Section 5.1 on weak uniqueness; noticeably, it allows the
set-ups to be supported by different probability spaces. Second, our formulation of the
continuity of the Ito-Lyons map turns out to be well-fitted to the applications addressed
in our companion paper [4], see also Section 4 in the earlier version [5].

The assumption that the limiting rough set-up is strong is tailored-made to the
compactness arguments we use below as it permits to pass quite simply to the weak
limit along the laws of the rough set-ups (W"(+)),>0 and to identify the limiting law.

Proof. Throughout the proof, we call p € [2,3) and ¢ > 8 the fixed indices used to define
the set-ups and, in particular, to control the variations in the definition (4.22) of each w”,
n = 0, w™ being associated with v” through (2.10). This is important because, at some
points of the proof, we will use other values p’ > p and ¢’ < q.

Step 1. We prove key properties on the tightness of the sequence (W"(+));>0.

1a. For any n > 0, we introduce the modulus of continuity of (W (), W"(-), WL(.)),
namely we let, for any § > 0,
<" (8, wnswp,) i= sup W (wn) — Wi (wa))

|s—t|<é
+ sup |W2 1 (wn) = W (wn)] + sup |Wg,i% (Wn,w!)) — W;l,lt% (wWn, wh)|,

n
|s—s'|+|t—t'|<d |[s—s'|+[t—t|<8

where (w,,w!,) € Q2. Since the laws of the processes (W"(:), W"(-), W™L(...)),>¢ are
tight in the space C([0, T];R™) x {C(S];R™ ® IR’”)}2, we deduce that

Ve >0, limsup P®? ({(wn,w;) € Q2 1 6, (6, wn,wl,) = 5}) =0.

0 n=0

1b. We now prove that, for any ¢’ € [8,¢), the laws of the processes (Qn 3w, —
(W™ (wn,-))g), =0 are tight®, and similarly for the laws of the processes (2, 3 w, —

91n the notation <~>q/, the expectation is implicitly taken under P, .
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<W"’l(~,wn)>ql)n20. By (2.10), we have, for any w,, € .,

sup <W (wn, -)>q < (w™(0,T, wn))z/p.
(s,t)eST

By the second bullet point in the assumption, the tails of the right-hand side are uniformly
dominated. So,

lim sup IPn<{wn €Q,: sup <Wzl’ti(wn, ~)>q > A}) =0, (5.3)

A= n>0 (s,t)eST

which is one first step in the proof of tightness. For any a > 0, we now consider the event
E,(5,a) := {wn e, : ]Pn({wil € Dt 6 (0, wn,wl,) = s}) > a}.
By Markov’s inequality and then Fubini’s theorem,
P, (E,(5,a)) < a ' P®? ({(wn,w;) € Q% 6, (0, wn,w)) = 5}),

the right-hand side converging to 0 as § tends to 0 uniformly in n > 0. Clearly, for any
¢ > 0, we can find a collection of positive reals (a.(d))s>o such that

}%ag(é) =0, and h\rJn sup P, ( En (9, as(5))) =0.

0 n>0

Take now w,, € E,(d,a.(5))" such that sup(s,t)€3;<wgy’ti(wn, )), < A, for a given A > 0.
Then, for any ¢’ € [8,q) and (s,t), (s',t') € ST with |s — s'| + [t —#/| < 0,

W), — (W (0.)

<W,t, Wy ) = W (@, - > < e+ Aa.(8)177a.

q

q/

For A fixed and ¢ small enough, the right-hand side is less than 2¢. We easily deduce
that, for any ¢ > 0,
= 5}) =0,

which, together with (5.3), proves tightness. Clearly, the same holds for the family (Qn 3
wn = (W (-, wn))q), - Similarly, the two deterministic functions ((W"(-))y), ., and
((W™L(-,))e), ~, are relatively compact in C([0, T]; R) and C(S; R).

1c. For each coordinate of the family of processes

lim sup P, {w e, : su ‘W",’J%w D, =W w,, )Y
6\On>13 ( " " |s—s’\+\£t’\<6< S’t( " )>q < >t ( " )>q

(20 3 eom = (W)l W )], W 0 ) OV 00D ) s )
we know that the corresponding family of laws is tight in C(S7; R) and that the associated
family of p-variations over [0,7'] has tight laws in R (because of the second item in the
assumption). Hence, we can apply Lemma 5.5 below, with any p’ € (p, 3) instead of p
itself, and with Z7';(w) equal to one of the coordinate of the above process.

We proceed in the same way with the coordinates of the deterministic sequence
(22 = (<W£t(~)>q,, (W ')>>(I')(s,t)esg)n>o‘ We deduce that, for any p’ € (p,3), the

sequence of probability measures (IPo(SQT > (s,t) — 0™ (s,t, -))_1> . is tight in C(S%; R)
>

and hence that

Ve > 0, gim sup ]Pn< sup ™ (s,t,+) > 5) =0,
(s,t)

On=0 )eSTt—s<s
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where v™’ is associated with W"(.) through (2.7) using the pair of parameters (p’,¢’)
instead of (p, q).

1d. Obviously, v™’(s,t,-) < (v"(s,t,-))?/?. Since p//p < 2 and the function S >
(s,t) — (V™ (s,t,))2q is Lipschitz continuous, uniformly in n > 0, we deduce that (s,t) —
(™' (s,t,))q is Lipschitz continuous, uniformly in n > 0. Hence,

Ve >0, lim sup IPn( sup w™ (s, t,+) > 6) =0,
(

6—=0n>0 5,8)eST :t—s<6

where, as above, w™’ is associated with v’ and (p’, ¢’) through (2.10). Importantly, we
deduce from the bound (v"/(0,T,-))"/*" < (v™(0,T,-))*/? that, similar to w™ and N (the
latter is associated with w™ through (2.14)), the function w™’ and the corresponding local
accumulated variation N™' (given by (2.14) with @ = w™’) satisfy the tail assumption
(4.22), uniformly in n > 0. The bound on the tails of N is easily obtained by comparison
with the tails of N™.

Step 2.

2a. The next step is to observe, as a corollary of the proof of Theorem 4.4, see (4.30),
that there exist a constant C and a real S > 0 such that, for alln > 0,

(X"l sy ), < C:

The fact that C' and S can be chosen independently of n is a consequence of the fact
that the tails of N and w™ are controlled uniformly in n > 0. Here S is chosen small
enough so that (4.23) and (4.24) in the statement of Theorem 4.4 are satisfied, uniformly
inn>0.

2b. Arguing as in the derivation of Theorem 1.1 from the statement of Theorem
4.4, we can iterate the argument and construct a sequence of deterministic times
0=5<8S=05 <...< Sk =T, for some deterministic X > 1, such that, for
alln > 0and all j € {0,---, K — 1}, {IX"()lls;.8,:17,0mp ) < C. Up to a modifi-
cation of the constant C, we deduce that, for all n > 1, {[|X"(")|l{o,77,wmp)g < C.
Recalling that (P, o (|Xg(-)|*)7"), ., is uniformly integrable, it is easily checked that
(P o (supg<<r [X{'()[*) 7)o, is also uniformly integrable.

2c. As another result of the previous step, for any € > 0, we can find a > 0 such that

sup P (I1X7 ()l o,y > ) <,
n=0
from which, we deduce that

Va>0, 3Fe>0:supl, (V(s,t) esT x| > aw"’/(&t)) <e.

n=0 '

Combining with 1d, this yields

Ve >0, limsup IPn< sup | X&' > 5) =0.
(

d—0n>0 s,t)eSTit—s<6

From the conclusion of 2b, the sequence (P, o (X"(-))™"), _ is tight in C([0,T]; R).
Step 3.
3a. As a consequence of the assumptions of Theorem 5.4 and of Step 2, we have the
following tightness properties:

o (Pno(W"()™"), . and (Pyo(X"(-))™"),., are tight in the spaces C([0,T];R™)
and C([0,T]; R¢);
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o (P,o(W")7'(,), ., is tight in C(S]; R @ R™);

. (]P ®2 ( 5 (wn,w!) = Wok(w,,w!) e C(ST;R™ ®1Rm)> 1)00 is tight in
C(ST;R™ @R™);

. (Pn o (w (Wn) : Qo 3wy — (ST 3 (s,) = 0™ (5,t,w,)) € C(SQT;IR))7 )nzo is tight
in C(S7;R);

3b. By Skorokhod s representation theorem, we can ﬁnd an aux111ary Polish probabil-
ity space (Q F, IP) such that, up to a subsequence, for P-a.e. & € Q,

lim <Wn1( ) Wn2( ) Wn ( ) Wn21( ) ﬂn’l’/(@)’ﬁn’27/<@)7)?"’1(@)’X"’Q(&\))>

n—0o0
= (W(@), W2 @), W1 (@), W21(@), 8V(3),62(2), £ (@), @), (5.4)
where (W1, Wm2 Wnbl n2l gnl/(@), 572/ (@), X&), X™2(®)) has the same law
as the random variable
Q2 3 (wp, W)

o (W7 o) W (), W ), W (0, 0 (), 0™ (), X (), X7 ()

which takes values in the space {C([O,T];]Rm)}2 x {C(8F;R™ ®1Rm)}2 X {C(SQT;IR)}2 X
{C([O,T];]Rd)}Q, and where (W'(-), W2(-), Wh1(-), W21(-), X}(-)) has the same law as
the random variable

0?5 (w,w) — (W(w),W(w'),W(w),wl(w’,w),xo(w)). (5.5)

3c. At this point of the proof, the difficulty is that (I//I\/l (), W2(), Whi(.), W21()) does
not form a rough set-up. Still, we have the following two properties. First, using the fact
that the limiting set-up is strong, we have

113({@ e QW (@) = T(W(®), Wl(@))}) ~1,

for a measurable mapping Z : C([0, T]; R™)? — C(ST; R™ ® R™), which follows from the
identification with the law of (5.5). Also passing to the limit in Chen’s relations satisfied
by each W", we have, for P-ae. e, andall0<r<s<t<T,
1,1 1,104 1/~ 1/~
W @) = WHH@) + WHH @) + W,L@) @ WL (@),
W (@) = W2 L@) + WH @) + W2 (@) @ WL (®).
Obviously, (W2, X2) is independent of (Wl, Wil X1, ?'). Following the proof of Propo-

sition 2.3, but in a simpler setting here since the limiting rough set-up is strong, we can
find

e four random variables W (-), W( ), ¥(-) and X (-) from (Q, F, P) into C([0, T]; R™),
C(ST;R™®@R™), C(S7;R) and C([0,T]; R?) such that

113({@ eQ: (W, W,#,X)@) = (W, lel,alv',)?l)(@)}) —1;

e arandom variable W (., ) from (QQ, Fo2, I?’®2) into C(S87; R™ ® R™) such that

—~ —~

pe? ({(@,@/) e 02 WL(2,0) = Z(W (@), W(@’))}) —1; (5.6)
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—~

the rough set-up W(:) := (W ), W(-), WL(. -,+)) satisfying (2.4) with probability 1 and
02 5 (0,0) - (W@),W@), W), WH@,0),7 (@), (@), X(@), X(&')) having the
same law as (W'(-), W2(), Wh1(.), W21(.),5%(-),52/(-), X (), X%(-)) on the product
Space

([0, T R™)} x {c(ST;R™ @ R™)} x {C(ST;R)} x {c([0, T];R%) }*.

Pay attention that, at this stage, we do not whether X solves the mean field rough
equation.

3d. We know from the previous step that the limiting set-up satisfies (at/l\east outside
an exceptional event) the required algebraic conditions. We now check that W (-) satisfies
the required regularity properties.

We start with the variations of W (@), (W ()}, W A(A) (W@, ), (W (-, 3))y and
((Wi(~, ))¢. To do so, we recall that, for a.e. @ € Q, 7/(®) is the limit of 9"/(®). By
passage to the limit, ¥’ inherits the super-additive property of the (v"'),,>0’s, see step 1d,
and its tails satisfy (uniformly in n > 0) a bound similar to that satisfied by the (v"),>0’s
in the first item of the assumption. Also, SI' 5 (s,t) — (¥'(s, t, )>q/ is Lipschitz.

Passmg once more to the limit, we get that, for a.e. & € Q, for any (s,t) € ST,
|Ws7t( )P < ¥(s,t,w), from which we deduce that the p/-variation of W( ) is dominated
(in an obvious sense) by v’. A similar augment applies for <W()>q/ W(@) and ((Y\/N\/JL(, N

It thus remains to handle (W= (&, ), and <WL(~,@)>q,. In order to control their
variations, we proceed as follows. For any non-negative valued bounded continuous
function g on C([0,T]; R™) x C(S1;R) and for every (s,t) € ST, we have

| [P @5 @) Wh@. )y | b @)
f |9 (W @), 7(@) W@, o) ]d]P®2( o)

= lim | [g (W ()0 () W @) [dPE2 () w0),

n—aoo 02
n

where we used Fubini’s theorem to pass from the first to the second term together with
(5.4) to pass from the first to the second line. Now, we use the very definition of v™’ and
the second item in the assumption to deduce that

| [s07@) A<@)<w @)% |aP@)

< lim g(W™ (wy), v™ (wn)) (v””(s,t,wn))q//p/]dIPn(wn)

J E ( ), 7(@) (7' (5,1,2)) " | dP(@).

Recalling from (5.6) that ) 5 & — <W§Lt(A )> is o{W()}-measurable, we get, for any

(s,t) € ST and for a.e. & € 0, <W >p v'(s,t,&). Obviously, the latter is true
for a.e. o, for any (s,t) € S; N Q> By almost sure (in (&,&')) continuity of the paths
ST 5 (s,t) — Wth(A &') and by Fatou’s lemma, we deduce that it holds true for a.e. &,
for any (s,t) € ST. The same holds for <Ws,t('7 )>q,.

Associating with the rough set-up W a (random) control funcEion v thrclugh the
definition (2.7) with (p, q) replaced by (p/,¢’), we deduce that, for P-a.e. & € Q, for all
(s,t) € ST, v/ (s,t,@) is less than ¥/ (s, t,d).
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Modifying the definition of the set-up on the possibly non-empty null event where one
of the aforementioned properties fails (see the proof of Proposition 2.3 for details), we
can assume without any loss of generality that, for any & € Q, the variation of ‘//‘\/(@) is
dominated by ?’(©) and that the latter is finite for all & € Q. Also, we can assume that
Chen’s relationship, see (2.4), is satisfied for every @ € Q.

3e. Welet @' (s, t,w) := 0'(s,t,0)+C(t—s), where C'is the Lipschitz constant in the sec-
ond item of the assumption. Clearly, w’ satisfies the first tail estimate in (4.22). Moreover,
if we associate with @’ the (random) local accumulation N’(-, ) 1= Negnye([0,T], o) as
in (2.14), then we must have!® N’([0,7], o) < 2liminf,_. Ngnoyn([0,T], @) + 1, where
@™ (s,t,@) = 0" (s,,&) +C(t—s). In particular, N’(-, a) satisfies the second tail estimate
in (4.22) (for possible new constants c¢(«) and e5(«)). Obviousy, the same holds for the
counter N'(-, a) associated with ¥/(-). In the end, ‘//I\/( -) satisfies all the requirements of
Theorems 4.4 and 1.1.

Step 4. .

4a. For each n > 0, we define 6, X"(-) and RX"(-) as

5. X1(@) = F(X7(@), L(XD)), B (@) = Xp (@) - X2 (@) - 5, X7 (@)W, (@),

(s,t) € ST, & € Q, from which we easily deduce that (9, X"(-), RX" (), =, converges with
probability to 1 to (6, X (), }A%)?()) defined as

5, X:(@) = F(Xu(@), £(X0), RE(©) = K@) - Ro(@) - 6. K@) W (D),
(s,t)eST, b e Q. In order to pass to the limit in the measure argument of F, we use the
fact that, for any ¢ € [0,7], (£(X}'))n>0 converges in the weak sense to E()A(t). By the
uniform integrability property 2b, the convergence also holds in 2-Wasserstein distance
ds. By continuity of F with respect to ds, we easily conclude.

4b. By the second step, (P, o (|| X™(-)[ljo,77,umpr)""),.5, i tight in R, where we take
w™'(s,t,wy) = V™' (s,t,w,) + C(t — s), for the same C as in 3e. Hence, we can add a new
coordinate to the almost surely converging subsequence (5.4) inherited from Skorokhod
theorem. This new coordinate represents (|| X" (-)[[[o,7],wn )n=0. In fact, since P, o
(X" (), 8, X™(-), RX"(-),0™/(-)) " coincides with P o (X7 (-), 6, X" (), BX" (-),5m(-)) " for
each n > 0, the new coordinate in the Skorokhod subsequence may be chosen as
(I X (- Mior1,8m ) .5, itself, where, as before, W"™/(s,t,&) = 0™’ (s,t,0) + C(t — s). We
thus assume that the latter sequence is almost surely convergent. Moreover, identity in
law of (W"(-), X"(-)) under P,, and of (W"(-), X"(-)) under P also says that, for P-a.e.

Xn@) < ||X"@ &7(s,1,2))""". By (5.4) and
3¢, we get, for P-ae &e Q, for all (s,t) € ST,

& € Q and any (s, t) e 8T,

o2y, (

X, (@)] < (lim || X"( (@ (5, ,8)

N0 w H‘[OT 1,07 ,p
Proceeding similarly for 51;)2"() and RX" (), we deduce that, for P-a.e. H e,

IR @011 < T 1K@l fo.17, -

10The proof is as follows. Call N/ = ]\Af’(-7 «). Without any loss of generality, we may assume N’ > 2. Define
(t; := 77(0,@));—0,...,N’—1 @s in (2.13), with @ = (@')Y/P, and let tpy := T. We also let K := |N'/2| > 1.
By super-additivity, we have, for any k € {0,--- , K — 1}, @(tak, tox+2) = 2aP. Recall now that, almost
surely, W™’ converges uniformly to @’ on SQT . Hence, almost surely, for n large enough, we must have
W™’ (tog, tog+2) > aP, which implies that N(W,,,,)l/p([O,T],a) > K.
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which shows in particular by Fatou’s lemma, see step 2b, that <\H)A((')H|[0,T],@',p'>8 < 0.
Although 7' (@) (and thus @' (®)) is not associated with V/I\/(@) through (2.7), we shall say
that, for a.e. & € €, )?(C;) is an @-controlled trajectory for the rough set-up W (-). (We
come back to this point right below.)

Step 5.

5a. So far, we have constructed (X (©); F(X (&), X(-));0) as an &-controlled trajectory
for the limit rough set-up W(), but for & in a full event { « Q. For free, we can
modify the definition of X (@) for & ¢ O\ and define §,X (&) accordingly so that
(X(©);6,X(©);0) is an G-controlled trajectory for any &. Then, ()?(@))aeﬁ forms a
random controlled trajectory.

5b. In order to conclude, it remains to identify (X (&); F(X (&), X(-);0), for P-a.e.
& e Q, with L& ()A((@), F()?(@), )2'(~));0), where the index W in I'i is to emphasize the
rough set-up upon which the map I' in Definition 4.1 is constructed. To do so, we recall
from (3.3) the expansion (see also (5.1))

XZ(WH) = X(r)l(wn) + Z F(X,Z_l(wn),[,( ))ij 1t ( n)
+ Z CF (X7, (wn) £0X7 ) (FXE_, (wa) £OXE_ ) W2 () (5.7)
+ Z<D#F<Xg_l<wn>,z<xt’;_l>>(Xz;_1<~>) (F(X2_, (O L)W Cwn)))

+ZSJ .

that holds true for any w,, € €2,,, any n > 0 and any subdivision 0 =t <t; < --- <tg =T,
with K > 1, and with (see Theorem 3.4, Proposition 3.5 and 2b)
|S7

]

1t (@n)] < (1 + 1 X (@) 0,27 00m ) w™ (-1, b5, wn) 7.

In order to pass to the limit in (5.7), we consider a non-negative valued bounded
continuous function g on C([0,T]; R™) x C(ST; R™ @ R™) x C(ST;R) x C([0,T]; RY). We
then multiply both sides of (5.7) by g(W"(w,), W"(wy),v™ (wy,), X" (w,)) and integrate
wy, with respect to IP,,. It is absolutely obvious that

Tim By g (W7 (), W™ (), 0™ (), X" () X2 () | = Blg(W ), W70, X () £ ()]
and similarly with ¢; replaced by 0. In the same way,
lim B, [ (W (), W™ (), 0™ (), X" () E(XE (. LK ))WE L, ()]

= B[g(W (), W), 0, XO)F (R, (0, LR, ) Wy, O],

and similarly for the terms on the second line. As for the fifth term in the right-hand
side, we have

hnmjololpE" [g(W"('),W"('),v”"(') ) IS8 )’]

< Climsup E, [g(Wﬂ(.),Wn(.%vn,/(.),Xn(.))

n—o0
(1 X Ol g g )™ (1,15, |
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Transferring the right-hand side into an expectation on ((AZ,]? 7If’) and using obvious
uniform integrability properties, see 2b, we deduce from 4b that

lim sup By g (W7 (), W (), 0™ (), X" () S50, ()]

n—o0 )
< CBg(W(), W), 7 (), X)) (1+ Tim 17Ol ry,6m ) @ (1,15, |
Of course, the most difficult term to treat in (5.7) is the fourth one in the right-hand side.
This can be done by using Fubini’s theorem:

| P [ 07 ). W) 07 ), X )

ZDHF(X:;1<wn>,£<Xz;J)(Xz;1<->>(F<Xgl<~>,1:<x;;1>>w;:%,t,.<-,wn>)>]

a 02 dP%Q (W, W;L) [g (W”(wn)y W™ (wn), 'Un’/(wn)’ X" (w"))
DUF(XE (wn) £OXE ) (X0 () (F(XE_ (), LX) W (whoeon)) |

i—1,t;

_ E[g(Wn,l(.)7 I//I\/n’l’l('), 1’}1*”7'(.)’ an())
DUF (R (0, L)) (X772, 0) (F(R12 0, £ _)) W2, 0) |-

We now use (5.4) in order to pass to the limit. The only slight difficulty is that we must
ensure that the regularity conditions satisfied by D, F are compatible with the almost
sure convergence property (5.4). Recall indeed that the continuity property Regularity
assumptions 1 is formulated in IL,. By [10, Proposition 5.36], this implies that the
mapping v — D,F(z, u)(v) is Lipschitz continuous, uniformly in z and p. The latter
guarantees that, for a.e. @ € Q,

lim D,F(X{ (@), L(X7_,)) (X2, (@) = DuF(X)_, (@), £(X,,_) (X7, @)).
So, the limit of the summand on the fourth line of (5.7) is
Bg(W (), WH(),(), ()
CDUF(RL (L)) (R O) (F(R2L, 0, LR _))WEE, L, 0) |-
and our reconstruction of the limiting set-up permits to rewrite it in the form
| ®@]s(7@). W@, 7). £ @)
A DF (R (@), £(K0,-)) (K, ) (F(Ry, (0, LR, )W, 4 (@) ).

Importantly, since the limiting set-up is strong, the term in bracket in the last line is
o{W, X }-measurable.
5c. Let now

~

- Z <DHF(2751—1 (@)’ ‘C(th—l )) (th—l ()) (F(th—l ()7 E(thfl))wéﬁ—htj (" @)) >
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By the conclusion of 5b, it is J{W, W, X }-measurable and it satisfies, for any ¢ as in the
previous step,

E[g@(-),ﬁf(-),a'(-),fc(-)) 70|
<Blg(W 0. R0) (14 m 1RO 1.000y) Z oty .

Therefore, for P-a.e. &,

T@) < (X @ (tors sy @) VB lim 187 Oy 19,000 |0, W, K| @)

J=1

By super-additivity of @', X,(®) and Xo(&) + So X,(w), )A(S(-))dﬁ\/s(w) coincide. Note
that this is true although the functionals () and @' (W) that control the variations
of X are not associated with W( ) through (2.7); the sole fact that ¢'(&) dominates

v'(@) (which is associated with W( ) through (2.7)) and that @'(©) satisfy (2.8) and (2.9)
suffices.

The domination of v/(@) by v'(®), the latter satisfying the tail properties in Theorem
4.4, suffices to duplicate the uniqueness argument. In words, X () is the solution to the
mean field rough equation driven by w and, by uniqueness in law, X () has the same
law as X (). O

We used the following lemma in the proof of Theorem 5.4.

Lemma 5.5. For a separable Banach space (E,| - |), call C}""*(S1; F) the space of
continuous paths G from SI' into E that are null on the diagonal, i.e. Gy = 0 for all
€ [0,T7, and have a finite p-variation, i.e.

N—-1
HGHI[]() T],p—var = sup 2 |Gti,ti+1|p < 0.
ot <-<tn=T i=0

Foreachn >0, let Z" = (Z;), ;esy be a process defined on (S, Fy,, P,) with trajectories
in C{"" (83 E). Assume that the family of distributions (P, o (Z")™") _ is tight in
C(S3; E), and that the family of distributions (P, o (|Z"[0.1]p—var) "), 1S tight in R.
Then, for p’ > p, the family of distributions (P, o (S 3 (s,t) = [ Z"|(s.1]p/—var €
R)™'), ., is tight in C(S3 ; R). In particular, for any > 0, there exists § > 0, such that

IPn( sup 1Z™ 5,8, —var > 5) <e.
(

s,t)eSg:t—séé

Proof. The first part is an adaptation of Proposition 5.28 and Corollary 5.29 in [24]. The
second part is a consequence of the fact that | 2|4, —var = 0, for z € C§ (87 E). O

A Proof of Theorem 2.4

We provide here the proof of Theorem 2.4. We follow the proof of Theorem 11.13
in [23], see also the proof of Proposition 6.2 in [12]. Throughout the proof, we use the
same notations as in the statement of Theorem 2.4.

Notice first that handling the local accumulation of w!/? is the same as handling
the local accumulation of w. This amounts to change the argument « into o in (2.14).
Recall now that w(s,t,w) is given by (2.10) and v(s, t,w) therein consists in six different
terms, see (2.7). It is an easy exercice to check that it suffices to control the local
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accumulation associated with each of these six terms. To make it clear, we have the
following property. For a given threshold a > 0 and for any two nondecreasing continuous
functions vy : 8 — Ry and vy : 8§ — Ry, set N;(a) := N,, ([0,T], ), for 1 <i < 2, and
N(a) := Ny, 14, ([0,T], @); see (2.14) for the original definition. Then

max(Nl (%)J\@(%)) > N(a). (A1)
For sure, the result is true with the first and third terms in (2.7) as this fits the original
property established in [12]. Also, it is obviously true for the second and sixth terms
since they are completely deterministic. Hence, the only difficulty is to control the local
accumulation associated with the fourth and fifth terms.

The strategy is as follows. As we work with Gaussian rough paths, the set-up, as
defined in Section 2, is strong. So, we can transfer it to any arbitrarily fixed probability
space (provided that the letter is rich enough). Hence, we can choose {2 as the path
space W, see the notation in the statement of Theorem 2.4.

We denote by W (w,w’) the enhanced Gaussian rough path associated to (W (w),
W'(w')) along the lines of Example 2.2, for P®?-a.e. (w,w’) € Q2. The second level of
W (w,w') reads

2 N W(w) Z(W(w), W' (')
W[](w’w)'_(I(W’(w/),W(w)) ( W (o) ))’

where 7 is as in Definition 5.2, and where we used the same symbol W as in Section 2 for
the enhanced path although the meaning here is not exactly the same. Here, W (w,w’)
is a function of both w and ' and takes values in R?>™ @ (R?™)®2. Following Section 3
in [12], see also (11.5) in [23], we define, for h @ k € H @ H the translated rough path
(TherW)(w,w’), where, as in Example 2.2, H is the underlying Cameron-Martin space.
We then recall that, with probability 1 under P®2,

ThoeW (w,w') = W(w + h,w' + k).

Following the argument given in Proposition 6.2 in [12], see also Lemma 11.4 in [23],
we have, for any h € H and any (s,t) € S7,

IW ()] < ¢ (1ThooW (@) I I, v )

[s,t],p—var [5,],p—var [s,t],0—var

where we recall that 1/p + 1/p > 1 and ¢ only depends on p and g, and where

W (w, W/)ﬂ[s,t],p—var = (W, W,)(Wa W/)H[s,t],p—var + \/HW[Q] (w,w)|

[s,t],(p/2)—var>

and similarly for [TgoW (w,w’)[[s,1],p—var- Taking the power ¢, allowing the constant ¢
to depend on ¢ and integrating with respect to w’, we get

(W@, )2 /2)7var>q < o((IThpoW (w, ')U’[’s7t]7p7var>q IR, 116 ver )
We now let
[ W(wvw/)ﬂ[s,t],(l/p)—Hﬁl
= (W W) (w, W) .87, (1/p) 161 + \/HW[Q] (w, )15, (2/p)—H615

for the standard Holder semi-norm of the rough path, see Theorem 11.9 in [23]. Then,

p/2
(WA 1. r2rvae ). < e({IThe0W @) 21 oy (= )+ DRI ) v )
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Therefore, if |h[s,],o—var < 1, then

<WJL(W7 ,)>p/2 < c(<|]Th@oW(W, S A /p)_H61>q(t — &)+ nhufsyt]yg_m).

a;[s,t],(p/2)—var
Observe that if the left-hand side is equal to or less than «, the above statement remains
true even if | A [, 4, ,—var > 1; it suffices to change the constant ¢ accordingly. Define
now N([0,T],w,a) := N ([0,T],a), when w(s,t) = (Wt(w Then, by
super-additivity of || -

>p/
[s,t],(p/2)—var"

| o—var-

N([0. 7). w00 < (U TieoW () oy s, T+ Iy 1) 0mvar)-

By Proposition 11.2 in [23], we get (for a new value of c)
N0, T}, a)ar < e { [ ThooW (. W ry /-0, T + [W15T),

where | - |4 is the standard norm on the reproducing Hilbert space H, see again for in-
stance Appendix D in [24]. We conclude by recalling that the quantity
(1w, 1By 1.1/ —s01 ))q is finite, by observing that

E = {(w,w') € 0 ThgoW (w,w') = W(w + h,w'), he 7—[},

is of full ]P®2-probability measure, see Theorems 11.5 and 11.9 in [23], and then by
invoking Theorem 11.7 in [23].
As for the sub exponential integrability of w(0,T,-), we just proceed with the tails

/2
of @ 3w (Whw >”0T]p/2
o exp (W (w, H 2/p)— Hol>5/ q)d]P (w) is finite, for some ¢ > 0. We then notice that

the function (0, +oo) 5z > exp(2°/7), is convex on [A., ), for some A. > 0. Therefore,
Jensen’s inequality says that it suffices to prove that

To do so, it suffices to prove that the integral

(w,w’ H [0.7],(2/p)— HO])dIP(w)dIP(w') < 0,

f exp(AE/q v HWJL
QZ
which follows from Proposition 6.2 in [12] and Theorem 11.13 in [23], provided we
choose € small enough.
Acknowledgments. I. Bailleul thanks the Centre Henri Lebesgue ANR-11-LABX-0020-
01 for its stimulating mathematical research programs, and the U.B.O. for their hospital-
ity, part of this work was written there. I. Bailleul also thanks ANR-16-CE40-0020-01. F.
Delarue thanks the Institut Universitaire de France.

The authors thank William Salkeld (University of Edinburgh) who found several
mistakes in the first version [5] of our work.

References

[1] Alfonsi A., and Jourdain, B., Lifted and geometric differentiability of the squared quadratic
Wasserstein distance. arxiv.org/abs/1811.07787, 2018.

[2] Bailleul, I. and Riedel, S., Rough flows. arXiv:1505.01692, 2015.

[3] Bailleul, I., Flows driven by rough paths. Revista Mat. Iberoamericana, 31(3):901-934, 2015.
MR-3420480

[4] Bailleul, I., Catellier, R., and Delarue, F. Propagation of chaos for mean field rough differential
equations. arXiv:1907.00578, 2019.

EJP 25 (2020), paper 21. http://www.imstat.org/ejp/
Page 49/51


arxiv.org/abs/1811.07787
http://arXiv.org/abs/1505.01692
http://www.ams.org/mathscinet-getitem?mr=3420480
http://arXiv.org/abs/1907.00578
https://doi.org/10.1214/19-EJP409
http://www.imstat.org/ejp/

Mean field rough equations

[5] Bailleul, I., Catellier, R., and Delarue, F. Mean field rough differential equations.
arXiv:1802.05882, 2018.

[6] Blackwell, D., and Dubins, L. An extension of Skorohod’s almost sure representation theorem.
Proc. Am. Nat. Soc., 89(4):691-692, 1983. MR-0718998

[7]1 Budhiraja, A., Dupuis, P, and Fischer, M., Large deviation properties of weakly interacting
processes via weak convergence methods. Ann. Probab., 40(1):74-102, 2012. MR-2917767

[8] Budhiraja, A., Wu, R. Moderate Deviation Principles for Weakly Interacting Particle Systems.
Probab. Th. Rel. Fields, 168(2-4):721-771, 2017. MR-3663630

[9] Cardaliaguet, P, Notes on mean field games. https://www.ceremade.dauphine.fr/cardaliaguet/
MFG20130420.pdf, 2013.

[10] Carmona, R. and Delarue, F., Probabilistic Theory of Mean Field Games: vol. I, Mean Field
FBSDEs, Control, and Games. Probability Theory and Stochastic Modelling, Springer Verlag,
2018. MR-3752669

[11] Carmona, R. and Delarue, F., Probabilistic Theory of Mean Field Games: vol. II, Mean
Field Games with Common Noise and Master Equations. Probability Theory and Stochastic
Modelling, Springer Verlag, 2018. MR-3753660

[12] Cass, T., and Litterer, C., and Lyons, T., Integrability and tail estimates for Gaussian rough
differential equations. Ann. Probab., 41(4):3026-3050, 2013. MR-3112937

[13] Cass, T., and Lyons, T., Evolving communities with individual preferences. Proc. Lond. Math.
Soc. (3), 110(1):83-107, 2015. MR-3299600

[14] Cass, T., and Ogrodnik, M., Tail estimates for Markovian rough paths. Ann. Probab.,
45(4):2477-2504, 2017. MR-3693967

[15] Coutin, L., and Lejay, A., Perturbed linear rough differential equations. Ann. Math. Blaise
Pascal, 21(1):103-150, 2014. MR-3248224

[16] Coutin, L., and Lejay, A., Sensitivity of rough differential equations: an approach through the
Omega lemma. J. Diff. Eq., 264(6):3899-3917, 2018. MR-3747431

[17] Dawson, D., and Gartner, J.,, Large deviations from the McKean-Vtasov limit for weakly
interacting diffusions. Stochastics, 20:247-308, 1987. MR-0885876

[18] Dawson, D., and Vaillancourt, ]J., Stochastic McKean-Vlasov equations. Nonlinear Diff. Eq.
Appl., 2,199-229, 1995. MR-1328577

[19] Dereich, S., Rough paths analysis of general Banach space-valued Wiener process. J. Funct.
Analysis, 258:2910-2936, 2010. MR-2595729

[20] Dereich, S., and Dimitroff, G., A support theorem and a large deviation principle for Kunita
flows. Stoch. Dyn., 12(03):115022, 2012. MR-2926579

[21] Deuschel, J.-D., Friz, P, Maurelli, M., and Slowik, M. The enhanced Sanov theorem and
propagation of chaos. Stoc. Proc. App., 128(7):2228-2269, 2018. MR-3804792

[22] Feyel, D., and de la Pradelle, A., Curvilinear Integrals Along Enriched Paths. Elec. J. Probab.,
11(34):860-892, 2006. MR-2261056

[23] Friz, P, and Hairer, M., A course on rough paths, with an introduction to regularity structures.
Universitext, Springer, 2014. MR-3289027

[24] Friz, P, and Victoir, N., Multidimensional stochastic processes as rough paths. Cambridge
studies in advanced Mathematics, 120, 2010. MR-2604669

[25] Gartner, J., On the McKean-Vlasov limit for interacting diffusions. Math. Nachr., 137:197-248,
1988. MR-0968996

[26] Gubinelli, M., Controlling rough paths. J. Funct. Anal., 216(1):86-140, 2004. MR-2091358

[27] Jourdain, B., and Méléard, S., Propagation of chaos and fluctuations for a moderate model
with smooth initial data, 34 (1998), 727-766. MR-1653393

[28] Kac, M., Foundations of kinetic theory. Third Berkeley Symp. on Math. Stat. and Probab.,
3:171-197, 1956. MR-0084985

[29] Kelly, D., and Melbourne, I., Deterministic homogenization for fast-slow systems with chaotic
noise. J. Funct. Anal., 272(10):4063-4102, 2017. MR-3626033

EJP 25 (2020), paper 21. http://www.imstat.org/ejp/
Page 50/51


http://arXiv.org/abs/1802.05882
http://www.ams.org/mathscinet-getitem?mr=0718998
http://www.ams.org/mathscinet-getitem?mr=2917767
http://www.ams.org/mathscinet-getitem?mr=3663630
https://www.ceremade.dauphine.fr/cardaliaguet/MFG20130420.pdf
https://www.ceremade.dauphine.fr/cardaliaguet/MFG20130420.pdf
http://www.ams.org/mathscinet-getitem?mr=3752669
http://www.ams.org/mathscinet-getitem?mr=3753660
http://www.ams.org/mathscinet-getitem?mr=3112937
http://www.ams.org/mathscinet-getitem?mr=3299600
http://www.ams.org/mathscinet-getitem?mr=3693967
http://www.ams.org/mathscinet-getitem?mr=3248224
http://www.ams.org/mathscinet-getitem?mr=3747431
http://www.ams.org/mathscinet-getitem?mr=0885876
http://www.ams.org/mathscinet-getitem?mr=1328577
http://www.ams.org/mathscinet-getitem?mr=2595729
http://www.ams.org/mathscinet-getitem?mr=2926579
http://www.ams.org/mathscinet-getitem?mr=3804792
http://www.ams.org/mathscinet-getitem?mr=2261056
http://www.ams.org/mathscinet-getitem?mr=3289027
http://www.ams.org/mathscinet-getitem?mr=2604669
http://www.ams.org/mathscinet-getitem?mr=0968996
http://www.ams.org/mathscinet-getitem?mr=2091358
http://www.ams.org/mathscinet-getitem?mr=1653393
http://www.ams.org/mathscinet-getitem?mr=0084985
http://www.ams.org/mathscinet-getitem?mr=3626033
https://doi.org/10.1214/19-EJP409
http://www.imstat.org/ejp/

Mean field rough equations

[30] Ledoux, M., Lyons, T., and Qian, Z., Lévy area of Wiener processes in Banach spaces. Ann.
Probab., 30(2):546-578, 2002. MR-1905851

[31] Lions, P.-L., Théorie des jeux a champs moyen et applications, Lectures at the College
de France. http://www.college-de-france.fr/default/EN/all/equ_der/cours et seminaires.htm,
2007-2008

[32] Lyons, T., Differential equations driven by rough paths. Rev. Mat. Iberoamericana, 14(2):215-
310, 1998. MR-1654527

[33] Lyons, T. and Qian, Z., Flows of diffeomorphisms induced by geometric multiplicative func-
tionals. Probab. Th. and Rel. Fields, 112:91-119, 1998. MR-1646428

[34] McKean, H. P, A class of markov processes associated with nonlinear parabolic equations.
Prov. Nat. Acad. Sci., 56:1907-1911, 1966. MR-0221595

[35] Méléard, S., Asymptotic behaviour of some interacting particle systems; McKean-Vlasov
and Boltzmann models, Probabilistic models for nonlinear partial differential equations
(Montecatini Terme, 1995), Lecture Notes in Math., vol. 1627, Springer, 1996, pp. 42-95.
MR-1431299

[36] Sznitman, A.-S., Topics in propagation of chaos. Lect. Notes Math., 1464, 1991. MR-1108185

[37] Tanaka, H., Probabilistic treatment of the Boltzman equation of Maxwellian molecules.
Probab. Th. Rel. Fields, 46:67-105, 1978. MR-0512334

[38] Tanaka, H., Limit theorems for certain diffusion processes with interaction. Stochastic
analysis (Katata/Kyoto, 1982):469-488, North-Holland Math. Library, 32, North-Holland,
Amsterdam, 1984. MR-0780770

[39] Wu, C. and Zhang, J., An elementary proof for the structure of derivatives in probability
measures. arXiv:1705.08046, 2017.

EJP 25 (2020), paper 21. http://www.imstat.org/ejp/
Page 51/51


http://www.ams.org/mathscinet-getitem?mr=1905851
http://www.college-de-france.fr/default/EN/all/equ_der/cours_et_seminaires.htm
http://www.ams.org/mathscinet-getitem?mr=1654527
http://www.ams.org/mathscinet-getitem?mr=1646428
http://www.ams.org/mathscinet-getitem?mr=0221595
http://www.ams.org/mathscinet-getitem?mr=1431299
http://www.ams.org/mathscinet-getitem?mr=1108185
http://www.ams.org/mathscinet-getitem?mr=0512334
http://www.ams.org/mathscinet-getitem?mr=0780770
http://arXiv.org/abs/1705.08046
https://doi.org/10.1214/19-EJP409
http://www.imstat.org/ejp/

Electronic Journal of Probability
Electronic Communications in Probability

e Very high standards

e Free for authors, free for readers
e Quick publication (no backlog)
e Secure publication (LOCKSS!)
Easy interface (EJMS?)

Non profit, sponsored by IMS3, BS* | ProjectEuclid®

Purely electronic

Donate to the IMS open access fund® (click here to donate!)

Submit your best articles to EJP-ECP

Choose EJP-ECP over for-profit journals

'LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/

2EJMS: Electronic Journal Management System http://www.vtex.1lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/

4BS: Bernoulli Society http://www.bernoulli-society.org/

5Project Euclid: https://projecteuclid.org/

6IMS Open Access Fund: http://www.imstat.org/publications/open.htm


http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Probabilistic rough structure
	Algebraic conditions
	Analytical conditions
	Local accumulation

	Controlled trajectories and rough integral
	Controlled trajectories
	Rough integral
	Stability of controlled paths under nonlinear maps

	Solving the equation
	Stability of balls by 
	Contractive property of 
	Well-posedness

	Uniqueness and convergence in law
	Uniqueness in law on strong rough set-ups
	Continuity of the Itô-Lyons map

	Proof of Theorem 2.4
	References

