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Edge universality of separable covariance matrices
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Abstract

In this paper, we prove the edge universality of largest eigenvalues for separable
covariance matrices of the form Q := A1/2XBX∗A1/2. Here X = (xij) is an n ×N

random matrix with xij = N−1/2qij , where qij are i.i.d. random variables with zero
mean and unit variance, and A and B are respectively n× n and N ×N deterministic
non-negative definite symmetric (or Hermitian) matrices. We consider the high-
dimensional case, i.e. n/N → d ∈ (0,∞) as N → ∞. Assuming Eq3ij = 0 and some
mild conditions on A and B, we prove that the limiting distribution of the largest
eigenvalue of Q coincide with that of the corresponding Gaussian ensemble (i.e. Q
with X being an i.i.d. Gaussian matrix) as long as we have lims→∞ s4P(|qij | > s) = 0,
which is a sharp moment condition for edge universality. If we take B = I, then
Q becomes the normal sample covariance matrix and the edge universality holds
true without the vanishing third moment condition. So far, this is the strongest edge
universality result for sample covariance matrices with correlated data (i.e. non-
diagonal A) and heavy tails, which improves the previous results in [6, 39] (assuming
high moments and diagonal A), [37] (assuming high moments) and [14] (assuming
diagonal A).
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1 Introduction

Sample covariance matrices are fundamental objects in multivariate statistics. Given
a centered random vector y ∈ Rn and its i.i.d. copies yi, i = 1, · · · , N , the sample
covariance matrix Q := N−1

∑
i yiy

∗
i is the simplest estimator for the covariance matrix

A := Eyy∗. In fact, if the dimension n of the data is fixed, then Q converges almost
surely to Σ as N →∞. However, in many modern applications, high dimensional data,
i.e. data with n being comparable to or even larger than N , is commonly collected in
various fields, such as statistics [13, 32, 33, 34], economics [47] and population genetics
[49], to name a few. In this setting, A cannot be estimated through Q directly due to the
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Edge universality of separable covariance matrices

so-called curse of dimensionality. Yet, some properties of A can be inferred from the
eigenvalue statistics of Q.

In this paper, we focus on the limiting distribution of the largest eigenvalues of
high-dimensional sample covariance matrices, which is of great interest to the principal
component analysis. The largest eigenvalue has been widely used in hypothesis testing
problems on the structure of covariance matrices, see e.g. [7, 17, 33, 48]. Of course
the list is very far from being complete, and we refer the reader to [32, 51, 67] for a
comprehensive review. Precisely, we will consider sample covariance matrices of the
form

Q = A1/2XX∗A1/2,

where the data matrix X = (xij) is an n × N random matrix with i.i.d. entries such
that Ex11 = 0 and E|x11|2 = N−1, and A is an n× n deterministic non-negative definite
symmetric (or Hermitian) matrix. On dimensionality, we assume that n/N → d ∈ (0,∞)

as N →∞. It is well-known that the empirical spectral distribution (ESD) of Q converges
to the (deformed) Marchenko-Pastur (MP) law [42], whose rightmost edge λ+ gives
the asymptotic location of the largest eigenvalue. Moreover, it was proved in a series
of papers that under an N2/3 scaling, the distribution of the largest eigenvalue λ1(Q)

around λ+ converges to the famous Tracy-Widom distribution [58, 59]. This result is
commonly referred to as the edge universality, in the sense that it is independent of the
detailed distribution of the entries of X. The limiting distribution of λ1 was first obtained
for Q with X consisting of i.i.d. centered Gaussian entries (i.e. XX∗ is a Wishart matrix)
and with trivial covariance (i.e. A = I) [33]. The edge universality in the A = I case was
later proved for all random matrices X whose entries satisfy a sub-exponential decay
[53]. When A is a non-scalar diagonal matrix, the Tracy-Widom distribution was first
proved for the case with i.i.d. Gaussian X in [17] (non-singular A case) and [46] (singular
A case). Later the edge universality with general diagonal A was proved in [6, 39] for X
with entries having arbitrarily high moments, and in [14] for X with entries satisfying
the tail condition (1.1) below. The most general case with non-diagonal A is considered
in [37], where the edge universality was proved under the arbitrarily high moments
assumption.

Without loss of generality, we may assume that the row indices of the data matrix
correspond to the spatial locations and the column indices correspond to the observation
times. Then the data model A1/2X corresponds to observing independent samples at N
different times, and hence is incompetent to model sampling data with time correlations.
In fact, the spatio-temporal sampling data is commonly collected in environmental study
[29, 38, 41, 43] and wireless communications [60]. Motivated by this fact, we shall
consider a separable data model Y = A1/2XB1/2, where A and B are respectively n× n
and N ×N deterministic non-negative definite symmetric (or Hermitian) matrices. Here
A and B are not necessarily diagonal, which means that the entries are correlated both
in space and in time. The name “separable” is because the joint covariance of Y , viewed
as an (Nn)-dimensional vector, is given by a separable form A⊗B. In particular, if the
entries of X are Gaussian, then the joint distribution of Y is NNn(0, A⊗B). Note that
the separable model describes a process where the time correlation does not depend on
the spatial location and the spatial correlation does not depend on time, i.e. there is no
space-time interaction.

The separable covariance matrix is defined as Q := Y Y ∗ = A1/2XBX∗A1/2. It
has been proved to be very useful for various applications. For example, in wireless
communications, it was shown in [61] that an estimate of the capacity is directly given
by various informations of the largest eigenvalue. The spectral properties of separable
covariance matrices have been investigated in some recent works, see e.g. [11, 18,
52, 62, 69]. However, the edge universality is much less known compared with sample
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covariance matrices. It is known that the edge universality generally follows from
an optimal local law for the resolvent G = (Q − z)−1 near the spectral edge, where
z ∈ C+ := {z ∈ C : Im z > 0} with Im z � N−1 [6, 14, 37, 39]. Consider an n×N matrixX
consisting of independent centered entries with general variance profile E|xij |2 = σij/N ,
then an optimal local law was prove in [1, 2] for the resolvent (XX∗ − z)−1 under the
arbitrarily high moments assumption. Note that this gives the local law for G in the case
where both A and B are diagonal. However, if A and B are not diagonal, no such local
law is proved so far, let alone the edge universality.

The goal of this paper is to fill this gap. More precisely, we shall prove that for general
(non-diagonal) A and B satisfying some mild assumptions, the limiting distribution of the
rescaled largest eigenvalue N

2
3 (λ1(Q)− λ+) coincides with that of the corresponding

Gaussian ensemble (i.e. QG = A1/2XGB(XG)∗A1/2 with XG being an i.i.d. Gaussian
matrix) as long as the following conditions hold:

lim
s→∞

s4P
(
|
√
Nx11| > s

)
= 0, (1.1)

and
Ex3

11 = 0. (1.2)

For a precise statement, the reader can refer to Theorem 2.7. Note that the tail condition
(1.1) is slightly weaker than the finite fourth moment condition for

√
Nx11, and in fact

is sharp for the edge universality of the largest eigenvalue, see Remark 2.8 below.
Historically, for sample covariance matrices, it was proved in [68] that λ1 → λ+ almost
surely in the null case with A = I if the fourth moment exists. Later the finite fourth
moment condition is proved to be also necessary for the almost sure convergence of
λ1 [3]. On the other hand, it was proved in [54] that λ1 → λ+ in probability under the
condition (1.1). If A is diagonal, it was proved in [14] that the condition (1.1) is actually
necessary and sufficient for the edge universality of sample covariance matrices to hold.

On the other hand, the condition (1.2) is more technical and should be considered
to be removed in future works. We now discuss about it briefly. The main difficulty
in studying Q = A1/2XBX∗A1/2 and its resolvent is due to the fact that the entries of
A1/2XB1/2 are not independent. We assume that A and B have eigendecompositions
A = UΣU∗ and B = V Σ̃V ∗. Then in the special case where X ≡ XG is i.i.d. Gaussian, it
is easy to see that

A1/2XGB(XG)∗A1/2 d
= U

(
Σ1/2XGΣ̃1/2

)
U∗ ∼ Σ1/2XGΣ̃1/2,

which is reduced to a separable covariance matrix with diagonal Σ and Σ̃. This case
can be handled using the current method in [14]. To extend the result in the Gaussian
case to the general X case, we use a self-consistent comparison argument developed
in [37]. For this argument to work, we need to assume that the third moments of the
X entries coincide with that of the Gaussian random variable, i.e. the condition (1.2).
(Actually it is common that for a comparison argument to work for random matrices,
some kind of four moment matching is needed; see e.g. [55, 56, 57].) If one of the A and
B is diagonal, then a notable argument in [37, Section 8] can remove this requirement
by exploring more detailed structures of the resolvents of Q. However, their argument
is quite specific and cannot be adapted to the general case with both A and B being
non-diagonal. Nevertheless, this is still a welcome result, which shows that for sample
covariance matrices, the condition (1.2) is not necessary and the edge universality holds
as long as (1.1) holds. For a more detailed explanation on why and where the condition
(1.2) is needed, we refer the reader to the discussion following Theorem 3.6.

Finally, we believe that the largest eigenvalue of the Gaussian separable covariance
matrix QG should converge to the Tracy-Widom distribution. However, to the best of our
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knowledge, so far there is no explicit proof for this fact. We will give a proof in another
paper [16].

This paper is organized as follows. In Section 2, we first define the limiting spectral
distribution of the separable covariance matrix and its rightmost edge λ+, which will
depend only on the empirical spectral densities (ESD) of A and B. Then we will state the
main theorem—Theorem 2.7— of this paper. In Section 3, we introduce the notations
and collect some tools including the anisotropic local law (Theorem 3.6), rigidity of
eigenvalues (Theorem 3.8) and a comparison theorem (Theorem 3.10). In Section 4, we
prove Theorem 2.7 with these tools. Then Section 5 and Section 6 are devoted to proving
Theorem 3.6, and Section 7 is devoted to proving Theorem 3.8 and Theorem 3.10.

Conventions. The fundamental large parameter is N and we always assume that n
is comparable to N . All quantities that are not explicitly constant may depend on N ,
and we usually omit N from our notations. We use C to denote a generic large positive
constant, whose value may change from one line to the next. Similarly, we use ε, τ , δ
and c to denote generic small positive constants. If a constant depends on a quantity a,
we use C(a) or Ca to indicate this dependence. We use τ > 0 in various assumptions to
denote a small positive constant. All constants appear in the statements or proof may
depend on τ ; we neither indicate nor track this dependence.

For two quantities aN and bN depending on N , the notation aN = O(bN ) means
that |aN | 6 C|bN | for some constant C > 0, and aN = o(bN ) means that |aN | 6 cN |bN |
for some positive sequence cN ↓ 0 as N → ∞. We also use the notations aN . bN if
aN = O(bN ), and aN ∼ bN if aN = O(bN ) and bN = O(aN ). For a matrix A, we use
‖A‖ := ‖A‖l2→l2 to denote the operator norm; for a vector v = (vi)

n
i=1, ‖v‖ ≡ ‖v‖2 stands

for the Euclidean norm, while |v| ≡ ‖v‖1 stands for the l1-norm. In this paper, we often
write an identity matrix as I or 1 without causing any confusions. If two random variables

X and Y have the same distribution, we write X
d
= Y .

2 Definitions and main result

2.1 Separable covariance matrices

We consider a class of separable covariance matrices of the formQ1 :=A1/2XBX∗A1/2,
where A and B are deterministic non-negative definite symmetric (or Hermitian) matri-
ces. Note that A and B are not necessarily diagonal. We assume that X = (xij) is an
n ×N random matrix with entries xij = N−1/2qij , 1 6 i 6 n, 1 6 j 6 N , where qij are
i.i.d. random variables satisfying

Eq11 = 0, E|q11|2 = 1. (2.1)

For definiteness, in this paper we focus on the real case, i.e. the random variable q11

is real. However, we remark that our proof can be applied to the complex case after
minor modifications if we assume in addition that Re q11 and Im q11 are independent
centered random variables with variance 1/2. We will also use the N ×N matrix Q2 :=

B1/2X∗AXB1/2. We assume that the aspect ratio dN := n/N satisfies τ 6 dN 6 τ−1 for
some constant 0 < τ < 1. Without loss of generality, by switching the roles of Q1 and Q2

if necessary, we can assume that

τ 6 dN 6 1 for all N. (2.2)

For simplicity of notations, we will often abbreviate dN as d in this paper. We denote
the eigenvalues of Q1 and Q2 in descending order by λ1(Q1) > . . . > λn(Q1) and
λ1(Q2) > . . . > λN (Q2). Since Q1 and Q2 share the same nonzero eigenvalues, we will
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for simplicity write λj , 1 6 j 6 N ∧ n, to denote the j-th eigenvalue of both Q1 and Q2

without causing any confusion.
We assume that A and B have eigendecompositions

A = UΣU∗, B = V Σ̃V ∗, Σ = diag(σ1, . . . , σn), Σ̃ = diag(σ̃1, . . . , σ̃N ), (2.3)

where
σ1 > σ2 > . . . > σn > 0, σ̃1 > σ̃2 > . . . > σ̃N > 0.

We denote the empirical spectral densities (ESD) of A and B by

πA ≡ π(n)
A :=

1

n

n∑
i=1

δσi , πB ≡ π(N)
B :=

1

N

N∑
i=1

δσ̃i . (2.4)

We assume that there exists a small constant 0 < τ < 1 such that for all N large enough,

max{σ1, σ̃1} 6 τ−1, max
{
π

(n)
A ([0, τ ]), π

(N)
B ([0, τ ])

}
6 1− τ. (2.5)

The first condition means that the operator norms of A and B are bounded by τ−1, and
the second condition means that the spectrums of A and B do not concentrate at zero.

We summarize our basic assumptions here for future reference.

Assumption 2.1. We assume that X is an n×N random matrix with real i.i.d. entries
satisfying (2.1), A and B are deterministic non-negative definite symmetric matrices
satisfying (2.3) and (2.5), and dN satisfies (2.2).

2.2 Resolvents and limiting law

In this paper, we will study the eigenvalue statistics of Q1 and Q2 through their
resolvents (or Green’s functions). It is equivalent to study the matrices

Q̃1(X) := Σ1/2U∗XBX∗UΣ1/2, Q̃2(X) := Σ̃1/2V ∗X∗AXV Σ̃1/2. (2.6)

In this paper, we shall denote the upper half complex plane and the right half real line by

C+ := {z ∈ C : Im z > 0}, R+ := [0,∞).

Definition 2.2 (Resolvents). For z = E + iη ∈ C+, we define the resolvents for Q̃1,2 as

G1(X, z) :=
(
Q̃1(X)− z

)−1

, G2(X, z) :=
(
Q̃2(X)− z

)−1

. (2.7)

We denote the ESD ρ(n) of Q̃1 and its Stieltjes transform as

ρ ≡ ρ(n) :=
1

n

n∑
i=1

δλi(Q̃1), m(z) ≡ m(n)(z) :=

∫
1

x− z
ρ

(n)
1 (dx) =

1

n
TrG1(z). (2.8)

We also introduce the following quantities:

m1(z) ≡ m(n)
1 (z) :=

1

N

n∑
i=1

σi(G1(z))ii, m2(z) ≡ m(N)
2 (x) :=

1

N

N∑
µ=1

σ̃µ(G2(z))µµ.

It was shown in [52] that if dN → d ∈ (0,∞) and π(n)
A , π(N)

B converge to certain proba-
bility distributions, then almost surely ρ(n) converges to a deterministic distributions ρ∞.
We now describe it through the Stieltjes transform

m∞(z) :=

∫
R

ρ∞(dx)

x− z
, z ∈ C+.
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For any finite N and z ∈ C+, we define (m
(N)
1c (z),m

(N)
2c (z)) ∈ C2

+ as the unique solution
to the system of self-consistent equations

m
(n)
1c (z) = dN

∫
x

−z
[
1 + xm

(N)
2c (z)

]π(n)
A (dx), m

(N)
2c (z) =

∫
x

−z
[
1 + xm

(N)
1c (z)

]π(N)
B (dx).

(2.9)
Then we define

mc(z) ≡ m(n)
c (z) :=

∫
1

−z
[
1 + xm

(N)
2c (z)

]π(n)
A (dx). (2.10)

It is easy to verify that m(n)
c (z) ∈ C+ for z ∈ C+. Letting η ↓ 0, we can obtain a probability

measure ρ(n)
c with the inverse formula

ρ(n)
c (E) = lim

η↓0

1

π
Imm(n)

c (E + iη). (2.11)

If dN → d ∈ (0,∞) and π(n)
A , π(N)

B converge to certain probability distributions, then m(n)
c

also converges and we define

m∞(z) := lim
N→∞

m(n)
c (z), z ∈ C+.

Letting η ↓ 0, we can recover the asymptotic eigenvalue density ρ∞ with

ρ∞(E) = lim
η↓0

1

π
Imm∞(E + iη). (2.12)

It is also easy to see that ρ∞ is the weak limit of ρ(n)
c .

The above definitions of m(n)
c , ρ(n)

c , m∞ and ρ∞ make sense due to the following
theorem. Throughout the rest of this paper, we often omit the super-indices (n) and (N)

from our notations.

Theorem 2.3 (Existence, uniqueness, and continuous density). For any z ∈ C+, there
exists a unique solution (m1c,m2c) ∈ C2

+ to the systems of equations in (2.9). The
function mc in (2.10) is the Stieltjes transform of a probability measure µc supported on
R+. Moreover, µc has a continuous derivative ρc(x) on (0,∞), which is defined by (2.12).

Proof. See [69, Theorem 1.2.1], [30, Theorem 2.4] and [12, Theorem 3.1].

We now make a small detour and discuss about another very enlightening way
to understand the Stieltjes transforms m1,2c and mc. Consider the vector solution
v = (v1, · · · , vn) to the following self-consistent vector equation [1, 2]:

1

v(z)
= −z + S

1

1 + STv(z)
, z ∈ C+, (2.13)

where 1/v denotes the entrywise reciprocal, and S is an n×N matrix with entries

Siµ =
1

N
σiσ̃µ, i ∈ J1, nK, µ ∈ J1, NK. (2.14)

In fact, if one regards X1 := J1, nK and X2 := J1, NK as measure spaces equipped with
counting measures

π1 =

n∑
i=1

δi, π2 =

N∑
µ=1

δµ,
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then S defines a linear operator S : l∞(X2)→ l∞(X1) such that

(Sw)i =
σi
N

N∑
µ=1

σ̃µwµ, w ∈ l∞(X2), i ∈ X1.

Now we can regard (2.13) as a self-consistent equation of the function v : C+ → l∞(X1).
Suppose v is a solution to (2.13) with Imv(z) > 0, then it is easy to verify that

m1c =
1

N

n∑
i=1

σivi, m2c =
1

N

N∑
µ=1

σ̃µ
−z(1 + σ̃µm1c)

, mc =
1

n

n∑
i=1

vi.

The structure of the solution v was well-studied in [1, 2]. In particular, one has the
following preliminary result on the existence and uniqueness of the solution.

Theorem 2.4 (Proposition 2.1 of [1]). There is a unique function v : C+ → l∞(X1)

satisfying (2.13) and Imv(z) > 0 for all z ∈ C+. Moreover, for each k ∈ X1, there is a
unique probability measure µk on R such that vk is the Stieltjes transform of µk, i.e.

vk(z) =

∫ ∞
0

1

E − z
µk(dE), z ∈ C+.

The measures µk, k ∈ X1, all have the same support contained in [0, Ĉ], where

Ĉ := 4 max
{
‖S‖l∞(X2)→l∞(X1), ‖S∗‖l∞(X1)→l∞(X2)

}
.

Now we go back to study the equations in (2.9). If we define the function

f(z, α) := −α+

∫
x

−z + xdN
∫

t
1+tαπA(dt)

πB(dx), (2.15)

then m2c(z) can be characterized as the unique solution to the equation f(z, α) = 0 of α
with Imα > 0, and m1c(z) is defined using the first equation in (2.9). Moreover, m1,2c(z)

are the Stieltjes transforms of densities ρ1,2c:

ρ1,2c(E) = lim
η↓0

1

π
Imm1,2c(E + iη).

Then we have the following result.

Lemma 2.5. The densities ρc and ρ1,2c all have the same support on (0,∞), which is a
union of intervals:

supp ρc ∩ (0,∞) = supp ρ1,2c ∩ (0,∞) =

p⋃
k=1

[a2k, a2k−1] ∩ (0,∞), (2.16)

where p ∈ N depends only on πA,B. Moreover, (x, α) = (ak,m2c(ak)) are the real solutions
to the equations

f(x, α) = 0, and
∂f

∂α
(x, α) = 0. (2.17)

Moreover, we have m1c(a1) ∈ (−σ̃−1
1 , 0) and m2c(a1) ∈ (−σ−1

1 , 0).

Proof. See Section 3 of [12].

We shall call ak the spectral edges. In particular, we will focus on the rightmost edge
λ+ := a1. Now we make the following assumption: there exists a constant τ > 0 such
that

1 +m1c(λ+)σ̃1 > τ, 1 +m2c(λ+)σ1 > τ. (2.18)

This assumption guarantees a regular square-root behavior of the spectral densities ρ1,2c

near λ+ as shown by the following lemma.
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Lemma 2.6. Under the assumptions (2.2), (2.5) and (2.18), there exist constants a1,2 > 0

such that
ρ1,2c(λ+ − x) = a1,2x

1/2 + O(x), x ↓ 0, (2.19)

and

m1,2c(z) = m1,2c(λ+) + πa1,2(z − λ+)1/2 + O(|z − λ+|), z → λ+, Im z > 0. (2.20)

The estimates (2.19) and (2.20) also hold for ρc and mc with a different constant.

Proof. Differentiating the equation f(z, α) = 0 with respect to α, we can get that
z′(mr) = 0 and z′′(mr) = −∂2

αf(λ+,mr)/∂zf(λ+,mr), where mr := m2c(λ+). After a
straightforward calculation, we have

∂zf(z, α) =

∫
x

z2 [1 + xg(z, α)]
2πB(dx), g(z, α) := dN

∫
t

−z (1 + tα)
πA(dt),

and

∂2
αf(z, α)=−2

∫
x3

z [1 + xg(z, α)]
3 (∂αg(z, α))

2
πB(dx)+

∫
x2

z [1 + xg(z, α)]
2 ∂

2
αg(z, α)πB(dx),

where

∂αg(z, α) = dN

∫
t2

z (1 + tα)
2πA(dt), ∂2

αg(z, α) = −2dN

∫
t3

z (1 + tα)
3πA(dt).

Using (2.5) and (2.18), it is easy to show that

|∂zf(λ+,mr)| ∼ 1,
∣∣∂2
αf(λ+,mr)

∣∣ ∼ 1.

Thus we have |z′′(mr)| ∼ 1, which by Theorem 3.3 of [12], implies (2.19) and (2.20) for
ρ2c and m2c. The estimates for ρ1c, m1c, ρc, and mc then follow from simple applications
of (2.9) and (2.10).

2.3 Main result

The main result of this paper is the following theorem.

Theorem 2.7. Let Q1 := A1/2XBX∗A1/2 be an n× n separable covariance matrix with
A, B and X satisfying Assumption 2.1 and (2.18). Let λ1 be the largest eigenvalue of
Q1. If the conditions (1.1) and (1.2) hold, then we have

lim
N→∞

[
P(N2/3(λ1 − λ+) 6 s)− PG(N2/3(λ1 − λ+) 6 s)

]
= 0 (2.21)

for all s ∈ R, where PG denotes the law for X = (xij) with real i.i.d. Gaussian entries
N1/2xij = qij satisfying (2.1). The condition (1.2) is not necessary if A or B is diagonal.

Remark 2.8. The moment condition is actually sharp in the following sense. If the
condition (1.1) does not hold for X, then one can show that (see e.g. [14, Section 4]) for
any fixed a > λ+,

lim sup
N→∞

P (λ1(XX∗) > a) > 0,

where λ1(XX∗) denotes the largest eigenvalue of XX∗. Thus if min{σn, σ̃N} > τ for
some constant τ > 0, we then have

lim sup
N→∞

P (λ1(Q1) > a) > 0

for any fixed a > λ+, and the edge universality (2.21) cannot hold.
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Remark 2.9. It is clear that (2.21) gives the edge universality of the largest eigenvalues
of separable covariance matrices. However, to the best of our knowledge, so far there is
no explicit formula for the limiting distribution of the largest eigenvalue of Q1 when X
is Gaussian. In an ongoing work [16], we shall prove that the largest eigenvalue of Q1

actually converges weakly to the Tracy-Widom distribution. Here we state the precise
result we expect to prove in [16], which may be of interest to some readers.

Recall the proof of Lemma 2.6. We define γ0 ≡ γ0(A,B) such that

γ3
0 =

∂zf(λ+,m2c(λ+))

− 1
2∂

2
αf(λ+,m2c(λ+))

[∫
t

λ+(1 + tm2c(λ+))2
πA(dt)

]2

=
I2
1J1

I2
2J3 + I3J2

,

where we denote

I1(A,B) :=

∫
t

λ+(1 + tm2c(λ+))2
πA(dt), J1(A,B) :=

∫
x

λ2
+ (1 + xm1c(λ+))

2πB(dx),

and for k = 2, 3,

Ik(A,B) := dN

∫
tk

λ+ (1 + tm2c(λ+))
k
πA(dt), Jk(A,B) :=

∫
xk

λ+ (1 + xm1c(λ+))
k
πB(dx).

Using (2.5) and (2.18), it is easy to see that γ0 ∼ 1. Then we have the following result: if
A and B satisfy Assumption 2.1 and (2.18), then we have

lim
N→∞

PG(γ0(A,B)N2/3(λ1(A,B)− λ+(A,B)) 6 s) = F1(s) for all s ∈ R, (2.22)

where λ1(A,B) denotes the largest eigenvalue of Q1(A,B) = A1/2XBX∗A1/2, and F1 is
the type-1 Tracy-Widom distribution. (2.21) and (2.22) together show that the distribution
of the rescaled largest eigenvalue of Q1 converges to the Tracy-Widom distribution if the
conditions (1.1) and (1.2) hold. In particular, in the case of sample covariance matrices,
the condition (1.2) is not necessary.

Remark 2.10. The universality result (2.21) can be extended to the joint distribution of
the k largest eigenvalues for any fixed k:

lim
N→∞

[
P

((
N2/3(λi − λ+) 6 si

)
16i6k

)
− PG

((
N2/3(λi − λ+) 6 si

)
16i6k

)]
= 0,

(2.23)

for all s1, s2, . . . , sk ∈ R. Let HGOE be an N × N random matrix belonging to the
Gaussian orthogonal ensemble. The joint distribution of the k largest eigenvalues of
HGOE , µGOE1 > . . . > µGOEk , can be written in terms of the Airy kernel for any fixed k

[28]. In [16], we actually show that

lim
N→∞

PG
((

γ0(A,B)N2/3(λi(A,B)− λ+(A,B)) 6 si

)
16i6k

)
= lim
N→∞

P

((
N2/3(µGOEi − 2) 6 si

)
16i6k

)
,

for all s1, s2, . . . , sk ∈ R. Hence (2.23) gives a complete description of the finite-
dimensional correlation functions of the largest eigenvalues of Q1.

Remark 2.11. A key input for the proof of (2.21) is the anisotropic local law for the
resolvents in (2.7). Our basic strategy is first to prove the anisotropic local law for G1,2

when X is Gaussian, and then to obtain the anisotropic local law for the general X case
through a comparison with the Gaussian case. Without (1.2), the comparison argument
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cannot give the anisotropic local law up to the optimal scale. However, in the case where
A or B is diagonal, the condition (1.2) is not needed for the comparison argument in [37]
to work. We refer the reader to the discussion following Theorem 3.6, which explains
why and where the condition (1.2) is needed. We will try to remove the assumption (1.2)
completely in future works.
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(a) For X satisfying (1.1).
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(b) For Gaussian X.

Figure 1: Histograms for the largest eigenvalues of 20000 ensembles.

Finally, we illustrate the edge universality result with some numerical simulations.
Consider the following setting: (1) N = 2n, i.e. dN = 0.5; (2) we take

Σ = diag(1, · · · , 1︸ ︷︷ ︸
n/2

, 4, · · · , 4︸ ︷︷ ︸
n/2

), Σ̃ = diag(1, · · · , 1︸ ︷︷ ︸
N/2

, 4, · · · , 4︸ ︷︷ ︸
N/2

);

(3) U and V are orthogonal matrices uniformly chosen from orthogonal groups O(n)

and O(N). Then we take n = 1000 and calculate the largest eigenvalues for 20000

independently chosen matrices. The histograms are plotted in Fig. 1. In case (a), the
entries

√
Nxij are drawn independently from a distribution with mean zero, variance 1

and satisfying (1.1); in case (b), the entries
√
Nxij are i.i.d. Gaussian with mean zero

and variance 1. We translate and rescale the numerical results properly, and one can
observe that they fit the type-1 Tracy-Widom distribution very well.
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2.4 Statistical applications

In this subsection, we briefly discuss some applications of our result to high-dimen-
sional statistics.

If we take B = I, then Q1 becomes the normal sample covariance matrix and
Theorem 2.7 indicates that the edge universality of the largest eigenvalue of Q1 holds
true for correlated data (i.e. non-diagonal A) with heavy tails as in (1.1). So far, this is
the strongest edge universality for sample covariance matrices compared with [6, 39]
(assuming high moments and diagonal A), [37] (assuming high moments) and [14]
(assuming diagonal A). On the other hand, the separable data model Y = A1/2XB1/2

for some nontrivial B is widely used in spatio-temporal data modeling, where A is the
spatial covariance matrix and B is the temporal covariance matrix. If the entries of X
are symmetrically distributed and the singular values of A,B are such that (2.18) holds,
then Theorem 2.7 shows that the largest eigenvalue of Q1 satisfies the edge universality
as long as (1.1) holds. We now describe some possible applications of this result.

Consider the following standard signal plus noise model in classic signal processing
[35]:

y = Γs +A1/2x, (2.24)

where Γ is an n× k deterministic matrix, s is a k-dimensional centered signal vector, A
is an n× n deterministic positive definite matrix, and x is an n-dimensional noise vector
with i.i.d. mean zero and variance one entries. Moreover, the signal vector and the noise
vector are assumed to be independent. In practice, suppose we observe N such samples,
where the observations at different times are correlated such that the correlations are
independent of the spatial locations. Denoting the temporal covariance matrix by B, we
then have the spatio-temporal data matrix

Y = ΓSB1/2 +A1/2XB1/2, S := (s1, · · · , sN ), X := (x1, · · · ,xN ).

A fundamental task is to detect the signals via observed samples, and the very first step
is to know whether there exists any such signal, i.e.,

H0 : k = 0 vs. H1 : k > 1. (2.25)

For the above hypothesis testing problem (2.25), the largest eigenvalue of the observed
samples serves as a natural choice for the tests: our result shows that, for heavy-tailed
correlated data satisfying (1.1), the largest singular value of Y satisfies the Tracy-Widom
distribution asymptotically under H0.

We can also consider to test whether the space-time data follows a specific separable
covariance model with spatial and time covariance matrices Ã and B̃. Then we can use
the largest singular value of Ã−1/2Y B̃−1/2 as a test static. Another interesting test static
for this hypothesis testing problem is the eigenvector empirical spectral distribution
(VESD); see [63, 65, 66]. The convergence of VESD for separable covariance matrices
has been proved in [66] using the anisotropic local law—Theorem 3.6 in this paper
(which also serves as an important tool for the proof of Theorem 2.7).

Finally, we remark that one can also perform principal component analysis for
separable covariance matrices, and study the phase transition phenomena caused by a
few large isolated eigenvalues of A or B as in the case of spiked covariance matrices
[4, 5, 9, 50]. We expect that our edge universality result will serve as an important input
for the study of the eigenvalues and eigenvectors for the principal components (the
outliers) and the bulk components (the non-outliers). For example, in [15] we studied the
convergence of the outlier eigenvalues and eigenvectors, and the limiting distribution of
extremal bulk eigenvalues for the spiked separable covariance model based on our main
result, Theorem 2.7, and the results given in Section 3.2 below.
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3 Basic notations and tools

3.1 Notations

We will use the following notion of stochastic domination, which was first introduced
in [19] and subsequently used in many works on random matrix theory, such as [8, 9,
10, 21, 22, 37]. It simplifies the presentation of the results and proofs by systematizing
statements of the form “ξ is bounded by ζ with high probability up to a small power of
N”.

Definition 3.1 (Stochastic domination). (i) Let

ξ =
(
ξ(N)(u) : N ∈ N, u ∈ U (N)

)
, ζ =

(
ζ(N)(u) : N ∈ N, u ∈ U (N)

)
be two families of nonnegative random variables, where U (N) is a possibly N -dependent
parameter set. We say ξ is stochastically dominated by ζ, uniformly in u, if for any fixed
(small) ε > 0 and (large) D > 0,

sup
u∈U(N)

P
[
ξ(N)(u) > Nεζ(N)(u)

]
6 N−D

for large enough N > N0(ε,D), and we shall use the notation ξ ≺ ζ. Throughout this
paper, the stochastic domination will always be uniform in all parameters that are not
explicitly fixed (such as matrix indices, and z that takes values in some compact set).
Note that N0(ε,D) may depend on quantities that are explicitly constant, such as τ in
Assumption 2.1 and (2.18). If for some complex family ξ we have |ξ| ≺ ζ, then we will
also write ξ ≺ ζ or ξ = O≺(ζ).

(ii) We extend the definition of O≺(·) to matrices in the weak operator sense as follows.
Let A be a family of random matrices and ζ be a family of nonnegative random variables.
Then A = O≺(ζ) means that |〈v, Aw〉| ≺ ζ‖v‖2‖w‖2 uniformly in any deterministic
vectors v and w. Here and throughout the following, whenever we say “uniformly in any
deterministic vectors”, we mean that “uniformly in any deterministic vectors belonging
to certain fixed set of cardinality NO(1)”.

(iii) We say an event Ξ holds with high probability if for any constant D > 0, P(Ξ) >
1−N−D for large enough N .

The following lemma collects basic properties of stochastic domination ≺, which will
be used tacitly in the proof.

Lemma 3.2 (Lemma 3.2 in [8]). Let ξ and ζ be families of nonnegative random variables.
(i) Suppose that ξ(u, v) ≺ ζ(u, v) uniformly in u ∈ U and v ∈ V . If |V | 6 NC for some

constant C, then
∑
v∈V ξ(u, v) ≺

∑
v∈V ζ(u, v) uniformly in u.

(ii) If ξ1(u) ≺ ζ1(u) and ξ2(u) ≺ ζ2(u) uniformly in u ∈ U , then ξ1(u)ξ2(u) ≺ ζ1(u)ζ2(u)

uniformly in u.
(iii) Suppose that Ψ(u) > N−C is deterministic and ξ(u) satisfies Eξ(u)2 6 NC for all

u. Then if ξ(u) ≺ Ψ(u) uniformly in u, we have Eξ(u) ≺ Ψ(u) uniformly in u.

Definition 3.3 (Bounded support condition). We say a random matrix X = (xij) satisfies
the bounded support condition with q, if

max
i,j
|xij | ≺ q. (3.1)

Here q ≡ q(N) is a deterministic parameter and usually satisfies N−1/2 6 q 6 N−φ for
some (small) constant φ > 0. Whenever (3.1) holds, we say that X has support q.

Next we introduce a convenient self-adjoint linearization trick, which has been proved
to be useful in studying the local laws of random matrices of the Gram type [1, 2, 37, 64].
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We define the following (n + N) × (n + N) self-adjoint block matrix, which is a linear
function of X:

H ≡ H(X) :=

(
0 Σ1/2U∗XV Σ̃1/2

Σ̃1/2V ∗X∗UΣ1/2 0

)
. (3.2)

Then we define its resolvent (Green’s function) as

G ≡ G(X, z) :=

[
H(X)−

(
In×n 0

0 zIN×N

)]−1

, z ∈ C+. (3.3)

By Schur complement formula, we can verify that (recall (2.7))

G =

(
zG1 G1Σ1/2U∗XV Σ̃1/2

Σ̃1/2V ∗X∗UΣ1/2G1 G2

)

=

(
zG1 Σ1/2U∗XV Σ̃1/2G2

G2Σ̃1/2V ∗X∗UΣ1/2 G2

)
.

(3.4)

Thus a control of G yields directly a control of the resolvents G1,2. For simplicity of
notations, we define the index sets

I1 := {1, ..., n}, I2 := {n+ 1, ..., n+N}, I := I1 ∪ I2.

Then we label the indices of the matrices according to

X = (Xiµ : i ∈ I1, µ ∈ I2), A = (Aij : i, j ∈ I1), B = (Bµν : µ, ν ∈ I2).

In the rest of this paper, we will consistently use the latin letters i, j ∈ I1, greek letters
µ, ν ∈ I2, and a, b ∈ I.

Next we introduce the spectral decomposition of G. Let

Σ1/2U∗XV Σ̃1/2 =

n∧N∑
k=1

√
λkξkζ

∗
k ,

be a singular value decomposition of Σ1/2U∗XV Σ̃1/2, where

λ1 > λ2 > . . . > λn∧N > 0 = λn∧N+1 = . . . = λn∨N ,

{ξk}nk=1 are the left-singular vectors, and {ζk}Nk=1 are the right-singular vectors. Then
using (3.4), we can get that for i, j ∈ I1 and µ, ν ∈ I2,

Gij =

n∑
k=1

zξk(i)ξ∗k(j)

λk − z
, Gµν =

N∑
k=1

ζk(µ)ζ∗k(ν)

λk − z
, (3.5)

Giµ =

n∧N∑
k=1

√
λkξk(i)ζ∗k(µ)

λk − z
, Gµi =

n∧N∑
k=1

√
λkζk(µ)ξ∗k(i)

λk − z
. (3.6)

3.2 Main tools

For any constants c0, C0 > 0 and ω 6 1, we define a domain of the spectral parameter
z as

S(c0, C0, ω) :=
{
z = E + iη : λ+ − c0 6 E 6 C0λ+, N

−1+ω 6 η 6 1
}
. (3.7)

In particular, we shall denote

S(c0, C0,−∞) := {z = E + iη : λ+ − c0 6 E 6 C0λ+, 0 6 η 6 1} . (3.8)
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We define the distance to the rightmost edge as

κ ≡ κE := |E − λ+| for z = E + iη. (3.9)

Then we have the following lemma, which summarizes some basic properties of m1,2c

and ρ1,2c.

Lemma 3.4. Suppose the assumptions (2.2), (2.5) and (2.18) hold. Then there exists
sufficiently small constant c̃ > 0 such that the following estimates hold:

(1)
ρ1,2c(x) ∼

√
λ+ − x, for x ∈ [λ+ − 2c̃, λ+] ; (3.10)

(2) for z = E + iη ∈ S(c̃, C0,−∞),

|m1,2c(z)| ∼ 1, Imm1,2c(z) ∼

{
η/
√
κ+ η, if E > λ+√

κ+ η, if E 6 λ+

; (3.11)

(3) there exists constant τ ′ > 0 such that

min
µ∈I2

|1 +m1c(z)σ̃µ| > τ ′, min
i∈I1
|1 +m2c(z)σi| > τ ′, (3.12)

for any z ∈ S(c̃, C0,−∞).

The estimates (3.10) and (3.11) also hold for ρc and mc.

Proof. The estimate (3.10) is already given by Lemma 2.6. The estimate (3.11) can be
proved easily with (2.20). It remains to prove (3.12). By assumption (2.18) and the fact
m2c(λ+) ∈ (−σ−1

1 , 0), we have

|1 +m2c(λ+)σi| > τ, i ∈ I1.

With (2.20), we see that if κ+ η 6 2c0 for some sufficiently small constant c0 > 0, then

|1 +m2c(z)σi| > τ/2, i ∈ I1.

Then we consider the case with E > λ+ + c0 and η 6 c1 for some constant c1 > 0. In fact,
for η = 0 and E > λ+, m2c(E) is real and it is easy to verify that m′2c(E) > 0 using the
Stieltjes transform formula

m2c(z) :=

∫
R

ρ2c(dx)

x− z
. (3.13)

Hence we have

1 + σim2c(E) > 1 + σim2c(λ+) > τ, for E > λ+ + c0.

Using (3.13) again, we can get that∣∣∣∣dm2c(z)

dz

∣∣∣∣ 6 c−2
0 , for E > λ+ + c0.

Thus if c1 is sufficiently small, we have

|1 + σim2c(E + iη)| > τ/2, i ∈ I1,

for E > λ+ + c0 and η 6 c1. Finally, it remains to consider the case with η > c1. In this
case, we have |m2c(z)| ∼ Imm2c(z) ∼ 1 by (3.11). For i ∈ I1, if σi 6 |2m2c(z)|−1, then
|1 + σim2c(z)| > 1/2. Otherwise, we have

|1 + σim2c(z)| > σiImm2c(z) >
Imm2c(z)

2|m2c(z)|
& 1.

In sum, we have proved the second estimate in (3.12). The first estimate can be proved
in a similar way.
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Definition 3.5 (Classical locations of eigenvalues). The classical location γj of the j-th
eigenvalue of Q1 is defined as

γj := sup
x

{∫ +∞

x

ρc(x)dx >
j − 1

n

}
. (3.14)

In particular, we have γ1 = λ+.

In the rest of this section, we present some results that will be used in the proof
of Theorem 2.7. Their proofs will be given in subsequent sections. For any matrix X
satisfying Assumption 2.1 and the tail condition (1.1), we can construct a matrix Xs that
approximates X with probability 1 − o(1), and satisfies Assumption 2.1, the bounded
support condition (3.1) with q 6 N−φ for some small constant φ > 0, and

E|xsij |3 = O(N−3/2), E|xsij |4 = O≺(N−2); (3.15)

see Section 4 for the details. We will need the local laws (Theorem 3.6), eigenvalues
rigidity (Theorem 3.8), eigenvector delocalization (Lemma 3.9), and edge universality
(Theorem 3.10) for separable covariance matrices with Xs.

We define the deterministic limit Π of the resolvent G in (3.3) as

Π(z) :=

(
− (1 +m2c(z)Σ)

−1
0

0 −z−1(1 +m1c(z)Σ̃)−1

)
. (3.16)

Note that we have
1

nz

∑
i∈I1

Πii = mc. (3.17)

Define the control parameters

Ψ(z) :=

√
Imm2c(z)

Nη
+

1

Nη
. (3.18)

Note that by (3.11) and (3.12), we have

‖Π‖ = O(1), Ψ & N−1/2, Ψ2 . (Nη)−1, Ψ(z) ∼

√
Imm1c(z)

Nη
+

1

Nη
, (3.19)

for z ∈ S(c̃, C0,−∞). Now we are ready to state the local laws for G(X, z). For the
purpose of proving Theorem 2.7, we shall relax the condition (1.2) a little bit.

Theorem 3.6 (Local laws). Suppose Assumption 2.1 and (2.18) hold. Suppose X satisfies
the bounded support condition (3.1) with q 6 N−φ for some constant φ > 0. Furthermore,
suppose X satisfies (3.15) and∣∣Ex3

ij

∣∣ 6 bNN
−2, 1 6 i 6 n, 1 6 j 6 N, (3.20)

where bN is an N -dependent deterministic parameter satisfying 1 6 bN 6 N1/2. Fix
C0 > 1 and let c0 > 0 be a sufficiently small constant. Given any ε, a > 0, we define the
domain

S̃(c0, C0, a, ε) := S(c0, C0, ε) ∩
{
z = E + iη : bN

(
Ψ2(z) +

q

Nη

)
6 N−a

}
. (3.21)

Then for any constants ε > 0 and a > 0, the following estimates hold.

(1) Anisotropic local law: For any z ∈ S̃(c0, C0, a, ε) and deterministic unit vectors
u,v ∈ CI ,

|〈u, G(X, z)v〉 − 〈u,Π(z)v〉| ≺ q + Ψ(z). (3.22)
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(2) Averaged local law: For any z ∈ S̃(c0, C0, a, ε), we have

|m(z)−mc(z)| ≺ q2 + (Nη)−1, (3.23)

where m is defined in (2.8). Moreover, outside of the spectrum we have the
following stronger estimate

|m(z)−mc(z)| ≺ q2 +
N−a/2

Nη
+

1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

, (3.24)

uniformly in z ∈ S̃(c0, C0, a, ε) ∩ {z = E + iη : E > λ+, Nη
√
κ+ η > Nε}, where κ is

defined in (3.9).

The above estimates are uniform in the spectral parameter z and any set of deterministic
vectors of cardinality NO(1). If A or B is diagonal, then (3.22) and (3.23) hold for z ∈
S(c0, C0, ε), and (3.24) holds for z ∈ S(c0, C0, ε)∩ {z = E + iη : E > λ+, Nη

√
κ+ η > Nε}

without the term N−a/2/(Nη).

The main difficulty for the proof of Theorem 3.6 is due to the fact that the entries of
A1/2XB1/2 are not independent anymore. However, notice that if X ≡ XGauss is i.i.d.
Gaussian, we have

Σ1/2U∗XGaussV Σ̃1/2 d
= Σ1/2XGaussΣ̃1/2.

In this case, the problem is reduced to proving the local laws for separable covariance
matrices with diagonal spatial and temporal covariance matrices, which can be handled
using the standard resolvent methods as in e.g. [8, 53]. To go from the Gaussian case
to the general X case, we adopt a continuous self-consistent comparison argument
developed in [37]. In order for this argument to work, we need to assume (1.2). The
main reason is that we need to match the third moment of xij with that of the Gaussian
random variables in the derivation of equation (6.26) below. Under the weaker condition
(3.20), we cannot prove the local laws up to the optimal scale η � N−1, but only up to
the scale η � max{ qbNN ,

√
bN
N } near the edge. However, to prove the edge universality,

we only need to have a good local law up to the scale η 6 N−2/3−ε, hence bN can take
values up to bN � N1/3. (Actually in the proof of Theorem 2.7 in Section 4, we will take
bN = N−ε for some small constant ε > 0; see (4.4) below for the estimate on bN that is
obtained from (1.2).) Finally, if A or B is diagonal, one can prove the local laws up to the
optimal scale for all bN = O(N1/2) by using an improved comparison argument in [37].

Following the above discussions, we divide the proof of Theorem 3.6 into two
steps. In Section 5, we give the proof for separable covariance matrices of the form
Σ1/2XΣ̃X∗Σ1/2, which implies the local laws in the Gaussian X case. In Section 6, we
apply the self-consistent comparison argument in [37] to extend the result to the general
X case. Compared with [37], there are two differences in our setting: (1) the support of
X in Theorem 3.6 is q = O(N−φ) for some constant 0 < φ 6 1/2, while [37] only dealt
with X with small support q = O(N−1/2); (2) one has B = I in [37], which simplifies the
proof.

The second moment of the error 〈u, (G−Π)v〉 in fact satisfies a stronger bound.

Lemma 3.7. Suppose the assumptions in Theorem 3.6 hold. Then for any fixed ε, a > 0

and z ∈ S̃(c0, C0, a, ε), we have the following bound

E|〈u, G(X, z)v〉 − 〈u,Π(z)v〉|2 ≺ Ψ2(z), (3.25)

for any deterministic unit vectors u,v ∈ CI .
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With Theorem 3.6 as a key input, we can prove a stronger estimate on m(z) that
is independent of q. This averaged local law implies the rigidity of eigenvalues for Q1.
Note that for any fixed E, Ψ2(E + iη) + q/(Nη) is monotonically decreasing with respect
to η, hence there is a unique η1(E) such that

bN

(
Ψ2(E + iη1(E)) +

q

Nη1(E)

)
= 1.

Then we define ηl(E) := maxE6x6λ+
η1(x) (“l” for lower bound) for E 6 λ+, and ηl(E) :=

ηl(λ+) for E > λ+. Note that by (3.18), we always have ηl(E) = O(bN/N).

Theorem 3.8 (Rigidity of eigenvalues). Suppose the assumptions in Theorem 3.6 hold.
Fix the constants c0 and C0 as given in Theorem 3.6. Then for any fixed ε, a > 0, we have

|m(z)−mc(z)| ≺ (Nη)−1, (3.26)

uniformly in z ∈ S̃(c0, C0, a, ε). Moreover, outside of the spectrum we have the following
stronger estimate

|m(z)−mc(z)| ≺
N−a/2

Nη
+

1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

, (3.27)

uniformly in z ∈ S̃(c0, C0, a, ε) ∩ {z = E + iη : E > λ+, Nη
√
κ+ η > Nε} for any fixed

ε > 0. If A or B is diagonal, then (3.26) holds for z ∈ S(c0, C0, ε) and (3.27) holds for
z ∈ S(c0, C0, ε) ∩ {z = E + iη : E > λ+, Nη

√
κ+ η > Nε} without the term N−a/2/(Nη).

The bounds (3.26) and (3.27) imply that for any constant 0 < c1 < c0, the following
estimates hold.

(1) For any E > λ+ − c1, we have

|n(E)− nc(E)| ≺ N−1 + (ηl(E))3/2 + ηl(E)
√
κE , (3.28)

where κE is defined in (3.9), and

n(E) :=
1

N
#{λj > E}, nc(E) :=

∫ +∞

E

ρ2c(x)dx. (3.29)

(2) If bN 6 N1/3−c for some constant c > 0, then for any j such that λ+ − c1 6 γj 6 λ+,
we have

|λj − γj | ≺ j−1/3N−2/3 + η0, (3.30)

where η0 := ηl(λ+ − c1) = O(bN/N).

The anisotropic local law (3.22) implies the following delocalization properties of
eigenvectors.

Lemma 3.9 (Isotropic delocalization of eigenvectors). Suppose (3.22) and (3.30) hold.
Then for any deterministic unit vectors u ∈ CI1 , v ∈ CI2 and constant 0 < c1 < c0, we
have

max
k:λ+−c16γk6λ+

{
|〈u, ξk〉|2 + |〈v, ζk〉|2

}
≺ η0, (3.31)

where η0 is defined below (3.30).

Proof. Choose z0 = E + iNεη0 ∈ S̃(c0, C0, a, ε). By (3.22) and (3.19), we have
Im〈v, G(z0)v〉 = O(1) with high probability. Then using the spectral decomposition
(3.5), we get

N∑
k=1

Nεη0|〈v, ζk〉|2

(λk − E)2 +N2εη2
0

= Im 〈v, G(z0)v〉 = O(1) with high probability. (3.32)
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By (3.30), we have that λk + iNεη0 ∈ S̃(c0, C0, a, ε) with high probability for every k such
that λ+ − c1 6 γk 6 λ+. Then choosing E = λk in (3.32) yields that

|〈v, ζk〉|2 . Nεη0 with high probability.

Since ε is arbitrary, we get |〈v, ζk〉|2 ≺ η0. In a similar way, we can prove |〈u, ξk〉|2 ≺
η0.

Finally, we have the following edge universality result for separable covariance
matrices with support q 6 N−φ and satisfying the condition (3.15).

Theorem 3.10. Let X(1) and X(2) be two separable covariance matrices satisfying the
assumptions in Theorem 3.6. Suppose bN 6 N1/3−c for some constant c > 0. Then there
exist constants ε, δ > 0 such that for any s ∈ R,

P(1)
(
N2/3(λ1 − λ+) 6 s−N−ε

)
−N−δ 6 P(2)

(
N2/3(λ1 − λ+) 6 s

)
6 P(1)

(
N2/3(λ1 − λ+) 6 s+N−ε

)
+N−δ,

(3.33)

where P(1) and P(2) denote the laws of X(1) and X(2), respectively.

Remark 3.11. As in [20, 24, 40], Theorem 3.10 can be can be generalized to finite
correlation functions of the k largest eigenvalues for any fixed k:

P(1)

((
N2/3(λi − λ+) 6 si −N−ε

)
16i6k

)
−N−δ 6 P(2)

((
N2/3(λi − λ+) 6 si

)
16i6k

)
6 P(1)

((
N2/3(λi − λ+) 6 si +N−ε

)
16i6k

)
+N−δ. (3.34)

The proof of (3.34) is similar to that of (3.33) except that it uses a general form of the
Green function comparison theorem; see e.g. [24, Theorem 6.4]. As a corollary, we can
get the stronger edge universality result (2.23).

The proofs for Lemma 3.7, Theorem 3.8 and Theorem 3.10 follow essentially the same
path as discussed below. First, for random matrix X̃ with small suppoort q = O(N−1/2),
we have the averaged local laws (3.26)-(3.27) and the following anisotropic local law∣∣∣〈u, G(X̃, z)v〉 − 〈u,Π(z)v〉

∣∣∣ ≺ Ψ(z).

With these estimates, one can prove that Lemma 3.7, Theorem 3.8 and Theorem 3.10
hold in the small support case using the methods in e.g. [20, 24, 53]. Then it suffices to
use a comparison argument to show that the large support case is “sufficiently close”
to the small support case. In fact, given any matrix X satisfying the assumptions in
Theorem 3.6, we can construct a matrix X̃ having the same first four moments as X but
with smaller support q = O(N−1/2), which is the content of the next lemma.

Lemma 3.12 (Lemma 5.1 in [40]). Suppose X satisfies the assumptions in Theorem 3.6.
Then there exists another matrix X̃ = (x̃ij), such that X̃ satisfies the bounded support

condition (3.1) with q = N−1/2, and the first four moments of the X entries and X̃ entries
match, i.e.

Exkij = Ex̃kij , k = 1, 2, 3, 4. (3.35)

It is known that the Lindeberg replacement strategy combined with the four moment
matching usually implies some universality results in random matrix theory, see e.g.
[55, 56, 57]. This is actually also true in our case. We shall extend the Green function
comparison method developed in [40] (which is essentially an iterative application of
the Lindeberg strategy using the four moment matching), and prove that Lemma 3.7,
Theorem 3.8 and Theorem 3.10 also hold for the large support case. The proofs are
given in Section 7.
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4 Proof of of Theorem 2.7

In this section, we prove Theorem 2.7 with the results in Section 3.2. Given the
matrix X satisfying Assumption 2.1 and the tail condition (1.1), we introduce a cutoff on
its matrix entries at the level N−ε. For any fixed ε > 0, define

αN := P
(
|q11| > N1/2−ε

)
, βN := E

[
1
(
|q11| > N1/2−ε

)
q11

]
.

By (1.1) and integration by parts, we get that for any fixed δ > 0 and large enough N ,

αN 6 δN−2+4ε, |βN | 6 δN−3/2+3ε. (4.1)

Let ρ(dx) be the law of q11. Then we define independent random variables qsij , q
l
ij , cij ,

1 6 i 6 n and 1 6 j 6 N , in the following ways.

• qsij has law ρs, which is defined such that

ρs(E) =
1

1− αN

∫
1

(
x+

βN
1− αN

∈ E
)
1
(
|x| 6 N1/2−ε

)
ρ(dx)

for any event E . Note that if q11 has density ρ(x), then the density for qs11 is

ρs(x) = 1

(∣∣∣∣x− βN
1− αN

∣∣∣∣ 6 N1/2−ε
) ρ

(
x− βN

1−αN

)
1− αN

.

• qlij has law ρl, such that

ρl(E) =
1

αN

∫
1

(
x+

βN
1− αN

∈ E
)
1
(
|x| > N1/2−ε

)
ρ(dx)

for any event E .

• cij is a Bernoulli 0-1 random variable with P(cij = 1) = αN and P(cij = 0) = 1−αN .

Let Xs, X l and Xc be random matrices such that Xs
ij = N−1/2qsij , X

l
ij = N−1/2qlij and

Xc
ij = cij . It is easy to check that for independent Xs, X l and Xc,

Xij
d
= Xs

ij

(
1−Xc

ij

)
+X l

ijX
c
ij −

1√
N

βN
1− αN

. (4.2)

The purpose of this decomposition (in distribution) is to write X into a well-behaved
random matrix Xs with bounded support q = O(N−ε) plus a perturbation matrix (X l −
Xs)Xc. Here the matrix Xc gives the locations of the nonzero entries of the perturbation
matrix, and its rank is at most N5ε with high probability; see (4.6) below. The matrix
X l contains the “abnormal” large entries above the cutoff, but the tail condition (1.1)
guarantees that the sizes of these entries are of order o(1) in probability; see (4.9).
Hence the perturbation (X l −Xs)Xc is of low rank and has small strengths. Then as in
the famous BBP transition [4], we will show that the effect of this perturbation on the
largest eigenvalue is negligible.

If we define the n×N matrix Y = (Yij) by

Yij =
1√
N

βN
1− αN

= O(δN−2+3ε), 1 6 i 6 n, 1 6 j 6 N,

then we have ‖Y ‖ = O(N−1+3ε). In the proof below, one will see that (recall (2.6))∥∥∥Σ1/2U∗(X + Y )V Σ̃1/2
∥∥∥ = λ

1/2
1

(
Q̃1(X + Y )

)
= O(1)
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with probability 1− o(1). Thus with probability 1− o(1), we have∣∣∣λ1

(
Q̃1(X + Y )

)
− λ1

(
Q̃1(X)

)∣∣∣ = O
(
N−1+3ε

)
. (4.3)

Hence the deterministic part in (4.2) is negligible under the scaling N2/3.
By (1.1), (1.2) and integration by parts, it is easy to check that

Eqs11 = 0, E|qs11|2 = 1−O(N−1+2ε),

E|qs11|3 = O(1), E(qs11)3 = O(N−1/2+ε), E|qs11|4 = O(logN).
(4.4)

Note that this is the only place where (1.2) is used in order to get the estimate on E(qs11)3.
For the reason why this estimate is needed, we refer the reader to the discussion below
Theorem 3.6. Thus X1 := (E|qs11|2)−1/2Xs is a matrix that satisfies the assumptions for
X in Theorem 3.6 with bN = O(Nε) and q = O(N−ε). Then by Theorem 3.10, there exist
constants ε′, δ′ > 0 such that for any s ∈ R,

PG
(
N2/3(λ1 − λ+) 6 s−N−ε

′
)
−N−δ

′
6 Ps

(
N2/3(λ1 − λ+) 6 s

)
6 PG

(
N2/3(λ1 − λ+) 6 s+N−ε

′
)

+N−δ
′
,

(4.5)

where Ps denotes the law for Xs and PG denotes the law for i.i.d. Gaussian matrix. Now
we write the first two terms on the right-hand side of (4.2) as

Xs
ij(1−Xc

ij) +X l
ijX

c
ij = Xs

ij +RijX
c
ij , Rij := X l

ij −Xs
ij .

We define the matrix Rc := (RijX
c
ij). It remains to show that the effect of Rc on λ1 is

negligible. Note that Xc
ij is independent of Xs

ij and Rij .

We first introduce a cutoff on matrix Xc as X̃c := 1AX
c, where

A :=
{

#{(i, j) : Xc
ij = 1} 6 N5ε

}
∩
{
Xc
ij = Xc

kl = 1⇒{i, j} = {k, l} or {i, j} ∩ {k, l} = ∅
}
.

If we regard the matrix Xc as a sequence Xc of nN i.i.d. Bernoulli random variables, it
is easy to obtain from the large deviation formula that

P

(
nN∑
i=1

Xc
i 6 N5ε

)
> 1− exp(−Nε), (4.6)

for sufficiently large N . Suppose the number n0 of the nonzero elements in Xc is given
with n0 6 N5ε. Then it is easy to check that

P

(
∃ i = k, j 6= l or i 6= k, j = l such that Xc

ij = Xc
kl = 1

∣∣∣∣∣
nN∑
i=1

Xc
i = n0

)
= O(n2

0N
−1).

(4.7)

Combining the estimates (4.6) and (4.7), we get that

P(A ) > 1−O(N−1+10ε). (4.8)

On the other hand, by condition (1.1), we have

P (|Rij | > ω) 6 P
(
|qij | >

ω

2
N1/2

)
= o(N−2), (4.9)

for any fixed constant ω > 0. Hence if we introduce the matrix

E = 1

(
A ∩

{
max
i,j
|Rij | 6 ω

})
Rc,
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then we have
P(E = Rc) = 1− o(1) (4.10)

by (4.8) and (4.9). Thus we only need to study the largest eigenvalue of Q̃1(Xs + E),
where maxi,j |Eij | 6 ω and rank(E) 6 N5ε. In fact, it suffices to prove that

P
(∣∣λs1 − λE1 ∣∣ 6 N−3/4

)
= 1− o(1), (4.11)

where
λs1 := λ1

(
Q̃1(Xs)

)
, λE1 := λ1

(
Q̃1(Xs + E)

)
.

The estimate (4.11), combined with (4.3), (4.5) and (4.10), concludes (2.21).
Now we prove (4.11). Since X̃c is independent of Xs, the positions of the nonzero

elements of X̃c are independent of Xs. Without loss of generality, we assume the
positions of the n0 nonzero entries of X̃c are (1, 1), (2, 2), · · · , (n0, n0), which correspond
to the following entries of E:

e11, e22, · · · , en0n0
, n0 6 N5ε. (4.12)

For other choices of the positions of nonzero entries, the proof is exactly the same, but
we make this assumption to simplify the notations. By the definition of E, we have
|eii| 6 ω, 1 6 i 6 n0. We define the matrices

Hs :=

(
0 Σ1/2U∗XsV Σ̃1/2

(Σ1/2U∗XsV Σ̃1/2)∗ 0

)

and HE := Hs + P , where

P : =

(
0 Σ1/2U∗EV Σ̃1/2

(Σ1/2U∗EV Σ̃1/2)∗ 0

)

=

(
Σ1/2U∗ 0

0 Σ̃1/2V ∗

)(
0 E

E∗ 0

)(
UΣ1/2 0

0 V Σ̃1/2

)
=

(
Σ1/2U∗ 0

0 Σ̃1/2V ∗

)
WPDW

∗
(
UΣ1/2 0

0 V Σ̃1/2

)
,

where PD is a 2n0 × 2n0 diagonal matrix

PD = diag (e11, . . . , en0n0 ,−e11, . . . ,−en0n0) ,

and W is an (n+N)× 2n0 matrix such that

Wab =

{
δa,i/
√

2 + δa,(n+i)/
√

2, b = i, i 6 n0

δa,i/
√

2− δa,(n+i)/
√

2, b = i+ n0, i 6 n0

.

Without loss of generality, we assume that eii 6= 0, 1 6 i 6 n0 (otherwise we only need to
use a matrix W with smaller rank). With the identity

det

(
−In×n Σ1/2U∗XV Σ̃1/2

(Σ1/2U∗XV Σ̃1/2)∗ −zIN×N

)
= (−1)NzN−n det

(
Q̃1(X)− zIn×n

)
,

and Lemma 6.1 of [36], we find that if µ /∈ σ(Q̃1(Xs)), then µ is an eigenvalue of
Q̃1(Xs + γE) if and only if

det
(
O∗Gs(µ)O + (γPD)−1

)
= 0, 0 < γ < 1, (4.13)
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where

Gs(µ) :=

(
Hs −

(
In×n 0

0 µIN×N

))−1

, O :=

(
Σ1/2U∗ 0

0 Σ̃1/2V ∗

)
W.

Define Rγ := O∗GsO + (γPD)−1 for 0 < γ < 1, and let µ := λs1 ±N−3/4. We claim that

P (detRγ(µ) 6= 0 for all 0 < γ 6 1) = 1− o(1). (4.14)

If (4.14) holds, then µ is not an eigenvalue of Q̃1(X + γE) with probability 1 − o(1).
Denote the largest eigenvalue of Q̃1(X+γE) by λγ1 , 0 < γ 6 1, and define λ0

1 := limγ↓0 λ
γ
1 .

Then we have λ0
1 = λs1 and λ1

1 = λE1 . With the continuity of λγ1 with respect to γ and the
fact that λ0

1 ∈ (λs1 −N−3/4, λs1 +N−3/4), we find that

λE1 = λ1
1 ∈ (λs1 −N−3/4, λs1 +N−3/4),

with probability 1− o(1), which proves (4.11).

Finally, we prove (4.14). Note that η0 = O(bN/N) = O(N−1+ε), hence z = λ+ +iN−2/3

is in S̃(c0, C0, δ, δ) for a small constant δ > 0. Now we write

Rγ(µ) = O∗ (Gs(µ)−Gs(z))O +O∗ (Gs(z)−Π(z))O +O∗Π(z)O + (γPD)−1. (4.15)

With (3.19), we have

‖O∗Π(z)O‖ = O(1) (4.16)

By Lemma 3.7, we have

E |[O∗ (Gs(z)−Π(z))O]ab|
2 ≺ Ψ2(z) = O(N−2/3), 1 6 a, b 6 2m,

where we used (3.11) and (3.18) in the second step. Then with Markov’s inequality and
a union bound, we can get that

max
16a,b62n0

|[O∗ (Gs(z)−Π(z))O]ab| 6 N−1/6 (4.17)

holds with probability 1−O(n0N
−1/3). Thus we have

‖O∗ (Gs(z)−Π(z))O‖ = O(n0N
−1/6) = O(1) with probability 1−O(n0N

−1/3). (4.18)

It remains to bound the first term in (4.15). As pointed out in Remark 3.11, we can
extend (4.5) to the finite correlation functions of the largest eigenvalues. Since the
largest eigenvalues in the Gaussian case are separated in the scale N−2/3, we conclude
that

P
(

min
i
|λi(Q̃1(Xs))− µ| > N−3/4

)
= 1− o(1). (4.19)

On the other hand, the rigidity result (3.30) gives that

|µ− λ+| ≺ N−2/3. (4.20)

Using (3.31), (4.19), (4.20) and the rigidity estimate (3.30), we can get that for any set Ω

of deterministic unit vectors of cardinality NO(1),

sup
u,v∈Ω

|〈u, (Gs(z)−Gs(µ))v〉| 6 N−1/4+3ε (4.21)
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with probability 1− o(1). For instance, for deterministic unit vectors u,v ∈ CI2 and any
constant 0 < c 6 ε, we have with probability 1− o(1) that

|〈u, (Gs(z)−Gs(µ))v〉| 6
∑
k

|〈u, ζk〉〈v, ζk〉|
∣∣∣∣ 1

λk − z
− 1

λk − µ

∣∣∣∣
≺ 1

N2/3

∑
γk6λ+−c1

|〈u, ζk〉〈v, ζk〉|+
Nε

N5/3

∑
γk>λ+−c1

1

|λk − z||λk − µ|

6
1

N2/3
+

Nε

N5/3

∑
16k6Nc

1

|λk − z||λk − µ|
+

Nε

N5/3

∑
k>Nc,γk>λ+−c1

1

|λk − z||λk − µ|

≺ 1

N2/3
+
N c+ε

N1/4
+

Nε

N2/3

 1

N

∑
k>Nc,γk>λ+−c1

1

|λk − z||λk − µ|

 ≺ N−1/4+c+ε,

where in the first step we used (3.5), in the second step (3.31) (with η0 = O(N−1+ε)) and
|λk − z||λk − µ| & 1 for γk 6 λ+ − c1 due to (3.30), in the third step the Cauchy-Schwarz
inequality, in the fourth step (4.19), and in the last step |λk − z||λk − µ| ∼ (k/N)−4/3 for
k > N c by the rigidity estimate (3.30). For the other choices of deterministic unit vectors
u,v ∈ CI1,2 , we can prove (4.21) in a similar way. Now with (4.21), we can get that

‖O∗ (Gs(µ)−Gs(z))O‖ = O(n0N
−1/4+3ε) with probability 1− o(1). (4.22)

With (4.16), (4.18) and (4.22), we see that as long as ω is chosen to be sufficiently small,
we have

‖O∗ (Gs(µ)−Gs(z))O +O∗ (Gs(z)−Π(z))O +O∗Π(z)O‖ < (γω)−1

for all 0 < γ 6 1 with probability 1 − o(1). This proves the claim (4.14), which further
gives (4.11) and completes the proof.

5 Proof of Theorem 3.6: Gaussian X

As discussed below Theorem 3.6, in this section we prove Theorem 3.6 for separable
covariance matrices of the form Σ1/2XΣ̃X∗Σ1/2, which will imply the local laws in the
Gaussian X case. Thus in this section, we use the following resolvent:

G(X, z)=

[(
0 Σ1/2XΣ̃1/2

Σ̃1/2X∗Σ1/2 0

)
−
(
In×n 0

0 zIN×N

)]−1

, (5.1)

with X satisfying (3.1) with q = N−1/2. More precisely, we will prove the following
result.

Proposition 5.1. Suppose Assumption 2.1 and (2.18) hold. Suppose X satisfies the
bounded support condition (3.1) with q = N−1/2. Suppose A and B are diagonal, i.e.
U = In×n and V = IN×N . Fix C0 > 1 and let c0 > 0 be a sufficiently small constant. Then
for any fixed ε > 0, the following estimates hold.

(1) Anisotropic local law: For any z ∈ S(c0, C0, ε) and deterministic unit vectors
u,v ∈ CI ,

|〈u, G(X, z)v〉 − 〈u,Π(z)v〉| ≺ Ψ(z). (5.2)

(2) Averaged local law: We have

|m(z)−mc(z)| ≺ (Nη)−1 (5.3)

EJP 24 (2019), paper 123.
Page 23/57

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP381
http://www.imstat.org/ejp/


Edge universality of separable covariance matrices

for any z ∈ S(c0, C0, ε), and

|m(z)−mc(z)| ≺
1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

, (5.4)

for any z ∈ S(c0, C0, ε) ∩ {z = E + iη : E > λ+, Nη
√
κ+ η > Nε}.

Both of the above estimates are uniform in the spectral parameter z and the deterministic
vectors u,v.

Under a different set of assumptions, the local law as in Proposition 5.1 has been
proved in [1]. However, in order to satisfy their assumptions in our setting, we need
to assume that the eigenvalues of A and B are both upper and lower bounded by some
constants τ 6 σi, σ̃i 6 τ−1, which rules out the possibility of zero or very small (that is,
o(1)) eigenvalues of A and B. On the other hand, our assumptions in (2.5) and (2.18) are
slightly more general, and allow for a large portion of small or zero eigenvalues of A and
B. For reader’s convenience, we shall give the proof of Proposition 5.1 in our setting.
This proof is similar to the previous proof of the local laws, such as [8, 14, 37, 64]. Thus
instead of giving all the details, we only describe briefly the proof. In particular, we shall
focus on the key self-consistent equation argument, which is (almost) the only part that
departs significantly from the previous proof in e.g. [8]. In the proof, we always denote
the spectral parameter by z = E + iη.

5.1 Basic tools

In this subsection, we collect some basic tools that will be used. For simplicity, we
denote Y := Σ1/2XΣ̃1/2.

Definition 5.2 (Minors). For any (n+N)× (n+N) matrix A and T ⊆ I, we define the
minor A(T) := (Aab : a, b ∈ I \T) as the (n+N − |T|)× (n+N − |T|) matrix obtained by
removing all rows and columns indexed by T. Note that we keep the names of indices
when defining A(T), i.e. (A(T))ab = Aab for a, b /∈ T. Correspondingly, we define the
resolvent minor as

G(T) : =

[(
H −

(
In×n 0

0 zIN×N

))(T)
]−1

=

(
zG(T)

1 G(T)
1 Y (T)(

Y (T)
)∗ G(T)

1 G(T)
2

)
=

(
zG(T)

1 Y (T)G(T)
2

G(T)
2

(
Y (T)

)∗ G(T)
2

)
,

and the partial traces

m
(T)
1 :=

1

Nz

∑
i/∈T

σiG
(T)
ii , m

(T)
2 :=

1

N

∑
µ/∈T

σ̃µG
(T)
µµ .

For convenience, we will adopt the convention that for any minor A(T ) defined as
above, A(T )

ab = 0 if a ∈ T or b ∈ T. We will abbreviate ({a}) ≡ (a), ({a, b}) ≡ (ab), and∑(T)
a :=

∑
a/∈T.

Lemma 5.3. (Resolvent identities).

(i) For i ∈ I1 and µ ∈ I2, we have

1

Gii
= −1−

(
Y G(i)Y ∗

)
ii
,

1

Gµµ
= −z −

(
Y ∗G(µ)Y

)
µµ
. (5.5)
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(ii) For i 6= j ∈ I1 and µ 6= ν ∈ I2, we have

Gij = GiiG
(i)
jj

(
Y G(ij)Y ∗

)
ij
, Gµν = GµµG

(µ)
νν

(
Y ∗G(µν)Y

)
µν
. (5.6)

For i ∈ I1 and µ ∈ I2, we have

Giµ = GiiG
(i)
µµ

(
−Yiµ +

(
Y G(iµ)Y

)
iµ

)
,

Gµi = GµµG
(µ)
ii

(
−Y ∗µi +

(
Y ∗G(µi)Y ∗

)
µi

)
.

(5.7)

(iii) For a ∈ I and b, c ∈ I \ {a},

Gbc = G
(a)
bc +

GbaGac
Gaa

,
1

Gbb
=

1

G
(a)
bb

− GbaGab

GbbG
(a)
bb Gaa

. (5.8)

(iv) All of the above identities hold for G(T) instead of G for T ⊂ I, and in the case
where A and B are not diagonal.

Proof. All these identities can be proved using Schur’s complement formula. The reader
can refer to, for example, [37, Lemma 4.4].

Lemma 5.4. Fix constants c0, C0 > 0. The following estimates hold uniformly for all
z ∈ S(c0, C0, a) for any a ∈ R:

‖G‖ 6 Cη−1, ‖∂zG‖ 6 Cη−2. (5.9)

Furthermore, we have the following identities:

∑
i∈I1

|Gji|2 =
∑
i∈I1

|Gij |2 =
|z|2

η
Im

(
Gjj
z

)
, (5.10)

∑
µ∈I2

|Gνµ|2 =
∑
µ∈I2

|Gµν |2 =
ImGνν
η

, (5.11)

∑
i∈I1

|Gµi|2 =
∑
i∈I1

|Giµ|2 = Gµµ +
z̄

η
ImGµµ, (5.12)

∑
µ∈I2

|Giµ|2 =
∑
µ∈I2

|Gµi|2 =
Gii
z

+
z̄

η
Im

(
Gii
z

)
. (5.13)

All of the above estimates remain true for G(T) instead of G for any T ⊆ I, and in the
case where A and B are not diagonal.

Proof. These estimates and identities can be proved through simple calculations with
(3.4), (3.5) and (3.6). We refer the reader to [37, Lemma 4.6] and [64, Lemma 3.5].

Lemma 5.5. Fix constants c0, C0 > 0. For any T ⊆ I and a ∈ R, the following bounds
hold uniformly in z ∈ S(c0, C0, a):

∣∣m1 −m(T)
1

∣∣+
∣∣m2 −m(T)

2

∣∣ 6 C |T|
Nη

, (5.14)

where C > 0 is a constant depending only on τ .
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Proof. For µ ∈ I2, we have∣∣∣m2 −m(µ)
2

∣∣∣ =
1

N

∣∣∣∣∣∑
ν∈I2

σ̃ν
GνµGµν
Gµµ

∣∣∣∣∣ 6 C

N |Gµµ|
∑
ν∈I2

|Gνµ|2 =
CImGµµ
Nη|Gµµ|

6
C

Nη
,

where in the first step we used (5.8), and in the second and third steps we used (5.11).
Similarly, using (5.8) and (5.12) we get∣∣∣m2 −m(i)

2

∣∣∣ =
1

N

∣∣∣∣∣∑
ν∈I2

σ̃ν
GνiGiν
Gii

∣∣∣∣∣ 6 C

N |Gii|

(
Gii
z

+
z̄

η
Im

(
Gii
z

))
6

C

Nη
.

Similarly, we can prove the same bounds for m1. Then (5.14) can be proved by induction
on the indices in T.

The following lemma gives large deviation bounds for bounded supported random
variables.

Lemma 5.6 (Lemma 3.8 of [23]). Let (xi), (yj) be independent families of centered
and independent random variables, and (Ai), (Bij) be families of deterministic complex
numbers. Suppose the entries xi, yj have variance at most N−1 and satisfy the bounded
support condition (3.1) with q 6 N−ε for some constant ε > 0. Then we have the
following bound: ∣∣∣∑

i

Aixi

∣∣∣ ≺ qmax
i
|Ai|+

1√
N

(∑
i

|Ai|2
)1/2

,

∣∣∣∑
i,j

xiBijyj

∣∣∣ ≺ q2Bd + qBo +
1

N

(∑
i 6=j

|Bij |2
)1/2

,∣∣∣∑
i

x̄iBiixi −
∑
i

(E|xi|2)Bii

∣∣∣ ≺ qBd,∣∣∣∑
i6=j

x̄iBijxj

∣∣∣ ≺ qBo +
1

N

(∑
i6=j

|Bij |2
)1/2

,

where Bd := maxi |Bii| and Bo := maxi 6=j |Bij |.
For the proof of Proposition 5.1, it is convenient to introduce the following random

control parameters.

Definition 5.7 (Control parameters). We define the random errors

Λ := max
a,b∈I

|(G−Π)ab| , Λo := max
a 6=b∈I

|Gab| , θ := |m1 −m1c|+ |m2 −m2c|, (5.15)

and the random control parameter (recall Ψ defined in (3.18))

Ψθ :=

√
Imm2c + θ

Nη
+

1

Nη
. (5.16)

5.2 Entrywise local law

The main goal of this subsection is to prove the following entrywise local law. The
anisotropic local law (5.2) then follows from the entrywise local law combined with a
polynomialization method as we will explain in next subsection.

Proposition 5.8. Suppose the assumptions in Proposition 5.1 hold. Fix C0 > 0 and let
c0 > 0 be a sufficiently small constant. Then for any fixed ε > 0, the following estimate
holds uniformly for z ∈ S(c0, C0, ε):

max
a,b
|Gab(X, z)−Πab(z)| ≺ Ψ(z). (5.17)
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In analogy to [23, Section 3] and [37, Section 5], we introduce the Z variables

Z(T)
a := (1− Ea)

(
G(T)
aa

)−1
, a /∈ T,

where Ea[·] := E[· | H(a)], i.e. it is the partial expectation over the randomness of the
a-th row and column of H. By (5.5), we have

Zi = (Ei − 1)
(
Y G(i)Y ∗

)
ii

= σi
∑

µ,ν∈I2

√
σ̃µσ̃νG

(i)
µν

(
1

N
δµν −XiµXiν

)
, (5.18)

and

Zµ = (Eµ − 1)
(
Y ∗G(µ)Y

)
µµ

= σ̃µ
∑
i,j∈I1

√
σiσjG

(µ)
ij

(
1

N
δij −XiµXjµ

)
. (5.19)

The following lemma plays a key role in the proof of local laws.

Lemma 5.9. Suppose the assumptions in Proposition 5.1 hold. Let c0 > 0 be a suffi-
ciently small constant and fix C0, ε > 0. Define the z-dependent event Ξ(z) := {Λ(z) 6
(logN)−1}. Then there exists constant C > 0 such that the following estimates hold
uniformly for all a ∈ I and z ∈ S(c0, C0, ε):

1(Ξ) (Λo + |Za|) ≺ Ψθ, (5.20)

and

1 (η > 1) (Λo + |Za|) ≺ Ψθ. (5.21)

Proof. Applying Lemma 5.6 to Zi in (5.18), we get that on Ξ,

|Zi| ≺ q +
1

N

(∑
µ,ν

σ̃µ

∣∣∣G(i)
µν

∣∣∣2)1/2

= q +
1

N

(∑
µ

σ̃µ ImG
(i)
µµ

η

)1/2

= q +

√
Imm

(i)
2

Nη
, (5.22)

where we used (2.5), (5.11) and the fact that maxa,b |Gab| = O(1) on event Ξ. Now by
(5.15), (5.16) and the bound (5.14), we have that√

Imm
(i)
2

Nη
=

√
Imm2c + Im(m

(i)
2 −m2) + Im(m2 −m2c)

Nη
6 CΨθ. (5.23)

Together with the fact that q = N−1/2 . Ψθ by (3.19), we get (5.20) for 1(Ξ)|Zi|. Similarly,
we can prove the same estimate for 1(Ξ)|Zµ|, where in the proof we need to use (5.10)
and (3.19). If η > 1, we also have maxa,b |Gab| = O(1) by (5.9). Then repeating the above
proof, we obtain (5.21) for 1(η > 1)|Za|. Similarly, using (5.6) and Lemmas 5.4-5.6, we
can prove that

1(Ξ) (|Gij |+ |Gµν |) + 1(η > 1) (|Gij |+ |Gµν |) ≺ Ψθ. (5.24)

It remains to prove the bounds for Giµ and Gµi entries. Using (5.7), (3.1), the bound
maxa,b |Gab| = O(1) on Ξ, Lemma 5.4 and Lemma 5.6, we get that

|Giµ| ≺ q +
1

N

(iµ)∑
j,ν

σ̃ν

∣∣∣G(iµ)
νj

∣∣∣2
1/2

= q +
1

N

 (µ)∑
ν

σ̃ν

(
G(iµ)
νν +

z̄

η
ImG(iµ)

νν

)1/2

. q +

√
|m(iµ)

2 |
N

+

√
Imm

(iµ)
2

Nη
.
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As in (5.23), we can show that √
Imm

(iµ)
2

Nη
= O(Ψθ). (5.25)

For the other term, we have√
|m(iµ)

2 |
N

6

√
|m2c|+ |m(iµ)

2 −m2|+ |m2 −m2c|
N

.
1

N
√
η

+

√
θ

N
+

√
|m2c|
N

. Ψθ,

(5.26)

where we used (5.14) and |m2c|N−1 = O(Ψ2) by (3.19). With (5.25) and (5.26), we
obtain that 1(Ξ)|Giµ| ≺ Ψθ. Together with (5.24), we get the estimate (5.20) for 1(Ξ)Λo.
Finally, the estimate (5.21) for 1 (η > 1) Λo can be proved in a similar way with the bound
1(η > 1) maxa,b |Gab| = O(1).

A key component of the proof for Proposition 5.8 is an analysis of the self-consistent
equation. Recall the equations in (2.9) and the function f(z, α) in (2.15).

Lemma 5.10. Let c0 > 0 be a sufficiently small constant and fix C0, ε > 0. Then the
following estimates hold uniformly in z ∈ S(c0, C0, ε):

1(η > 1) |f(z,m2)| ≺ N−1/2, 1(η > 1)

∣∣∣∣m1(z)− dN
∫

x

−z [1 + xm2(z)]
π

(n)
A (dx)

∣∣∣∣ ≺ N−1/2,

(5.27)
and

1(Ξ) |f(z,m2)| ≺ Ψθ, 1(Ξ)

∣∣∣∣m1(z)− dN
∫

x

−z [1 + xm2(z)]
π

(n)
A (dx)

∣∣∣∣ ≺ Ψθ, (5.28)

where Ξ is as given in Lemma 5.9. Moreover, we have the finer estimates

1(Ξ) |f(z,m2)| ≺ 1(Ξ) (|[Z]1|+ |[Z]2|) + Ψ2
θ, (5.29)

and

1(Ξ)

∣∣∣∣m1(z)− dN
∫

x

−z [1 + xm2(z)]
π

(n)
A (dx)

∣∣∣∣ ≺ 1(Ξ) |[Z]1|+ Ψ2
θ, (5.30)

where

[Z]1 :=
1

N

∑
i∈I1

σi
(1 + σim2)2

Zi, [Z]2 :=
1

N

∑
µ∈I2

σ̃µ

(1 + σ̃µm1)
2Zµ. (5.31)

Proof. We first prove (5.29) and (5.30), from which (5.28) follows due to (5.20) and
(3.12). By (5.5), (5.18) and (5.19), we have

1

Gii
= −1− σi

N

∑
µ∈I2

σ̃µG
(i)
µµ + Zi = −1− σim2 + εi, (5.32)

and
1

Gµµ
= −z − σ̃µ

N

∑
i∈I1

σiG
(µ)
ii + Zµ = −z − zσ̃µm1 + εµ, (5.33)

where

εi := Zi + σi

(
m2 −m(i)

2

)
and εµ := Zµ + zσ̃µ

(
m1 −m(µ)

1

)
.
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By (5.14) and (5.20), we have for all i and µ,

1(Ξ) (|εi|+ |εµ|) ≺ Ψθ. (5.34)

Moreover, by (5.8) we have

1(Ξ)
(
|m2 −m(i)

2 |+ |m1 −m(µ)
1 |
)

6 1(Ξ)
1

N

∑
ν∈I2

σ̃ν

∣∣∣∣GνiGiνGii

∣∣∣∣+
∑
j∈I1

σj

∣∣∣∣GjµGµjGµµ

∣∣∣∣
 ≺ Ψ2

θ,
(5.35)

where we used (5.20) and |Gii| ∼ |Gµµ| ∼ 1 on Ξ in the second step. Now using (5.32),
(5.34), (5.35), (5.20), (3.12) and the definition of Ξ, we can obtain that

1(Ξ)Gii = 1(Ξ)

[
1

−(1 + σim2)
− Zi

(1 + σim2)
2 +O≺

(
Ψ2
θ

)]
. (5.36)

Taking average 1
Nz

∑
i σi, we get

1(Ξ)m1 = 1(Ξ)

[
1

N

∑
i

σi
−z(1 + σim2)

− z−1[Z]1 +O≺
(
Ψ2
θ

)]
, (5.37)

which proves (5.30). On the other hand, using (5.33), (5.34), (5.35), (5.20), (3.12) and
the definition of Ξ, we obtain that

1(Ξ)Gµµ = 1(Ξ)

[
1

−z(1 + σ̃µm1)
− Zµ

z2 (1 + σ̃µm1)
2 +O≺

(
Ψ2
θ

)]
. (5.38)

Taking average N−1
∑
µ σ̃µ, we get

1(Ξ)m2 = 1(Ξ)

[
1

N

∑
µ

σ̃µ
−z(1 + σ̃µm1)

− z−2[Z]2 +O≺
(
Ψ2
θ

)]
. (5.39)

Plugging (5.37) into (5.39), and using (3.12) and the definition of Ξ, we can obtain that

1(Ξ)m2 = 1(Ξ)

[
1

N

∑
µ

σ̃µ

−z +
σ̃µ
N

∑
i

σi
1+σim2

+O≺
(
|[Z]1|+ |[Z]2|+ Ψ2

θ

)]
. (5.40)

Comparing with (2.15), we have proved (5.29).
Then we prove (5.27). Using the bound 1(η > 1) maxa,b |Gab| = O(1), we trivially have

|m1| + |m2| + θ = O(1). Thus we have 1(η > 1)Ψθ = O(N−1/2). Then (5.14) and (5.21)
together give that

1(η > 1)(|εi|+ |εµ|) ≺ N−1/2. (5.41)

First we claim that in the case η > 1, with high probability,

|m1| > Imm1 > c, |m2| > Imm2 > c, (5.42)

for some constant c > 0. By the spectral decomposition (3.5), we have

ImGii = Im

n∑
k=1

z|ξk(i)|2

λk − z
=

n∑
k=1

|ξk(i)|2Im

(
−1 +

λk
λk − z

)
> 0.

Then applying it to (5.33), G−1
µµ is of order O(1) and has imaginary part 6 −η+O≺

(
N−1/2

)
.

This implies ImGµµ & η with high probability, which gives the second estimate of (5.42)
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by (2.5). Moreover, with (2.5) we also get that Im(1 + σim2) & 1 for i 6 τn. Then with
(5.32) and a similar argument as above, we obtain the first estimate of (5.42). Next, we
claim that in the case η > 1, with high probability,

|1 + σ̃µm1| > c′, |1 + σim2| > c′, (5.43)

for some constant c′ > 0. In fact, if σi 6 |2m2|−1, we trivially have |1 + σim2| > 1/2.
Otherwise, we have

|1 + σim2| >
Imm2

2|m2|
> c′

by (5.42). The first estimate in (5.43) can be proved in the same way. Finally, with (5.41),
(5.42) and (5.43), we can repeat the previous arguments between (5.32) and (5.40) to
get (5.27).

The following lemma gives the stability of the equation f(z, α) = 0. Roughly speaking,
it states that if f(z,m2(z)) is small and m2(z̃) − m2c(z̃) is small for Im z̃ > Im z, then
m2(z)−m2c(z) is small. For an arbitrary z ∈ S(c0, C0, ε), we define the discrete set

L(z) := {z} ∪ {z′ ∈ S(c0, C0, ε) : Re z′ = Re z, Im z′ ∈ [Im z, 1] ∩ (N−10N)}.

Thus, if Im z > 1, then L(z) = {z}; if Im z < 1, then L(z) is a 1-dimensional lattice with
spacing N−10 plus the point z. Obviously, we have |L(z)| 6 N10.

Lemma 5.11. Let c0 > 0 be a sufficiently small constant and fix C0, ε > 0. The self-
consistent equation f(z, α) = 0 is stable on S(c0, C0, ε) in the following sense. Suppose
the z-dependent function δ satisfies N−2 6 δ(z) 6 (logN)−1 for z ∈ S(c0, C0, ε) and
that δ is Lipschitz continuous with Lipschitz constant 6 N2. Suppose moreover that
for each fixed E, the function η 7→ δ(E + iη) is non-increasing for η > 0. Suppose
that u2 : S(c0, C0, ε) → C is the Stieltjes transform of a probability measure. Let
z ∈ S(c0, C0, ε) and suppose that for all z′ ∈ L(z) we have

|f(z′, u2)| 6 δ(z′). (5.44)

Then we have

|u2(z)−m2c(z)| 6
Cδ√

κ+ η + δ
, (5.45)

for some constant C > 0 independent of z and N , where κ is defined in (3.9).

Proof. This lemma can proved with the same method as in e.g. [8, Lemma 4.5] and [37,
Appendix A.2]. The only input is Lemma 2.6.

Note that by Lemma 5.11 and (5.27), we immediately get that

1(η > 1)θ(z) ≺ N−1/2. (5.46)

Then from (5.21), we obtain the off-diagonal estimate

1(η > 1)Λo(z) ≺ N−1/2. (5.47)

Using (5.32), (5.33) and (5.46), we get that

1(η > 1) (|Gii −Πii|+ |Gµµ −Πµµ|) ≺ N−1/2, (5.48)

which gives the diagonal estimate. These bounds can be easily generalized to the case
η > c for any fixed c > 0. Compared with (5.17), one can see that the bounds (5.47) and
(5.48) are optimal for the η > c case. Now it remains to deal with the small η case (in
particular, the local case with η � 1). We first prove the following weak bound.
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Lemma 5.12 (Weak entrywise local law). Let c0 > 0 be a sufficiently small constant and
fix C0, ε > 0. Then we have

Λ(z) ≺ (Nη)−1/4, (5.49)

uniformly in z ∈ S(c0, C0, ε).

Proof. One can prove this lemma using a continuity argument as in e.g. [8, Section 4.1],
[22, Section 5.3] or [23, Section 3.6]. The key inputs are Lemmas 5.9-5.11, and the
estimates (5.46)-(5.48) in the η > 1 case. All the other parts of the proof are essentially
the same.

To get the strong entrywise local law as in (5.17), we need stronger bounds on [Z]1
and [Z]2 in (5.29) and (5.30). They follow from the following fluctuation averaging
lemma.

Lemma 5.13 (Fluctuation averaging). Suppose Φ and Φo are positive, N -dependent
deterministic functions on S(c0, C0, ε) satisfying N−1/2 6 Φ,Φo 6 N−c for some constant
c > 0. Suppose moreover that Λ ≺ Φ and Λo ≺ Φo. Then for all z ∈ S(c0, C0, ε) we have

|[Z]1|+ |[Z]2| ≺ Φ2
o. (5.50)

Proof. We suppose that the event Ξ holds. The bound (5.50) can be proved in a similar
way as [8, Lemma 4.9] and [22, Theorem 4.7]. Take [Z]1 as an example. The only
complication of the proof is that the coefficients σi/(1 + σim2)2 are random and depend
on i. This can be dealt with by writing, for any i ∈ I1,

m2 = m
(i)
2 +

1

N

∑
µ∈I2

σ̃µ
GµiGiµ
Gii

= m
(i)
2 + O(Λ2

o).

Then we write

[Z]1 =
1

N

∑
i∈I1

σi(
1 +m

(i)
2 σi

)2Zi + O(Λ2
o) =

1

N

∑
i∈I1

(1− Ei)

[
σi(

1 +m
(i)
2 σi

)2G−1
ii

]
+ O(Λ2

o)

=
1

N

∑
i∈I1

(1− Ei)

[
σi

(1 +m2σi)
2G
−1
ii

]
+ O(Λ2

o). (5.51)

Now the method to bound the first term in the line (5.51) is only a slight modification of
the one in [8] or [22]. For the proof of an even more complicated fluctuation averaging
lemma, one can also refer to [64, Lemma 4.9]. Finally, we use that Ξ holds with high
probability by Lemma 5.12 to conclude the proof.

Now we give the proof of Proposition 5.8.

Proof of Proposition 5.8. By Lemma 5.12, the event Ξ holds with high probability. Then
by Lemma 5.12 and Lemma 5.9, we can take

Φo =

√
Imm2c + (Nη)−1/4

Nη
+

1

Nη
, Φ =

1

(Nη)1/4
, (5.52)

in Lemma 5.13. Then (5.29) gives

|f(z,m2)| ≺ Imm2c + (Nη)−1/4

Nη
.
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Using Lemma 5.11, we get

|m2 −m2c| ≺
Imm2c

Nη
√
κ+ η

+
1

(Nη)5/8
≺ 1

(Nη)5/8
, (5.53)

where we used Imm2c = O(
√
κ+ η) by (3.11) in the second step. With (5.30) and (5.53),

we get the same bound for m1, which gives

θ ≺ (Nη)−5/8. (5.54)

Then using Lemma 5.9 and (5.54), we obtain that

Λo ≺

√
Imm2c + (Nη)−5/8

Nη
+

1

Nη
(5.55)

uniformly in z ∈ S(c0, C0, ε), which is a better bound than the one in (5.52). Taking the
RHS of (5.55) as the new Φo, we can obtain an even better bound for Λo. Iterating the
above arguments, we get the bound

θ ≺ (Nη)
−

∑l
k=1 2−k−2−l−2

after l iterations. This implies
θ ≺ (Nη)−1 (5.56)

since l can be arbitrarily large. Now with (5.56), Lemma 5.9, (5.36) and (5.38), we can
obtain (5.17).

5.3 Proof of Proposition 5.1

We now can finish the proof of Proposition 5.1 using Proposition 5.8. By (5.36) and
(5.56), we have

m =
1

n

∑
i

1

−z(1 + σim2)
− 1

n

∑
i

Zi

z (1 + σim2)
2 +O≺

(
Ψ2
)
. (5.57)

Using the same method as in Lemma 5.13, we can obtain that∣∣∣∣∣ 1n∑
i

Zi

(1 + σim2)
2

∣∣∣∣∣ ≺ Ψ2.

Together with (2.10), (3.12) and (5.56), we get that

|m−mc| ≺ (Nη)−1 + Ψ2 ≺ (Nη)−1,

where we used (3.19) in the second step. This proves (5.3).
For z ∈ Sout(c0, C0, ε) := S(c0, C0, ε) ∩ {z = E + iη : E > λ+, Nη

√
κ+ η > Nε}, we

have

Ψ2 6 2

[
Imm2c(z)

Nη
+

1

(Nη)2

]
.

1

N
√
κ+ η

+
1

(Nη)2
,

where we used (3.11) in the second step. Thus by (5.57), to prove (5.4), it suffices to
show that

|m2 −m2c| ≺
1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

, z ∈ Sout(c0, C0, ε). (5.58)

In fact, taking Φo = Φ = Ψ in Lemma 5.13 and then using Lemma 5.11, we get that

|m2 −m2c| ≺
Ψ2

√
κ+ η

.
1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

.

This finishes the proof of (5.58), and hence (5.4).
Finally, with (5.17), one can repeat the polynomialization method in [8, Section 5] to

get the anisotropic local law (5.2). The only difference is that one need to use the first
bound in (2.5).

EJP 24 (2019), paper 123.
Page 32/57

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP381
http://www.imstat.org/ejp/


Edge universality of separable covariance matrices

6 Proof of Theorem 3.6: self-consistent comparison

In this section, we finish the proof of Theorem 3.6 for a general X satisfying (3.15),
(3.20) and the bounded support condition (3.1) with q 6 N−φ for some constant φ > 0.
Proposition 5.1 implies that (3.22) holds for GaussianXGauss as discussed below Theorem
3.6. Thus the basic idea of this section is to prove that for X satisfying the assumptions
in Theorem 3.6, 〈

u,
(
G(X, z)−G(XGauss, z)

)
v
〉
≺ q + Ψ(z)

uniformly for deterministic unit vectors u,v ∈ CI and z ∈ S̃(c0, C0, a, ε).
For simplicity of notations, we introduce the following notion of generalized entries.

For v,w ∈ CI and a ∈ I, we shall denote

Gvw := 〈v, Gw〉, Gva := 〈v, Gea〉, Gaw := 〈ea, Gw〉, (6.1)

where ea is the standard unit vector along a-th axis. Given vectors x ∈ CI1 and y ∈ CI2 ,

we always identify them with their natural embeddings

(
x

0

)
and

(
0

y

)
in CI . The

exact meanings will be clear from the context. Now similar to Lemma 5.4, we can prove
the following estimates for G.

Lemma 6.1. For i ∈ I1 and µ ∈ I2, we define ui = U∗ei ∈ CI1 and vµ = V ∗eµ ∈ CI2 , i.e.
ui is the i-th row vector of U and vµ is the µ-th row vector of V . Let x ∈ CI1 and y ∈ CI2 .
Then we have ∑

i∈I1

|Gxui |
2

=
∑
i∈I1

|Guix|
2

=
|z|2

η
Im

(
Gxx

z

)
, (6.2)

∑
µ∈I2

∣∣Gyvµ

∣∣2 =
∑
µ∈I2

∣∣Gvµy

∣∣2 =
ImGyy

η
, (6.3)

∑
i∈I1

|Gyui |
2

=
∑
i∈I1

|Guiy|
2

= Gyy +
z̄

η
ImGyy, (6.4)

∑
µ∈I2

∣∣Gxvµ

∣∣2 =
∑
µ∈I2

∣∣Gvµx

∣∣2 =
Gxx

z
+
z̄

η
Im

(
Gxx

z

)
. (6.5)

All of the above estimates remain true for G(T) instead of G for any T ⊆ I.

Proof. We only prove (6.3) and (6.4). The proof for (6.2) and (6.5) is very similar. With
(3.5), we get that

∑
µ∈I2

∣∣Gyvµ

∣∣2 =
∑
µ∈I2

〈y, Gvµ〉 〈vµ, G∗y〉 =

N∑
k=1

|〈y, ζk〉|2

(λk − E)
2

+ η2
=

ImGyy

η
. (6.6)

For simplicity, we denote Y := Σ1/2U∗XV Σ̃1/2. Then with (3.4) and (3.6), we get that∑
i∈I1

|Gyui |
2

= (G2Y
∗Y G∗2 )yy = (G2 (Y ∗Y − z̄)G∗2 )yy + z̄ (G2G∗2 )yy = Gyy +

z̄

η
ImGyy,

where we used G∗2 = (Y ∗Y − z̄)−1 and (6.6) in the last step.

Our proof basically follows the arguments in [37, Section 7] with some modifications.
Thus we will not give all the details. We first focus on proving the anisotropic local
law (3.22), and the proof of (3.23)-(3.24) will be given at the end of this section. By
polarization, to prove (3.22) it suffices to prove that

〈v, (G(X, z)−Π(z))v〉 ≺ q + Ψ(z) (6.7)
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uniformly in z ∈ S̃(c0, C0, a, ε) and any deterministic unit vector v ∈ CI . In fact, we can
obtain the more general bound (3.22) by applying (6.7) to the vectors u + v and u + iv,
respectively.

The proof consists of a bootstrap argument from larger scales to smaller scales in
multiplicative increments of N−δ, where

δ ∈
(

0,
min{ε, a, φ}

2Ca

)
. (6.8)

Here ε, a > 0 are the constants in S̃(c0, C0, a, ε), φ > 0 is a constant such that q 6 N−φ,
Ca > 0 is an absolute constant that will be chosen large enough in the proof. For any
η > N−1+ε, we define

ηl := ηNδl for l = 0, ..., L− 1, ηL := 1, (6.9)

where L ≡ L(η) := max
{
l ∈ N| ηNδ(l−1) < 1

}
. Note that L 6 δ−1.

By (5.9), the function z 7→ G(z)− Π(z) is Lipschitz continuous in S̃(c0, C0, a, ε) with
Lipschitz constant bounded by N2. Thus to prove (6.7) for all z ∈ S̃(c0, C0, a, ε), it
suffices to show that (6.7) holds for all z in some discrete but sufficiently dense subset
S ⊂ S̃(c0, C0, a, e). We will use the following discretized domain S.

Definition 6.2. Let S be an N−10-net of S̃(c0, C0, a, ε) such that |S| 6 N20 and

E + iη ∈ S⇒ E + iηl ∈ S for l = 1, ..., L(η).

The bootstrapping is formulated in terms of two scale-dependent properties (Am)
and (Cm) defined on the subsets

Sm :=
{
z ∈ S | Im z > N−δm

}
.

(Am) For all z ∈ Sm, all deterministic unit vectors x ∈ CI1 and y ∈ CI2 , and all X
satisfying the assumptions in Theorem 3.6, we have

Im

(
Gxx(z)

z

)
+ ImGyy(z) ≺ Imm2c(z) +NCaδ(q + Ψ(z)). (6.10)

(Cm) For all z ∈ Sm, all deterministic unit vector v ∈ CI , and all X satisfying the
assumptions in Theorem 3.6, we have

|Gvv(z)−Πvv(z)| ≺ NCaδ(q + Ψ(z)). (6.11)

It is trivial to see that (A0) holds by (5.9) and (3.11). Moreover, it is easy to observe the
following result.

Lemma 6.3. For any m, property (Cm) implies property (Am).

Proof. By (3.11), (3.12) and the definition of Π in (3.16), it is easy to get that

Im

(
Πxx(z)

z

)
+ Im Πyy(z) . Imm2c(z),

which finishes the proof.

The key step is the following induction result.

Lemma 6.4. For any 1 6 m 6 δ−1, property (Am−1) implies property (Cm).
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Combining Lemmas 6.3 and 6.4, we conclude that (6.11) holds for all w ∈ S. Since δ
can be chosen arbitrarily small under the condition (6.8), we conclude that (6.7) holds
for all w ∈ S, and (3.22) follows for all z ∈ S̃(c0, C0, a, ε). What remains now is the proof
of Lemma 6.4. Denote

Fv(X, z) := |Gvv(X, z)−Πvv(z)| . (6.12)

By Markov’s inequality, it suffices to prove the following lemma.

Lemma 6.5. Fix p ∈ N and m 6 δ−1. Suppose that the assumptions of Theorem 3.6 and
property (Am−1) hold. Then we have

EF pv (X, z) 6
[
NCaδ (q + Ψ(z))

]p
(6.13)

for all z ∈ Sm and any deterministic unit vector v.

In the rest of this section, we focus on proving Lemma 6.5. First, in order to make
use of the assumption (Am−1), which has spectral parameters in Sm−1, to get some
estimates for G with spectral parameters in Sm, we shall use the following rough bounds
for Gxy.

Lemma 6.6. For any z = E + iη ∈ S and unit vectors x,y ∈ CI , we have

|Gxy(z)−Πxy(z)| ≺N2δ

L(η)∑
l=1

[
Im

(
Gx1x1

(E + iηl)

E + iηl

)
+ ImGx2x2

(E + iηl)

+ Im

(
Gy1y1

(E + iηl)

E + iηl

)
+ ImGy2y2

(E + iηl)

]
+ 1,

where x =

(
x1

x2

)
and y =

(
y1

y2

)
for x1,y1 ∈ CI1 and x2,y2 ∈ CI2 , and ηl is defined

in (6.9).

Proof. The proof is the same as the one for [37, Lemma 7.12].

Recall that for a given family of random matricesM, we useM = O≺(ζ) to mean
|〈v,Mw〉| ≺ ζ‖v‖2‖w‖2 uniformly in any deterministic vectors v and w (see Definition
3.1 (ii)).

Lemma 6.7. Suppose (Am−1) holds, then

G(z)−Π(z) = O≺(N2δ), (6.14)

and

Im

(
Gxx(z)

z

)
+ ImGyy(z) ≺ N2δ

[
Imm2c(z) +NCaδ(q + Ψ(z))

]
, (6.15)

for all z ∈ Sm and any deterministic unit vectors x ∈ CI1 and y ∈ CI2 .

Proof. The proof is the same as the one for [37, Lemma 7.13].

Now we are ready to perform the self-consistent comparison. We divide the proof
into three subsections. In Sections 6.1-6.2, we prove Lemma 6.5 under the condition

Ex3
ij = 0, 1 6 i 6 n, 1 6 j 6 N, (6.16)

for z ∈ S(c0, C0, ε). Then in Section 6.3, we show how to relax (6.16) to (3.20) for
z ∈ S̃(c0, C0, a, ε).
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6.1 Interpolation and expansion

Definition 6.8 (Interpolating matrices). Introduce the notations X0 := XGauss and
X1 := X. Let ρ0

iµ and ρ1
iµ be the laws of X0

iµ and X1
iµ, respectively. For θ ∈ [0, 1], we

define the interpolated law
ρθiµ := (1− θ)ρ0

iµ + θρ1
iµ.

Let {Xθ : θ ∈ (0, 1)} be a collection of random matrices such that the following properties
hold. For any fixed θ ∈ (0, 1), (X0, Xθ, X1) is a triple of independent I1 × I2 random
matrices, and the matrix Xθ = (Xθ

iµ) has law∏
i∈I1

∏
µ∈I2

ρθiµ(dXθ
iµ). (6.17)

Note that we do not require Xθ1 to be independent of Xθ2 for θ1 6= θ2 ∈ (0, 1). For λ ∈ R,
i ∈ I1 and µ ∈ I2, we define the matrix Xθ,λ

(iµ) through

(
Xθ,λ

(iµ)

)
jν

:=

{
Xθ
iµ, if (j, ν) 6= (i, µ)

λ, if (j, ν) = (i, µ)
.

We also introduce the matrices

Gθ(z) := G
(
Xθ, z

)
, Gθ,λ(iµ)(z) := G

(
Xθ,λ

(iµ), z
)
.

We shall prove Lemma 6.5 through interpolation matrices Xθ between X0 and X1. It
holds for X0 by Proposition 5.1.

Lemma 6.9. Lemma 6.5 holds if X = X0.

Using (6.17) and fundamental calculus, we get the following basic interpolation
formula.

Lemma 6.10. For F : RI1×I2 → C we have

d

dθ
EF (Xθ) =

∑
i∈I1

∑
µ∈I2

[
EF

(
X
θ,X1

iµ

(iµ)

)
− EF

(
X
θ,X0

iµ

(iµ)

)]
(6.18)

provided all the expectations exist.

We shall apply Lemma 6.10 to F (X) = F pv (X, z) with Fv(X, z) defined in (6.12). The
main work is devoted to proving the following self-consistent estimate for the right-hand
side of (6.18).

Lemma 6.11. Fix p ∈ 2N and m 6 δ−1. Suppose (6.16) and (Am−1) hold, then we have∑
i∈I1

∑
µ∈I2

[
EF pv

(
X
θ,X1

iµ

(iµ) , z

)
− EF pv

(
X
θ,X0

iµ

(iµ) , z

)]
= O

([
NCaδ(q + Ψ(z))

]p
+ EF pv (Xθ, z)

)
(6.19)

for all θ ∈ [0, 1], z ∈ Sm and any deterministic unit vector v.

Combining Lemmas 6.9-6.11 with a Grönwall’s argument, we can conclude Lemma
6.5 and hence (6.7) by Markov’s inequality. In order to prove Lemma 6.11, we compare

X
θ,X0

iµ

(iµ) and X
θ,X1

iµ

(iµ) via a common Xθ,0
(iµ), i.e. we will prove that∑

i∈I1

∑
µ∈I2

[
EF pv

(
X
θ,Xuiµ
(iµ) , z

)
− EF pv

(
Xθ,0

(iµ), z
)]

= O
([
NCaδ(q + Ψ(z))

]p
+ EF pv (Xθ, z)

)
(6.20)

for all u ∈ {0, 1}, θ ∈ [0, 1], z ∈ Sm, and any deterministic unit vector v.
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Underlying the proof of (6.20) is an expansion approach which we will describe below.
During the proof, we always assume that (Am−1) holds. Also the rest of the proof is
performed at a fixed z ∈ Sm. We define the I × I matrix ∆λ

(iµ) as

∆λ
(iµ) := λ

(
0 Σ1/2uiv

∗
µΣ̃1/2

Σ̃1/2vµu
∗
iΣ

1/2 0

)
, (6.21)

where we recall the definitions of ui and vµ in Lemma 6.1. Then we have for any λ, λ′ ∈ R
and K ∈ N,

Gθ,λ′

(iµ) = Gθ,λ(iµ) +

K∑
k=1

Gθ,λ(iµ)

(
∆λ−λ′

(iµ) G
θ,λ
(iµ)

)k
+Gθ,λ

′

(iµ)

(
∆λ−λ′

(iµ) G
θ,λ
(iµ)

)K+1

. (6.22)

The following result provides a priori bounds for the entries of Gθ,λ(iµ).

Lemma 6.12. Suppose that y is a random variable satisfying |y| ≺ q. Then

Gθ,y(iµ) −Π = O≺(N2δ), i ∈ I1, µ ∈ I2 . (6.23)

Proof. The proof is the same as the one for [37, Lemma 7.14].

In the following proof, for simplicity of notations, we introduce f(iµ)(λ) := F pv (Xθ,λ
(iµ)).

We use f (r)
(iµ) to denote the r-th derivative of f(iµ). With Lemma 6.12 and (6.22), it is easy

to prove the following result.

Lemma 6.13. Suppose that y is a random variable satisfying |y| ≺ q. Then for fixed
r ∈ N, ∣∣∣f (r)

(iµ)(y)
∣∣∣ ≺ N2δ(r+p). (6.24)

By this lemma, the Taylor expansion of f(iµ) gives

f(iµ)(y) =

4p+4∑
r=0

yr

r!
f

(r)
(iµ)(0) + O≺

(
qp+4

)
, (6.25)

provided Ca is chosen large enough in (6.8). Therefore we have for u ∈ {0, 1},

EF pv

(
X
θ,Xuiµ
(iµ)

)
− EF pv

(
Xθ,0

(iµ)

)
= E

[
f(iµ)

(
Xu
iµ

)
− f(iµ)(0)

]
= E f(iµ)(0) +

1

2N
E f

(2)
(iµ)(0) +

4p+4∑
r=4

1

r!
E f

(r)
(iµ)(0)E

(
Xu
iµ

)r
+ O≺(qp+4), (6.26)

where we used that Xu
iµ has vanishing first and third moments and its variance is 1/N .

(Note that this is the only place where we need the condition (6.16).) By (3.15) and the
bounded support condition, we have∣∣E (Xu

iµ

)r∣∣ ≺ N−2qr−4, r > 4. (6.27)

Thus to show (6.20), we only need to prove for r = 4, 5, ..., 4p+ 4,

N−2qr−4
∑
i∈I1

∑
µ∈I2

∣∣∣E f (r)
(iµ)(0)

∣∣∣ = O
([
NCaδ(q + Ψ)

]p
+ EF pv (Xθ, z)

)
. (6.28)

In order to get a self-consistent estimate in terms of the matrix Xθ on the right-hand

side of (6.28), we want to replace Xθ,0
(iµ) in f(iµ)(0) = F pv (Xθ,0

(iµ)) with Xθ = X
θ,Xθiµ
(iµ) .
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Lemma 6.14. Suppose that

N−2qr−4
∑
i∈I1

∑
µ∈I2

∣∣∣E f (r)
(iµ)(X

θ
iµ)
∣∣∣ = O

([
NCaδ(q + Ψ)

]p
+ EF pv (Xθ, z)

)
(6.29)

holds for r = 4, ..., 4p+ 4. Then (6.28) holds for r = 4, ..., 4p+ 4.

Proof. We abbreviate f(iµ) ≡ f and Xθ
iµ ≡ ξ. Then with (6.25) we can get

Ef (l)(0) = Ef (l)(ξ)−
4p+4−l∑
k=1

Ef (l+k)(0)
Eξk

k!
+ O≺(qp+4−l). (6.30)

The estimate (6.28) then follows from a repeated application of (6.30). Fix r = 4, ..., 4p+4.
Using (6.30), we get

Ef (r)(0) = Ef (r)(ξ)−
∑
k1>1

1(r + k1 6 4p+ 4)Ef (r+k1)(0)
Eξk1

k1!
+ O≺(qp+4−r)

= Ef (r)(ξ)−
∑
k1>1

1(r + k1 6 4p+ 4)Ef (r+k1)(ξ)
Eξk1

k1!

+
∑

k1,k2>1

1(r + k1 + k2 6 4p+ 4)Ef (r+k1+k2)(0)
Eξk1

k1!

Eξk2

k2!
+ O≺(qp+4−r) = · · ·

=

4p+4−r∑
t=0

(−1)t
∑

k1,··· ,kt>1

1

r +

t∑
j=1

kj 6 4p+ 4

Ef (r+
∑t
j=1 kj)(ξ)

t∏
j=1

Eξkj

kj !
+ O≺(qp+4−r).

The lemma now follows easily by using (6.27).

6.2 Conclusion of the proof with words

What remains now is to prove (6.29). For simplicity, we abbreviate Xθ ≡ X. In order
to exploit the detailed structure of the derivatives on the left-hand side of (6.29), we
introduce the following algebraic objects.

Definition 6.15 (Words). Given i ∈ I1 and µ ∈ I2, let W be the set of words of even
length in two letters {i,µ}. We denote the length of a word w ∈ W by 2l(w) with l(w) ∈ N.
We use bold symbols to denote the letters of words. For instance, w = t1s2t2s3 · · · trsr+1

denotes a word of length 2r. Define Wr := {w ∈ W : l(w) = r} to be the set of words
of length 2r, and such that each word w ∈ Wr satisfies that tlsl+1 ∈ {iµ,µi} for all
1 6 l 6 r.

Next we assign to each letter a value [·] through [i] := Σ1/2 ui, [µ] := Σ̃1/2vµ, where
ui and vµ are defined in Lemma 6.1 and are regarded as summation indices. Note that it
is important to distinguish the abstract letter from its value, which is a summation index.
Finally, to each word w we assign a random variable Av,i,µ(w) as follows. If l(w) = 0 we
define

Av,i,µ(w) := Gvv −Πvv.

If l(w) > 1, say w = t1s2t2s3 · · · trsr+1, we define

Av,i,µ(w) := Gv[t1]G[s2][t2] · · ·G[sr][tr]G[sr+1]v. (6.31)

Notice the words are constructed such that, by (6.21) and (6.22),(
∂

∂Xiµ

)r
(Gvv −Πvv) = (−1)rr!

∑
w∈Wr

Av,i,µ(w), r ∈ N,
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with which we get that(
∂

∂Xiµ

)r
F pv (X) = (−1)r

∑
l1+···+lp=r

p/2∏
t=1

(
lt!lt+p/2!

)

×

 ∑
wt∈Wlt

∑
wt+p/2∈Wlt+p/2

Av,i,µ(wt)Av,i,µ(wt+p/2)

 .

Then to prove (6.29), it suffices to show that

N−2qr−4
∑
i∈I1

∑
µ∈I2

∣∣∣∣∣∣E
p/2∏
t=1

Av,i,µ(wt)Av,i,µ(wt+p/2)

∣∣∣∣∣∣ = O
([
NCaδ(q + Ψ)

]p
+ EF pv (X, z)

)
(6.32)

for 4 6 r 6 4p+ 4 and all words w1, ..., wp ∈ W satisfying l(w1) + · · ·+ l(wp) = r. To avoid
the unimportant notational complications associated with the complex conjugates, we
will actually prove that

N−2qr−4
∑
i∈I1

∑
µ∈I2

∣∣∣∣∣E
p∏
t=1

Av,i,µ(wt)

∣∣∣∣∣ = O
([
NCaδ(q + Ψ)

]p
+ EF pv (X, z)

)
. (6.33)

The proof of (6.32) is essentially the same but with slightly heavier notations. Treating
empty words separately, we find it suffices to prove

N−2qr−4
∑
i∈I1

∑
µ∈I2

E

∣∣∣∣∣Ap−lv,i,µ(w0)

l∏
t=1

Av,i,µ(wt)

∣∣∣∣∣ = O
([
NCaδ(q + Ψ)

]p
+ EF pv (X, z)

)
(6.34)

for 4 6 r 6 4p+ 4, 1 6 l 6 p, and words such that l(w0) = 0,
∑
t l(wt) = r and l(wt) > 1

for t > 1.
To estimate (6.34) we introduce the quantity

Ra := |Gvwa |+ |Gwav| (6.35)

for a ∈ I, where wi := Σ1/2 ui for i ∈ I1 and wµ := Σ̃1/2 vµ for µ ∈ I2.

Lemma 6.16. For w ∈ W, we have the rough bound

|Av,i,µ(w)| ≺ N2δ(l(w)+1). (6.36)

Furthermore, for l(w) > 1 we have

|Av,i,µ(w)| ≺ (R2
i +R2

µ)N2δ(l(w)−1). (6.37)

For l(w) = 1, we have the better bound

|Av,i,µ(w)| ≺ RiRµ. (6.38)

Proof. The estimates (6.36) and (6.37) follow immediately from the rough bound (6.14)
and the definition (6.31). The estimate (6.38) follows from the constraint t1 6= s2 in the
definition (6.31).

By pigeonhole principle, if r 6 2l − 2, then there exist at least two words wt with
l(wt) = 1. Therefore by Lemma 6.16 we have∣∣∣∣∣Ap−lv,i,µ(w0)

l∏
t=1

Av,i,µ(wt)

∣∣∣∣∣
≺ N2δ(r+l)F p−lv (X)

(
1(r > 2l − 1)(R2

i +R2
µ) + 1(r 6 2l − 2)R2

iR2
µ

)
.

(6.39)
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Let v =

(
v1

v2

)
for v1 ∈ CI1 and v2 ∈ CI2 . Then using Lemma 6.1, we get

1

N

∑
i∈I1

R2
i +

1

N

∑
µ∈I2

R2
µ ≺

Im
(
z−1Gv1v1

)
+ Im (Gv2v2

) + η |Gv1v1
|+ η |Gv2v2

|
Nη

≺ N2δ Imm2c +NCaδ(q + Ψ(z))

Nη
≺ N (Ca+2)δ

(
Ψ2(z) +

q

Nη

)
, (6.40)

where in the second step we used the two bounds in Lemma 6.7 and η = O(Imm2c) by
(3.11), and in the last step the definition of Ψ in (3.18). Using the same method we can
get

1

N2

∑
i∈I1

∑
µ∈I2

R2
iR2

µ ≺
[
N (Ca+2)δ

(
Ψ2(z) +

q

Nη

)]2

. (6.41)

Plugging (6.40) and (6.41) into (6.39), we get that the left-hand side of (6.34) is bounded
by

qr−4N2δ(r+l+2)EF p−lv (X)

[
1(r>2l − 1)

(
NCaδ/2(q + Ψ)

)2

+1(r62l − 2)
(
NCaδ/2(q+Ψ)

)4
]

6 N2δ(r+l+2)EF p−lv (X)

[
1(r>2l−1)

(
NCaδ/2(q+Ψ)

)r−2

+1(r62l−2)
(
NCaδ/2(q+Ψ)

)r]
6 EF p−lv (X)

[
1(r>2l−1)

(
NCaδ/2+12δ(q+Ψ)

)r−2

+1(r62l − 2)
(
NCaδ/2+12δ(q+Ψ)

)r]
,

where we used that l 6 r and r > 4 in the last step. If we choose Ca > 25, then by (6.8)
we have NCaδ/2+12δ � min{Nφ/2, Nε/2}, and hence NCaδ/2+12δ(q + Ψ)� 1. Moreover, if
r > 4 and r > 2l − 1, then r > l + 2. Therefore we conclude that the left-hand side of
(6.34) is bounded by

EF p−lv (X)
[
NCaδ(q + Ψ)

]l
. (6.42)

Now (6.34) follows from Hölder’s inequality. This concludes the proof of (6.29), and
hence of (6.20), and hence of Lemma 6.4. This proves (6.7), and hence (3.22) under the
condition (6.16).

6.3 Non-vanishing third moment

In this subsection, we prove Lemma 6.5 under (3.20) for z ∈ S̃(c0, C0, a, ε). Following
the arguments in Section 6.1 and Section 6.2, we see that it suffices to prove the estimate
(6.29) in the r = 3 case. In other words, we need to prove the following lemma.

Lemma 6.17. Fix p ∈ 2N and m 6 δ−1. Let z ∈ Sm and suppose (Am−1) holds. Then

bNN
−2
∑
i∈I1

∑
µ∈I2

∣∣∣E f (3)
(iµ)(X

θ
iµ)
∣∣∣ = O

([
NCaδ(q + Ψ)

]p
+ EF pv (Xθ, z)

)
. (6.43)

Proof. The main new ingredient of the proof is a further iteration step at a fixed z.
Suppose

G−Π = O≺(Φ) (6.44)

for some deterministic parameter Φ ≡ ΦN . By the a priori bound (6.14), we can take
Φ 6 N2δ. Assuming (6.44), we shall prove a self-improving bound of the form

bNN
−2
∑
i∈I1

∑
µ∈I2

∣∣∣E f (3)
(iµ)(X

θ
iµ)
∣∣∣ = O

([
NCaδ(q + Ψ)

]p
+ (N−a/2Φ)p + EF pv (Xθ, w)

)
.

(6.45)
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Once (6.45) is proved, we can use it iteratively to get an increasingly accurate bound for
|Gvv(X, z)−Πvv(z)|. After each step, we obtain a better bound (6.44) with Φ reduced
by N−a/2. Hence after O(a−1) many iterations we obtain (6.43).

As in Section 6.2, to prove (6.45) it suffices to show

bNN
−2

∣∣∣∣∣∣
∑
i∈I1

∑
µ∈I2

Ap−lv,i,µ(w0)

l∏
t=1

Av,i,µ(wt)

∣∣∣∣∣∣ ≺ F p−lv (X)
[
N (C0−1)δ(q + Ψ) +N−a/2Φ

]l
,

(6.46)
which follows from the bound

bNN
−2

∣∣∣∣∣∣
∑
i∈I1

∑
µ∈I2

l∏
t=1

Av,i,µ(wt)

∣∣∣∣∣∣ ≺
[
N (C0−1)δ(q + Ψ) +N−a/2Φ

]l
. (6.47)

We now list all the three cases with l = 1, 2, 3, and discuss each case separately.
When l = 1, the single factor Av,i,µ(w1) is of the form

Gv[t1]G[s2][t2]G[s3][t3]G[s4]v.

Then we split it as

Gv[t1]G[s2][t2]G[s3][t3]G[s4]v

= Gv[t1]Π[s2][t2]Π[s3][t3]G[s4]v +Gv[t1]G̃[s2][t2]Π[s3][t3]G[s4]v

+Gv[t1]Π[s2][t2]G̃[s3][t3]G[s4]v +Gv[t1]G̃[s2][t2]G̃[s3][t3]G[s4]v, (6.48)

where we abbreviate G̃ := G−Π. For the second term, we have

bNN
−2
∑
i∈I1

∑
µ∈I2

∣∣∣Gv[t1]G̃[s2][t2]Π[s3][t3]G[s4]v

∣∣∣
≺ bNΦ ·N (Ca+2)δ

(
Ψ2 +

q

Nη

)
≺ N−a/2Φ

(6.49)

provided δ is small enough, where we used (6.40), (6.44) and the definition (3.21). The
third and fourth terms of (6.48) can be dealt with in a similar way. For the first term, we
consider the following two cases.

Case 1: [t1] = wi and [s4] = wµ. Then we have

∣∣∣ ∑
i∈I1

∑
µ∈I2

GvwiΠ[s2][t2]Π[s3][t3]Gwµv

∣∣∣≺N1+2δ

∑
µ∈I2

|Gwµv|2
1/2

≺ N3/2+(Ca/2+3)δ(q + Ψ),

where in the first step we used∣∣∣ ∑
i∈I1

GvwiΠ[s2][t2]Π[s3][t3]

∣∣∣ ≺ N1/2+2δ, (6.50)

and in the second step we used (6.40). To get (6.50), we used the a priori bound
(6.44) with Φ 6 N2δ, which gives that for any deterministic unit vectors v and w (recall
Definition 3.1 (ii)),

|〈v, Gw〉| ≺ N2δ.

Applying this estimate with deterministic vectors v and w :=
∑
i∈I1 Π[s2][t2]Π[s3][t3]wi, we

get ∣∣∣ ∑
i∈I1

GvwiΠ[s2][t2]Π[s3][t3]

∣∣∣ ≺ N2δ‖v‖‖w‖ = O(N1/2+2δ),
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using ‖w‖ = O(N1/2). This explains (6.50). If [t1] = wµ and [s4] = vi, the proof is similar.

Case 2: If [t1] = [s4], then at least one of the terms Π[s2][t2] and Π[s3][t3] must be of the
form Πwiwµ = 0 or Πwµwi = 0, and hence we have∑

i

|Π[s2][t2]Π[s3][t3]| = 0 or
∑
µ

|Π[s2][t2]Π[s3][t3]| = 0.

In sum, we obtain that

bNN
−2
∣∣∣ ∑
i∈I1

∑
µ∈I2

Gv[t1]Π[s2][t2]Π[s3][t3]G[s4]v

∣∣∣ ≺ N (Ca−1)δ(q + Ψ)

provided that Ca > 8. Together with (6.49), this proves (6.47) for l = 1.
When l = 2,

∏2
t=1Av,i,µ(wt) is of the form

GvwiGwµvGvwiGwµwµGwiv, GvwiGwµvGvwµGwiwiGwµv, (6.51)

GvwiGwµvGvwiGwµwiGwµv, GvwiGwµvGvwµGwiwµGwiv, (6.52)

or an expression obtained from one of these four by exchanging wi and wµ. The first
expression in (6.51) can be estimated using (6.40) and (6.44):∣∣∣∑

i

GvwiGvwiGwiv

∣∣∣ ≺ N1+(Ca+4)δ

(
Ψ2 +

q

Nη

)
, (6.53)

and ∑
µ

GwµvGwµwµ =
∑
µ

GwµvG̃wµwµ +
∑
µ

GwµvΠwµwµ

= O≺

[
N1+(Ca/2+1)δΦ

(
Ψ2 +

q

Nη

)1/2

+N1/2+2δ

]
,

(6.54)

where in the second step we applied the same argument to
∑
µGwµvΠwµwµ as the one

for (6.50). Combining (3.21), (6.53) and (6.54), we get that

bNN
−2
∣∣∣∑

i

∑
µ

GvwiGwµvGvwiGwµwµGwiv

∣∣∣ ≺ (N (Ca−1)δ(q + Ψ) +N−a/2Φ
)2

,

provided that δ is small enough. The second expression in (6.51) can be estimated
similarly. The first expression of (6.52) can be estimated using (3.21), (6.40) and (6.44)
as

bNN
−2

∣∣∣∣∣∑
i

∑
µ

GvwiGwµvGvwiGwµwiGwµv

∣∣∣∣∣ ≺ bNN−2+2δ
∑
i

∑
µ

|Gvwi |
2 ∣∣Gwµv

∣∣2
≺ bNN (2Ca+6)δ

(
Ψ2 +

q

Nη

)2

6 (q + Ψ)2

for small enough δ. The second expression in (6.52) is estimated similarly. This proves
(6.47) for l = 2.

When l = 3,
∏3
t=1Av,i,µ(wt) is of the form (GvwiGwµv)3 or an expression obtained by

exchanging wi and wµ in some of the three factors. We use (6.40) and
∑
i |Πvwi |2 = O(1)

to get that∣∣∣∣∣∑
i

(Gvwi)
3

∣∣∣∣∣ ≺∑
i

|G̃vwi |3 +
∑
i

|Πvwi |3

≺ Φ
∑
i

(
|Gvwi |2 + |Πvwi |2

)
+ 1 ≺ N1+(Ca+2)δ

(
Ψ2 +

q

Nη

)
Φ + Φ + 1.

Now we conclude (6.47) for l = 3 using (3.21) and N−1/2 = O(q + Ψ).
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If A or B is diagonal, then we can still prove (3.22) for all z ∈ S(c0, C0, ε) without
using (6.16). This follows from an improved self-consistent comparison argument for
sample covariance matrices (i.e. separable covariance matrices with B = I) in [37,
Section 8]. The argument for separable covariance matrices with diagonal A or B is
almost the same except for some notational differences, so we omit the details.

6.4 Weak averaged local law

In this section, we prove the weak averaged local laws in (3.23) and (3.24). The
proof is similar to the one for (3.22) in previous subsections, and we only explain the
differences. Note that the bootstrapping argument is not necessary, since we already
have a good a priori bound by (3.22). In analogy to (6.12), we define

F̃ (X, z) : = |m(z)−mc(z)| =

∣∣∣∣∣ 1

nz

∑
i∈I1

(Gii(X, z)−Πii(z))

∣∣∣∣∣ ,
where we used (3.17). Moreover, by Proposition 5.1, we know that (3.23) and (3.24) hold
for Gaussian X (without the q2 term). For now, we assume (6.16) and prove the following
stronger estimates:

|m(z)−mc(z)| ≺ (Nη)−1 (6.55)

for z ∈ S(c0, C0, ε), and

|m(z)−mc(z)| ≺
q

Nη
+

1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

, (6.56)

for z ∈ S(c0, C0, ε) ∩ {z = E + iη : E > λ+, Nη
√
κ+ η > Nε}. At the end of this section,

we will show how to relax (6.16) to (3.20) for z ∈ S̃(c0, C0, a, ε).

Note that

Ψ2(z) .
1

Nη
, and Ψ2(z) .

1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

outside of the spectrum. (6.57)

Then following the argument in Section 6.1, analogous to (6.29), we only need to prove
that

N−2qr−4
∑
i∈I1

∑
µ∈I2

∣∣∣∣E( ∂

∂Xiµ

)r
F̃ p(X)

∣∣∣∣ = O

([
Nδ

(
Ψ2 +

q

Nη

)]p
+ EF̃ p(X)

)
(6.58)

for all r = 4, ..., 4p + 4, where δ > 0 is any positive constant. Analogous to (6.33), it
suffices to prove that for r = 4, ..., 4p+ 4,

N−2qr−4
∑
i∈I1

∑
µ∈I2

∣∣∣∣∣∣E
p∏
t=1

 1

n

∑
j∈I1

Aej ,i,µ(wt)

∣∣∣∣∣∣ = O

([
Nδ

(
Ψ2 +

q

Nη

)]p
+ EF̃ p(X)

)
(6.59)

for
∑
t l(wt) = r. Similar to (6.35) we define

Rj,a := |Gjwa |+ |Gwaj |.

Using (3.22) and Lemma 6.1, similarly to (6.40), we get that

1

n

∑
j∈I1

R2
j,a ≺

Im
(
z−1Gwiwi

)
+ ImGwµwµ + η

(
|Gwiwi |+

∣∣Gwµwµ

∣∣)
Nη

≺ Ψ2 +
q

Nη
. (6.60)
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Since G = O≺(1) by (3.22), we have that for any w such that l(w) > 1,∣∣∣∣∣∣ 1n
∑
j∈I1

Aej ,i,µ(w)

∣∣∣∣∣∣ ≺ 1

n

∑
j∈I1

(
R2
j,i +R2

j,µ

)
≺ Ψ2 +

q

Nη
. (6.61)

With (6.61), for any r > 4, the left-hand side of (6.59) is bounded by

E F̃ p−l(X)

(
Ψ2 +

q

Nη

)l
.

Applying Hölder’s inequality, we get (6.58), which completes the proof of (6.55) and
(6.56) under (6.16).

Then we prove the averaged local law (3.23) for z ∈ S̃(c0, C0, a, ε) and (3.24) for
z ∈ S̃(c0, C0, a, ε) ∩ {z = E + iη : E > λ+, Nη

√
κ+ η > Nε} under (3.20). By (6.57), it

suffices to prove

bNN
−2

∣∣∣∣∣∣
∑
i∈I1

∑
µ∈I2

E

(
∂

∂Xiµ

)3

F̃ p(X)

∣∣∣∣∣∣ = O

([
Nδ(q2 + Ψ2)

]p
+

(
N−a/2+δ

Nη

)p
+ EF̃ p(X)

)
,

(6.62)
for any small constant δ > 0. Analogous to the arguments in Section 6.3, it reduces to
showing that

bNN
−2

∣∣∣∣∣∣
∑
i∈I1

∑
µ∈I2

l∏
t=1

 1

n

∑
j∈I1

Aej ,i,µ(wt)

∣∣∣∣∣∣ = O≺

((
q2 + Ψ2

)l
+

(
N−a/2

Nη

)l)
, (6.63)

where l ∈ {1, 2, 3} is the number of words with nonzero length. Then we can discuss
these three cases using a similar argument as in Section 6.3, with the only difference
being that we now can use the anisotropic local law (3.22) instead of the a priori bounds
(6.23) and (6.44).

In the l = 1 case, we first consider the expression Aej ,i,µ(w1)=GjwiGwµwµGwiwiGwµj .
We have∣∣∣∣∣∑

i

GjwiGwiwi

∣∣∣∣∣ ≺
∣∣∣∣∣∑
i

GjwiΠwiwi

∣∣∣∣∣+∑
i

(q+Ψ) |Gjwi | ≺
√
N+N(q+Ψ)

(
Ψ2 +

q

Nη

)1/2

,

where we used (3.22) and (6.40). Similarly, we also have∣∣∣∣∣∑
µ

GwµwµGwµj

∣∣∣∣∣ ≺
∣∣∣∣∣∑
µ

ΠwµwµGwµj

∣∣∣∣∣+
∑
µ

(q + Ψ)
∣∣Gwµj

∣∣
≺
√
N(q + Ψ) +N(q + Ψ)

(
Ψ2 +

q

Nη

)1/2

,

where we also used Πwµj = 0 for any µ in the second step. Then with (3.21), we
can see that the LHS of (6.63) is bounded by O≺(q2 + Ψ2) in this case. For the case
Aej ,i,µ(w1) = GjwiGwµwµGwiwµGwij , we can estimate that∣∣∣∣∣∑

µ

GwµwµGwiwµ

∣∣∣∣∣ ≺
∣∣∣∣∣∑
µ

ΠwµwµGwiwµ

∣∣∣∣∣+
∑
µ

(q + Ψ)
∣∣Gwiwµ

∣∣
≺
√
N +N(q + Ψ)

(
Ψ2 +

q

Nη

)1/2

,
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and ∑
i

|GjwiGwij | ≺ N
(

Ψ2 +
q

Nη

)
.

Thus in this case the LHS of (6.63) is also bounded by O≺(q2+Ψ2). The case Aej ,i,µ(w1) =

GjwiGwµwiGwµwµGwij can be handled similarly. Finally in the case Aej ,i,µ(w1) =

GjwiGwµwiGwµwiGwµj , we can estimate that∣∣∣∣∣∣
∑
i,µ

GjwiGwµwiGwµwiGwµj

∣∣∣∣∣∣ ≺
∑
i,µ

(
|Gjwi |

2
+
∣∣Gwµj

∣∣2) |Gwµwi |2 ≺ N2

(
Ψ2 +

q

Nη

)2

.

Again in this case the LHS of (6.63) is bounded by O≺(q2 + Ψ2). All the other expressions
are obtained from these four by exchanging wi and wµ.

In the l = 2 case,
∏2
t=1

(
1
n

∑
j∈I1 Aej ,i,µ(wt)

)
is of the form (up to some constant

coefficients)

1

N2

∑
j1,j2

Gj1wiGwµj1Gj2wiGwµwµGwij2 or
1

N2

∑
j1,j2

Gj1wiGwµj1Gj2wiGwµwiGwµj2 ,

or an expression obtained from one of these terms by exchanging wi and wµ. These two
expressions can be written as

N−2(G×2)wµwi(G
×2)wiwiGwµwµ , N−2(G×2)2

wµwiGwµwi , (6.64)

where

G×2 := G

(
II1×I1 0

0 0

)
G.

For the second term, using (3.4), (3.5) and recalling that Y = Σ1/2U∗XV Σ̃1/2, we can
get that∣∣∣∣∣∣ 1

N2

∑
i,µ

(G×2)2
wµwiGwµwi

∣∣∣∣∣∣ 6 1

N2

∑
i,µ

∣∣(G×2)wµwi
∣∣2 .

1

N2
Tr
[
(G∗1 )2Y Y ∗(G1)2

]
=

1

N2
Tr
[
G∗1 (G1)2

]
+

z̄

N2
Tr
[
(G∗1 )2(G1)2

]
.

1

N2

∑
k

1

[(λk − E)2 + η2]
3/2

+
1

N2

∑
k

1

[(λk − E)2 + η2]
2

.
1

Nη3

(
1

n

∑
k

η

(λk − E)2 + η2

)
=

Imm

Nη3
≺ Immc + q + Ψ

Nη3
. η−2

(
Ψ2 +

q

Nη

)
. (6.65)

Using (3.22) and (6.40), it is easy to show that∣∣∣∣∣∑
µ

(G×2)wµwiΠwµwµ

∣∣∣∣∣ ≺ N3/2

(
Ψ2 +

q

Nη

)
,
∣∣(G×2)xy

∣∣ ≺ N (Ψ2 +
q

Nη

)
, (6.66)

for any deterministic unit vectors x, y. (To get the first estimate in (6.66), we write∑
µ

(G×2)wµwiΠwµwµ = ‖w‖
∑
j

Gw jGjwi , w :=
∑
µ

Πwµwµ wµ,
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and then use (6.40).) Thus for the first term in (6.64), we have∣∣∣∣∣∣ 1

N2

∑
i,µ

(G×2)wµwi(G
×2)wiwiGwµwµ

∣∣∣∣∣∣
6

∣∣∣∣∣∣ 1

N2

∑
i,µ

(G×2)wµwi(G
×2)wiwiG̃wµwµ

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

N2

∑
i,µ

(G×2)wµwi(G
×2)wiwiΠwµwµ

∣∣∣∣∣∣
≺ N(q + Ψ)

(
Ψ2 +

q

Nη

) 1

N2

∑
i,µ

∣∣(G×2)wµwi
∣∣21/2

+N3/2

(
Ψ2 +

q

Nη

)2

≺ Nη−1(q + Ψ)

(
Ψ2 +

q

Nη

)3/2

+N3/2

(
Ψ2 +

q

Nη

)2

, (6.67)

where in the last step we used the bound in (6.65). Now using (6.65), (6.67) and (3.21),
we get

bNN
−2

∣∣∣∣∣∣
∑
i∈I1

∑
µ∈I2

2∏
t=1

 1

n

∑
j∈I1

Aej ,i,µ(wt)

∣∣∣∣∣∣ ≺ (q2 + Ψ2
)2

+

(
N−a/2

Nη

)2

.

Finally, in the l = 3 case,
∏3
t=1

(
1
N

∑
j∈I1 Aej ,i,µ(wt)

)
is of the form N−3(G×2)3

wiwµ ,

or an expression obtained by exchanging wi and wµ in some of the three factors. Using
(6.66) and the bound in (6.65), we can estimate that

1

N3

∣∣∣∣∣∣
∑
i,µ

(G×2)3
wiwµ

∣∣∣∣∣∣ ≺
(

Ψ2 +
q

Nη

)
1

N2

∑
i,µ

∣∣(G×2)wµwi
∣∣2 ≺ η−2

(
Ψ2 +

q

Nη

)2

.

Then the LHS of (6.63) is bounded by

O≺

((
q2 + Ψ2

)(N−a/2
Nη

)2
)
.

Combining the above three cases l = 1, 2, 3, we conclude (6.62), which finishes the
proof of (3.23) and (3.24).

If A or B is diagonal, then by the remark at the end of Section 6.3, the anisotropic
local law (3.22) holds for all z ∈ S(c0, C0, ε) even in the case with bN = N1/2 in (3.20).
Then with (3.22) and the self-consistent comparison argument in [37, Section 9], we can
prove (3.23) and (3.24) for z ∈ S(c0, C0, ε). Again most of the arguments are the same as
the ones in [37, Section 9], hence we omit the details.

7 Proof of Lemma 3.7, Theorem 3.8 and Theorem 3.10

With Lemma 3.12, given X satisfying the assumptions in Theorem 3.6, we can
construct a matrix X̃ with support q = N−1/2 and have the same first four moments as
X. By Theorem 3.6, the averaged local laws (3.26) and (3.27) hold for G(X̃, z). Thus it is
easy to see that Theorem 3.8 is implied by the following lemma.

Lemma 7.1. Let X, X̃ be two matrices as in Lemma 3.12, and G ≡ G(X, z), G̃ ≡ G(X̃, z)

be the corresponding resolvents. We denote m(z) ≡ m(X, z) and m̃(z) ≡ m(X̃, z). Fix
any constant ε > 0. For any z ∈ S̃(c0, C0, a, ε), if there exist deterministic quantities
J ≡ J(N) and K ≡ K(N) such that

G̃(z)−Π = O≺(J), |m̃(z)−mc(z)| ≺ K, J +K ≺ 1, (7.1)
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then for any fixed p ∈ 2N, we have

E|m(z)−mc(z)|p ≺ E|m̃(z)−mc(z)|p +
(
Ψ2(z) + J2 +K

)p
. (7.2)

Proof of Theorem 3.8. By Theorem 3.6, one can choose J = Ψ(z) and

K =
1

Nη
, or

N−a/2

Nη
+

1

N(κ+ η)
+

1

(Nη)2
√
κ+ η

outside of the spectrum.

Then using (7.2), (6.57) and Markov’s inequality, we can prove (3.26) and (3.27).
The eigenvalues rigidity results (3.28) and (3.30) follow from (3.26) and (3.27)

through a standard argument, see e.g. the proofs for [23, Theorems 2.12-2.13], [24,
Theorem 2.2] or [53, Theorem 3.3]. More precisely, the estimate (3.28) is implied by
the local law (3.26). Then the rigidity result (3.30) follows from (3.28) together with the
following upper bound on the largest eigenvalue: for any constant ε > 0,

λ1 6 λ+ +N−2/3+ε with high probability. (7.3)

In [24], this follows from the averaged local law (3.27) without the N−a/2/(Nη) term.
Now we would like to show that even with this extra term, the bound (3.27) is sufficient
to give (7.3). First, we have λ1 6 C with high probability for some constant C > 0 by e.g.
[14, Lemma 3.12]. Now we pick ε to be a sufficiently small constant such that 0 < ε 6 c/4,
and C0 to be a sufficiently large constant such that C0λ+ > C. Set η = N−2/3 and choose
E = λ+ + κ outside of the spectrum with some κ > N−2/3+2ε � Nεη. Then using (3.11),
(3.18) and b 6 N1/3−c, we can verify that

z = E + iη ∈ S̃(c0, C0, c, ε) ∩ {z = E + iη : E > λ+, Nη
√
κ+ η > Nε}.

Then using (3.27), we get that

| Imm(z)− Immc(z)| ≺
N−c/2 +N−ε

Nη
= O

(
N−ε

Nη

)
. (7.4)

On the other hand, if there is an eigenvalue λj satisfying |λj −E| 6 η for some 1 6 j 6 n,
then

Imm(z) =
1

n

n∑
i=1

η

|λi − E|2 + η2
&

1

Nη
. (7.5)

On the other hand, by (3.11) we have

Immc(z) = O

(
η√
κ+ η

)
= O

(
N−ε

Nη

)
.

Together with (7.5), this contradicts (7.4). Hence we obtain that λ1 6 λ+ + N−2/3+2ε

with high probability. Since ε can be arbitrarily chosen, we conclude (7.3). With (3.26)
and (7.3), the rest of the proof for (3.28) and (3.30) is the same as [24], so we omit the
details.

In order to prove Lemma 3.7 and Lemma 7.1, we will extend the resolvent comparison
method developed in [14, 40]. The basic idea is still to use the Lindeberg replacement
strategy for G(X, z). On the other hand, the main difference is that the resolvent
estimates are only obtained from the entrywise local law in [14, 40], while in our case we
need to use the more general anisotropic local law (3.22). (We will use the anisotropic
local law in (7.1) when proving Lemma 7.1. However, for simplicity of presentation, we
will always mention (3.22) instead.)
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We remark that the following proof is similar to the one in [14, Section 6], and
involves some tedious notations bookkeeping. We shall first give the proper notations and
definitions that are adapt to our setting. The proof of the results is then a straightforward
extension of the one in [14] by using the correct notations and applying the stronger
anisotropic local law (3.22). Hence we will only state several key lemmas that are needed
for the argument without presenting all the details of the proof.

Let X = (xiµ) and X̃ = (x̃iµ) be two matrices as in Lemma 3.12. Define a bijective
ordering map Φ on the index set of X as

Φ : {(i, µ) : 1 6 i 6 n, n+ 1 6 µ 6 n+N} → {1, . . . , γmax = nN}.

For any 1 6 γ 6 γmax, we define the matrix Xγ = (xγiµ) such that xγiµ = xiµ if Φ(i, µ) 6 γ,

and xγiµ = x̃iµ otherwise. Then we have X0 = X̃, Xγmax = X, and Xγ has bounded

support q = N−φ for all 0 6 γ 6 γmax. Correspondingly, we define

Hγ :=

(
0 Y γ

(Y γ)∗ 0

)
, Gγ :=

(
−In×n Y γ

(Y γ)∗ −zIN×N

)−1

, (7.6)

where Y γ := Σ1/2U∗XγV Σ̃1/2. Then we define the (n +N)× (n +N) matrices V γ and
W γ by (recall (6.21))

V γ = ∆
xiµ
(iµ), W γ := ∆

x̃iµ
(iµ),

so that Hγ and Hγ−1 can be written as

Hγ = Qγ + V γ , Hγ−1 = Qγ +W γ , (7.7)

for some matrix Qγ that is independent of xiµ and x̃iµ. For simplicity of notations, for
any γ we denote

Sγ := Gγ , T γ := Gγ−1, Rγ :=

(
Qγ −

(
In×n 0

0 zIN×N

))−1

. (7.8)

For convenience, we sometimes drop the superscript from R,S, T if γ is fixed. Under the
above definitions, we can write

S =

(
Qγ −

(
IM×M 0

0 zIN×N

)
+ V γ

)−1

= (I +RV γ)−1R (7.9)

= R−RV γR+ (RV γ)2R+ · · ·+ (−1)l(RV γ)lR+ (−1)l+1(RV γ)l+1S (7.10)

for l ∈ N. On the other hand, we can also expand R in terms of S,

R = (I − SV γ)−1S = S + SV γS + (SV γ)2S + . . .+ (SV γ)lS + (SV γ)l+1R. (7.11)

We have similar expansions for T and R by replacing (V γ , S) with (W γ , T ) in (7.10) and
(7.11). By the bounded support condition, we have

max
γ
‖V γ‖ = O(|xiµ|) ≺ N−φ, max

γ
‖W γ‖ = O(|x̃iµ|) ≺ N−1/2. (7.12)

Note that S, R and T satisfy the following deterministic bounds by (5.9):

sup
z∈S(c0,C0,ε)

max
γ

max {‖Sγ‖, ‖T γ‖, ‖Rγ‖} . sup
z∈S(c0,C0,ε)

η−1 6 N. (7.13)

Then using expansion (7.11) in terms of T,W γ with l = 3, the anisotropic local law (3.22)
for T , and the bound (7.13) for R, we can get that for any deterministic unit vectors
u,v ∈ CI ,

sup
z∈S̃(c0,C0,a,ε)

max
γ
|Rγuv| = O(1) with high probability. (7.14)

From the definitions of V γ and W γ , one can see that it is helpful to introduce the
following notations to simplify the expressions.
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Definition 7.2 (Matrix operators ∗γ). For any two (n+N)× (n+N) matrices A and B,
we define

A ∗γ B := AIγB, Iγ := ∆1
(iµ), Φ(i, µ) = γ. (7.15)

In other words, we have

A ∗γ B = Awiw
∗
µB +Awµw

∗
iB, wi := Σ1/2 ui, wµ := Σ̃1/2 vµ .

We denote the l-th power of A under the ∗γ -product by A∗γ l, i.e.

A∗γm := A ∗γ A ∗γ A ∗γ . . . ∗γ A︸ ︷︷ ︸
l

. (7.16)

Definition 7.3 (Pγ,k and Pγ,k). For k ∈ N, k = (k1, · · · , ks) ∈ Ns with s ∈ N, and
1 6 γ 6 γmax, we define

Pγ,kGuv := G
∗γ(k+1)
uv , Pγ,k

(
p∏
t=1

Gutvt

)
:=

p∏
t=1

Pγ,ktGutvt , (7.17)

where we abbreviate G
∗γ(k+1)
uv ≡ (G∗γ(k+1))uv. If G1 and G2 are products of resolvent

entries as above, then we define

Pγ,k(G1 + G2) := Pγ,kG1 + Pγ,kG2. (7.18)

Note that Pγ,k and Pγ,k are not linear operators, but just notations we use for simplifica-
tion. Similarly, for the product of the entries of G−Π, we define

Pγ,k

(
p∏
t=1

(G−Π)utvt

)
:=

p∏
t=1

Pγ,kt(G−Π)utvt , (7.19)

where

Pγ,k(G−Π)uv :=

{
(G−Π)uv, if k = 0,

G
∗γ(k+1)
uv , otherwise.

Remark 7.4. It is easy to see that for any fixed k ∈ N, Pγ,kGuv is a sum of finitely many
products of (k + 1) resolvent entries of the form Gxy, x,y ∈ {u,v,wi,wµ}. Hence by
(3.22) and (7.14), we can bound Pγ,kGuv by O≺(1). This is one of the main reasons why
we need to prove the stronger anisotropic local law for G, rather than the entrywise
local law only as in [14, 40].

Now we begin to perform the resolvent comparison strategy. The basic idea is to
expand S and T in terms of R using the resolvent expansions as in (7.10) and (7.11), and
then compare the two expressions. The key of the comparison argument is the following
Lemma 7.5. Its proof is almost the same as the one for [40, Lemma 6.5]. In fact, we can
copy their arguments almost verbatim, except for some notational differences. Hence
we omit the details.

Lemma 7.5. Given z ∈ S̃(c0, C0, a, ε) and Φ(i, µ) = γ. Let r > 0 be a fixed constant and
p ∈ N be a fixed integer. Then for S,R in (7.8), we have

E

p∏
t=1

Sutvt =
∑

06k64

AkE
[
(−xiµ)k

]
+

∑
56|k|6r/φ,k∈Np

AkEPγ,k
p∏
t=1

Sutvt + O≺(N−r),

(7.20)

where Ak, 0 6 k 6 4, depend only on R, Ak’s do not depend on the deterministic unit
vectors (ut,vt), 1 6 t 6 p, and we have bounds

|Ak| 6 N−|k|φ/10−2. (7.21)
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Similarly, we have

E

p∏
t=1

(S −Π)utvt =
∑

06k64

ÃkE
[
(−xiµ)k

]
+

∑
56|k|6r/φ,k∈Np

AkEPγ,k
p∏
t=1

(S −Π)utvt + O≺(N−r),

(7.22)

where Ãk, 0 6 k 6 4, again depend only on R. Finally, we have

E

p∏
t=1

Sutvt = E

p∏
t=1

Rutvt +
∑

16|k|6r/φ,k∈Np
ÃkEPγ,k

p∏
t=1

Sutvt + O≺(N−r), (7.23)

where Ãk’s do not depend on (ut,vt), 1 6 t 6 p, and

|Ãk| 6 N−|k|φ/10. (7.24)

Note that the terms Ak, Ãk, Ak and Ãk do depend on γ and we have omitted this
dependence in the above expressions.

Next we use Lemma 7.5 to finish the proof of Lemma 3.7 and Lemma 7.1. It is obvious
that a result similar to Lemma 7.5 also holds for the product of T entries. As in (7.20),
we define the notation Aγ,a, a = 0, 1 as follows:

E

p∏
t=1

Sutvt =
∑

06k64

AkE
[
(−xiµ)k

]
+

∑
56|k|6r/φ,k∈Np

Aγ,0k EPγ,k
p∏
t=1

Sutvt + O≺(N−r),

(7.25)

and

E

p∏
t=1

Tutvt =
∑

06k64

AkE
[
(−x̃iµ)k

]
+

∑
56|k|6r/φ,k∈Np

Aγ,1k EPγ,k
p∏
t=1

Tutvt + O≺(N−r).

(7.26)

Since Ak, 0 6 k 6 4, depend only on R and xiµ, x̃iµ have the same first four moments,
we get from (7.25) and (7.26) that

E

p∏
t=1

Gutvt − E
p∏
t=1

G̃utvt =

γmax∑
γ=1

(
E

p∏
t=1

Gγutvt − E
p∏
t=1

Gγ−1
utvt

)

=

γmax∑
γ=1

56|k|6r/φ∑
k∈Np

(
Aγ,0k EPγ,k

p∏
t=1

Gγutvt −A
γ,1
k EPγ,k

p∏
t=1

Gγ−1
utvt

)
+ O≺(N−r+2),

(7.27)

where we abbreviate G := G(X, z) and G̃ := G(X̃, z). With a similar argument, we also
have

E

p∏
t=1

(G−Π)utvt − E
p∏
t=1

(G̃−Π)utvt

=

γmax∑
γ=1

56|k|6r/φ∑
k∈Np

(
Aγ,0k EPγ,k

p∏
t=1

(Gγ −Π)utvt −A
γ,1
k EPγ,k

p∏
t=1

(Gγ−1 −Π)utvt

)
+ O≺(N−r+2).

(7.28)

EJP 24 (2019), paper 123.
Page 50/57

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP381
http://www.imstat.org/ejp/


Edge universality of separable covariance matrices

Next, we notice that Pγ,k
∏p
t=1G

γ−a
utvt is also a sum of the products of G entries. Hence

we can apply (7.27) to

EPγ,k
p∏
t=1

Gγ−autvt − EPγ,k
p∏
t=1

G̃utvt

with γmax replaced by γ − a. Iterating this process for l = 2r/φ times, we finally can
obtain that∣∣∣∣∣E

p∏
t=1

Gγmax
utvt

∣∣∣∣∣ 6
∣∣∣∣∣E

p∏
t=1

G0
utvt

∣∣∣∣∣
+ O≺

(
max
k,l

(N−2)l(N−φ/10)
∑
i |ki|

∑
γ1,··· ,γl

∣∣∣∣∣EPγl,kl · · · Pγ1,k1

p∏
t=1

G0
utvt

∣∣∣∣∣+N−r+2

)
,

(7.29)

where

1 6 l 6 2r/φ, k1 ∈ Np, k2 ∈ Np+|k1|, k3 ∈ Np+|k1|+|k2|, . . . , and 5 6 |ki| 6
r

φ
.

(7.30)
For the details of the above derivation, we refer the reader to the arguments between
(6.25) and (6.31) in [14]. The above estimate still holds if we replace some of the G

entries with G entries, since we only need to use the absolute bounds for the resolvent
entries. Of course, using (7.28) instead of (7.27), we can obtain a similar estimate∣∣∣∣∣E

p∏
t=1

(Gγmax −Π)utvt

∣∣∣∣∣ 6
∣∣∣∣∣E

p∏
t=1

(
G0 −Π

)
utvt

∣∣∣∣∣ (7.31)

+ O≺

(
max
k,l

(N−2)l(N−φ/10)
∑
i |ki|

∑
γ1,··· ,γl

∣∣∣∣∣EPγl,kl · · · Pγ1,k1

p∏
t=1

(
G0 −Π

)
utvt

∣∣∣∣∣+N−r+2

)
.

Now we use Lemma 7.5, (7.29) and (7.31) to complete the proof of Lemma 3.7 and
Lemma 7.1.

Proof of Lemma 3.7. The proof of this lemma is similar to the one for [14, Lemma
3.17], where the main difference lies in the estimate (7.34) below. We apply (7.31) to
(G−Π)uv(G−Π)uv with p = 2 and r = 3. Recall that X̃ is of bounded support q = N−1/2.
Then by (3.22) and Lemma 3.2, we have

E|(G̃−Π)uv|2 ≺ Ψ2(z). (7.32)

Moreover, by (3.19) the remainder term O≺(N−r+2) = O≺(N−1) in (7.31) is negligible.
Hence it remains to handle the second term on the right-hand side of (7.31), i.e.

(N−2)l
∑

γ1,··· ,γl

∣∣∣Pγl,kl · · · Pγ1,k1

∣∣(G0 −Π
)
uv

∣∣2∣∣∣ . (7.33)

For each product in (7.33), v appears exactly twice in the indices of G. These two v’s
appear as GvwaGwbv in the product, where wa,wb come from some γk and γl via P.

Let v =

(
v1

v2

)
for v1 ∈ CI1 and v2 ∈ CI2 . By Lemma 6.1, after taking the averages

N−2
∑
γk

and N−2
∑
γl

, the term GvwaGwbv contributes a factor

O≺

(
Im
(
z−1G0

v1v1

)
+ Im

(
G0

v2v2

)
+ η

∣∣G0
v1v1

∣∣+ η
∣∣G0

v2v2

∣∣
Nη

)
(7.34)

= O≺

(
Imm2c + Ψ(z)

Nη

)
= O≺(Ψ2(z)), (7.35)
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where we used (3.22). For all the other G factors in the product, we control them by
O≺(1) using (7.14). Thus we have proved that (7.33) ≺ Ψ2(z). Together with (7.31) and
(7.32), this proves Lemma 3.7.

Proof of Lemma 7.1. The proof of this lemma is similar to the one for [14, Lemma 5.2],
where the main difference lies in (7.40) below. For simplicity, we shall prove that

|E (m(z)−mc(z))
p | ≺ |E (m̃(z)−mc(z))

p |+
(
Ψ2(z) + J2 +K

)p
. (7.36)

The proof for (7.2) is exactly the same but with slightly heavier notations (in the product
of p terms, half of them are normal and the other half are complex conjugates).

We define a function of coefficients

f(I, J) = n−p
∏

δitjt , I = (i1, i2, · · · , ip) ∈ Ip1 , J = (j1, j2, · · · , jp) ∈ Ip1 .

It is easy to check that

E
∑
I,J

f(I, J)

p∏
t=1

(Gα −Π)itjt = E(mα −mc)
p, α = 0, γmax. (7.37)

Since A’s do not depend on it and jt, we may consider a linear combination of (7.31)
with coefficients f(I, J) and r = p+ 2:∣∣∣∣∣∣E

∑
I,J

f(I, J)

p∏
t=1

(G−Π)itjt

∣∣∣∣∣∣ =

∣∣∣∣∣∣E
∑
I,J

f(I, J)

p∏
t=1

(G̃−Π)itjt

∣∣∣∣∣∣
+ O≺

max
k,l,γ

(N−φ/10)
∑
i |ki|

∣∣∣∣∣∣E
∑
I,J

f(I, J)Pγl,kl · · · Pγ1,k1

p∏
t=1

(G̃−Π)itjt

∣∣∣∣∣∣+N−p

 .

(7.38)

Now to conclude (7.36), it suffices to control the second term on the RHS of (7.38). We
consider the terms

Pγl,kl · · · Pγ1,k1

p∏
t=1

(G̃−Π)itit , (7.39)

for k1, . . . ,kl satisfying (7.30). For each product in (7.39) and any 1 6 t 6 p, there are
two it’s in the indices of G. These two it’s can only appear as (1) (G̃ − Π)itit in the
product, or (2) G̃itwaG̃wbit , where wa,wb come from some γk and γl via P. Then after
averaging over n−p

∑
i1,··· ,ip , this term becomes either (1) m̃−mc, which is bounded by

K by (7.1), or (2) n−1
∑
it
GitwaGwbit , which is bounded as in (7.34) by

O≺

(
Imm2c + J

Nη

)
= O≺

(
Ψ2(z) + J2

)
. (7.40)

For other G entries in the product with no it, we simply bound them by O≺(1) using (7.1).
Then for any fixed γ1, . . . , γl, k1, . . . ,kl, we have proved that∣∣∣∣∣∣ 1

np

∑
i1,...,ip

EPγl,kl · · · Pγ1,k1

p∏
t=1

(
G̃−Π

)
itit

∣∣∣∣∣∣ ≺ (Ψ2(z) + J2 +K
)p
. (7.41)

Together with (7.38), this concludes (7.36).
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Finally, we give the proof of Theorem 3.10. Its proof is similar to the one for [14,
Theorem 3.16]. We only outline the proof by stating the key lemmas one can prove.
For the matrix X̃ constructed in Lemma 3.12, it satisfies the edge universality by the
following lemma.

Lemma 7.6. Let X(1) and X(2) be two separable covariance matrices satisfying the
assumptions in Theorem 3.6 and the bounded support condition (3.1) with q = N−1/2.
Suppose bN 6 N1/3−c for some constant c > 0. Then there exist constants ε, δ > 0 such
that for any s ∈ R, we have

P(1)
(
N2/3(λ1 − λ+) 6 s−N−ε

)
−N−δ 6 P(2)

(
N2/3(λ1 − λ+) 6 s

)
6 P(1)

(
N2/3(λ1 − λ+) 6 s+N−ε

)
+N−δ,

(7.42)

where P(1) and P(2) denote the laws of X(1) and X(2), respectively.

Proof. The proof of this lemma is similar to the ones in [20, Section 6], [24, Section 6],
[53, Section 4] and [37, Section 10]. The main argument involves a routine application
of the Green’s function comparison method (as the one in Lemma 7.8) near the edge
developed in [24, Section 6] and [53, Section 4]. The proofs there can be easily adapted
to our case using the anisotropic local law (Theorem 3.6), the rigidity of eigenvalues
(Theorem 3.8), and the resolvent identities in Lemma 5.3 and Lemma 6.1.

Now it is easy to see that Theorem 3.10 follows from the following comparison lemma.

Lemma 7.7. Let X and X̃ be two matrices as in Lemma 3.12. Suppose bN 6 N1/3−c for
some constant c > 0. Then there exist constants ε, δ > 0 such that, for any s ∈ R we have

PX̃
(
N2/3(λ1 − λ+) 6 s−N−ε

)
−N−δ 6 PX(N2/3 (λ1 − λ+) 6 s)

6 PX̃
(
N2/3(λ1 − λ+) 6 s+N−ε

)
+N−δ,

(7.43)

where PX and PX̃ are the laws for X and X̃, respectively.

To prove Lemma 7.7, it suffices to prove the following Green’s function comparison
result. Its proof is the same as the one for [14, Lemma 5.5], so we skip the details.

Lemma 7.8. Let X and X̃ be two matrices as in Lemma 3.12. Suppose F : R→ R is a
function whose derivatives satisfy

sup
x
|F (k)(x)|(1 + |x|)−C1 6 C1, k = 1, 2, 3, (7.44)

for some constant C1 > 0. Then for any sufficiently small constant δ > 0 and for any

E,E1, E2 ∈ Iδ :=
{
x : |x− λ+| 6 N−2/3+δ

}
and η := N−2/3−δ, (7.45)

we have

|EF (Nη Imm(z))− EF (Nη Im m̃(z))| 6 N−φ+C2δ, z = E + iη, (7.46)

and∣∣∣∣∣EF
(
N

∫ E2

E1

Imm(y + iη)dy

)
− EF

(
N

∫ E2

E1

Im m̃(y + iη)dy

)∣∣∣∣∣ 6 N−φ+C2δ, (7.47)

where φ is as given in Theorem 3.6 and C2 > 0 is some constant.
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Proof of Lemma 7.7. Although not explicitly stated, it was shown in [24] that if Theorem
3.8 and Lemma 7.8 hold, then the edge universality (7.43) holds. More precisely, in
Section 6 of [24], the edge universality problem was reduced to proving Theorem 6.3 of
[24], which corresponds to our Lemma 7.8. In order for this conversion to work, only the
the averaged local law and the rigidity of eigenvalues are used, which correspond to the
statements in our Theorem 3.8.

Proof of Theorem 3.10. Theorem 3.10 follows immediately combining Lemma 3.12,
Lemma 7.6 and Lemma 7.7.
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