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Edge universality of separable covariance matrices

Fan Yang*

Abstract

In this paper, we prove the edge universality of largest eigenvalues for separable
covariance matrices of the form Q := AY/2XBX*A'/2. Here X = (x;;) isan n x N
random matrix with x;; = N’l/zqij, where g;; are i.7.d. random variables with zero
mean and unit variance, and A and B are respectively n x n and N x N deterministic
non-negative definite symmetric (or Hermitian) matrices. We consider the high-
dimensional case, i.e. n/N — d € (0,00) as N — co. Assuming Eg}; = 0 and some
mild conditions on A and B, we prove that the limiting distribution of the largest
eigenvalue of Q coincide with that of the corresponding Gaussian ensemble (i.e. Q
with X being an 4.i.d. Gaussian matrix) as long as we have lims_, « s*P(|gi;| > s) =0,
which is a sharp moment condition for edge universality. If we take B = I, then
Q becomes the normal sample covariance matrix and the edge universality holds
true without the vanishing third moment condition. So far, this is the strongest edge
universality result for sample covariance matrices with correlated data (i.e. non-
diagonal A) and heavy tails, which improves the previous results in [6, 39] (assuming
high moments and diagonal A), [37] (assuming high moments) and [14] (assuming
diagonal A).
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1 Introduction

Sample covariance matrices are fundamental objects in multivariate statistics. Given
a centered random vector y € R™ and its ¢...d. copies y;, ¢ = 1,---, N, the sample
covariance matrix Q := N} >, Yiy; is the simplest estimator for the covariance matrix
A = Eyy*. In fact, if the dimension n of the data is fixed, then Q converges almost
surely to ¥ as N — oco. However, in many modern applications, high dimensional data,
i.e. data with n being comparable to or even larger than N, is commonly collected in
various fields, such as statistics [13, 32, 33, 34], economics [47] and population genetics
[49], to name a few. In this setting, A cannot be estimated through @ directly due to the
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so-called curse of dimensionality. Yet, some properties of A can be inferred from the
eigenvalue statistics of Q.

In this paper, we focus on the limiting distribution of the largest eigenvalues of
high-dimensional sample covariance matrices, which is of great interest to the principal
component analysis. The largest eigenvalue has been widely used in hypothesis testing
problems on the structure of covariance matrices, see e.g. [7, 17, 33, 48]. Of course
the list is very far from being complete, and we refer the reader to [32, 51, 67] for a
comprehensive review. Precisely, we will consider sample covariance matrices of the
form

Q= A1/2XX*A1/2,

where the data matrix X = (z;;) is an n x N random matrix with i.i.d. entries such
that Ex;; = 0 and ]E|:1c11|2 = N~!, and A is an n x n deterministic non-negative definite
symmetric (or Hermitian) matrix. On dimensionality, we assume that n/N — d € (0, c0)
as N — oo. It is well-known that the empirical spectral distribution (ESD) of Q converges
to the (deformed) Marchenko-Pastur (MP) law [42], whose rightmost edge A, gives
the asymptotic location of the largest eigenvalue. Moreover, it was proved in a series
of papers that under an N?/3 scaling, the distribution of the largest eigenvalue \; (Q)
around A; converges to the famous Tracy-Widom distribution [58, 59]. This result is
commonly referred to as the edge universality, in the sense that it is independent of the
detailed distribution of the entries of X. The limiting distribution of A\; was first obtained
for Q with X consisting of i.i.d. centered Gaussian entries (i.e. X X* is a Wishart matrix)
and with trivial covariance (i.e. A = I) [33]. The edge universality in the A = I case was
later proved for all random matrices X whose entries satisfy a sub-exponential decay
[53]. When A is a non-scalar diagonal matrix, the Tracy-Widom distribution was first
proved for the case with ¢.i.d. Gaussian X in [17] (non-singular A case) and [46] (singular
A case). Later the edge universality with general diagonal A was proved in [6, 39] for X
with entries having arbitrarily high moments, and in [14] for X with entries satisfying
the tail condition (1.1) below. The most general case with non-diagonal A is considered
in [37], where the edge universality was proved under the arbitrarily high moments
assumption.

Without loss of generality, we may assume that the row indices of the data matrix
correspond to the spatial locations and the column indices correspond to the observation
times. Then the data model A'/2X corresponds to observing independent samples at N
different times, and hence is incompetent to model sampling data with time correlations.
In fact, the spatio-temporal sampling data is commonly collected in environmental study
[29, 38, 41, 43] and wireless communications [60]. Motivated by this fact, we shall
consider a separable data model Y = A/2XB'/2, where A and B are respectively n x n
and N x N deterministic non-negative definite symmetric (or Hermitian) matrices. Here
A and B are not necessarily diagonal, which means that the entries are correlated both
in space and in time. The name “separable” is because the joint covariance of Y, viewed
as an (Nn)-dimensional vector, is given by a separable form A ® B. In particular, if the
entries of X are Gaussian, then the joint distribution of Y is My, (0, A ® B). Note that
the separable model describes a process where the time correlation does not depend on
the spatial location and the spatial correlation does not depend on time, i.e. there is no
space-time interaction.

The separable covariance matrix is defined as Q := YY* = AY2XBX*AY? It
has been proved to be very useful for various applications. For example, in wireless
communications, it was shown in [61] that an estimate of the capacity is directly given
by various informations of the largest eigenvalue. The spectral properties of separable
covariance matrices have been investigated in some recent works, see e.g. [11, 18,
52, 62, 69]. However, the edge universality is much less known compared with sample
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covariance matrices. It is known that the edge universality generally follows from
an optimal local law for the resolvent G = (Q — z)~! near the spectral edge, where
2€Cy i ={2€C:Imz >0} withImz> N~1[6, 14, 37, 39]. Consider an nx N matrix X
consisting of independent centered entries with general variance profile ]E|:vij|2 =o0;;/N,
then an optimal local law was prove in [1, 2] for the resolvent (X X* — z)~! under the
arbitrarily high moments assumption. Note that this gives the local law for G in the case
where both A and B are diagonal. However, if A and B are not diagonal, no such local
law is proved so far, let alone the edge universality.

The goal of this paper is to fill this gap. More precisely, we shall prove that for general
(non-diagonal) A and B satisfying some mild assumptions, the limiting distribution of the
rescaled largest eigenvalue N (A;(Q) — A;) coincides with that of the corresponding
Gaussian ensemble (i.e. Q¢ = A'/2X%B(X%)*A'Y/? with X being an i.i.d. Gaussian
matrix) as long as the following conditions hold:

lim s'P (|\/le1| > s) =0, (1.1)
S§—00

and
Ez3, = 0. (1.2)

For a precise statement, the reader can refer to Theorem 2.7. Note that the tail condition
(1.1) is slightly weaker than the finite fourth moment condition for V/Nzyy, and in fact
is sharp for the edge universality of the largest eigenvalue, see Remark 2.8 below.
Historically, for sample covariance matrices, it was proved in [68] that A\; — A4 almost
surely in the null case with A = I if the fourth moment exists. Later the finite fourth
moment condition is proved to be also necessary for the almost sure convergence of
A1 [3]. On the other hand, it was proved in [54] that A\; — A in probability under the
condition (1.1). If A is diagonal, it was proved in [14] that the condition (1.1) is actually
necessary and sufficient for the edge universality of sample covariance matrices to hold.

On the other hand, the condition (1.2) is more technical and should be considered
to be removed in future works. We now discuss about it briefly. The main difficulty
in studying Q = AY2XBX*A'/? and its resolvent is due to the fact that the entries of
AY2X B'/? are not independent. We assume that A and B have eigendecompositions
A =UXU* and B = VXV*. Then in the special case where X = X is i.i.d. Gaussian, it
is easy to see that

A1/2XGB(XG)*A1/2 L (21/2XG§1/2) U* ~ $1/2XG51/2

which is reduced to a separable covariance matrix with diagonal ¥ and 3. This case
can be handled using the current method in [14]. To extend the result in the Gaussian
case to the general X case, we use a self-consistent comparison argument developed
in [37]. For this argument to work, we need to assume that the third moments of the
X entries coincide with that of the Gaussian random variable, i.e. the condition (1.2).
(Actually it is common that for a comparison argument to work for random matrices,
some kind of four moment matching is needed; see e.g. [55, 56, 57].) If one of the A and
B is diagonal, then a notable argument in [37, Section 8] can remove this requirement
by exploring more detailed structures of the resolvents of Q. However, their argument
is quite specific and cannot be adapted to the general case with both A and B being
non-diagonal. Nevertheless, this is still a welcome result, which shows that for sample
covariance matrices, the condition (1.2) is not necessary and the edge universality holds
as long as (1.1) holds. For a more detailed explanation on why and where the condition
(1.2) is needed, we refer the reader to the discussion following Theorem 3.6.

Finally, we believe that the largest eigenvalue of the Gaussian separable covariance
matrix Q¢ should converge to the Tracy-Widom distribution. However, to the best of our
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knowledge, so far there is no explicit proof for this fact. We will give a proof in another
paper [16].

This paper is organized as follows. In Section 2, we first define the limiting spectral
distribution of the separable covariance matrix and its rightmost edge A, which will
depend only on the empirical spectral densities (ESD) of A and B. Then we will state the
main theorem—Theorem 2.7— of this paper. In Section 3, we introduce the notations
and collect some tools including the anisotropic local law (Theorem 3.6), rigidity of
eigenvalues (Theorem 3.8) and a comparison theorem (Theorem 3.10). In Section 4, we
prove Theorem 2.7 with these tools. Then Section 5 and Section 6 are devoted to proving
Theorem 3.6, and Section 7 is devoted to proving Theorem 3.8 and Theorem 3.10.

Conventions. The fundamental large parameter is N and we always assume that n
is comparable to N. All quantities that are not explicitly constant may depend on N,
and we usually omit NV from our notations. We use C to denote a generic large positive
constant, whose value may change from one line to the next. Similarly, we use ¢, 7, ¢
and c to denote generic small positive constants. If a constant depends on a quantity a,
we use C(a) or C, to indicate this dependence. We use 7 > 0 in various assumptions to
denote a small positive constant. All constants appear in the statements or proof may
depend on 7; we neither indicate nor track this dependence.

For two quantities ay and by depending on N, the notation ay = O(by) means
that |ax| < C|by| for some constant C' > 0, and ay = o(by) means that |an| < cn|by|
for some positive sequence cy | 0 as N — oco. We also use the notations ay < by if
ay = O(by), and ay ~ by if ay = O(by) and by = O(ay). For a matrix A, we use
|A|l := || A|l;2—2 to denote the operator norm; for a vector v = (v;)I_, ||v|| = ||v||2 stands
for the Euclidean norm, while |v| = ||v||; stands for the /!-norm. In this paper, we often
write an identity matrix as I or 1 without causing any confusions. If two random variables

X and Y have the same distribution, we write X 4 Y.

2 Definitions and main result

2.1 Separable covariance matrices

We consider a class of separable covariance matrices of the form Q; := AY/2X BX*A1/2,
where A and B are deterministic non-negative definite symmetric (or Hermitian) matri-
ces. Note that A and B are not necessarily diagonal. We assume that X = (z;;) is an
n x N random matrix with entries z;; = N’1/2q¢j, 1<i<n 1<j<N,where g;; are
i.i.d. random variables satisfying

Eq1 =0, Elgul*=1 (2.1)

For definiteness, in this paper we focus on the real case, i.e. the random variable ¢
is real. However, we remark that our proof can be applied to the complex case after
minor modifications if we assume in addition that Req;; and Im¢;; are independent
centered random variables with variance 1/2. We will also use the N x N matrix Qs :=
B'/2X*AX B'/?. We assume that the aspect ratio dy := n/N satisfies 7 < dy < 7' for
some constant 0 < 7 < 1. Without loss of generality, by switching the roles of Q; and Q-
if necessary, we can assume that

7<dy <1 forall N. 2.2)

For simplicity of notations, we will often abbreviate dy as d in this paper. We denote
the eigenvalues of Q; and Q> in descending order by A(Q;) > ... > \,(Q;) and
A(Q2) = ... 2 An(Q2). Since Q; and Q, share the same nonzero eigenvalues, we will
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for simplicity write A;, 1 < j < N An, to denote the j-th eigenvalue of both Q; and O,
without causing any confusion.
We assume that A and B have eigendecompositions

A=UXU*, B=VXV* ¥=diag(oy,...,0n), % =diag(i,...,on), (2.3)

where
o12032...20,20, 012022>...20n 20.

We denote the empirical spectral densities (ESD) of A and B by

n N
n 1 1
Ty = 7rf4) = - E 0p; TB= 7T§3N) = )i E 0z, - (2.4)
i=1 i=1

We assume that there exists a small constant 0 < 7 < 1 such that for all NV large enough,
~ -1 (n) (N) _
max{ci,01} <77, max{m, ([0,7]), 75 ([0,7])p <1-—T. (2.5)

The first condition means that the operator norms of A and B are bounded by 7!, and

the second condition means that the spectrums of A and B do not concentrate at zero.
We summarize our basic assumptions here for future reference.

Assumption 2.1. We assume that X is an n x N random matrix with real i.i.d. entries
satisfying (2.1), A and B are deterministic non-negative definite symmetric matrices
satisfying (2.3) and (2.5), and dy satisfies (2.2).

2.2 Resolvents and limiting law

In this paper, we will study the eigenvalue statistics of @; and Qs through their
resolvents (or Green’s functions). It is equivalent to study the matrices

01(X) := SV2UrXBX*ULY?, Qy(X) := X2V X*AXVE!/?, (2.6)
In this paper, we shall denote the upper half complex plane and the right half real line by
Ci:={z€C:Imz >0}, Ry:=][0,00).

Definition 2.2 (Resolvents). For z = FE + in € C,, we define the resolvents for @1_,2 as

-1

Gi(X, 2) i= (Qvl(X)—z)il, Go(X, 2) i= (ég(X)—z> . 2.7)

We denote the ESD p(™) of 0, and its Stieltjes transform as

r—z

S R~ n I 1
p=p = 525&@1), m(z) = m™(z) = / 7/)5 )(dx) = ﬁTrgl(z). (2.8)
i=1

We also introduce the following quantities:

n N
@) = m6) = 1 G male) =i ) = 135G

It was shown in [52] that if dy — d € (0, 00) and 7rf4"), 7T§3N) converge to certain proba-

bility distributions, then almost surely p(™) converges to a deterministic distributions pa.
We now describe it through the Stieltjes transform

Moo(2) ::/]Rpoo(dx)7 z € Cy.

xr—z
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For any finite IV and z € C4, we define (mgiv)(z)7 mgg)(z)) € €2 as the unique solution

to the system of self-consistent equations

n z n N T N
mi™ (z) = dN/ & 7 (dx), mS(2) :/ & N (da).
—z [1 + xzmg, (2)} —z [1 +axmy,’(2)

(2.9)
Then we define

1
me(z) = miW (z) = / 7 (da). (2.10)
—z {1 + xmézcv)(z)} 4

It is easy to verify that mf:”)(z) € C; for z € C.. Letting n | 0, we can obtain a probability

measure pﬁ") with the inverse formula

1
P (E) = lim =Imm{™ (E + in). (2.11)
nd0 T

Ifdy — d € (0,00) and 7r1(4"), W;BN) converge to certain probability distributions, then m"

also converges and we define

Moo (2) = A}iinoomgn)(z), z € Cy.

Letting n | 0, we can recover the asymptotic eigenvalue density p., with

1
so(E) = lim —Im meo (E + in). 2.12
Poc(E) ﬁgwmm(ﬂn) (2.12)

It is also easy to see that p., is the weak limit of pén).

The above definitions of m£">, pg"), Mo and p,, make sense due to the following
theorem. Throughout the rest of this paper, we often omit the super-indices (n) and (V)

from our notations.

Theorem 2.3 (Existence, uniqueness, and continuous density). For any z € C,, there
exists a unique solution (mi.,ma.) € (D?|r to the systems of equations in (2.9). The
function m. in (2.10) is the Stieltjes transform of a probability measure . supported on
R.. Moreover, p. has a continuous derivative p.(x) on (0, 00), which is defined by (2.12).

Proof. See [69, Theorem 1.2.1], [30, Theorem 2.4] and [12, Theorem 3.1]. O

We now make a small detour and discuss about another very enlightening way
to understand the Stieltjes transforms m; 2. and m,.. Consider the vector solution

v = (v1,- -+ ,vy) to the following self-consistent vector equation [1, 2]:
= + S 1 eC (2.13)
v(z) : 14+ STv(z)’ : + '

where 1/v denotes the entrywise reciprocal, and S is an n x N matrix with entries
1 . .
Sip = N 0i0u 1€ [1,n], wpe€][1,N]. (2.14)

In fact, if one regards X; := [1,n] and X, := [1, N] as measure spaces equipped with

counting measures
n N
™ = E 52'7 o = E 5,117
i=1 p=1
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then S defines a linear operator S : I*°(X;) — [°°(X}) such that

(Sw); Zaﬂw#, w e l®(Ay), i€ X.

/L 1
Now we can regard (2.13) as a self-consistent equation of the function v : C; — I*°(AX}).
Suppose v is a solution to (2.13) with Imv(z) > 0, then it is easy to verify that

N

1 — 1 o
= N;m’vi; Mae = Nz——z(l—i—ff“mlc *Z’Uz

p=

The structure of the solution v was well-studied in [1, 2]. In particular, one has the
following preliminary result on the existence and uniqueness of the solution.

Theorem 2.4 (Proposition 2.1 of [1]). There is a unique function v : C; — (X))
satisfying (2.13) and Imv(z) > 0 for all z € C. Moreover, for each k € X;, there is a
unique probability measure u; on R such that vy, is the Stieltjes transform of uy, i.e.

> 1
u()= [ gomian). sec,.

The measures uy, k € Xy, all have the same support contained in [0, 6] where
C .= 4max{||SHloo(X2)%loo(Xl), HS*Hlm(Xl)*)lm(?Q)} .
Now we go back to study the equations in (2.9). If we define the function

flz,a) = —a+/

X
—z+xdy f Hﬁﬂ',q(dt)

mp(dz), (2.15)

then mq.(2) can be characterized as the unique solution to the equation f(z,a) =0 of
with Im a > 0, and m.(z) is defined using the first equation in (2.9). Moreover, mq 2.(z)
are the Stieltjes transforms of densities p; a.:

1
J(E) = lim ~1 (E
p1,2¢(E) n%lﬂmmw( +in).

Then we have the following result.

Lemma 2.5. The densities p. and p; 2. all have the same support on (0,00), which is a
union of intervals:

p
supp pe N (0,00) = supp p1,2c N U ask, azk—1] N (0, 00), (2.16)
k=1

where p € IN depends only on w4 g. Moreover, (z, ) = (ag, m2c(ax)) are the real solutions
to the equations

_ of _
f(z,a) =0, and a—a(ac,a) =0. (2.17)

1.0) and mac(ar) € (—oy L, 0).

Moreover, we have mi.(a1) € (=07
Proof. See Section 3 of [12]. O

We shall call a;, the spectral edges. In particular, we will focus on the rightmost edge

A+ := a;. Now we make the following assumption: there exists a constant 7 > 0 such
that

1+mic(Ap)or =27, 1+mac(Ay)or =7 (2.18)

This assumption guarantees a regular square-root behavior of the spectral densities p; 2.
near \; as shown by the following lemma.
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Lemma 2.6. Under the assumptions (2.2), (2.5) and (2.18), there exist constantsa; s > 0
such that
p12c(Ay — ) = a1’2x1/2 +0(x), zl]0, (2.19)

and
m12e(2) = mige(Ay) +ma1a(z = A )2 +0(lz = Ay]), z—= Ay, Imz>0. (2.20)
The estimates (2.19) and (2.20) also hold for p. and m. with a different constant.

Proof. Differentiating the equation f(z,a) = 0 with respect to «, we can get that
2'(m,) = 0 and 2" (m,) = —92f(Ay,m,)/0,f(Ay,m,), where m, = ma.(\;). After a
straightforward calculation, we have

x t

9.f(z,) :/22 [+ 29 a)]sz(dx)u 9(z,a) = dN/mWA(dt)y

and
1 (a0 =2 [ e (Bugte ) e | PR o)),
where

Dg(z, ) :dN/Mmdt), 92g(z, ) = —2dN/z(1:m)3wA(dt).

Using (2.5) and (2.18), it is easy to show that
|azf()‘+amr)| ~1, ’aif()‘+amr)| ~ 1.

Thus we have |z (m,.)| ~ 1, which by Theorem 3.3 of [12], implies (2.19) and (2.20) for
p2. and mo.. The estimates for pi., mi., p., and m, then follow from simple applications
of (2.9) and (2.10). O

2.3 Main result
The main result of this paper is the following theorem.

Theorem 2.7. Let Q; := A/2X BX*A'/? be ann x n separable covariance matrix with
A, B and X satisfying Assumption 2.1 and (2.18). Let A\ be the largest eigenvalue of
Q. If the conditions (1.1) and (1.2) hold, then we have

Jim [PIN3(00 = Ay) <) = PE(NZE (0 = Ap) < s)} =0 (2.21)
for all s € R, where P denotes the law for X = (z;;) with real i.i.d. Gaussian entries
Nl/zmij = q;; satisfying (2.1). The condition (1.2) is not necessary if A or B is diagonal.
Remark 2.8. The moment condition is actually sharp in the following sense. If the
condition (1.1) does not hold for X, then one can show that (see e.g. [14, Section 4]) for
any fixed a > Ay,

limsupP (A (XX™*) > a) > 0,

N —oc0
where A\ (X X*) denotes the largest eigenvalue of X X*. Thus if min{o,,on5} > 7 for
some constant 7 > 0, we then have

limsupP (A1(Q1) = a) >0

N—o0

for any fixed a > A, and the edge universality (2.21) cannot hold.
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Remark 2.9. It is clear that (2.21) gives the edge universality of the largest eigenvalues
of separable covariance matrices. However, to the best of our knowledge, so far there is
no explicit formula for the limiting distribution of the largest eigenvalue of @; when X
is Gaussian. In an ongoing work [16], we shall prove that the largest eigenvalue of Q;
actually converges weakly to the Tracy-Widom distribution. Here we state the precise
result we expect to prove in [16], which may be of interest to some readers.

Recall the proof of Lemma 2.6. We define vy = 7(A4, B) such that

B = 9= f (Mg, mac(Ay)) [/ t WA(dt):|2: I,
O 12 mac(Ay)) [ Ar(1 4 tmac(Ay))? I3Js + IsJy

where we denote

t x
B = [t hs = | IERTET W)

and for k = 2,3,

k

tk x

A (L+ tmzo(As)

kﬂ'B(d{L‘).

kﬂ'A(dt), Jk(A7B)::/>\+ (1_|_xm1 (>\+))

Ik(A,B) = dN/
Using (2.5) and (2.18), it is easy to see that 7y ~ 1. Then we have the following result: if
A and B satisfy Assumption 2.1 and (2.18), then we have

Jim PCOo(4, B)N*P (X (4, B) = (4, B) < 5) = Fi(s) forallse€ R, (2.22)
—00

where \; (4, B) denotes the largest eigenvalue of Q;(A4, B) = AY2XBX*A'/?, and F; is
the type-1 Tracy-Widom distribution. (2.21) and (2.22) together show that the distribution
of the rescaled largest eigenvalue of Q; converges to the Tracy-Widom distribution if the
conditions (1.1) and (1.2) hold. In particular, in the case of sample covariance matrices,
the condition (1.2) is not necessary.

Remark 2.10. The universality result (2.21) can be extended to the joint distribution of
the k largest eigenvalues for any fixed k:

; 2/3(y. _ ) _ PG 2/3(y. _ ) —
]Vlgnoo [IP ((N (Ai = A4) < Sl)lgigk) P ((N (Ai—A) < Sl)lgigk)] =0,
(2.23)

for all s1,s2,...,5: € R. Let H°F be an N x N random matrix belonging to the
Gaussian orthogonal ensemble. The joint distribution of the k largest eigenvalues of
HEOF, GO > | > ufOF, can be written in terms of the Airy kernel for any fixed k

[28]. In [16], we actually show that
i G 2/3( ) _ < s
lim P ((%(A, B)N*/3(\(A, B) = A (A, B)) < 81)1«1)

N— oo
— lim P (N2/3 GOE _ 9y ¢ ) :
m P ((VEE0F -2 <s)

N—o00

for all sq1,89,...,8x € R. Hence (2.23) gives a complete description of the finite-
dimensional correlation functions of the largest eigenvalues of Q.

Remark 2.11. A key input for the proof of (2.21) is the anisotropic local law for the
resolvents in (2.7). Our basic strategy is first to prove the anisotropic local law for G >
when X is Gaussian, and then to obtain the anisotropic local law for the general X case
through a comparison with the Gaussian case. Without (1.2), the comparison argument
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cannot give the anisotropic local law up to the optimal scale. However, in the case where
A or B is diagonal, the condition (1.2) is not needed for the comparison argument in [37]
to work. We refer the reader to the discussion following Theorem 3.6, which explains
why and where the condition (1.2) is needed. We will try to remove the assumption (1.2)
completely in future works.

. .
I numerical results

—TW-1

(a) For X satisfying (1.1).

.
I numerical results
—TW-1

(b) For Gaussian X.

Figure 1: Histograms for the largest eigenvalues of 20000 ensembles.

Finally, we illustrate the edge universality result with some numerical simulations.
Consider the following setting: (1) N = 2n, i.e. dy = 0.5; (2) we take

k)

E:dlag(:l? 51747"' 74)7 i'::d-lag(l, 71,4,"' 74)

n/2 n/2 N/2 N/2

(3) U and V are orthogonal matrices uniformly chosen from orthogonal groups O(n)
and O(N). Then we take n = 1000 and calculate the largest eigenvalues for 20000
independently chosen matrices. The histograms are plotted in Fig. 1. In case (a), the
entries v Nz;; are drawn independently from a distribution with mean zero, variance 1
and satisfying (1.1); in case (b), the entries \/inj are i.7.d. Gaussian with mean zero
and variance 1. We translate and rescale the numerical results properly, and one can
observe that they fit the type-1 Tracy-Widom distribution very well.
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2.4 Statistical applications

In this subsection, we briefly discuss some applications of our result to high-dimen-
sional statistics.

If we take B = I, then Q; becomes the normal sample covariance matrix and
Theorem 2.7 indicates that the edge universality of the largest eigenvalue of Q; holds
true for correlated data (i.e. non-diagonal A) with heavy tails as in (1.1). So far, this is
the strongest edge universality for sample covariance matrices compared with [6, 39]
(assuming high moments and diagonal A), [37] (assuming high moments) and [14]
(assuming diagonal A). On the other hand, the separable data model Y = A'/2X B!/?
for some nontrivial B is widely used in spatio-temporal data modeling, where A is the
spatial covariance matrix and B is the temporal covariance matrix. If the entries of X
are symmetrically distributed and the singular values of A, B are such that (2.18) holds,
then Theorem 2.7 shows that the largest eigenvalue of Q; satisfies the edge universality
as long as (1.1) holds. We now describe some possible applications of this result.

Consider the following standard signal plus noise model in classic signal processing
[35]:

y =I's + A/?x, (2.24)

where I' is an n x k deterministic matrix, s is a k-dimensional centered signal vector, A
is an n X n deterministic positive definite matrix, and x is an n-dimensional noise vector
with i.7.d. mean zero and variance one entries. Moreover, the signal vector and the noise
vector are assumed to be independent. In practice, suppose we observe N such samples,
where the observations at different times are correlated such that the correlations are
independent of the spatial locations. Denoting the temporal covariance matrix by B, we
then have the spatio-temporal data matrix

Y =TSBY2 + AY2XBY2 S :=(s1,--,sn), X :=(x1, - ,Xn).

A fundamental task is to detect the signals via observed samples, and the very first step
is to know whether there exists any such signal, i.e.,

Hy: k=0 vs. Hy: k> 1. (2.25)

For the above hypothesis testing problem (2.25), the largest eigenvalue of the observed
samples serves as a natural choice for the tests: our result shows that, for heavy-tailed
correlated data satisfying (1.1), the largest singular value of Y satisfies the Tracy-Widom
distribution asymptotically under Hy.

We can also consider to test whether the space-time data follows a specific separable
covariance model with spatial and time covariance matrices A and B. Then we can use
the largest singular value of A~1/2Y B~1/2 as a test static. Another interesting test static
for this hypothesis testing problem is the eigenvector empirical spectral distribution
(VESD); see [63, 65, 66]. The convergence of VESD for separable covariance matrices
has been proved in [66] using the anisotropic local law—Theorem 3.6 in this paper
(which also serves as an important tool for the proof of Theorem 2.7).

Finally, we remark that one can also perform principal component analysis for
separable covariance matrices, and study the phase transition phenomena caused by a
few large isolated eigenvalues of A or B as in the case of spiked covariance matrices
[4, 5,9, 50]. We expect that our edge universality result will serve as an important input
for the study of the eigenvalues and eigenvectors for the principal components (the
outliers) and the bulk components (the non-outliers). For example, in [15] we studied the
convergence of the outlier eigenvalues and eigenvectors, and the limiting distribution of
extremal bulk eigenvalues for the spiked separable covariance model based on our main
result, Theorem 2.7, and the results given in Section 3.2 below.
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3 Basic notations and tools

3.1 Notations

We will use the following notion of stochastic domination, which was first introduced
in [19] and subsequently used in many works on random matrix theory, such as [8, 9,
10, 21, 22, 37]. It simplifies the presentation of the results and proofs by systematizing
statements of the form “¢ is bounded by ¢ with high probability up to a small power of
N".
Definition 3.1 (Stochastic domination). (i) Let

&= (§(N)(u) :NelNue U(N)) , (= (C(N)(u) :NelNue U(N)>

be two families of nonnegative random variables, where U (V) is a possibly N-dependent

parameter set. We say £ is stochastically dominated by (, uniformly in u, if for any fixed
(small) € > 0 and (large) D > 0,

sup P [¢M () > N ¢ (w)] < NP
weU W)

for large enough N > Ny(e, D), and we shall use the notation £ < (. Throughout this
paper; the stochastic domination will always be uniform in all parameters that are not
explicitly fixed (such as matrix indices, and z that takes values in some compact set).
Note that Ny(e, D) may depend on quantities that are explicitly constant, such as 7 in
Assumption 2.1 and (2.18). If for some complex family £ we have || < (, then we will
also write £ < ¢ or & = 0<(().

(ii) We extend the definition of O (-) to matrices in the weak operator sense as follows.
Let A be a family of random matrices and ( be a family of nonnegative random variables.
Then A = O<(¢) means that |(v,Aw)| < (||v|2]|w]||2 uniformly in any deterministic
vectors v and w. Here and throughout the following, whenever we say “uniformly in any
deterministic vectors”, we mean that “uniformly in any deterministic vectors belonging
to certain fixed set of cardinality NO()~,

(iii) We say an event = holds with high probability if for any constant D > 0, P(E) >
1 — N—P for large enough N.

The following lemma collects basic properties of stochastic domination <, which will
be used tacitly in the proof.

Lemma 3.2 (Lemma 3.2 in [8]). Let { and ¢ be families of nonnegative random variables.

(i) Suppose that &(u,v) < ((u,v) uniformly inu € U andv € V. If|V| < N for some
constant C, then ), {(u,v) < >, oy C(u,v) uniformly in u.

(ii) If & (u) < (1 (u) and &2(u) < C2(w) uniformly inw € U, then & (u)é2(u) < (1 (u)C2(u)
uniformly in u.

(iii) Suppose that W(u) > N~C is deterministic and &(u) satisfies IE¢(u)? < N for all
u. Then if §(u) < U(u) uniformly in u, we have E¢(u) < ¥(u) uniformly in u.
Definition 3.3 (Bounded support condition). We say a random matrix X = (z,;) satisfies
the bounded support condition with q, if

max |z;;| < q. (3.1)
iJ

Here q = q(N) is a deterministic parameter and usually satisfies N2 < q< N~? for
some (small) constant ¢ > 0. Whenever (3.1) holds, we say that X has support q.

Next we introduce a convenient self-adjoint linearization trick, which has been proved
to be useful in studying the local laws of random matrices of the Gram type [1, 2, 37, 64].
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We define the following (n + N) x (n + N) self-adjoint block matrix, which is a linear
function of X:

B 0 R120 XV E1/2
H=H(X):= ( S1/2y% xe5l/2 0 > . (3.2)
Then we define its resolvent (Green’s function) as
I 0 -
G=G(X,z):= |HX) - X , z€Cy. (3.3)
0 zlnxn
By Schur complement formula, we can verify that (recall (2.7))
G — 2G1 g121/2U*XV§]1/2
D2y xrUntl/2g, Go
. (3.4)
_ 2G, $12UXvsl/2g,
- ngl/QV*X*UEl/Q Go '

Thus a control of G yields directly a control of the resolvents G; 5. For simplicity of
notations, we define the index sets

7 :={1,.un}, Zn:={n+1,.,n+ N}, T:=7;UZ.
Then we label the indices of the matrices according to
X:(Xi#ZZ'EIl,,U/GIQ), A:(Aij:i,jell), B:(BHVZ/J,,I/EIQ).

In the rest of this paper, we will consistently use the latin letters ¢, j € Z;, greek letters
w,v €Iy, and a,b € L.
Next we introduce the spectral decomposition of G. Let

nAN
SPUTXVEY = 3 VNG
k=1
be a singular value decomposition of $1/2U* XVX1/2, where

)\1>A2>"'>)\7L/\N O—/\7L/\N+1:-~-:)\nvNa

{¢,}7_, are the left-singular vectors, and {(;}1_, are the right-singular vectors. Then
using (3.4), we can get that for¢,j € 7; and p,v € Zs,

G'L] = kz Zgl;\Ej)_gkz(])a ,LLV - Z Ck}\k _ ; (35)
1
nAN nAN
VARER ()G (1) VARCE ()& (1) )
Z /\k —Z ’ Z )\k —Z (36)

3.2 Main tools

For any constants ¢y, Cy > 0 and w < 1, we define a domain of the spectral parameter
z as
S(co, Co,w) :=={z=E+in: Ay —co < E< Cory, N <p< 1} (3.7)

In particular, we shall denote

S(co,Co,—0) :={z=FE+in: Ay —co < E<CpoA;,0<n < 1}. (3.8)
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We define the distance to the rightmost edge as
k=kp:=|E—-Xy| forz=FE+1in. (3.9
Then we have the following lemma, which summarizes some basic properties of mq .
and pp 2¢.
Lemma 3.4. Suppose the assumptions (2.2), (2.5) and (2.18) hold. Then there exists
sufficiently small constant ¢ > 0 such that the following estimates hold:
(1)
p1.2:(x) ~ /AL —z, forxz € Ay — 2¢,M4]; (3.10)
(2) forz=E +in € S(¢,Cy, —0),

VE+n, IfEZ>M\
Im12c(2)| ~ 1, Immya.(2) ~ "/ *. (3.11)
VE+ 1, IFE <Ay
(3) there exists constant 7’ > 0 such that
min |1 4+ mic(2)o,| = 7, min|l 4+ mac(2)o;| > 7/, (3.12)
WETs i€y

for any z € S(¢, Cp, —0).
The estimates (3.10) and (3.11) also hold for p. and m..

Proof. The estimate (3.10) is already given by Lemma 2.6. The estimate (3.11) can be
proved easily with (2.20). It remains to prove (3.12). By assumption (2.18) and the fact
mac(Ay) € (—o7t,0), we have

|1+m26(/\+)0'i|>7'7 i € 1.
With (2.20), we see that if & + 1 < 2¢y for some sufficiently small constant ¢y > 0, then
\1+m26( )Uz‘ T/2 i1 €1.

Then we consider the case with E > A\ 4 ¢y and n < ¢; for some constant ¢; > 0. In fact,
forn =0and F > Ay, ma.(F) is real and it is easy to verify that m) (F) > 0 using the

Stieltjes transform formula
o(d
Mmae(z) = / M (3.13)
R xr—z
Hence we have
14 oimac(E) =2 1+ 0mac(Ay) 27, for E > Ay + co.
Using (3.13) again, we can get that

dmac(2)
dz

Thus if ¢, is sufficiently small, we have

éc(}Q, fOFE )\++CO

‘1 +0‘im2C(E+i’l7)‘ > 7'/2, i €14,

for E > Ay 4 ¢p and n < ¢;. Finally, it remains to consider the case with n > ¢;. In this
case, we have |my.(z)| ~ Immy.(z) ~ 1 by (3.11). Fori € Zy, if 0; < |2ma.(2)|", then
|1 4+ o;ma.(2)] = 1/2. Otherwise, we have

Im ma, (z)
1+ o;mac(z)] = o Immea.(2z) > > 1.
‘ 3 2c( )| = Uy 26( ) = 2|m20( )|
In sum, we have proved the second estimate in (3.12). The first estimate can be proved
in a similar way. O
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Definition 3.5 (Classical locations of eigenvalues). The classical location -y; of the j-th
eigenvalue of Q; is defined as

+oo j—1
7; = sup {/ pe(x)dx > } . (3.14)

x

In particular, we have v = A;.

In the rest of this section, we present some results that will be used in the proof
of Theorem 2.7. Their proofs will be given in subsequent sections. For any matrix X
satisfying Assumption 2.1 and the tail condition (1.1), we can construct a matrix X* that
approximates X with probability 1 — o(1), and satisfies Assumption 2.1, the bounded
support condition (3.1) with ¢ < N —% for some small constant ¢ >0, and

Elzj;[* = O(N73/2), Elag;|* = O<(N?); (3.15)

see Section 4 for the details. We will need the local laws (Theorem 3.6), eigenvalues
rigidity (Theorem 3.8), eigenvector delocalization (Lemma 3.9), and edge universality
(Theorem 3.10) for separable covariance matrices with X*.

We define the deterministic limit II of the resolvent G in (3.3) as

() e |~ @FmeED)7 0 ). (3.16)
0 —27 1+ my(2)8) 7t ’
Note that we have )
il Z IL; = me. (3.17)
nz -
i€y
Define the control parameters
TIm ma(2) 1
U(z) =) ——-—-t + —. 3.18
(2) No TNy (3.18)
Note that by (3.11) and (3.12), we have
I =0(1), w2 NY2 Wyl W)~y e L (g
) ~Y ) ~y ) ]\[77 N'r]’ *

for z € S(¢, Cy, —0). Now we are ready to state the local laws for G(X, z). For the
purpose of proving Theorem 2.7, we shall relax the condition (1.2) a little bit.

Theorem 3.6 (Local laws). Suppose Assumption 2.1 and (2.18) hold. Suppose X satisfies
the bounded support condition (3.1) with ¢ < N~® for some constant ¢ > 0. Furthermore,
suppose X satisfies (3.15) and

|Eal)| <byN72, 1<i<n, 1<j<N, (3.20)
where by is an N-dependent deterministic parameter satisfying 1 < by < N2, Fix
Cy > 1 and let ¢y > 0 be a sufficiently small constant. Given any ¢, a > 0, we define the
domain

S(co, Co, a,€) := S(co, Co, &) N {z —E+in:by (\1/2(2) n J\?n) < N“} . (321

Then for any constants € > 0 and a > 0, the following estimates hold.

(1) Anisotropic local law: For any z € 5(«:0, Co,a,¢e) and deterministic unit vectors
u, v e C?,
|(u, G(X, 2)v) — (0, II(2)v)| < ¢+ ¥ (2). (3.22)
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(2) Averaged local law: For any z € g(co, Co,a,¢e), we have
m(z) = me(2)| < ¢* + (Nn) ™, (3.23)

where m is defined in (2.8). Moreover, outside of the spectrum we have the
following stronger estimate

m) —mo) <@+ Ny L L
1t e

N N(k+n
uniformly in z € S(co, Co, a,€) N {z=E+in: E > Xy,Nn/k+n > N}, where k is
defined in (3.9).

(3.24)

The above estimates are uniform in the spectral parameter z and any set of deterministic
vectors of cardinality NOQM) If A or B is diagonal, then (3.22) and (3.23) hold for z €
S(cg,Co,€), and (3.24) holds for z € S(co,Co,e)N{z=E+in: E > Ay, Nn/k+n > N}
without the term N~%/2/(Nn).

The main difficulty for the proof of Theorem 3.6 is due to the fact that the entries of
AY2X B'/? are not independent anymore. However, notice that if X = X5 ig j.4.d.
Gaussian, we have

21/2U*XGauSSV§:1/2 g ZI/ZXGaussil/2.

In this case, the problem is reduced to proving the local laws for separable covariance
matrices with diagonal spatial and temporal covariance matrices, which can be handled
using the standard resolvent methods as in e.g. [8, 53]. To go from the Gaussian case
to the general X case, we adopt a continuous self-consistent comparison argument
developed in [37]. In order for this argument to work, we need to assume (1.2). The
main reason is that we need to match the third moment of x;; with that of the Gaussian
random variables in the derivation of equation (6.26) below. Under the weaker condition
(3.20), we cannot prove the local laws up to the optimal scale 1 > N1, but only up to
the scale n > max{quN, ‘/%TV} near the edge. However, to prove the edge universality,
we only need to have a good local law up to the scale < N~2/3¢, hence by can take
values up to by < N'/3. (Actually in the proof of Theorem 2.7 in Section 4, we will take
by = N~¢ for some small constant € > 0; see (4.4) below for the estimate on by that is
obtained from (1.2).) Finally, if A or B is diagonal, one can prove the local laws up to the
optimal scale for all by = O(N 1 %) by using an improved comparison argument in [37].

Following the above discussions, we divide the proof of Theorem 3.6 into two
steps. In Section 5, we give the proof for separable covariance matrices of the form
»/2X3X*%1/2 which implies the local laws in the Gaussian X case. In Section 6, we
apply the self-consistent comparison argument in [37] to extend the result to the general
X case. Compared with [37], there are two differences in our setting: (1) the support of
X in Theorem 3.6 is ¢ = O(N~?) for some constant 0 < ¢ < 1/2, while [37] only dealt
with X with small support ¢ = O(N~'/2); (2) one has B = I in [37], which simplifies the
proof.

The second moment of the error (u, (G — II)v) in fact satisfies a stronger bound.

Lemma 3.7. Suppose the assumptions in Theorem 3.6 hold. Then for any fixed ¢,a > 0
and z € S(cp, Co, a,e), we have the following bound

El(u, G(X, 2)v) — (0, TI(2)v)|* < ¥?(2), (3.25)

for any deterministic unit vectors u,v € CZ.
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With Theorem 3.6 as a key input, we can prove a stronger estimate on m(z) that
is independent of ¢. This averaged local law implies the rigidity of eigenvalues for Q;.
Note that for any fixed E, ¥?(E + in) + ¢/(Nn) is monotonically decreasing with respect
to 1, hence there is a unique 7; (E) such that

. q
by [ O3(E EN+ ——=)=1
N ( (B +im () + Nm(E))
Then we define 1;(E) := maxp<.<a, M (z) (“1” for lower bound) for E' < Ay, and n(E) :=
n(Ay) for E > A,. Note that by (3.18), we always have 7;(E) = O(by/N).
Theorem 3.8 (Rigidity of eigenvalues). Suppose the assumptions in Theorem 3.6 hold.
Fix the constants cy and Cy as given in Theorem 3.6. Then for any fixed ¢,a > 0, we have

Im(z) —me(2)| < (Nn) ™, (3.26)

uniformly in z € 5(00, Cy,a,¢). Moreover; outside of the spectrum we have the following
stronger estimate

N—9/2 1 1
+ + ,
Nn  N(k+mn) (Nn)?*J/e+n

uniformly in z € S(cy,Co,a,e) N {z = E+in: E > A, Nn/k +1 = N} for any fixed
e > 0. If A or B is diagonal, then (3.26) holds for z € S(cg, Co,¢) and (3.27) holds for
z € S(co,Co,e)N{z=FE+in: E >\, Nny/k +n > N°} without the term N~%/2/(Nn).
The bounds (3.26) and (3.27) imply that for any constant 0 < c¢; < ¢y, the following
estimates hold.

Im(z) — me(2)] < (3.27)

(1) For any E > A\ — c;, we have
n(E) — ne(E)| < N~ + ((E))*? + m(E) kg, (3.28)

where kg is defined in (3.9), and
1 oo
n(E) := N#{)\j > E}, n.(E):= / pac(x)de. (3.29)
E

(2) Ifbyy < N'/3-¢ for some constant ¢ > 0, then for any j such that A, — ¢; < v < At,
we have
IAj =5l < GTHENTE g, (3.30)

where 19 := mn(Ay —¢1) = O(by/N).

The anisotropic local law (3.22) implies the following delocalization properties of
eigenvectors.

Lemma 3.9 (Isotropic delocalization of eigenvectors). Suppose (3.22) and (3.30) hold.
Then for any deterministic unit vectors u € C¥*, v € C*2 and constant 0 < ¢; < ¢, we
have

{10080 +10v, I} < mo, (3.31)

max
k:)\+761<"/k<)\+

where 1 is defined below (3.30).

Proof. Choose zyp = FE + iN®ng € §(co,Co,a,5). By (3.22) and (3.19), we have

Im(v,G(z9)v) = O(1) with high probability. Then using the spectral decomposition
(3.5), we get

o~ Nenol(v, GO
Or —E) + N=i2 =Im(v,G(z)v) = O(1) with high probability. (3.32)
k=1 0
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By (3.30), we have that A\, +iN®ng € 5‘(00, Co, a,¢) with high probability for every k such
that A — ¢; < < Ay. Then choosing E = ), in (3.32) yields that

|(v,¢)|? < N with high probability.

Since ¢ is arbitrary, we get |(v,()|> < 7. In a similar way, we can prove |(u,&)|* <
o- O

Finally, we have the following edge universality result for separable covariance
matrices with support ¢ < N~% and satisfying the condition (3.15).

Theorem 3.10. Let XV and X be two separable covariance matrices satisfying the
assumptions in Theorem 3.6. Suppose by < N'/3~¢ for some constant ¢ > 0. Then there
exist constants ¢, > 0 such that for any s € R,

PD (N3N = A ) <s—N) =N I9<P® (N3N, —Ay) < s
+ +
(3.33)
<PO (NP (0 = 2y) <5+ N7S) + N7,

where P(") and P(® denote the laws of X(*) and X, respectively.

Remark 3.11. As in [20, 24, 40], Theorem 3.10 can be can be generalized to finite
correlation functions of the k largest eigenvalues for any fixed k:

Pw (Nz/g L < i_N_E) N <P® (Nz/s - < l)
(w50~ <5 s (oA <s)

<PW ((Nz/?’(/\i —Ap) <sit N—E) ) +N°. (3.34)

1<i<k
The proof of (3.34) is similar to that of (3.33) except that it uses a general form of the
Green function comparison theorem; see e.g. [24, Theorem 6.4]. As a corollary, we can
get the stronger edge universality result (2.23).

The proofs for Lemma 3.7, Theorem 3.8 and Theorem 3.10 follow essentially the same
path as discussed below. First, for random matrix X with small suppoort ¢ = O(N -1/ ),
we have the averaged local laws (3.26)-(3.27) and the following anisotropic local law

(u,G(X, 2)v) — (u,T(2)v)| < ¥(2).

With these estimates, one can prove that Lemma 3.7, Theorem 3.8 and Theorem 3.10
hold in the small support case using the methods in e.g. [20, 24, 53]. Then it suffices to
use a comparison argument to show that the large support case is “sufficiently close”
to the small support case. In fact, given any matrix X satisfying the assumptions in
Theorem 3.6, we can construct a matrix X having the same first four moments as X but
with smaller support ¢ = O(N~'/2), which is the content of the next lemma.

Lemma 3.12 (Lemma 5.1 in [40]). Suppose X satisfies the assumptions in Theorem 3.6.
Then there exists another matrix X = (x;j), such that X satisfies the bounded support
condition (3.1) with q = N~1Y2 and the first four moments of the X entries and X entries
match, i.e.
Exj; = Bz}, k=1,2,3,4. (3.35)
It is known that the Lindeberg replacement strategy combined with the four moment
matching usually implies some universality results in random matrix theory, see e.g.
[55, 56, 57]. This is actually also true in our case. We shall extend the Green function
comparison method developed in [40] (which is essentially an iterative application of
the Lindeberg strategy using the four moment matching), and prove that Lemma 3.7,
Theorem 3.8 and Theorem 3.10 also hold for the large support case. The proofs are
given in Section 7.
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4 Proof of of Theorem 2.7

In this section, we prove Theorem 2.7 with the results in Section 3.2. Given the
matrix X satisfying Assumption 2.1 and the tail condition (1.1), we introduce a cutoff on
its matrix entries at the level N~°. For any fixed € > 0, define

ay =P (|Q11| > Nl/z_e) , By =E [1(|Q11| > N1/2_E)Q11} .
By (1.1) and integration by parts, we get that for any fixed § > 0 and large enough N,
an < ON“2HE|By| < SN T3/, (4.1)

Let p(dz) be the law of ¢1;. Then we define independent random variables 4 qu, Cij,
1<i<nand1l < j <N, in the following ways.

* ¢;; has law p,, which is defined such that

po(€) = — /1 <x+ Y ee> 1 (|a:| < Nl/H) p(dz)

_1—aN l—aN

for any event £. Note that if ¢1; has density p(x), then the density for ¢f, is

ps(z) =1 (’a: ﬂN‘ < N1/2€> M.

_1—041\[ 1—aN

* ¢, has law pj, such that

p(€) = i/1 (z + ﬁNN € 5) 1 (m > Nl/Q*E) p(dz)

an 11—«

for any event £.
* ¢;; is a Bernoulli 0-1 random variable with P(¢;; = 1) = ax and P(¢;; =0) =1 —ay.

Let X*, X! and X be random matrices such that X, = N~'/2¢;;, X, = N~'/2¢/. and
X§; = cij. It is easy to check that for independent X, X' and X¢,

s c . 1 B
Xy £ X5 (1-Xg) + Xhxg - X

\/N 1-— aN '
The purpose of this decomposition (in distribution) is to write X into a well-behaved
random matrix X*® with bounded support ¢ = O(N~¢) plus a perturbation matrix (X' —
X?®)Xc. Here the matrix X¢ gives the locations of the nonzero entries of the perturbation
matrix, and its rank is at most N°¢ with high probability; see (4.6) below. The matrix
X' contains the “abnormal” large entries above the cutoff, but the tail condition (1.1)
guarantees that the sizes of these entries are of order o(1) in probability; see (4.9).
Hence the perturbation (X' — X*)X¢ is of low rank and has small strengths. Then as in
the famous BBP transition [4], we will show that the effect of this perturbation on the
largest eigenvalue is negligible.

If we define the n x N matrix Y = (Y;;) by

_ 1 BN
\/Nl—OéN

then we have ||Y|| = O(N~1*3¢). In the proof below, one will see that (recall (2.6))

(4.2)

Yy =O(N?¥) 1<i<n, 1<j<N,

=20 (X + )2 = A2 (Qi(X +1)) = 0(1)
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with probability 1 — o(1). Thus with probability 1 — o(1), we have
‘)\1 (él(X + Y)) -\ (él(X))’ =0 (N3, (4.3)

Hence the deterministic part in (4.2) is negligible under the scaling N2/3.
By (1.1), (1.2) and integration by parts, it is easy to check that

EQTl = 07 E‘QTIF =1- O(N71+2€)v

o . (4.4)
Elg, > = O(1), E(g5;)® = O(N~Y2*9), Elg}|* = O(log N).

Note that this is the only place where (1.2) is used in order to get the estimate on E(¢j,)3.
For the reason why this estimate is needed, we refer the reader to the discussion below
Theorem 3.6. Thus X; := (E|¢f,|?)~'/?X* is a matrix that satisfies the assumptions for
X in Theorem 3.6 with by = O(N¢) and ¢ = O(N~¢). Then by Theorem 3.10, there exist
constants €', 8’ > 0 such that for any s € R,

pe (N2/3()\1 —Ay) <s— N-E’) — N~ < P* (N2/3()\1 —As) < s) ws)
<P (NP =) s+ N7 ) 4N ‘

where P* denotes the law for X* and P¢ denotes the law for i.i.d. Gaussian matrix. Now
we write the first two terms on the right-hand side of (4.2) as

X510 = X5) + X[, X5 = X5+ Ri; X5, Rij = X} — X5

25
We define the matrix R® := (R;; X{;). It remains to show that the effect of R° on \; is
negligible. Note that X7, is independent of X7; and R;;.
We first introduce a cutoff on matrix X¢as X¢:= 1 2 X€, where

o ={#{(i,5) : X;; =1} SN} n{X{; = Xp = 1={i,j} = {k, 1} or {i,j} N {k,1} = 0}.

If we regard the matrix X¢ as a sequence X°¢ of n/V i.i.d. Bernoulli random variables, it
is easy to obtain from the large deviation formula that

nN
P (Z X¢ < N5E> > 1 — exp(—N°9), (4.6)
=1

for sufficiently large N. Suppose the number ng of the nonzero elements in X¢ is given
with ng < N®¢. Then it is easy to check that

]P(Elik,j#lori#k,jlsuchthatXiCjX,gl1

nN
ZXf = no) =O0mEN1).

i=1

(4.7)
Combining the estimates (4.6) and (4.7), we get that
P(a/) > 1— O(N~1H10e), (4.8)
On the other hand, by condition (1.1), we have
P (|Rij| > ) <P (|aigl > SNY2) = o(N72), (4.9)

for any fixed constant w > 0. Hence if we introduce the matrix
E=1 <4270 {ma_x|Rij < w}) Re,
i,J
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then we have
P(E=R°) =1-0(1) (4.10)

by (4.8) and (4.9). Thus we only need to study the largest eigenvalue of @1(Xs +E),
where max; ; |E;;| < w and rank(FE) < N°¢. In fact, it suffices to prove that

P (\A; ~ M| < N—3/4) —1-o(1), (4.11)

where
P (Gxn), A=A QX+ B)).

The estimate (4.11), combined with (4.3), (4.5) and (4.10), concludes (2.21).

Now we prove (4.11). Since X¢is independent of X?, the positions of the nonzero
elements of X¢ are independent of X?*. Without loss of generality, we assume the
positions of the no nonzero entries of X¢ are (1,1),(2,2),- -, (ng, no), which correspond
to the following entries of E:

€11, €22, “** 5 Engngs Mo < INC. (4.12)

For other choices of the positions of nonzero entries, the proof is exactly the same, but
we make this assumption to simplify the notations. By the definition of F, we have
lesi] <w, 1 <i < ng. We define the matrices

e 0 SY2U* XV R/
T (21/2U*XSVE1/2)* 0

and H¥ .= H* + P, where

P 0 SV2U* BV 2
- (ZI/QU*EVEUQ)* 0

([ =V 0 0 E Ust/zoo
- 0 $/2ye E* 0 0o v

»i2u+ 0 L[ Ux/? 0
(0 s ) (507 vse )

where Pp is a 2ng x 2ng diagonal matrix
PD = dlag (6117 MR enonoa _6117 MR _enono) b)

and W is an (n + N) x 2ny matrix such that

6a,i/\/§+5a (n+i)/\/§7 b=1,1<ng
Wab = ’ ) . .
5a7i/\/§_5a,(n+i)/\/§, b=z+n0, 1 < Ng

Without loss of generality, we assume that e¢;; # 0, 1 < i < ng (otherwise we only need to
use a matrix W with smaller rank). With the identity

_ 1/277%* $1/2
det(( I S22 X VS, )

_ (_1\N_N—-n A _
21/2U*X‘/i1/2)* Y S =(-1)"2 det (Ql(X) ZI?LXn)v

and Lemma 6.1 of [36], we find that if u ¢ a(@l(XS)), then p is an eigenvalue of
Q1(X*® +~E) if and only if

det (O*G*(n)O + (vPp)~') =0, 0<y<1, (4.13)
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where

-1
sin (s TIusn 0 [ s 0
R Gl () R G

Define R := O*G*O + (yPp)~! for 0 < v < 1, and let u := \{ + N3/, We claim that
P(det R () #0forall0 <y <1)=1—o0(l). (4.14)

If (4.14) holds, then 4 is not an eigenvalue of Q;(X + vE) with probability 1 — o(1).
Denote the largest eigenvalue of él(X +7E) by \], 0 < v < 1, and define A\ := lim,, o \].
Then we have \{ = \j and Al = A\, With the continuity of \] with respect to v and the
fact that \) € (\; — N=3/4 \; + N—3/%), we find that

AP =2l € (Af = N73/4 5 + N=3/%),

with probability 1 — o(1), which proves (4.11).
Finally, we prove (4.14). Note that ng = O(bx/N) = O(N~"), hence z = Ay +iN /3
is in S(co, Cy, 9, ) for a small constant § > 0. Now we write

RY(p) = O* (G*(p) — G*(2)) O + O* (G*(2) —(2)) O + O*(2)O + (yPp)~*.  (4.15)

With (3.19), we have
[|O*II(2)O]| = O(1) (4.16)

By Lemma 3.7, we have
E [0 (G*(2) ~ () O], < ¥*(z) = O(N /%), 1< a,b<2m,

where we used (3.11) and (3.18) in the second step. Then with Markov’s inequality and
a union bound, we can get that

max [0 (G*(2) — 11(2)) O],,| < N~V/6 (4.17)

1<a,b<2no
holds with probability 1 — O(ngN~'/3). Thus we have
0" (G%(2) — II(2)) O|| = O(ngN~*/6) = O(1) with probability 1 — O(noN~/3). (4.18)

It remains to bound the first term in (4.15). As pointed out in Remark 3.11, we can
extend (4.5) to the finite correlation functions of the largest eigenvalues. Since the
largest eigenvalues in the Gaussian case are separated in the scale N~2/3, we conclude
that

P (min IN(Q1 (X)) — | = N—3/4) =1-o(1). (4.19)
On the other hand, the rigidity result (3.30) gives that
| — Ay < N72/3, (4.20)

Using (3.31), (4.19), (4.20) and the rigidity estimate (3.30), we can get that for any set 2
of deterministic unit vectors of cardinality N©(),

sup [{u, (G*(2) — G*(w)) v)| < N~ /455 (4.21)

u,veQ
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with probability 1 — o(1). For instance, for deterministic unit vectors u,v € C*2 and any
constant 0 < ¢ < e, we have with probability 1 — o(1) that

1 1
GS S
(- Z| < VCk|‘ -z /\k—M’
1 N¢ 1
D - - -
N2/3 Z |<u7<k><va<k>|+ N5/3 Z ‘)\k _ZH)\k;_,LL|
Ve SA+—C1 Ye>Ap—c1
1 N¢# 1 Ne¢ 1
<t s 2 T D —
2/3 5/3 _ _ 5/3 _ —
N / N / 1<k<N¢e |>\k Z||Ak /J“‘ N / E>NE R >Ah—cr ‘)\k ZH)\k 'u|
1 Ncte N¢ 1 1
— - ~ N71/4+C+E
=< N2/3 + N1/4 + N2/3 N Z |/\k _ZH)\k: _M| s

kE>Ne¢,yg>Ap—c1

where in the first step we used (3.5), in the second step (3.31) (with g = O(N~*¢)) and
A — z|| Ak — ] 2 1 for v, < Ay — 1 due to (3.30), in the third step the Cauchy-Schwarz
inequality, in the fourth step (4.19), and in the last step |\x — z||A\r — p| ~ (k/N)~*/3 for
k > N¢ by the rigidity estimate (3.30). For the other choices of deterministic unit vectors
u,v € €112, we can prove (4.21) in a similar way. Now with (4.21), we can get that

0 (G*(1) — G*(2)) O = O(ngN~/4*+3)  with probability 1 — o(1). (4.22)

With (4.16), (4.18) and (4.22), we see that as long as w is chosen to be sufficiently small,
we have

107 (G* (1) = G*(2)) O + O™ (G*(2) = 11(2)) O + O*1(2)O|| < ()~

for all 0 < v < 1 with probability 1 — o(1). This proves the claim (4.14), which further
gives (4.11) and completes the proof.

5 Proof of Theorem 3.6: Gaussian X

As discussed below Theorem 3.6, in this section we prove Theorem 3.6 for separable
covariance matrices of the form ©/2X>X*¥!/2, which will imply the local laws in the
Gaussian X case. Thus in this section, we use the following resolvent:

~ -1
0 »i/2xn/2 Iixn 0
G(X,Z): l( il/QX*Zl/2 0 ) - ( 0 NN ) , (5.1)

with X satisfying (3.1) with ¢ = N~'/2. More precisely, we will prove the following
result.

Proposition 5.1. Suppose Assumption 2.1 and (2.18) hold. Suppose X satisfies the
bounded support condition (3.1) with ¢ = N~'/2. Suppose A and B are diagonal, i.e.
U=1I,x,andV = Inx«n. Fix Cy > 1 and let ¢y > 0 be a sufficiently small constant. Then
for any fixed € > 0, the following estimates hold.

(1) Anisotropic local law: For any z € S(cy,Co,c) and deterministic unit vectors
u, v e C?,
[(u, G(X, 2)v) — (u,II(2)v)| < ¥(2). (5.2)

(2) Averaged local law: We have

Im(z) —me(2)] < (Nn)~* (5.3)
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for any z € S(cp, Co, ), and

1 1
Netn) W (NnieEn

for any z € S(co,Co,e)N{z=FE+in: E > A\, Nn/k+1n > N°}.

Im(2) —me(2)] < (5.4)

Both of the above estimates are uniform in the spectral parameter z and the deterministic
vectors u, v.

Under a different set of assumptions, the local law as in Proposition 5.1 has been
proved in [1]. However, in order to satisfy their assumptions in our setting, we need
to assume that the eigenvalues of A and B are both upper and lower bounded by some
constants 7 < 0y, 0; < 7—1, which rules out the possibility of zero or very small (that is,
o(1)) eigenvalues of A and B. On the other hand, our assumptions in (2.5) and (2.18) are
slightly more general, and allow for a large portion of small or zero eigenvalues of A and
B. For reader’s convenience, we shall give the proof of Proposition 5.1 in our setting.
This proof is similar to the previous proof of the local laws, such as [8, 14, 37, 64]. Thus
instead of giving all the details, we only describe briefly the proof. In particular, we shall
focus on the key self-consistent equation argument, which is (almost) the only part that
departs significantly from the previous proof in e.g. [8]. In the proof, we always denote
the spectral parameter by z = E + in.

5.1 Basic tools

In this subsection, we collect some basic tools that will be used. For simplicity, we
denote Y := R1/2X¥1/2,

Definition 5.2 (Minors). For any (n + N) x (n + N) matrix A and T C Z, we define the
minor A" := (A : a,b € T\ T) as the (n+ N — |T|) x (n+ N — |T|) matrix obtained by
removing all rows and columns indexed by T. Note that we keep the names of indices
when defining AV, i.e. (AM))y, = Ay, for a,b ¢ T. Correspondingly, we define the
resolvent minor as

(m7-t
I 0
(']I‘)': _ nxn
“ [(H ( 0 zlnxn >> ]
_ Zggr) i gg‘)}T/(T) _ ngiT) ) Y(T)%SE)
(y™) g g gt (v g

and the partial traces

m . _ 1 @ o _ 1§ A
my = Niz ZO’lG” , Mo = N Z O—#GE"I")'
i¢T ngT

For convenience, we will adopt the convention that for any minor A") defined as
above, Ag) =0ifa € T orb € T. We will abbreviate ({a}) = (a), ({a,b}) = (ab), and

Eg]r) = ZaQT'

Lemma 5.3. (Resolvent identities).

(i) Forti € 1; and u € Iy, we have

—_1- (YG“’)Y*) S (Y*G(“)Y) . (5.5)

1
L)
Gii g Guu 12733
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(ii) Fori # j € 7, and u # v € Iy, we have

Gij = GiiGg? (YG(ij)Y*) , G = GWG(VIIL/) (y*G(uu)y) . (5.6)

ij 5%

Fori € 7; and u € Z,, we have

Gip = GuGy), (—Yw + (YG(’:“)Y) ) :

i

(5.7)
Gi = GG (—Y:Z- + (Y*GW)Y*)m) .
(iii) Fora € T and b,c € T\ {a},
a G aGac 1 1 G aGa
Ghe = Gy + =2 beab (5.8)

Gaa  Gw G GuGYWGC,.

(iv) All of the above identities hold for GT) instead of G for T C Z, and in the case
where A and B are not diagonal.

Proof. All these identities can be proved using Schur’s complement formula. The reader

can refer to, for example, [37, Lemma 4.4]. O

Lemma 5.4. Fix constants ¢y, Cy > 0. The following estimates hold uniformly for all
z € S(cp,Co,a) for any a € R:

IGI < o™, llo.Gl < Cn~2. (5.9)

Furthermore, we have the following identities:

2 G
doIGul =D 1G4 = jlm (Z”) : (5.10)

i€y i€y
ImG,,
Z |C:1’li|2 = Z |Gm/|2 = La (5.11)
HEL neIs n
z
D 1Gul* = 3Gl = G+ SIm Gy, (5.12)
€T, i€
Gii | % Gii
S 1Gul = Gl = = + ZIm( ) . (5.13)
z n z
HEL HELs

All of the above estimates remain true for G instead of G for any T C 7, and in the
case where A and B are not diagonal.

Proof. These estimates and identities can be proved through simple calculations with
(3.4), (3.5) and (3.6). We refer the reader to [37, Lemma 4.6] and [64, Lemma 3.5]. O

Lemma 5.5. Fix constants cy,Cy > 0. For any T C 7 and a € R, the following bounds
hold uniformly in z € S(cg, Co, a):

ClT

N (5.14)

‘ml — mgT)’ + |m2 — mgT)‘ <
where C' > 0 is a constant depending only on 7.
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Proof. For p € Z,, we have

Z ~ GWGW

vELy #H

|-

ClmG,, C’
S (6 - G €

N|Gw N77|Gﬂu|

vELy

where in the first step we used (5.8), and in the second and third steps we used (5.11).
Similarly, using (5.8) and (5.12) we get
C Gii Gzi C
,1 < —.
SN |Gl n z Nn

Z ~ Gyszu
vELy “

Similarly, we can prove the same bounds for m;. Then (5.14) can be proved by induction

on the indices in T. O

’mg m2 ’ =

The following lemma gives large deviation bounds for bounded supported random
variables.

Lemma 5.6 (Lemma 3.8 of [23]). Let (z;), (y;) be independent families of centered
and independent random variables, and (A;), (B;;) be families of deterministic complex
numbers. Suppose the entries x;, y; have variance at most N~ and satisfy the bounded
support condition (3.1) with ¢ < N~¢ for some constant ¢ > 0. Then we have the
following bound:

/
S ] <ampx i+ (1)
sz zjyj‘_<qu+qB + = (Z‘Bljl)
i#]
Z@'Bn‘xi - Z(E\xi\g)Bii

i

szBw%’ <qBo + — <Z|Bw| )

1#] i#£j

=< qBg,

where Bd (= max; |B“‘ and Bo ‘= INaX;£j |B1j|
For the proof of Proposition 5.1, it is convenient to introduce the following random
control parameters.

Definition 5.7 (Control parameters). We define the random errors

A= —1II A, = = - - A
Inax (G —TD),l, Ao nax; |Gap|, 0:=|m1—mic|+ |ma —macl, (5.15)
and the random control parameter (recall ¥ defined in (3.18))

Imms,. + 6 1
U=y ———— + —. 5.16
) N + N ( )

5.2 Entrywise local law

The main goal of this subsection is to prove the following entrywise local law. The
anisotropic local law (5.2) then follows from the entrywise local law combined with a
polynomialization method as we will explain in next subsection.

Proposition 5.8. Suppose the assumptions in Proposition 5.1 hold. Fix Cy > 0 and let
co > 0 be a sufficiently small constant. Then for any fixed ¢ > 0, the following estimate
holds uniformly for z € S(cg,Cy,€):

max |Gan(X, 2) — Hgp(2)] < U(2). (5.17)
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In analogy to [23, Section 3] and [37, Section 5], we introduce the Z variables
ZM = (1-E,)(GD)", agT,

where E,[| := E[- | H%)], i.e. it is the partial expectation over the randomness of the
a-th row and column of H. By (5.5), we have

X — X 1
Z; = (B; — 1) (YG(z)Y*> =0 Y \06.5,GY) (N(S”” - XWX,-V) : (5.18)
" w,vels
and
” ~ 1
7 = (Eu -1) (y G(M)Y)W =0y, Z ,/cringZ(.;%) <N51-j — XX ) . (5.19)
i,j€T,

The following lemma plays a key role in the proof of local laws.

Lemma 5.9. Suppose the assumptions in Proposition 5.1 hold. Let ¢y > 0 be a suffi-
ciently small constant and fix Cy,e > 0. Define the z-dependent event E(z) := {A(z) <
(log N)~1}. Then there exists constant C' > 0 such that the following estimates hold
uniformly for all a € T and z € S(cg, Cy,€):

1(E) (Ao + | Zal) < W, (5.20)
and
1(772 1) (Ao+|Za|) =< Uy (5.21)

Proof. Applying Lemma 5.6 to Z; in (5.18), we get that on =,

1 2\ 2 1 5, Im G e Imm{”
Zil < a+ & (Z&u'Gfﬁ > =g+ (Z"“") =q+ TWQ, (5.22)
JTn% I3

N 7
where we used (2.5), (5.11) and the fact that max, ; |Ge| = O(1) on event =. Now by
(5.15), (5.16) and the bound (5.14), we have that

\/Im m) \/Im mae + Im(my” — my) + Im(my — ma.) < C0,. (5.23)
Nn Nn

Together with the fact that ¢ = N~/2 < ¥, by (3.19), we get (5.20) for 1(Z)|Z;|. Similarly,
we can prove the same estimate for 1(E)|Zﬂ , where in the proof we need to use (5.10)
and (3.19). If n > 1, we also have max, ; |Gq| = O(1) by (5.9). Then repeating the above
proof, we obtain (5.21) for 1(n > 1)|Z,|. Similarly, using (5.6) and Lemmas 5.4-5.6, we
can prove that

1(E) (1Gi| +1Gul) + 1(n = 1) (1G] + |Guv]) < Vo. (5.24)

It remains to prove the bounds for G;, and G,; entries. Using (5.7), (3.1), the bound
max, p |Gap| = O(1) on Z, Lemma 5.4 and Lemma 5.6, we get that

) 1/2 1/2
1 [ i |2 1 (W P
) — > T — — > (ip) 4 2 (i)
\Gw|<q+N ZUV G, =q+ Zau <GW +771mGW )

YRZ v

ch ImG)| T m{*) |

~ N Nn
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As in (5.23), we can show that

Tm m{*)

Ny~ O(y). (5.25)

For the other term, we have

\/ (LM)| \/m2€| + |m(m) m2| + |mg — mac
(5.26)

|m20
<7 1/ +1/ <v
NNf+ 05

where we used (5.14) and |mo.|/N~t = O(¥?) by (3.19). With (5.25) and (5.26), we
obtain that 1(Z)|G;,| < ¥y. Together with (5.24), we get the estimate (5.20) for 1(2)A,.
Finally, the estimate (5.21) for 1 ( > 1) A, can be proved in a similar way with the bound
1(n > 1) maxg |Gap| = O(1). O

A key component of the proof for Proposition 5.8 is an analysis of the self-consistent
equation. Recall the equations in (2.9) and the function f(z,«) in (2.15).

Lemma 5.10. Let ¢y > 0 be a sufficiently small constant and fix Cy,¢ > 0. Then the
following estimates hold uniformly in z € S(cg, Cy,€):

/2 o r () ~1/2
1(n=1)|f(z,m2)| < N™ 1(n>=1) ‘ml dN/—z[1+xm2(z)]7TA (dz)| < N ,
(5.27)

and
1(2) |f(z,ma)| < Ug, 1(Z) |ma(z) —dN/ng’”(dx) < Ty,  (5.28)

where = is as given in Lemma 5.9. Moreover, we have the finer estimates

L(E) |f(z,m2)] < 1(E) ([[Z11] + |[Z]2]) + 93, (5.29)
and
where
Z) = 721-, : — 7, (5.31)
2] NZGZIl (1+ oymo)? 2o Nﬂ;z 1+oum1) .

Proof. We first prove (5.29) and (5.30), from which (5.28) follows due to (5.20) and
(3.12). By (5.5), (5.18) and (5.19), we have

1
=-1-— Z GG+ Zi = —1 — oyma + &y, (5.32)
Gu ,MGIz
and
1 o ~
e = —z—% ZUiGEf)—i—Zﬂ = —z—z20,m1 + €y, (5.33)
HH i€,
where A
g =24+ oy (m2 — mg)) and ¢, :=Z, + 20, (ml — m%’”) .
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By (5.14) and (5.20), we have for all 7 and g,
1(Z) (ea] + [enl) < Yo (5.34)
Moreover, by (5.8) we have

13) (Jmz = m§| -+ [my — m{")

gl(E)% > G +Y o

veLy JEI,

Gii

GjuGuj = W2

Bt

where we used (5.20) and |G;;| ~ |G| ~ 1 on Z in the second step. Now using (5.32),
(5.34), (5.35), (5.20), (3.12) and the definition of =, we can obtain that

1 Z;
1(E2)G; = 1(= — L + 0. (V2 (5.36)
(E)Gii (2) —(1+ oyms) (1—|—a,»m2)2 '<( 9)
Taking average Niz Zl 0;, we get
o
1(= =1(3) B VA w2 5.37
(S [NZ_21+Uzm2) 12+ 0<(¥s) (37

which proves (5.30). On the other hand, using (5.33), (5.34), (5.35), (5.20), (3.12) and
the definition of =, we obtain that

1 Z
1(5)G,, = 1(Z _ - £ + 02 (3 (5.38)
()G ) [—z(l +om1) 221+ F,umy)’ < (¥5)
Taking average N~ '} 7, we get
1(E)m2 = 1(5) L e — 2 2[Z]s + O (¥3) (5.39)
N —Z(l + Euml)

Plugging (5.37) into (5.39), and using (3.12) and the definition of =, we can obtain that

(5.40)

1E)m2 = 1(3) l Z — + 0= ([[Z1a] + [Z)2] + ¥7)
N -z + Zz 1+o’2m2
Comparing with (2.15), we have proved (5.29).
Then we prove (5.27). Using the bound 1(n > 1) maxg |Gas| = O(1), we trivially have
|m1| + |msa| + 6 = O(1). Thus we have 1(n > 1)¥y = O(N~'/2). Then (5.14) and (5.21)
together give that

1(n > 1)(|eil + leul) <= N7V2. (5.41)

First we claim that in the case n

Vv

1, with high probability,
mi| = Immy >¢, |me| =Immg >c (5.42)
for some constant ¢ > 0. By the spectral decomposition (3.5), we have

ImGj; = Im Z 2‘5’“ =37 164(5)?Im (—1 +5 A Z) > 0.
-

k=1

Then applying it to (5.33), G, | is of order O(1) and has imaginary part < —n+0~ (N~'/2).
This implies ImG,,, 2 71 w1th high probability, which gives the second estimate of (5.42)

EJP 24 (2019), paper 123. http://www.imstat.org/ejp/
Page 29/57


https://doi.org/10.1214/19-EJP381
http://www.imstat.org/ejp/

Edge universality of separable covariance matrices

by (2.5). Moreover, with (2.5) we also get that Im(1 + o;ms) = 1 for i < 7n. Then with
(5.32) and a similar argument as above, we obtain the first estimate of (5.42). Next, we
claim that in the case n > 1, with high probability,

1+o,mi| =¢, [L+ome| =, (5.43)
for some constant ¢ > 0. In fact, if o; < [2ma|~!, we trivially have |1 + o;ma| > 1/2.

Otherwise, we have
Im mao ’

by (5.42). The first estimate in (5.43) can be proved in the same way. Finally, with (5.41),
(5.42) and (5.43), we can repeat the previous arguments between (5.32) and (5.40) to
get (5.27). O

The following lemma gives the stability of the equation f(z, «) = 0. Roughly speaking,
it states that if f(z,m2(2)) is small and ms(Z) — ma.(2) is small for Imz > Im z, then
ma(z) — ma.(z) is small. For an arbitrary z € S(co, Cy, €), we define the discrete set

L(z) := {2} U{z € S(cy,Cp,e) : Rez’ =Rez,Imz € [Imz,1] N (N ')}

Thus, if Imz > 1, then L(z) = {z}; if Imz < 1, then L(z) is a 1-dimensional lattice with
spacing N 1Y plus the point 2. Obviously, we have |L(z)| < N'°.

Lemma 5.11. Let ¢y > 0 be a sufficiently small constant and fix Cy,e > 0. The self-
consistent equation f(z,«) = 0 is stable on S(cy, Co, €) in the following sense. Suppose
the z-dependent function § satisfies N=2 < §(z) < (logN)~! for z € S(co,Co,€) and
that ¢ is Lipschitz continuous with Lipschitz constant < N?. Suppose moreover that
for each fixed E, the function n — §(E + in) is non-increasing for n > 0. Suppose
that us : S(co,Co,e) — C is the Stieltjes transform of a probability measure. Let
z € S(co, Co, ) and suppose that for all z/ € L(z) we have

(2 u2)| < O(2). (5.44)

Then we have
(o)
VE+n+9d

for some constant C' > 0 independent of z and N, where « is defined in (3.9).

[ua(z) — mac(2)| < (5.45)

Proof. This lemma can proved with the same method as in e.g. [8, Lemma 4.5] and [37,
Appendix A.2]. The only input is Lemma 2.6. O

Note that by Lemma 5.11 and (5.27), we immediately get that
1(n>1)0(z) < N~Y2, (5.46)
Then from (5.21), we obtain the off-diagonal estimate
1(n > 1)A,(z) < N~Y2, (5.47)
Using (5.32), (5.33) and (5.46), we get that
1(n > 1) (|Gii — Wi + |Gy — I,,]) < N7V2, (5.48)

which gives the diagonal estimate. These bounds can be easily generalized to the case
1 = c for any fixed ¢ > 0. Compared with (5.17), one can see that the bounds (5.47) and
(5.48) are optimal for the n > c case. Now it remains to deal with the small 1 case (in
particular, the local case with n <« 1). We first prove the following weak bound.

EJP 24 (2019), paper 123. http://www.imstat.org/ejp/
Page 30/57


https://doi.org/10.1214/19-EJP381
http://www.imstat.org/ejp/

Edge universality of separable covariance matrices

Lemma 5.12 (Weak entrywise local law). Let ¢y > 0 be a sufficiently small constant and
fix Cy,e > 0. Then we have
A(z) < (Ng) =14, (5.49)

uniformly in z € S(cy, Co, ).

Proof. One can prove this lemma using a continuity argument as in e.g. [8, Section 4.1],
[22, Section 5.3] or [23, Section 3.6]. The key inputs are Lemmas 5.9-5.11, and the
estimates (5.46)-(5.48) in the n > 1 case. All the other parts of the proof are essentially
the same. O

To get the strong entrywise local law as in (5.17), we need stronger bounds on [Z];
and [Z]; in (5.29) and (5.30). They follow from the following fluctuation averaging
lemma.

Lemma 5.13 (Fluctuation averaging). Suppose ® and ®, are positive, N-dependent
deterministic functions on S(cg, Co, €) satisfying N-1/2 ®, b, < N~° for some constant
¢ > 0. Suppose moreover that A < ® and A, < ®,. Then for all z € S(cy, Co,c) we have

1Z)1] + |[Z]2] < @2 (5.50)

Proof. We suppose that the event = holds. The bound (5.50) can be proved in a similar
way as [8, Lemma 4.9] and [22, Theorem 4.7]. Take [Z]; as an example. The only
complication of the proof is that the coefficients o;/(1 + o;m2)? are random and depend
on 7. This can be dealt with by writing, for any i € 7,

; 1 ~ GG, ;
Mo = mgz) + N Z Uﬂip‘Gii E = m(;) + O(A?).
HEL
Then we write
1 o 1 0
Zh ==Y ————Z;+0(A) ==Y (1-E)|—————G;'| +O(A2)
N iez, (1 +mé>“¢) N €Ty (1 +m(21)0i) !
1 o
== 1-) | ——————=G; | +0(A?). (5.51)

Nzezzl( ) (1+m20_2)2 7 ( )

Now the method to bound the first term in the line (5.51) is only a slight modification of
the one in [8] or [22]. For the proof of an even more complicated fluctuation averaging
lemma, one can also refer to [64, Lemma 4.9]. Finally, we use that = holds with high
probability by Lemma 5.12 to conclude the proof. O

Now we give the proof of Proposition 5.8.

Proof of Proposition 5.8. By Lemma 5.12, the event = holds with high probability. Then
by Lemma 5.12 and Lemma 5.9, we can take

Immg. + (Nn)~1/4 1 1
P, = — b= 5.52
\/ Ny TV (Nm)1/4 (5:52)
in Lemma 5.13. Then (5.29) gives
Im mey, + (Nn)~1/4
) < .
|f(z,m2)| N7
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Using Lemma 5.11, we get

Immeo, 4 1 2 1
NoyE+mn (N8 (Nn)s/8
where we used Im my. = O(y/k + 1) by (3.11) in the second step. With (5.30) and (5.53),
we get the same bound for my, which gives

0 < (Nn)~>/5. (5.54)

|m2 — m20| =< (5.53)

Then using Lemma 5.9 and (5.54), we obtain that

Ay < \/Imm2c (N TE
Nn Nn

(5.55)

uniformly in z € S(co, Co, €), which is a better bound than the one in (5.52). Taking the
RHS of (5.55) as the new ¢, we can obtain an even better bound for A,. Iterating the
above arguments, we get the bound

0 < (Ny)~ Zh=r2 22

after [ iterations. This implies

6 < (Nn)~* (5.56)
since [ can be arbitrarily large. Now with (5.56), Lemma 5.9, (5.36) and (5.38), we can
obtain (5.17). O

5.3 Proof of Proposition 5.1

We now can finish the proof of Proposition 5.1 using Proposition 5.8. By (5.36) and
(5.56), we have

1 1 1 Z;
_—— N 0L (02, 5.57
™= ; —z(1+o;m2) n ; z(1+ Jim2)2 A ( ) ( )

Using the same method as in Lemma 5.13, we can obtain that
1 Z;
n ZZ: (1+ o;my)?
Together with (2.10), (3.12) and (5.56), we get that

Im —me| < (Ny)~" + 0% < (Nn) ™,

< w2,

where we used (3.19) in the second step. This proves (5.3).
For z € Spui(co, Co,€) == S(co,Co,e)N{z=E+in: E > A\, Nn/k+1n = N}, we

have
Imma.(2) 1 1 1

+ 3 < + 3
Nn (Nn) Nyk+n  (Nn)
where we used (3.11) in the second step. Thus by (5.57), to prove (5.4), it suffices to
show that

\112

VA
N

1 1
+ )
N(k+n)  (Nn)*VE+n
In fact, taking ®, = ® = ¥ in Lemma 5.13 and then using Lemma 5.11, we get that
P2 < 1 n 1

VE+n Y~ N(+n)  (Nn)2VeE+n
This finishes the proof of (5.58), and hence (5.4).

Finally, with (5.17), one can repeat the polynomialization method in [8, Section 5] to

get the anisotropic local law (5.2). The only difference is that one need to use the first
bound in (2.5).

|ma — ma.| < z € Sout(co, Co, ). (5.58)

|ma — mac| <
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6 Proof of Theorem 3.6: self-consistent comparison

In this section, we finish the proof of Theorem 3.6 for a general X satisfying (3.15),
(3.20) and the bounded support condition (3.1) with ¢ < N~—? for some constant ¢ > 0.
Proposition 5.1 implies that (3.22) holds for Gaussian X “*“** as discussed below Theorem
3.6. Thus the basic idea of this section is to prove that for X satisfying the assumptions
in Theorem 3.6,

<u, (G(X, z) — G(X Gauss, z)) v> <q+V(z)

uniformly for deterministic unit vectors u,v € € and z € S (co,Co, a,€).
For simplicity of notations, we introduce the following notion of generalized entries.
For v,w € C7 and a € 7, we shall denote

Gyw = (v,GW), Gyq:=(v,Ge,), Gow = (€4, GW), (6.1)
where e, is the standard unit vector along a-th axis. Given vectors x € C* and y € C?2,

we always identify them with their natural embeddings ( }5 ) and ( 2 ) in CZ. The

exact meanings will be clear from the context. Now similar to Lemma 5.4, we can prove
the following estimates for G.

Lemma 6.1. Fori € T, and ;i € I,, we define u; = U*e; € C¥* and v, = V*e, € C%2, i.e.
u; is the i-th row vector of U and v, is the p-th row vector of V. Let x € C*T andy € C*2.
Then we have

D G P =D |Guxl’ = | (GZ"") : (6.2)

i€l 1€Z4

ImG
S Gy [P = 30 |Gy = T (6.3)
HEL: HEL
S IGyul = 3 1Guyl® = Gyy + %Imny, (6.4)
1€Z, €Ty
Z }va“ Z ]Gvux! == +—I (G""). (6.5)
HEL: neIs z

All of the above estimates remain true for G instead of G for any T C T.
Proof. We only prove (6.3) and (6.4). The proof for (6.2) and (6.5) is very similar. With
(3.5), we get that

N

2
I
oGy =Y 5.6V (v, Gy) Z s ol? Gy (6.6)

2
HET HET, k=1 (A — E)” +n? n

For simplicity, we denote Y := X1/20* XV1/2. Then with (3.4) and (3.6), we get that

D 1Gyu,|? = (G2Y Y G3)yy = (G2 (V'Y = 2) G3)y,, + 2 (G203 ny+nImny,

€Ly
where we used G = (Y*Y — z)~" and (6.6) in the last step. O

Our proof basically follows the arguments in [37, Section 7] with some modifications.
Thus we will not give all the details. We first focus on proving the anisotropic local
law (3.22), and the proof of (3.23)-(3.24) will be given at the end of this section. By
polarization, to prove (3.22) it suffices to prove that

(v, (G(X,2) = II(2)) v) < g+ ¥(z) (6.7)
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uniformly in z € S (co, Co, a,¢) and any deterministic unit vector v € CZ. In fact, we can
obtain the more general bound (3.22) by applying (6.7) to the vectors u + v and u + v,
respectively.

The proof consists of a bootstrap argument from larger scales to smaller scales in
multiplicative increments of NV —% where

min{e, a, ¢}
§e (07 26}) . (6.8)

Here ¢,a > 0 are the constants in §(co, Co,a,¢), ¢ > 0 is a constant such that ¢ < N~9,
C, > 0 is an absolute constant that will be chosen large enough in the proof. For any
n > N~1*¢, we define

m:=nN°for [=0,..,L—1, ny:=1, (6.9)

where L = L(n) := max {{ € N| pN°(~1 < 1}. Note that L < 6.

By (5.9), the function z — G(z) — II(z) is Lipschitz continuous in S(co, Co, a,) with
Lipschitz constant bounded by N2. Thus to prove (6.7) for all z € §(co,Co,a, g), it
suffices to show that (6.7) holds for all z in some discrete but sufficiently dense subset
Scs (co, Co, a,e). We will use the following discretized domain S.

Definition 6.2. Let S be an N ~%-net of S(co, Cy, a,¢) such that [S| < N2 and
E+ineS=E+igpeSforl=1,..,Ln).

The bootstrapping is formulated in terms of two scale-dependent properties (A,,)
and (C,,,) defined on the subsets

S, = {ze S| Imz}N“Sm}.

(A,,) For all z € S,,, all deterministic unit vectors x € C¥* and y € C?2, and all X
satisfying the assumptions in Theorem 3.6, we have

Im (C&Z(Z)) +Im Gyy(2) < Immoc(z) + N (g4 W(2)). (6.10)

(C,,) For all z € S,,, all deterministic unit vector v € CZ, and all X satisfying the
assumptions in Theorem 3.6, we have

|Gyv(2) = Tlyy (2)] < N9 (g + U(2)). (6.11)

It is trivial to see that (Ag) holds by (5.9) and (3.11). Moreover, it is easy to observe the
following result.

Lemma 6.3. For any m, property (C,,) implies property (A,,).

Proof. By (3.11), (3.12) and the definition of Il in (3.16), it is easy to get that

o (=)t 2) £ a2,

which finishes the proof. O

The key step is the following induction result.

Lemma 6.4. For any 1 < m < §~!, property (A,,_1) implies property (C,,).

EJP 24 (2019), paper 123. http://www.imstat.org/ejp/
Page 34/57


https://doi.org/10.1214/19-EJP381
http://www.imstat.org/ejp/

Edge universality of separable covariance matrices

Combining Lemmas 6.3 and 6.4, we conclude that (6.11) holds for all w € S. Since §
can be chosen arbitrarily small under the condition (6.8), we conclude that (6.7) holds
for all w € S, and (3.22) follows for all z € g(co, Cy,a,e). What remains now is the proof
of Lemma 6.4. Denote

Fo(X,2) = |Gy(X, 2) — Iy (2)] . (6.12)
By Markov’s inequality, it suffices to prove the following lemma.

Lemma 6.5. Fixp € IN and m < §~'. Suppose that the assumptions of Theorem 3.6 and
property (A,,—1) hold. Then we have

EFE(X,2) < [N (g + ¥(2))]" (6.13)

for all z € S,,, and any deterministic unit vector v.

In the rest of this section, we focus on proving Lemma 6.5. First, in order to make
use of the assumption (A,,_1), which has spectral parameters in S,,_1, to get some
estimates for G with spectral parameters in S,,,, we shall use the following rough bounds
for Gxy.

Lemma 6.6. For any z = E +in € S and unit vectors x,y € C%, we have

L(n) .
Gx,x, (E +1in)
o 20 1X1
|Gy (2) — Ty (2)] <N ; {Im (EHm

+Im (G)’1Y1 (E + inl)
E + in

> +Im GX2X2 (E + im)

> + IIHGY2)'2(EJr i77l):| +1,

where x = ( zl ) andy = ( 51 ) forx,,y; € € and x5,y2 € C*2, and 1, is defined
2 2
in (6.9).

Proof. The proof is the same as the one for [37, Lemma 7.12]. O

Recall that for a given family of random matrices M, we use M = O<(¢) to mean
[(v, Mw)| < C||v||2]|w|2 uniformly in any deterministic vectors v and w (see Definition
3.1 (i)).

Lemma 6.7. Suppose (A,,—1) holds, then
G(z) —TI(z) = O (N?), (6.14)
and

im (Gt

z

> +1Im Gyy(z) < N? [Immac(2) + N9°(q + ¥ (2))] (6.15)
for all = € S,,, and any deterministic unit vectors x € C*t andy € C%=.
Proof. The proof is the same as the one for [37, Lemma 7.13]. O

Now we are ready to perform the self-consistent comparison. We divide the proof
into three subsections. In Sections 6.1-6.2, we prove Lemma 6.5 under the condition

Ezf, =0, 1<i<n, 1<j<N, (6.16)

for z € S(co,Co,€). Then in Section 6.3, we show how to relax (6.16) to (3.20) for
z € S(co, Co, a,€).
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6.1 Interpolation and expansion

Definition 6.8 (Interpolating matrices). Introduce the notations X° := X“ss and
X':= X. Let p}, and p;, be the laws of X, and X/,, respectively. For § € [0,1], we
define the interpolated law

pzeu = (1 - e)pzou + epzlu'

Let {X?:0 € (0,1)} be a collection of random matrices such that the following properties
hold. For any fixed € (0,1), (X° X% X!') is a triple of independent I, x I, random
matrices, and the matrix X = (X{,) has law

11 11 Af.axs,). (6.17)

1€1y pels

Note that we do not require X% to be independent of X% for 0, # 0, € (0,1). For A € R,

1 € 17 and p € Iy, we define the matrix Xfi’j) through

(i)}

(x03) {Xg” if (jov) # (i)

We also introduce the matrices

GO(z) =G (X% 2), G%(2):= G(X“ )

(in) (in)?
We shall prove Lemma 6.5 through interpolation matrices X? between X° and X!. It
holds for X° by Proposition 5.1.
Lemma 6.9. Lemma 6.5 holds if X = X°.

Using (6.17) and fundamental calculus, we get the following basic interpolation
formula.

Lemma 6.10. For F : RT1*Z2 s C we have

0 0,X},
—IEF xXH=> > |EF —EF (X" (6.18)
i€l pels

provided all the expectations exist.

We shall apply Lemma 6.10 to F(X) = FP(X, z) with F, (X, z) defined in (6.12). The
main work is devoted to proving the following self-consistent estimate for the right-hand
side of (6.18).

Lemma 6.11. Fix p € 2IN and m < 6~ *. Suppose (6.16) and (A,,_1) hold, then we have
0
>3 {EF” < > _EF? (ijz)} -0 ([Ncaé(w U(2))]" +EF5(X9,2))
€T p€ls
(6.19)

forall§ € [0,1], z € S,,, and any deterministic unit vector v.

Combining Lemmas 6.9-6.11 with a Gronwall’s argument, we can conclude Lemma
6.5 and hence (6.7) by Markov’s inequality. In order to prove Lemma 6.11, we compare

0,X7, 0,X},
X(w) and X( ) via a common X?°

(ip)’
>3 (R (X057 2) —BEE (X0 2)] = 0 ([N“(a+ w(2))) + BF(X', 2))

1€Zy p€ly (6 20)

i.e. we will prove that

forallw € {0,1}, 6 € [0,1], z € S;,,, and any deterministic unit vector v.
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Underlying the proof of (6.20) is an expansion approach which we will describe below.
During the proof, we always assume that (A,,_;) holds. Also the rest of the proof is
performed at a fixed z € S,,,. We define the Z x 7 matrix Az\i#) as

0 Y12y, venl/2
A - Vi , 6.21
(ip) * ( 21/2v#u;‘21/2 0 ( )

where we recall the definitions of u; and v,, in Lemma 6.1. Then we have forany A, \’ € R
and K € IN,

QN — oo o

K
0. A=) A0,
() = Gy ;Gum (A G

(ip) ~ (ip)

) Ga,\ (A’\ N oA

K+1
) (6.22)
The following result provides a priori bounds for the entries of G (w

Lemma 6.12. Suppose that y is a random variable satisfying |y| < q. Then

GOV — T =0L(N%?), ieTy, pel,. (6.23)

(in)

Proof. The proof is the same as the one for [37, Lemma 7.14]. O

In the following proof, for simplicity of notations, we introduce f(;,)(}) := F¥(X fz ;\)).

We use f((;z) to denote the r-th derivative of f(;,). With Lemma 6.12 and (6.22), it is easy
to prove the following result.

Lemma 6.13. Suppose that y is a random variable satisfying |y| < ¢. Then for fixed
r €N,
[0 )| =< s, (6.24)

By this lemma, the Taylor expansion of f;,) gives
4p+4 p
(T) 4
Faw Z "1 (0 + 0« (¢"*) (6.25)

provided C, is chosen large enough in (6.8). Therefore we have for v € {0,1},

0.X7,
EFY (X(m) ) - EFy (X(eo) [f(w ( ) f(w)( )]
4p+4
]' T u I
=E fi)(0) + 5 B Z Effu% E (X)) +0<(g"+Y), (6.26)

where we used that X}, has vanishing first and third moments and its variance is 1/N.

[

(Note that this is the only place where we need the condition (6.16).) By (3.15) and the
bounded support condition, we have

B(X1)" | < N2, r>4 (6.27)

Thus to show (6.20), we only need to prove for r =4,5,....,4p + 4,

N2t Y ’Ef((i:z) ‘ - ( [NCed(q + )] +EF5(X",z)) . (6.28)
1€1y pels

In order to get a self-consistent estimate in terms of the matrix X? on the right-hand

. 0,0 o _ 0. X,
side of (6.28), we want to replace X;  in f(;,)(0) = F},’(X(w)) with X© = X/
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Lemma 6.14. Suppose that

N2t S SR (x8)| = 0 ([NO0 (g + )] + BF2(X?, 2)) (6.29)
i€y p€ls

holds forr =4, ...,4p+ 4. Then (6.28) holds forr =4, ....,4p + 4.
Proof. We abbreviate f(;,) = f and Xfu = £. Then with (6.25) we can get

Adp+4—1

EfD0) =EfO@E) - Y Ef“*’“(@%k + O (gPHY. (6.30)
k=1 '

The estimate (6.28) then follows from a repeated application of (6.30). Fix r =4, ..., 4p+4.
Using (6.30), we get

. : , Egk X
BFO(0) = BAO() = 3 10+ k1 < dp+ HEFHI0) T 1 0 (g
ki>1 1
Egk
=EfO©) - Y 1r+k <4p+HEFUTIO -
k!
k121
Egk gk
+ Y 1tk +ky <dp+ 4EFUHRTE)(0) i O<(g"™ ) =
k1! k!
kl,k2>1
4p+4—r t , t Efki
= > (D" > 1| r+d ki <ap+a | Bt I I~ + O (gPH).
t=0 ey, ke =1 j=1 j=1 7
The lemma now follows easily by using (6.27). O

6.2 Conclusion of the proof with words

What remains now is to prove (6.29). For simplicity, we abbreviate X? = X. In order
to exploit the detailed structure of the derivatives on the left-hand side of (6.29), we
introduce the following algebraic objects.

Definition 6.15 (Words). Given ¢ € Z; and u € I, let WW be the set of words of even
length in two letters {i, u}. We denote the length of a word w € W by 2l(w) with l(w) € IN.
We use bold symbols to denote the letters of words. For instance, w = tisatoss -« - t,.8,41
denotes a word of length 2r. Define W,. := {w € W : l(w) = r} to be the set of words
of length 2r, and such that each word w € W, satisfies that t;s;11 € {ip, pi} for all
1<i<r.

Next we assign to each letter a value [-] through [i] := £/2 u;, [u] := %'/?v,,, where
u; and v, are defined in Lemma 6.1 and are regarded as summation indices. Note that it
is important to distinguish the abstract letter from its value, which is a summation index.
Finally, to each word w we assign a random variable A, ; ,(w) as follows. Ifl(w) = 0 we
define

Avyi,u(w) = va - va.

Ifl(w) > 1, say w = t1Satass - - - t,.8,41, we define
Avipw(w) = Gyty)Glsy)its) -+ Gls 11, Gls ] v- (6.31)

Notice the words are constructed such that, by (6.21) and (6.22),

0 \"
_ — (—_1\T ! .
(aXl#> (va va) ( 1) r. Z AV7Z,u(w)7 reIN7
wWEW;-
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with which we get that

9 T p/2
() R =07 X L)

it Hlp=rt=1

X Z Z Av,i,#(wt)m

wi €Wy, wt+p/2€Wlt+p/2
Then to prove (6.29), it suffices to show that

p/2
N2 N BT Aviiu(we) Av (Wi pya)| = O ([Ncaé (q+ )"+ EFP(X, z))
1€Ty p€ls t=1
(6.32)
for 4 < r < 4p+4 and all words wy, ..., w, € W satisfying I(w1) + - - - +1(w,) = r. To avoid
the unimportant notational complications associated with the complex conjugates, we
will actually prove that

N2T4ZZ

1€Z1 pely

H v, 0 wt)

t=1

-0 ([Ncaé(q +0))” + BFP(X, z)) . (6.33)

The proof of (6.32) is essentially the same but with slightly heavier notations. Treating
empty words separately, we find it suffices to prove

N—qu—él Z Z E

i€ZLy p€Els

l
p—I
sz,u ’lU() Hsz,p wt
t=1

-0 ([NC“‘S(q +0)]” + EFY(X, z))

(6.34)
for4 <r <4p+4,1<1<p, and words such that l(wy) =0, >, l(w;) = r and l(w;) > 1
fort > 1.
To estimate (6.34) we introduce the quantity

Rao = |Gyw,| + |Gw.vl (6.35)

for a € Z, where w; := $1/2u, fori € Z; and w, := »i/2 v, for u € Io.

Lemma 6.16. For w € W, we have the rough bound
|[Av,i(w)] < N2EFD, (6.36)
Furthermore, for l(w) > 1 we have
A ip(w)| < (R + RN =1, (6.37)
For l(w) = 1, we have the better bound
[Avip(w)] < RiRy. (6.38)

Proof. The estimates (6.36) and (6.37) follow immediately from the rough bound (6.14)
and the definition (6.31). The estimate (6.38) follows from the constraint t; # s, in the
definition (6.31). O

By pigeonhole principle, if » < 2] — 2, then there exist at least two words w; with
l(wy) = 1. Therefore by Lemma 6.16 we have

p—I
Ao HAV inluer) (6.39)
< N25(’+1)F5 ‘X)) (U(r =220 = 1) (R} +RS) + 1(r <20 - 2)RIR2).
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Let v = ( zl > for vi € €7 and v, € C”2. Then using Lemma 6.1, we get
2

= Z R2 + = Z RQ 71GV1V1) + Im (Gv]z\;/z) + 0 |Gvivi| +1Gv,vs |
zeIl MEIZ n
I ¢+ NCO(g+ T
o yrolmmee * NOUg+ ) ycwrs (g2 4 L) (6.40)
Nn Nn

where in the second step we used the two bounds in Lemma 6.7 and = O(Immy.) by
(3.11), and in the last step the definition of ¥ in (3.18). Using the same method we can

get
1 2
7 2 RIR < [N(C““)‘S (lIIQ(z) + A‘f)] . (6.41)
i€l p€lo N

Plugging (6.40) and (6.41) into (6.39), we get that the left-hand side of (6.34) is bounded
by

2 4
¢ TANBOHFD | prolX) [1(r >20—1) (N0a5/2(q - sz)) +1(r<20—2) (NCaé/z(qW)) ]

r—2 T
< NBOHHD | pr=l( X)) {1(@21—1) (NC“‘W(q+\If)) +1(r<20-2) (Nca5/2(q+x1/)) }

r—2
< EFPU(X) {1(@21_1) (Nca5/2+125(q+\1:))

+1(r<2l - 2) (Nca5/2+125(q+\p)) ] ,
where we used that [ < r and r > 4 in the last step. If we choose C, > 25, then by (6.8)
we have NCa9/2+120 « min{ N¢/2 N¢/2}, and hence N®=9/2+12%(4 + W) « 1. Moreover, if
r>4andr > 2l — 1, then r > [ + 2. Therefore we conclude that the left-hand side of
(6.34) is bounded by

B FP(X) [NO (g + )] (6.42)
Now (6.34) follows from Holder’s inequality. This concludes the proof of (6.29), and

hence of (6.20), and hence of Lemma 6.4. This proves (6.7), and hence (3.22) under the
condition (6.16).

6.3 Non-vanishing third moment

In this subsection, we prove Lemma 6.5 under (3.20) for z € S(co, Co, a,¢). Following
the arguments in Section 6.1 and Section 6.2, we see that it suffices to prove the estimate
(6.29) in the r = 3 case. In other words, we need to prove the following lemma.

Lemma 6.17. Fixp € 2IN and m < 6~ '. Let z € S,,, and suppose (A,,_1) holds. Then

N30 3 [BIG(XE)| = 0 ([N (g + W) + BFY(X’.2)) (6.43)
i€Ty pels

Proof. The main new ingredient of the proof is a further iteration step at a fixed z.
Suppose
G—-T1=0(9) (6.44)

for some deterministic parameter ® = ®,. By the a priori bound (6.14), we can take
® < N?. Assuming (6.44), we shall prove a self-improving bound of the form

N2y S ’Ef(ﬁj) (X2) ‘ _ ( [NCed (g + 0)]” + (N=/2)P +1EF5(X9,w)).
1€y pels
(6.45)
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Once (6.45) is proved, we can use it iteratively to get an increasingly accurate bound for
|Gyv (X, z) — Iy (2)|. After each step, we obtain a better bound (6.44) with ® reduced
by N~%/2. Hence after O(a~') many iterations we obtain (6.43).

As in Section 6.2, to prove (6.45) it suffices to show

l
_ —1 _ _ —
b N2 ST AL (wo) [T Avilwn)| < 7 (X) [N(OD9(g 4+ w) + N0,
i€T1 peZs t=1
(6.46)
which follows from the bound

1
l
byNTZ DY [ Aviin(we)| < [N(C°*1)5(q+\11) +N*ﬂ/2<1>} . (6.47)
i€T) pely t=1

We now list all the three cases with [ = 1, 2, 3, and discuss each case separately.
When [ = 1, the single factor A ; ,(w) is of the form

Gl ] Glsalitz) Glss)ta) Glsalv-

Then we split it as

Gl Glsalitz) Glsslits) Glsalv
= Gyt Misa]ita) isa) ] Glsalv + Gita] Glsalta) isa)6s] Glsalv

+ Gyt isa 6] Glsalita) Glsalv + Goita] Glsalita) Glsslits] Glsalv (6.48)

where we abbreviate G := G — II. For the second term, we have

INNT2D D )Gv[t11G[s21[tz1H[S31[t31G[suv

i€T1 pels (6 49)

< by® - N(Cat2) (\1/2 + q> < N~2¢
Nn

provided ¢ is small enough, where we used (6.40), (6.44) and the definition (3.21). The
third and fourth terms of (6.48) can be dealt with in a similar way. For the first term, we
consider the following two cases.

Case 1: [t;] = w; and [s4] = w,. Then we have
1/2

132 Y G Wit G | < N2 | 3 (G2 | < N2HC/295(g 1 w),
i€Ty p€ls pnELs

where in the first step we used

‘ Z GVWz’H[Sﬂ[tz]H[S‘J][tB]
i€y

< N1/2+28 (6.50)

and in the second step we used (6.40). To get (6.50), we used the a priori bound
(6.44) with ® < N29, which gives that for any deterministic unit vectors v and w (recall
Definition 3.1 (ii)),

|(v,Gw)| < N%,

Applying this estimate with deterministic vectors v and w := s, 11t0) s (65 Wi WE

i€y
get
J 5
‘ Y Gy ligyjiea Mpsgle)| < NP VIl[lw] = O(V1/2+2),
i€y
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using ||w|| = O(N'/2). This explains (6.50). If [t;] = w,, and [s4] = v;, the proof is similar.

Case 2: If [t;] = [s4], then at least one of the terms Ilj,j¢,) and Ilj,¢,) must be of the
form Ily,w, = 0 or IIy,,w, = 0, and hence we have

D Mo Misgea) | =0 08> Mgyt sy e | = -

1 123
In sum, we obtain that

bN 2 37D Gt M sl Gloav

1€Zy p€ly

=< N(C“_l)é(q +0)

provided that C, > 8. Together with (6.49), this proves (6.47) for [ = 1.
When | = 2, [];_; Ay.iu(w;) is of the form
vaiGw”vawiquwMGin7 GVWiGWHVGVWMGW,LWiGW“V7 (651)
vai quvawi Gw#wi Gw“va vai Gw“vaw“ Gwiw“ Gwiva (652)

or an expression obtained from one of these four by exchanging w; and w,. The first
expression in (6.51) can be estimated using (6.40) and (6.44):

< N1H(Cata)s (\1,2 + q) , (6.53)

| 2 G G Go o

and
Z Gvaquwu = Z quvéw#w“ + Z Gw“vaMw“
W ©

o

(6.54)

n

1/2
N1+(Ca/2+1)d g (\1,2 + ]\?) +N1/2+25] 7

where in the second step we applied the same argument to ) | u Gw,vllw,w, as the one
for (6.50). Combining (3.21), (6.53) and (6.54), we get that

2
DN 2| D7D G, G G, G, G| < (N7 (g 4+ w) 4+ N7/20)
i

provided that § is small enough. The second expression in (6.51) can be estimated
similarly. The first expression of (6.52) can be estimated using (3.21), (6.40) and (6.44)
as

bNN72

> Y CGuw,Gr,vGow, Gw,ow, G,
ip

< by N2 NN G, P [ Gowo|
B

2
< by N(2Ca+6)8 <\I!2 + qu'n) < (q+\1,)2
for small enough §. The second expression in (6.52) is estimated similarly. This proves
(6.47) for | = 2.
When [ = 3, Hi’:l Ay i u(wy) is of the form (Gyw, quv)g or an expression obtained by
exchanging w; and w,, in some of the three factors. We use (6.40) and Y, [Il,w,|> = O(1)
to get that

> (Gvw)’?

i

<D G P+ o °
% i

< @Y (|Gyw, | + Myw, [*) + 1 < N1t (qﬂ + J\?n) O+ D+ 1.

Now we conclude (6.47) for [ = 3 using (3.21) and N~'/2 = O(q + V). O
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If A or B is diagonal, then we can still prove (3.22) for all z € S(cg, Cp,e) without
using (6.16). This follows from an improved self-consistent comparison argument for
sample covariance matrices (i.e. separable covariance matrices with B = I) in [37,
Section 8]. The argument for separable covariance matrices with diagonal A or B is
almost the same except for some notational differences, so we omit the details.

6.4 Weak averaged local law

In this section, we prove the weak averaged local laws in (3.23) and (3.24). The
proof is similar to the one for (3.22) in previous subsections, and we only explain the
differences. Note that the bootstrapping argument is not necessary, since we already
have a good a priori bound by (3.22). In analogy to (6.12), we define

- 1
F(X,z) - =|m(z) = me(2)| = | — D (GiilX,2) = ii(2))]
€Ty
where we used (3.17). Moreover, by Proposition 5.1, we know that (3.23) and (3.24) hold
for Gaussian X (without the q2 term). For now, we assume (6.16) and prove the following

stronger estimates:

|m(z) — me(2)] < (Nn)f1 (6.55)
for z € S(co, Co,€), and
m(z) — me(2)] < L+ Ly ! (6.56)
‘ Nn  N(k+n) (Nn)?2J/e+n '

for z € S(co, Co,e) N{z = E +in: E > Ay, Nny/k+ 1 > N°}. At the end of this section,
we will show how to relax (6.16) to (3.20) for z € S(co, Co, a,¢).

Note that
1 1 1
U%(2) < —, and U?(2) < + outside of the spectrum. (6.57)
N7 N(k+mn)  (Nn)?*Vk+n

Then following the argument in Section 6.1, analogous to (6.29), we only need to prove
that

N—2qr—4 Z Z

1€1y) p€ls

£ (52) o] ([ (o0 )] 2w e

for all r = 4,...,4p + 4, where § > 0 is any positive constant. Analogous to (6.33), it
suffices to prove that for r =4, ...,4p + 4,

N2 Y Eﬁ % 3" Aoy i) || =0 ({N“ (qﬂ + JVq'n)r + EﬁP(X)>

i€T) pel, | t=1 eI,
(6.59)
for >, I(w;) = r. Similar to (6.35) we define
Rija = |Gjw,| + |Gw,jl-
Using (3.22) and Lemma 6.1, similarly to (6.40), we get that
1 Im (27 'Gw,w,) + Im Gw,w, + 1 (|Gw,w,| + |Gw,w,|) q
IS re & A wwul) g2 4
> Ria N + e (6.60)
JE€Iy
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Since G = O (1) by (3.22), we have that for any w such that l(w) > 1,

1 1 q
~ D Ac inw)| <=~ > (R +Rj,) < ¥+ N (6.61)
JETL J€T

With (6.61), for any r > 4, the left-hand side of (6.59) is bounded by
EFP Y X)) (02 +——) .
() < N 77)

Applying Holder’s inequality, we get (6.58), which completes the proof of (6.55) and
(6.56) under (6.16).

Tllen we prove the averaged local law (3.23) for z € g(co,Cma, ¢) and (3.24) for
z € S(cy,Co,a,e)N{z=E+in: E > Ay, Nn\/k+n > N°} under (3.20). By (6.57), it
suffices to prove

3 " ) —a/2+6\ P .
bWNT2Y N E <5§w) FP(X)| =0 ([Né(q2+\1/2>}"+ (N N ) +EFP(X)> ,

1€Zy pels

(6.62)
for any small constant § > 0. Analogous to the arguments in Section 6.3, it reduces to
showing that

! —a/2 !
onN2 >0 > T % > Aeyin(w) || =02 ((q2+\1/2)l + (NNn > ) ., (6.63)

1€ZT) p€Zy t=1 JEL,

where [ € {1,2,3} is the number of words with nonzero length. Then we can discuss
these three cases using a similar argument as in Section 6.3, with the only difference
being that we now can use the anisotropic local law (3.22) instead of the a priori bounds
(6.23) and (6.44).

In the | = 1 case, we first consider the expression Aej,i’ﬂ(wl) =Gjw;Gw,w,Gw;w;Gw,j-
We have

<

1/2
Z Giw,Gwiw; ZijiHWiWi +Z(Q+\Ij) |Gjw. | < \/N+N(q+\1/) (\112 + ]\(7]77) )

where we used (3.22) and (6.40). Similarly, we also have

> Cwpw, Gwyi| < D Mwyw, Gw,i| + Y0+ 0) |G,
© H M

1/2
< VN(g+¥)+N(g+ ) <\112+A?n) :
where we also used Ily,; = 0 for any y in the second step. Then with (3.21), we
can see that the LHS of (6.63) is bounded by O (¢?> + ¥?) in this case. For the case
Ae;in(w1) = Gjw,Gw,w,Gw,w,Gw,;, we can estimate that

> Cuwpw, Gwiw, | < D Tww, Gwow, | + 3@+ 9) |Guwyw,
H H H
q 1/2
< VN + N(g+7) (@M) ,
Nn
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and

2 q

Thus in this case the LHS of (6.63) is also bounded by O (¢*>+¥?). The case A, ; . (w1) =
Gjw;Gw,w;Gw,w,Gw,j can be handled similarly. Finally in the case A, ,(w1) =
Gjw,Gw,w,Gw,w;Gw,j, We can estimate that

2 + |quj|2) |GWuWi

ZijiquwiGwHwiGw“j < Z ('iji

(% i,

2
2 2 2 q
N (WU — | .
B ( +N77)

Again in this case the LHS of (6.63) is bounded by O (¢? + ¥2). All the other expressions
are obtained from these four by exchanging w; and w,.

In the | = 2 case, Hle (% diet, Aejyi_#(wt)> is of the form (up to some constant
coefficients)

1 1
N2 § : Gjlwi qujl Gj2wi GW;LW;L GWijZ or N2 E : thi qujl Gj2wi quwi qujzv
J1,J2 J1,J2

or an expression obtained from one of these terms by exchanging w; and w,,. These two
expressions can be written as

N_Q(GXQ)W#Wi (GXQ)WiWiGW“Wu7 N_Q(GX2)2 GW“Wi7 (6'64)

W, W

where

I 0
X2 IixTy
G =G ( 0 0) G.

For the second term, using (3.4), (3.5) and recalling that Y = X1/2U*XVX!/2, we can
get that

1 1 1
77 (G G| < 53 2 NE D | S 5 Tr [(61°YY"(G0)°]
[ LK
' i
= 5Tr[01(61)?] + =5Tr [(6))2(91)?)

1 1 1 1
S + =
NZ Z (e — B)2 + 2?2 N2 Z (e — )2 + 2

1 1 n Imm Imm.+q+ ¥ 9 9 q
< - = < 1\ — ). (6.65
~ Ny (nzk: (Ak—E)2+n2> Np T N~ Ty ) 669

Using (3.22) and (6.40), it is easy to show that

Z(ze)wﬂwinwﬂwu

m

<2 (W gl e <8 (W 5] 60)

for any deterministic unit vectors x, y. (To get the first estimate in (6.66), we write

> (N ww Tww, = WD CwiGiw, W= Ty, w, Wa,
j Iz

H J
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and then use (6.40).) Thus for the first term in (6.64), we have

1
m Z(GX2)WV,Wi (GX2)WLWL GWHW“

ip

1 ~ 1
< |33 2D waw (G Dwiw G, | | 37 2D (G T,

Dy Tyl
1/2
q 1 2 2 3/2 2 4q ’
N V(02 + =) | = G w N U
<N+ )< +Nn) N2;;|( Jww - ( +Nn>
q 3/2 q 2
Np~! U) (w2 4+ 2 N3/2 (g2 6.67
< Nn~(q+ )( +N77> + +N77 ; ( )

where in the last step we used the bound in (6.65). Now using (6.65), (6.67) and (3.21),
we get

_2 2 1 ) "2 N-a/2 2
onN=2 Y0 Y 1 EZAej,i,ﬂ(wt) < (¢ + 0% +< N ) .

1€T pely t=1 JEI,

Finally, in the [ = 3 case, Hle (% > et Ae]ﬂ»,u(wt)) is of the form N_3(GX2)3viwu'

or an expression obtained by exchanging w; and w,, in some of the three factors. Using
(6.66) and the bound in (6.65), we can estimate that

1 1
ﬁ Z(GXQ)E\”W“ = (\112 + ]\?n> ﬁ Z ’(ze)wuwl'
(AT

Tyl

2
2 -2 2 q
<n (\I/ +) .
Nn

Then the LHS of (6.63) is bounded by

—a/2 2
O~ <(q2 +1?) (NNU ) > :
Combining the above three cases | = 1,2, 3, we conclude (6.62), which finishes the
proof of (3.23) and (3.24).
If A or B is diagonal, then by the remark at the end of Section 6.3, the anisotropic
local law (3.22) holds for all z € S(cy, C,€) even in the case with by = N'/2 in (3.20).
Then with (3.22) and the self-consistent comparison argument in [37, Section 9], we can

prove (3.23) and (3.24) for z € S(cg, Cop, €). Again most of the arguments are the same as
the ones in [37, Section 9], hence we omit the details.

7 Proof of Lemma 3.7, Theorem 3.8 and Theorem 3.10

With Lemma 3.12, given X satisfying the assumptions in Theorem 3.6, we can

construct a matrix X with support ¢ = N~!/2 and have the same first four moments as
X. By Theorem 3.6, the averaged local laws (3.26) and (3.27) hold for G()?, z). Thus it is
easy to see that Theorem 3.8 is implied by the following lemma.
Lemma 7.1. Let X, X be two matrices as in Lemma 3.12, and G = G(X, z), G = G(X, 2)
be the corresponding resolvents. We denote m(z) = m(X, z) and m(z) = m(X, z). Fix
any constant € > 0. For any z € §(co, Cy,a,¢), if there exist deterministic quantities
J = J(N) and K = K(N) such that

G(z) =T =0<(J), |m(z)—m(z) <K, J+K<=<1, (7.1)
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then for any fixed p € 2IN, we have
E|m(z) — me(2)[P < Elm(z) — me(2)[P + (V3(2) + J* + K)p. (7.2)
Proof of Theorem 3.8. By Theorem 3.6, one can choose J = ¥(z) and

% 1 N—9/2 1
= —, Oor + +
Nn Nn  N(x+mn) (

N77)21/m outside of the spectrum.
Then using (7.2), (6.57) and Markov’s inequality, we can prove (3.26) and (3.27).

The eigenvalues rigidity results (3.28) and (3.30) follow from (3.26) and (3.27)
through a standard argument, see e.g. the proofs for [23, Theorems 2.12-2.13], [24,
Theorem 2.2] or [53, Theorem 3.3]. More precisely, the estimate (3.28) is implied by
the local law (3.26). Then the rigidity result (3.30) follows from (3.28) together with the
following upper bound on the largest eigenvalue: for any constant € > 0,

A < Ay + N72/37¢ with high probability. (7.3)

In [24], this follows from the averaged local law (3.27) without the N~%/2/(N7p) term.
Now we would like to show that even with this extra term, the bound (3.27) is sufficient
to give (7.3). First, we have \; < C with high probability for some constant C' > 0 by e.g.
[14, Lemma 3.12]. Now we pick ¢ to be a sufficiently small constant such that 0 < ¢ < ¢/4,
and Cj to be a sufficiently large constant such that CyA, > C. Set n = N~2/3 and choose
E = \; +  outside of the spectrum with some x > N~2/3+2¢ >» Ny, Then using (3.11),
(3.18) and b < N'/3—¢, we can verify that

z=FE+ine S(co,Coc.e)N{z=E+in: E > Ay, Nyv/s +1 > N°}.

Then using (3.27), we get that

(7.4)

N—c/2 N—¢ N—¢
[Imm(z) — Imm.(z)| < N—; zO(NTI).
On the other hand, if there is an eigenvalue \; satisfying |A; — E| < nforsome 1 < j < n,

then
1 & n 1
I SR Y S— 7.5

On the other hand, by (3.11) we have

Imme(z) = O (\/JT,) =0 (]Xf:> '

Together with (7.5), this contradicts (7.4). Hence we obtain that \; < A, + N—2/3+2¢
with high probability. Since ¢ can be arbitrarily chosen, we conclude (7.3). With (3.26)
and (7.3), the rest of the proof for (3.28) and (3.30) is the same as [24], so we omit the
details. O

In order to prove Lemma 3.7 and Lemma 7.1, we will extend the resolvent comparison
method developed in [14, 40]. The basic idea is still to use the Lindeberg replacement
strategy for G(X,z). On the other hand, the main difference is that the resolvent
estimates are only obtained from the entrywise local law in [14, 40], while in our case we
need to use the more general anisotropic local law (3.22). (We will use the anisotropic
local law in (7.1) when proving Lemma 7.1. However, for simplicity of presentation, we
will always mention (3.22) instead.)
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We remark that the following proof is similar to the one in [14, Section 6], and
involves some tedious notations bookkeeping. We shall first give the proper notations and
definitions that are adapt to our setting. The proof of the results is then a straightforward
extension of the one in [14] by using the correct notations and applying the stronger
anisotropic local law (3.22). Hence we will only state several key lemmas that are needed
for the argument without presenting all the details of the proof.

Let X = (z;,) and X = (Z;.) be two matrices as in Lemma 3.12. Define a bijective
ordering map ® on the index set of X as

O {(i,u):1<i<n, n+1<pu<n+N} = {1,..., Ymax = nN}.

For any 1 < 7 € Ymax, We define the matrix X7 = (xzu) such that xZH =, if O(i,p) <7,

and z, = T;, otherwise. Then we have X* = X, X'm = X, and X7 has bounded
support ¢ = N —?¢ forall 0 < v < Ymax. Correspondingly, we define
-1
0 Y~ -1, Y”
H" .= V= nxn 7.
(o 0 ) =(0%" e ) 7.0

where Y7 := $1/2U* X7V /2. Then we define the (n + N) x (n + N) matrices V7 and
W7 by (recall (6.21)) N
Y _ AZTip Y o ATip
V= Aau W= Aa
so that H” and H”~! can be written as
H'=Q"+V7, H'=Q"+W", (7.7)

for some matrix )7 that is independent of z;, and z;,. For simplicity of notations, for
any v we denote

-1
T 0
Y oo— (Y Y . y—1 Yo vy nxn
ST.=GY, TV:=G""', R .(Q < TN )) . (7.8)

For convenience, we sometimes drop the superscript from R, S, T if v is fixed. Under the
above definitions, we can write

—1
S = <Q“f - ( Inxn 0 ) +V7) = (I +RV")'R (7.9)
0 2INxN
=R—-RV'R+ (RV")’R+--- + (-DYRV")'R + (—1)"T(RV)!*1S (7.10)

for [ € IN. On the other hand, we can also expand R in terms of S,
R=(I—-8SV)'S=8+8SVIS+(SV")2S+ ...+ (SVNIS + (SV)! IR (7.11)

We have similar expansions for 7" and R by replacing (V7,.5) with (W7, T) in (7.10) and
(7.11). By the bounded support condition, we have

max |V = O(|z;,]) < N=%, max|W"| = O(|ziu]) < N—V2, (7.12)
vy i
Note that S, R and T satisfy the following deterministic bounds by (5.9):
sup  maxmax {||S?|, |T|,IR"]|} < sup n ' <N (7.13)
z€8(co,Cose) Y 2€5(co,Co,¢e)

Then using expansion (7.11) in terms of T, W? with [ = 3, the anisotropic local law (3.22)
for T, and the bound (7.13) for R, we can get that for any deterministic unit vectors
u,v e €7,
sup max | R, O(1) with high probability. (7.14)
zeg(coyCo,a,e) v
From the definitions of V7 and W7, one can see that it is helpful to introduce the

following notations to simplify the expressions.

v|_
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Definition 7.2 (Matrix operators x.,). For any two (n + N) x (n + N) matrices A and B,
we define
Ay B:=ALB, I,:=A},, ®(i,u) =7 (7.15)

In other words, we have
Axy, B = AwiWZB + Aw,w;B, w,;:= »V2y;, W, = »i/2 7
We denote the I-th power of A under the *,-product by A1 e,
A = Awey Awy Axy o xy A (7.16)
l

Definition 7.3 (P, x and P, ;). For k € N, k = (ky,--- ,ks) € IN®* with s € N, and
1 < v < Ymax, we define

p p
Py kG = G Py (H Gutv,) =[] Pk Gurvis (7.17)
t=1 t=1

where we abbreviate Gfﬂ,(kﬂ) = (G*W(k“))uv. If 81 and &, are products of resolvent
entries as above, then we define

Pyx(61 + &2) := Py k&1 + Py 1 Bs. (7.18)

Note that P, and P, x are not linear operators, but just notations we use for simplifica-
tion. Similarly, for the product of the entries of G — II, we define

t=1 t=1

p D
,P’Y’k (H(G o H)utvt> = H ,P’y,k:t (G - H)utvt; (7.19)

where
(G—TM)yy, ifk=0,
P%k’(G - 1_[)uv = {G*v(k+1)

Remark 7.4. It is easy to see that for any fixed k € N, P, ;G v is a sum of finitely many
products of (k + 1) resolvent entries of the form Gxy, x,y € {u,v,w;,w,}. Hence by
(3.22) and (7.14), we can bound P, ;G by O<(1). This is one of the main reasons why
we need to prove the stronger anisotropic local law for G, rather than the entrywise
local law only as in [14, 40].

, otherwise.

Now we begin to perform the resolvent comparison strategy. The basic idea is to
expand S and 7" in terms of R using the resolvent expansions as in (7.10) and (7.11), and
then compare the two expressions. The key of the comparison argument is the following
Lemma 7.5. Its proof is almost the same as the one for [40, Lemma 6.5]. In fact, we can
copy their arguments almost verbatim, except for some notational differences. Hence
we omit the details.

Lemma 7.5. Given z € S(co, Co, a,¢) and ®(i, u) = ~. Let r > 0 be a fixed constant and
p € IN be a fixed integer. Then for S, R in (7.8), we have

p

p
EJ] Suv. = Y AE[(—zi)"] + > AE P s [ Supve + O<(N7T),

t=1 0<k<4 5<|k|<r /¢, kENP t=1
(7.20)

where A, 0 < k < 4, depend only on R, Ay’s do not depend on the deterministic unit
vectors (u, vy), 1 <t < p, and we have bounds

|Ay| < N~Ikle/10-2, (7.21)
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Similarly, we have

p
EH S H UtVt = Z AkE ‘TU‘«) ]
t=1 0<k<4
(7.22)

p
+ Z ‘AkE P’Yxk H(S - H)ut"t + O<(N_T>7

5<|k|<r /¢ keNP t=1

where Ak 0 < k < 4, again depend only on R. Finally, we have

P 14 p
IE H Sutvt = E H RlltVt + Z -’Z{kE P’y,k H Sutvt + O-<(N_T)a (723)

t=1 t=1 1<[k|<r/ ¢ keNP t=1
where /Tk ’s do not depend on (u, vy), 1 <t < p, and
| Ak| < N—Iklo/10, (7.24)

Note that the terms Ay, Xk, Ay and ﬂk do depend on v and we have omitted this
dependence in the above expressions.

Next we use Lemma 7.5 to finish the proof of Lemma 3.7 and Lemma 7.1. It is obvious
that a result similar to Lemma 7.5 also holds for the product of T" entries. As in (7.20),
we define the notation A%, a = 0, 1 as follows:

p D
E H SlltVt = Z AkE ‘rw) } Z ’A’I?OIE,P’YJ‘ H SutVt + O-<(N7T)’
t=1 0<k<4 5<|k|<r /¢, keNP t=1
(7.25)
and
p D
El]Tuv. = Y AB[Z)" ]+ Y AVEP]]Tuw, +0<(N7).
t=1 0<k<4 5<|k|<r /¢, keNP t=1
(7.26)

Since Ay, 0 < k < 4, depend only on R and z;,, Z;, have the same first four moments,
we get from (7.25) and (7.26) that

EﬁGUtvt - Ef[ éutvt = Agd:x <]EHGutvt EHGutvt>

t=1 t=1 y=1 t=1

Ymax 5K|K|ST/ ( (7.27)

=2, D

y=1 kelNp

ATEP, kHGw — AV'EP, kHGw> + OL (N2,

t=1 t=1

where we abbreviate G := G(X, z) and G := G(X, z). With a similar argument, we also
have

E f[(G - H)lItVt - ﬁ(é - H)“t"t

t=1

Ymax S[K[<r /¢ (7.28)
0 1 ’
= Z .A’Y EP, kH ufvt A’Y EP’ka G’Y 't )utvf,
y=1 keNe t=1 t=1
+ O (N™"2),
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Next, we notice that P, i [[;_; G7, is also a sum of the products of G entries. Hence
we can apply (7.27) to

p p
EP’Y’k H G?lt_\:lt - EP’Yak H GUtVt
t=1 t=1

with ymax replaced by v — a. Iterating this process for | = 2r/¢ times, we finally can
obtain that

EﬁG?;:s: < Eﬁagtvt
- - » (7.29)
+ O <HlléilX(N_2)l(N—¢/10)Ei ki Z EP., 1 Pk HG?xtVt + N—r-‘,—?) ’
QCTRENeT! =1
where
1<1<2r/p, ki €eNP| ko € Nl g e ekl ang 5 < k| < T
(7.30)

For the details of the above derivation, we refer the reader to the arguments between
(6.25) and (6.31) in [14]. The above estimate still holds if we replace some of the G
entries with G entries, since we only need to use the absolute bounds for the resolvent
entries. Of course, using (7.28) instead of (7.27), we can obtain a similar estimate

p
E H (GO - H) uivy

t=1

(Grmax — 1) < (7.31)

+ N—T+2> )

Now we use Lemma 7.5, (7.29) and (7.31) to complete the proof of Lemma 3.7 and
Lemma 7.1.

UtV

=
=

t

+ 0% (max(N_Q)l(N—WlO)Ei k| Z

k.l
Y15tV

Il
-

p

E,P’Yz,kz o 'P’Yl,kl H (GO - H)

t=1

UtV

Proof of Lemma 3.7. The proof of this lemma is similar to the one for [14, Lemma
3.17], where the main difference lies in the estimate (7.34) below. We apply (7.31) to
(G —TII)uy (G — ) yy with p = 2 and r = 3. Recall that X is of bounded support ¢ = N~/
Then by (3.22) and Lemma 3.2, we have

E|(G — ) u]? < U2(2). (7.32)

Moreover, by (3.19) the remainder term O (N~""2) = OL(N~1!) in (7.31) is negligible.
Hence it remains to handle the second term on the right-hand side of (7.31), i.e.

(NS \P%k,,-nm,kl|(G0—H)uv\2‘. (7.33)
1

Y1

For each product in (7.33), v appears exactly twice in the indices of G. These two v’s

appear as Gyw,Gw,v in the product, where w,, w; come from some v, and ~; via P.

Let v = < :1 > for vi € C** and v, € C%2. By Lemma 6.1, after taking the averages
2

N723% and N723°_, the term Gyw,Gw,v contributes a factor

O Im (ZilG?/lVl) + Im (GE)’QVQ) + n |G\O/1V1 | + 77 |G9/2V2| (7 34)
=< N7 .
Im mo. + V(2
=0 (W) = 04 (T3(2)), (7.35)
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where we used (3.22). For all the other G factors in the product, we control them by
O (1) using (7.14). Thus we have proved that (7.33) < ¥2(z). Together with (7.31) and
(7.32), this proves Lemma 3.7. O

Proof of Lemma 7.1. The proof of this lemma is similar to the one for [14, Lemma 5.2],
where the main difference lies in (7.40) below. For simplicity, we shall prove that

E (m(2) — me(2))" | < |E (M(2) — me(2)" | + (¥2(2) + J* + K)p. (7.36)
The proof for (7.2) is exactly the same but with slightly heavier notations (in the product
of p terms, half of them are normal and the other half are complex conjugates).

We define a function of coefficients

f,J)=n" H(;lfjm I = (i1, 42, 7ip) Ezfv J = (s g2, 7jp) GIf~

It is easy to check that
P
EY £ [[(G* =), , = B(m® = me)”, a =0, Ymax. (7.37)
t=1

Since A’s do not depend on i; and j;, we may consider a linear combination of (7.31)
with coefficients f(I,J) and r = p + 2:

p p
EY ][ -m,,| = B> f@,n ]G -1,
1,0 t=1 I,J t=1

p

+ 0o IIBIE?'}Y((N_¢/1O)Zi ks E;f(l’ NPyt Poka E(G —10);,;,| + NP

(7.38)

Now to conclude (7.36), it suffices to control the second term on the RHS of (7.38). We
consider the terms

P
Prk - Prta [ [(G =i, (7.39)

t=1
for k4, ..., k; satisfying (7.30). For each product in (7.39) and any 1 < t < p, there are

two i;’s in the indices of G. These two i;’s can only appear as (1) (G IT);,;, in the
product, or (2) Guwa wa“, where w,, w;, come from some ~; and ; via P. Then after
averaging over n—P Zzhm ip? this term becomes either (1) m — m,, which is bounded by
K by (7.1), or 2) n~* >, Giyw,Gw,i,, which is bounded as in (7.34) by

0. (W) =0, (V2(2) + J?). (7.40)

For other G entries in the product with no 4;, we simply bound them by O (1) using (7.1).
Then for any fixed vy, ...,v, ki,...,k;, we have proved that

P

Z EPyse Powse [ (G=11) | < (92() + 2 + K)". (7.41)

t=1 et
Together with (7.38), this concludes (7.36). O
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Finally, we give the proof of Theorem 3.10. Its proof is similar to the one for [14,
Theorem 3.16]. We only outline the proof by stating the key lemmas one can prove.
For the matrix X constructed in Lemma 3.12, it satisfies the edge universality by the
following lemma.

Lemma 7.6. Let X() and X(® be two separable covariance matrices satisfying the
assumptions in Theorem 3.6 and the bounded support condition (3.1) with ¢ = N—1/2.
Suppose by < N'/3~¢ for some constant ¢ > 0. Then there exist constants ¢, > 0 such
that for any s € R, we have

pO <N2/3()\1 A <s— N—f) NS < P®@ (N2/3()\1 ) < s)
(7.42)
<P (NQ/?’()q X)) <s+ N*E) + N9,

where P(Y) and P(® denote the laws of X() and X, respectively.

Proof. The proof of this lemma is similar to the ones in [20, Section 6], [24, Section 6],
[53, Section 4] and [37, Section 10]. The main argument involves a routine application
of the Green’s function comparison method (as the one in Lemma 7.8) near the edge
developed in [24, Section 6] and [53, Section 4]. The proofs there can be easily adapted
to our case using the anisotropic local law (Theorem 3.6), the rigidity of eigenvalues
(Theorem 3.8), and the resolvent identities in Lemma 5.3 and Lemma 6.1. O

Now it is easy to see that Theorem 3.10 follows from the following comparison lemma.

Lemma 7.7. Let X and X be two matrices as in Lemma 3.12. Suppose by < N'/3=¢ for
some constant ¢ > 0. Then there exist constants €, > 0 such that, for any s € R we have

IP)? <N2/3()\1 — ) < S_N_E> —- N9 IPX(NQ/3 (A1 —=A4) < 8) (7.43)
<P¥ <N2/3(>\1*>\+) <s+N*5) +N7°, .

where PX and PX are the laws for X and X, respectively.

To prove Lemma 7.7, it suffices to prove the following Green’s function comparison
result. Its proof is the same as the one for [14, Lemma 5.5], so we skip the details.

Lemma 7.8. Let X and X be two matrices as in Lemma 3.12. Suppose F: R — R isa
function whose derivatives satisfy

sup [FF (2)|(1+ |z))~* < Cy, k=1,2,3, (7.44)
for some constant C; > 0. Then for any sufficiently small constant § > 0 and for any
E,Ei,Es € ls:= {:1: e — ] < N*Z/H} and 7= N~2/3-9, (7.45)

we have
|EF (NnImm(z)) — EF (NpImm(z))] < N~9t¢2° 2 = E +ip, (7.46)

E> E,
EF (N / Tmm(y + in)dy) _EF (N / Im iy + in)dy>
E E4

where ¢ is as given in Theorem 3.6 and C > 0 is some constant.

and

< N~¢TC20  (7.47)
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Proof of Lemma 7.7. Although not explicitly stated, it was shown in [24] that if Theorem
3.8 and Lemma 7.8 hold, then the edge universality (7.43) holds. More precisely, in
Section 6 of [24], the edge universality problem was reduced to proving Theorem 6.3 of
[24], which corresponds to our Lemma 7.8. In order for this conversion to work, only the
the averaged local law and the rigidity of eigenvalues are used, which correspond to the
statements in our Theorem 3.8. O

Proof of Theorem 3.10. Theorem 3.10 follows immediately combining Lemma 3.12,
Lemma 7.6 and Lemma 7.7. O
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