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Abstract

We use jump processes with stochastic intensity to construct a class of reflection
laws for billiard processes in the unit interval whose stationary distribution for the
billiard position and its velocity is the product of the uniform distribution and the
standard normal distribution. These billiard processes have Markovian reflection laws,
meaning their velocity is constant between reflections but changes in a Markovian
way at reflection times.
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1 Introduction

Consider a billiard process {(X(t), L(t)), t ≥ 0} with values in [0, 1] × R, where X

represents the billiard position, reflecting at the endpoints 0 and 1, and L represents
the velocity of X. Under the totally elastic collision assumption, i.e., when the kinetic
energy is preserved, the long run distribution of X is uniform in [0, 1] and the speed, i.e.
|L|, is constant.

The Boltzmann-Gibbs distribution assigns a probability proportional to exp(−cE(x))

to a state x of a physical system, where E(x) is the energy of the state x. This suggests
that, if the process X does not move in a potential, i.e., the particle X does not have
potential energy, then the probability of a state (x, `) of (X,L), in the stationary regime,
should be proportional to exp(−c`2) because the kinetic energy is proportional to `2. In
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Billiards with Markovian reflection laws

other words, position should be distributed uniformly in the interval [0, 1] and velocity
should be normally distributed in the stationary regime. For this to be true, speed (i.e.,
the norm of velocity) must change at reflection times. We will present examples of
Markovian reflection laws for billiard processes giving rise to the stationary density of
the form c1 exp(−c2`2).

The Boltzmann-Gibbs distribution for a single particle is a toy model that we chose to
investigate because we can obtain some explicit formulas in this case. In a future project
we hope to extend the results to a multi-particle model.

We will now state our main result and discuss related articles which inspired this
research and provided some of the techniques used in this paper.

1.1 Main result

We will define our process on an interval [0, T ), possibly random, for some 0 < T ≤ ∞,
because we cannot assume from the outset that the process is well defined for all times
t > 0. The reason is that, in principle, the particle may traverse the interval [0, 1] infinitely
many times in a finite amount of time T . We will later show that this cannot happen,
under reasonable assumptions (see, e.g,. Theorem 4.4).

Definition 1.1. A process {(X(t), L(t)) : t ∈ [0, T )} with values in [0, 1]×R will be called
a billiard process with Markovian reflections if and only if

(i) There exists an infinite sequence of random times 0 = t0 < t1 < t2 < . . . such that
supi ti = T .

(ii) X(t) ∈ {0, 1} if and only if t = ti for some i, a.s.

(iii) L(t0), L(t1), . . . , is a Markov chain with non-zero values. The sign of L(ti) alternates,
i.e., L(ti)L(ti+1) < 0 for every i.

(iv) L is constant on [ti, ti+1) for every i, a.s.

(v) X(t) =

∫ t

0

L(s)ds+X(0) for all 0 ≤ t < T , a.s.

A billiard process with Markovian reflections is a billiard whose velocity after re-
flection is random; it depends on the incoming velocity and only on the incoming
velocity.

To construct a billiard process with Markovian reflections we need an initial condition
(X(0), L(0)) and the Markov chain determining the laws of reflection. This is sufficient
to construct a billiard process with Markovian reflections on the time interval [0, supj tj);
see Section 4.

Our notation for distributions and conditional distributions will be L( · ) and L( · | · ).
Let U(0, 1) denote the uniform distribution on [0, 1] and let N (0, 1) be the standard
normal distribution on R. We will provide a large family of reflection laws L(L(ti+1) |
L(ti)) for which U(0, 1) × N (0, 1) is the stationary distribution for the billiard process
with Markovian reflections. The family will be indexed by an integer N ≥ 0 and
~β = (β0, . . . , βN ) ∈ (0,∞)N+1.

Definition 1.2. (i) Consider an integer N ≥ 0 and suppose that βi > 0, i = 0, . . . , N are
reals such that

∑
i βi = 1 and βi ≥ βi+1 for all i = 0, . . . , N . Set λi = βi/

∑i
j=0 βj for
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Billiards with Markovian reflection laws

i = 0, . . . , N , and µi = βi+1/
∑i
j=0 βj , i = 0, . . . , N − 1. Suppose that ` < 0 and let

pN (`) = exp

(
− (1− βN )`2

2βN

)
, (1.1)

pk(`) =

(
N−1∏
m=k

1

µm

)
N−1∑
j=k−1

exp

(
− `2

2µj

) N−1∏
m=k−1
m6=j

1

1/µm − 1/µj

 , k = 1, . . . , N − 1,

(1.2)

p0(`) = 1−
N∑
k=1

pk(`). (1.3)

Let Z(`) ∈ {0, 1, . . . , N} be a random variable such that P(Z(`) = j) = pj(`), j = 0, . . . , N .
(ii) Suppose that E0, E1, . . . , EN are i.i.d. exponential, mean one, random variables

independent of Z(`). Let V(`,N, ~β) be the distribution of

N∑
j=0

2

N∑
i=j

λiEi

1/2

1Z(`)=j . (1.4)

We extend the definition of V(`,N, ~β) to ` > 0 by saying that V(`,N, ~β) is the distribu-
tion of X if the distribution of −X is V(−`,N, ~β).

Remark 1.3. We will argue that formula (1.2) does not involve division by 0. First, all
µj ’s are strictly positive because all βj ’s are assumed to be strictly positive.

Next we will show that 1/µm − 1/µj 6= 0 for m 6= j by proving that µi < µi−1 for all
i = 1, . . . , N − 1. We have

µi =
βi+1∑i
j=0 βj

=
βi+1

βi +
∑i−1
j=0 βj

, µi−1 =
βi∑i−1
j=0 βj

,

so µi < µi−1 is equivalent to

βi+1

βi +
∑i−1
j=0 βj

<
βi∑i−1
j=0 βj

,

and this in turn is equivalent to

βi+1

i−1∑
j=0

βj < β2
i + βi

i−1∑
j=0

βj .

This inequality holds because we have assumed that βi > 0 and βi+1 ≤ βi. We have
shown that there is no division by 0 in (1.2).

Remark 1.4. Some factors in the product on the right hand side of (1.2) are negative so
it is not obvious that pk(`)’s are non-negative. In fact, this is the case, as can be seen
from Proposition 3.1 and Theorem 3.5 (i). The same results imply that

∑N
k=0 pk(`) = 1.

Example 1.5. Formulas (1.1)-(1.4) are complicated so we present three concrete exam-
ples.

(i) In the case N = 0 we necessarily have β0 = 1. If ` < 0, the distribution V(`, 0, (1))

is the law of
√

2E0, where E0 is the exponential distribution with mean 1. For ` > 0,
V(`, 0, (1)) is the law of −

√
2E0.

The distribution V(`, 0, (1)) of
√

2E0 is known as the Rayleigh distribution with pa-
rameter one. Its density is xe−x

2/2 for x > 0. In our model, the first factor in this
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formula represents size-biasing, in the following sense. The stationary velocity will
have (appropriately normalized) Gaussian density if the density of the distribution of the
velocity during a single flight is e−x

2/2 multiplied by |x|, the inverse of the length of a
time interval in which the velocity is constantly equal to x.

(ii) Next consider the case N = 1. Suppose that 0 < β1 ≤ 1/2, ` < 0 and let

p0 = exp

(
− (1− β1)`2

2β1

)
, p1 = 1− exp

(
− (1− β1)`2

2β1

)
. (1.5)

Suppose that the following three random variables are independent: two mean-one
exponentials E0 and E1, and Z(`) such that P(Z(`) = j) = pj(`), j = 0, 1. Although
β0 does not enter the following formula, we note that necessarily β0 = 1 − β1. The
distribution V(`, 1, (β0, β1)) is the law of√

2 (E0 + β1E1)1Z(`)=0 +
√

2β1E11Z(`)=1.

(iii) Suppose thatN ≥ 2 and let βi = 1/(N+1) for i = 0, . . . , N . Then µi = λi = 1/(i+1).
Elementary calculations show that formulas (1.1)-(1.3) for pk(`) reduce to the binomial
probabilities with parameters N and q := exp(−`2/2), i.e.,

pk(`) =

(
N

k

)
qk(1− q)N−k, k = 0, 1, . . . , N.

Formula (1.4) becomes

N∑
j=0

2

N∑
i=j

Ei
i+ 1

1/2

1Z(`)=j .

The next theorem is our main result. Note that we may have different families of
reflection laws for reflections at 0 and 1.

Theorem 1.6. Suppose that N−, N+ ≥ 0 are integers, ~β− ∈ (0,∞)N
−+1 and ~β+ ∈

(0,∞)N
++1.

(i) There exists a billiard process {(X(t), L(t)) : t ∈ [0,∞)} with Markovian reflection
laws

L(L(ti+1) | L(ti) = `) = V(`,N−, ~β−), if ` < 0,

L(L(ti+1) | L(ti) = `) = V(`,N+, ~β+), if ` > 0.

(ii) U(0, 1)×N (0, 1) is the unique stationary distribution for (X,L).

The proof of Theorem 1.6 will be given at the end of Section 4.

Remark 1.7. (i) The reflection laws in Definition 1.2 correspond to the model considered
in Theorem 3.5. Two other results, Theorems 3.8 and 3.14, implicitly contain two other
families of reflection laws for which Theorem 1.6 holds. We do not give explicit formulas
for these reflection laws because they are more complicated than those in Definition
1.2. The interested reader will have no problem with extracting definitions of those
reflection law families from the discussion of the cases when N0(n) goes to infinity (in
the “noiseless case”) and the “noisy case” in Section 3.

(ii) In view of Example 1.5 (i) and Theorem 1.6 (ii), the stationary distribution of
the process (X,L) is U(0, 1) × N (0, 1) if the speeds |L(ti)| are i.i.d. with the Rayleigh
distribution with parameter one. This is the only example of a Markovian reflection law
such that L(ti+1) does not depend on L(ti) and the stationary distribution is U(0, 1) ×
N (0, 1). To see this, note that all velocities with even subscripts, L(t2j), must have
the same sign, say, positive. It follows that {L(t2j), j ≥ 0} is an i.i.d. sequence. The
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distribution of L(t2j) must be size-biased half-Gaussian, as explained in Example 1.5 (i),
i.e., it must be the Rayleigh distribution with parameter one.

1.2 Proof strategy

We will approximate a billiard with Markovian reflections by a sequence of processes
(Xn, Ln) with state spaces Dn × R, where Dn = {0, 1/n, 2/n, . . . , 1}. The processes
(Xn, Ln) will belong to a particular class introduced in [10], which we describe in
Section 2. These processes have the stationary distribution U(Dn) × N (0, 1), where
U(Dn) denotes the uniform distribution on Dn. Consequently, if (Xn, Ln) converges to a
process, classical limit results show that U(0, 1)×N (0, 1) is the stationary distribution for
the limit. Constructing a sequence of processes that converge to a billiard process with
Markovian reflections relies, roughly speaking, on a finite system of equations involving
transition rates between states of Xn together with a process Ln which represents the
“memory” of Xn. Manipulation of these equations will give rise to the variety of reflection
laws described above.

The purpose of the discrete approximation is not the construction of the billiards
process itself; this construction is relatively straightforward, see Theorem 4.4 and its
proof. The only thing that could go wrong is if the process of speeds diverges fast
enough so that there are infinitely many reflections on a finite time interval, which is
ruled out if the speeds process is ergodic. Rather, the discrete process is used because
there exist results on characterization of product-form stationary distributions for the
discrete model (see Theorem 2.2) and then the approximation procedure allows this to
be transferred to the limit.

As we have already mentioned, we will approximate the unit interval with the discrete
interval {0, 1/n, 2/n, . . . , 1}. We will reserve a tiny fraction of these points to serve the
role of boundaries, namely the first N0(n)+1 (resp. the last N1(n)+1) points will form the
“boundary” at 0 (resp. at 1). We think of these short discrete intervals as layers in which
the random reflection takes place. In the limit, the layers will collapse to the respective
endpoints. Thus we take Nj(n)/n→ 0 as n converges to infinity, for j = 0, 1. For fixed n,
one can think of the points in [0, N0/n]∪[(n−N1)/n, 1] as holding a potential that reverses
the direction of the motion of the particle Xn as it approaches either boundary. After
this reversal it will leave the potential layer with a random “velocity.” These potential
layers will disappear as n approaches infinity. Because of this, the limiting process will
have ballistic trajectories, but randomness for the reflecting velocity will be retained.
The “velocity” Ln will not change outside of the potential layers in our model.

To make the model tractable, we will consider only two dynamics inside the boundary
layers. In the first case, the particle Xn will be able to jump in only one direction,
depending on the sign of Ln. In the second case, Xn will be able to jump to both
neighbors but the boundary layers will be very thin, i.e., N0(n) = N1(n) = 1.

Remark 1.8. The formula for the reflected velocity (1.4) is complicated and hard to
comprehend intuitively. One may wonder whether a more accessible examples may arise
by passing with N to infinity and scaling ~β appropriately. This does not seem to be
the case. The limit seems to be deterministic. In other words, the limiting reflection
would be totally elastic, resulting in the constant speed for all times. The reason is that
Theorem 1.6 is based on a “noiseless” approximation scheme where the particle can
jump in only one direction, depending on its current drift. For large N , the law of large
numbers would generate deterministic reflections.

We expect that in the “noisy” case, when the particle can jump in both directions,
there may exist interesting limiting distributions. However, we can effectively analyze
the “noisy” case only for N = 1.
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1.3 Related results

We have already indicated, at the beginning of the introduction, that our research is
inspired by certain ideas from physics. On the mathematical side, this paper is related
to models of Markov processes with “memory” presented in [3, 4, 5, 7, 8]. We will not
review these models in detail because they are quite diverse. What they have in common
is that, in every case, the stationary distribution has the product form—it is uniform (on
an appropriate space) for the “position” component of the process and it is Gaussian
for the “memory.” The product form of the stationary distribution is far from obvious
because the components, position and memory, are not independent; they are not even
Markov on their own. In view of the history of the model, we will interchangeably refer
to the second component of (Xn, Ln) as “velocity” or “memory.”

The perspective of this paper is the reversal of the classical problem of finding the
stationary distribution. We are looking for models that have the prescribed product-form
stationary distribution.

Our specific model has the following roots. In [3], a reflected Brownian motion
with drift was analyzed. The drift had memory—it accumulated proportionally to the
vector-valued local time on the boundary. As a part of the analysis, the authors of [3]
considered a sequence of Brownian motions not reflected on the boundary but repulsed
by a sequence of smooth potentials converging to 0 inside the domain and to infinity
on the boundary. The diffusion coefficient remained constant. One may wonder what
limiting processes could arise if we let the potentials converge in the manner described
above and at the same time we let diffusivity go to 0 at an appropriate rate. It is clear that
the limiting process must have ballistic trajectories inside the domain but its reflection
law might be random. Our present article can be viewed as a simplified version of the
problem, but one that tries to go into the heart of the matter.

At the technical level, we will use a discrete approximation, originally introduced in
[10]. So far, this type of approximation was used only for generating conjectures which
were subsequently proved using other methods, as in [7] and [8]. Convergence of a
discrete approximation of this type to a Markov process with memory was proved for the
first time in [2].

Finally, we would like to point out that [9] presented a process with sawtooth paths,
just like our process X. In that case, the sawtooth process had a Gaussian stationary
distribution. The speed was constant and the locations of direction reversals were
random, whereas in our case, the locations of direction reversals are fixed but the speed
is random.

1.4 Organization of the paper

In Section 2 we introduce approximating processes and state our assumptions. In
Section 3 we present intermediate results needed to prove that the approximating
processes converge in distribution to a billiard process with Markovian reflections. The
convergence and Theorem 1.6, our main result, are proved in Section 4.

2 Discrete approximations

2.1 Discrete-space Markov processes with memory

We will review the context as well as the main result from [10] in this subsection.
Let (X,L) be a continuous time Markov processes with state space Dn × R, where
Dn = {0, 1, . . . , n}. In [10], the state space is Dn ×Rd with any d ≥ 1 but we will need
only d = 1 in the present paper. We associate a vector vj ∈ R to each j ∈ Dn, and define

Λj(t) = Leb(s ∈ [0, t] : X(s) = j)
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as the time X has spent at location j until time t. The “memory” process is defined as

L(t) =
∑
j∈Dn

vjΛj(t).

Functions

aij(`) : R→ [0,∞)

govern the intensity of transitions of X from i to j. In other words, conditional on
X(t0) = i and L(t0) = `, the intensity of jumps of X from i to j is aij(` + [t − t0]vi) for
t ≥ t0, until X jumps away from i. More precisely, the evolution of the process can be
described as follows. Let (Ejk)j∈Dn, k≥0 be a family of i.i.d. exponential random variables
with parameter one and let (Ti)i≥0 be the sequence of times when X changes its position,
with T0 = 0. Assuming that the process is defined up to time Ti, we recursively define

T ji+1 = inf

(
t > Ti :

∫ t

Ti

aX(Ti)j

(
L(Ti) + vX(Ti)(s− Ti)

)
ds ≥ Eji

)
,

Ti+1 = min
j∈Dn

T ji+1, (2.1)

with the convention that inf ∅ =∞. Then, set

L(s) = L(Ti) + vX(Ti)(s− Ti), for s ∈ [Ti, Ti+1], (2.2)

X(s) = X(Ti), for s ∈ [Ti, Ti+1),

X(Ti+1) = argmin(T ji+1 : j ∈ Dn).

Note that

P(T ji+1 > t+ Ti | X(Ti) = k, L(Ti) = `) = exp

(
−
∫ t

0

akj(`+ svk)ds

)
,

for all t > 0. The pair (X,L) is a strong Markov process with infinitesimal generator

Af(j, `) = 〈vj ,∇`f(j, `)〉+
∑
i 6=j

aji(`)
(
f(i, `)− f(j, `)

)
for f : Dn × R → R of sufficient smoothness. It is assumed in [10] that (X,L) is
irreducible in the sense that there are j0 ∈ Dn and a non-empty open set U ⊂ R such
that

P((X(t), L(t)) ∈ {j0} × U | X(0) = i, L(0) = `) > 0,

for every (i, `) ∈ Dn ×R and some t > 0 (depending on (i, `)).

Remark 2.1. See [6, Chap. 2] for a formal definition and characterization of doubly-
stochastic jump processes such as X. Note that the stochastic jump intensity of X is
adapted to the right continuous filtration generated by X.

Let U(Dn) denote the uniform distribution on Dn and let N (0, 1) be the standard
normal distribution. Our model and arguments will be based on the following result.

Theorem 2.2. [10, Cor. 2.3] The stationary distribution for (X,L) is U(Dn)×N (0, 1) if
and only if

〈vj , `〉+
∑
i∈Dn

aij(`)−
∑
i∈Dn

aji(`) = 0, (2.3)

for all j ∈ Dn and ` ∈ R.
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Remark 2.3. Heuristically, condition (2.3) can be represented as

〈vj , `〉+ (flow into j)− (flow out of j) = 0, (2.4)

for all j ∈ Dn and ` ∈ R.

In the next two sections we will specify vj and aij that will give rise to a billiard
process with Markovian reflections.

2.2 Approximating processes

We will consider a sequence of processes (Xn, Ln), n ≥ 2, defined as in Section 2.1,
with the state space Dn ×R, where Dn = {0, 1, . . . , n}. The notation vj(n) will be used
for vectors associated with (Xn, Ln), analogous to vj ’s in Section 2.1.

We will always assume that aij(`) = 0 whenever |i − j| 6= 1 (we will suppress n in
the notation aij(`)). Hence Xn will be a nearest neighbor random walk with random
transition probabilities.

Heuristically, Dn should be thought of as a discretization of [0, 1]. We chose to label the
elements of Dn as {0, 1, . . . , n} rather than {0, 1/n, 2/n, . . . , (n−1)/n, 1} for typographical
reasons. The state space Dn will have two “boundary regions” ∂D−n := {0, 1, . . . , N0(n)}
and ∂D+

n := {n−N1(n), . . . , n− 1, n}.
Assumption 2.4. The following are (some of) our standing assumptions.

(i) 0 ≤ N0(n), N1(n) < n/2, for n ≥ 2,

(ii) limn→∞Nk(n)/n = 0, for k = 0, 1,

(iii) vj(n) = 0 if and only if j ∈ {N0(n) + 1, ..., n−N1(n)− 1},

(iv) vj(n) > 0 if j ∈ ∂D−n ,

(v) vj(n) < 0 if j ∈ ∂D+
n .

Assumption 2.4 (iii) means that the memory process Ln is not affected when Xn

is outside the boundary regions ∂D−n and ∂D+
n . We will choose aij(`) so that, as a

consequence of Assumption 2.4 (iii), the “drift” of Xn will not be affected outside the
boundary regions.

Definition 2.5. The boundary 0 (resp. n) is said to be hard if and only if N0(n) = 0 (resp.
N1(n) = 0); otherwise it is said to be soft. The boundaries are said to be noiseless if
ai,j(`) > 0 if and only if (j− i)` > 0 for all i, j ∈ ∂D−n ∪∂D+

n such that |i−j| = 1; otherwise
they are said to be noisy.

Our motivation for this terminology is the following. Since the process (Xn, Ln) is
supposed to approximate a billiard process, its “velocity component” Ln should change
only if Xn is in one of the boundary regions ∂D−n and ∂D+

n . The term “soft” refers to
the idea that the repulsive effect is felt away from the boundaries 0 and n, while “hard”
designates the opposite case.

The term “noisy” refers to the idea that the “drift” of the particle does not determine
the direction of the motion in a deterministic way—the particle can go in both directions
with positive probabilities.

2.2.1 Noiseless case

We will discuss only the lower boundary region ∂D−n . Implicitly, we make analogous
assumptions for the region ∂D+

n ; therefore, analogous results hold for the upper boundary
region.
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There are many families of vj ’s and aij(`)’s that satisfy (2.3). We will consider only
families that appear to be “natural.” Specifically, in addition to the assumption that we
have already made, namely, that aij(`) = 0 whenever |i− j| 6= 1, we will assume that each
aij(`) is a linear function of `. On the top of that, we will assume that, in the noiseless
case, for all n, ` and i ∈ Dn \ {n}, and some ci(n) > 0, the transition rates have the form

ai,i+1(`) =

{
ci(n)`, if ` ≥ 0,

0 otherwise,
(2.5)

ai+1,i(`) =

{
ci(n)(−`), if ` ≤ 0,

0 otherwise.
(2.6)

Let

ci(n) = n, for N0(n) ≤ i ≤ n−N1(n). (2.7)

The reason for this assumption is that for Assumption 2.4 (iii), (2.3), (2.5) and (2.6) to
be satisfied, the function i → ci(n) must be constant on N0(n) ≤ i ≤ n − N1(n). We
have chosen the constant to be equal to n so that we obtain a non-degenerate limit for
(Xn, Ln) when n→∞.

When ` < 0 we have the following schematic representation of the probability mass
flow into and out of i ∈ ∂D−n \ {0}, (see (2.4)),

i− 1 i i+ 1
ci−1(n)|`| ci(n)|`|

vi(n)|`|

(2.8)

Assumption 2.4 (iv) implies that vi(n)` < 0. Therefore, the corresponding arrow shows
the “outflow” from i.

Following (2.3) we equate the sum of signed flows to zero, to obtain for i ∈ ∂D−n \ {0},

0 = ci(n)|`| − ci−1(n)|`| − vi(n)|`| ⇐⇒ vi(n) + ci−1(n) = ci(n). (2.9)

When i = 0, the schematic is the following,

0 1
c0(n)|`|

v0(n)|`|

(2.10)

which yields the formula

v0(n) = c0(n). (2.11)

We combine (2.9) and (2.11) to obtain the following system of equations for ci(n)’s and
vi(n)’s,

vN0(n)(n) + cN0(n)−1(n) = cN0(n)(n) = n,

vN0(n)−1(n) + cN0(n)−2(n) = cN0(n)−1,

...

v1(n) + c0(n) = c1(n),

v0(n) = c0(n).

(2.12)
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It follows from (2.3) and (2.5)-(2.6) that we obtain the same system of equations
(2.12) in the case when ` > 0. It follows easily from (2.12) that

ck(n) =

k∑
i=0

vi(n), 0 ≤ k ≤ N0(n). (2.13)

In particular,

N0(n)∑
i=0

vi(n) = cN0(n)(n) = n. (2.14)

In order to analyze the evolution of Ln inside the soft boundaries, we will need the
following quantities:

λi(n) :=
vi(n)

ci(n)
, i = 0, . . . , N0(n), (2.15)

µi(n) :=
vi+1(n)

ci(n)
, i = 0, . . . , N0(n)− 1. (2.16)

These are the ratios of the “memory accumulation rates” at sites i and i+ 1 and the jump
rate between these two sites (per unit of memory Ln); see Fig. (2.8).

In view of (2.11), we have λ0(n) = 1 for all n.
We will use the following assumptions in some of our arguments.

F1: λi(n) 6= λj(n) for all i, j ∈ ∂D−n such that j 6= i.

F2: µi(n) 6= µj(n) for all i, j = 0, . . . , N0(n)− 1 such that j 6= i.

Conditions F1 and F2 are not intuitive so we will show in Lemma 2.6 that they follow
from a much more natural condition, stated below:

F′: vj(n) ≥ vj+1(n) > 0 for all j ∈ {0, . . . , N0(n)− 1}.

Note that F1,F2 and F′ are void when N0(n) = 0, i.e., in the hard boundary case.

Lemma 2.6. Condition F′ implies F1 and F2.

Proof. We will use (2.13). We have λi(n) > λi+1(n) if and only if the following equivalent
conditions hold,

vi(n)

ci(n)
>
vi+1(n)

ci+1(n)
⇐⇒ vi(n)ci+1(n) > vi+1(n)ci(n)⇐⇒ vi(n)

i+1∑
j=0

vj(n) > vi+1(n)

i∑
j=0

vj(n)

(2.17)

⇐⇒ vi(n)vi+1(n) + (vi(n)− vi+1(n))

i∑
j=0

vj(n) > 0. (2.18)

If F′ holds then the last inequality is true and, therefore, λi(n) > λi+1(n). This shows
that F′ implies F1. The calculations showing that F′ implies F2 are similar:

vi+1(n)

ci(n)
>
vi+2(n)

ci+1(n)
⇐⇒ vi+1(n)ci+1(n) > vi+2(n)ci(n) (2.19)

⇐⇒ vi+1(n)

i+1∑
j=0

vj(n) > vi+2(n)

i∑
j=0

vj(n) (2.20)

⇐⇒ vi+1(n)vi+1(n) + (vi+1(n)− vi+2(n))

i∑
j=0

vj(n) > 0. (2.21)
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In the case when N0(n) = N for all n > 2N , we will make the following assumption.

F3: limn→∞ vj(n)/n = βj > 0 for all j = 0, . . . , N0(n) = N .

Remark 2.7. (i) If F3 holds then
∑N
j=0 βj = 1 because of (2.14).

(ii) It is easy to check that if F3 is true then the limits

λi := lim
n→∞

λi(n) =
βi∑i
j=0 βj

, i = 0, . . . , N0(n), (2.22)

µi := lim
n→∞

µi(n) =
βi+1∑i
j=0 βj

, i = 0, . . . , N0(n)− 1, (2.23)

exist.
(iii) Assumption F3 and (2.13) imply that the limits

lim
n→∞

cj(n)/n = cj > 0 (2.24)

exist for all j = 0, . . . , N0(n) = N .
(iv) If assumptions F′ and F3 hold then 0 < βj+1 ≤ βj for all j ∈ {0, . . . , N0(n)−1}. The

calculations (2.19)-(2.21) can be repeated with vj(n) replaced with βj for j = i+ 1, i+ 2,
and cj(n) replaced with cj for j = i, i+ 1. With this substitution, the conclusion of that
calculation is that µi > µi+1 > 0.

If N0(n) grows to infinity with n, instead of F3, we will adopt the following assump-
tions. First, let

λ′j(n) =

{
λj(n) if j ≤ N0(n),

0 otherwise,
(2.25)

µ′j(n) =

{
µj(n) if j ≤ N0(n),

0 otherwise.
(2.26)

The first two of the new assumptions are

G1: (µ′j(n))j≥0 converges in `1 to (µj)j≥0 as n→∞.

G2: (λ′j(n))j≥0 converges in `1 to (λj)j≥0 as n→∞.

We will also use the following assumption.

G3: Assume that limn→∞ vN0(n)(n)nN0(n)−3 =∞.

The reason for Assumption G3 is the following asymptotic bound needed in the proofs.

Lemma 2.8. Assume F′ and G3. Let

ψ1(n) = max
1≤i≤N0(n)

(
2

vi(n)ci−1(n)

)1/2

, (2.27)

ψ2(n) = max
0≤i≤N0(n)

(
2

vi(n)ci(n)

)1/2

. (2.28)

Then

lim
n→∞

ψ1(n)N0(n) = 0, (2.29)

lim
n→∞

ψ2(n)N0(n) = 0, (2.30)

lim
n→∞

v0(n) =∞. (2.31)
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Proof. It follows from F′ that

n =

N0(n)∑
i=0

vi(n) ≤
N0(n)∑
i=0

v0(n) = N0(n)v0(n)

so v0(N) ≥ n/N0(n). This proves (2.31) in view of Assumption 2.4 (ii). We use F′ and
(2.13) to see that vi(n) ≥ vN0(n)(n) and ci(n) ≥ v0(n) for all i. Hence,

ψ1(n)N0(n) = N0(n) max
1≤i≤N0(n)

(
2

vi(n)ci−1(n)

)1/2

≤ N0(n)

(
2

vN0(n)(n)v0(n)

)1/2

≤ N0(n)

(
2N0(n)

vN0(n)(n)n

)1/2

=

(
2N0(n)3

vN0(n)(n)n

)1/2

.

This and G3 imply (2.29). The proof of (2.30) is almost identical.

Example 2.9. It is not obvious that there exist sequences {N0(n), n ≥ 1} and {vj(n), n ≥
1, 0 ≤ j ≤ N0(n)} satisfying F′,G1,G2 and G3 so we will present a family of examples
satisfying all of these conditions.

Take any ξ > 1 and ζ ∈ (0, 2/(ξ + 3)). Let N0(n) = bnζc for all n sufficiently large. Let
vj(n) = C(n)(j + 1)−ξ for 0 ≤ j ≤ N0(n), where C(n) is the normalizing constant chosen
so that (2.13) is satisfied. Hence, F′ holds.

It follows from (2.13) that for 0 ≤ i ≤ N0(n),

λ′i(n) =
vi(n)

ci(n)
≤ C(n)(j + 1)−ξ

c0(n)
=
C(n)(j + 1)−ξ

v0(n)
=
C(n)(j + 1)−ξ

C(n)
= (j + 1)−ξ.

Note that λ′i(n1) = λ′i(n2) if N0(n1), N0(n2) > i. Hence, limn→∞ λ′i(n) exists for every i.
Since

∑
j≥0(j + 1)−ξ <∞, the condition G2 is satisfied. The proof of G1 is similar.

It follows from (2.14) that ∑
0≤j≤N0(n)

C(n)(j + 1)−ξ = n.

We recall once again that
∑
j≥0(j + 1)−ξ <∞ to conclude that there exists a constant C1

such that C(n) ≥ C1n for all n. We have

lim
n→∞

vN0(n)(n)nN0(n)−3 = lim
n→∞

C(n)(N0(n) + 1)−ξnN0(n)−3

≥ lim
n→∞

(1/2)C1nN0(n)−ξnN0(n)−3

= lim
n→∞

(1/2)C1n
2N0(n)−ξ−3

≥ lim
n→∞

(1/4)C1n
2n−ζ(ξ+3).

The limit is infinite because ζ < 2/(ξ + 3). Thus G3 is satisfied.

2.2.2 Noisy case

In this case, we will give explicit formulas only in the case N0(n) = N1(n) = 1. In the
general case the formulas are too complicated to be useful or informative.

Recall that we have assumed that aij(`) = 0 whenever |i− j| 6= 1. In the noisy case
we will assume that for all n, ` and i ∈ Dn \ {n}, and some bi(n), ci(n) > 0, the transition
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rates have the form,

ai,i+1(`) =

{
ci(n)`, if ` ≥ 0,

bi+1(n)(−`) if ` < 0,
(2.32)

ai+1,i(`) =

{
ci(n)(−`), if ` ≤ 0,

bi+1(n)` if ` > 0.
(2.33)

For i ∈ {1, . . . , n− 2} we set ci(n) = n and bi+1(n) = 0.
By symmetry of our model, we can focus on the lower boundary ∂D−n . Updating the

noiseless schematics in (2.8) and (2.10), we obtain in the noisy case, when ` < 0,

0 1 2
c0(n)|`|
b1(n)|`|

c1(n)|`|

v1(n)|`|v0(n)|`|

In this schematics vi ≥ 0, the values adjacent to the arrows indicate the magnitude
of the incoming or outgoing flow, and the direction designates the sign. When ` > 0,
the schematics remain valid except that the direction of the arrows should be reversed.
Following (2.3)-(2.4) we equate the sum of signed flows to zero. With the convention
c−1(n) = cn(n) = b0(n) = bn+1(n) = 0, we get for all i ∈ Dn,

0 = ci(n)|`|+ bi(n)|`| − ci−1(n)|`| − vi(n)|`| − bi+1(n)|`|
⇐⇒ bi+1(n) + vi(n) + ci−1(n) = bi(n) + ci(n).

Hence,

c0(n) = v0(n) + b1(n),

c1(n) = c2(n) = v0(n) + v1(n) = n.

In the noisy case, we will use the following assumption.

K: limn→∞
b1(n)

n
= ϑ1 > 0.

3 Convergence of approximations

This section contains intermediate results needed to prove Theorem 1.6. Some of
them may have independent interest.

3.1 Noiseless case

The discussion of the noiseless case will be further subdivided into two cases, those
of the hard boundary and soft boundary.

3.1.1 Hard boundary

Recall that “hard boundary” refers to the case N0(n) = 0 (see Definition 2.5). Hence,
s 7→ Ln(s) changes only if Xn(s) ∈ {0, n}. This implies that if Xn jumps to 0 at some time
t > 0, we must have Ln(t) < 0. Our transition rates are chosen so that Xn cannot leave
0 until Ln changes sign to positive. Thus, let us suppose that (Xn(0), Ln(0)) = (0, 0).
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Recall our notation from (2.1) and the assumption that c0(n) = v0(n) = n; see (2.7) and
(2.11). Let E1 be an exponential random variable with mean 1. We have

T1 = inf

(
t ≥ 0 :

∫ t

0

a01(sv0)ds ≥ E1

)
= inf

(
t ≥ 0 :

∫ t

0

n2sds ≥ E1

)
=

√
2E1

n
.

Hence, if ` < 0 and (Xn(0), Ln(0)) = (0, `) then, by the strong Markov property applied at
the time when Ln hits 0, we have Ln(T1) = `+ nT1 and T1 = −`/n+

√
2E1/n. Therefore

the distribution of Ln(T1) is the same as the distribution of
√

2E1 and

P(Ln(T1) > r) = P(E1 > r2/2) = exp(−r2/2).

Consequently, the density of Ln(T1) is r exp(−r2/2) for r > 0. This is the density of what
is called the Rayleigh distribution with parameter 1.

The unique feature of the hard boundary reflection is that the distribution of the
“velocity” just after the reflection depends neither on the incoming velocity nor on n.

3.1.2 Soft boundary

In the soft boundary case, the evolution is more interesting than in the hard boundary
case. At the moment when the process Xn enters the lower boundary layer ∂D−n , its
“velocity” Ln must be negative. The particle Xn will continue to transition downward
until Ln changes sign or Xn reaches 0. Consequently, we must determine the distribution
of the level at which the velocity Ln changes sign. Once the velocity becomes positive, it
increases until Xn exits ∂D−n .

Let

Tn = inf{t ≥ 0 : Ln(t) ≥ 0}, (3.1)

Gn = Xn(Tn), (3.2)

Un = inf{t ≥ Tn : Xn(t) /∈ ∂D−n }, (3.3)

V−n (`) = L(Ln(Un) | Xn(0) = N0(n), Ln(0) = `), ` < 0, (3.4)

V+
n (`) = L(Ln(Un) | Xn(0) = N1(n), Ln(0) = `), ` > 0, (3.5)

pj(n, `) = P (Gn = j | Xn(0) = N0(n), Ln(0) = `) . (3.6)

Proposition 3.1. Assume F2 so that there is no division by 0 in (3.8) below. For ` < 0,

pN0(n)(n, `) = exp

(
− `2

2µN0(n)−1(n)

)
, (3.7)

pk(n, `) =

N0(n)−1∏
j=k

1

µj(n)

N0(n)−1∑
j=k−1

exp

(
− `2

2µj(n)

)N0(n)−1∏
i=k−1
i6=j

1

1/µi(n)− 1/µj(n)

 ,

(3.8)

for 0 < k < N0(n),

p0(n, `) = 1−
N0(n)∑
k=1

pk(n, `). (3.9)

Remark 3.2. We will use the following results from [1, 12].
(i) Suppose that E1, E2, . . . , Ek are i.i.d. exponential random variables with mean 1

and consider αj ∈ (0,∞), j = 1, . . . , k, such that αi 6= αj for i 6= j. Then, according to [1,
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Thm. 2.1], the density of
∑k
j=1 αjEj is equal to

f(r) =

(
k∏

m=1

1

αm

)
k∑
j=1

exp(−r/αj)
k∏
i=1
i 6=j

1

1/αi − 1/αj

 . (3.10)

(ii) Suppose that z1, z2, . . . , zm are distinct complex numbers and z 6= zj for all j. Then,
according to [1, (2.4)],

1∏m
j=1(zj − z)

=

m∑
i=1

1

(zi − z)
m∏
j=1
j 6=i

(zj − zi)
. (3.11)

(iii) Consider the sum S of k1 + k2 + · · · + kr independent random variables with
exponential distributions. Suppose that exactly kj of these random variables have mean
αj , for j = 1, . . . , r. Assume that αi 6= αj for i 6= j. According to [12, Thm. 1] (see also [1,
Thm. 4.1]), the density fS(u) of S is given by the following formula, for u > 0,

r∑
i=1

1

αkii
exp (−u/αi)

ki∑
j=1

(−1)ki−j

(j − 1)!
uj−1

∑
m1+m2+···+mr=ki−j

mi=0

r∏
l=1
l 6=i

(
kl+ml−1

ml

)
α−kll

(α−1l −α
−1
i )kl+ml

.

Proof of Proposition 3.1. The proof has two steps. First we compute the remaining
memory Ln when the particle jumps from site i to site i−1. This will allow us to compute
the distribution of Gn in the second part of the proof.

Consider a family Ej , j ≥ 1, of i.i.d. exponential random variables with mean 1. We
can represent (Xn, Ln) as follows. Suppose that Xn(0) = N0(n) and Ln(0) < 0. For
0 ≤ i ≤ N0(n) let

τ0 = 0, (3.12)

τi = inf

{
t > τi−1 :

∫ t

τi−1

aN0(n)−i+1,N0(n)−i(Ln(s))ds > Ei

}
, i ≥ 1, (3.13)

∆τi = τi+1 − τi, i ≥ 0. (3.14)

The following remarks apply as long as Ln stays negative. The τi’s are the times when
Xn jumps from N0(n)− i+ 1 to N0(n)− i. The amount of time that the process spends at
N0(n)− i is represented by ∆τi. It follows that vN0(n)−i(n)∆τi is the amount of memory
(i.e., the increment of Ln) that is accumulated at N0(n)− i. If the process Xn arrives at
N0(n)− i with Ln(τi) = ` < 0 then Xn will leave N0(n)− i for N0(n)− i− 1 at time τi+1

with the memory process Ln taking the value

Ln(τi+1) = `+ vN0(n)−i(n)∆τi = −(|`| − vN0(n)−i(n)∆τi), (3.15)

provided this quantity is negative.
By definition, Xn arrives at N0(n)− i at time τi. Recall our choice for ai,i+1(`) from

(2.5)-(2.6). It follows from this and (3.12)-(3.14) that if Ln(τi) = ` < 0 then ∆τi is the
smallest t > 0 such that∫ t

0

cN0(n)−i−1(n)(|`| − vN0(n)−i(n)s)ds > Ei+1.
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We set both sides equal to each other and solve the resulting equation for t as follows.
First, we have

|`|t− vN0(n)−i(n)t2/2 = Ei+1/cN0(n)−i−1(n),

and then we find zeros using the quadratic formula,

|`|
vN0(n)−i(n)

±
√
`2 − 2(vN0(n)−i(n)Ei+1/cN0(n)−i−1(n))

vN0(n)−i(n)
. (3.16)

Provided 2(vN0(n)−i(n)Ei+1/cN0(n)−i−1(n)) is sufficiently small, the first nonnegative zero
is

|`|
vN0(n)−i(n)

−
√
`2 − 2(vN0(n)−i(n)Ei+1/cN0(n)−i−1(n))

vN0(n)−i(n)
. (3.17)

If we take this as the value of ∆τi and combine this formula with (3.15), we obtain,

Ln(τi+1) = −
(
`2 − 2

vN0(n)−i(n)Ei+1

cN0(n)−i−1(n)

)1/2

.

It follows from this and (2.16) that

L2
n(τi+1) = L2

n(τi)− 2
vN0(n)−i(n)Ei+1

cN0(n)−i−1(n)
= L2

n(τi)− 2µN0(n)−i−1(n)Ei+1.

Hence, if Ln(0) = ` < 0 then for k = 0, 1, . . . , N0(n)− 1,

{Gn = N0(n)− k}

=

{
k−1∑
i=0

µN0(n)−i−1(n)Ei+1 < `2/2,

k∑
i=0

µN0(n)−i−1(n)Ei+1 ≥ `2/2

}

=


N0(n)−1∑
j=N0(n)−k

µj(n)EN0(n)−j < `2/2,

N0(n)−1∑
j=N0(n)−k−1

µj(n)EN0(n)−j ≥ `
2/2

 .

If we change the variable by taking m = N0(n)−k then we obtain for m = 1, 2, . . . , N0(n),

{Gn = m} =


N0(n)−1∑
j=m

µj(n)EN0(n)−j < `2/2,

N0(n)−1∑
j=m−1

µj(n)EN0(n)−j ≥ `
2/2

 . (3.18)

Set

Zm(n) =

N0(n)−1∑
j=m

µj(n)EN0(n)−j , m = 1, 2, . . . , N0(n).

It follows from (3.10) that the density of Zm(n) is given by

fZm(n)(t) :=

N0(n)−1∏
j=m

1

µj(n)

N0(n)−1∑
k=m

exp(−t/µk(n))

N0(n)−1∏
i=m
i 6=k

1

1/µi(n)− 1/µk(n)

 ,

(3.19)
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provided that µj(n) 6= µk(n) for k 6= j; this is the case because we assumed that F2 or F′

holds.

For m = N0(n), we do not need (3.19); formula (3.18) yields,

P(Gn = N0(n)) = P
(
µN0(n)−1(n)E1 ≥ `2/2

)
= e−µN0(n)−1(n)

−1`2/2.

For m = 1, . . . , N0(n)− 1, we use (3.18) and (3.19) as follows,

P(Gn = k) = P
(
Zm−1(n) ≥ `2/2, Zm(n) < `2/2

)
(3.20)

=

∫ `2/2

0

P
(
µm−1(n)EN0(n)−m+1 ≥ `2/2− u

)
fZm

(u)du

=

∫ `2/2

0

exp
(
−µm−1(n)−1(`2/2− u)

)
×

×

N0(n)−1∏
j=m

1

µj(n)

N0(n)−1∑
k=m

exp(−u/µk(n))

N0(n)−1∏
i=m
i 6=k

1

1/µi(n)− 1/µk(n)

 du

= exp
(
−µm−1(n)−1`2/2

)N0(n)−1∏
j=m

1

µj(n)

×
×
N0(n)−1∑
k=m

∫ `2/2

0

exp(−(µk(n)−1 − µm−1(n)−1)u)du

N0(n)−1∏
i=m
i 6=k

1

1/µi(n)− 1/µk(n)


= exp

(
−µm−1(n)−1`2/2

)N0(n)−1∏
j=m

1

µj(n)

×
×
N0(n)−1∑
k=m

1− exp(−(µk(n)−1 − µm−1(n)−1)`2/2)

µk(n)−1 − µm−1(n)−1

N0(n)−1∏
i=m
i 6=k

1

1/µi(n)− 1/µk(n)


=

N0(n)−1∏
j=m

1

µj(n)

×

×
N0(n)−1∑
k=m

(exp
(
−µk(n)−1`2/2

)
− exp(−µm−1(n)−1`2/2)

)N0(n)−1∏
i=m−1
i 6=k

1

1/µi(n)− 1/µk(n)



=

N0(n)−1∏
j=m

1

µj(n)

N0(n)−1∑
k=m

exp
(
−µk(n)−1`2/2

)N0(n)−1∏
i=m−1
i 6=k

1

1/µi(n)− 1/µk(n)


−

N0(n)−1∏
j=m

1

µj(n)

 exp(−µm−1(n)−1`2/2)

N0(n)−1∑
k=m

N0(n)−1∏
i=m−1
i 6=k

1

1/µi(n)− 1/µk(n)
.
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We now apply (3.11) to the last line to obtain

P(Gn = k) =

N0(n)−1∏
j=m

1

µj(n)

N0(n)−1∑
k=m

exp
(
−µk(n)−1`2/2

)N0(n)−1∏
i=m−1
i 6=k

1

1/µi(n)− 1/µk(n)


−

N0(n)−1∏
j=m

1

µj(n)

 exp(−µm−1(n)−1`2/2)

N0(n)−1∏
i=m

1

1/µi(n)− 1/µm−1(n)

=

N0(n)−1∏
j=m

1

µj(n)

N0(n)−1∑
k=m−1

exp
(
−µk(n)−1`2/2

)N0(n)−1∏
i=m−1
i 6=k

1

1/µi(n)− 1/µk(n)


= µm−1(n)fZm−1(n)(`2/2).

This and (3.19) yield (3.8). Finally, (3.9) is true because pj(n, `) = 0 for j /∈ ∂D−n .

Proposition 3.3. Assume F1 so that there is no division by 0 in (3.22) below. Given
k ∈ ∂D−n and ` < 0, and conditional on Xn(0) = N0(n), Ln(0) = `, and Gn = k, the
distribution of Ln(Un) is the same as that of2

N0(n)∑
j=k

λj(n)Ej

1/2

, (3.21)

where Ek, . . . , EN0(n) are i.i.d. exponential random variables with mean 1. The density of
this random variable is equal to

fk,n(r) := r

N0(n)∏
j=k

1

λj(n)

N0(n)∑
j=k

exp

(
− r2

2λj(n)

)N0(n)∏
i=k
i 6=j

1

1/λi(n)− 1/λj(n)

 . (3.22)

Proof. Suppose that Ej , j ≥ 0, are i.i.d. exponential with mean 1. Suppose that
Xn(0) = i ∈ ∂D−n and Ln(0) = ` ≥ 0, and let T be the time of the first jump, necessarily
to i+ 1. We can represent T as follows,

T = inf

(
t > 0 :

∫ t

0

ci(n)
(
`+ vi(n)s

)
ds ≥ Ei

)
. (3.23)

Hence, T is the smallest positive solution to

T`+ T 2vi(n)/2 = Ei/ci(n). (3.24)

This yields

vi(n)T = −`+

(
`2 + 2

vi(n)

ci(n)
Ei

)1/2

, (3.25)

Ln(T ) = `+ vi(n)T =

(
`2 + 2

vi(n)

ci(n)
Ei

)1/2

. (3.26)

Recall notation from (3.1) and (3.3). By the strong Markov property applied at
the stopping time Tn, the distribution of Ln(Un) is the same in the following cases:
(i) Xn(0) = N0(n), Ln(0) = ` < 0, and Gn = k, and (ii) Xn(0) = k and Ln(0) = 0.
Assume (ii). An application of the strong Markov property at the jump times from j to
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j + 1 for j = k, . . . , N0(n), and (3.26) show that the distribution of Ln(Un) is the same as
that of 2

N0(n)∑
j=k

Ej
vj(n)

cj(n)

1/2

=

2

N0(n)∑
j=k

Ejλj(n)

1/2

.

This proves (3.21).
To prove (3.22), note that Ln(Un)2/2 can be represented as the sum of independent

exponential random variables. Their means are all distinct, i.e., λj(n) 6= λi(n) for all
i 6= j, because we assumed that F1 holds. Thus, we can use (3.10) to conclude that

P(Ln(Un) ≤ r) = P(Ln(Un)2/2 ≤ r2/2)

=

∫ r2/2

0

N0(n)∏
j=k

1

λj(n)

N0(n)∑
j=k

exp(−t/λj(n))

N0(n)∏
i=k
i 6=j

1

1/λi(n)− 1/λj(n)

 dt.

Differentiating the above expression with respect to r yields (3.22).

The following corollary follows easily from Propositions 3.1 and 3.3 and the strong
Markov property applied at Tn, so we will not supply a formal proof.

Corollary 3.4. Assume F1 and F2. If ` < 0, V−n (`), defined in (3.4), is the same as the
distribution of

N0(n)∑
k=0

2

N0(n)∑
j=k

λj(n)Ej

1/2

1Z=k, (3.27)

where Ej ’s are are i.i.d. exponential random variables with mean 1 and Z is an inde-
pendent random variable with P(Z = j) = pj(n, `) for j ∈ ∂D−n , where pj(n, `) are as in
(3.7)-(3.9).

Theorem 3.5. Suppose that limn→∞ `n = ` < 0. Assume F1,F2 and F3. Suppose that
E1, E2, . . . are i.i.d. exponential random variables with mean 1.

(i) Assume that N0(n) = N <∞ for all sufficiently large n. Then for every k ∈ ∂D−n ,
the following limit exists,

pk(`) := lim
n→∞

pk(n, `n). (3.28)

(ii) Assume that N0(n) = N < ∞ for all sufficiently large n. Then, when n → ∞,
V−n (`n), defined in (3.4), converge to the distribution of

N∑
j=0

2

N∑
i=j

λiEi

1/2

1Z(`)=j ,

where Z(`) is a random variable with values in {0, 1, . . . , N}, independent of Ej ’s and
such that P(Z(`) = j) = pj(`), j = 0, . . . , N . The values of pj(`), j = 0, . . . , N are given
by (1.1)-(1.3).

(iii) Assume that N0(n) = 1. Then, when n→∞, V−n (`n) converge to the distribution
of √

2 (E0 + β1E1)1Z(`)=0 +
√

2β1E11Z(`)=1,

where Z(`) is a random variable independent of the collection of Ej ’s such that P(Z(`) =

j) = pj(`), j = 0, 1. The values of p0 and p1 are given by (1.5).
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Proof. (i) In view of Remark 2.7 (ii) and explicit formulas (3.7)-(3.9), the limit in (3.28)
must exist, except that we have to show that the limit does not involve division by 0. By
Remark 2.7 (iii), µi > µi+1 > 0, so one can take the limit in (3.7)-(3.9) as n→∞ and the
limiting formulas do not involve division by 0.

(ii) It follows from Remark 2.7 (ii) that, for every k ≤ N ,2

N∑
j=k

λj(n)Ej

1/2

→

2

N∑
j=k

λjEj

1/2

,

in distribution. This and part (i) of the theorem easily imply part (ii).
Part (iii) is a special case of part (ii).

Remark 3.6. We presented the case N0(n) = 1 in Theorem 3.5, in addition to the general
case N0(n) = N , so that Theorem 3.5 (iii) may be directly compared to Theorem 3.14, its
counterpart in the case of noisy soft boundary.

Proposition 3.7. Assume G1. Suppose that limn→∞ `n = ` < 0 and limn→∞N0(n) =∞.
Then, for every k ≥ 0, the following limit exists,

pk(`) := lim
n→∞

pk(n, `n). (3.29)

Proof. Suppose that Ej , j ≥ 1, are i.i.d. exponential with mean 1. Recall notation from
(2.22)-(2.26). Fix some k ≥ 1 and consider n such that N0(n) > k. Set

Yn,k =

∞∑
j=k

µ′j(n)Ej , Yk =

∞∑
j=k

µjEj .

We have assumed G1 so
∑
j≥1 µj < ∞. This, the fact that Ej ’s are exponential and

Kolmogorov’s three-series theorem easily imply that Yk is well defined and finite, a.s.
Since µkEk has a density, so does Yk = µkEk+

∑∞
j=k+1 µjEj . Hence, P(Yk = `2/2) = 0

for every `. Fix some ` < 0 and find ε > 0 so small that

P
(
(`2 − ε)/2 ≤ Yk ≤ (`2 + ε)/2

)
≤ δ. (3.30)

We apply formula (3.18) to see that

pk(n, `n) = P(Gn = k | Xn(0) = N0(n), Ln(0) = `n)

= P

N0(n)−1∑
j=k−1

µj(n)Ej ≥
`2n
2
,

N0(n)−1∑
j=k

µj(n)Ej <
`2n
2


= P

N0(n)−1∑
j=k−1

µj(n)Ej ≥
`2n
2

− P
N0(n)−1∑

j=k

µj(n)Ej ≥
`2n
2


= P

 ∞∑
j=k−1

µ′j(n)Ej ≥
`2n
2

− P
 ∞∑
j=k

µ′j(n)Ej ≥
`2n
2


= P

(
Yn,k−1 ≥ `2n/2

)
− P

(
Yn,k ≥ `2n/2

)
.

It will suffice to prove that, for any fixed k, P
(
Yn,k ≥ `2n/2

)
converges to P

(
Yk ≥ `2/2

)
as n goes to infinity.

Since `n → `, we can find n1 so large that
∣∣`2n/2− `2/2∣∣ < ε/2 for n ≥ n1. Then, for

n ≥ n1,

P

(
Yn,k ≥

`2 + ε

2

)
≤ P

(
Yn,k ≥

`2n
2

)
≤ P

(
Yn,k ≥

`2 − ε
2

)
,
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and, therefore,∣∣∣∣P(Yn,k ≥ `2n
2

)
− P

(
Yk ≥

`2

2

)∣∣∣∣ (3.31)

≤ max

(∣∣∣∣P(Yn,k ≥ `2 − ε
2

)
− P

(
Yk ≥

`2

2

)∣∣∣∣ , ∣∣∣∣P(Yn,k ≥ `2 + ε

2

)
− P

(
Yk ≥

`2

2

)∣∣∣∣) .
We will estimate one of the quantities under “max” on the right hand side. The other one
can be estimated in a similar way.

We have, by assumption G1,

E |Yn,k − Yk| = E

∣∣∣∣∣∣
∑
j≥k

µ′j(n)Ej −
∑
j≥k

µjEj

∣∣∣∣∣∣
 ≤ E

∑
j≥k

∣∣µ′j(n)− µj
∣∣Ej

 (3.32)

=
∑
j≥k

∣∣µ′j(n)− µj
∣∣→ 0, when n→∞.

Hence Yn,k converges in L1, thus in distribution, to Yk as n goes to infinity. Since Yk has
a density, the Portmanteau theorem implies that there exists n2 such that for all n ≥ n2,∣∣∣∣P(Yn,k ≥ `2 − ε

2

)
− P

(
Yk ≥

`2 − ε
2

)∣∣∣∣ ≤ δ.
Combined with (3.30), this yields∣∣∣∣P(Yn,k ≥ `2 − ε

2

)
− P

(
Yk ≥

`2

2

)∣∣∣∣ ≤ 2δ.

An analogous estimate holds for the other quantity under “max” on the right hand side
of (3.31) so, for large n, ∣∣∣∣P(Yn,k ≥ `2n

2

)
− P

(
Yk ≥

`2

2

)∣∣∣∣ ≤ 2δ.

Since δ > 0 is arbitrarily small, this completes the proof.

When N0(n)→∞ as n→∞, the counterpart of Theorem 3.5 is the following.

Theorem 3.8. Assume G1-G2. Suppose that limn→∞ `n = ` < 0 and limn→∞N0(n) =∞.
Then, when n→∞, V−n (`n) converge to the distribution of

∞∑
j=0

2

∞∑
i=j

λiEi

1/2

1Z(`)=j ,

where E1, E2, . . . are i.i.d. exponential random variables with mean 1 and Z(`) ≥ 0

is independent of the collection of Ej ’s such that P(Z(`) = j) = pj(`), j ≥ 0. The
probabilities pj(`) are defined in (3.29).

Lemma 3.9. Suppose that for every n ≥ 1, random variables Ak,n, k ≥ 1, and Zn are
defined on the same probability space, and for each n, Zn is independent of Ak,n, k ≥ 1.
Suppose that Ak, k ≥ 1, and Z are also defined on the same probability space and Z

is independent of Ak, k ≥ 1. Assume that Z and Zn take only strictly positive integer
values, for each n, a.s. Suppose that Ak,n → Ak and Zn → Z, in distribution, as n→∞,
for every k. Let

Sn =

∞∑
k=1

Ak,n1{Zn=k}, S =

∞∑
k=1

Ak1{Z=k}.

Then Sn converges to S in distribution, as n→∞.
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Proof. The proof is routine so we only sketch it. For any ε > 0, there is k0 such that
P(Z ≥ k0) < ε. Hence, there is n0 such that for n ≥ n0, P(Zn ≥ k0) < 2ε. This implies
that it will suffice to show that

j∑
k=1

Ak,n1{Zn=k} → S =

j∑
k=1

Ak1{Z=k},

in distribution, for every fixed j ≥ 1.
For any random variable X, let φX(t) denote its characteristic function. We need to

show that

E

(
j∑

k=1

φAk,n
(t)1{Zn=k}

)
→ E

(
j∑

k=1

φAk
(t)1{Z=k}

)
,

for every real t, as n→∞. This follows from (i) pointwise convergence φAk,n
(t)→ φAk

(t),
(ii) the Skorokhod representation theorem which lets us assume that Zn → Z, a.s., and
(iii) dominated convergence theorem.

Proof of Theorem 3.8. Recall notation and definitions from (2.22)-(2.26) and (3.1)-(3.6).
Suppose that `n < 0 for n ≥ 1, limn→∞ `n = ` < 0, and limn→∞N0(n) =∞. Assume that
Xn(0) = N0(n) and Ln(0) = `n for all n. By Corollary 3.4, the distribution of Ln(Un) is
the same as that of

∞∑
j=0

2

∞∑
i=j

λ′i(n)Ei

1/2

1Zn(`n)=j ,

where E1, E2, . . . are i.i.d. exponential random variables with mean 1; Zn(`n) ≥ 0 is an
integer valued random variable, independent of Ej ’s and such that P(Zn(`n) = j) =

pj(n, `n), j ≥ 0. In other words, if Lj,n denotes the distribution of
(

2
∑∞
i=j λ

′
i(n)Ei

)1/2
and νn denotes the distribution of Zn(`n) then V−n (`n) is a mixture of distributions Lj,n
with the mixing measure νn for the index j.

Let Lj denote the distribution of
(

2
∑∞
i=j λiEi

)1/2
and let ν denote the distribution

of Z(`). The argument given in (3.32) shows that Lj,n → Lj for every j, except that we
have to replace µ’s with λ’s, and use assumption G2. Distributions νn converge to ν by
Proposition 3.7. We use Lemma 3.9 to conclude that Ln(Un) converge in distribution
to the mixture of distributions Lj with the mixing measure ν for the index j. This is
equivalent to the statement of the theorem.

3.2 Noisy case

The following result is a noisy counterpart of Proposition 3.1.

Proposition 3.10. Assume that ` < 0. Let β1(n) = c0(n)/v1(n) and β2(n) = b1(n)/v0(n).
(i) If β1(n) 6= β2(n) then,

p1(n, `) =
∑
k≥0

(
β1(n)kβ2(n)k exp

(
−β1(n)`2/2

)
×

×
∫ `2/2

0

[
2∑
i=1

k∑
j=1

(−1)k−j

(j − 1)!
uj−1 exp(−(βi(n)− β1(n))u)×

×
(

2k − j − 1

k − j

)(
β3−i(n)− βi(n)

)−(2k−j)]
du

)
.
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(ii) If β1(n) = β2(n) then,

p1(n, `) =
∑
k≥0

(β1(n)`2)2k

22k(2k)!
exp

(
−β1(n)`2/2

)
.

Lemma 3.11. Consider the noisy model and recall that in the noisy case we assume that
N0(n) = 1. Let T1 denote the time of the first jump of Xn. We have

P (Xn(T1) = 0 | Xn(0) = 1, Ln(0) = ` > 0) =
b1(n)

c1(n) + b1(n)
.

Proof. Recall from (2.32)-(2.33) that, for ` > 0, the jump rates are a1,0(`) = b1(n)|`| and
a1,2(`) = c1(n)|`|. Suppose that E1 and E′1 are independent exponential random variables
with parameter 1. An argument similar to that in (3.23)-(3.25) yields the following
representation of the probability in question,

P (Xn(T1) = 0 | Xn(0) = 1, Ln(0) = ` > 0)

= P

(
− `

v1(n)
+

1

v1(n)

(
`2 + 2

v1(n)

b1(n)
E1

)1/2

< − `

v1(n)
+

1

v1(n)

(
`2 + 2

v1(n)

c1(n)
E′1

)1/2
)

= P

(
E1

b1(n)
<

E′1
c1(n)

)
=

b1(n)

c1(n) + b1(n)
.

Proof of Proposition 3.10. The proof is similar to that of Proposition 3.1 so we will only
sketch the main steps. The key to our calculation is a formula analogous to (3.18).
In the present case, Xn starts from 1 and may jump between 0 and 1 any number
of times before Ln changes sign from negative to positive. Every visit to 0 or 1 is
associated with a positive increment of Ln. These observations can be implemented as
follows.

Assume that β1(n) = c0(n)/v1(n) 6= b1(n)/v0(n) = β2(n). For k ≥ 0, let

Yk(n) =

k∑
j=1

v1(n)

c0(n)
Ej +

k∑
j=1

v0(n)

b1(n)
E′j =

k∑
j=1

β1(n)−1Ej +

k∑
j=1

β2(n)−1E′j ,

where (Ej)j and (E′j)j are i.i.d exponential random variables with parameter 1. It follows
from Remark 3.2 (iii) with r = 2 and k1 = k2 = k that for k ≥ 1, the density function of
Yk(n) is

fk,n(u)=β1(n)kβ2(n)k
2∑
i=1

k∑
j=1

(−1)k−j

(j − 1)!
uj−1e−βi(n)u

(
2k − j − 1

k − j

)(
β3−i(n)− βi(n)

)−(2k−j)
.

(3.33)

The following formula is analogous to (3.20),

p1(n, `) =
∑
k≥0

P
(
Yk(n) + β1(n)−1Ek+1 ≥ `2/2 , Yk(n) < `2/2

)
. (3.34)
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A single term in the sum has the following representation,

P
(
Yk(n) + β1(n)−1Ek+1 ≥ `2/2 , Yk(n) < `2/2

)
(3.35)

=

∫ `2/2

0

P
(
β1(n)−1Ek+1 ≥ `2/2− u

)
fk,n(u)du

=

∫ `2/2

0

exp
(
−β1(n)(`2/2− u)

)
fk,n(u)du

= β1(n)kβ2(n)k exp(−β1(n)`2/2)

∫ `2/2

0

[
2∑
i=1

k∑
j=1

(−1)k−j

(j − 1)!
uj−1 exp(−(βi(n)− β1(n))u)

×
(

2k − j − 1

k − j

)(
β3−i(n)− βi(n)

)−(2k−j)]
du.

This and (3.34) prove part (i) of proposition.
If β1(n) = c0(n)/v1(n) = b1(n)/v0(n) = β2(n) then Yk(n) is the sum of 2k i.i.d. ex-

ponential random variables with parameter β1(n) and, therefore, it has the following
Gamma density,

fk,n(u) =
β1(n)2ku2k−1

(2k − 1)!
exp(−β1(n)u).

It follows that

P
(
Yk(n) + β1(n)−1Ek+1 ≥ `2/2 , Yk(n) < `2/2

)
(3.36)

=

∫ `2/2

0

P
(
β1(n)−1Ek+1 ≥ `2/2− u

)
fk,n(u)du

=

∫ `2/2

0

exp
(
−β1(n)(`2/2− u)

) β1(n)2ku2k−1

(2k − 1)!
exp(−β1(n)u)du

=

(
β1(n)`2/2

)2k
(2k)!

exp(−β1(n)`2/2).

The second part of the proposition follows from this formula and (3.34).

Corollary 3.12. Assume F3 and K. Suppose that limn→∞ `n = ` < 0. Then p1(`) =

limn→∞ p1(n, `n) exists.

Proof. We have to prove that we can pass to the limit in the formulas given in Propo-
sition 3.10. We will refer to the proof of that proposition below. It follows easily from
assumptions F3 and K and the explicit formulas in (3.35) and (3.36) that for every k ≥ 0,

lim
n→∞

P
(
Yk(n) + β1(n)−1Ek+1 ≥ `2n/2 , Yk(n) < `2n/2

)
(3.37)

exists. For k ≥ 1, we have

P
(
Yk(n) + β1(n)−1Ek+1 ≥ `2n/2 , Yk(n) < `2n/2

)
≤ P

(
Yk(n) < `2n/2

)
(3.38)

≤ P
(
β1(n)−1Ej < `2n/2 ∀ j = 1, . . . k

)
=
(

1− e−β1(n)`
2
n/2
)k
.

The assumptions made in the corollary and F3 imply that for some γ1 < ∞ and n1,

we have β1(n)`2n/2 < γ1 for all n ≥ n1. Hence, there exists q ∈ (0, 1) such that
(

1 −

e−β1(n)`
2
n/2
)
≤ q for n ≥ n1. This and (3.38) imply that the series in (3.34) is dominated

by a geometric series. Thus, in view of (3.37), the limit stated in the corollary exists.
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The term “geometric distribution” may refer to either of two closely related distribu-
tions. In this article, a random variable R will be called geometric with parameter p if
P(R = j) = (1− p)j−1p for j = 1, 2, . . . .

We have the following analogue of Proposition 3.3.

Proposition 3.13. If ` < 0 then V−n (`) is the distribution of(
2
v0(n)

c0(n)
E + Sn

)1/2

1Z=0 + S1/2
n 1Z=1, (3.39)

where

Sn = 2
v1(n)

c1(n)
E′ +

J(n)−1∑
k=1

2
v1(n)

b1(n)
E′k +

J(n)−1∑
k=1

2
v0(n)

c0(n)
E′′k . (3.40)

The random variables E, E′, (E′k)k, (E′′k )k are i.i.d exponential with mean 1, J(n) is
geometric with parameter c1(n)/(c1(n) + b1(n)), and Z takes values 0 or 1 and satisfies
P(Z = 1) = p1(n, `), where p1(n, `) is given in Proposition 3.10. All of these random
variables are assumed to be independent.

Proof. The proof of the proposition is analogous to that of Corollary 3.4. The evolution
of the process is split into two parts by the stopping time Tn. The pre-Tn evolution is
captured by Proposition 3.10. The amount accumulated by Ln between times Tn and Un
can be represented by a formula analogous to (3.27) in the noiseless case. In the present
case, Xn can jump between 0 and 1 even if Ln is positive so, to account for these jumps,
we have to have two sequences of exponential random variables, representing repeated
visits at 0 and 1. Once Ln becomes positive, the number of jumps between 0 and 1 is
geometric with the parameter determined in Lemma 3.11. We leave the details of the
proof to the reader.

Theorem 3.14. Assume F3 and K. Suppose that limn→∞ `n = ` < 0. Then there exist
constants γ0, γ1, γ2, γ3 ∈ (0,+∞) such that

γ0 = lim
n→∞

2v0(n)

c0(n)
, γ1 = lim

n→∞

2v1(n)

c1(n)
, γ2 = lim

n→∞

2v1(n)

b1(n)
, (3.41)

γ3 = lim
n→∞

c1(n)

c1(n) + b1(n)
. (3.42)

Moreover, distributions V−n (`n) converge to the distribution of√
γ0E + S 1Z(`)=0 +

√
S 1Z(`)=1, (3.43)

where

S = γ1E
′ +

J−1∑
j=1

(
γ0E

′
j + γ2E

′′
j

)
. (3.44)

The random variables E, E′, (E′k)k, (E′′k )k are i.i.d. exponential with mean 1. The
distribution of Z(`) ∈ {0, 1} is determined by P(Z(`) = 1) = p1(`), with p1(`) defined in
Corollary 3.12. The random variable J is geometric with parameter γ3. All these random
variables are independent.

Proof. The limits in (3.41)-(3.42) exist because we assumed F3 and K.
To prove the second claim of the theorem, note that the distributions of the random

variables in (3.39) and (3.40) are mixtures, with mixing measures being the distributions
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of random variables Z and J(n). Due to convergence of the parameters stated in (3.41)-
(3.42), the distributions of the individual components 2 v1(n)c1(n)

E′, 2 v1(n)b1(n)
E′j and 2 v0(n)c0(n)

E′′k in

the mixtures converge to the limits γ1E′, γ0E′j and γ2E′′j , which are the terms of the sum
in (3.44). The distributions of the mixing random variables, Z and J(n), converge due
to Corollary 3.12 and (3.42). This proves that the mixtures converge, and this is just a
different way of expressing the theorem.

4 Convergence to the billiard process

We will prove, under appropriate assumptions, that the sequence (Xn/n, Ln) con-
verges in distribution to a billiard process with Markovian reflections. Let

t0(n) = 0, (4.1)

sj(n) = inf{t ≥ tj(n) : Xn(t) ∈ ∂D−n ∪ ∂D+
n }, j ≥ 0, (4.2)

tj+1(n) = inf{t ≥ sj(n) : Xn(t) ∈ Dn \ (∂D−n ∪ ∂D+
n )}, j ≥ 0. (4.3)

These are successive times when the process Xn enters or leaves the boundaries.

Proposition 4.1. Suppose that the distributions of Ln(0), n ≥ 1, are tight. Make one of
the following assumptions.

(i) Consider the noiseless model, assume that N0(n) = N < ∞ for all n sufficiently
large, and suppose that F1,F2 and F3 hold.

(ii) Consider the noiseless model, assume that limn→N0(n) =∞, and suppose that
F′,G1,G2 and G3 hold.

(iii) Consider the noisy model and suppose that F1,F2,F3 and K hold. Recall that
N0(n) = 1 for all n in this case.

Then for every j ≥ 0,

lim
n→∞

tj+1(n)− sj(n) = 0, in distribution.

Proof. (i)-(ii) First we will consider the noiseless model.

Fix some ` < 0 and assume that Xn(0) = N0(n) and Ln(0) = `. It is routine to modify
our argument for the case ` > 0 and Xn(0) 6= N0(n). Under these assumptions, s0(n) = 0.
We will estimate t1(n)− s0(n) = t1(n). Recall notation from (3.1) and (3.3) and note that
[s0(n), t1(n)] = [s0(n), Tn) ∪ [Tn,Un].

The process Xn will jump toward 0 until it reaches a random point Gn (see (3.2) for
the definition) and then Xn will jump away from 0 until it exits ∂D−n at time Un.

Fix some site i ∈ ∂D−n \ {0} and suppose that Xn arrives at i at a time u−, and
Ln(u−) = `i < 0. Let

∆u−i = inf{t ≥ 0 : Xn(u− + t) 6= i or u− + t = Tn}.

The following representation of ∆u−i is the same as in the proof of Proposition 3.1, except
that we are using different notation. Consider an exponential random variable Ei with
mean 1. If `2i > 2 vi(n)

ci−1(n)
Ei then, by (3.17),

∆u−i = inf{t ≥ 0 : Xn(u− + t) 6= i} =
|`i|
vi(n)

− 1

vi(n)

(
`2i − 2

vi(n)

ci−1(n)
Ei

)1/2

(4.4)

<

(
2

vi(n)ci−1(n)
Ei

)1/2

.
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The inequality on the right hand side holds because it is equivalent to `2i > 2 vi(n)
ci−1(n)

Ei, as

an elementary calculation shows. If `2i ≤ 2 vi(n)
ci−1(n)

Ei then

∆u−i = inf{t ≥ 0 : u− + t = Tn} =
|`i|
vi(n)

≤
(

2

vi(n)ci−1(n)
Ei

)1/2

. (4.5)

It follows from (4.4)-(4.5) that

∆u−i ≤
(

2

vi(n)ci−1(n)
Ei

)1/2

. (4.6)

If i = 0 then Xn can jump to site 1 only after time Un so

∆u−0 = inf{t ≥ 0 : u− + t = Tn} =
|`0|
v0(n)

≤ |`|
v0(n)

. (4.7)

The above inequality holds because when Xn is on its way from N0(n) to 0 and the initial
value of Ln is ` < 0 then the value of |Ln| can only decrease.

If Xn does not visit i on its way from N0(n) to 0 then we let ∆u−i = 0. Summing ∆u−i
over all i ∈ ∂D−n , we obtain from (4.6) and (4.7),

Tn =

N0(n)∑
i=0

∆u−i ≤
|`|

v0(n)
+

N0(n)∑
i=1

(
2

vi(n)ci−1(n)
Ei

)1/2

, (4.8)

where Ei are i.i.d. exponential with mean 1.
Fix some site i ∈ ∂D−n \ {0} and suppose that Xn arrives at i at a time u+, but now

suppose that Ln(u+) = `i > 0. Let

∆u+i = inf{t ≥ 0 : Xn(u− + t) 6= i}.

Reasoning as in the previous part of the proof and using (3.26), we obtain

∆u+i = − `i
vi(n)

+
1

vi(n)

(
`2i + 2

vi(n)

ci(n)
E′i

)1/2

≤
(

2

vi(n)ci(n)
E′i

)1/2

, (4.9)

where E′i is mean one exponential. The above inequality is elementary. We have the
following bound

Un − Tn ≤
N0(n)∑
i=0

∆u+i ≤
N0(n)∑
i=0

(
2

vi(n)ci(n)
E′i

)1/2

, (4.10)

where E′i are i.i.d. exponential with mean 1.
Combining (4.8) and (4.10), we obtain

Un ≤
|`|

v0(n)
+

N0(n)∑
i=1

(
2

vi(n)ci−1(n)
Ei

)1/2

+

N0(n)∑
i=0

(
2

vi(n)ci(n)
E′i

)1/2

,

where Ei and E′i are i.i.d. exponential with mean 1. We now remove the condition
Ln(0) = ` and write

Un ≤
|Ln(0)|
v0(n)

+

N0(n)∑
i=1

(
2

vi(n)ci−1(n)
Ei

)1/2

+

N0(n)∑
i=0

(
2

vi(n)ci(n)
E′i

)1/2

. (4.11)

EJP 24 (2019), paper 147.
Page 27/32

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP398
http://www.imstat.org/ejp/


Billiards with Markovian reflection laws

Consider the case when N0(n) = N < ∞ for all n sufficiently large, and recall that
we assume F3 in this case. It follows that there exists a constant C > 0 such that

lim sup
n→∞

n

v0(n)
≤ C/2,

lim sup
n→∞

(
n max

1≤i≤N

(
2

vi(n)ci−1(n)
Ei

)1/2
)
≤ C/2,

lim sup
n→∞

(
n max

0≤i≤N

(
2

vi(n)ci(n)
Ei

)1/2
)
≤ C/2.

We combine this with (4.11) to see that for n sufficiently large,

Un ≤
C|Ln(0)|

n
+
C

n

N∑
i=0

√
Ei +

C

n

N∑
i=0

√
E′i.

The first term on the right hand side converges to 0 in distribution, as n→∞, because
we assumed that the distributions of Ln(0), n ≥ 1, are tight. The other two terms also
converge to 0 in distribution. This completes the proof that limn→∞ t1(n)− s0(n) = 0 in
distribution.

Consider the case when limn→N0(n) = ∞, and recall that F′ and G3 hold. Recall
notation from (2.27)-(2.28). It follows from (4.11) that

Un ≤
|Ln(0)|
v0(n)

+ ψ1(n)

N0(n)∑
i=1

√
Ei + ψ2(n)

N0(n)∑
i=0

√
E′i.

The first term on the right hand side converges to 0 in distribution, as n→∞, because of
(2.31) and the assumption that the distributions of Ln(0), n ≥ 1, are tight. The other two
terms converge to 0 in distribution by the law of large numbers, in view of Lemma 2.8.
This completes the proof that limn→∞ t1(n) − s0(n) = 0 in distribution in the noiseless
case.

To extend the proof to show that limn→∞ tj+1(n)−sj(n) = 0 for j ≥ 1, it will suffice, by
the strong Markov property, to argue that for every fixed j, the distributions of Ln(sj(n)),
n ≥ 1, are tight.

By randomizing ` in Corollary 3.4, we see that if Ln(0), n ≥ 1, are tight then Ln(t1(n)),
n ≥ 1, are tight. Since Ln(sj+1(n)) = Ln(tj+1(n)) for all j, we see that Ln(s1(n)), n ≥ 1,
are tight. Then we proceed by induction and use the strong Markov property to conclude
that for every j, Ln(sj(n)), n ≥ 1, are tight and Ln(tj(n)), n ≥ 1, are tight.

(iii) In the noisy case, the argument is very similar to that in the noiseless case
so we will only sketch the proof. The new version of the key estimate will be based
on Proposition 3.13. We will use the representation (3.39)-(3.40) together with the
inequality

√
x+ y ≤

√
x+
√
y. We obtain the following analogue of (4.11),

Un ≤
|Ln(0)|
v0(n)

+

(
2

v0(n)c0(n)

)1/2√
E0 +

(
2

v1(n)c1(n)

)1/2√
E1

+

J(n)−1∑
j=1

((
2

v1(n)b1(n)

)1/2√
E′j +

(
2

v0(n)c0(n)

)1/2√
E′′j

)
.

Random variables E0, E1, (E′k)k, (E′′k )k are i.i.d. exponential with mean 1. Random
variable J(n) is geometric with parameter c1(n)/(c1(n) + b1(n)). All of these random
variables are assumed to be independent.
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Assumptions F3 and K imply that there exists C > 1 such that

lim sup
n→∞

1

v0(n)
≤ C

2n
, lim sup

n→∞

(
2

v0(n)c0(n)
Ei

)1/2

≤ C

2n
,

lim sup
n→∞

(
2

v1(n)c1(n)
Ei

)1/2

≤ C

2n
, lim sup

n→∞

(
2

v1(n)b1(n)
Ei

)1/2

≤ C

2n
,

lim
n→∞

c1(n)

c1(n) + b1(n)
∈ (1/C, 1− 1/C).

Hence, for all n sufficiently large,

Un ≤
C

n

|Ln(0)|+
√
E0 +

√
E1 +

J∑
j=1

(√
E′j +

√
E′′j

) ,

where J is an independent geometric random variable with parameter 1/(2C). The right
hand side converges to 0 in distribution when n → ∞. Just like in the first part of the
proof, we can use tightness arguments and induction to show that limn→∞ tj+1(n) −
sj(n) = 0 in distribution, for j ≥ 0.

Definition 4.2. Recall definitions (3.4)-(3.5) of V−n (`) and V+
n (`). Let

V−∞(`) = lim
n→∞

V−n (`), ` < 0, (4.12)

V+
∞(`) = lim

n→∞
V+
n (`), ` > 0, (4.13)

if the limits exist.

For assumptions under which the limit in (4.12) exists, see Theorems 3.5, 3.8 and
3.14. Analogous results hold for the second limit, by symmetry. The distributions V−∞(`)

and V+
∞(`) (if the limits in (4.12)-(4.13) exist) give no mass to 0.

Remark 4.3. It follows from Theorem 3.5 that every distribution given in Definition 1.2
can be expressed as the limit for a sequence (Xn, Ln).

Suppose that the limits in (4.12)-(4.13) exist for every ` in the corresponding range.
For any (x0, `0) ∈ (0, 1)×R \ {0}, we will define a billiard process (X,L) with Markovian
reflections starting from (x0, `0).

Consider `0 < 0. The case `0 > 0 can be treated in an analogous way. First we form
a Markov chain {Rj , j ≥ 0} by setting R0 = `0 and giving it the Markovian transition
mechanism

L(R2j+1 | R2j = `, R2j−1, . . . , R0) = V−∞(`), j ≥ 0, (4.14)

L(R2j+2 | R2j+1 = `, R2j , . . . , R0) = V+
∞(`), j ≥ 0. (4.15)

We define the process (X,L) by

u0 = 0, (4.16)

W0(t) = x0 +R0t, t ≥ 0, (4.17)

uj+1 = inf{t > uj : Wj(t) /∈ (0, 1)}, j ≥ 0, (4.18)

Wj(t) = Wj−1(uj) +Rj(t− uj), t ≥ uj , j ≥ 1, (4.19)

X(t) = Wj(t), t ∈ [uj , uj+1), j ≥ 0, (4.20)

L(t) = Rj , t ∈ [uj , uj+1), j ≥ 0. (4.21)

Note that uj > uj−1 for all j ≥ 1, a.s., because distributions V−∞(`) and V+
∞(`) give no

mass to 0 and, therefore, Rj 6= 0 for all j ≥ 0, a.s.
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We have constructed a billiard process (X,L) with Markovian reflections on [0, supj uj).

Theorem 4.4. Assume that (Xn(0)/n, Ln(0)) converge in distribution to a pair of random
variables (X(0), L(0)), as n→∞. Suppose that X(0) ∈ (0, 1) and L(0) 6= 0, a.s.

Make one of the following assumptions.

(i) Consider the noiseless model. Assume that N0(n) = N <∞ for all n sufficiently
large, and suppose that F1,F2 and F3 hold.

(ii) Consider the noiseless model. Assume that limn→N0(n) =∞, and suppose that
G1-G2 hold.

(iii) Assume the noisy model and suppose that F1,F2,F3 and K hold. Recall that
N0(n) = 1 for all n.

Then {(Xn(t)/n, Ln(t)) : t ∈ [0, T ]} converges in distribution to a billiard process with
Markovian reflections {(X(t), L(t)) : t ∈ [0, T ]} as n → ∞, for every fixed T < ∞. The
distribution of {(X(t), L(t)) : t ∈ [0,∞)} is determined by (4.12)-(4.21).

Proof. Step 1. Recall notation from (4.1)-(4.3). We have assumed that (Xn(0)/n, Ln(0))

converge in distribution to (X(0), L(0)), and X(0) ∈ (0, 1), a.s. This and Assumption 2.4
(iii) imply that Ln(s0(n)) = Ln(0) for large n. By the strong Markov property applied
at stopping times s0(n) and Theorems 3.5 (ii), 3.8 and 3.14, Ln(t1(n)) converge in
distribution to a random variable, say R1.

We proceed by induction. Note that, due to Assumption 2.4 (iii) we have Ln(sj(n)) =

Ln(tj(n)) for all j ≥ 1. Suppose that Ln(tj(n)) converge in distribution to a random
variable Rj . Then Ln(sj(n)) converge in distribution to Rj . By the strong Markov
property applied at sj(n) and Theorems 3.5 (ii), 3.8 and 3.14, Ln(tj+1(n)) converge in
distribution to a random variable Rj+1. To complete our notation, we let R0 have the
same distribution as that of L(0), the weak limit of Ln(0). Our argument actually implies
a stronger claim, i.e., that we can define Rj ’s on a common probability space so that
the joint distribution of {Rj , j ≥ 0} is the same as that of Rj ’s defined in (4.14)-(4.21),
assuming that `0 in that definition is randomized and given the distribution of L(0).

It follows from (2.7) and a formula analogous to (3.13) that for every fixed j ≥ 1, we
can represent the time interval [sj(n), tj(n)] as follows,

sj(n)− tj(n) =
∑

i∈Dn\(∂D−
n ∪∂D+

n )

Ei,j/(n
∣∣Ln(tj(n))

∣∣), (4.22)

where Ei,j , i ∈ Dn \ (∂D−n ∪ ∂D+
n ), are i.i.d. exponential with mean 1, independent of

Ln(tj(n))’s. For j = 0, the analogous formula is

s0(n)− t0(n) =

{∑
i≤Xn(0),x/∈∂D−

n
Ei,0/(nLn(0)), if Ln(0) < 0,∑

i≥Xn(0),x/∈∂D+
n
Ei,0/(nLn(0)), if Ln(0) > 0.

It follows from this, the assumption that (Xn(0)/n, Ln(0)) converge weakly to (X(0), L(0)),
the assumption that X(0) ∈ (0, 1) and L(0) does not take value 0, and the law of large
numbers that the following limit exists,

∆u1 := lim
n→∞

s0(n)− t0(n) =

{
X(0)/(−L(0)) = X(0)/(−R0), if L(0) < 0,

(1−X(0))/L(0) = (1−X(0))/R0, if Ln(0) > 0,
(4.23)

in distribution. For similar reasons, (4.22) yields

∆uj := lim
n→∞

sj(n)− tj(n) = 1/|Rj |, (4.24)
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in distribution. It follows from Proposition 4.1, (4.23)-(4.24) and the strong Markov
property that for j ≥ 0, the following limits exist,

lim
n→∞

sj(n) = lim
n→∞

tj+1(n) =

j+1∑
i=1

∆ui = ∆u1 +

j+1∑
i=2

1/|Rj | =: uj+1, (4.25)

in distribution. Moreover, by the strong Markov property, we have joint convergence, in
the sense that for every j ≥ 1, the vectors

(t0(n), s0(n), t1(n), s1(n), . . . , tj(n), sj(n))

converge in distribution to

(0, u1, u1, u2, u2, . . . , uj , uj , uj+1).

Step 2. We will show that supj uj =∞, a.s.
(i) Noiseless case. Set N0(∞) = limn→∞N0(n) and note that, in our models, N0(∞)

can be finite or infinite. In both cases, in view of (2.22) and assumption G2, we have∑N0(∞)
j=0 λj <∞. Hence, E

(
2
∑N0(∞)
j=0 λjEj

)1/2
<∞, and, therefore,

(
2
∑N0(∞)
j=0 λjEj

)1/2
<∞, a.s. This and Theorems 3.5 and 3.8 imply that the distributions V−∞(`) and V+

∞(`)

are stochastically bounded by a single distribution (not depending on `) of a finite
valued random variable. It follows from this and (4.14)-(4.15) that, on some probability
space, we can construct an i.i.d. sequence Aj , j ≥ 0, of strictly positive and finite
random variables such that L(uj) ≤ Aj , a.s., for all j. Note that E(1/Aj) > 0, possibly

E(1/Aj) =∞. Consequently, for every k ≥ 2, uk = u1 +
∑k−1
i=1 1/|L(ui)| ≥

∑k−1
i=1 1/Ai, a.s.,

and the right hand side approaches infinity, a.s., by the strong law of large numbers.
This completes the proof in the noiseless case.

(ii) Noisy case. In view of (3.42), the distribution of S in (3.44) does not depend on `.
If follows from this and (3.43) that the distributions V−∞(`) and V+

∞(`) are stochastically
bounded by a single distribution (not depending on `) of a finite valued random variable.
The rest of the proof is the same as in the noiseless case.

Step 3. To finish the proof, it will suffice to fix j ≥ 0 and analyze trajectories of (Xn/n, Ln)

on time intervals [tj(n), sj(n)] and [sj(n), tj+1(n)].
It follows easily from (4.1)-(4.3) and Assumption 2.4 (ii) that

lim
n→∞

sup{Xn(t)/n : t ∈ [s2j(n), t2j+1(n)]} = 0, if j ≥ 0, L(0) < 0,

lim
n→∞

sup{1−Xn(t)/n : t ∈ [s2j+1(n), t2j+2(n)]} = 0, if j ≥ 0, L(0) > 0,

lim
n→∞

sup{1−Xn(t)/n : t ∈ [s2j(n), t2j+1(n)]} = 0, if j ≥ 0, L(0) > 0,

lim
n→∞

sup{Xn(t)/n : t ∈ [s2j+1(n), t2j+2(n)]} = 0, if j ≥ 0, L(0) < 0.

Assumption 2.4 (iii) implies that Ln does not change its value on the interval
[tj(n), sj(n)]. Hence, the sequence of jump times of Xn on this interval is a Poisson
process, and jumps always take Xn in the same direction. The same reasoning based on
the law of large numbers that is behind (4.22) proves that Xn/n converge on [tj(n), sj(n)]

to a linear function going either from 0 to 1 or vice versa (depending on the sign of L(0)

and, therefore, on the sign of Ln(tj(n))), in the supremum norm, weakly, as n→∞. This
completes the proof of the theorem.

Proof of Theorem 1.6. Every family of reflection laws in Definition 1.2 is the limit of
reflection laws for discrete approximations (Xn, Ln), according to Theorem 3.5. For
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Billiards with Markovian reflection laws

every family of reflection laws given in Definition 1.2 there exists a billiard process
(X(t), L(t)) with Markovian reflections by Theorem 4.4 (a). By Theorem 4.4 (b) there
exists a sequence of processes (Xn, Ln) converging in distribution to (X,L) where each
(Xn, Ln) satisfies equation (2.3), by construction.

By Theorem 2.2, every process (Xn, Ln) has U(Dn)×N (0, 1) as its stationary distri-
bution. Consequently, the limiting billiard process (X,L) has U(0, 1)×N (0, 1) as one of
its stationary distributions; see the discussion in [11, Chap. 4], particularly [11, Chap. 4,
Thm. 9.10].

In order to prove that U(0, 1)×N (0, 1) is the unique stationary distribution for (X,L),
first note that (X,L) is Feller (i.e., its semi-group maps continuous bounded functions
onto continuous bounded functions). From Theorems 3.5, 3.8 and 3.14, one obtains that
for any initial condition (x, `) and any non-empty open set K ⊂ [0, 1]×R,

P
(
∃t > 0 such that (Xt, Lt) ∈ K

)
> 0.

Therefore the support of any invariant probability measure is [0, 1] × R. Because two
distinct ergodic invariant probability measures are singular, it follows there can be only
one such probability measure. This implies that there is only one invariant probability
measure.

References

[1] Mohamed Akkouchi. On the convolution of exponential distributions. Journal of the
Chungcheong Mathematical Society, 21:501–510, 2008.

[2] Clayton Barnes. Brownian particles interacting with a Newtonian Barrier: Skorohod maps
and their use in solving a PDE with free boundary, strong approximation, and hydrodynamic
limits. PhD thesis, University of Washington, 2018.

[3] R. Bass, K. Burdzy, Z-Q. Chen, and M. Hairer. Stationary distributions for diffusions with inert
drift. Probability theory and related fields, 146(1-2):1–47, 2010. MR-2550357

[4] M. Benaïm, I. Ciotir, and C-E. Gauthier. Self-repelling diffusions via an infinite dimensional
approach. Stochastic Partial Differential Equations: Analysis and Computations, 3(4):506–530,
2015. MR-3423086

[5] M. Benaïm and C-E. Gauthier. Self-repelling diffusions on a riemannian manifold. Probability
Theory and Related Fields, 169(1-2):63–104, 2017. MR-3704766

[6] Pierre Brémaud. Point Processes and Queues: Martingale Dynamics. Springer New York,
1981. MR-0636252

[7] K. Burdzy, T. Kulczycki, and R.L. Schilling. Stationary distributions for jump processes with
memory. Annales de l’Inst. Henri Poincaré, 34(3):609–630, 2012. MR-2976556

[8] K. Burdzy, T. Kulczycki, and R.L. Schilling. Stationary distributions for jump processes with
inert drift. Springer Proceedings in Mathematics & Statistics, 48:139–172, 2013. Springer,
New York. MR-3070443

[9] K. Burdzy and D. White. A gaussian oscillator. Electronic Communications in Probability,
9:92–95, 2004. MR-2108855

[10] K. Burdzy and D. White. Markov processes with product-form stationary distribution. Elec-
tronic Communications in Probability, 13:614–627, 2008. MR-2461535

[11] Stewart Ethier and Thomas Kurtz. Markov Processes: Characterization and Convergence.
Wiley, 1986. MR-0838085

[12] Helena Jasiulewicz and Wojciech Kordecki. Convolutions of Erlang and of Pascal distributions
with applications to reliability. Demonstratio Math., 36(1):231–238, 2003. MR-1968507

Acknowledgments. We are grateful to anonymous referees for very helpful advice.

EJP 24 (2019), paper 147.
Page 32/32

http://www.imstat.org/ejp/

http://www.ams.org/mathscinet-getitem?mr=2550357
http://www.ams.org/mathscinet-getitem?mr=3423086
http://www.ams.org/mathscinet-getitem?mr=3704766
http://www.ams.org/mathscinet-getitem?mr=0636252
http://www.ams.org/mathscinet-getitem?mr=2976556
http://www.ams.org/mathscinet-getitem?mr=3070443
http://www.ams.org/mathscinet-getitem?mr=2108855
http://www.ams.org/mathscinet-getitem?mr=2461535
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=1968507
https://doi.org/10.1214/19-EJP398
http://www.imstat.org/ejp/

	Introduction
	Main result
	Proof strategy
	Related results
	Organization of the paper

	Discrete approximations
	Discrete-space Markov processes with memory
	Approximating processes
	Noiseless case
	Noisy case


	Convergence of approximations
	Noiseless case
	Hard boundary
	Soft boundary

	Noisy case

	Convergence to the billiard process
	References

