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Abstract

We consider a broad class of semilinear SPDEs with multiplicative noise driven by a
finite-dimensional Wiener process. We show that, provided that an infinite-dimensional
analogue of Hörmander’s bracket condition holds, the Malliavin matrix of the solution
is an operator with dense range. In particular, we show that the laws of finite-
dimensional projections of such solutions admit smooth densities with respect to
Lebesgue measure. The main idea is to develop a robust pathwise solution theory for
such SPDEs using rough paths theory, which then allows us to use a pathwise version
of Norris’s lemma to work directly on the Malliavin matrix, instead of the “reduced
Malliavin matrix” which is not available in this context. On our way of proving this
result, we develop some new tools for the theory of rough paths like a rough Fubini
theorem and a deterministic mild Itô formula for rough PDEs.
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1 Introduction

The goal of this paper is to generalise the series of articles [HM06, BM07, HM11]
where the authors developed Malliavin calculus for semilinear stochastic partial differ-
ential equations (SPDEs) with additive degenerate noise and showed non-degeneracy
of the Malliavin matrix under Hörmander’s bracket condition. The main novelty of
the present article is that we are able to extend these results to equations driven by
multiplicative noise. In particular, we conclude that finite-dimensional projections of
the solutions admit densities and, provided that suitable a priori bounds are satisfied,
that the corresponding Markov semigroup satisfies the asymptotic strong Feller prop-
erty introduced in [HM06]. This can be understood as a genuinely infinite-dimensional
“smoothing property” for the Markov semigroup that holds at infinite time.

Equations considered in this article can formally be written in Stratonovich form as

dut = Lutdt+N(ut)dt+

d∑
i=1

Fi(ut) ◦ dBit, u0 ∈ H, (1.1)

where L is a negative definite selfadjoint operator on a separable Hilbert space H,
N,Fi are smooth non-linearities, and Bt = (B1

t , B
2
t , . . . , B

d
t ) is a standard d-dimensional

Brownian motion. We potentially allow N to lose derivatives and can consider for
instance the 2D Navier-Stokes equations. Reaction-diffusion equations and the Cahn-
Hilliard equation also fall in the category of equations that we consider. Setting F0(u) =

Lu + N(u), we will make regularity assumptions guaranteeing that all iterated Lie
brackets of the Fi can be given a canonical meaning, so that we can formulate an infinite-
dimensional version of Hörmander’s condition. Recall that Lie brackets are formally
given by [Fi, Fj ](u) = DFj(u)Fi(u)−DFi(u)Fj(u).

While the Malliavin matrix is not invertible on the whole space H, we will show that it
is invertible on every finite-dimensional subspace. (See [DPZ96] for the exceptional case
when Malliavin matrix of the linear equation is invertible on the whole space, see also
[EH01, DPEZ95, FM95, Cer99] for situations where the Malliavin matrix is invertible on
the image of the Jacobian.) Note that the situation considered in this article is orthogonal
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to the one considered in [HM18, CFG17]. There, the authors considered a situation in
which the noise already acts in a “full” way in every direction of the state space, so
that no Lie brackets need to be considered. Instead, the problem addressed there is
that solutions can be very singular, so that sophisticated solution theories need to be
considered, which do not interplay nicely with Malliavin calculus.

We now state the main result of the present article:

Hörmander’s theorem. Let T > 0 let 0 ≤ δ < 2/3 and N : H → H−δ, and Fi : H → H
be C∞ vector fields of polynomial type satisfying Hörmander’s condition, Assumption A.3.
Assume that u is a global mild solution of the equation (1.1) such that both ‖u‖L∞([0,T ],H)

and ‖J‖L∞([0,T ],L(H,H)) have moments of all orders. (here J is Jacobian of the solution).
Then for every finite rank orthogonal projection Π : H → H, a ∈ (0, 1) and every p ≥ 1

there exist a constant Cp such that the Malliavin matrix MT satisfies the following bound
for every initial condition u0:

P

(
inf

‖Πϕ‖>a‖ϕ‖

〈MTϕ,ϕ〉
‖ϕ‖2

≤ ε
)
≤ Cpεp.

Moreover the law of ΠuT has a smooth density with respect to Lebesgue measure on
Π(H).

The classical approach to proving a statement of this type was initiated by Malliavin
in [Mal78] and further developed and refined by a number of authors in the eighties
[Bis81, KS84, KS85, KS87, Nor86]. See also [Mal97, Nua06, Hai11] for surveys of a
more expository nature. The argument goes by contradiction: assume that 〈MTϕ,ϕ〉 is
small (in a suitable probabilistic sense) and use this as the starting point for a chain of
implications that eventually lead to an impossibility, resulting in the conclusion that the
probability of 〈MTϕ,ϕ〉 being small is (very) small. First note that the Jacobian Jt,s of
equation (1.1) solves

dJt,s = LJt,sdt+DN(ut)Jt,sdt+

d∑
i=1

DFi(ut)Jt,s ◦ dBit, Js,s = id , (1.2)

and that Duhamel’s formula yields the following expression for the Malliavin matrix:

〈MTϕ,ϕ〉 =

d∑
i=1

∫ T

0

〈JT,sFi(us), ϕ〉2ds. (1.3)

Since we assumed that 〈MTϕ,ϕ〉 is small, this implies that each 〈JT,sFi(us), ϕ〉 is small
too. Formally differentiating such an expression, we obtain

d〈JT,sG(us), ϕ〉 = 〈JT,s[F0, G](us), ϕ〉ds+

d∑
j=1

〈JT,s[Fj , G](us), ϕ〉 ◦ dBjs , (1.4)

where we used Stratonovich integration to avoid the appearance of Itô’s correction.
Norris’s lemma [Nor86] (see also [Hai11] for a version that is slightly easier to parse)
then allows to conclude that if 〈JT,sG(us), ϕ〉 is small for a “nice enough” function G,
then all 〈JT,s[Fj , G](us), ϕ〉 for j ≥ 0 are small as well. We can iterate this procedure and
define recursively

A0 = {Fi : 1 ≤ i ≤ d} , Ak+1 = Ak ∪ {[Fi, A] : A ∈ Ak, 0 ≤ i ≤ d} .

Then the above argument tells us that for all k ∈ N0 andA ∈ Ak the quantity 〈JT,sA(us),ϕ〉
is small. This contradicts Hörmander’s condition, namely that for every v ∈ H the set
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⋃
k∈N0

{A(v) : A ∈ Ak} is dense in H. This is because by density we can necessarily find
A ∈ Ak to make the quantity 〈JT,sA(us), ϕ〉 of order one, thus concluding the argument.

The problem with this argument is that it is not clear what the meaning of the stochas-
tic integral appearing in (1.4) is, since the process 〈JT,s[Fj , Fi](us), ϕ〉 is not adapted,
hence not Itô (nor a fortiori Stratonovich) integrable. In a similar vein, Norris’s lemma
applies only to semimartingales, which 〈JT,s[Fj , Fi](us), ϕ〉 is not. In finite dimension,
this problem has traditionally been circumvented by considering instead the reduced
Malliavin matrix M̂T :

MT = JT,0M̂TJ
∗
T,0 , 〈M̂Tϕ,ϕ〉 =

∫ T

0

〈J−1
s,0F (us), ϕ〉2ds .

This is possible in finite dimension because solutions typically generate an invertible
flow whose Jacobian factorises as Jt,s = Jt,0J

−1
s,0 . A similar calculation then yields an

expression analogous to (1.4), but this time the stochastic integrand is of the form
〈J−1
s,0Fi(us), ϕ〉, which is a semimartingale. With the help of this trick, the argument

sketched above can be made rigorous and entails the non-degeneracy of the Malliavin
matrix, which in turn implies that the law of the solution has a smooth density with
respect to Lebesgue measure.

In infinite dimension, the solution to SPDEs rarely produces a flow, so that this trick
cannot be used in general. (But see [BT05] for a situation where it can be used.) For
the special case of additive noise with a ‘polynomial’ nonlinearity N , [HM11] were able
to use an alternative to Norris’s lemma – a certain non-degeneracy bound on Wiener
polynomials – but this approach seems to be of little use in the case of multiplicative
noise. The idea implemented in the present article is to use the theory of rough paths
in order to give meaning to (1.4) directly and to be able to exploit the ‘deterministic’
version of Norris’s lemma for rough paths from [HP13].

The theory of rough paths provides a pathwise approach to a stochastic integration
and was originally developed by Lyons [Lyo98, LQ02] building on the works of Young and
Chen [You36, Che54]. The idea is that, in order to solve (finite-dimensional) equations of
the type dYt = F (Yt)dXt with X ∈ Cγ for γ < 1/2, one augments X with a function Xt,s

for t ≥ s that postulates the values of the integrals
∫ t
s
δXr,s dXr (we write δXt,s = Xt−Xs)

and that satisfies the bound |Xt,s| . |t− s|2γ consistent with the regularity of X, as well
as the algebraic identity Xt,s − Xu,s − Xt,u = δXt,u ⊗ δXu,s. The pair (X,X) is then
called a rough path. Once X is given, integrals of the form

∫
Yt dXt can be defined in a

consistent way for a class of integrands Y that locally “look like X at small scales”, see
[Gub04] where this notion was introduced. Formally, this can be expressed as

δYt,s = Y ′s δXt,s +RYt,s , (1.5)

where Y ′ ∈ Cγ is the ‘Gubinelli derivative’ of Y and the remainder RY satisfies |RYt,s| .
|t− s|2γ . One then sets∫ T

0

Yt dXt = lim
|P|→0

∑
[s,t]∈P

(
YsδXt,s + Y ′sXt,s

)
,

where P denotes a partition of [0, T ] by intervals and |P| the length of its largest element.
It turns out that there exists a canonical lift X 7→ (X,X) for a wide range of stochastic
processes, including Brownian motion (with X defined by Stratonovich integration),
fractional Brownian motion and other Gaussian processes.

In [GT10] Gubinelli and Tindel generalised theory of rough paths to solve not only
SDEs but also SPDEs: evolution equations driven by the infinite dimensional Gaussian
process. For that, they introduce operator-valued rough paths and use a slightly different
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kind of local (in time) expansion of the controlled processes, taking into account the
solution to the linearised equation. This means that we no longer compare Yt to Ys at
small scales, but instead to eL(t−s)Ys. More formally, we replace (1.5) by an expansion of
the type

Yt − eL(t−s)Ys = eL(t−s)Y ′s δXt,s +RYt,s. (1.6)

Since in our case the driving noise is finite-dimensional, we use similar ideas to [GT10],
but then stick closely to the classical theory of finite-dimensional rough paths as in
[FH14]. The main difference and complication arises when one wants to show that if
Y satisfies an expansion like (1.6) then so does F (Y ) for any smooth enough function
F . This requires an estimate on F (Yt)− eL(t−s)F (Ys) while only having a good bound on
F (Yt)− F (eL(t−s)Ys), thus requiring commutator bounds of the type

‖eL(t−s)F (Ys)− F (eL(t−s)Ys)‖ . |t− s|2γ ,

which is possible for instance if Ys itself has better space regularity. We therefore need
to obtain bounds on the space regularity of the path Ys that are better than the space
regularity in which we measure the rough path norms.

One of the main technical difficulties we encounter is to prove that (1.4) holds. An
obstacle is that we cannot simply differentiate 〈JT,sG(us), ϕ〉 because rough path theory
only allows us to use a mild formulation of the solution to (1.1). This however turns
out to be sufficient once we obtain a rough Fubini Theorem and a mild version of Itô’s
formula for G(us). Once we obtain (1.4), we follow closely the approach from [HP13],
making use of the rough Norris lemma. We try in most cases to work with general rough
paths, not just the one lifted from Brownian motion, so that part of our results carry
over immediately to SPDEs driven by fractional Brownian motion for example. We do
however show that in the Brownian case the solutions constructed here coincide with
those obtained from Itô calculus, which connects our result with existing objects and
allows us to exploit information known for the solutions to Itô SPDEs like Malliavin
differentiability, a priori bounds and global existence. Such information might be much
harder to obtain for more general Gaussian rough paths. We want to emphasise again
that once we translate our problem to the language of rough paths, most of the arguments
are deterministic. We will only use probabilistic tools (and very basic ones at that) in
the proof of Hörmander’s theorem itself and in order to obtain global well-posedness of
solutions.

Outline of the article: In Section 2, we introduce a reduced increment δ̂ and reduced
Hölder spaces as well as a version of the sewing lemma from [GT10] for this reduced
increment. Section 3 gives a self-contained introduction to the spaces of controlled
rough paths with the semigroup and how composition with regular functions preserves
these spaces. We also describe an integration in these spaces with respect to rough
path which follows directly from the sewing lemma. Section 4 is devoted to the solution
theory, continuity of the solution map and the properties of the solution. In particular, we
show in Section 4.2 that the solutions obtained by viewing (1.1) as an RPDE and driving
it by the Stratonovich lift of Brownian motion coincide almost surely with the solutions
constructed using classical stochastic calculus as in [DPZ14] for example. Section 5
is about the proof of rough Fubini theorem. In Section 6 we show equivalence of mild
solutions and weak solutions. We later use this in order to show a mild Itô formula.
Section 7 talks about the backwards equations. There we provide an equation for the
adjoint of the Jacobian and also prove the differentiation statement (1.4). Finally in
Section 8 we recall the “rough Norris lemma” and combine it with the previous results
to prove in Theorem 8.7 the Hörmander-type theorem announced in the introduction.
We also show in Theorem 8.8 how this immediately yields smooth densities for finite-
dimensional marginals of the solution.
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2 Preliminaries

2.1 Semigroup theory

Throughout this paper we consider a separable Hilbert space H with inner product
〈·, ·〉 and a negative definite selfadjoint operator L such that there exists some constant
c < 0 such that 〈u, Lu〉 ≤ c〈u, u〉. We write (St)t≥0 as well as eLt for the semigroup
generated by L. For α ≥ 0, the interpolation space Hα = Dom((−L)α) is a Hilbert
space when endowed with the norm ‖ · ‖Hα = ‖(−L)α · ‖H. Since (−L)−α is bounded
on H, ‖ · ‖Hα is equivalent to the graph norm of (−L)α. Similarly, H−α is defined as the
completion of H with respect to the norm ‖ · ‖H−α = ‖(−L)−α · ‖H.

For any α, β ∈ R, denote the space of bounded operators from Hα to Hβ by Lα,β :=

L(Hα;Hβ) and write Lα := Lα,α. We define a reduced semigroup operator S̃t = St − id.

Defining H∞ =
⋂
αHα and H−∞ =

⋃
αHα the operators St map H−∞ to H∞ for

every t > 0 and H∞ ⊂ H−∞ densely. We will use extensively the fact that, for every
α ≥ β and every γ ∈ [0, 1], one has

‖Stu‖Hα . tβ−α‖u‖Hβ , ‖S̃tu‖Hβ−γ . tγ‖u‖Hβ , (2.1)

uniformly over t ∈ (0, 1] and u ∈ Hβ. For an introduction to analytic semigroup theory,
see for example [Paz83, Hai09].

2.2 Increment spaces

We now define spaces of time increments of functions taking values in some Banach
space. We follow closely the definitions in [GT10, DGT12, DT13]. Fix T > 0 and, for
n ∈ N, define the n-simplex ∆n = {(t1, . . . , tn) : T ≥ t1 ≥ t2 ≥ . . . ≥ tn ≥ 0}. We will often
omit the fact that spaces depend on T since its precise value is not relevant.

Definition 2.1. Given a Banach space V , n ∈ N and T > 0 define Cn(V ) := C(∆n, V ) the
space of continuous functions from ∆n to V and δ : Cn−1(V )→ Cn(V ) by

δft1t2...tn =

d∑
i

(−1)ift1...t̂i...tn ,

where t̂i indicates that the corresponding argument is omitted.

We are mostly going to use the two special cases

δft,s = ft − fs , δgt,u,s = gt,s − gt,u − gu,s .

One can check that δδ = 0 as an operator Cn−1(V )→ Cn+1(V ) and that for each f ∈ Cn(V )

such that δf = 0 there exists g ∈ Cn−1(V ) such that f = δg.

Definition 2.2. For V either the space Lα,β or Hα for α, β ∈ R, the reduced increment
operator δ̂ : Cn−1(V )→ Cn(V ) is given by δ̂f = δf − S̃f , where (S̃f)t1···tn = S̃t1−t2ft2···tn
with S̃t = St − id.

Again, the two most common cases will be

δ̂ft,s = ft − St−sfs , δ̂gt,u,s = gt,s − gt,u − St−ugu,s .

Whenever we talk about δ̂ on Cn we will assume from now on that the underlying space
V is one of the spaces on which the action of the semigroup S makes sense. Similarly to
δ, one verifies that δ̂δ̂ = 0 and that δ̂f = 0 implies that f = δ̂g (see [GT10]).
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2.3 Hölder type spaces

Definition 2.3. Let V be a Banach space and denote by ‖ · ‖V the corresponding norm.
Then, for γ, µ > 0, n ≥ 2 and f ∈ Cn(V ), we set

|f |γ,V = sup
t∈∆n

‖f(t)‖V
|tn − t1|γ

. (2.2)

We then define the spaces and notations

Cγn = {f ∈ Cn : |f |γ,V <∞} , Ĉγ,µn = {f ∈ Cγn : δ̂f ∈ Cµn+1} ,

Cγ = {f ∈ C1 : δf ∈ Cγ2 } , Ĉγ = {f ∈ C1 : δ̂f ∈ Cγ2 } .

Since (2.2) doesn’t make any sense for n = 1, we make an abuse of notation by writing
|f |γ,V for |δf |γ,V for f ∈ Cγ . Later on, it will be clear from context whether we use | · |γ,V
as in (2.2) or as the seminorm on Cγ . Similarly, we define a seminorm on Ĉγ by ‖f‖γ,V =

|δ̂f |γ,V and we endow C1 with the supremum norm ‖f‖∞,V = sup0≤s≤T ‖fs‖V . Finally we

equip Cγ and Ĉγ with norms ‖f‖CγV = ‖f0‖V + |f |γ,V and ‖f‖ĈγV = ‖f0‖V + ‖f‖γ,V .
In the case V = Hα, we will write ‖f‖γ,Hα = ‖f‖γ,α, ‖f‖∞,Hα+2γ

= ‖f‖∞,α+2γ , etc.

An important feature of elements Ξ ∈ Ĉγ,µ2 V is that they can be “integrated” in the sense
that Ξt,s ‘almost’ looks like δ̂Ft,s for some function F ∈ ĈγV . More precisely, one has the
following version of the sewing lemma.

Theorem 2.4 (Sewing Lemma). Let α ∈ R and let 0 < γ ≤ 1 < µ. Then there exist a
unique continuous linear map I : Ĉγ,µ2 Hα → C

γ
2Hα such that δ̂IΞ = 0 and

‖IΞt,s − Ξt,s‖Hα . |δ̂Ξ|µ,α|t− s|µ. (2.3)

If in addition δ̂Ξv,m,u = Sv−mΞ̃v,m,u for some Ξ̃ ∈ C3Hα such that there exists M > 0 with

‖Ξ̃v,m,u‖Hα ≤M |v −m|µ−1|v − u| , (2.4)

then for every β ∈ [0, µ) the following inequality holds:

‖IΞt,s − Ξt,s‖Hα+β
.µ,β M |t− s|µ−β . (2.5)

Finally, one has the identity

IΞt,s = lim
|P|→0

∑
[u,v]∈P

St−vΞv,u , (2.6)

where |P| denotes the length of the largest element of a partition P of [s, t] into non-
overlapping closed intervals. The same is true if we replace Hα by Hnα.

Proof. The proof is almost identical to that of [FH14, Lemma 4.2], so we only focus on
the details that differ. We first show that the limit (2.6) exists over the dyadic partition:
let P0 = {[s, t]} and recursively set

Pn+1 =
⋃

[u,v]∈Pn

{[u,m], [m, v]} ,

where m = (u+ v)/2, so that Pn contains 2n intervals of length 2−n|t− s|. We then define
an approximation to IΞ by:

In+1Ξt,s :=
∑

[u,v]∈Pn+1

St−vΞv,u = InΞt,s −
∑

[u,v]∈Pn

St−v(δ̂Ξ)v,m,u ,
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with m the midpoint between u and v as before. We focus on (2.5) under assump-
tion (2.4) since showing (2.3) is even closer to [FH14, Lemma 4.2]. We assume
δ̂Ξv,m,u = Sv−mΞ̃v,m,u and choose δ ≥ 0 such that µ − 1 > δ > β − 1. Using the
semigroup smoothing property (2.1) we then have:

‖In+1Ξt,s − InΞt,s‖Hα+β
≤
∥∥∥ ∑

[u,v]∈Pn

St−mΞ̃v,m,u

∥∥∥
Hα+β

.M
∑

[u,v]∈Pn

|t−m|−β |v −m|µ−1|v − u|

≤M
∑

[u,v]∈Pn

|t−m|−β+δ|v −m|µ−1−δ|v − u|

≤M2n(1−µ+δ)|t− s|µ−δ
∑

[u,v]∈Pn

|t−m|−β+δ2−n

≤M |t− s|µ−δ−12n(1−µ+δ)

∫ t

s

|t− r|δ−β dr

.M |t− s|µ−β2n(1−µ+δ) .

Going from second to the third line we used that, by convexity of the integrand,
the Riemann sum is bounded by the integral. In the last inequality we used that∫ 1

0
r−β+δdr <∞ since β− δ < 1. Since δ is chosen so that 1−µ+ δ < 0, this is summable

and yields desired bound (2.5).

It may appear a priori that we only have IΞ ∈ C2, but a similar argument to [Gub04,
FH14] shows that actually (2.6) holds, which immediately implies that δ̂(IΞ) = 0 as
desired. The fact that IΞ ∈ Cγ2Hα follows easily by taking β = 0 and noting that we then
have ‖IΞt,s‖Hα . |Ξ|γ,α|t− s|γ + |δ̂Ξ|µ,α|t− s|µ. The continuity of I follows exactly as in
[Gub04, FH14] and is left to the reader.

3 Controlled rough paths according to the semigroup

We now recall the notion of rough path introduced by Lyons in the 90’s (see for
example [Lyo98] or [LQ02]). To treat SPDEs in Hilbert spaces, we could use an operator-
valued definition of rough path as in [GT10, BG17]. However, we will focus on equations
driven by finite-dimensional Brownian motion and we would like to reuse already known
results like Norris’s Lemma or Malliavin calculus for rough paths of finite dimensions.
We will therefore pursue a compromise and use the “classical” definition of a rough path
for our driving noise, while slightly modifying the notion of a “controlled rough path”
from [GT10] to encode the interaction of our class of integrands with the semigroup.

Definition 3.1 (Rough Path). We say that a pair of functions (X,X) ∈ C2(Rd)× C2(Rd×d)

satisfies Chen’s relations if for all s ≤ u ≤ t:

δXt,u,s = Xt,s −Xt,u −Xu,s = 0 ,

δXt,u,s = Xt,s −Xt,u −Xu,s = Xt,u ⊗Xu,s . (3.1)

For γ ∈ (1/3, 1/2] and for two such pairs X = (X,X), X̃ = (X̃, X̃) we define the rough
path metric %γ as:

%γ(X, X̃) = |X − X̃|γ + |X− X̃|2γ .

Finally for γ ∈ (1/3, 1/2] we define the space of rough paths C γ([0, T ],Rd) to be the
completion with respect to %γ of all smooth pairs (X,X) ∈ C∞(∆2,R

d)× C∞(∆2,R
d×d)

satisfying (3.1).
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For simplicity we write %γ(X) := %γ(0,X). Note that the convergence with respect
to above metric is implying the pointwise convergence thus Chen’s relation is true for
elements of C γ([0, T ],Rd). Here instead of writing |X|γ,Rd and |X|2γ,Rd×d we made an
abuse of notation by simply writing |X|γ and |X|2γ and hope that no confusion will arise
from this.

The first equation in Chen’s relation (3.1) actually tells us that X belongs to C1 in a
sense that we can write Xt,s = δ(X·,0)t,s and so X is completely determined by X·,0 ∈ C1.
We decide not to use C1 in the definition of the rough path since in our analysis we only
care about the increments of functions and not about their precise value. Nevertheless
we might sometimes neglect this and talk about X as a one time parameter function.
One should think of Xi,j

t,s as postulating the value of the integral
∫ t
s
Xi
u,sdX

j
u which may

not be defined classically through the theory of Young’s integration [You36] since for that
we need γ > 1/2 in general. This motivates us to define a canonical lift of the smooth
path to the rough paths and the definition of the geometric rough paths:

Definition 3.2. For every X ∈ C∞([0, T ],Rd) define the canonical lift of X to the space
of rough paths Xc(X) = (δX,Xc), where Xc

t,s =
∫ t
s
δXu,s ⊗ dXu and the right hand side

is a Riemann integral.
For γ ∈ (1/3, 1/2] we say that the rough path X ∈ C γ([0, T ],Rd) is geometric if it

satisfies
2 Sym(Xt,s) = Xt,s ⊗Xt,s , (3.2)

which always holds for the canonical lift of a smooth path. We write C γ
g ([0, T ],Rd) ⊂

C γ([0, T ],Rd) for the subspace of geometric rough paths.

One can show that the space of geometric rough paths is the closure of all the smooth
lifts with respect to the rough path metric %γ .

Equations of interest to us are driven by
∑d
i=1 Fi(ut)dX

i
t , where Fi : Hα → Hβ and

X = (X1, . . . , Xd) is a rough path. We will typically use instead the shorthand notation
F (ut)dXt, where we view F : Hα → L(Rd,Hβ). For simplicity we will denote the space
L(Rd,Hβ) by Hdβ . With this notation, our spaces of integrands are defined as follows.

Definition 3.3. Let X ∈ C γ([0, T ],Rd) for some γ ∈ (1/3, 1/2] and let m ∈ N. We say
that (Y, Y ′) ∈ ĈγHmα × ĈγHm×dα is controlled by X according to the semigroup S if the
remainder term RY defined by

RYt,s = δ̂Yt,s − St−sY ′sXt,s , (3.3)

belongs to C2γ
2 Hmα . We then write (Y, Y ′) ∈ D2γ

S,X([0, T ], V ) and define a seminorm on this
space by:

‖Y, Y ′‖X,2γ,α = ‖Y ′‖γ,α + |RY |2γ,α.

Similarly, its norm is given by

‖Y, Y ′‖D2γ
S,X

= ‖Y0‖Hmα + ‖Y ′0‖Hm×dα
+ ‖Y, Y ′‖X,2γ,α.

Remark 3.4. In the special case S = id, this is nothing but the usual notion of a
controlled rough path introduced by Gubinelli in [Gub04] (see also [LY15] for a different
perspective). In this case, we will omit the subscript S in the notations introduced above.

Note that we have the bound

‖Y ‖γ,α ≤ |RY |γ,α + ‖Y ′‖∞,α|X|γ ≤ C(1 + |X|γ)(‖Y ′0‖Hm×dα
+ ‖Y, Y ′‖X,2γ,α) ,

where the constant C depends only on γ and T and can be chosen uniform over T ∈ (0, 1].
Given a controlled rough path according to S, we can define a corresponding ‘stochastic
convolution’.
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Theorem 3.5. Let T > 0 and X = (X,X) ∈ C γ([0, T ],Rd) for some γ ∈ (1/3, 1/2]. Let
(Y, Y ′) ∈ D2γ

S,X([0, T ],Hdα) Then the integral defined by∫ t

s

St−uYudXu := lim
|P|→0

∑
[u,v]∈P

St−u(YuXv,u + Y ′uXv,u), (3.4)

exists as an element of ĈγHα and satisfies for every 0 ≤ β < 3γ:∥∥∥∫ t

s

St−uYudXu − St−sYsXt,s−St−sY ′sXt,s

∥∥∥
Hα+β

.

.
(
|RY |2γ,α|X|γ + ‖Y ′‖γ,α|X|2γ

)
|t− s|3γ−β . (3.5)

Moreover the map

(Y, Y ′)→ (Z,Z ′) :=
(∫ ·

0

S·−uYudXu, Y
)
,

is continuous from D2γ
S,X([0, T ],Hdα) to D2γ

S,X([0, T ],Hα) and one has the bound:

‖Z,Z ′‖X,2γα . ‖Y ‖γ,α + (‖Y ′0‖Hα + ‖(Y, Y ′)‖X,2γ,α)(|X|γ + |X|2γ). (3.6)

Here the underlying constant depends on γ, d and T and is uniform over T ∈ (0, 1].

Proof. For Ξv,u = Sv−uYuXv,u + Sv−uY
′
uXv,u we have

δ̂Ξv,m,u = −Sv−mRYm,uXv,m − Sv−mδ̂Y ′m,uXv,m.

This follows from the definition of controlled rough path (3.3) and Chen’s relation (3.1).
Since δ̂Ξv,m,u = Sv−mΞ̃v,m,u for some Ξ̃ satisfying (2.4) with µ = 3γ > 1 and M =

|RY |2γ,α|X|γ + ‖Y ′‖γ,α|X|2γ , the existence of the limit in (3.4) and the bound (3.5) follow

directly from (2.5). If we define Zt =
∫ t

0
St−uYudXu then it is not hard to see that

δ̂Zt,s =
∫ t
s
St−uYudXu, so that (3.6) follows immediately from (3.5). We will address the

continuity of integration map in Section 3.3 below.

3.1 Composition with regular functions

Now, we need to restrict our study to a suitable class of non-linearities.

Definition 3.6. For some fixed α, β ∈ R and k ∈ N0 we define the space Ckα,β(Hm,Hn)

as the space of k-differentiable functions G : Hmθ → Hnθ+β for every θ ≥ α, and n,m ∈ N0

and such that DiG sends bounded subsets of Hmθ to bounded sets of Hnθ+β, for all
i = 0, . . . k. For such functions ‖G‖Ck will represent some norm which depends on the
first k derivatives and its exact form will be clear from the context. When m = n we will
simply write Ckα,β(Hm).

With this at hand:

Lemma 3.7. Let F ∈ C2
α,0(Hm,Hn) with all derivatives up to order 2 bounded, let

T > 0 and (Y, Y ′) ∈ D2γ
S,X([0, T ],Hmα ) for some (X,X) ∈ C γ([0, T ],Rd), γ ∈ (1/3, 1/2].

Moreover assume that in addition Y ∈ L∞([0, T ],Hmα+2γ) and Y ′ ∈ L∞([0, T ],Hm×dα+2γ).

Define (Zt, Z
′
t) = (F (Yt), DF (Yt) ◦ Y ′t ) then (Z,Z ′) ∈ D2γ

S,X([0, T ],Hnα) and satisfies the
bound:

‖(Z,Z ′)‖X,2γ,α ≤ CF (1 + |X|γ)2(1 + ‖Y ‖∞,α+2γ + ‖Y ′‖∞,α+2γ + ‖(Y, Y ′)‖X,2γ)2. (3.7)

The constant CF depends on the bounds on F and its derivatives. It also depends on
time T , but is uniform over T ∈ (0, 1].
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Proof. We only consider the case d = m = n = 1, the generalisation to higher dimensions
being purely a matter of notations. From (2.1) since 0 < γ < 2γ ≤ 1 we have for any
V ∈ C1([0, T ]) and for any u ∈ [0, T ] and any α ∈ R the following:

‖St−sVu − Vu‖Hα . |t− s|2γ‖Vu‖Hα+2γ , |V |γ,α . ‖V ‖γ,α + ‖V ‖∞,α+2γ . (3.8)

Bound of Z ′: First, we write δ̂Z ′ as

(δ̂Z ′)t,s = (DF (Yt)Y
′
t −DF (Yt)St−sY

′
s ) + (DF (Yt)St−sY

′
s −DF (Ys)St−sY

′
s )

+ (DF (Ys)St−sY
′
s −DF (Ys)Y

′
s ) + (DF (Ys)Y

′
s − St−sDF (Ys)Y

′
s )

= I + II + III + IV .

Using (3.8) we can bound these terms as follows:

‖I‖Hα ≤ ‖DF (Yt)‖Lα,α‖Y ′‖γ,α|t− s|γ . CF ‖Y ′‖γ,α|t− s|γ ,
‖II‖Hα ≤ ‖DF (Yt)−DF (Ys)‖Lα,α‖Y ′s‖Hα . CF |Y |γ,Hα |t− s|γ‖Y ′‖∞,α+2γ

. CF (‖Y ‖γ,α + ‖Y ‖∞,α+2γ)‖Y ′‖∞,α+2γ |t− s|γ ,
‖III‖Hα . CF ‖Y ′‖∞,α+2γ |t− s|γ ,
‖IV‖Hα . ‖DF (Ys)Y

′
s‖Hα+2γ

|t− s|γ . CF ‖Y ′‖∞,α+2γ |t− s|γ .

Combining these bounds all together we obtain:

‖Z ′‖γ,α . CF (‖Y ′‖γ,α + ‖Y ′‖∞,Hα+2γ
)(1 + ‖Y ‖γ,α + ‖Y ‖∞,α+2γ).

Bound of RZ:

RZt,s = δ̂Zt,s − St−sZ ′sXt,s

= δ̂Zt,s −DF (Yt)St−sY
′
sXt,s +DF (Yt)St−sY

′
sXt,s − St−sDF (Ys)Y

′
sXt,s

=
(
F (Yt)− St−sF (Ys)−DF (Yt)(Yt − St−sYs)

)
−
(
DF (Yt)R

Y
t,s + (II + III + IV)Xt,s

)
= V −VI.

The term VI can easily be bounded using bounds for II, III and IV:

‖VI‖Hα . CF (|RY |2γ,α + |X|γ‖Y ′‖∞,α+2γ(1 + ‖Y ‖γ,α + ‖Y ‖∞,α+2γ))|t− s|2γ .

For V we have

V =
(
F (Yt)− F (St−sYs)−DF (Yt)(Yt − St−sYs)

)
+
(
F (St−sYs)− St−sF (Ys)

)
= VII + VIII.

By Taylor’s theorem we obtain

‖VII‖Hα . CF ‖Y ‖2γ,α|t− s|2γ ,

while the ‘commutator’ VIII is bounded by

‖VIII‖Hα . ‖F (St−sYs)− F (Ys)‖Hα + ‖F (Ys)− St−sF (Ys)‖Hα
. (CF ‖Y ‖∞,α+2γ + ‖F (Ys)‖Hα+2γ )|t− s|2γ

≤ CF (1 + ‖Y ‖∞,α+2γ)|t− s|2γ ,

where we used (3.8) to go from the first to the second line. Combining both bounds on
Z ′ and RZ we obtain the desired result.
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3.2 D2γ,β,η
S,X spaces

Definition 3.8. Let X ∈ C γ([0, T ],Rd) for some γ ∈ (1/3, 1/2]. Then for and β ∈ R and
η ∈ [0, 1] define a space

D2γ,β,η
S,X ([0, T ],Hα) = D2γ

S,X([0, T ],Hα) ∩
(
Ĉη([0, T ],Hα+β)× L∞([0, T ],Hdα+β)

)
.

We also wrote Ĉ0 = L∞ for η = 0 and, as usual, we will drop the subscript S
when S = id. Note that by Lemma 3.7, composition with regular functions maps
D2γ,2γ,η
S,X ([0, T ],Hα) to D2γ,2γ,0

S,X ([0, T ],Hα) for every η ∈ [0, 1]. For simplicity, we also
introduce the useful notation

D2γ
X ([0, T ],Hα) := D2γ,2γ,γ

S,X ([0, T ],Hα−2γ) .

Warning: we have shifted the space regularity in the definition of D2γ
X by 2γ in the right

hand side. We will later solve our equations in the space D2γ([0, T ],H) (α = 0).

With this at hand we now show:

Proposition 3.9. For 1/3 < ε ≤ γ ≤ 1/2, D2ε,2γ,0
X ([0, T ],Hα) = D2ε,2γ,0

S,X ([0, T ],Hα).

Proof. First consider (Y, Y ′) ∈ D2γ,2γ,0
S,X ([0, T ],Hα), we rewrite (3.3) as

Yt − Ys = Y ′sXt,s +RYt,s + St−sYs − Ys + (St−sY
′
s − Y ′s )Xt,s.

Combining this with

‖St−sYs − Ys‖Hα . |t− s|2γ‖Y ‖∞,α+2γ ,

‖(St−sY ′s − Y ′s )Xt,s‖Hα . |t− s|3γ‖Y ′‖∞,α+2γ |X|γ ,

we conclude that the remainderRYt,s+St−sYs−Ys+(St−sY
′
s−Y ′s )Xt,s is of regularity |t−s|2ε.

We can similarly show that Y ′ ∈ Cε and therefore D2ε,2γ,0
X ([0, T ],Hα) ⊆ D2ε,2γ,0

S,X ([0, T ],Hα).
The proof of the converse implication is analogous.

For the next proposition we use that the inner product on H extends uniquely to a
continuous bilinear map 〈·, ·〉 : H−α ×Hα → R for every α ≥ 0.

Proposition 3.10. For any (Y, Y ′) ∈ D2γ,2γ,0
S,X ([0, T ],H−2γ) and ψ ∈ H2γ , one has

(〈Y, ψ〉, 〈Y ′, ψ〉) ∈ D2γ
X ([0, T ],R) .

Also for any fixed t ≤ T we get a controlled rough path (〈St−·Y, ψ〉, 〈St−·Y ′, ψ〉) ∈
D2γ
X ([0, t],R). Moreover for fixed t > 0 and h ∈ H, setting Zv =

∫ t
v
〈Ss−vYv, h〉ds and

Z ′v =
∫ t
v
〈Ss−vY ′v , h〉ds, we have (Z,Z ′) ∈ D2γ

X ([0, t],R) satisfying

‖(Z,Z ′)‖X,2γ .T (1 + |X|γ)‖(Y, Y ′)‖D2γ,2γ,0
S,X

‖h‖.

Similar bound holds for the other two controlled rough paths stated in the proposition,
but with ‖h‖ replaced by ‖ψ‖H2γ .

Proof. The fact that the first two functions are controlled rough paths follows easily from
Proposition 3.9. For the third one we cannot use Cauchy-Schwarz straight away because
h is not regular enough. Instead, we use (3.3) and write

Zv − Zu =

∫ t

v

(〈Ss−vYv, h〉 − 〈Ss−uYu, h〉)ds−
∫ v

u

〈Ss−uYu, h〉ds
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=

∫ t

v

〈Ss−v δ̂Yv,u, h〉ds−
∫ v

u

〈Ss−uYu, h〉ds

=

∫ t

v

〈Ss−vSv−uY ′uXv,u + Ss−vR
Y
v,u, h〉ds−

∫ v

u

〈Ss−uYu, h〉ds

=

∫ t

v

〈Ss−uY ′u, h〉dsXv,u +

∫ t

v

〈Ss−vRYv,u, h〉ds−
∫ v

u

〈Ss−uYu, h〉ds

= Z ′uXv,u +RZv,u ,

where

RZv,u =

∫ t

v

〈Ss−vRYv,u, h〉ds−
∫ v

u

〈Ss−uYu, h〉ds−
∫ v

u

〈Ss−uY ′u, h〉ds .

Since ‖Y ‖∞,H and ‖Y ′‖∞,Hd0 are finite we see that the last two terms of RZ are bounded
by |v − u|(‖Y ‖∞,H + ‖Y ′‖∞,Hd0 )‖h‖. For the first term we have:∣∣∣ ∫ t

v

〈Ss−vRYv,u, h〉ds
∣∣∣ ≤ ∫ t

v

‖Ss−vRYv,u‖ ‖h‖ds .
∫ t

v

|s− v|−2γ‖RYv,u‖H−2γ
‖h‖ds

= |t− v|1−2γ |RY |2γ,−2γ |v − u|2γ‖h‖ . T 1−2γ |RY |2γ,−2γ |v − u|2γ‖h‖ ,

where we have used that 2γ < 1. One similarly shows that |Z ′|γ <∞.

We finish this subsection by extending Lemma 3.7 to functions that lose some space
regularity. Since the proof is identical to that of Lemma 3.7, we omit it.

Lemma 3.11. Let σ ≥ 0 and F ∈ C2
α,−σ(H,Hd) with all respective derivatives bounded.

Let T > 0 and (Y, Y ′) ∈ D2γ,2γ,0
S,X ([0, T ],Hα) for some (X,X) ∈ C γ([0, T ],Rd), γ ∈

(1/3, 1/2]. Then (Zt, Z
′
t) = (F (Yt), DF (Yt) ◦ Y ′t ) ∈ D2γ,2γ,0

S,X ([0, T ],Hdα−σ) and one has

‖(Z,Z ′)‖X,2γ,α−σ .F (1 + |X|γ)2(1 + ‖Y, Y ‖D2γ,2γ,0
S,X

)2.

3.3 Stability of integration and composition

First we will give a meaning to the “distance” between two controlled paths that are
controlled by two different rough paths. Then with the notion of these two distances we
will state the continuity of two maps: integration and composition.

Definition 3.12. For (Y, Y ′) ∈ D2γ
S,X([0, T ],Hmα ) and (V, V ′) ∈ D2γ

S,X̃
([0, T ],Hmα ) define a

distance:
dX,X̃,2γ,α(Y, V ) = ‖Y ′ − V ′‖γ,α + |RY −RV |2γ,α.

We also measure the distance between two functions (Y, Y ′) ∈ D2γ,β,η
S,X ([0, T ],Hmα ) and

(V, V ′) ∈ D2γ,β,η

S,X̃
([0, T ],Hmα ) with:

d2γ,β,η(Y, V ) = ‖Y ′ − V ′‖∞,α+β + ‖Y − V ‖η,α+β + dX,X̃,2γ,α(Y, V ).

We make an abuse of notation by not writing dependence of dX,X̃,2γ and d2γ,β,η on Y ′

and V ′.

For the next two lemmas we are going to assume with X, X̃, Y, V as above that there
exists M > 0 such that |X|γ , |X|2γ , ‖(Y, Y ′)‖D2ε,2γ,η

S,X
< M and the same is true for X̃ and

V . We are not presenting the proofs of the following stability results since the ideas
are exactly the same as in the proofs of their analogues Theorems 4.16 and 7.5 from
[FH14]. The modifications needed for our case only involve replacing the sewing lemma
by Lemma 2.4 and exploiting the fact that the regularity assumptions on F yield control
on commutators of the type F (St−sYs)− St−sF (Ys). These modifications were already
used to similar effect in the proofs of Theorem 3.5 and Lemma 3.7.
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Lemma 3.13. Let 1/3 < ε ≤ γ ≤ 1/2, 0 ≤ η < 3ε−2γ and X, X̃ ∈ C γ([0, T ],Rd). Consider
(Y, Y ′) ∈ D2ε,2γ,0

S,X ([0, T ],Hdα) and (V, V ′) ∈ D2ε,2γ,0

S,X̃
([0, T ],Hdα) that both satisfy the bounds

with respect to M as above. Define

(Z,Z ′) :=
(∫ ·

0

S·−uYudXu, Y
)
,

and similarly (W,W ′) as a rough integral of (V, V ′). Then the following local Lipschitz
estimates are true:

dX,X̃,2ε,α(Z,W ) .M %γ(X, X̃) + ‖Y ′0 − V ′0‖Hα + dX,X̃,2ε,α(Y, V )T γ−ε. (3.9)

‖Z −W‖η,α+2γ .M %γ(X, X̃) + ‖Y0 − V0‖Hα+2γ (3.10)

+ ‖Y ′0 − V ′0‖Hα+2γ
+ d2ε,2γ,0(Y, V )T γ−ε ,

with the underlying T -dependent constants uniform for T ≤ 1.

It may look like we are far from obtaining the stability result in the same Hölder
regularity as our rough path X, but here ε can be taken arbitrarily close to γ which itself
allows to take η arbitrarily close to ε. Note also that inequality (3.9) is true in spaces
D2ε
S,X and not just in D2ε,2γ,ε

S,X .

Lemma 3.14. Let X, X̃, 1/3 < ε ≤ γ ≤ 1/2 and η ∈ [0, 1]. Let (Y, Y ′) ∈ D2ε,2γ,η
S,X ([0, T ],Hα)

and (V, V ′) ∈ D2ε,2γ,η

S,X̃
([0, T ],Hα) satisfy the bounds with respect to M as above. Let σ ≥ 0

and F ∈ C3
α,−σ(H,Hd). Define

(Z,Z ′) := (F (Y ), DF (Y ) ◦ Y ′) and (W,W ′) := (F (V ), DF (V ) ◦ V ′).

Then the following local Lipschitz estimates are true:

d2ε,2γ,0(Z,W ) .M %γ(X, X̃) + ‖Y0 − V0‖Hα+2γ + d2ε,2γ,η(Y, V ) . (3.11)

Here d2ε,2γ,0(Z,W ) containsHα−σ andHα+2γ−σ spatial norms and d2ε,2γ,η(Y, V ) contains
Hα and Hα+2γ spatial norms.

4 Rough PDEs

We now use the results obtained in the previous section to solve RPDEs in the Hilbert
space H. First we consider equations without non-linear drift of the type

dYt = LYtdt+ F (Yt)dXt and Y0 = ξ ∈ H.

Here L is as above, F is a C3 function on H and X = (X,X) ∈ C γ(R+,R
d) (meaning

|X|γ,[S,T ] and |X|2γ,[S,T ] are finite for all intervals [S, T ]).

We will show that Lemma 3.7 and Theorem 3.5 guarantee that if (Y, Y ′)∈D2γ
X ([0, T ],H),

then

MT (Y, Y ′)t :=
(
Stξ +

∫ t

0

St−uF (Yu)dXu, F (Yt)
)

(4.1)

yields again an element of D2γ
X ([0, T ],H). We now show that for T small enough this map

has a unique fixed point:

Theorem 4.1 (Rough Evolution Equation). Given ξ ∈ H, F ∈ C3
−2γ,0(H,Hd) and X =

(X,X) ∈ C γ(R+,R
d), there exists τ > 0 and a unique element (Y, Y ′) ∈ D2γ

X ([0, τ),H)

such that Y ′ = F (Y ) and

Yt = Stξ +

∫ t

0

St−uF (Yu)dXu , t < τ. (4.2)
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Hörmander’s theorem for semilinear SPDEs

Proof. First note X = (X,X) ∈ C γ ⊂ C ε for 1/3 < ε < γ ≤ 1/2. Let T < 1 we will find
a solution (Y, Y ′) ∈ D2ε

X ([0, T ],H2ε−2γ) as a fixed point of the map MT given by (4.1).
Then in the end we will briefly describe that one can actually make an improvement
and show that (Y, Y ′) ∈ D2γ

X ([0, T ],H). The proof is analogous to [FH14, Thm 8.4], the
only difference being that we have two different scales of space regularity for which we
need to be able to obtain the bound (3.7). We will therefore show only invariance of the
solution map (4.1), because proving it already contains all the techniques that are not
present in the [FH14, Thm 8.4].

Any semi-norm ‖ · ‖X,2ε will be taken in the H−2γ space so sometimes we won’t
indicate this. Note that if (Y, Y ′) is such that (Y0, Y

′
0) = (ξ, F (ξ)) then the same is true

forMT (Y, Y ′). We can therefore viewMT as a map on the complete metric space:

{(Y, Y ′) ∈ D2ε
X : Y0 = ξ, Y ′0 = F (ξ)}.

This is also true for the closed unit ball BT centred at t → (Stξ + StF (ξ)Xt0, StF (ξ)) ∈
D2ε
X ([0, T ],H2ε−2γ). One can show using ‖(S·ξ + S·F (ξ)X·0, S·F (ξ))‖X,2ε,−2γ = 0 (since

that δ̂(S·ξ)t,s = 0) that in fact:

BT = {(Y, Y ′) ∈ D2ε
X ([0, T ],H2ε−2γ) : Y0 = ξ, Y ′0 = F (ξ),

‖Y − S·F (ξ)X·0‖ε,2ε−2γ + ‖Y ′ − S·F (ξ)‖∞,2ε−2γ + ‖(Y, Y ′)‖X,2ε ≤ 1} .

Note that by the triangle inequality for (Y, Y ′) ∈ BT we have

‖(Y, Y ′)‖D2ε
X
. (1 + ‖ξ‖+ ‖F (ξ)‖)(1 + |X|γ).

It remains to show that for T small enoughMT leaves BT invariant and is contracting
there, so that the claim follows from the Banach fixed point theorem. Constants below
denoted by C may change from line to line and depend on γ, ε,X,X and ξ without
mentioning. Nevertheless they are uniform in T ∈ (0, 1]. Without loss of generality
we assume that F is C3

b , since by definition of C3
−2γ,0(H,Hd) function F sends bounded

sets to bounded sets, which is the case for us since for (Y, Y ′) ∈ BT , both |Y |∞,2ε−2γ

and |Y ′|∞,2ε−2γ are uniformly bounded by a constant depending on ξ. For (Zt, Z
′
t) =

(F (Yt), DF (Yt) ◦ Y ′t ) we have by Lemma 3.7

‖(Z,Z ′)‖X,2ε ≤ CF (1 + ‖(Y, Y ′)‖D2ε
X

)2 ≤ CF (1 + ‖ξ‖+ ‖F (ξ)‖)2 ≤ CF,ξ ,

and from (3.6):

‖MT (Y, Y ′)‖X,2ε =
∥∥∥(∫ ·

0

S·−uZudXu, Z
)∥∥∥

X,2ε

. ‖Z‖ε,−2γ + (‖Z ′0‖H−2γ
+ ‖(Z,Z ′)‖X,2ε,−2γ)%ε(X)

. ‖Z‖ε,−2γ + (‖Z ′0‖H−2γ + ‖(Z,Z ′)‖X,2ε)T γ−ε.

Since (Y, Y ′) ∈ BT , we obtain from (3.3) that ‖Y ‖ε,−2γ ≤ (|X|γ + 1)T γ−ε. One can also
show along the same lines as in Lemma 3.7 that

‖δ̂Zt,s‖Hd−2γ
. CF ‖δ̂Yt,s‖H−2γ + CF ‖St−sYs − Ys‖H−2γ + |t− s|2ε‖F (Ys)‖H2ε−2γ

. CF
(
T γ−ε|t− s|ε + |t− s|2ε‖Ys‖H2ε−2γ

+ T ε|t− s|ε
)

. CF,ξ
(
T γ−ε + T γ+ε + T ε

)
|t− s|ε.

Therefore since T < 1 we conclude that ‖Z‖ε,−2γ . CF,ξT γ−ε, where CF,ξ is a constant
that also depends on initial condition.
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Hörmander’s theorem for semilinear SPDEs

To estimate ‖MT (Y ) − S·F (ξ)X·,0‖ε,2ε−2γ we use δ̂(S·F (ξ)X·,0)t,s = StF (ξ)Xt,s and
since 2ε < 1 we can use a better bound from (3.5) to deduce:

‖δ̂(MT (Y )− S·F (ξ)X·,0)t,s‖H2ε−2γ
=
∥∥∥∫ t

s

St−uF (Yu)dXu − StF (ξ)Xt,s

∥∥∥
H2ε−2γ

≤ (‖F (ξ)‖+ ‖Z‖∞,−2γ)|X|ε|t− s|ε + ‖Z ′‖∞,−2γ |X|2ε|t− s|2ε

+ C(|X|ε|RZ |2ε + |X|2ε‖Z ′‖ε)|t− s|3ε−2ε

. (‖F (ξ)‖+ |Z ′0|H−2γ + ‖(Z,Z ′)‖X,2ε)%ε(X)|t− s|ε ≤ CF,ξT γ−ε|t− s|ε.

Finally we estimate the term ‖MT (Y )′t − StF (ξ)‖H2ε−2γ
:

‖MT (Y )′t − StF (ξ)‖H2ε−2γ
=

= ‖F (Yt)− F (Stξ) + F (Stξ)− F (ξ) + F (ξ)− StF (ξ)‖H2ε−2γ

.F ‖Yt − Stξ‖H2ε−2γ + ‖Stξ − ξ‖H2ε−2γ + ‖F (ξ)− StF (ξ)‖H2ε−2γ

.F ‖Yt − Stξ − StF (ξ)Xt,0‖H2ε−2γ + ‖F (ξ)‖|X|γT γ

+ t2γ−2ε‖ξ‖+ t2γ−2ε‖F (ξ)‖
.F,ξ (‖Y − S·F (ξ)X·,0‖ε,2ε−2γT

ε + T γ + T 2γ−2ε) ≤ CF,ξT γ−ε.

Putting it all together we can get that

‖MT (Y )− S·F (ξ)X·,0‖ε,2ε−2γ+‖MT (Y )′ − S·F (ξ)‖∞,2ε−2γ + ‖MT (Y, Y ′)‖X,2ε
. CF,ξT

γ−ε.

If T is small enough we guarantee that the left hand side of the above expression is
smaller than 1, thus proving thatBT is invariant underMT . In order to show contractivity
ofMT , one can use analogous steps to first show

‖MT (Y, Y ′)−MT (V, V ′)‖D2ε
X
≤ CF,ξ‖(Y − V, Y ′ − V ′)‖D2ε

X
T γ−ε.

This guarantees contractivity for small enough T , completing the fixed point argument
and thus showing the existence of the unique maximal solution to (4.2).

Let now (Y, Y ′) ∈ D2ε
X ([0, T ],H2ε−2γ) be the solution constructed above, we sketch an

argument showing that in fact it belongs to D2γ
X ([0, T ],H). We know that

Yt = Stξ + StF (ξ)Xt,0 + StDF (ξ)F (ξ) +Rt,0, (4.3)

Yt − St−sYs = St−sF (Ys)Xt,s + St−sDF (Ys)F (Ys)Xt,s +Rt,s. (4.4)

Here Rt,s =
∫ t
s
St−rF (Yr)dXr − St−sF (Ys)Xt,s − St−sDF (Ys)F (Ys)Xt,s. From the esti-

mate on Rt,0 using (3.5) and since ξ ∈ H, we see that (4.3) implies Y ∈ L∞([0, T ],H).
Moreover (4.4) implies Y ∈ Ĉγ([0, T ],H−2γ) which, together with Y ∈ L∞([0, T ],H),
implies F (Y ) ∈ Ĉγ([0, T ],Hd−2γ) ∩ L∞([0, T ],Hd2ε−2γ). This itself implies that (Y, F (Y )) ∈
D2γ
S,X([0, T ],H−2γ) (using again (4.4)) and (F (Y ), DF (Y )F (Y )) ∈ D2γ

S,X([0, T ],H−2γ)

which enables us to get an estimate for every β < 3γ:

‖Rt,s‖Hα+β
.X ‖F (Y ), DF (Y )F (Y )‖X,2γ |t− s|3γ−β .

Taking β = 2γ and using (4.4) again we show that Y ∈ Ĉγ([0, T ],H), which completes the
proof that (Y, Y ′) ∈ D2γ

X ([0, T ],H).

For N satisfying the same assumptions as the nonlinearities Fi in Theorem 4.1, we
immediately get local solutions to equations of the type

dut = Lutdt+N(ut)dt+

d∑
i=1

Fi(ut)dX
i
t ,
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Hörmander’s theorem for semilinear SPDEs

for the rough path Xt = (X1
t , . . . , X

d
t ) ∈ C γ([0, T ],Rd) for γ ∈ (1/3, 1/2]. This is because

we can simply treat this equation as driven by the rough path X̃t = (X1
t , . . . , X

d
t , t).

However, we can do a bit better than that and obtain weaker assumptions on N .

Definition 4.2. Let k, n ∈ N0, we call a function N ∈ Ckα,β(H) to be of polynomial type n

and write N ∈ Polyk,nα,β(H) if for all σ ≥ α and 0 ≤ i ≤ k there exists Cσ,i > 0 such that for
all x, y ∈ Hσ

‖DiN(x)−DiN(y)‖L(H⊗iσ ,Hσ+β) ≤ Cσ,i‖x− y‖σ(1 + ‖x‖σ + ‖y‖σ)n−i−1 .

Theorem 4.3 (Rough Nonlinear PDE). Let γ ∈ (1/3, 1/2] and X = (X,X) ∈ C γ(R+,R
d).

Then, given ξ ∈ H, F ∈ C3
−2γ,0(H,Hd), and N ∈ Poly0,n

−κ,−δ(H) for some n ≥ 1, some

1−δ > γ and some small κ > 0, there exists τ > 0 a unique element (u, u′) ∈ D2γ
X ([0, τ),H)

such that u′ = F (u) and

ut = Stξ +

∫ t

0

St−rN(ur)dr +

∫ t

0

St−rF (ur)dXr , t < τ. (4.5)

We call such ut a mild solution to the Rough PDE:

dut = Lutdt+N(ut)dt+ F (ut)dXt and u0 = ξ ∈ H. (4.6)

Proof. The proof is almost identical to that of Theorem 4.1 once we can deal with the
non-linearity N . First we take ε ∈ (1/3, 1/2] so that ε < γ hence 1 − δ − ε > 0 by our
assumption on δ. For (u, u′) ∈ BT , we show that Vt =

∫ t
0
St−rN(ur)dr ∈ D2ε

X . This is

possible if we take V ′ = 0 and thus RV = δ̂V . Since the assumption 1 − δ > γ implies
δ < 2/3 it is possible to find β > 0 such that β ≤ δ and 1− 2ε > δ − β whence

‖Vt − St−sVs‖H−2γ
=
∥∥∥ ∫ t

s

St−rN(ur)dr
∥∥∥
H−2γ

.
∫ t

s

|t− r|β−δ‖N(ur)‖H−2γ+β−δdr . |t− s|2εT 1−δ+β−2ε(1 + ‖u‖∞,−2γ+β)n

. CF,N,ξ|t− s|2εT 1+β−δ−2ε.

We have used above that β ≤ δ < 2/3 ≤ 2ε and hence:

‖u‖∞,−2γ+β . ‖u‖∞,2ε−2γ ≤ ‖ξ‖+ ‖u‖ε,2ε−2γ . CF,ξ.

Here we need to further impose β − 2γ ≥ −κ (which is possible by an appropriate choice
of β) so that we can evaluate N(u) for u ∈ Hβ−2γ . Similarly to above we get

‖Vt − St−sVs‖ . |t− s|γT 1−δ−γ+(2ε−2γ)(1 + ‖u‖∞,2ε−2γ)n.

The last inequality serves two roles:
First, since ε < γ can be taken arbitrarily close to γ, it follows from 1− γ − δ > 0 that

for some σ > 0 we have

‖V ‖ε,2ε−2γ + ‖V ′‖∞,2ε−2γ + ‖(V, 0)‖X,2ε ≤ CF,N,ξTσ.

Together with the invariance estimates established in the proof of Theorem 4.1, we
conclude that the fixed point mapMT leaves BT invariant for sufficiently small T . This
bound also shows that ‖

∫ ·
0
S·−rN(ur)dr‖γ <∞ which is needed to prove that this solution

actually lives in D2γ
X .

The contractivity ofMT is obtained in a similar way, now using the local Lipschitz
property of N .
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Remark 4.4. Assumption N ∈ Poly0,n
−κ,−δ leads to a small problem when we want for

instance to take H = L2 because then N is nonlinear function that needs to act on
the space of distributions H−κ. One can actually remove this problem and show the
existence of the solution in D2γ

X for N ∈ Poly0,n
0,−δ. This can be achieved by first solving

the equation in the spaces

D2ε
S,X([0, T ],H−2γ) ∩

(
Ĉη([0, T ],H)× L∞([0, T ],Hd2ε−2γ)

)
,

for some η < ε < γ and then again show that all the regularities can be improved and
that the solution is indeed in D2γ

X ([0, T ],H). We decided to avoid this and not to use even
more norms on the different space time scales for simplicity.

Since we proved that D2γ,2γ,0
S,X = D2γ,2γ,0

X and since both integration and composition

with smooth functions preserves D2ε,2γ,0
X , one might ask why not to solve these equations

in D2γ,2γ,0
X or even in D2γ

X in the first place. First if we would solve our equations in
D2γ
X ([0, T ],H) with initial condition in H then we will run into problem of estimating the

term ‖Stξ − Ssξ‖H. This term would have to be bounded by |t− s|2γ which is not true for
general ξ ∈ H but true for ξ ∈ H2γ . This suggests that one must look for the solution
in the space like D2γ,2γ,0

X . We believe that this indeed can be done. This approach
would have an advantage that estimates on the composition with the regular function in
space D2γ,2γ,0

X automatically follows from the usual estimate on the control rough paths.
Nevertheless we decided to stick to the space D2γ,2γ,0

S,X because the operator δ̂ acts nicely

on the integrals of the form
∫ t

0
St−sYsdXs. Otherwise we would always have to deal with

estimating two kinds of expressions:
∫ t
s
St−rF (ur)dXr and

∫ s
0

(St−r − Ss−r)F (ur)dXr. In

conclusion, it seems that working in spaces D2γ,2γ,0
S,X and D2γ,2γ,0

X is essentially equivalent
but in one space it is easier to estimate integrals and in the other it is easier to estimate
composition with the functions.

4.1 Continuity of the solution map

In this subsection we are going to use stability results for integration and composition
in order to prove continuity of the solution map of the RPDEs (which in the classic
literature for solutions of RDE’s is called Itô-Lyons map).

Theorem 4.5 (Stability of solution to RPDE). Let γ ∈ (1/3, 1/2] and X, X̃ ∈ C γ . Let
ξ, ξ̃ ∈ H, let F ∈ C3

−2γ,0(H,Hd), and N ∈ Poly0,n
0,−δ(H) for some n ≥ 1 is a function of

polynomial type for some 1 − δ > γ. Define (u, F (u)) ∈ D2γ
X ([0, τ1),H) to be a maximal

solution to the RPDE:

dut = Lutdt+N(ut)dt+ F (ut)dXt , u0 = ξ ∈ H;

and (v, F (v)) ∈ D2γ

S,X̃
([0, τ2),H) to be a maximal solution of the same RPDE but driven by

the rough path X̃ and initial condition ξ̃. Assume that %γ(X) = |X|γ + |X|2γ < M and
‖ξ‖ < M and same with X̃ and ξ̃. Then for every 1/3 < ε < γ and 0 ≤ η < 3ε− 2γ there
exists time T < 1 ∧ τ1 ∧ τ2 such that for the following seminorm taken with respect to
this time T we have:

d2ε,2γ,η(u, v) ≤ CM (%γ(X, X̃) + ‖ξ − ξ̃‖). (4.7)

Moreover if both solutions are global (i.e. τ1 = τ2 =∞) then (4.7) holds for all T > 0.

Proof. Note that continuity of the solution is proven in a bit worse Hölder regularity, but
the space regularity remains the same. Moreover case when η = 0 is immediate by the if
we prove the case for η > 0 simply because d2ε,2γ,0(u, v) .T,η ‖ξ− ξ̃‖+d2ε,2γ,η(u, v). First
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we will take T small enough such that both solutions u and v satisfy for some constant
CF,N,ξ,ξ̃.

‖(u, F (u))‖D2γ
X
, ‖(v, F (v))‖D2γ

X̃

≤ CF,N,ξ,ξ̃.

The fact that such T exists was shown in the proof of invariance in Theorems 4.1 and 4.3.
This guarantees that all bounds with respect to M in Lemma 3.13 and Lemma 3.14 are
satisfied and moreover the right hand side of inequality (4.7) is independent of solutions u
and v. From now on we will use without further mentioning that ‖F (ξ)−F (ξ̃)‖ .F ‖ξ− ξ̃‖.

First let’s write Ut =
∫ t

0
St−rN(ur)dr and Vt =

∫ t
0
St−rN(vr)dr. Recall that RU = δ̂U

and RV = δ̂V and V ′ = U ′ = 0. Since N is locally Lipschitz then similarly as in
Theorem 4.3 we can show that we can pick a β > 0 such that 1 + β − δ − 2ε > 0 and:

d2ε,2γ,η(U, V ) = ‖U − V ‖η + ‖0− 0‖∞ + ‖0− 0‖ε,−2γ + |RU −RV |2ε,−2γ

. (T 1−δ−γ + T 1+β−δ−2ε)‖u− v‖∞(1 + ‖u‖∞ + ‖v‖∞)n−1

.M ‖ξ − ξ̃‖+ d2ε,2γ,η(u, v)Tσ;

for some σ > 0. In the last step we have used inequality ‖Y ‖∞ . ‖Y0‖+ ‖Y ‖ηT η and that

T ≤ 1. Denote Zt =
∫ t

0
St−rF (ur)dXr and Wt =

∫ t
0
St−rF (vr)dX̃r as well as Ξt = F (ut)

and Ξ̃t = F (vt). Note that Z ′ = Ξt and W ′ = Ξ̃t.

d2ε,2γ,η(Z,W ) = ‖Z −W‖η + ‖Ξ− Ξ̃‖∞ + dX,X̃,2ε(Z,W )

. %γ(X, X̃) + ‖ξ − ξ̃‖+ d2ε,2γ,0(Ξ, Ξ̃)T γ−ε + ‖Ξ− Ξ̃‖∞

. %γ(X, X̃) + ‖ξ − ξ̃‖+ d2ε,2γ,η(u, v)T γ−ε + ‖Ξ− Ξ̃‖∞.

We have used above Lemma 3.13 for the first inequality and Lemma 3.14 for the second
inequality. To deal with the term ‖Ξ− Ξ̃‖∞ we use

‖F (ut)− F (vt)‖ .F ‖ut − vt‖ . ‖ξ − ξ̃‖+ ‖u− v‖ηT η,

to finally deduce that for some potentially even smaller σ > 0:

d2ε,2γ,η(Z,W ) .F,M %γ(X, X̃) + ‖ξ − ξ̃‖+ d2ε,2γ,η(u, v)Tσ.

Now (u, F (u)) is a fixed point of the map:

MT (u, u′)t = (Stξ +

∫ t

0

St−rN(ur)dr +

∫ t

0

St−rF (ur)dXr, F (ut)) ∈ D2γ
X ([0, T ],H),

and similarly for (v, F (v)) with X̃. Putting the bounds on d2ε,2γ,η(Z,W ) and on
d2ε,2γ,η(U, V ) together we get:

d2ε,2γ,η(u, v) ≤ d2ε,2γ,η(Z,W ) + d2ε,2γ,η(U, V ) + ‖ξ − ξ̃‖
≤ CM

(
%γ(X, X̃) + ‖ξ − ξ̃‖+ d2ε,2γ,η(u, v)Tσ

)
.

If we take T = τ(M,F, ε, γ, η) sufficiently small such that CMTσ ≤ 1/2 then we get:

d2ε,2γ,η(u, v) ≤ 2CM (%γ(X, X̃) + ‖ξ − ξ̃‖).

Now if we know that both solutions (u, F (u)) and (v, F (v)) are global in time we can
iterate stability result 4.7 in order to obtain it for an arbitrary T > 0. This can be done
by investigating more carefully the proof of Theorems 4.1 and 4.3 and observing that the
inverse of time T0 within which invariance and contraction holds bounded from above by
some powers of %γ(X) and ‖ξ‖. This then allows to show that we can bound from above
the number of times we would need to iterate 4.7 to get to the time T .
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Next we state that for every global solution u with the noise X and initial condition ξ
there is a small ball around X and small ball around ξ such that for every noise X̃ and
initial condition ξ̃ inside these balls the size of solution v = v(X̃, ξ) is not much bigger
than the size of the solution u. Proof of the following proposition is quite standard and
again uses the iteration of 4.7.

Proposition 4.6. Let γ ∈ (1/3, 1/2] and X ∈ C γ ξ ∈ H and (u, F (u)) ∈ D2γ
X (R+,H) be a

global solution to (4.6) with F and N as in Theorem 4.5. Let T ∈ [0,∞) and assume that
‖u‖∞,[0,T ] ≤M and %γ,[0,T ](X) ≤ R for some M,R > 0. Then there exists σ = σ(M,R, T )

such that for all X̃ and ξ̃ with %γ(X, X̃) + ‖ξ − ξ̃‖ ≤ σ and for every 1/3 < ε < γ and
0 < η < 3ε − 2γ we have that the solution (v, F (v)) of the RPDE (4.6) with data (X̃, ξ̃)

satisfies:

d2ε,2γ,η(u, v) ≤ C(%γ(X, X̃) + ‖ξ − ξ̃‖), (4.8)

‖u− v‖η,[0,T ] ≤ C(%γ(X, X̃) + ‖ξ − ξ̃‖) and ‖v‖∞,[0,T ] ≤ 2‖u‖∞,[0,T ].

Constant C = C(M,R, T ) is locally bounded function in all three variables.

4.2 Solutions to SPDEs

First of all we define the spaces of controlled rough paths that are allowed to blow up
in finite time. For every Banach space V define a new Banach space V̄ = V t {∞}. The
topology on this space is induced by the basis containing open balls of V and the sets of
the form {v ∈ V : ‖v‖V ≥ N} t {∞} for every N > 0. Using this we define the space of
controlled rough paths that might blow up in finite time:

D̂2γ,β,0
S,X (R+,Hα) =

{
(u, u′) ∈ C(R+, H̄α+2γ)× C(R+, H̄dα+2γ) : ∃ τ > 0

(u, u′) �[0,τ)∈ D2γ,β,0
S,X ([0, τ),Hα), (ut, u

′
t) = (∞,∞) ∀t ≥ τ

}
.

The τ in the above definition is denoting a blow up time of (u, u′) and can be taken∞ for
the controlled rough paths which have finite D2γ,β,0

S,X norm on every compact interval.
All our analysis was purely deterministic so far. There is a wide class of Gaussian

processes that can be lifted almost surely to a rough path and thus our theory is giving
a pathwise notion of solution for such SPDEs driven by these Gaussian processes.
Equations that we are going to investigate are driven by Brownian motion and we now
briefly recall how one defines a Brownian rough path. The following definition requires
a proof, which can be found in [FH14].

Definition 4.7. (i) Let (Bt)t≥0 : Ω → Rd be a d-dimensional Brownian motion defined

on the probability space (Ω,F ,P) and define BItô
t,s :=

∫ t
s
δBr,s ⊗ dBr as an Itô integral.

Then ∀γ ∈ (1/3, 1/2) and T > 0 for a.e. ω ∈ Ω

BItô(ω) = (δB(ω),BItô(ω)) ∈ C γ([0, T ],Rd) .

(ii) In addition define BStrat
t,s = BItô

t,s + 1
2 (t− s)id then for a.e. ω ∈ Ω

BStrat(ω) = (δB(ω),BStrat(ω)) ∈ C γ
g ([0, T ],Rd) .

One would like to know that the rough integrals defined earlier against these Brown-
ian lifts coincide with Itô (resp. Stratonovich) integrals for a suitable class of integrands:

Proposition 4.8. Let (Bt)t≥0 : Ω→ Rd be a d-dimensional Brownian motion defined on
the filtered probability space (Ω, (Ft)t≥0,P) and let (Y, Y ′) ∈ D̂2ε,2γ,0

S,B (R+,H−2γ) be such
that (Y, Y ′) is adapted to the filtration (Ft)t≥0 and such that, for every L > 0 there exists
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a stopping time TL and L̂ > 0 such that ‖Yt‖ + ‖Y ′t ‖ ≤ L̂ almost surely for t ≤ TL. For
L > 0 and t > 0, set

ZLt =

∫ t

0

St−rYr1{r<TL}dBr , (4.9)

where the integral is an Itô integral. Then the process ZL has a continuous version (still
denoted by ZL) such that for any random time t(ω) with 0 ≤ t(ω) < TL(ω), the following
equality with the rough integral holds almost surely:

ZLt(ω)(ω) =

∫ t(ω)

0

St(ω)−rYr(ω)dBItô(ω). (4.10)

Proof. Existence of the Itô integral (4.9) follows from
∫ t

0
‖Ys‖21{r<TL} ds ≤ L̂2t and,

since TL is a stopping time, the integrand is adapted to the Brownian filtration. Let
Pn = {snk}∞k=0 be a sequence of increasing countable subsets of R+ such that

⋃
n Pn is

dense in R+ and snk < snk + 1 for all n, k ∈ N. Denote by πn = {[snk , snk+1] : snk ∈ Pn, k ∈ N}
the sequence of partitions formed from Pn and |πn| = supk≥1{|snk+1 − snk |} is the size of
partition. It follows that ZLt is defined as a limit in probability:

ZLt = lim
n→∞

∑
[u,v]∈πn
u<t

St−uYuδBv,u1{u<TL} , (4.11)

We can now extract a subsequence of partitions (which we still denote Pn) such that the
above limit holds almost surely. On the other hand, since (Y, Y ′) ∈ D̂2ε,2γ,0

S,B (R+,H−2γ),
the rough integral

Z̃Lt (ω) =

∫ t∧TL(ω)

0

St−rYr(ω)dBItô(ω),

exists and one can verify that it is equal to:

Z̃Lt = lim
n→∞

∑
[u,v]∈πn
u<t∧TL

(
St−uYuδBv,u + St−uY

′
uB

Itô
v,u

)
.

We can therefore easily see that for every t > 0 the L2(Ω) norm of the difference of these
two integrals is: ∣∣∣ZLt − Z̃Lt ∣∣∣

L2(Ω)
=
∣∣∣ lim
n→∞

∑
[u,v]∈πn
u<t∧TL

St−uY
′
uB

Itô
v,u

∣∣∣
L2(Ω)

. (4.12)

We will show now that the right hand side is zero. Define a (discrete time) martingale
started at Mn

0 = 0 and with increments Mn
k+1 −Mn

k = St−snkY
′
snk
1{snk<t∧TL}B

Itô
sk+1,snk

.

∣∣∣ ∑
[u,v]∈πn
u<t∧TL

St−uY
′
uB

Itô
v,u

∣∣∣2
L2(Ω)

=
∣∣∣ ∞∑
k=0

(Mn
k+1 −Mn

k )
∣∣∣2
L2(Ω)

=

∞∑
k=0

|Mn
k+1 −Mn

k |2L2(Ω)

. L̂2
∞∑
k=0

|BItô
snk+1,s

n
k
1{snk<t}|

2
L2(Ω) . L

2t|πn| .

We use the fact that all the infinite sums above are finite because of the presence of the
indicator function. Moreover the last inequality is true because the Brownian scaling
gives |BItô

v,u|2L2(Ω) . |v − u|
2. Since

⋃
n Pn is dense in R+ we have |πn| → 0 as n → ∞.

Therefore by Fatou’s lemma right hand side of (4.12) is indeed zero thus showing that
for all t > 0 we have almost surely ZLt = Z̃Lt . Now one can choose a continuous version
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of the Itô integral ZL which is still equal almost surely to Z̃Lt for every t > 0. We can
therefore evaluate ZLt at a random time 0 ≤ t(ω) < TL(ω) to deduce that the identity

ZLt(ω)(ω) = Z̃Lt(ω)(ω) =

∫ t(ω)

0

St(ω)−rYr(ω)dBItô(ω)

holds almost surely.

Before will now formalize the notion of a local in time solution for an Itô SPDE.

Definition 4.9. Let (Bt)t≥0 : Ω → Rd be a d-dimensional Brownian motion defined on
the filtered probability space (Ω, (Ft)t≥0,P). Let ξ ∈ H, δ ∈ [0, 1) and consider locally
Lipschitz continuous maps N : H → H−δ and F : H → Hd.

(i) A local mild solution to an Itô SPDE

dut = Lutdt+N(ut)dt+ F (ut)dBt , (4.13)

is a continuous stochastic process u together with the stopping time τ such that
almost surely on the event {t ≤ τ}, ut satisfies

ut = Stξ +

∫ t

0

St−sN(us)1{s<τ}ds+

∫ t

0

St−sF (us)1{s<τ}dBs , (4.14)

where the last integral is taken in the sense of Itô. We furthermore impose that
there exists L > 0 such that sup0≤t≤τ ‖ut‖ ≤ L almost surely.

(ii) We say (u, τ) is a maximal mild solution of (4.13) if limt→τ ‖ut‖ =∞ almost surely
and there exists a sequence of local mild solutions (un, τn) with increasing τn such
that limn→∞ τn = τ almost surely and unt = ut almost surely on {t < τn}.

Theorem 4.10. Let ξ ∈ H and functions F and N be as in Theorem 4.3. Let (Bt)t≥0 :

Ω→ Rd be a d-dimensional Brownian motion defined on the probability space (Ω,F ,P).
Then there exist random blow up times τ1, τ2 > 0 and controlled rough paths (u, F (u)) ∈
D2γ
B ([0, τ1),H), (v, F (v)) ∈ D2γ

B ([0, τ2),H) such that they are almost surely maximal solu-
tions of (4.5) with X replaced by BItô and BStrat respectively.

In addition the above solutions are adapted processes when viewed as elements of
D̂2ε,2γ,0
S,B

(
R+,H−2γ

)
. As a consequence the following holds:

(i) (u, τ1) is a maximal mild solution to the Itô SPDE:

dut = Lutdt+N(ut)dt+ F (ut)dBt , u0 = ξ ∈ H , (4.15)

(ii) (v, τ2) is a maximal mild solution to the Itô SPDE:

dvt = Lvtdt+
(
N(vt) + 1

2DF (vt)F (vt)
)
dt+ F (vt)dBt , u0 = ξ ∈ H . (4.16)

Proof. We first show the result for (u, F (u)). Local solution theory for (4.5) with X

replaced by almost every realization of BItô is provided by Theorem 4.3. The fact that τ1
is a stopping time is easy to verify. Note that the map

B �[0,t] 7→ (B,BItô) �[0,t]∈ C γ([0, t],Rd)

is measurable. For almost every ω and every t < τ1(ω), the solution (u, F (u)) ∈
D̂2ε,2γ,0
S,B

(
[0, t],H−2γ

)
to (4.5) is a continuous image of the noise (B,BItô) �[0,t]. View-

ing (ut(ω), F (ut(ω))) as an element of D̂2ε,2γ,0
S,B(ω)

(
R+,H−2γ

)
we deduce that is adapted

to
σ(Bs,r,B

Itô
s,r : 0 ≤ r ≤ s ≤ t) = σ(Bs : 0 ≤ s ≤ t) = Ft .
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Let L > 0 and define a stopping time TL = inf{t : ‖ut‖ ≥ L} then the local boundedness
of F implies that there exists L̂ > 0 such that almost surely for t < TL:

‖F (ut)‖+ ‖DF (ut)F (ut)‖ < L̂ . (4.17)

For t > 0 define the process uLt as:

uLt (ω) = Stξ +

∫ t

0

St−sN(us(ω))1{s<TL(ω)}ds+

∫ t

0

St−sF (us(ω))1{s<TL(ω)}dBs (ω) ,

where the existence of the Itô integral is guaranteed by an almost sure bound (4.17). By
definition of our notion of solution to (4.5), we furthermore know that, for any (random)
time t(ω) < TL(ω), one has the identity

ut(ω)(ω) = St(ω)ξ +

∫ t(ω)

0

St(ω)−sN(us(ω))ds+

∫ t(ω)

0

St(ω)−sF (us(ω))dBItô
s (ω) .

By Proposition 4.8 and equation (4.17), we conclude that, almost surely, ut(ω)(ω) =

uLt(ω)(ω), provided that we consider a continuous version of uL. This also shows that

(uL, TL) is a local mild solution of the Itô SPDE (4.15). Whenever ‖ut‖ is finite we can
always restart the equation (4.5) (with X replaced by BItô) with initial condition ut and
extend the solution further in time therefore almost surely TL → τ1 as L→∞. Moreover
TL clearly increases as L increases and uLt = ut on {t < TL} thus showing that (u, τ1) is
indeed a maximal solution of (4.15).

Regarding the solution (v, F (v)) the proof is the same once we notice that∫ t

0

St−sF (vs)dB
Strat
s =

∫ t

0

St−sF (vs)dB
Itô
s +

1

2

∫ t

0

St−sv
′
sds (4.18)

=

∫ t

0

St−sF (vs)dB
Itô
s +

1

2

∫ t

0

St−sDF (vs)F (vs)ds ,

and that all the above integrals make sense as elements of H. Then we apply Propo-
sition 4.8 again for the rough integral with respect to BItô in (4.18) and the result
follows.

Remark 4.11. Whenever one develops a new approach to solve SPDEs, it is natural to
ask that these solutions coincide with solutions given by other approaches, whenever
both apply. This theorem tells us that indeed this is true. For our results, this theorem
serves another role: it allows us to transfer properties known for the solutions to SPDEs
in Itô (or Stratonovich) form to the RPDE solution. This is useful since it might be simpler
to obtain a priori estimates, global existence and Malliavin differentiability for the SPDEs
rather than the corresponding RPDEs. For instance, global existence for almost every
realisation of Brownian motion for the Itô solutions can be used to show that continuity
of the solution map (4.7) is true for all T > 0.

4.3 Malliavin differentiability and the Jacobian

In this subsection we show the Malliavin differentiability of the solutions to RPDEs
driven by general Gaussian rough paths, using only that the solution does not blow
up in finite time. Unfortunately the method is non constructive and only gives the
knowledge that Malliavin derivative exists and lies in the Shigekawa-Sobolev space
D

1,2
loc. In particular, it does not automatically imply that this Malliavin derivative is a

controlled rough path itself and/or that it solves some RPDE. Nevertheless this is not
so important for our analysis since our main result regarding the non-degeneracy of
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the Malliavin matrix does not require Malliavin differentiability per se. This is due to
the fact that we will define Malliavin matrix only using the existence of linearisation of
solution. Moreover if say equation of our interest is driven by the Brownian motion and
we can show Malliavin differentiability then Malliavin derivative satisfies an SPDE and
therefore almost surely the RPDE by Theorem 4.10. This restriction to the Brownian
case is also performed because for general rough paths the a priori bounds are not easy
to obtain. Despite the fact that we will later simply assume the Malliavin differentiability
and won’t explicitly use Theorem 4.12 we still present it together with the proof as a
result on its own. Before we proceed, we quickly recall the Cameron-Martin theory for
general centred Gaussian rough paths.

Let Ω = C([0, T ],Rd) and let X : Ω× [0, T ]→ Rd be the a canonical centred Gaussian
process so that Xt(ω) = ω(t). The Gaussian law of X is completely determined by its
covariance function RX : [0, T ]2 → Rd×d. For p ≥ 1 define the 2D p-variation of R on a
rectangle I × I ′ ⊆ [0, T ]2 to be:

‖RX‖p,I×I′ :=
(

sup
P∈π(I)

P ′∈π(I′)

∑
[s,t]∈P

[s′,t′]∈P ′

|E[δXt,s ⊗ δXt′,s′ ]|p
)1/p

.

π(I) denotes here the partitions of I. Similarly one can define ‖RXi‖p,I×I′ . The Cameron-
Martin space CMT ⊂ C([0, T ],Rd) is a Hilbert space which consists of the paths vt =

E[ZXt] for Z lying in the first Wiener chaos W1 which is an L2-closure of span{Xi
t :

t ∈ [0, T ], 1 ≤ i ≤ d}. See [FH14, Chap. 10, 11] for the description of the regularity of
the Cameron Martin space and for precise conditions on the covariance function which
guarantee that X can be lifted almost surely to a rough path in a canonical way. In the
case when the Gaussian process is a Brownian motion, we have CMT = H1([0, T ],Rd) =

{h : h(0) = 0 & ∂th ∈ L2([0, T ],Rd)}.
For γ ∈ (1/3, 1/2) and a generic (X,X) ∈ C γ([0, T ],Rd) let h : [0, T ] → Rd be suffi-

ciently smooth, the translation operator of X in the direction v is defined by

Th(X) := (Xh,Xh),

for Xh = X + δh and

Xh
t,s = Xt,s +

∫ t

s

δhr,sdXr +

∫ t

s

Xr,sdhr +

∫ t

s

δhr,sdhr.

Here by sufficiently smooth we understand that all three integrals above make sense
classically and moreover makes the operator Th a continuous map C γ to itself. In fact it
is true for h ∈ H1. Moreover if X is the Brownian rough path (either Itô or Stratonovich)
we have that for almost every ω ∈ Ω and every h ∈ CMT we have:

Th(X(ω)) = X(ω + h). (4.19)

A similar result holds for a general Gaussian rough path with the regular enough
covariance.

Let X be a centred Gaussian rough path which almost surely lies in C γ with covari-
ance R and let CMT be its Cameron Martin space. Assume that for some p ∈ [1, 2) every
v ∈ CMT has finite p-variation ‖v‖p-var,[s,t] over the interval [s, t] ⊆ [0, T ] and it satisfies
an inequality:

‖h‖p-var,[s,t] .T,γ ‖h‖CMT
|t− s|γ . (4.20)

Then if X almost surely satisfies equality (4.19) it is easy to show that, almost surely for
every h ∈ CMT ,

‖Xh −X‖γ . ‖h‖CMT
and ‖Xh −X‖γ . ‖h‖CMT

(‖h‖CMT
+ ‖X‖γ). (4.21)
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We quickly recall the notion of Malliavin differentiability. Let (Ω, CM,P) be an abstract
Wiener space where CM is the Cameron-Martin space. For any Hilbert space H we say
that the random variable Y : Ω→ H is Malliavin differentiable if there exists a random
element DY : Ω→ CM⊗H such that for all h ∈ CM the limit in probability

〈DY, h〉CM = lim
ε→0

ε−1(TεhY − Y ),

exists. Here (ThY )(ω) = Y (ω + h). This gives rise to a closed unbounded linear operator

D : L2(Ω,H)→ L2(Ω, CM⊗H).

The domain of this operator is denoted by D1,2. If we denote by F the σ-algebra of
the Wiener space (Ω, CM,P) then we say that Y ∈ D1,2

loc if there exists a sequence
(Ωn, Yn)n≥1 ⊆ F ×D1,2 such that Ωn ↑ Ω and Y = Yn almost surely on Ωn. See the book
[Nua06] for an introduction to Malliavin Calculus.

Having all this at hand we are ready to present a general statement on the Malliavin
differentiability of the solution to the Stochastic RPDE driven by quite general Gaussian
rough path and given that this solution does not explode until some deterministic time T .

Theorem 4.12 (Malliavin differentiability). Let (Xt)t∈[0,T ] be a d-dimensional, continu-
ous Gaussian process with independent components defined on the probability space
(Ω,F ,P). Let the covariance R of X be such that there exist M <∞ and p ∈ [1, 2) such
that for i ∈ {1, . . . , d} and [s, t] ⊆ [0, T ],

‖RXi‖p,[s,t]2 ≤M |t− s|1/p.

Let γ ∈ ( 1
3 ,

1
2p ) and for almost every ω let (u(ω), F (u(ω))) ∈ D2γ

X(w)([0, τ(ω)),H) be a local
mild solution to the Stochastic RPDE:

dut(w) = Lut(w)dt+N(ut(w))dt+ F (ut(w))dXt(w), u0 = ξ ∈ H,

such that ‖u‖∞,[0,T ] <∞ almost surely. Then for all 0 ≤ t ≤ T the solution ut is Malliavin

differentiable and ut ∈ D1,2
loc.

Proof. Fix γ ∈ ( 1
3 ,

1
2p ), assumptions on the covarianceR guarantee (see [FH14, Chap. 10])

that there is a canonical lift of X to a rough path in C γ([0, T ],Rd) and that, for every
h ∈ CMT ,

‖h‖p-var,[s,t] ≤ ‖h‖CMT
|t− s|1/2p. (4.22)

Moreover for almost every ω ∈ Ω and every h ∈ CMT we have

Th(X(ω)) = X(ω + h) ,

where Th denotes the translation operator by h which is well-defined thanks to (4.22)
(see Theorem 10.4, Proposition 11.2 and Theorem 11.5 in [FH14]). Because of this last
property we will not distinguish between Th(X(ω)) and X(ω + h) and from now on we
will simply write ω + h to denote any of them, we also abuse the notation and simply
write X(ω) = ω. Fix t ∈ [0, T ] and define an event

Bn = {ω : ‖u(ω)‖∞,[0,T ] ≤ n/2, %γ(ω) ≤ n}.

Let ω ∈ Bn then from Proposition 4.6 we know that for such ω there exists a small
number σn (independent of ω and only dependent on n, ξ and the equation itself) such
that for all h ∈ Ω with %γ(ω + h, ω) ≤ σn we have ‖u(ω + h)‖∞,[0,T ] ≤ 2‖u(ω)‖∞,[0,T ].
Assume that ‖h‖CMT

≤ σ′n := σn
2n ∧ 1 then by (4.21) we have:

%γ(ω + h, ω) ≤ ‖h‖CMT
(‖h‖CMT

+ %γ(ω)) ≤ σ′n(1 + n) ≤ σn .
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This is showing that for the event

An = {ω : sup
‖h‖CMT

≤σ′n
‖ut(ω + h)‖ ≤ n, %γ(ω) ≤ n},

we have Bn ⊆ An and since ‖u‖∞,[0,T ] < ∞ almost surely we have that Bn ↑ Ω thus
implying An ↑ Ω. It is also possible to find a σ-compact set Gn ⊂ An such that An/Gn is
a null set. For A ∈ F we define:

ρA(ω) = inf{‖h‖CMT
: h ∈ CMT and ω + h ∈ A}.

Then define unt := φ(ρGn/σ
′
n)ut for φ ∈ C∞c (R) non-negative function such that |φ(t)| ≤ 1

and |φ′(t)| ≤ 4 for ∀t, φ(t) = 1 for |t| ≤ 1/3 and φ(t) = 0 for |t| ≥ 2/3. Then we have that
unt = ut on Gn and

‖unt ‖ ≤ 1
{ρGn≤

2σ′n
3 }
‖ut‖ ≤ n.

Thus let ‖h‖CMT
≤ σ′n/3 therefore:

‖unt (ω + h)− unt (ω)‖ ≤ ‖(φ(ρGn(ω + h)/σ′n)− φ(ρGn(ω)/σ′n))ut(ω + h)‖
+ ‖φ(ρGn(ω)/σ′n)(ut(ω + h)− ut(ω))‖.

For the second term we use Proposition 4.6 and equation (4.21) to deduce

‖φ(ρGn(ω)/σ′n)(ut(ω + h)− ut(ω))‖ .T,n 1
{ρGn≤

2σ′n
3 }

%γ(ω + h, ω) .T,n ‖h‖CMT
.

For the first term we proceed exactly as in Proposition 4.1.3 from [Nua06] to deduce
that for ‖h‖CMT

≤ σ′n/3

‖unt (ω + h)− unt (ω)‖ .T,n ‖h‖CMT
.

For the underlying constant which is deterministic and depends only on T, n, initial
condition and the equation itself. Exercise 1.2.9 in [Nua06] shows that such local
Lipschitz continuity guarantees that (Gn, u

n
t ) is the localizing sequence required for the

definition of D1,2
loc.

Assume now that F ∈ C∞−2γ,0(H,Hd), and N ∈ Poly∞,n0,−δ(H) for some n ≥ 1. We then
show that the Jacobian of the solution is related to the Malliavin derivative for RPDEs in
the same way as for SDEs. The unique mild RPDE solution to the equation (4.6) driven
by the geometric rough path X ∈ C γ

g and passing through the point us = ξ gives rise to

the solution flow Φξt,s(X) = (ut, u
′
t) up until the blow up time. More formally

Φ.,s : H× C γ
g ([s, T ])→ D̂2γ

X ([s, T ],H).

The space D̂2γ
X is defined similarly to the space D̂2γ,β,0

S,X from the previous subsection
and takes into account the fact that the solution may blow up before the time T . The
derivative of the flow with respect to the starting point is called the Jacobian and is
denoted by JXt,s.

JXt,sζ :=
d

dε
Φξ+εζt,s (X).

If X is a rough path lifted from a smooth path and we can show that the solution to (4.6)
is global for every initial condition then from classical theory of PDEs one can show (say
using implicit function theorem) that the Jacobian exists at every ζ ∈ H and will satisfy
linearised equation:

dJXt,sζ = LJXt,sζdt+DN(ut)J
X
t,sζdt+DF (ut)J

X
t,sζdXt, JXs,sζ = ζ. (4.23)
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Or in the mild form:

JXt,sζ = St−sζ +

∫ t

s

Sr−sDN(ur)J
X
r,sζdr +

∫ t

s

Sr−sDF (ur)J
X
r,sζdXr. (4.24)

From this representation and from the fact that (u, u′) is controlled by X we deduce that
if such JXt,sζ satisfies this equation then it is also controlled by X.

Consider also the directional derivative of the flow in the direction of the noise:

DhΦξt,0(X) =
d

dε
Φξt,0(TεhX).

For h sufficiently smooth. Once again if X is lifted from a smooth path and h is smooth
then classical PDE theory is telling us that DhΦξt,0(X) exists and that due to variation of
constants formula it satisfies:

DhΦξt,0(X) =

∫ t

0

JXt,sF (us)dhs.

The same passes to the geometric rough path in the limit:

Proposition 4.13. Let γ ∈ (1/3, 1/2] and X ∈ C γ
g ([0, T ],Rd). Assume that for F ∈

C∞−2γ,0(H,Hd), and N ∈ Poly∞,n0,−δ(H) solution to the equation (4.6) exists in D2γ
X ([0, T ],H)

for every initial condition ξ ∈ H. Let h ∈ Cp-var([0, T ],Rd) with complementary Young
regularity γ + 1/p > 1. Then for ∀ζ ∈ H both JXt,sζ DhΦξt,0(X) exist as elements of

D2γ
X ([0, T ],H), JXt,sζ satisfies RPDE (4.24) and this Duhamel’s formula holds:

DhΦξt,0(X) =

∫ t

0

JXt,sF (us)dhs, (4.25)

where the right hand side is well-defined as a Young integral.

Proof. We proceed like in the similar result for RDEs from [FH14]. Let Xn = Xc(Xn)

be canonical lift of a smooth path Xn such that Xn approximates X with supn %γ(Xn) ≤
%γ(X). Then the RPDE solution (un, F (u̇n)) to the equation (4.6) driven by Xn lies in
D2γ
Xn([0, T ],H) and converges to (u, F (u)) in the d2ε,2γ,η metric from the global continuity

result of Theorem 4.5. Now if we take a smooth approximation of h as well say hm then
from above we know that DhmΦξt,0(Xn) and JX

n

t,s ζ and equations (4.24) and (4.25) are
satisfied for these smooth approximations. Passing to a limit as n and m go to infinity we
obtain the desired result.

Definition 4.14. Assume that (4.6) has global solutions for every initial condition in H.
Then, for any t > 0, define the Malliavin matrix Mt : H → H by

〈Mtϕ,ϕ〉 =

∫ t

0

〈JXt,sF (us), ϕ〉2ds. (4.26)

4.4 Smoothing property of the solution

Due to the smoothing properties of the semigroup we expect that the solution is
going to have a better spatial regularity after some time. In fact we are going to show
that if we start our equation from ξ ∈ H then the solution immediately belongs to Hβ for
every positive β.

Proposition 4.15. Let γ ∈ (1/3, 1/2] and X ∈ C γ , ξ ∈ H. Let F and N be as in Theo-
rem 4.5 and (u, F (u)) ∈ D2γ

X ([0, T ],H) be a solution to the equation (4.6). Denote M :=

‖u‖∞,[0,T ] then for every 0 < t < T and β > 0 we have that (u, F (u)) ∈ D2γ
X ([t, T ],Hβ) and

moreover there exist σ = σ(δ, γ, β), CM = C(M,T, F,N,X) such that:

‖u‖∞,β,[t,T ] . t
−β‖u‖∞,[0,T ] + CMT

σ.
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Proof. From the mild formula of solution we get that:

ut = St−sus +

∫ t

s

St−rN(ur)dr +

∫ t

s

St−rF (ur)dXr,

then taking 0 < ν < γ we can deduce from the property of the semigroup and bounds on
rough integration:

‖ut‖Hν . |t− s|−ν‖us‖+ T 1−δ−σ(1 + ‖u‖∞,[0,T ])
n + %γ(X)‖(u, F (u))‖D2γ

X (H)T
γ−ν .

From the similar arguments of iteration as in Theorem 4.5 we can get that there exist
C ′M which is locally bounded in M such that ‖(u, F (u))‖D2γ

X (H)T
γ−ν < C ′M therefore we

indeed deduce that for all 0 ≤ s < t < T

‖ut‖Hν . |t− s|−νM + CMT
σ, (4.27)

where CM = %γ(X)C ′M + (1 +M)n and Tσ = T 1−δ−ν ∧T γ−ν . Thus since both functions F
and N act on Hν for ν > 0 the same way as on H we can now solve our equation with this
new initial condition ut ∈ Hν which from (4.27) satisfies ‖ut‖Hν ≤ C(t−νM + CMT

σ) =:

Mt (here constant C is the constant that is discarded by the . sign). This gives us that
there exists τ = τ(Mt) > 0 such that the solution map is invariant and a contraction
on the space D2γ

X ([t, t+ τ ],Hν) (or rather on some ball in this space). Thus we get that
(u, F (u)) ∈ D2γ

X ([t, t+ τ ],Hν). Now from (4.27) we get that all 0 ≤ s < t+ τ

‖ut+τ‖Hν . |t+ τ − s|−νM + CMT
σ.

Picking s = τ we get again ‖ut+τ‖Hν ≤ Mt and thus starting the equation from the
initial condition ut+τ and since τ only depended on Mt we can get the solution on
D2γ
X ([t + τ, t + 2τ ],Hν). Thus summarising we get (u, F (u)) ∈ D2γ

X ([t, t + 2τ ],Hν) with
again ‖ut+2τ‖Hν ≤Mt. Bootstrapping this further since τ > 0 is fixed we can get to time
T in finite number of these iterations and indeed get (u, F (u)) ∈ D2γ

X ([t, T ],Hν).
In order to prove this proposition for arbitrary β > ν > 0 denote t0 = tβ/ν and

M0 = M . Without loss of generality let β/η be an integer. Denote by M1 = ‖u‖∞,ν,[t0,T ]

thus from (4.27)
M1 . t

−ν
0 M0 + CM0

Tσ,

and we have our solution (u, F (u)) ∈ D2γ
X ([t0, T ],Hν). Therefore proceeding exactly the

same like in the beginning of the proof we get for all t0 ≤ s < r

‖ur‖H2ν
. |r − s|−νM1 + CM1

Tσ.

As a consequence we get the solution (u, F (u)) ∈ D2γ
X ([2t0, T ],H2ν) with M2 =

‖u‖∞,2ν,[2t0,T ]. Recursively we get for every n such that nt0<T , (u, u′)∈D2γ
X ([nt0, T ],Hnν)

and with Mn := ‖u‖∞,nν,[nt0,T ] we have the recursive inequality

Mn ≤ C(t−νMn−1 + CMn−1T
σ),

where we took into account that t = t0ν/β. Solving this recursive inequality we get that
for some other constants σ = σ(n) and CM = C(M,n) we have Mn . t−nνM + CMT

σ.
Picking n = β/ν we indeed get the result.

Note that we actually use in the proof that time interval on which the solution map is
contractive and invariant also depends on the norms of F and N which can be different
when acting on Hν for different values of ν. But since we want to make an improvement
of space regularity only by the finite amount β we can pick the largest value of the norms
of F and N only up to their action on Hβ .
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This smoothing property is going to help us to overcome the issue that solution
(u, F (u)) ∈ D2γ

X ([0, T ],H) to an RPDE lives in a space H−2γ as a controlled rough path
while just as a function of time ut ∈ H. This makes it difficult to investigate the properties
of ut in the Hilbert space H since in this space we cannot make an advantage of the fact
that u is actually a controlled rough path.

5 Rough Fubini theorem

In this section we will only work with the usual notion of the controlled rough path.
We consider a wide class of processes Yt,s which are controlled rough paths in both of
their time directions. For such processes double rough integral can be defined and we
will show when the order of integration can be swapped.

Definition 5.1. Let γ ∈ (1/3, 1/2] and X ∈ C γ . We say that the process Y : [0, T ] ×
[0, T ] → Rd×d is jointly controlled by X and write Y ∈ D2γ

2,X([0, T ]2,Rd×d) if for every
fixed s ∈ [0, T ] we have that Y·,s and Ys,· are both controlled rough paths with respect to
X. In this case we write:

Yv,s − Yu,s = Y 1
u,sXv,u +R1

v,u(s),

Yu,t − Yu,s = Y 2
u,sXt,s +R2

t,s(u).

Moreover we require for every fixed s ∈ [0, T ] that both Y 1
s,· and Y 2

·,s are controlled rough
paths such that Y 1,2 = Y 2,1, where we write:

Y 1
u,t − Y 1

u,s = Y 1,2
u,sXt,s +R1,2

t,s (u),

Y 2
v,s − Y 2

u,s = Y 2,1
u,sXv,u +R2,1

v,u(s).

Note that this also ensures that for every fixed 0 ≤ u ≤ v ≤ T both R1
v,u(·) and R2

v,u(·)
are controlled rough paths. This can be shown by verifying this nice formula:

R1
v,u(t)−R1

v,u(s)−R2,1
v,u(s)Xt,s = R2

t,s(v)−R2
t,s(u)−R1,2

t,s (u)Xv,u.

Denote any side of this equality by R(t, s, v, u). We call Y 1, Y 2 first order Gubinelli
derivatives and Y 1,2 second order Gubinelli derivatives. Strictly speaking, the whole
tuple (Y, Y 1, Y 2, Y 1,2) is an element of D2γ

2,X since Y 1, Y 2, Y 1,2 need not be unique.

We introduce the following seminorms: for any function Z : [0, T ]2 → Rd×d

‖Z‖∞,γ = sup
0≤s≤T

sup
0≤u<v≤T

|Zs,v − Zs,u|
|v − u|γ

; ‖Z‖γ,∞ = sup
0≤u≤T

sup
0≤s<t≤T

|Zt,u − Zs,u|
|t− s|γ

.

For function Q : [0, T ]3 → Rd×d that is written for times v, u, s like Qv,u(s) we write:

‖Q‖2γ,∞ = sup
0≤s≤T

sup
0≤u<v≤T

|Qv,u(s)|
|v − u|2γ

.

Now we consider Y ∈ D2γ
2,X([0, T ]2,Rd×d) with (Y, Y 1, Y 2, Y 1,2, R1, R2, R1,2, R2,1) as above.

|||Y 1,2|||γ = ‖Y 1,2‖∞,γ + ‖Y 2,1‖γ,∞,

‖Y ′‖γ = ‖Y 1‖γ,∞ + ‖Y 2‖∞,γ + |||Y 1,2|||γ

For convenience we write δR1,2
t,s (v, u) := R1,2

t,s (v) − R2,1
t,s (u) and δR2,1

v,u(t, s) := R2,1
v,u(t) −

R2,1
v,u(s) and denote:

|||R|||2γ,2γ = sup
0≤s<t≤T

sup
0≤u<v≤T

|R(t, s, v, u)|
|v − u|2γ |t− s|2γ

,
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|||R1,2|||γ,2γ = sup
0≤s<t≤T

sup
0≤u<v≤T

|δR1,2
t,s (v, u)|

|v − u|γ |t− s|2γ
,

|||R2,1|||2γ,γ = sup
0≤s<t≤T

sup
0≤u<v≤T

|δR2,1
v,u(t, s)|

|v − u|2γ |t− s|γ
,

The total norm of the remainder is then defined as

‖RY ‖2γ = ‖R1‖2γ,∞ + ‖R2‖2γ,∞ + ‖R1,2‖2γ,∞ + |||R1,2|||γ,2γ +

+ ‖R2,1‖2γ,∞ + |||R2,1|||2γ,γ + |||R|||2γ,2γ .

Finally putting it all together we can define a seminorms on D2γ
2,X([0, T ]2,Rd×d) by:

‖(Y, Y ′)‖X,2γ = ‖Y ′‖γ + ‖RY ‖2γ ,

and a norm

‖Y ;R‖D2γ
2,X

= |Y0,0|+ |Y 1
0,0|+ |Y 2

0,0|+ |Y
1,2
0,0 |+ ‖(Y, Y ′)‖X,2γ .

The following lemma about properties of the above seminorms is easy to verify.

Lemma 5.2. Let Z : [0, T ]2 → Rd×d be any function so that |||Z|||γ := ‖Z‖∞,γ + ‖Z‖γ,∞ is
finite. Then:

‖Z‖∞,∞ = sup
0≤s≤T

sup
0≤u≤T

|Zs,u| .T |Z0,0|+ |||Z|||γ .

Moreover for Y ∈ D2γ
2,X([0, T ]2,Rd×d) the following properties hold:

‖Y 1‖∞,γ .T (|Y 1,2
0,0 |+ |||Y 1,2|||γ)|X|γ + ‖R1,2‖2γ,∞,

‖Y 2‖γ,∞ .T (|Y 1,2
0,0 |+ |||Y 1,2|||γ)|X|γ + ‖R2,1‖2γ,∞,

‖Y ‖∞,γ .T (|Y 2
0,0|+ |||Y 2|||γ)|X|γ + ‖R2‖2γ,∞,

‖Y ‖γ,∞ .T (|Y 1
0,0|+ |||Y 1|||γ)|X|γ + ‖R1‖2γ,∞.

Example 1. Let K and H be Banach spaces and V ∈ D2γ
X ([0, T ]2,K), Z ∈ D2γ

X ([0, T ]2, H).
Let B : K × H → Rd×d be a bilinear map. Then defining Yu,s := B(Vu, Zs) we have
Y ∈ D2γ

2,X([0, T ]2,Rd×d). Moreover with the abuse of notation when B act on K ⊗Rd or

H ⊗Rd component wise:

Y 1
u,s = B(V ′u, Zs) Y 2

u,s = B(Vu, Z
′
s) Y 1,2

u,s = B(V ′u, Z
′
s)

R1
v,u(s) = B(RVv,u, Zs) R2

t,s(u) = B(Vu, R
Z
t,s) R1,2

v,u(s) = B(RVv,u, Z
′
s)

R2,1
t,s (u) = B(V ′u, R

Z
t,s) R(t, s, v, u) = B(RVv,u, R

Z
t,s) .

Later we will see a more sophisticated example where one cannot split Y so easily into
the inner product of two controlled rough paths.

First we will show that integrating the jointly controlled rough path along one of the
directions is creating a usual one time variable controlled rough path.

Lemma 5.3. Let X ∈ C γ([0, T ],Rd) and Y ∈ D2γ
2,X([0, T ],Rd×d). Then writing

(Vr, V
′
r ) :=

(∫ r

0

Yr,sdXs, Yr,r +

∫ r

0

Y 1
r,sdXs

)
,

(Zr, Z
′
r) :=

(∫ t

r

Ys,rdXs,−Yr,r +

∫ t

r

Y 2
s,rdXs

)
,

defines controlled rough paths V ∈ D2γ
X ([0, T ],Rd) and Z ∈ D2γ

X ([0, t],Rd).
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Proof. A straightforward computation shows that:

Vv − Vu =

∫ v

0

Yv,sdXs −
∫ u

0

Yu,sdXs =
(
Yu,u +

∫ u

0

Y 1
u,sdXs

)
Xv,u

+

∫ v

u

Y 1
u,sdXsXv,u +

∫ v

0

R1
v,u(s)dXs +

∫ v

u

(Yu,s − Yu,u)dXs

= V ′uXv,u +RVv,u.

Using assumptions on the uniform norms on Y 1 and R1 as well as bounds on the rough
integrals one can indeed show that |RVv,u| .Y,T |v − u|2γ and |δV ′v,u| .Y,T |v − u|γ . For Z
we have:

Zv − Zu =

∫ t

v

Ys,vdXs −
∫ t

u

Ys,udXs =
(
− Yu,u +

∫ t

u

Y 2
s,udXs

)
Xv,u

−
∫ v

u

Y 2
s,udXsXv,u +

∫ t

v

R2
v,u(s)dXs −

∫ v

u

(Ys,u − Yu,u)dXs

= Z ′uXv,u +RZv,u.

One can easily show that |RZv,u| .Y,t |v − u|2γ and |δZ ′v,u| .Y,t |v − u|γ .

Before we proceed we need a good notion of a smooth approximation of the jointly
controlled rough path with respect to the smooth approximation of the rough path. We
refer the reader to the paper [HK15] where the authors showed that

C γ([0, T ],Rd) ∼= C γ
g ([0, T ],Rd)⊕ C2γ([0, T ],Rd×d),

where C2γ ⊂ C2γ is a closure of smooth functions with respect to the 2γ-Hölder norm.
This means that for every X = (X,X) ∈ C γ([0, T ],Rd) there exists a unique Xg =

(X,Xg) ∈ C γ
g ([0, T ],Rd) and a unique f ∈ C2γ([0, T ],Rd×d) with f0 = 0 such that

Xt,s = X
g
t,s + δft,s . (5.1)

Having this decomposition one can show that for (Y, Y ′) ∈ D2γ
X ([0, T ],Rd) the following

integral formula holds: ∫ b

a

Ys dXs =

∫ b

a

Ys dX
g +

∫ b

a

Y ′s · dfs , (5.2)

and the second integral on the right hand side makes perfect sense as a Young’s integral,
where we understand the product Y ′s · dfs of two d × d matrices as a Frobenius inner
product: for A,B ∈ Rd×d set A ·B = tr(ATB).

Definition 5.4. Let X ∈ C γ([0, T ],Rd), we say that Y ∈ D2γ
2,X([0, T ]2,Rd×d) admits a

smooth approximation if there exist sequences Xn ∈ C∞([0, T ],Rd), fn∈C∞([0, T ],Rd×d)

and Y n ∈ D2γ
2,Xn([0, T ]2,Rd×d) such that for Xn = Xc(Xn) + (0, δfn) the following approx-

imations hold:

lim
n→∞

%γ(X,Xn) = 0 ,

lim
n→∞

|Y0,0 − Y n0,0|+ |Y 1
0,0 − Y

1,n
0,0 |+ |Y 2

0,0 − Y
2,n
0,0 |+ |Y

1,2
0,0 − Y

1,2,n
0,0 | = 0 ,

lim
n→∞

‖Y ′ − Y ′ n‖γ + ‖RY −RY,n‖2γ = 0 .

An example of Y that admits a smooth approximation can be Y from Example 1 since
both V and Z are the usual controlled rough paths by X and can be each smoothly
approximated.

EJP 24 (2019), paper 132.
Page 31/56

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP387
http://www.imstat.org/ejp/


Hörmander’s theorem for semilinear SPDEs

Remark 5.5. We sketch an argument on why a classical (one time variable) controlled
rough path V can always be smoothly approximated. To see this, one first shows that
the equality δVt,s = V ′sXt,s +RVt,s is equivalent to showing that V = V ′ ≺ X +U for some
U ∈ C2γ and ≺ denotes some sort of the paraproduct (which is a continuous bilinear map,
see [GIP15] for the definition and properties of the Bony paraproduct on the Fourier
space). This paraproduct ≺ can for example be defined by

f ≺ g =
∑
x,n

f(x)〈g, ψn,x〉ψn,x ,

where ψn,x is an L2-normalised wavelet basis. Then one will simply take a smooth
approximation of X say Xn and define V ′ n and Un by mollifying V ′ and U . Then
defining V n := V ′ n ≺ Xn + Un from continuity of the paraproduct ≺ one can then
show that (V n, V ′ n) converges to (V, V ′) in the rough path metric. Though this smooth
approximation of the classical rough path is not canonical we will see later on that for
our purposes we will only need an existence of some smooth approximation and we do
not care which particular one is it.

Since for Y ∈ D2γ
2,X([0, T ]2,Rd×d) we can integrate with respect to X in both of its

time directions, a natural question is if the order of integration matters. Even though
we believe that Fubini like theorem holds for every Y ∈ D2γ

2,X([0, T ]2,Rd×d) we only show
the proof for Y that can be smoothly approximated. For our purposes this is going to
be sufficient since we will apply these results later to a case similar to Example 1. First
we show how to swap the order of integration where the limits of the second integral
are time variables that are also integrated. It turns out that unlike for usual integration,
there is in general a correction term appearing for non-geometric rough paths. For the
purpose of clarity we use in this section notation for the rough integral using the bold
letter dX, reserving dX for Young integrals.

Theorem 5.6. Let γ ∈ (1/3, 1/2], X ∈ C γ([0, T ],Rd) and let Y ∈ D2γ
2,X([0, T ]2,Rd×d)

admit a smooth approximation. Then∫ t

0

∫ t

s

Yr,sdXrdXs +

∫ t

0

Ys,s · dfs =

∫ t

0

∫ r

0

Yr,sdXsdXr −
∫ t

0

Ys,s · dfs , (5.3)

where f is the C2γ function appearing in (5.1). In particular, note that one has a usual
change of order of integration in the case where X is geometric:∫ t

0

∫ t

s

Yr,sdXrdXs =

∫ t

0

∫ r

0

Yr,sdXsdXr . (5.4)

Proof. First note that all the double integrals are well-defined due to Lemma 5.3. We
will first prove the theorem for the case of geometric rough path and then will use
decomposition (5.1) in order to show the general case. Let’s call the left hand side
of (5.4) Lt and right hand side Rt. The main idea is of approximation. Basically we want
to show that:

Lt = lim
n→∞

∫ t

0

∫ t

s

Y nr,sdX
n
r dX

n
s = lim

n→∞

∫ t

0

∫ r

0

Y nr,sdX
n
s dX

n
r = Rt. (5.5)

Here Xn and Y n ∈ D2γ
2,Xn([0, T ]2,Rd×d) are as in the definition of smooth approximation.

Since we can take Xn to be geometric rough paths themselves then the middle equality
in (5.5) is perfectly valid. This because in the smooth and geometric case rough integrals
agree with the classical integrals for which the middle equality in (5.5) is certainly true.

It remains to establish the two other equalities. We will only show the third equal-
ity of (5.5). Once again since rough path Xn is smooth and geometric then all the

EJP 24 (2019), paper 132.
Page 32/56

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP387
http://www.imstat.org/ejp/
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rough integrals with respect to Xn are in fact the classical integral. We denote
Int =

∫ t
0

∫ r
0
Y nr,sdX

n
s dX

n
r =

∫ t
0

∫ r
0
Y nr,sdX

n
s dX

n
r , Vr =

∫ r
0
Yr,sdXs and V nr =

∫ r
0
Y nr,sdX

n
s .

From Lemma 5.3 both V and V n are controlled rough paths (respectively w.r.t. X and
Xn) and for Gubinelli derivative of V we write V̇r = Yr,r +

∫ r
0
Y 1
r,sdXs, and similarly

V̇ n (In fact here you can see why does Y 1 and Y 2 also have to be rough paths). First
write M = max{%γ(X), ‖(Y, Y ′)‖X,2γ}. Because of convergence we can guarantee that
eventually %γ(Xn) + ‖(Y n, Y ′ n)‖Xn,2γ ≤ 3M and so using stability of integration similar
to Lemma 3.13 we get:

|Rt − Int | ≤ tγ |R− I|γ
. %γ(X,Xn) + |V0 − V n0 |+ |V̇0 − V̇ n0 |+ dX,Xn,2γ(V, V n)

= %γ(X,Xn) + |V0 − V n0 |+ |V̇0 − V̇ n0 |+ |V̇ − V̇ n|γ + |RV −RV
n

|2γ .

Now first three terms clearly converges to 0 by approximation assumption. For the term
|V̇ − V̇ n|γ we can again use stability of integration and nice approximation assumption
on Y to deduce that |V̇ − V̇ n|γ → 0 as n→∞. We will show in more details on how to
treat |RV −RV n |2γ term. Therefore we have:

RVv,u −RV
n

v,u =

∫ v

u

Yv,sdXs − Yu,uXv,u −
∫ v

u

Y nv,sdX
n
s + Y nu,uX

n
v,u

+

∫ u

0

R1
v,u(s)dXs −

∫ u

0

R1,n
v,u(s)dXn

s .

The last two terms are bounded by

|
∫ u

0

R1
v,u(s)dXs −

∫ u

0

R1,n
v,u(s)dXn

s | ≤

≤ |R1
v,u(0)−R1,n

v,u(0)| |Xu,0|+ |R1,n
v,u(0)| |Xu,0 −Xn

u,0|
+ |R2,1

v,u(0)−R2,1,n
v,u (0)| |Xu,0|+ |R2,1,n

v,u (0)| |Xu,0 −Xn
u,0|+ u3γ |Ξnv,u|3γ .

Here |Ξnv,u|3γ = sup0≤s<t≤T
|Ξnv,u(t,s)|
|t−s|3γ with

Ξnv,u(t, s) = R(t, s, v, u)(Xt,s −Xn
t,s) + (R(t, s, v, u)−R(t, s, v, u)n)Xn

t,s

+ δR2,1
v,u(t, s)(Xt,s −Xn

t,s) + (δR2,1
v,u(t, s)− δR2,1,n

v,u (t, s))Xn
t,s.

We see that from approximation assumptions we indeed have

sup
0≤u<v≤T

|
∫ u

0
R1
v,u(s)dXs −

∫ u
0
R1,n
v,u(s)dXn

s |
|v − u|2γ

| → 0 as n→∞.

For the remaining terms in equality for RVv,u − RV
n

v,u we add and subtract Yv,uXv,u −
Y nv,uX

n
v,u. Then we use similar bounds for integrals to deduce:

|
∫ v
u
Yv,sdXs − Yu,uXv,u −

∫ v
u
Y nv,sdX

n
s + Y nu,uX

n
v,u|

|v − u|2γ
.M,T

.M,T %γ(X,Xn) + |Y 2
0,0 − Y

2,n
0,0 |+ ‖Y 2 − Y 2,n‖∞,γ + ‖R2 −R2,n‖∞,2γ .

All terms converge to zero by assumption and so we are done proving the third equality
in (5.5). Proving the first equality of (5.5) may seem to be more difficult since the integral
inside is also t dependent. But in fact it is easy to check that it plays almost no role but
requires a bit more computations similar to above. Thus we finish showing formula (5.3)
for the geometric rough path.
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For the non geometric rough path the middle equality of (5.5) is no longer true
because of the presence of the correction term f . In fact using the integral formula (5.2)
and Lemma 5.3, denoting by fn a smooth approximation of f we can show that:

V nr =

∫ r

0

Y nr,sdX
n
s =

∫ r

0

Y nr,sdX
n
s +

∫ r

0

Y 2,n
r,s · dfns ;

V̇ nr = Y nr,r +

∫ r

0

Y 1,n
r,s dX

n
s = Y nr,r +

∫ r

0

Y 1,n
r,s dX

n
s +

∫ r

0

Y 1,2,n
r,s · dfns ;∫ t

0

V nr Xn
r =

∫ t

0

V nr dX
n
r +

∫ t

0

V̇ nr · dfnr .

Using that
∫ t

0

∫ r
0
Y nr,sdX

n
s dX

n
r =

∫ t
0
V nr Xn

r and putting all the above formulas together we
get that:∫ t

0

∫ r

0

Y nr,sdX
n
s dX

n
r =

∫ t

0

∫ r

0

Y nr,sdX
n
s dX

n
r +

∫ t

0

∫ r

0

Y 1,n
r,s dXn

s · dfnr

+

∫ t

0

∫ r

0

Y 2,n
r,s dfns dX

n
r +

∫ t

0

∫ r

0

Y 1,2,n
r,s · dfns · dfnr +

∫ t

0

Y nr,r · dfnr .

Similarly:∫ t

0

∫ t

s

Y nr,sdX
n
r dX

n
s =

∫ t

0

∫ t

s

Y nr,sdX
n
r dX

n
s +

∫ t

0

∫ t

s

Y 2,n
r,s dXn

r · dfns

+

∫ t

0

∫ t

s

Y 1,n
r,s · dfnr dXn

s +

∫ t

0

∫ t

s

Y 2,1,n
r,s · dfnr · dfns −

∫ t

0

Y ns,s · dfns .

Therefore using Y 1,2 = Y 2,1 we get:∫ t

0

∫ t

s

Y nr,sdX
n
r dX

n
s +

∫ t

0

Y ns,s · dfns =

∫ t

0

∫ r

0

Y nr,sdX
n
s dX

n
r −

∫ t

0

Y ns,s · dfns .

Letting n go to infinity we indeed get (5.3).

Theorem 5.7 (Rough Fubini Theorem). Let γ ∈ (1/3, 1/2], X ∈ C γ([0, T ],Rd) and Y ∈
D2γ

2,X([0, T ]2,Rd×d) admitting a smooth approximation. Then for [s, t] ⊆ [0, T ] and [u, v] ⊆
[0, T ], one has the identity∫ t

s

∫ v

u

Yr,mdXrdXm =

∫ v

u

∫ t

s

Yr,mdXmdXr.

One can prove this theorem using the same argument of approximation and it is
even easier to show than the Theorem 5.6. Notice that when say in both integrals limits
of integration are from 0 to t then Theorem 5.7 is a corollary of Theorem 5.6. This is
because the controlled rough path (

∫ t
0
Yr,mdXm,

∫ t
0
Y 1
r,mdXm) is a sum of two controlled

rough paths (
∫ r

0
Yr,mdXm, Yr,r +

∫ r
0
Y 1
r,mdXm) and (

∫ t
r
Yr,mdXm,−Yr,r +

∫ t
r
Y 1
r,mdXm) for

every r ∈ [0, t]. Thus splitting the rough path (
∫ t

0
Yr,mdXr,

∫ t
0
Y 2
r,mdXr) similarly we get:∫ t

0

∫ t

0

Y r,mdXmdXr =

=

∫ t

0

∫ r

0

Yr,mdXmdXr −
∫ t

0

Ys,s · dfs +

∫ t

0

∫ t

r

Yr,mdXmdXr +

∫ t

0

Ys,s · dfs

=

∫ t

0

∫ t

m

Yr,mdXrdXm +

∫ t

0

Ys,s · dfs +

∫ t

0

∫ m

0

Yr,mdXrdXm −
∫ t

0

Ys,s · dfs

EJP 24 (2019), paper 132.
Page 34/56

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP387
http://www.imstat.org/ejp/


Hörmander’s theorem for semilinear SPDEs

=

∫ t

0

∫ t

0

Yr,mdXrdXm.

A natural question to ask is whether a double integral of Y ∈ D2γ
2,X([0, T ]2,Rd×d) is

itself an element of D2γ
2,X([0, T ]2,R). We give the answer below but we do not study this

question in much details since only Theorem 5.6 is needed for our purposes.

Lemma 5.8. Let γ ∈ (1/3, 1/2], X ∈ C γ([0, T ],Rd) and Y ∈ D2γ
2,X([0, T ]2,Rd×d) define:

Zt,v =

∫ t

0

∫ v

0

Ys,rdXrdXs.

Then Z ∈ D2γ
2,X([0, T ]2,R) and Z1

t,v =
∫ v

0
Yt,rdXr; Z2

t,v =
∫ v

0
Ys,vdXr; Z

1,2
t,v = Yt,v. Moreover

the map Y 7→ Z is continuous as a map D2γ
2,X([0, T ]2,Rd×d)→ D2γ

2,X([0, T ]2,R).

Remark 5.9. One can easily generalise the above results to functions in more time
variables, giving rise to a generalised spaces D2γ

k,X([0, T ]k,Rd
k

) for k ∈ N. Another
approach of defining the double integral is the approach of so called “Rough sheets”
introduced in [CG14]. However, to best of our knowledge, no statement like Theorem 5.6
is known for Rough sheets.

It will also be useful to be able to rough integrals with usual Riemann integrals. Let
Y : [0, T ]2 → Rd be a process such that for each fixed s ∈ [0, T ], Y·,s ∈ D2γ

X ([0, T ],Rd) is a
controlled rough path and Ys,· ∈ C([0, T ],Rd) is a continuous function. For such Y we say
that it admits a smooth approximation if there exist sequences Xn ∈ C∞([0, T ],Rd), fn ∈
C∞([0, T ],Rd×d) like in Definition 5.4 and Y n : [0, T ]2 → Rd such that for each fixed
s ∈ [0, T ], Y n·,s ∈ D2γ

Xn([0, T ],Rd) and Y ns,· ∈ C([0, T ],Rd) such that

lim
n→∞

sup
0≤s≤T

(|Y0,s − Y n0,s|+ |Y ′0,s − Y
′ ,n
0,s |+ dX,Xn,2γ(Y·,s, Y

n
·,s)) = 0 ,

where Xn is a smooth function such that %γ(X,Xn) → 0 as n → ∞. The following
theorem can then be proved using the same method as Theorem 5.6.

Theorem 5.10. Let γ ∈ (1/3, 1/2], X ∈ C γ([0, T ],Rd). Let Y : [0, T ]2 → Rd be such that
for each fixed s ∈ [0, T ], Y·,s ∈ D2γ

X ([0, T ],Rd) and Ys,· ∈ C([0, T ],Rd). Assume that Y
admits a smooth approximation as described above. Then we can perform the following
exchange of the integrals:∫ t

0

∫ t

s

Yr,sdXrds =

∫ t

0

∫ r

0

Yr,sdsdXr.

Note that no correction term with f from decomposition (5.1) arise in this case.
This is because in the left hand side the rough integrand has a Gubinelli derivative Y 1

r,s

(meaning in the first time variable) and the rough integrand in the right hand side has a
Gubinelli derivative

∫ r
0
Y 1
r,sds which will not create any correction terms when proving

the analogue of the middle equality of (5.5).

6 Weak formulation and Itô’s formula for RPDEs

In this section we are going to give an equivalent notion of solution for (4.6) –
the weak solution. Recall that in Theorem 4.1 where we obtain solutions to the fixed
point problem (4.2), we used the spaces D2ε,2ε,ε

S,X ([0, T ],H−2γ) for 0 < ε < γ in order
to obtain suitable bounds on the term ‖F (ut) − StF (ξ)‖H2ε−2γ

. On the other hand, the
right hand side of (4.2) makes sense as an element of H for any controlled rough path
(u, u′) ∈ D2γ,2γ,0

S,X ([0, T ],H−2γ). This motivates us to give the following notions of solution:
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Definition 6.1. Let γ ∈ (1/3, 1/2] and X = (X,X) ∈ C γ(R+,R
d). Let ξ ∈ H, F ∈

C2
−2γ,0(H,Hd), and N ∈ Poly0,n

0,−δ(H) for some n ≥ 1 and 1 − δ > γ. We say that

(u, F (u)) ∈ D2γ,2γ,0
S,X ([0, T ],H−2γ) is a mild solution of the equation

dut = Lutdt+N(ut)dt+ F (ut)dXt and u0 = ξ ∈ H ,

if, for each 0 ≤ t ≤ T , the following identity holds:

ut = Stξ +

∫ t

0

St−rN(ur)dr +

∫ t

0

St−rF (ur)dXr .

We say that (u, F (u)) ∈ D2γ,2γ,0
S,X ([0, T ],H−2γ) is a weak solution if for every h ∈ H1 and

0 ≤ t ≤ T the following integral formula holds:

〈ut, h〉 = 〈u0, h〉+

∫ t

0

〈us, Lh〉ds+

∫ t

0

〈N(us), h〉ds+

∫ t

0

〈F (us), h〉dXs . (6.1)

Note that since N(us) ∈ H−δ and δ < 2/3, 〈N(us), h〉 is well-defined. Moreover,
since 2γ < 1 and therefore H1 ⊆ H2γ , Proposition 3.10 guarantees that 〈F (us), h〉 is

a controlled rough path in the classical sense and the integral
∫ t

0
〈F (us), h〉dXs is well-

defined. We are going to prove that these two notions of solution are in fact equivalent.
To prepare this proof, we have the following preliminary result:

Lemma 6.2. Let X ∈ C γ([0, T ],Rd) for γ ∈ (1/3, 1/2]. Then for every h ∈ H and
(Y, Y ′) ∈ D2γ,2γ,0

S,X ([0, T ],Hd−2γ) we have for each 0 ≤ t ≤ T :∫ t

0

〈
∫ s

0

Ss−rYrdXr, h〉ds =

∫ t

0

∫ t

r

〈Ss−rYr, h〉ds dXr.

Proof. First note that by Remark 5.5 and since by Proposition 3.9 D2γ,2γ,0
S,X = D2γ,2γ,0

X ,
we can find a smooth approximation of (Y, Y ′), meaning that there exists a sequence of
Xn = (Xn,Xn) ∈ C γ with Xn smooth such that %γ(X,Xn)→ 0 as n→∞ and a sequence
(Y n, Y ′ n) ∈ D2γ,2γ,0

S,Xn ([0, T ],Hd−2γ) such that

d2γ,2γ,0(Y, Y n)→ 0 as n →∞.

By Proposition 3.10, Wn
t,r =

∫ t
r
〈Ss−rY nr , h〉ds is a controlled rough path with respect to

Xn and Wt,r =
∫ t
r
〈Ss−rYr, h〉ds is a controlled rough path with respect to X. Therefore

the following integrals can be defined in the rough path sense: Znt =
∫ t

0
Wn
t,rdX

n
r ,

Zt =
∫ t

0
Wt,rdXr. (The fact that W also depends on t does not cause any difficulties in

defining the integral). Similar arguments as in the proof of Theorem 5.6 allow us to
deduce that

‖Z − Zn‖∞,[0,T ] . (d2γ,2γ,0(Y, Y n) + %γ(X,Xn))‖h‖ → 0 as n → ∞ ,

thus Zn → Z uniformly in time. Moreover we know from the stability of integration
Lemma 3.13 that for V ns =

∫ s
0
Ss−rY

n
r dX

n
r and Vs =

∫ s
0
Ss−rYrdXr we have:

‖V n − V ‖∞,H . d2γ,2γ,0(Y, Y n) + %γ(X,Xn)→ 0 as n → ∞ .

It is easy to see that smoothness of Xn implies
∫ t

0
〈V ns , h〉ds = Znt and thus:∣∣∣ ∫ t

0

〈
∫ s

0

Ss−rYrdXr, h〉ds−
∫ t

0

∫ t

r

〈Ss−rYr, h〉ds dXr

∣∣∣ =

=
∣∣∣ ∫ t

0

〈Vs, h〉ds−
∫ t

0

〈V ns , h〉ds+ Znt − Zt
∣∣∣ ≤ ∫ t

0

|〈Vs − V ns , h〉|ds+ |Znt − Zt| ≤

≤ T‖V n − V ‖∞,H‖h‖+ ‖Z − Zn‖∞,[0,T ] → 0 as n → ∞ ,

therefore showing the result.
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With this at hand:

Theorem 6.3. In the sense of Definition 6.1, mild and weak solutions are equivalent.

Proof. Without loss of generality we can assume in both cases that ξ = 0 by replacing
(u, F (u)) by (u+ S·ξ, F (u)) (using δ̂S·ξ = 0).
Mild ⇒ Weak. Assume also for simplicity that N = 0 since dealing with the drift term
term is easier than with the diffusion term F . Now let (u, F (u)) ∈ D2γ,2γ,0

S,X ([0, T ],H−2γ)

satisfy for 0 ≤ t ≤ T

ut =

∫ t

0

St−sF (us)dXs .

Let h ∈ H1 be arbitrary. Then taking the inner product with Lh and integrating from 0 to
t gives∫ t

0

〈us, Lh〉ds =

∫ t

0

〈
∫ s

0

Ss−rF (ur)dXr, Lh〉ds =

∫ t

0

∫ t

r

〈Ss−rF (ur), Lh〉ds dXr

=

∫ t

0

〈F (ur),

∫ t

r

Ss−r(Lh)ds〉dXr

=

∫ t

0

〈F (ur), St−rh〉dXr −
∫ t

0

〈F (ur), h〉dXr ,

where we used Lemma 6.2 in the second equality together with Lh ∈ H. To conclude, it
suffices to note that by Proposition 3.10 〈F (ur), St−rh〉 = 〈St−rF (ur), h〉 is itself a rough
path and therefore∫ t

0

〈F (ur), St−rh〉dXr = 〈
∫ t

0

St−rF (ur)dXr, h〉 = 〈ut, h〉 .

Weak ⇒ Mild. The proof is almost identical to the standard proof for SPDEs and can be
found either in [Hai09] or [DPZ14].

The next lemma is a slight generalisation of Theorem 6.3, but it has exactly the same
proof, so we omit it.

Lemma 6.4. Let σ ≥ 0, α ∈ R. Let (u, u′) ∈ D2γ,2γ,0
S,X ([0, T ],Hα−2γ) and (v, v′) =

(v, F (u)) ∈ D2γ,2γ,0
S,X ([0, T ],Hα−2γ−σ) satisfy the following weak equation for every h ∈

H1−α+σ:

〈vt, h〉 = 〈v0, h〉+

∫ t

0

〈vs, Lh〉ds+

∫ t

0

〈N(us), h〉ds+

∫ t

0

〈F (us), h〉dXs. (6.2)

Here F ∈ C2
α−2γ,0(H,Hd), and N ∈ Poly0,n

α,−δ(H) is of polynomial type for some n ≥ 1 and
1− δ > γ. Then the following mild formula holds in Hα−σ:

vt = Stv0 +

∫ t

0

St−rN(ur)dr +

∫ t

0

St−rF (ur)dXr. (6.3)

Moreover the converse is also true: (6.3) implies (6.2) for every h ∈ H1−α+σ.

Note that h ∈ H1−α+σ guarantees that 〈vs, Lh〉 is well-defined because of vs ∈ Hα−σ
and Lh ∈ H−α+σ.

A particularly important case is the choice vt = A(ut) for some regular function A ∈
C2
α−2γ,−σ(H). By Lemma 3.11, for every (u, u′) ∈ D2γ,2γ,0

S,X ([0, T ],Hα−2γ), we then have

(A(u)), DA(u)u′) ∈ D2γ,2γ,0
S,X ([0, T ],Hα−2γ−σ). The question we want to ask is whether

A(ut) satisfies some mild formula like (6.3)? Before we answer this question we recall
the definition of the bracket of a rough path:
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Definition 6.5. Let V be a Banach space and X ∈ C γ([0, T ], V ), then its bracket is given
by [X]t = Xt,0 ⊗Xt,0 − 2Sym(Xt,0).

From Chen’s relation (3.1) it follows that

δ[X]t,s = Xt,s ⊗Xt,s − 2Sym(Xt,s) ,

and therefore [X] ∈ C2γ([0, T ], V ). In particular [X] = 0 if and only if X is a geometric
rough path. Moreover the above implies that [X]t = −2Sym(ft) where f ∈ C2γ is as in
the decomposition (5.1). For example [BItô]t = t and [BStrat]t = 0 almost surely. Now
for a moment assume that [X] = 0 so that there is no “Itô correction” and we can just
apply the chain rule. Assume that A is Fréchet differentiable and u formally satisfies an
equation dut = Lutdt+N(ut)dt+ F (ut)dXt. Then heuristically we have:

d(A(ut)) = DA(ut)dut = DA(ut)Lutdt+DA(ut)N(ut)dt+DA(ut)F (ut)dXt

= LA(ut)dt+
(
DA(ut)N(ut) + [L,A](ut)

)
dt+DA(ut)F (ut)dXt.

Here for any two differentiable functions G ∈ C1
α1,β1

(H), H ∈ C1
α2,β2

(H) we define the
Lie bracket

[G,H](u) := DH(u)G(u)−DG(u)H(u) ∈ Cα1∨α2,β1+β2
(H) .

Since L is linear, we have DL(u) = L for each u ∈ Hα, therefore [L,A](ut) = DA(ut)Lut−
LA(ut). Writing Ñ(u) = DA(u)N(u) + [L,A](u) and F̃ (u) = DA(u)F (u) then on a formal
level A(ut) solves

d(A(ut)) = L(A(ut))dt+ Ñ(ut)dt+ F̃ (ut)dXt.

This suggests that A(ut) satisfies the identity

A(ut) = StA(u0) +

∫ t

0

St−rÑ(ur)dr +

∫ t

0

St−rF̃ (ur)dXr.

Before showing this result for the mild formulation rigorously we state a weak version of
it:

Theorem 6.6 (Weak Itô formula). Let γ ∈ (1/3, 1/2], X ∈ C γ , σ ≥ 0, and α ∈ R. Let
(u, u′) ∈ D2γ,2γ,0

S,X ([0, T ],Hα−2γ) and (v, F (u)) ∈ D2γ,2γ,0
S,X ([0, T ],Hα−2γ−σ) be such that (6.2)

holds for every h ∈ H1−α+σ with F and N as stated there. Then, for every ν ≥ 0 and
A ∈ C2

α−2γ−σ,−ν(H), one has (A(v), DA(v)F (u)) ∈ D2γ,2γ,0
S,X ([0, T ],Hα−2γ−σ−ν) and the

following identity holds for every h ∈ H1−α+σ+ν :

〈A(vt), h〉 = 〈A(v0), h〉+

∫ t

0

〈DA(vs)Lvs +DA(vs)N(us), h〉ds+

+

∫ t

0

〈DA(vs)F (us), h〉dXs +
1

2

∫ t

0

〈D2A(vs)(F (us), F (us)), h〉d[X]s. (6.4)

Proof. Without loss of generality we only consider the case σ = 0. By Proposition 3.9,
(v, v′) = (v, F (u)) ∈ D2γ,2γ,0

X ([0, T ],Hα−2γ) ⊂ D2γ
X ([0, T ],Hα−2γ) and by the mild represen-

tation of Lemma 6.4 it satisfies:

vt − vs = F (us)Xt,s +DF (us)F (us)Xt,s +Rt,s.

Setting v′t = F (ut) and v′′t = DF (ut)F (ut), we note that

(G,G′) = (DA(v)v′, D2A(v)(v′, v′) +DA(v)v′′)

is itself a controlled rough path in D2γ
X ([0, T ],Hα−2γ−ν). As in [FH14, Remark 4.11],

one can define Vt,s =
∫ t
s
(vr − vs) ⊗ dvs ∈ C2γ

2 (Hα−2γ ⊗ Hα−2γ), yielding a rough path
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v = (v,V) ∈ C γ(Hα−2γ). From now on we are going to omit writing ⊗ and always
understand say φψ for two elements of some Hilbert space φ and ψ as their tensor
product φ⊗ ψ. By Itô’s formula for rough paths [FH14, Prop. 5.6] we have that:

δA(v)t,0 = A(vt)−A(v0) = lim
|P|→0

∑
[m,r]∈P

(DA(vm)δvr,m +D2A(vm)Vr,m)

+
1

2
lim
|P|→0

∑
[m,r]∈P

D2A(vm)δ[v]r,m. (6.5)

With convergence in Hα−2γ−ν . Now one can show that δ[v]r,m = v′mv
′
mδ[X]r,m+o(|r−m|)

and using that Vr,m = v′mv
′
mXr,m + o(|r −m|) we can take an inner product of (6.5) with

h ∈ H1−α+ν on both sides we get:

〈δA(v)t,0, h〉 = lim
|P|→0

∑
[m,r]∈P

〈DA(vm)(δvr,m) +
(
D2A(vm)v′mv

′
m

)
Xr,m, h〉

+
1

2
lim
|P|→0

∑
[m,r]∈P

〈D2A(vm)v′mv
′
m, h〉δ[X]r,m

= lim
|P|→0

∑
[m,r]∈P

Ir,m + lim
|P|→0

∑
[m,r]∈P

IIr,m. (6.6)

The second term in this expression converges to 1
2

∫ t
0
〈D2A(vs)(v

′
s, v
′
s), h〉d[X]s, inter-

preted as a Young integral. Since v′s = F (us), this gives the very last term in (6.4).

To deal with the first term in (6.6), note that for a fixed value of m, one has
〈DA(vm)δvr,m, h〉 = 〈δvr,m, DA∗(vm)h〉 with DA∗(vm)h ∈ H1−α, so that we can apply (6.2)
for fixed m, yielding

〈DA(vm)δvr,m, h〉 =

=

∫ r

m

〈vs, LDA∗(vm)h〉ds+

∫ r

m

〈N(us), DA
∗(vm)h〉ds

+

∫ r

m

〈F (us), DA
∗(vm)h〉dXs

= 〈vm, LDA∗(vm)h〉(r −m) + 〈N(um), DA∗(vm)h〉(r −m)

+ 〈F (um)Xr,m +DF (um)F (um)Xr,m, DA
∗(vm)h〉+ o(|r −m|)

= 〈DA(vm)Lvm +DA(vm)N(um), h〉(r −m)

+ 〈DA(vm)v′mXr,m +DA(vm)v′′mXr,m, h〉+ o(|r −m|).

We conclude that one has

Ir,m = 〈DA(vm)Lvm +DA(vm)N(um), h〉(r −m)

+ 〈GmXr,m +G′mXr,m, h〉+ o(|r −m|).

Since (G,G′) is a controlled rough path, we then obtain

lim
|P|→0

∑
[m,r]∈P

Ir,m =

∫ t

0

〈DA(vs)Lvs +DA(vs)N(us), h〉ds+ 〈
∫ t

0

GsdXs, h〉.

We conclude by recalling that
∫ t

0
GsdXs =

∫ t
0
DA(vs)v

′
sdXs =

∫ t
0
DA(vs)F (us)dXs.

Finally we state the main result of this section:
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Theorem 6.7 (Mild Itô formula). Let γ ∈ (1/3, 1/2], X ∈ C γ , σ ≥ 0, and α ∈ R. Let
(u, u′) ∈ D2γ,2γ,0

S,X ([0, T ],Hα−2γ) and let (v, F (v)) ∈ D2γ,2γ,0
S,X ([0, T ],Hα−2γ−σ) be related to

u through

vt = Stv0 +

∫ t

0

St−rN(ur)dr +

∫ t

0

St−rF (ur)dXr ,

with F and N as in Lemma 6.4. Then, for any ν ≥ 0 and A ∈ C2
α−2γ,−ν(H), we have

(A(v), DA(v)F (u)) ∈ D2γ,2γ,0
S,X ([0, T ],Hα−2γ−σ−ν) and the following mild Itô formula holds:

A(vt) = StA(v0) +

∫ t

0

St−r(DA(vr)N(ur) + [L,A](vr))dr (6.7)

+

∫ t

0

St−rDA(vr)F (ur)dXr +
1

2

∫ t

0

St−rD
2A(vr)(F (ur), F (ur))d[X]r.

Proof. By Lemma 6.4, equation (6.2) holds for (v, F (u)), so that (6.4) holds for every
h ∈ H1−α+σ+ν by Theorem 6.6. We now make use of the fact that

〈DA(vs)Lvs +DA(vs)N(us), h〉 = 〈LA(vs), h〉+ 〈DA(vs)N(us) + [L,A](vs), h〉
= 〈A(vs), Lh〉+ 〈DA(vs)N(us) + [L,A](vs), h〉,

where 〈[L,A](vs), h〉 makes sense since [L,A](vs) ∈ Hα−σ−ν−1 and h ∈ H1−α+σ+ν . Thus
we get the following weak equation:

〈A(vt), h〉 = 〈A(v0), h〉+

∫ t

0

〈A(vs), Lh〉ds+

∫ t

0

〈DA(vs)N(us) + [L,A](vs), h〉ds

+

∫ t

0

〈DA(vs)F (us), h〉dXs +
1

2

∫ t

0

〈D2A(vs)(F (us), F (us)), h〉d[X]s,

which itself implies the mild formula (6.7) by Lemma 6.4 and the fact that the last
integral is well-defined as a Young integral.

7 Backwards RPDEs

We will briefly describe the method of solving rough backwards PDEs of the form:

dvt = −Lvtdt−N(vt)dt− F (vt)dXt , vT = ξ ∈ H. (7.1)

For short we call them backwards RPDEs. We will quickly describe the theory of
backwards controlled rough paths according to the semigroup. In many instances,
the proofs of the results are virtually identical to the corresponding ones for forward
controlled rough paths, so we do not give them. We introduce an increment operator
δ̌ : C1 → C2

δ̌ft,s = St−sft − fs ,
for a semigroup S acting on a Banach space V . (We will actually assume that S consists
of selfadjoint operators on some Hilbert space H.) With this, we define a Hölder like
space

Čγ = {f ∈ C1 : |δ̌f |γ,V <∞} ,
and we endow it with a seminorm |||f |||γ,V = |δ̌f |γ,V and a norm ‖f‖Čγ = |||f |||γ,V + ‖fT ‖V .
(We could have replaced ‖fT ‖V by ‖f‖∞,V , which yields an equivalent norm.)

Definition 7.1. Let X ∈ C γ([0, T ],Rd) for some γ ∈ (1/3, 1/2] and let m ∈ N. We say
that (Y, Y ′) ∈ Čγ([0, T ],Hmα )× Čγ([0, T ],Hm×dα ) is backwards controlled by X according
to the semigroup (St)t≥0 if the remainder term defined through

RYt,s = δ̌Yt,s − St−sY ′tXt,s ,

is an element of C2γ
2 Hmα .
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This defines a space of controlled rough paths (according to the semigroup)

(Y, Y ′) ∈ D2γ
S,X,←([0, T ],Hmα ).

We endow this space with a semi-norm (omitting d and m for notational convenience)

‖Y, Y ′‖2γ,X,α = |||Y ′|||γ,α + |RY |2γ,α.

It is easy to see that the space D2γ
S,X,←([0, T ],Hmα ) is a Banach space with norm:

‖Y, Y ′‖D2γ
S,X,←

= ‖YT ‖Hmα + ‖Y ′T ‖Hm×dα
+ ‖Y, Y ′‖2γ,X,α.

Here the endpoint YT plays the same role as the starting point for forward controlled
rough paths. This is justified by the inequality ‖Y ‖∞ .T ‖YT ‖ + |||Y |||γ . This also
corresponds to the fact that for backwards RPDEs we don’t know the initial condition
but rather the terminal condition.

Similarly as for forward controlled rough paths for β ∈ R and η ∈ [0, 1] define a space

D2γ,β,η
S,X,←([0, T ],Hα) := D2γ

S,X,←([0, T ],Hα) ∩
(
Čη([0, T ],Hα+β)× L∞([0, T ],Hdα+β)

)
.

We introduce a norm on this space to be:

‖(Y, Y ′)‖D2γ,β,η
S,X,←

= ‖YT ‖Hα+β
+ ‖Y ′‖∞,α+β + |||Y |||η,α+β + ‖(Y, Y ′)‖2γ,X,α.

Here we also make an abuse of notation by writing Č0 = L∞ for η = 0. Similarly to
Lemma 3.7, composition with regular functions maps the space D2γ,2γ,η

S,X,← ([0, T ],Hα) to

D2γ,2γ,0
S,X,← ([0, T ],Hα) for every η ∈ [0, 1].

For (Y, Y ′) ∈ D2γ
S,X,←([0, T ],Hdα) an integral

∫ T
t
Sr−tYrdXr can be defined and(∫ T

·
Sr−·YrdXr, Y

)
∈ D2γ

S,X,←([0, T ],Hα).

Moreover, results analogous to Theorem 3.5, Lemma 3.7, and Theorem 4.5 are true
and their proofs are almost the same. The main difference is that the role of the initial
condition Y0 is now played by the terminal condition YT . We can now state a theorem
regarding solutions to backwards equations of the type arising in (7.1).

Theorem 7.2 (Nonlinear backwards RPDEs). Let γ ∈ (1/3, 1/2] and X = (X,X) ∈
C γ(R+,R

d). Then, given ξ ∈ H, F ∈ C3
−2γ,0(H,Hd), and N ∈ Poly0,n

0,−δ(H) for some n ≥ 1

and 1 − δ > γ, there exists τ ≥ 0 and a unique element (v, v′) ∈ D2γ,2γ,γ
S,X,← ((τ, T ],H−2γ)

such that v′ = F (v) and

vt = ST−tξ +

∫ T

t

Sr−tN(vr)dr +

∫ T

t

Sr−tF (vr)dXr , vT = ξ ∈ H.

We call the pair (v, F (v)) the mild local solution to the backwards RPDE

dvt = −Lvtdt−N(vt)dt− F (vt)dXt and vT = ξ ∈ H.

For a weak solution approach to both forward and backward rough PDEs we refer
the reader to [DFS17].

One can show that all the continuity results of Section 4.1 are true for backwards
RPDEs. The same is true for a smoothing result analogous to Proposition 4.15, except
that smoothing now takes place away from the terminal point vT = ξ. One can show that
solutions to backwards RPDEs coincide with solutions to backwards SPDEs in the case of
Brownian motion. From now on, we will assume that we are in the setting of Theorem 7.2
with choices of L, N , F and X such that one can choose τ = 0, so that solutions exist (and
are unique) on the whole of [0, T ]. The following proposition establishes a connection
between the forward and backward controlled rough paths.
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Proposition 7.3. Let γ ∈ (1/3, 1/2] and X ∈ C γ([0, T ],Rd). Let α, β be such that α +

β + 2γ ≥ 0 and let (V, V ′) ∈ D2ε,2γ,0
S,X ([0, T ],Hα) and (Z,Z ′) ∈ D2ε,2γ,0

S,X,← ([0, T ],Hβ). Then,
setting

Yt := 〈Vt, Zt〉 and Y ′t := 〈V ′t , Zt〉+ 〈Vt, Z ′t〉 ,

we have (Y, Y ′) ∈ D2ε
X ([0, T ],R) with bound

|(Y, Y ′)|X,2ε .T (1 + |X|γ)‖V, V ′‖D2ε,2γ,0
S,X

‖Z,Z ′‖D2ε,2γ,0
S,X,←

. (7.2)

Proof. The proof is a straightforward computation where we use the fact that St is a
selfadjoint operator on H for any time t ≥ 0. By the definition of controlled rough path

〈Vt, Zt〉 − 〈Vs, Zs〉 = 〈Vt, Zt〉 − 〈St−sVs, Zt〉+ 〈Vs, St−sZt〉 − 〈Vs, Zs〉
= (〈St−sV ′s , Zt〉+ 〈Vs, St−sZ ′t〉)Xt,s + 〈RVt,s, Zt〉+ 〈Vs, RZt,s〉.

Now

〈St−sV ′s , Zt〉+ 〈Vs, St−sZ ′t〉 = Y ′s + 〈V ′s , St−sZt − Zs〉+ 〈Vs, St−sZ ′t − Z ′s〉.

We can therefore write

RYt,s = 〈RVt,s, Zt〉+ 〈Vs, RZt,s〉+
(
〈V ′s , St−sZt − Zs〉+ 〈Vs, St−sZ ′t − Z ′s〉

)
Xt,s.

The bound (7.2) is then an easy consequence of decomposition above. The requirement
on exponents α and β is necessary since we want to bound terms like:

|〈RVt,s, Zt〉| ≤ ‖RVt,s‖Hα‖Zt‖Hβ+2γ
and |〈Vs, RZt,s〉| ≤ ‖Vs‖Hα+2γ

‖RZt,s‖Hβ .

Here we need α+ β + 2γ ≥ 0 so that we can use the Cauchy-Schwarz inequality.

We just showed that the inner product of a forward controlled rough path with a
backward controlled rough path is a controlled rough path in the usual sense. Assuming
that these controlled rough paths solve respectively some RPDE and backwards RPDE
in the mild sense, we can ask ourselves whether their inner product also satisfies an
integral equation. It turns out that this is true and this inner product in fact solves an
RDE:

Proposition 7.4. Let 1/3 < ε < γ < 1/2 and X ∈ C γ([0, T ],Rd). Let δ ≤ 1 and si-
multaneously α + β + 4γ − δ ≥ 0 and α + β + 2γ ≥ 0. Let V ∈ D2ε,2γ,0

S,X ([0, T ],Hα) and

Z ∈ D2ε,2γ,0
S,X,← ([0, T ],Hβ) satisfy on [0, T ] the mild forward and backward equations

Vt = StV0 +

∫ t

0

St−rNrdr +

∫ t

0

St−rFrdXr,

Zt = ST−tZT +

∫ T

t

Sr−tÑrdr +

∫ T

t

Sr−tF̃rdXr,

for some F ∈ D2ε,2γ,0
S,X ([0, T ],Hdα), F̃ ∈ D2ε,2γ,0

S,X,← ([0, T ],Hdβ), as well as functions N ∈
L∞([0, T ],Hα+2γ−δ), Ñ ∈ L∞([0, T ],Hβ+2γ−δ).

Then Yt := 〈Vt, Zt〉 ∈ D2ε
X ([0, T ],R) is a controlled rough path that satisfies the

following integral formula:

Yt = 〈V0, Z0〉+

∫ t

0

(〈Ns, Zs〉 − 〈Vs, Ñs〉)ds+

∫ t

0

(〈Fs, Zs〉 − 〈Vs, F̃s〉)dXs

+2

∫ t

0

〈Fs, F̃s〉 · dfs , (7.3)
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where the function f ∈ C2γ([0, T ],Rd×d) is the one appearing in the decomposition (5.1)
of the rough path X. In particular, if X is geometric and Ñ , F̃ are the adjoints of N and
F , then Yt is constant in time:

Yt = 〈V0, Z0〉 = 〈YT , ZT 〉 for every t ∈ [0, T ].

Proof. Note that the assumptions on α, β and δ are necessary for all the integrals in (7.3)
to make sense. (If δ = 1 we only need the assumption α + β + 4γ − δ ≥ 0). We will
assume that N = Ñ = 0 since the drift term dt is even simpler to treat than the dXt term.
(Note though that Theorem 5.10 needs to be used at some point to swap the order of
integration in integrals of the type

∫ t
0

∫ t
s
〈Nr, Sr−sF̃s〉 dr dXs). Using the mild equations

for Vt and Zt we get:

Yt − Y0 = 〈Vt − StV0, Zt〉+ 〈V0, StZt − Z0〉

=
〈∫ t

0

St−rFrdXr, Zt

〉
−
〈
V0,

∫ t

0

SrF̃rdXr

〉
.

We can move the inner products inside the integration by examining the proof of the
Sewing Lemma, Theorem 2.4, and ideas similar to Proposition 3.10. Since S is selfadjoint,
we get:

Yt − Y0 =

∫ t

0

(〈Fr, Zr〉 − 〈Vr, F̃r〉)dXr +Rt.

We will show that Rt = 2
∫ t

0
〈Fs, F̃s〉 · dfs for every t, which then implies the result. One

has the identity

Rt =

∫ t

0

〈Fr, St−rZt − Zr〉dXr +

∫ t

0

〈Vr − SrV0, F̃r〉dXr

= −
∫ t

0

〈
Fr,

∫ t

r

Ss−rF̃sdXs

〉
dXr +

∫ t

0

〈∫ r

0

Sr−sFsdXs, F̃r

〉
dXr

= −
∫ t

0

∫ t

r

〈Fr, Ss−rF̃s〉dXsdXr +

∫ t

0

∫ r

0

〈Sr−sFs, F̃r〉dXsdXr.

Setting Wr,s = 〈Fs, Sr−sF̃r〉, we would like to show that one can apply our version of
Fubini’s theorem, Theorem 5.6. We are almost in the situation of Theorem 5.6: the only
difference is that Wr,s is defined only for r ≥ s because of the presence of the semigroup
Sr−s. But if one examines the proof of Theorem 5.6, one can see that we can always
require that r ≥ s in our computations. Here we have

W 1
r,s = 〈F ′s, Sr−sF̃r〉; W 2

r,s = 〈Sr−sFs, F̃ ′r〉; W 1,2
r,s = 〈Sr−sF ′s, F̃ ′r〉.

The remainders R1, R2, R1,2, R2,1 are also easy to determine. Since by Remark 5.5 both
F and F̃ admit a smooth approximation then so does Wr,s in the sense of Definition 5.4.
Thus we can indeed swap the integrals for Wr,s like in Theorem 5.6, deducing:∫ t

0

∫ t

r

〈Fr, Ss−rF̃s〉dXsdXr +

∫ t

0

〈Fs, F̃s〉 · dfs =

=

∫ t

0

∫ r

0

〈Sr−sFs, F̃r〉dXsdXr −
∫ t

0

〈Fs, F̃s〉 · dfs.

We conclude that Rt = 2
∫ t

0
〈Fs, F̃s〉 · dfs and hence we are done.
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7.1 Adjoint of the Jacobian

From now on for simplicity we denote the Jacobian of the solution to the (4.6) by Jt,s,
omitting the reference to the noise X. In the later results we would like to use the adjoint
of the Jacobian of the solution J∗t,s. For instance, this appears in the expression for the

Malliavin matrix 〈Mtϕ,ϕ〉 =
∫ t

0
〈F (us), J

∗
t,sϕ〉ds. It would then be useful to know that J∗t,s

also solves an RPDE. Unfortunately, having a mild formulation for Jt,s is not enough to
deduce a mild formulation for J∗t,s. Therefore we go the other way around: we ‘guess’ an
equation for J∗t,s and then show that the solution to this equation is indeed the adjoint of
the Jacobian. In fact it will be more convenient to work with the backwards equation
for the adjoint. This is because Proposition 7.4 then gives us an explicit expression for
〈Jr,sϕ, J∗t,rψ〉 for any ψ,ϕ ∈ H. A natural guess is to take a backwards analogue of (4.23)
where we formally take adjoints of the linear maps DN and DF , so that our ansatz for
J∗t,s is:

dJ∗t,s = −LJ∗t,sds−DN∗(us)J∗t,sds−DF ∗(us)J∗t,sdXs, J∗t,t = id .

The next proposition shows that this guess is indeed correct.

Proposition 7.5. Let X ∈ C γ
g ([0, T ],Rd×d) be a geometric rough path. Let (u, F (u)) ∈

D2γ
X ([0, T ],H) be the solution to (4.6) with F and N as in Proposition 4.13. For every

t ∈ [0, T ] and every ϕ ∈ H, let (Kt,·,K
′
t,·) := (Kt,·, DF

∗(u·)Kt,·) ∈ D2γ,2γ,γ
S,X,← ([0, t],H−2γ) be

the solution to the backwards equation

Kt,sϕ = St−sϕ+

∫ t

s

Sr−sDN
∗(ur)Kt,rϕdr +

∫ t

s

Sr−sDF
∗(ur)Kt,rϕdXr. (7.4)

Then K is the adjoint of the Jacobian: Kt,s = J∗t,s for all 0 ≤ s ≤ t ≤ T .

Proof. We want to show that 〈Jt,sϕ,ψ〉 = 〈ϕ,Kt,sψ〉 for all ϕ,ψ ∈ H. Set Yr=〈Jr,sϕ,Kt,rψ〉
and note that thanks to the smoothing property of the solutions, Proposition 4.15, the
regularity assumptions of Proposition 7.4 are satisfied for (Yr, Y

′
r ) ∈ D2γ

X ([s+ ε, t− ε],R)

for all ε > 0. Moreover, since X is geometric, Yt satisfies the equation

Yr = Ys+ε +

∫ r

s+ε

(〈DN(uv)Jv,s,Kt,v〉 − 〈Jv,s, DN∗(uv)Kt,v〉)dv

+

∫ r

s+ε

(〈DF (uv)Jv,s,Kt,v〉 − 〈Jv,s, DF ∗(uv)Kt,v〉)dXv = Ys+ε.

Since the terms inside the integrals cancel each other, we have Yt−ε = Ys+ε, i.e.

〈Jt−ε,sϕ,Kt,t−εψ〉 = 〈Js+ε,sϕ,Kt,s+εψ〉.

But from the mild representation of Kt,r and Jr,s, we see that both of these lie in the
space C([s, t],H) as functions of the r variable. We can therefore take the limit of the
above expression as ε goes to zero to obtain:

〈Jt,sϕ,Kt,tψ〉 = 〈Js,sϕ,Kt,sψ〉.

Recalling that Js,sϕ = ϕ and Kt,tψ = ψ, we get the desired result.

Proposition 7.6. Let X ∈ C γ
g ([0, T ],Rd) and γ ∈ (1/3, 1/2]. Let (u, F (u)) ∈ D2γ

X ([0, T ],H)

be the solution to (4.6) with F and N as in Proposition 4.13. Let Kt,s be the adjoint
of the Jacobian. Let ν ≥ 0 and a function A ∈ C2

0,−ν(H). Fix 0 ≤ t ≤ T , ϕ ∈ H and set

ZϕA(r) := 〈A(ur),Kt,rϕ〉. Then ZϕA ∈ D2γ
X ([s, t],R) for every 0 < s ≤ t and solves the RDE

dZϕA(r) = Zϕ[L+N,A](r)dr + Zϕ[F,A](r)dXr,
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which in its integral form reads for all r ∈ [s, t]:

ZϕA(r) = ZϕA(s) +

∫ r

s

Zϕ[L+N,A](v)dv +

∫ r

s

Zϕ[F,A](v)dXv. (7.5)

Proof. First we use the mild Itô formula Theorem 6.7 to determine the mild equation for
A(us). Note that since X is geometric, its bracket [X] vanishes. We then use the mild
formulation (7.4) for Kt,s and the fact that it is arbitrarily smooth on [s, t) together with
mild equation for ur and the fact that it is arbitrarily smooth on (0, t] to ensure that we
can apply Proposition 7.4 to derive the equation for ZϕA(r) = 〈A(ur),Kt,r〉. It is easy then
to verify that this is indeed Equation 7.5.

8 Spectral properties of the Malliavin matrix

For this section we consider a special case when the multiplicative noise term is
given by

F (ut)dXt =

d∑
i=1

Fi(ut)dX
i
t ,

where Fi ∈ C∞−2γ,0(H) are smooth functions. We also assume N is smooth and belongs to
Poly∞,n0,−δ and consider the collections of Lie brackets Ak defined recursively by:

A0 = {Fi : 1 ≤ i ≤ d}; Ak+1 = Ak ∪ {[L+N,A], [Fi, A] : A ∈ Ak, 1 ≤ i ≤ d}.

Note that, at worst, elements of Ak decrease the spatial regularity by k i.e. send Hk to
H. Our aim is to show that, under a version of Hörmander’s condition appropriate for
this context, one obtains a bound on the Malliavin matrix of the kind P(infϕ〈MTϕ,ϕ〉 ≤
ε) .T,p εp for every p ≥ 1 (we will specify precisely over which class of ϕ we take the
infimum later). The proof is in the same spirit as the proof of Hörmander’s theorem
for SDEs using Malliavin calculus techniques, see for instance [Mal78, Hai11]. It
essentially goes by contradiction: assuming that 〈MTϕ,ϕ〉 is small, (4.26) then implies
that 〈JT,sF (us), ϕ〉 is small. In the SDE case the solution to the equation with good
enough vector fields generates a smoothly invertible flow, so it is possible to factor the
Malliavin matrix as

MT = JT,0M̂TJ
∗
T,0 ; 〈M̂Tϕ,ϕ〉 =

∫ T

0

〈J−1
s,0F (us), ϕ〉2ds.

Then the process s 7→ 〈J−1
s,0F (us), ϕ〉 is a semimartingale and one can use Norris’s lemma

[Nor86] to deduce by induction over k that s 7→ 〈J−1
s,0A(us), ϕ〉 is small for every vector

field A ∈ Ak. Hörmander’s condition then guarantees that the span of the Ak at every
point is dense in H, which contradicts the fact that all the 〈J−1

s,0A(us), ϕ〉 are small by
considering s = 0.

The problem with this argument is that solutions to parabolic SPDEs do not produce
a smoothly invertible flow, so that the Jacobian Js,t is not invertible. In [HM11] where
the authors deal with the case of additive noise and polynomial nonlinearities, they use a
version of Norris’s lemma for Wiener polynomials instead of semimartingales. In our
setting, we consider rough integration instead of Itô integration, which allows us to use
a version of Norris’s lemma for rough paths. Before stating it, we recall the notion of
Hölder roughness from [HP13]:

Definition 8.1. Let θ ∈ (0, 1), a path X : [0, T ]→ Rd is said to be θ-Hölder rough if there
exists a constant Lθ(X) such that for all s ∈ [0, T ], all ε ∈ (0, T/2] and every z ∈ Rd with
|z| = 1, there exists a t ∈ [0, T ] such that

|t− s| ≤ ε and |(z,Xt,s)| > Lθ(X)εp.
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We denote the largest such Lθ(X) the modulus of θ-Hölder roughness of X.

Here (x, y) denotes the scalar product on Rd. In [HP13] it was proved that if X
is a fractional Brownian motion with Hurst parameter H ≤ 1/2, its sample paths are
almost surely θ-Hölder rough for every θ > H. Moreover, there exist constants M and c
independent of X such that

P(Lθ(X) ≤ ε|FX0 ) ≤M exp(−cε−2),

for every ε ∈ (0, 1), so that in particular E[L−pθ (X)] <∞ for every p ≥ 0.
With this at hand we are ready to state one more result from [HP13], namely the

aforementioned version of Norris’s lemma for rough paths.

Theorem 8.2. Let γ ∈ (1/3, 1/2] and (X,X) ∈ C γ([0, T ],Rd) be θ-Hölder rough for θ < 2γ.
Let V ∈ Cγ([0, T ],R) and (Y, Y ′) ∈ D2γ

X ([0, T ],Rd) and set

Zt = Z0 +

∫ t

0

Vsds+

∫ t

0

YsdXs.

Then there are constants q > 0 and r > 0 such that, setting

R := 1 + Lθ(X)−1 + %γ(X) + |(Y, Y ′)|X,2γ + |V |Cγ ,

we have the bound ‖Y ‖∞ + ‖V ‖∞ .T Rq‖Z‖r∞ on [0, T ].

We will now work with a solution (u, u′) to (4.6) starting from u0 ∈ H driven by the
path (X,X) ∈ C γ

g (R+,R
d) and vector fields N,Fi as described in the beginning of this

section. K·,· denotes the adjoint of Jacobian as in Section 7. Fix T and a smaller time
0 < s < T , let 1/3 < η < γ < 1/2 be such that η is close to γ. From now on fix the
quantity:

Rs(u0) = 1 + Lθ(X)−1 + %γ(X) + ‖(u, u′)‖D2η,2γ,0
S,X ([s,T ],Hα)

+ ‖(KT,· ,K
′
T,·)‖D2η,2γ,0

S,X,← ([s,T ],L−2γ) , (8.1)

for α ≥ 0 big enough to be determined later. If any of the quantities above explodes on
the interval [s, T ] we simply write Rs(u0) =∞.

As in Proposition 7.6 define for ϕ ∈ H and a vector field A, a function ZϕA(r) =

〈A(ur),KT,rϕ〉. From Proposition 7.3 and Lemma 3.11 it follows inductively that for
every k ∈ N0 there exists a constant Ck depending on T and L,N, Fi such that for all
A ∈ Ak we have:

|(ZϕA, (Z
ϕ
A)′)|X,2γ,[s,T ] ≤ CkRs(u0)2. (8.2)

The above holds true if in the definition of Rs we take α big enough (depending on k) so
that the assumptions on spatial regularities of Proposition 7.3 would be satisfied.

Remark 8.3. Note that we only impose high spatial regularity on the solution ur and
not on KT,s. This will give us the advantage of being able to use the fact that KT,T is the
identity.

The following two results are almost exact analogues of the finite-dimensional state-
ments from [HP13]. Proposition 7.6 allows us to carry out the same techniques.

Lemma 8.4. Let T > 0 then for all 0 < s < T , there exist q, r > 0 and M independent of
X, ϕ, u0 such that for all A ∈ A0 the following bound holds:

‖ZϕA‖∞,[s,T ] ≤MR q
s (u0)〈MTϕ,ϕ〉r, (8.3)

for all ϕ ∈ H such that ‖ϕ‖ = 1 and all initial conditions u0 ∈ H.
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Proof. Note that we have

〈MTϕ,ϕ〉 =

d∑
i=1

∫ T

0

〈Fi(ur),KT,rϕ〉2dr =

d∑
i=1

‖ZϕFi‖
2
L2[0,T ].

Consider an interpolation inequality (see [HP11] Lemma A.3):

‖f‖∞ ≤ 2 max{T−1/2‖f‖L2 , ‖f‖2γ/(2γ+1)
L2 |f |1/(2γ+1)

Cγ }.

Since the final time is fixed, the L2 norm is controlled by the γ-Hölder norm, so

‖ZϕFi‖
2γ+1
∞,[s,T ] .s ‖Z

ϕ
Fi
‖2γL2[s,T ]|Z

ϕ
Fi
|Cγ [s,T ].

The first term is clearly controlled by 〈MTϕ,ϕ〉2γ since [s, T ] ⊂ [0, T ] and the second
term is controlled by C0Rs(u0)2 by (8.2).

Now we show that the same holds for any vector field in Ak.

Lemma 8.5. Let T > 0 and (X,X) ∈ C γ
g ([0, T ],Rd) be θ-Hölder rough for θ < 2γ. Then

for all 0 < s < T and every k ∈ N0 there exist qk, rk > 0 and Mk independent of X, ϕ, u0

such that for all A ∈ Ak the following bound holds:

‖ZϕA‖∞,[s,T ] ≤MkR
qk
s (u0)〈MTϕ,ϕ〉rk , (8.4)

for all ϕ ∈ H such that ‖ϕ‖ = 1 and all initial conditions u0 ∈ H.

Proof. Define first for A ∈ Ak a quantity

RA = 1 + Lθ(X)−1 + %γ(X) + |(Zϕ[F,A], (Z
ϕ
[F,A])

′)|X,2γ + |Zϕ[L+N,A]|Cγ ,

with all the norms taken on the interval [s, T ]. Note that from (8.2) we have RA ≤
CkR

2
s(u0) uniformly over all ‖ϕ‖ = 1. Assume now that the statement is true for k. Let

A ∈ Ak, denote F0 = L+N then by Proposition 7.6 we have the representation for all
s ≤ r ≤ T :

ZϕA(r) = ZϕA(s) +

∫ r

s

Zϕ[F0,A](v)dv +

∫ r

s

Zϕ[F,A](v)dXv.

Therefore we can apply the “rough Norris lemma”, Theorem 8.2, to deduce:

sup
i=0...d

‖Zϕ[Fi,A]‖∞,[s,T ] ≤MRqA‖Z
ϕ
A‖

r
∞,[s,T ]

≤MCqkM
r
kR

2q
s (u0)R r×qk

s (u0)〈MTϕ,ϕ〉r×rk .

Since all B ∈ Ak+1 are of the form [Fi, A] for i = 0, . . . , d and A ∈ Ak we conclude by
induction.

Remark 8.6. Note that both of the above lemmas are purely deterministic. Moreover
we did not make any assumption on the solution or its Jacobian. In fact if the solution
explodes before time T or if it does not have a Jacobian on the interval [s, T ] one should
simply read the inequalities (8.3) and (8.4) as trivial statements “∞ ≤∞”.

We will now present the precise assumptions on the noise and solution which will
enable us to prove our Hörmander’s theorem. We start with an assumption on the
driving noise which guarantees that it gives rise to a well-behaved rough path, but is
also sufficiently irregular to kick the solution around in a very non-degenerate way.
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Assumption A.1. For some γ ∈ ( 1
3 ,

1
2 ), the random rough path X = (X,X) ∈

C γ
g ([0, T ],Rd) is the canonical lift of a d-dimensional, continuous Gaussian process X

with independent components defined on some underlying probability space (Ω,F ,P).
We also assume that there exist M <∞ and p ∈ [1, 1/2γ) such that for i ∈ {1, . . . , d} and
[s, t] ⊆ [0, T ], the covariances of Xi satisfy

‖RXi‖p,[s,t]2 ≤M |t− s|1/p.

We also assume thatX is almost surely θ-Hölder rough for some θ < 2γ and moreover that
all inverse moments of its modulus of θ-Hölder roughness are bounded, i.e. E[L−qθ (X)] <

∞ for all q ≥ 1.

With the driving noise X at hand, we assume the global existence of the solution:

Assumption A.2. Let X be as in Assumption A.1 and let {Fi}d1 ⊂ C∞−2γ,0(H), N ∈
Poly∞,n0,−δ(H) for δ < 1−γ. We assume that for every initial condition u0, (4.6) has a global

solution (u, F (u)) ∈ D2γ
X (R+,H) for almost every realisation of X. We also assume that

the Jacobian Jt,s and its adjoint Kt,s exist for all times and satisfy the corresponding
mild equations (4.24) and (7.4) respectively.

In the parabolic case, we cannot expect to have a bound on inf‖ϕ‖=1〈MTϕ,ϕ〉 since
this would imply the invertibility of the Malliavin matrix, contradicting the fact that MT

is a compact operator. Instead, we consider an orthogonal projection Π : H → H with
finite-dimensional range and, for a ∈ (0, 1), we define Sa ⊂ H to be

Sa = {ϕ ∈ H : ‖ϕ‖ = 1, ‖Πϕ‖ ≥ a}.

For k ∈ N0 define the positive symmetric quadratic form-valued function Qk such that
for all u ∈ H∞

〈ϕ,Qk(u)ϕ〉 =
∑
A∈Ak

〈ϕ,A(u)〉2.

With this notation we assume that the following non-degeneracy condition holds on the
Lie brackets in Ak:

Assumption A.3. Assume that {Fi}d1 ⊂ C∞−2γ,0(H), N ∈ Poly∞,n0,−δ(H), δ < 1−γ. Moreover
assume that for some orthogonal projection Π : H → H and for every 1 > a > 0, there
exists k ∈ N0 as well as a continuous function Λa : H → (0,∞) such that

inf
ϕ∈Sa

〈ϕ,Qk(u)ϕ〉 ≥ Λa(u),

for every u ∈ H∞.

Finally, we assume that we have good enough control on the solution to be able to
“fight” the loss of control generated by regions where the function Λa from Assump-
tion A.3 is small.

Assumption A.4. We assume that Assumptions A.1, A.2, A.3 hold and that there exist
two functions Φ1,Φ2 : H×[0,∞)→ [0,∞) such that the following two growth assumptions
are true:

(1) For all p ≥ 1 and all a ∈ (0, 1) there exist K1 such that for the solution u to (4.6),
the inverse moment bound

E[Λ−pa (uT )] ≤ K1Φp1(u0, T ),

holds for every initial condition u0 ∈ H.
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(2) For α := (k − 2γ + δ) ∨ 0 (where δ is from Poly∞,n0,−δ and k is from assumption A.3),
some 1/3 < η ≤ γ < 1/2 and for all p ≥ 1 there exist K2 such that

E
[
‖(u, F (u))‖p

D2η,2γ,0
S,X (IT ,Hα)

+ ‖(KT,· ,K
′
T,·)‖

p

D2η,2γ,0
S,X,← (IT ,L−2γ)

]
≤ K2Φp2(u0, T ),

for every initial condition u0 ∈ H, where IT = [T/2, T ].

The requirement for α is coming from the fact that for all A ∈ Ak the inner product
〈A(us),KT,sϕ〉 should satisfy the assumptions of Proposition 7.3 on spatial regularities
and the fact that the assumption of Lemma 3.11 for N should be satisfied (N has to be a
smooth function on the level of rough path regularity, which is α in this case).

Note that among all the assumptions we do not a priori assume that the solution is
Malliavin differentiable, but this does follow from assumptions A.1 and A.2, combined
with Theorem 4.12. Moreover, Definition 4.14 of MT does not coincide with the definition
of the Malliavin matrix in general (see [Nua06]), but it always makes sense whenever
Jacobian is well-defined. In the particular case where X is a Brownian motion, we will
see in the proof of Theorem 8.8 below that two definitions agree and our version of
Hörmander’s theorem provides a statement for the usual Malliavin matrix. With all these
assumptions at hand we are ready to present the main result of this article.

Theorem 8.7. Let T > 0 and let the noise X ∈ C γ
g satisfy Assumption A.1. Let 0 ≤ δ <

1− γ and assume that N and Fi satisfy Assumption A.3 for some orthogonal projection
Π : H → H, a ∈ (0, 1), k ∈ N0 and continuous function Λa : H → (0,∞). Assume that
(u, F (u)) solving (4.6) satisfies Assumptions A.2 and A.4. Then there exists a function
ΦT : H → [0,∞) such that for every p ≥ 1 there exist a constant Cp such that the operator
MT defined in (4.26) satisfies the bound

P( inf
ϕ∈Sa

〈MTϕ,ϕ〉 ≤ ε) ≤ CpΦpT (u0)εp,

for every initial condition u0. Here Cp is independent of the initial condition.

Proof. Fix ϕ ∈ Sa, an initial condition u0 ∈ H, and let Ak and Qk be as in Assumption A.3.
Since KT,Tϕ = ϕ and, by Proposition 4.15, uT ∈ H∞ almost surely, we have:

Λa(uT ) ≤ 〈ϕ,Qk(uT )ϕ〉 . max
A∈Ak

〈ϕ,A(uT )〉2 = max
A∈Ak

〈KT,Tϕ,A(uT )〉2

= max
A∈Ak

|ZϕA(T )|2 ≤ max
A∈Ak

‖ZϕA‖
2
∞,IT ≤M

2
kR

2qk
T/2(u0)〈MTϕ,ϕ〉2rk ,

where RT/2(u0) is defined by (8.1) with α = (k − 2γ + δ) ∨ 0. This shows the existence of
some q, r,M > 0 independent of noise and initial condition such that for all ϕ ∈ Sa

〈MTϕ,ϕ〉 ≥MΛra(uT )R−qT/2(u0).

Therefore we can use Markov’s inequality to deduce for every p ≥ 1:

P( inf
ϕ∈Sa

〈MTϕ,ϕ〉 ≤ ε) ≤ P(MΛra(uT )R−qT/2(u0) ≤ ε)

≤M−pεpE[Λ−pra (uT )RpqT/2(u0)] ≤M−pεpE[Λ−2pr
a (uT )]1/2E[R2pq

T/2(u0)]1/2

. εpΦpr1 (u0, T )
(
1 + E[L−2pq

θ (X) + %2pq
γ (X)] + Φ2pq

2 (u0, T )
)1/2

.

Here we used Cauchy-Schwarz in the third inequality and, in the last inequality, we
used A.4. Finally from A.1 the expectation E[L−2pq

θ (X) + %2pq
γ (X)] is always bounded by

some constant Cp and thus taking for instance

ΦT (u) = Φr1(u, T )(1 + Φ2q
2 (u, T )) ,

gives the result.
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We now give an extra condition on the solution u which will guarantee the smoothness
of the densities of finite-dimensional projections:

Assumption A.5. In addition to previous assumptions assume that for all T > 0 there
exists a function ΨT : H → [0,∞) such that for all p ≥ 1 there exist K3 with:

E
[
ΦpT (uT )

]
≤ K3Ψp

T (u0),

for every initial condition u0 and function Φ from the Theorem 8.7.

Theorem 8.8. Assume that the rough path X = (B,BStrat). Let (u, u′) be a global
solution to (4.6) like in Theorem 8.7, and assume that it also satisfies A.5. Assume also
that the image of the orthogonal projection Π (from assumption A.3) is finite-dimensional.
Then for all t > 0 the law of Πut has a smooth density with respect to Lebesgue measure
on Π(H).

Proof. Since (4.6) is driven by the Stratonovich lift of Brownian motion to the space
of rough paths, it follows from Proposition 4.10 that u coincides almost surely with
the solution to the corresponding Itô SPDE. It follows from the growth assumption A.4
that we can derive an SPDE for the Malliavin derivative of any order and the Jacobian
of any order. Moreover, using Duhamel’s formula similar to (4.25) for higher order
Malliavin derivatives and moment assumptions from A.4 one concludes that for every
t > 0, ut belongs to the space D∞ of Malliavin smooth random variables whose Malliavin
derivatives of all orders have moments of all orders. (For more details in the additive
case see [HM11, Thm 8.1].) Since ut is Malliavin smooth and Π is a bounded linear
map (hence smooth), we deduce that Πut is also Malliavin smooth. By [Nua06, Chap. 2]
it remains to show that the Malliavin matrix of Πut denoted by M Π

t is almost surely
invertible and has moments of all orders. Just for notational convenience we will consider
Πu2t instead of Πut. First we can view the element u2t as an element of the probability
space with Gaussian structure induced by the increments of B over the interval [t, 2t]

and, as in [Nua06, Chap. 1], we view increments of B over [0, t] as irrelevant randomness.
This shows that almost surely

M Π
2t = ΠMt(u0)Π + ΠMt,2t(ut)Π ≥ ΠMt,2t(ut)Π , (8.5)

where Mt,2t(ut) is defined like in (4.26) but over the interval [t, 2t], and we treat ut as
an “initial condition” at time t. Recall that Fs is the natural filtration of the underlying
Brownian motion, denote K = Π(H) then we have:

P( inf
ϕ∈K; ‖ϕ‖=1

〈ΠMt,2t(ut)Πϕ,ϕ〉 ≤ ε|Ft) = P( inf
ϕ∈K; ‖ϕ‖=1

〈Mt,2t(ut)ϕ,ϕ〉 ≤ ε|Ft)

≤ P( inf
ϕ∈Sa

〈ΠMt,2t(ut)Πϕ,ϕ〉 ≤ ε|Ft) ≤ CpΦpt (ut)εp.

We have used above that Πϕ = ϕ and therefore for every a ∈ (0, 1)

{ϕ ∈ K; ‖ϕ‖ = 1} ⊂ {ϕ ∈ H; ‖ϕ‖ = 1, ‖Πϕ‖ ≥ a} = Sa.

Moreover in the last inequality we have used the Markov property of the solution. Taking
the expectation and using the bound (8.5), we see that

P( inf
ϕ∈K; ‖ϕ‖=1

〈M Π
2tϕ,ϕ〉 ≤ ε) ≤ CpεpE

[
Φpt (ut)

]
≤ CpK3Ψp

t (u0)εp.

This guarantees the invertibility of Malliavin matrix M Π
2t on K and that (M Π

2t)
−1 has

moments of all orders, thus finishing the proof.
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9 Examples

As mentioned before, we will restrict ourselves to the Brownian rough path in all
examples since Assumption A.2 is a priori not known to hold for more general Gaussian
rough paths. We will focus on equations driven by Brownian motion that have global
solutions as well as a Jacobian, which will imply Assumption A.2 from Section 4.2. We
will then show examples of noises for which Hörmander’s condition, Assumption A.3 is
satisfied. The moment bounds for the rough path norms of solution and Jacobian for
Assumption A.4 part (2) might not be easy to obtain in general and require a closer look
as a separate problem on its own. We decide to postpone the study of such moments but
refer the reader to [FR13] where this question was answered for the rough SDE case.

We want to point out that the present work is indeed a generalisation of the additive
case from [HM11] since Assumption A.3 is a slight modification of Assumption C.2 from
that article. Consider an equation which has both an additive and a multiplicative noise:

dut = Lutdt+N(ut)dt+

k∑
i=1

gidB
i
t +

d∑
i=k+1

Fi(ut)dB
i
t, (9.1)

for gi ∈ H∞. Note that as a Fréchet derivative Dgi = 0 thus the Lie brackets [gi, gj ] = 0

and there is no contribution from Lie brackets of this additive part. Only an interplay
of [L+N, gi], [L+N,Fi], [Fj , gi], [Fj , Fi] and of higher order Lie brackets contributes to
Assumption A.3. In particular, if (9.1) satisfies Assumption A.3 for Fi = 0, then it also
satisfies it for Fi 6= 0.

We now give a simple criteria for when the Assumption A.3 is satisfied and moreover
the function Λa can be taken constant.

Proposition 9.1. Let L,N, Fi be as in Theorem 8.7. Define the set A ⊂ H of all possible
constant directions created by the Lie brackets of the above vector fields, namely

A =
⋃
k≥0

{A ∈ Ak : ∀u ∈ Hk , A(u) = A(0) ∈ H}.

If the linear span of A is dense in H, then for every finite rank orthogonal projection
Π : H → H and every a ∈ (0, 1) Hörmander’s condition A.3 is satisfied for some k.
Moreover, the function Λa can be chosen as a constant depending on Π and a. As a
consequence, part (1) of the condition A.4 is trivially satisfied too.

A proof of this statement can be found in [HM11, Lem. 8.3]. This criterion is the one
that we are going to use in our next examples.

Remark 9.2. If in addition (4.6) is driven by Brownian motion and solutions ut satisfy
Assumption A.5, then the above proposition and Theorem 8.8 guarantee that Πut has
a smooth density with respect to Lebesgue measure for every surjective linear map
Π: H → Rn.

9.1 Stochastic Navier-Stokes equation in 2-d

The Navier-Stokes equation describes the time evolution of incompressible fluid and
is given by

∂tut(x) + (ut(x) · ∇)ut(x) = ∆ut(x)−∇pt(x) + ξ(t, x, ut(x)), ∇ · ut = 0.

For ut(x) ∈ R2 is a velocity field, p(t, x) is a pressure, and ξ is a noise term describing
an external force acting on the fluid. We decide to work with the equation with spatial
variable lying on the two dimensional sphere x ∈ S2. Moreover because of divergence
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free assumption we can work with the vorticity formulation of this equation which can
be written as:

dwt = ∆wtdt+N(wt)dt+

k∑
i=1

fidB
i
t +

n∑
j=1

(
fj+k + wtgj) dB

k+j
t , w0 ∈ L2(S2,R). (9.2)

Here (Bit)1≤i≤n+k are mutually independent Brownian motions on R, our noise is a
mixture of the additive an linear multiplicative noise. ∆ = −∇∗∇ is the negative Bochner
Laplacian on S2. The non-linearity N(w) is given by N(w) = B(w,w) for the symmetric
operator

B(v, w) =
1

2
(∇ · (vKw) +∇ · (wKv)).

Operator K is an operator that reconstructs velocity field from the vorticity:

u = Kw = − curl ∆−1w

(See more details on the derivation of these equation and their further study in [TW93].)
Here the Hilbert space H = L2(S2,R) and the interpolation spaces generated by the
Laplacian will be Hα = H2α(S2,R), the usual Sobolev spaces on the sphere. We assume
that all the functions gi, fi ∈ H∞(S2,R). Note that later for the reaction-diffusion
equation we will consider also a polynomial noise, but here if we take polynomials of
higher order than just linear it is expected that the blow up created by the diffusion
part will not be compensated by the drift part and so it is hopeless to get any global
bounds on the solution. In [HM11], the authors show that indeed such N is a smooth
function Hα → Hα−δ for any δ > 1/2 and α ≥ 0. Since Brownian motion can be lifted to
a Stratonovich rough path almost surely in C γ for every γ < 1/2 we get in particular
that 1− γ > 1/2 and so we can indeed take 1/2 < δ < 1− γ so that non-linearity N falls
into our framework. Also for any g, f ∈ H∞ an affine function F (u) = ug + f is trivially
smooth as a function Hα → Hα for every α ∈ R and sends bounded subsets of Hα to
bounded subsets of Hα.

Note that for affine functions of the type Fi(u) = ugi + fi we have

[Fi, Fj ](u) = (ugi + fi)gj − (ugj + fj)gi = figj − fjgi.

These Lie brackets of affine functions between each other will therefore produce ad-
ditional constant directions for the spread of the noise. We define the set of functions
recursively:

A0 = {fi : 1 ≤ i ≤ k} ∪ {fi+kgj − fj+kgi : 1 ≤ i, j ≤ n},
Ak+1 = {B(g, h), gjh : g, h ∈ Ak, 1 ≤ j ≤ n}.

Here the terms B(g, h) will arise from second order Lie brackets [[∆ +N, g], h] = B(g, h)

for any g, h ∈ H∞. Terms hgj will arise from Lie brackets of constant part with the affine
part of the noise: [h, Fj ](u) = hgj for Fj(u) = ugj + fj+k. Clearly, the linear span of⋃
k≥0Ak is contained in the linear span of A from Proposition 9.1. In particular if linear

span of
⋃
k≥0Ak is dense in H then condition A.3 for (9.2) is satisfied for every finite

rank orthogonal projection Π.

9.2 Reaction-diffusion equations and Ginzburg-Landau equation

The reaction diffusion equation in m dimensions are equations of the form

dut = ∆u dt+ f ◦ ut dt+

n∑
i=1

pi(ut) dB
i
t, (9.3)
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with ut : D → Rl where D is either an m-dimensional torus or a nice m-dimensional
domain (compact smooth m-dimensional Riemannian manifold or bounded open subset
of Rm with smooth boundary), then ∆ is a Laplace or Laplace-Beltrami operator on
D. Here, the non-linearity is given by the Nemitsky operator of composition with a
polynomial f . To guarantee that this operator is smooth, the Hilbert space H must be
an algebra, which can be satisfied by taking H to be a Sobolev space of high enough
order: Hk(D,Rl) is an algebra if k > m/2. Now for pi we can take also polynomials with
coefficients being functions in H∞: i.e. can have

pi(u) =

ki∑
j=1

gijf
i
j ◦ u.

For polynomials f ij : Rl → Rl and constants gij ∈ H∞. Recall that we must require pi to
be smooth functions Hα → Hα for all α ≥ −2γ. If the degree of any of these polynomials
f ij is greater than one, then for the pi to be of this kind we must require H−2γ to be an
algebra, where γ is a regularity of Brownian rough path. Thus taking H = Hk(D,Rl)

we have that H−2γ = Hk−4γ and therefore we have the requirement on k to satisfy
k > m/2 + 4γ. This means that it will be more beneficial to take as low as possible rough
path regularity γ. For Brownian motion, we can take γ arbitrarily close to 1/3 so that
all the above theory would be still true. For instance for m = 1, one can take k = 2 but
for both m = 2 and m = 3 one can take k = 3. The higher the degree of differentiability
k is taken, the more difficult it might be to obtain the a priori bounds A.4. Note that if
Hα is an algebra for α ≥ −2γ then clearly any polynomial sends bounded subsets of Hα
bounded subsets of Hα.

An assumption on f sufficient to avoid explosion is that, if we write f =
∑d
k=0 fk

where fk is a k-linear map Rl into itself, then

〈fd(u, . . . , u, v), v〉Rl < 0,

for every u, v ∈ Rl\{0}. This will guarantee global existence at least in the additive case
(see [HM11, Sec. 8.3]).

If we stick to the case when l = 1 then polynomials will produce the following Lie
brackets: for p, q ∈ N0 such that p+ q ≥ 1 and g, h ∈ H∞

[gup, huq](u) = (q − p)ghup+q−1.

Note that new constant directions will arise from the Lie bracket of a constant and a
linear term, but for instance second iterated Lie bracket with a square also creates a
new constant direction:

[f, [g, hu2]] = 2fgh.

In general, the kth iterated Lie bracket of polynomials of total degree k produces a
constant direction. Potential appearance of the higher order polynomials can eventually
create enough constant directions so that their linear span is dense in H. We do not
present a general interplay of all such Lie brackets for general polynomials, since it
might be quite cumbersome and in the actual example it might be simpler to compute
all the Lie brackets by hand. Nevertheless we explicitly provide an example below.

9.2.1 Ginzburg-Landau equation

This is the equation given by

dut(x) = ∆utdt+ (ut(x)− u3
t (x))dt+

k∑
i=1

fi(x)dBit
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+

n∑
j=1

(
fj+k(x) + ut(x)gj(x)

)
dBk+j

t , u0 ∈ H1(T,R).

Here fi, gi ∈ C∞(T,R), we can take H = H1 since the noise is linear and thus we only
require H to be an algebra which H1 is in one dimension. Similarly to the Navier-Stokes
example, define:

A0 = {fi : 1 ≤ i ≤ k} ∪ {fi+kgj − fj+kgi : 1 ≤ i, j ≤ n},
Ak+1 = {gjh : h ∈ Ak, 1 ≤ j ≤ n} ∪ {h1h2h3 : hi ∈ Ak}.

If
⋃
k Ak is dense in H, then condition A.3 for (9.2) is satisfied. In particular only two

instances of noise is enough and the following equation satisfies the assumption A.3:

dut(x) = ∆utdt+ (ut(x)− u3
t (x))dt+

(
sin(x) + ut(x) cos(x)

)
dB1

t

+
(

cos(x)− ut(x) sin(x)
)
dB2

t .

Since if we call F1(u) = sin(x) + u(x) cos(x) and F2(u) = cos(x)− u(x) sin(x) then:

[F1, F2](u) = cos2(x) + sin2(x) = 1,

[[F1, F2], F1] = cos(x), [[F1, F2], F2] = − sin(x),

[[[F1, F2], F1], F1] = cos2(x), [[[F1, F2], F2], F1] = − sin(x) cos(x) . . .

Proceeding similarly we see that we can produce any term of the form sink(x) cos`(x),
which creates a basis for H1(T,R) and thus Hörmander’s condition is trivially satisfied.
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