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Abstract

We consider a d-dimensional branching particle system in a random environment.
Suppose that the initial measures converge weakly to a measure with bounded density.
Under the Mytnik-Sturm branching mechanism, we prove that the corresponding
empirical measure Xn

t converges weakly in the Skorohod space D([0, T ];MF (R
d))

and the limit has a density ut(x), where MF (R
d) is the space of finite measures on

Rd. We also derive a stochastic partial differential equation ut(x) satisfies. By using
the techniques of Malliavin calculus, we prove that ut(x) is jointly Hölder continuous
in time with exponent 1

2
− ε and in space with exponent 1− ε for any ε > 0.
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1 Introduction

Consider a d-dimensional branching particle system in a random environment. For
any integer n ≥ 1, the branching events happen at time k

n , k = 1, 2, . . . . The dynamics
of each particle, labelled by a multi-index α, is described by the stochastic differential
equation (SDE):

dxα,nt = dBαt +

∫
Rd
h(y − xα,nt )W (dt, dy), (1.1)

where h is a d× d matrix-valued function on Rd, whose entries hij ∈ L2(Rd), Bα are d-
dimensional independent Brownian motions, and W is a d-dimensional space-time white
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Hölder continuity of the solutions to a class of SPDE’s

Gaussian random field on R+ ×Rd independent of the family {Bα}. The random field W
can be regarded as the random environment for the particle system. The existence and
uniqueness of the Feller process xα,n that solves the SDE (1.1) will be proved in Section
2.

At any branching time each particle dies and it randomly generates offspring. The
new particles are born at the death position of their parents, and inherit the branching-
dynamics mechanism. The branching mechanism we use in this paper follows the one
introduced by Mytnik [23], and studied further by Sturm [30]. Let Xn = {Xn

t , t ≥ 0}
denote the empirical measure of the particle system. One of the main results of this work
is to prove that the empirical measure-valued processes converge weakly to a process
X = {Xt, t ≥ 0}, such that for almost every t ≥ 0, Xt has a density ut(x) almost surely.
By using the techniques of Malliavin calculus, we also establish the almost surely joint
Hölder continuity of u with exponent 1

2 − ε in time and 1− ε in space for any ε > 0.

To compare our results with the classical ones. Let us recall briefly some existing
work in the literature. The one-dimensional model was initially introduced and studied by
Wang ([32, 33]). In these papers, he proved that under the classical Dawson-Watanabe
branching mechanism, the empirical measure Xn converges weakly to a process X =

{Xt, t ≥ 0}, which is the unique solution to a martingale problem.

For the above one dimensional model Dawson et al. [8] proved that for almost every
t > 0, the limit measure-value process X has a density ut(x) a.s. and u is the weak
solution to the following stochastic partial differential equation (SPDE):

ut(x) =µ(x) +

∫ t

0

1

2
(1 + ‖h‖22)∆us(x)ds−

∫ t

0

∫
R

∇x[h(y − x)us(x)]W (ds, dy)

+

∫ t

0

√
us(x)

V (ds, dx)

dx
, (1.2)

where ‖h‖2 is the L2-norm of h, and V is a space-time white Gaussian random field on
R+ ×R independent of W .

Suppose further that h is in the Sobolev space H2
2 (R) and the initial measure has a

density µ ∈ H1
2 (R). Then Li et al. [20] proved that ut(x) is almost surely jointly Hölder

continuous. By using the techniques of Malliavin calculus, Hu et al. [14] improved their
result to obtain the sharp Hölder continuity: they proved that the Hölder exponents are
1
4 − ε in time and 1

2 − ε in space, for any ε > 0.

Our paper is concerned with higher dimensions (d > 1). However in this case, the
super Brownian motion (a special case when h = 0) does not have a density (see e.g.
Corollary 2.4 of Dawson and Hochberg [6]). Thus in higher dimensional case we have to
abandon the classical Dawson-Watanabe branching mechanism and adopt the Mytnik-
Sturm one. As a consequence, the difficult term

√
us(x) in the SPDE (1.2) becomes us(x)

(see equation (3.1) in Section 3 for the exact form of the equation).

We follow the approach introduced in [14] to study the Hölder continuity of the
conditional density of a particle motion using Malliavin calculus. However, because of
the multidimensional setting considered here, new difficulties arise. On one hand, the
integration by parts formulas require higher order Malliavin derivatives which make
computations more complex. To lower the order of Malliavin differentiability in our
framework, we use the combination of Riesz transform and Malliavin calculus, previously
studied in depth by Bally and Caramellino [1] (see Appendix A for the density formula that
we are using). Another difficulty is the fact that in the one-dimensional case considered
in [14], the Malliavin derivative can be expressed explicitly and this type of formula for
the Malliavin derivative is no longer available here. We have to use another approach to
obtain appropriate sharp estimates. More details are given in Appendix A.
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Hölder continuity of the solutions to a class of SPDE’s

This paper is organized as follows. In Section 2 we shall briefly describe the branching
mechanism used in this paper. In Section 3 we state the main results obtained in this
paper. These include three theorems. The first one (Theorem 3.3) is about the existence
and uniqueness of a (linear) stochastic partial differential equation (equation (3.1)),
which is proved (Theorem 3.2) to be satisfied by the density of the limiting empirical
measure process Xn of the particle system (see (2.12)). The core result of this paper is
Theorem 3.4 which intends to give sharp Hölder continuity of the solution ut(x) to (3.1).

Section 4 presents the proofs for Theorems 3.2 and 3.3. The proof of Theorem 3.4 is
the objective of the remaining sections. First, in Section 5, we focus on the one-particle
motion with no branching. By using the techniques from Malliavin calculus, we obtain
a Gaussian type estimates for the transition probability density of the particle motion
conditional on W . This estimate plays a crucial role in the proof of Theorem 3.4. In
Section 6, we derive a conditional convolution representation of the weak solution to the
SPDE (3.1), which is used to establish the Hölder continuity. In Section 7, we show that
the solution u to (3.1) is Hölder continuous.

Lastly, the martingale problem (4.4)–(4.5) is introduced in Section 4 to prove Theo-
rems 3.2 and 3.3. The well-posedness of the martingale problem can be proved under
the assumption that the initial measure has a bounded density. We conjecture that it also
holds for an arbitrary finite initial measure. We will not pursue this in this paper (see
Remark 4.12 (ii)).

2 Branching particle system

We split this section into two parts. In Section 2.1, we consider a finite branching-free
particle system, and prove the existence and uniqueness of this system. In Section 2.2,
we give a brief induction to the Mytnik-Sturm branching mechanism.

2.1 Finite branching-free particle system

In this section, we will show the existence and uniqueness of the finite branching-free
particle system that is determined by (1.1). The one-dimensional analogue is given by
Lemma 1.3 of Wang [32].

Fix a time interval [0, T ]. Let W = {W (t, x), (t, x) ∈ [0, T ] × Rd} be a d-dimensional
space-time white Gaussian random field. For any positive integer n, let {Bi}i∈{1,...,n}
be a family of independent d-dimensional Brownian motions that is independent of W .
Consider an n-particle system, where the motion of each particle is described by the
following stochastic differential equation in a random environment W :

dxit = dBit +

∫
Rd
h(y − xit)W (dt, dy), (2.1)

with initial condition xi0 ∈ Rd for all i = 1, . . . n. In the case n = 1, we omit all upper
indexes in equation (2.1) without confusion.

The following hypothesis for h will be used throughout this paper:

[H0] h = (hij)1≤i,j≤d ∈ H3
2 (Rd;Rd ⊗ Rd). That is, the entries hij of h belongs to the

Sobolev space H3
2 (Rd).

For k = 0, 1, 2, 3, denote by ‖ · ‖k,2 the Sobolev norm on Hk
2 (Rd;Rd ⊗Rd), that is

‖h‖2k,2 :=

d∑
i,j=1

‖hij‖2k,2 =

d∑
i,j=1

(∫
Rd
|hij(x)|2dx

) 1
2

+

d∑
i,j=1

k∑
l=1

d∑
i1,...,il=1

(∫
Rd

∣∣∣ ∂l

∂x1 · · · ∂xl
hij(x)

∣∣∣2dx) 1
2

.
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Hölder continuity of the solutions to a class of SPDE’s

Let ρ : Rd → Rd ⊗Rd be given by

ρ(x) =

∫
Rd
h(z − x)h∗(z)dz, (2.2)

where h∗ = (hji)1≤i,j≤d denotes the transpose of h. Then, for any 1 ≤ i, j ≤ d, and x ∈ Rd,
by Cauchy-Schwarz’s inequality, we have

|ρij(x)| ≤
d∑
k=1

‖hik‖2‖hkj‖2.

We denote by ‖ · ‖2 the Hilbert Schmidt norm for matrices. Then, by Cauchy-Schwarz’s
inequality again, we have

‖ρ‖∞ := sup
x∈Rd

‖ρ(x)‖2 = sup
x∈Rd

( d∑
i,j=1

|ρij(x)|2
) 1

2

≤
( d∑
i,j=1

∣∣∣ d∑
k=1

‖hik‖2‖hkj‖2
∣∣∣2) 1

2

≤
( d∑
i,k=1

‖hik‖22
d∑

j,k=1

‖hkj‖22
) 1

2 ≤ ‖h‖22 ≤ ‖h‖23,2.

Similarly, we can show that the first, second, and third partial derivatives of ρ are
bounded in Rd. We make use of the following notations:

‖ρ‖k,∞ := sup
x∈R

( d∑
i,j=1

d∑
i1,...,ik=1

∣∣∣ ∂k

∂xi1 · · · ∂xik
ρij(x)

∣∣∣2) 1
2

,

for k = 1, 2, 3. Now let us study the SDE’s (2.1). These equations are not coupled and we
solve them for each i separately. For this reason in the next theorem, which provides the
existence and uniqueness of the equation (for each fixed i), we suppress the superscript
index i.

Theorem 2.1. Assume the hypothesis [H0]. Then, there exists a d-dimensional stochas-
tic process x = {xt, 0 ≤ t ≤ T} that is the unique strong solution to the SDE (2.1) (for
each fixed i) with initial condition x0 = x ∈ Rd.

Proof. We prove this theorem by Picard iteration. Let

x
(0)
t = Bt +

∫ t

0

∫
Rd
h(y − x)W (ds, dy),

and let

x
(m)
t = Bt +

∫ t

0

∫
Rd
h(y − x(m−1)

s )W (ds, dy),

for all m ≥ 1. Denote by d(m)
t = x

(m)
t − x(m−1)

t for all t ∈ [0, T ]. Then d
(m)
t satisfies the

following equation

d
(m)
t =

∫ t

0

∫
Rd

[
h(y − x(m)

s )− h(y − x(m−1)
s )

]
W (ds, dy). (2.3)
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An application of the Itô isometry yields that

‖d(m)
t ‖22 =

∥∥∥∫ t

0

∫
Rd

[
h(y − x(m)

s )− h(y − x(m−1)
s )

]
W (ds, dy)

∥∥∥2

2

=E

∫ t

0

∫
Rd

∥∥h(y − x(m)
s )− h(y − x(m−1)

s )
∥∥2

2
dyds

=2‖h‖22t− 2

d∑
i,j=1

∫ t

0

ρij(d(m−1)
s )ds

=2

d∑
i,j=1

∫ t

0

[
ρij(d(m−1)

s )− ρij(0)
]
ds , (2.4)

since
∑d
i,j=1 ρ

ij(0) = ‖h‖22. Noticing that ρij has bounded first partial derivatives, we
have

‖d(m)
t ‖22 ≤ C

∫ t

0

‖d(m−1)
s ‖22ds,

for some constant C independent of m. On the other hand, we can show that

‖x(0)
t − x‖22 =

∥∥∥Bt +

∫ t

0

∫
Rd
h(y − x)W (ds, dy)− x

∥∥∥2

2

≤t+ t‖h‖22 + |x|2.

By iteration, we can conclude that

‖d(m)
t ‖22 ≤

1

(m+ 1)!
(1 + ‖h‖22)tm+1 +

1

m!
|x|2tm, (2.5)

which is summable in m. In other words, for any t ∈ [0, T ], the sequence x
(m)
t is

convergent in L2(Ω). Denote by xt the limit of this sequence.
We claim that x = {xt, 0 ≤ t ≤ T} is a strong solution to (2.1) (recall we suppress the

superscript). It suffices to show that as m→∞,∫ t

0

∫
Rd
h(y − x(m)

s )W (ds, dy)→
∫ t

0

∫
Rd
h(y − xs)W (ds, dy),

in L2(Ω) for all t ∈ [0, T ]. We can easily check this convergence by arguments similar to
those in (2.3)–(2.5).

Suppose that there are two solutions x and x̃ to the SDE (2.1). Let d = x− x̃. Again,
by a similar argument as in (2.3)–(2.5), we have the following inequality

‖dt‖22 ≤ C
∫ t

0

‖ds‖22ds.

Notice that
‖dt‖22 ≤ 2‖xt‖22 + 2‖x̃t‖22 ≤ 4(t+ t‖h‖22) <∞.

An application of Gronwall’s inequality yields ‖dt‖22 ≡ 0.

While equations (2.1) can be solved separately for each fixed i the solutions x1, . . . , xn

are not independent since all of them depend on the common random environment W .
It is easy to see that (x1, . . . , xn) is an nd-dimensional Feller process governed by the
generator

A(n)f(y1, . . . , yn) =
1

2
(∆(n) +B(n))f(y1, . . . , yn), (2.6)
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Hölder continuity of the solutions to a class of SPDE’s

where ∆(n) is the Laplace operator in Rnd,

B(n)f(y1, . . . , yn) =

n∑
k1,k2=1

d∑
i,j=1

ρij(yk1 − yk2)
∂2f

∂yik1∂y
j
k2

(y1, . . . , yn)
, (2.7)

and yk = (y1
k, . . . , y

d
k) ∈ Rd for all k = 1, . . . , n. This is similar to (1.19) of Wang [32] for

the one-dimensional case.

2.2 The Mytnik-Sturm branching mechanism

In this section, we briefly construct the branching particle system. For further study
of this branching mechanism, we refer the readers to Mytnik’s and Sturm’s papers (see
[23, 30]).

We start this section by introducing some notation. For any integer k ≥ 0, we denote
by Ckb (Rd) the space of k times continuously differentiable functions on Rd which are
bounded together with their derivatives up to the order k. Also, Hk

2 (Rd) is the Sobolev
space of square integrable functions on Rd which have square integrable derivatives
up to the order k. For any differentiable function φ on Rd, we make use of the notation
∂i1···imφ(x) = ∂m

∂xi1 ···∂xim
φ(x).

We write MF (Rd) for the space of finite measures on Rd equipped with the weak
topology. We denote by D([0, T ],MF (Rd)) the Skorokhod space of càdlàg functions on
time interval [0, T ], taking values in MF (Rd). For any φ ∈ Cb(Rd) and µ ∈ MF (Rd), we
write

〈µ, φ〉 = µ(φ) :=

∫
Rd
φ(x)µ(dx). (2.8)

Let I := {α = (α0, α1, . . . , αN ), α0 ∈ {1, 2, 3 . . . }, αi ∈ {1, 2}, for 1 ≤ i ≤ N} be a set of
multi-indexes. In our model I is the index set of all possible particles. In other words,
initially there are a finite number of particles and each particle generates at most 2

offspring. For any particle α = (α0, α1, . . . , αN ) ∈ I, let α − 1 = (α0 . . . , αN−1), α − 2 =

(α0, . . . , αN−2), . . . , α−N = (α0) be the ancestors of α. Then, |α| = N is the number of
the ancestors of the particle α. It is easy to see that the ancestors of any particle α are
uniquely determined.

Fix a time interval [0, T ]. Let (Ω,F , P ) be a complete probability space, on which
{Bαt , t ∈ [0, T ]}α∈I are independent d-dimensional standard Brownian motions, and W is
a d-dimensional space-time white Gaussian random field on [0, T ]×Rd independent of
the family {Bα}.

Let xt = x(x0, B
α, r, t), where 0 ≤ r ≤ t ≤ T , be the unique solution to the following

SDE:

xt = x0 +Bαt −Bαr +

∫ t

r

∫
Rd
h(y − xs)W (ds, dy), (2.9)

where x0 ∈ Rd, r ∈ [0, t) and h is a d × d matrix-valued function. We assume that h
satisfies hypothesis [H0].

For any t ∈ [0, T ], let tn = bntc
n be the last branching time before t. For any α =

(α0, α1, . . . , αN ), if ntn = bntc ≤ N , let αt = (α0, . . . , αbntc) be the ancestor of α at time t.
Suppose that each particle, which starts from the death place of its parent, moves in Rd

following the motion described by the SDE (2.9) during its lifetime. Then, the path of
any particle α and all its ancestors, denoted by xα,nt , is given by

xα,nt = xαt,nt =


x
(
xnα0

, B(α0), 0, t
)
, 0 ≤ t < 1

n ,

x
(
xαt−1,n

t−n
, Bαt , tn, t

)
, 1

n ≤ t <
N+1
n ,

∂, otherwise.
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Here xnα0
∈ Rd is the initial position of particle (α0), xαt−1,n

t−n
:= lims↑tn x

αt−1,n
s , and ∂

denotes the “cemetery”-state, that can be understood as a point at infinity.
Let ξ = {ξ(x), x ∈ Rd} be a real-valued random field on Rd with covariance

E
(
ξ(x)ξ(y)

)
= κ(x, y), (2.10)

for all x, y ∈ Rd. Assume that ξ satisfies the following conditions:

[H1] (i) ξ is symmetric, that is P(ξ(x) > z) = P(ξ(x) < −z) for all x ∈ Rd and z ∈ R.

(ii) sup
x∈Rd

E
(
|ξ(x)|p

)
<∞ for some p > 2.

(iii) κ is continuous and bounded on Rd ×Rd.

For any n ≥ 1, the random field ξ is used to define the offspring distribution after
a scaling 1√

n
. In order to make the offspring distribution a probability measure, we

introduce the truncation of the random field ξ, denoted by ξn, as follows:

ξn(x) =


√
n, if ξ(x) >

√
n,

−
√
n, if ξ(x) < −

√
n,

ξ(x), otherwise.

(2.11)

The correlation function of the truncated random field is then given by

κn(x, y) = E
(
ξn(x)ξn(y)

)
.

Let (ξni )i≥0 be independent copies of ξn. Denote by ξn+
i and ξn−i the positive and

negative part of ξni respectively. Let Nα,n ∈ {0, 1, 2} be the offspring number of the

particle α at the branching time |α|+1
n . Assume that {Nα,n, |α| = i} are conditionally

independent given ξni and the position of α at its branching time, with a distribution
given by

P
(
Nα,n = 2| ξni , x

α,n
i+1
n

−

)
=

1√
n
ξn+
i

(
xα,ni+1

n

−

)
,

P
(
Nα,n = 0| ξni , x

α,n
i+1
n

−

)
=

1√
n
ξn−i

(
xα,ni+1

n

−

)
,

P
(
Nα,n = 1| ξni , x

α,n
i+1
n

−

)
= 1− 1√

n
|ξni |
(
xα,ni+1

n

−

)
.

For any particle α = (α0, . . . , αN ), α is called to be alive at time t, denoted by α ∼n t,
if the following conditions are satisfied:

(i) There are exactly N branching before or at t: bntc = N .

(ii) α has an unbroken ancestors line: αN−i+1 ≤ Nα−i,n, for all i = 1, 2, . . . , N .

[Introduction ofNα,n allows the particle α produce one more generation, namely, produce
new particle (α,Nα,n). However, (α, 0) is considered no longer alive and will not produce
offspring any more.] For any n, denote by Xn = {Xn

t , t ∈ [0, T ]} the empirical measure-
valued process of the particle system. Then, Xn is a discrete measure-valued process,
given by

Xn
t =

1

n

∑
α∼nt

δxα,nt , (2.12)

where δx is the Dirac measure at x ∈ Rd, and the sum is among all alive particles at time
t ∈ [0, T ]. Then, for any φ ∈ C2

b (Rd), with the notation (2.8), we have

Xn
t (φ) =

∫
Rd
φ(x)Xn

t (dx) =
1

n

∑
α∼n

φ(xα,nt ).
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3 Main results

Let (Ω,F , {Ft}t∈[0,T ], P ) be a complete filtered probability space that satisfies the
usual conditions. Suppose that W is a d-dimensional space-time white Gaussian random
field on [0, T ] × Rd, and V is a one-dimensional Gaussian random field on [0, T ] × Rd
independent of W , that is time white and spatially colored with correlation κ defined in
(2.10):

E
(
V (t, x)V (s, y)

)
= (t ∧ s)κ(x, y),

for all s, t ∈ [0, T ] and x, y ∈ Rd. Assume that {W (t, x), x ∈ Rd}, {V (t, x), x ∈ Rd} are
Ft-measurable for all t ∈ [0, T ], and {W (t, x)−W (s, x), x ∈ Rd}, {V (t, x)−V (s, x), x ∈ Rd}
are independent of Fs for all 0 ≤ s < t ≤ T .

Denote by A∗ the adjoint of A, where A = A(1) is the generator defined in (2.6).
Consider the following SPDE:

ut(x) =µ(x) +

∫ t

0

A∗us(x)ds−
d∑

i,j=1

∫ t

0

∫
Rd

∂

∂xi

[
hij(y − x)us(x)

]
W j(ds, dy)

+

∫ t

0

us(x)
V (ds, dx)

dx
. (3.1)

Definition 3.1. Let u = {ut(x), t ∈ [0, T ], x ∈ Rd} be a random field. Then,

(i) u is said to be a strong solution to the SPDE (3.1), if u is jointly measurable on
[0, T ]×Rd×Ω, adapted to {Ft}t∈[0,T ] and for any φ ∈ C2

b (Rd), the following equation
holds for every t ∈ [0, T ]:∫

Rd
φ(x)ut(x)dx =

∫
Rd
φ(x)µ(x)dx+

∫ t

0

∫
Rd
Aφ(x)us(x)dxds

+

∫ t

0

∫
Rd

[ ∫
Rd
∇φ(x)∗h(y − x)us(x)dx

]
W (ds, dy)

+

∫ t

0

∫
Rd
φ(x)us(x)V (ds, dx), a.s. (3.2)

where the last two stochastic integrals are Walsh’s integral (see e.g. Walsh [31]).

The solution to (3.1) is said to be pathwise unique, if whenever u and ũ are two
solutions to (3.1), then there exists a set G ∈ F of probability one, such that
ut(ω) = ũt(ω) for all t ∈ [0, T ] and ω ∈ G.

(ii) u is said to be a weak solution to the SPDE (3.1), if there exists a filtered probability
space, on which W and V are independent random fields that satisfy the above
properties, such that u is a strong solution with this probability space.

Let Xn = {Xn
t , 0 ≤ t ≤ T} be defined by (2.12). In order to show the convergence of

Xn in D([0, T ];MF (Rd)), we make use of the following hypotheses on the initial measures
Xn

0 :

[H2] (i) sup
n≥1
|X(n)

0 (1)| <∞.

(ii) Xn
0 ⇒ X0 in MF (Rd) as n→∞.

(iii) X0 has a bounded density µ.

In Section 4 we prove the following two theorems.
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Theorem 3.2. Let Xn be defined in (2.12). Then, under hypotheses [H1] and [H2], we
have the following results:

(i) Xn ⇒ X in D([0, T ],MF (Rd)) as n→∞.

(ii) The limit X = {Xt, t ∈ [0, T ]} is a continuous MF (Rd)-valued process. In addition,
for almost all ω ∈ Ω and every t ∈ [0, T ], as a finite measure on Rd, Xt(ω) has a
density ut(x, ω).

(iii) u = {ut(x), t ∈ [0, T ], x ∈ Rd} is a weak solution to the SPDE (3.1) in the sense of
Definition 3.1.

Theorem 3.3. Assume the hypotheses [H1] and [H2] (iii). The SPDE (3.1) has a jointly
continuous strong solution, which is pathwise unique in the space of jointly continuous
solutions in the sense of Definition 3.1.

The last main result in this paper is the following theorem concerning the Hölder
continuity of the solution to the SPDE (3.1).

Theorem 3.4. Let u = {ut(x), t ∈ [0, T ], x ∈ Rd} be the strong solution to the SPDE
(3.1) in the sense of Definition 3.1. Then, for any β1, β2 ∈ (0, 1) and p > 1, there exists
a constant C that depends on T , d, h, p, β1, and β2, such that for all x, y ∈ Rd and
0 < s < t ≤ T

‖ut(x)− us(y)‖2p ≤ Cs
− 1

2

(
|x− y|β1 + |t− s| 12β2

)
.

Hence by Kolmogorov’s criteria, ut(x) is almost surely jointly Hölder continuous on
(0, T ]×Rd, with exponent β1 ∈ (0, 1) in space and β2 ∈ (0, 1

2 ) in time.

4 Proof of Theorems 3.2 and 3.3

We prove Theorems 3.2 and 3.3 in the following steps:

(i) In Section 4.1, we show that {Xn}n≥1 is a tight sequence in D([0, T ];MF (Rd)), and
the limit of any convergent subsequence in law solves a martingale problem.

(ii) In Section 4.2, we show that any solution to the martingale problem has a density
almost surely.

(iii) In Section 4.3, we show the equivalence between martingale problem (see e.g.
(4.4)–(4.5) below) and the SPDE (3.1). Finally, we prove Theorems 3.2 and 3.3.

4.1 Tightness and martingale problem

Recall the empirical measure-valued process Xn = {Xn
t , t ∈ [0, T ]} given by (2.12).

Let A = A(1) be the generator of one particle motion defined in (2.6). For any φ ∈ C2
b (Rd),

similar to equality (49) of Sturm [30], we can decompose Xn
t as follows:

Xn
t (φ) = Xn

0 (φ) + Znt (φ) +M b,n
t (φ) +Bnt (φ) + Unt (φ), (4.1)

where

Znt (φ) =

∫ t

0

Xn
u (Aφ)du,

M b,n
t (φ) = M b,n

tn (φ) =
1

n

∑
sn<tn

∑
α∼nsn

φ
(
xα,n
sn+ 1

n

)
(Nα,n − 1),

Bnt (φ) =
1

n

( ∑
sn<tn

∑
α∼nsn

∫ sn+ 1
n

sn

∇φ(xα,nu )∗dBαu +
∑
α∼nt

∫ t

tn

∇φ(xα,nu )∗dBαu

)
,
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and

Unt (φ) =
1

n

( ∑
sn<tn

∑
α∼nsn

∫ sn+ 1
n

sn

∫
Rd
∇φ(xα,nu )∗h(y − xα,nu )W (du, dy)

+
∑
α∼nt

∫ t

tn

∫
Rd
∇φ(xα,nu )∗h(y − xα,nu )W (du, dy)

)
.

Notice that

E
∑

α∼nsn

∫ sn+ 1
n

sn

∫
Rd

∣∣∣∇φ(xα,nu )∗h(y − xα,nu )
∣∣∣2dydu

≤
∑

|α|=bsnc

E

∫ sn+ 1
n

sn

∫
Rd

∣∣∣∇φ(xα,nu )∗h(y − xα,nu )
∣∣∣dydu

≤2nTn−1N0‖φ‖1,∞‖h‖2 <∞,

where N0 denotes the number of initial particles, that is a finite integer. Therefore, by
the stochastic Fubini theorem (see, e.g., Lemma 4.1 on page 116 of Ikeda and Watanabe
[15]), we can write:

Unt (φ) =

∫ t

0

∫
Rd

(∫
Rd
∇φ(x)∗h(y − x)Xu(dx)

)
W (du, dy).

As in Sturm [30], consider the natural filtration, generated by the process Xn

Fnt = σ
(
{xα,n, Nα,n

∣∣|α| < bntc} ∪ {xα,ns , s ≤ t, |α| = bntc}
)
,

and a discrete filtration at branching times

F̃ntn = σ
(
Fntn ∪ {x

α,n
∣∣|α| = ntn}

)
= Fn(tn+n−1)− .

Then, Bnt (φ) and Unt (φ) are continuous Fnt -martingales, while M b,n
t (φ) is a discrete

F̃ntn -martingale.

Lemma 4.1. Assume hypotheses [H0], [H1], [H2] (i) and (ii). Let p > 2 be given in
hypothesis [H1]. Then, for all φ ∈ C2

b (Rd),

(i) E
(

sup
0≤t≤T

|Xn
t (φ)|p

)
, E
(

sup
0≤t≤T

|M b,n
t (φ)|p

)
and E

(
sup

0≤t≤T
|Unt (φ)|p

)
are bounded uni-

formly in n ≥ 1.

(ii) E
(

sup
0≤t≤T

|Bnt (φ)|p
)
→ 0, as n→∞.

Proof. (i) By the same argument as that for Lemma 3.1 of Sturm [30], we can show that

E
(

sup
0≤t≤T

|M b,n
t (1)|p

)
≤ C

∫ T

0

E
(

sup
0≤s≤t

|Xn
s (1)|p

)
dt

where the constant C > 0 does not depend on n. Again similarly as Strum did for (58) of
[30], we can also deduce the following inequality

E
(

sup
0≤t≤T

|Xn
t (1)|p

)
≤C
(

1 + E
(

sup
0≤t≤T

|M b,n
tn (1)|p

))
≤C1 + C2

∫ T

0

E
(

sup
0≤s≤t

|Xn
s (1)|p

)
dt,
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where C1, C2 are constants independent of n. Notice that

sup
0≤t≤T

|Xn
t (1)| ≤ 2nT

Nn
0

n
,

that is bounded for fixed n. Then, it follows from Gronwall’s inequality that the sequence{
E
(

sup
0≤t≤T

|Xn
t (1)|p

)}
n≥1

is uniformly bounded in n.

The uniform boundedness of E
(

sup
0≤t≤T

|Xn
t (φ)|p

)
and E

(
sup

0≤t≤T
|M b,n

t (φ)|p
)

follows

immediately.
We estimate Unt (φ) as follows:

〈Un(φ)〉t =
〈∫ ·

0

∫
Rd

(∫
Rd
∇φ(x)∗h(y − x)Xn

u (dx)
)
W (du, dy)

〉
t

=

d∑
j=1

∫ t

0

∫
Rd

( d∑
i=1

∫
Rd
∂iφ(x)hij(y − x)Xn

u (dx)
)2

dydu

=

∫ t

0

∫
Rd×Rd

∇φ(x)∗ρ(x− z)∇φ(z)Xn
u (dx)Xn

u (dz)du

≤‖ρ‖∞‖φ‖21,∞
∫ T

0

|Xn
u (1)|2 du. (4.2)

Thus by (4.2), Burkholder-Davis-Gundy’s and Jensen’s inequalities, we have

E
(

sup
0≤t≤T

|Unt (φ)|p
)
≤cpE

(
〈Un(φ)〉

p
2

T

)
≤ cp‖ρ‖

p
2∞‖φ‖p1,∞T

p
2−1E

(∫ T

0

|Xn
u (1)|pdu

)
≤cp‖ρ‖

p
2∞‖φ‖p1,∞T

p
2E
(

sup
0≤t≤T

|Xn
t (1)|p

)
, (4.3)

that is also uniformly bounded in n.
(ii) Note that {Bα} are independent Brownian motions. Then, by Burkholder-Davis-

Gundy’s inequality, we have

E
(

sup
0≤t≤T

|Bnt (φ)|2
)
≤ c2
n2

[ ∑
sn<Tn

∑
α∼nsn

E
(∫ sn+ 1

n

sn

|∇φ(xα,nu )|2du
)

+
∑
α∼nt

E
(∫ T

Tn

|∇φ(xα,nu )|2du
)]

=
c2
n
E
(∫ T

0

∫
Rd
|∇φ(x)|2Xu(dx)du

)
≤ c2

n
‖φ‖21,∞TE

(
sup

0≤t≤T
|Xn

t (1)|p
)
→ 0,

because E
(

sup
0≤t≤T

|Xn
t (1)|p

)
is uniformly bounded in n.

As a consequence of Lemma 4.1, the collection{
sup

0≤t≤T
|Xn

t (φ)|2, sup
0≤t≤T

|M b,n
t (φ)|2, sup

0≤t≤T
|Unt (φ)|2

}
n≥1

is uniformly integrable.

Definition 4.2. Let {Xα} be a collection of real-valued stochastic processes. A family
of stochastic processes {Xα} is said to be C-tight, if it is tight, and the limit of any
subsequence is continuous.
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Lemma 4.3. Assume hypotheses [H0], [H1], [H2] (i) and (ii). For all φ ∈ C2
b (Rd),

M b,n(φ), Zn(φ), and Xn(φ) and Un(φ) are C-tight sequences in D([0, T ],R).

Proof. By an argument that used by Sturm in the proof of Lemma 3.6 in [30], we can
deduce the C-tightness of M b,n(φ) and Zn(φ).

We prove the tightness of Xn
t (φ) by checking Aldous’s conditions (see e.g. Theorem

4.5.4 of Dawson [5]). By Chebyshev’s inequality, for any fixed t ∈ [0, T ], and N > 0, we
have

P (|Xn
t (φ)| > N) ≤ 1

Np
E
(
|Xn

t (φ)|p
)
≤ 1

Np
E
(

sup
0≤t≤T

|Xn
t (φ)|p

)
→ 0,

uniformly in n as N →∞ by Lemma 4.1 (i).
On the other hand, for any n ≥ 1, we extend Xn to the time interval [0, Tn+ 1

n ] in such
a way that Xn performs the same diffusion/branching mechanism as before on [T, Tn+ 1

n ].

Denote by X̃n = {X̃n(t), t ∈ [0, Tn + 1
n ]} the extended process. Then, by Theorem 10.13

of Dynkin [10], we know that X̃n is a strong Markov process on [0, Tn + 1
n ].

Let {τn}n≥1 be any collection of stopping times bounded by T and let {δn}n≥1 be any
positive sequence that decreases to 0, such that τn + δn ≤ T . Then, due to the uniform

boundedness of E
(

sup
0≤t≤T

|Xn
t (φ)|p

)
and the strong Markov property of X̃n, we have

P
(∣∣Xn

τn+δn(φ)−Xn
τn(φ)

∣∣ > ε
)

=P
(∣∣X̃n

τn+δn(φ)− X̃n
τn(φ)

∣∣ > ε
)

=P
(∣∣∣X̃n

δn(φ)− X̃n
0 (φ)

∣∣∣ > ε
)
≤ 1

εp
E
( ∣∣∣X̃n

δn(φ)− X̃n
0 (φ)

∣∣∣p )
≤δ

p
2
n

εp
cp‖ρ‖

p
2∞‖φ‖p∞

[
E
(

sup
0≤t≤T

|Xn
t (1)|p

)
+ E

(
|Xn

0 (1)|p
)]

→0,

as n→ 0. Thus both of Aldous’s conditions are satisfied, and then it follows that Xn
t (φ)

is tight in D([0, T ],R).
Recall the decomposition formula (4.1):

Xn
t (φ) = Xn

0 (φ) + Znt (φ) +M b,n
t (φ) +Bnt (φ) + Unt (φ).

Notice that Xn(φ), Zn(φ), M b,n(φ) are tight sequences as proved just above, Xn
0 (φ)

converges weakly by assumption, and Bnt (φ) converges 0 in L2(Ω) uniformly for all
t ∈ [0, T ] by Lemma 4.1 (ii). As a consequence, Un(φ) is tight in D([0, T ],R). In addition,
by Proposition VI.3.26 of Jacod and Shiryaev [16], every limit of a tight sequence of
continuous process Un(φ) is continuous. It follows that Un(φ) and Xn(φ) are C-tight
sequences in D([0, T ];R).

Let S = S (Rd) be the Schwartz space on Rd, and let S ′ be the dual of S . Then, we
have the following lemma.

Lemma 4.4. Assume hypotheses [H0], [H1] and [H2] (i), (ii). Then,

(i) {Xn}n≥1 is a C-tight sequence in D([0, T ];MF (Rd)).

(ii) {Bn}n≥1, {M b,n}n≥1, and {Un}n≥1 are C-tight in D([0, T ]; S ′).

Proof. Let R̂d = Rd ∪ {∂} be the one point compactification of Rd. Then, by Theorem
4.6.1 of Dawson [5] and Lemma 4.3, {Xn}n≥1 is a tight sequence in D([0, T ];MF (R̂d)).

On the other hand, by the same argument as in Lemma 3.9 of Sturm [30], we can show
that any limit of a weakly convergent subsequence Xnk in D([0, T ];MF (R̂d)) belongs to
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C([0, T ];MF (Rd)), the space of continuous MF (Rd)-valued functions on [0, T ]. Therefore,
{Xn}n≥1 is a C-tight sequence in D([0, T ];MF (Rd)).

To show property (ii), notice that S ⊂ C2
b (Rd). Then, by Theorem 4.1 of Mitoma [22],

{Bn}n≥1, {M b,n}n≥1, and {Un}n≥1 are C-tight in D([0, T ]; S ′).

Proposition 4.5. Assume hypotheses [H0], [H1], [H2] (i) and (ii). Let X be the
limit of a weakly convergent subsequence {Xnk}k≥1 in D([0, T ];MF (Rd)). Then, X
is a solution to the following martingale problem: for any φ ∈ C2

b (Rd), the process
M(φ) = {Mt(φ) : 0 ≤ t ≤ T}, given by

Mt(φ) :=Xt(φ)−X0(φ)−
∫ t

0

Xs(Aφ)ds, (4.4)

is a continuous and square integrable FXt -adapted martingale with quadratic variation:

〈M(φ)〉t =

∫ t

0

∫
Rd×Rd

∇φ(x)∗ρ(x− y)∇φ(y)Xs(dx)Xs(dy)ds

+

∫ t

0

∫
Rd×Rd

κ(x, y)φ(x)φ(y)Xs(dx)Xs(dy)ds. (4.5)

Proof. Let {Xnk}k≥1 be a weakly convergent subsequence in D([0, T ];MF (Rd)). By
taking further subsequences, we can assume, in view of Lemma 4.4 (ii), that {Bnk}k≥1,
{M b,nk}k≥1, and {Unk}k≥1 are weakly convergent subsequences in D([0, T ]; S ′).

Therefore, by Skorokhod’s representation theorem, there exists a probability space
(Ω̃,F̃ , P̃), on which (X̃nk , M̃ b,nk , B̃nk , Ũnk) has the same joint distribution as
(Xnk ,M b,nk , Bnk , Unk) for all k ≥ 1, and converge a.s. to (X̃, M̃ b, B̃, Ũ) in the prod-
uct space D([0, T ],MF (R̂d))×D([0, T ],S ′)3.

Then, for any φ ∈ S ′, (X̃nk(φ), M̃ b,nk(φ), B̃nk(φ), Ũnk(φ)) converges a.s. in

D([0, T ],R)4. Since
{

sup
0≤t≤T

|Xn
t (φ)|2, sup

0≤t≤T
|M b,n

t (φ)|2, sup
0≤t≤T

|Unt (φ)|2
}
n≥1

is uniformly

integrable, the convergence is also in L2([0, T ]× Ω).
For any t ∈ [0, T ], let

M̃nk
t (φ) := X̃nk

t (φ)− X̃nk
0 (φ)−

∫ t

0

X̃nk
s (Aφ)ds = M̃ b,nk

t (φ) + B̃nkt (φ) + Ũnkt (φ).

Then, it converges to a continuous and square integrable martingale M̃(φ) = M̃ b(φ) +

Ũ(φ) in L2(Ω̃) with respect to its natural filtration.
The next step is to compute the quadratic variation of M̃(φ). Notice that W and

{Bα} are independent, then Un and Bn are orthogonal. As a consequence, Ũnk and
B̃nk are also orthogonal. On the other hand, M̃ b,n(φ) is a pure jump martingale, while
Ũnk(φ) and B̃nk(φ) are continuous martingales. Due to Theorem 43 on page 353 of
Dellacherie and Meyer [9], M̃ b,n(φ), B̃nk(φ) and Ũnk(φ) are mutually orthogonal. By the
same argument as in Lemma 4.1, we can show that 〈M̃ b,nk(φ) + B̃b,nk(φ) + Ũnk(φ)〉t =

〈M̃ b,nk(φ)〉t + 〈B̃b,nk(φ)〉t + 〈Ũnk(φ)〉t are uniformly integrable. Then, by Theorem II.4.5
of Perkins [26], we have

〈M̃ b,nk(φ) + B̃b,nk(φ) + Ũnk(φ)〉t = 〈M̃ b,nk(φ)〉t + 〈B̃b,nk(φ)〉t + 〈Ũnk(φ)〉t
→ 〈M̃ b(φ)〉t + 〈Ũ(φ)〉t = 〈M̃(φ)〉t

as k →∞ in D([0, T ],R) in probability.
On the other hand, by the same argument of Lemma 3.8 of Sturm [30], we have

〈M̃ b(φ)〉t = lim
k→∞

〈M̃ b,nk(φ)〉t =

∫ t

0

∫
Rd×Rd

κ(x, y)φ(x)φ(y)X̃s(dx)X̃s(dy)ds, a.s.
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For 〈Ũ(φ)〉t, by (4.2), since X̃nk(φ)→ X̃(φ) in L2([0, T ]× Ω), it follows that

lim
k→∞

〈Ũnk(φ)〉t = lim
k→∞

∫ t

0

∫
Rd×Rd

∇φ(x)∗ρ(x− z)∇φ(z)X̃n
u (dx)X̃n

u (dz)du

=

∫ t

0

∫
Rd×Rd

∇φ(x)∗ρ(x− z)∇φ(z)X̃u(dx)X̃u(dz)du.

As a consequence, M̃ = {M̃t, t ∈ [0, T ]}, where

M̃t(φ) = X̃t(φ)− X̃0(φ)−
∫ t

0

X̃s(Aφ)ds = M̃ b
t (φ) + B̃t(φ) + Ũt(φ),

is a continuously square integrable martingale with the quadratic variation given by the
expression (4.5).

Finally, by the same argument as in Theorem II in Section 4.2 of Perkins [26], we can
show M̃(φ) is an F X̃ -adapted martingale.

4.2 Absolute continuity

Assume hypotheses [H0] and [H1]. Let Xt be a solution to the martingale problem
(4.4)–(4.5). In this section, we show that for almost every t ∈ [0, T ], as an MF (Rd)-valued
random variable, Xt has a density almost surely.

For any n ≥ 1, f ∈ C2
b (Rnd), and µ ∈MF (Rd), we define

µ⊗n(f) :=

∫
Rd
· · ·
∫
Rd
f(x1, . . . , xn)µ(dx1) · · ·µ(dxn).

We derive the moment formula E(X⊗nt (f)) of the process X. In the one-dimensional
Dawson-Watanabe branching case, Skoulakis and Adler [27] obtained the formula by
computing the limit of particle approximations. An alternative approach by Xiong [34]
consists in differentiating a conditional stochastic log-Laplace equation. In the present
paper we use the techniques of moment duality to derive the moment formula. It can be
also formulated by computing the limit of particle approximations.

For any integers n ≥ 2 and k ≤ n, we make use of the notation xk = (x1
k, . . . , x

d
k) ∈ Rd

and x = (x1, . . . , xn) ∈ Rnd. Let Φ
(n)
ij : C2

b (Rnd) → C2
b (Rnd), and F (n), G(n) : C2

b (Rnd) ×
MF (Rd)→ R be given by

(Φ
(n)
ij f)(x1, . . . , xn) := κ(xi, xj)f(x1, . . . , xn), i, j ∈ {1, 2, . . . , n},

F (n)(f, µ) := µ⊗n(f),

and

G(n)(f, µ) := µ⊗n(A(n)f) +
1

2

∑
1 ≤ i, j ≤ n

i 6= j

µ⊗n(Φ
(n)
ij f),

where κ ∈ C2
b (R2d) is the correlation of the random field ξ given by (2.10), and A(n) is

the generator of n-particle motion defined in (2.6).

Lemma 4.6. Let Xt be a solution to the martingale problem (4.4)–(4.5). Then, for any
n ≥ 2 and f ∈ C2

b (Rnd), the following process

F (n)(f,Xt)−
∫ t

0

G(n)(f,Xs)ds

is a martingale.
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Hölder continuity of the solutions to a class of SPDE’s

Proof. See Lemma 1.3.2 of Xiong [35].

Let {T (n)
t }t≥0 be the semigroup generated by A(n), that is, T (n)

t : C2
b (Rnd)→ C2

b (Rnd),
given by

T
(n)
t f(x1, . . . , xn) =

∫
Rnd

p(t, (x1, . . . , xn), (y1, . . . , yn))f(y1, . . . , yn)dy1 . . . dyn,

where p is the transition density of n-particle-motion.

Let {S(n)
k }k≥1 be i.i.d. uniformly distributed random variables taking values in the set

{Φij , 1 ≤ i, j ≤ n, i 6= j}. Let {τk}k≥1 be i.i.d exponential random variables independent

of {S(n)
k }k≥1, with rate λn = 1

2n(n− 1). Let η0 ≡ 0, and ηj =
∑j
i=1 τi for all j ≥ 1. For any

f ∈ C2
b (Rnd), we define a C2

b (Rnd)-valued random process Y (n) = {Y (n)
t , 0 ≤ t ≤ T} as

follows: for any j ≥ 0 and t ∈ [ηj , ηj+1),

Y
(n)
t := T

(n)
t−ηjS

(n)
j T (n)

τj · · ·S
(n)
2 T (n)

τ2 S
(n)
1 T (n)

τ1 f. (4.6)

Then, Y (n) is a Markov process with Y
(n)
0 = f . It involves countable many i.i.d. jumps

S
(n)
k , controlled by i.i.d. exponential clocks τk. In between jumps, the process evolves

deterministically by the continuous semigroup T (n)
t . Notice that the exponential clock

is memoryless, and the semigroup T
(n)
t is generated by a time homogeneous Markov

process. Therefore, Y (n) is also time homogeneous.

Lemma 4.7. For any n ≥ 2 and f ∈ C2
b (Rnd), let Y (n)

t be defined in (4.6). Then

E
(

sup
x∈Rnd

∣∣Y (n)
t (x)

∣∣) ≤ ‖f‖∞ exp (‖κ‖∞λnt) . (4.7)

Proof. Since T (n)
t is the semigroup generated by a Markov process, for any t > 0 and

f ∈ C2
b (Rnd), ‖T (n)

t f‖∞ ≤ ‖f‖∞. By definition of jump operators {S(n)
j }j≥1, it is easy to

see that ‖S(n)
j f‖∞ ≤ ‖κ‖∞‖f‖∞. Thus we have

E
(

sup
x∈Rnd

∣∣Y (n)
t (x)

∣∣) ≤ ‖f‖∞ ∞∑
j=0

[
‖κ‖j∞P(ηj < t)

]
. (4.8)

Notice that ηj is the sum of i.i.d. exponential random variables. Then, we have

P(ηj < t) = 1− exp (−λnt)
j−1∑
k=0

(λnt)
k

k!
= exp(λn(t′ − t)) (λnt)

j

j!
, (4.9)

for some t′ ∈ (0, t). Therefore, (4.7) follows from (4.8) and (4.9).

Let H(n) : C2
b (Rnd)×MF (Rd)→ R be given by

H(n)(f, µ) := G(n)(f, µ)− λnF (n)(f, µ).

Lemma 4.8. Let n ≥ 2 and µ ∈MF (Rd). Then, the process

F (n)(Y
(n)
t , µ)−

∫ t

0

H(n)(Y (n)
s , µ)ds (4.10)

is a martingale.
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Hölder continuity of the solutions to a class of SPDE’s

Proof. Let µ(n) be any finite measure on Rnd. Then, we have

E
(
µ(n)(Y

(n)
t )

)
= E

(
µ(n)(Y

(n)
t )1{τ1>t}

)
+ E

(
µ(n)(Y

(n)
t )1{η1≤t<η2}

)
+ o(t). (4.11)

For the first term, we have

E
(
µ(n)(Y

(n)
t )1{τ1>t}

)
=µ(n)(T

(n)
t f)P(τ1 > t) = µ(n)(T

(n)
t f) exp(−λnt)). (4.12)

For the second term, since τ1, τ2 are independent, then for any 0 ≤ s ≤ t, we have

P(τ1 + τ2 > t, τ1 ≤ s) =

∫ s

0

∫ ∞
t−s1

λ2
n exp(−λn(s1 + s2))ds2ds1 = λnse

−λnt. (4.13)

Note that by Lemma 4.7, |Y (n)
· | is integrable on [0, T ] × Rnd × Ω with respect to the

product measure dt× µ(n)(dx)× P (dω). Then, by (4.13), Fubini’s theorem, and the mean
value theorem, we have

E
(
µ(n)(Y

(n)
t )1{η1≤t<η2}

)
=

1

2

∑
1 ≤ i, j ≤ n

i 6= j

∫ t

0

∫
Rnd

(
T

(n)
t−sΦ

(n)
ij T

(n)
s f

)
(x) exp (−λnt)µ(n)(dx)ds

=
t

2
exp (−λnt)

∑
1 ≤ i, j ≤ n

i 6= j

∫
Rnd

(
T

(n)
t−t′Φ

(n)
ij T

(n)
t′ f

)
(x)µ(n)(dx), (4.14)

for some t′ ∈ (0, t). Combining (4.11), (4.12), and (4.14), we have

lim
t↓0

E
(
µ(n)(Y

(n)
t )

)
− µ(n)(f)

t
= µ(n)(A(n)f) +

1

2

∑
1 ≤ i, j ≤ n

i 6= j

µ(n)
(
Φ

(n)
ij f − f

)
.

By Proposition 4.1.7 of Ethier and Kurtz [11], the following process:

µ(n)(Y
(n)
t )−

∫ t

0

[
µ(n)(A(n)Y (n)

s ) +
1

2

∑
1 ≤ i, j ≤ n

i 6= j

µ(n)(Φ
(n)
ij Y

(n)
s − Y (n)

s )
]
ds, (4.15)

is a martingale. Then, the lemma follows by choosing µ(n) = µ⊗n.

By Lemma 4.6, 4.8 and Corollary 3.2 of Dawson and Kurtz [7], we have the following
moment equality:

E
(
X⊗nt (f)

)
= E

[
X⊗n0 (Y

(n)
t ) exp

(∫ t

0

λnds
)]

= exp
(1

2
n(n− 1)t

)
E
(
X⊗n0 (Y

(n)
t )

)
. (4.16)

Lemma 4.9. Let n ≥ 2, and let f ∈ C2
b (Rnd).

(i) The following PDE

∂tvt(x) = A(n)vt(x) +
1

2

∑
1 ≤ i, j ≤ n

i 6= j

κ(xi, xj)v(t, x), (4.17)

with initial value v0(x) = f(x), has a unique solution.

(ii) Let X = {Xt, t ∈ [0, T ]} be a solution to the martingale problem (4.4)–(4.5). Then,

E
(
X⊗nt (f)

)
= X⊗n0 (vt). (4.18)
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Proof. Firstly, we claim that the operator A(n) = 1
2 (∆ +B(n)) is uniformly parabolic in

the sense of Friedman (see Section 1.1 of [12]). Because ∆ is uniformly parabolic, then
it suffices to analyse the properties of B(n). For any k = 1, . . . , n, i = 1, . . . , d, and ξik ∈ R,
let ξk = (ξ1

k, . . . , ξ
d
k). Then, we have

n∑
k1,k2=1

d∑
i,j=1

ρij(xk1 − xk2)ξik1ξ
j
k2

=

∫
Rd

∣∣∣ n∑
k=1

h∗(z − xk)ξk

∣∣∣2dz ≥ 0.

Thus B(n) is parabolic. On the other hand, by Jensen’s inequality, we have

n∑
k1,k2=1

d∑
i,j=1

ρij(xk1 − xk2)ξik1ξ
j
k2

=

∫
Rd

∣∣∣ n∑
k=1

h∗(z − xk)ξk

∣∣∣2dz ≤ n‖ρ‖∞ n∑
k=1

|ξk|2.

It follows that A(n) = 1
2 (∆ +B(n)) is uniformly parabolic.

Since h ∈ H3
2 (Rd;Rd⊗Rd), ρ(x−y) =

∫
Rd
h(z−x)h∗(z−y)dz has bounded derivatives

up to order three, then by Theorem 1.12 and 1.16 of Friedman [12], the PDE (4.17) has
a unique solution.

In order to show (ii), let
ṽt(x) = E

(
Y

(n)
t (x)

)
,

where Y (n) is defined by (4.6). By the same argument as we did in the proof of Lemma
4.7, we can show that for any t ∈ [0, T ] and x ∈ Rnd

E
(

sup
x∈Rd

∣∣A(n)Y
(n)
t (x)

∣∣) <∞.
Then, by the dominated convergence theorem, we have

E
(
A(n)Y

(n)
t (x)

)
= A(n)E(Y

(n)
t (x)).

Let µ(n) be any finite measure on Rnd. Recall that the process defined by (4.15) is a
martingale, then the following equality follows from Fubini’s theorem:

µ(n)(ṽt) =E
(
µ(n)(Y

(n)
t )

)
= µ(n)(f) +

∫ t

0

〈
µ(n),E

(
A(n)Y (n)

s

)〉
ds

+
1

2

∑
1 ≤ i, j ≤ n

i 6= j

∫ t

0

〈
µ(n), [k(·i, ·j)− 1]E(Y (n)

s )
〉
ds

=µ(n)(f) +

∫ t

0

〈
µ(n), A(n)ṽs

〉
ds+

1

2

∑
1 ≤ i, j ≤ n

i 6= j

∫ t

0

〈
µ(n), [k(·i, ·j)− 1]ṽs

〉
ds.

In other words,〈
µ(n), ṽt − f −

∫ t

0

[
A(n)ṽs −

1

2

∑
1 ≤ i, j ≤ n

i 6= j

(k(·i, ·j)− 1)ṽs

]
ds

〉
= 0,

for all µ(n) ∈MF (Rnd). It follows that ṽ = {ṽt(x), t ∈ [0, T ], x ∈ Rd} solves the following
PDE

∂tṽt(x) = A(n)ṽt(x) +
1

2

∑
1 ≤ i, j ≤ n

i 6= j

[κ(xi, xj)− 1]ṽt(x), (4.19)
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with the initial value ṽ0(x) = f(x). This solution is unique by the same argument as in
part (i). Observe that

vt(x) := ṽt(x) exp
(1

2
n(n− 1)t

)
(4.20)

solves equation (4.17). Therefore, (4.18) follows from (4.20) and the moment duality
(4.16).

In Lemma 4.9, we derived the moment formula for E
(
X

(n)
t (f)

)
in the case when n ≥ 2.

If n = 1, the dual process only involves a deterministic evolution driven by the semigroup
of one particle motion, which makes things much simpler. We write the formula below
and skip the proof. Let p(t, x, y) be the transition density of the one particle motion, then
for any φ ∈ C2

b (Rd),

E(Xt(φ)) = X0(T
(1)
t φ) =

∫
Rd

∫
Rd
p(t, x, y)φ(y)dyX0(dx).

The existence of the density of Xt will be derived following Wang’s idea (see Theorem
2.1 of [32]). For any ε > 0, x ∈ Rd, let pε be the heat kernel on Rd, that is

pε(x) = (2πε)−
d
2 exp

(
− |x|

2

2ε

)
.

Lemma 4.10. LetX = {Xt, t ∈ [0, T ]} be a solution to the martingale problem (4.4)–(4.5).
Assume that the initial measure X0 ∈MF (Rd) has a bounded density µ. Then,∫ T

0

∫
Rd
E
(∣∣Xt(pε(x− ·))

∣∣2)dxdt <∞, (4.21)

and

lim
ε1,ε2↓0

∫ T

0

∫
Rd
E
(∣∣Xt(pε1(x− ·))−Xt(pε2(x− ·))

∣∣2)dxdt = 0. (4.22)

Proof. Let Γ(t, (y1, y2); r, (z1, z2)) be the fundamental solution to the PDE (4.17) when
n = 2 (see Chapter 1 of Friedman [12] for a detailed account on existence and properties
of fundamental solutions to parabolic PDEs). We write y = (y1, y2) and z = (z1, z2) ∈ R2d.
Then, for f ∈ C2

b (R2d),

v(t, y) =

∫
R2d

Γ(t, y; 0, z)f(z)dz,

is the unique solution to the PDE (4.17) with initial condition v0 = f . Thus by Lemma
4.9, we have

E
[
Xt(pε1(x− ·))Xt(pε2(x− ·))

]
=

∫
R2d

∫
R2d

Γ(t, y; 0, z)pε1(x− z1)pε2(x− z2)dzX⊗2
0 (dy). (4.23)

By inequality (6.12) of Friedman [12] on page 24, we know that there exists CΓ, λ > 0,
such that for any 0 ≤ r < t ≤ T ,

|Γ(t, y; r; z)| ≤ CΓp t−r
λ

(y1 − z1)p t−r
λ

(y2 − z2). (4.24)

Therefore, by the semigroup property of heat kernels and Fubini’s theorem, we have∫ T

0

∫
Rd
E
[
Xt(pε1(x− ·))Xt(pε2(x− ·))

]
dxdt

=

∫ T

0

∫
R2d

∫
R2d

Γ(t, y; 0, z)pε1+ε2(z1 − z2)dzX⊗2
0 (dy)dt. (4.25)
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From (4.24), (4.25) and the fact that X0 ∈MF (Rd) has a bounded density µ, it follows
that (4.21) is true.

LetM be the function on R2d, given by

M(z) =

∫ T

0

∫
R2d

Γ(t, y; 0, z)X⊗2
0 (dy)dt.

By (6.13) of Friedman [12] on page 24, we know that Γ(t, y; r, x) is uniformly continuous
in the spatial argument for any fixed r and t such that 0 < r < t < T . As a consequence
M is continuous. Therefore, by (4.24) and the continuity ofM, the function N on Rd

given by

N (x) :=

∫
Rd
M(z1, z1 − x)dz1,

is integrable and continuous everywhere. It follows that

lim
ε1,ε2→0

∫ t

0

∫
Rd
E
[
Xt(pε1(x− ·))Xt(pε2(x− ·))

]
dxdt

= lim
ε1,ε2→0

∫
R2d

M(z)pε1+ε2(z1 − z2)dz

= lim
ε1,ε2→0

∫
Rd
N (y)pε1+ε2(y)dy

=N (0) =

∫ T

0

∫
Rd

∫
R2d

Γ(t, y; 0, (x, x))X⊗2
0 (dy)dxdt. (4.26)

Therefore, (4.22) is a consequence of (4.26).

Proposition 4.11. Let X = {Xt, t ∈ [0, T ]} be a solution to the martingale problem
(4.4)–(4.5). Assume that the initial measure X0 ∈MF (Rd) has a bounded density µ. Then,
for almost every t ∈ (0, T ], Xt is absolutely continuous with respect to the Lebesgue
measure almost surely.

Proof. As proved in Lemma 4.10, for any x ∈ Rd and εn ↓ 0, the sequence {Xt(p
x
εn)}n≥1

is Cauchy in L2(Ω×Rd × [0, T ]). Then, it converges to some square integrable random
field. By the same argument as in Theorem 2.1 of Wang [32], we can show that the limit
random field is the density of Xt almost surely.

Remark 4.12.

(i) The assumption in Proposition 4.11, that the initial measure has a bounded density,
cannot be removed. Actually, if we choose X0 = δ0, the Dirac delta mass at 0, then∫ T

0

∫
Rd

Γ(t, 0; 0, (x, x))dxdt behaves like
∫ T

0
t−

d
2 dt, which is finite only if d = 1. This

is another difference from the one dimensional situation, in which case X0(1) <∞
is enough to imply the existence of the density (see Theorem 2.1 Wang [32] for the
Dawson-Watanabe branching model).

(ii) The method of duality is conventionally used to prove the well-posedness of mar-
tingale problems arisen from branching mechanisms. In the one-dimensional
Dawson-Watanabe model, Wang proved the well-posedness by solving a moment
problem (see Section 4 of [33]). This requires a moment bound of the form∑∞
n=1 r

nE(|Xt(1)|n)/n! < ∞ for some positive r. However, this method does not
work in our model and here is the explanation. In the next section, we will prove
that the density u is a solution to equation (3.1) and when h ≡ 0, we have that
E(〈ut, 1〉n) behaves like c1ec2n

1+ε

for some ε > 0 (see e.g. Theorem 4.4 of Chen et
al. [3] and Theorem 4.3 of Hu et al. [13] for some sharp bounds of similar SPDE’s).

EJP 24 (2019), paper 105.
Page 19/52

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP357
http://www.imstat.org/ejp/


Hölder continuity of the solutions to a class of SPDE’s

Therefore, the condition
∑∞
n=1 r

nE(|〈ut, 1〉|n)/n! < ∞ for some positive r cannot
be satisfied in our model. In the next section, we prove the well-posedness of the
martingale problem (4.4)–(4.5) by the Yamada-Watanabe argument assuming the
existence of the density. Without the existence of the density, we are currently
not able to use the moment duality to show the well-posedness of the martingale
problem. We are not pursue this in the current paper.

4.3 Proof of Theorems 3.2 and 3.3

The proof of Theorems 3.2 and 3.3 is based on the equivalence of the martingale
problem (4.4)–(4.5) and the SPDE (3.1).

The equivalence between martingale problems and SDE’s in finite dimensions was
observed in the 1970s (see Stroock and Varachan [29]). An alternative proof given by
Kurtz [19] consists of the “Markov mapping theorem”. In a recent paper [2] Biswas et al.
generalized this result to the infinite dimensional cases with one noise following Kurtz’s
idea. Here in the present paper, we establish a similar result with two noises by using
the martingale representation theorem.

Proposition 4.13. Let µ ∈ Cb(R
d) ∩ L1(Rd) be a nonnegative function on Rd. Then,

u = {ut, t ∈ [0, T ]} is the density of a solution of the martingale problem (4.4)–(4.5) with
initial density µ, if and only if u is a weak solution to the SPDE (3.1).

Proof. If u is a weak solution to (3.1), then, as a consequence of Itô’s formula, u is the
density of a measure-valued process that solves the martingale problem (4.4)–(4.5). It
suffices to show the converse statement.

Let X = {Xt, t ∈ [0, T ]} be a solution to the martingale problem (4.4)–(4.5) with initial
density µ. Then, by Proposition 4.11, for almost every t ∈ [0, T ], Xt has a density almost
surely. We denote by ut the density of Xt.

Consider M = {Mt, t ∈ [0, T ]} defined by (4.4) as an S ′-martingale (see Definition
2.1.2 of Kallianpur and Xiong [17]). Then, by Theorem 3.1.4 of [17], there exists a Hilbert
space H∗ ⊃ L2(Rd), such that M is an H∗-valued martingale. Denote by H the dual
space of H∗.

Let H1 = L2(Rd;Rd), and let H2 be the completion of S with the inner product

〈φ, ϕ〉H2
:=

∫
Rd×Rd

κ(x, y)φ(x)ϕ(y)dxdy.

Consider the product space H = H1 × H2. Then, H is a Hilbert space equipped with the
inner product 〈

(φ1, φ2), (ϕ1, ϕ2)
〉
H

:= 〈φ1, ϕ1〉H1
+ 〈φ2, ϕ2〉H2

.

For any t ∈ [0, T ], let Ψt : H → H be given by Ψt(φ)(x, y) =
(
Ψ1
t (φ)(x),Ψ2

t (φ)(y)
)

, where

Ψ1
t (φ)(x) :=

∫
Rd
∇φ(y)∗h(x− y)ut(y)dy,

and
Ψ2
t (φ)(x) := φ(x)ut(x).

Then, for any φ, ϕ ∈ H, we have

〈M(φ),M(ϕ)〉t =

∫ t

0

∇φ(x)∗ρ(x− y)∇ϕ(y)Xs(dx)Xs(dy)ds

+

∫ t

0

∫
Rd×Rd

κ(x, y)φ(x)φ(y)Xs(dx)Xs(dy)ds

=

∫ t

0

〈Φs(φ),Φs(ϕ)〉Hds.
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Therefore, by the martingale representation theorem (see e.g. Theorem 3.3.5 of Kallian-
pur and Xiong [17]), there exists a H-cylindrical Brownian motion B = {Bt, 0 ≤ t ≤ T},
such that

Mt(φ) =

∫ t

0

〈
Ψs(φ), dBs

〉
.

Let B1 = {B1
t (φ), t ∈ [0, T ], φ ∈ H1} and B2 = {B2

t (ϕ), t ∈ [0, T ], ϕ ∈ H2} be given by

B1
t (φ) = Bt(φ, 0) and B2

t (ϕ) = Bt(0, ϕ).

Then, B1 and B2 are H1- and H2-cylindrical Brownian motion respectively, and they are
independent. As a consequence, we have

Mt(φ) =

∫ t

0

〈∫
Rd
∇φ(z)∗h(· − z)Xs(dz), dB

1
s

〉
+

∫ t

0

〈
φus, dB

2
s

〉
. (4.27)

Let {ej}j≥1 be a complete orthonormal basis of H2. Then, by Theorem 3.2.5 of [17],
V = {Vt, t ∈ [0, T ]}, defined by

Vt :=

∞∑
j=1

B2
t (ej)ej ,

is a S ′-valued Wiener process with covariance

E
[
Vs(φ)Vt(ϕ)

]
= s ∧ t

∫
Rd×Rd

κ(x, y)φ(x)ϕ(y)dxdy,

for any φ, ϕ ∈ S . Therefore, by (4.27) and the equivalence of stochastic integrals
with respect to Hilbert space valued Brownian motion and Walsh’s integrals (see e.g.
Proposition 2.6 of Dalang and Quer-Sardanyons [4] for spatial homogeneous noises), u is
a weak solution to the SPDE (3.1).

Proof of Theorems 3.2 and 3.3. By Propositions 4.5 and 4.13, the SPDE (3.1) has a weak
solution, that can be obtained by the branching particle approximation. We do not prove
the continuity here, because later in Section 7, we will show that the solution is not only
continuous, but also Hölder continuous. The continuity of u yields an improved version
of Proposition 4.11. Namely, if Xt is a continuous measure-valued process (e.g. the limit
of the particle approximation), then it has a density for all t ∈ [0, T ] almost surely.

In the next step, we prove the pathwise uniqueness of equation (3.1). Assume that u
and ũ are two continuous strong solutions to (3.1) with initial condition µ. Let d = u− ũ.
Then, d = {dt(x), t ∈ [0, T ], x ∈ Rd} is a solution to (3.1), with initial condition µ ≡ 0, that
is continuous in two parameters. Thus d is also the density of a solution to the martingale
problem (4.4)–(4.5), with initial measure X0 ≡ 0.1 By the moment duality (4.16), for any
φ ∈ C2

b (Rd), we have

E〈dt, φ〉2 = exp(t)E
(
X0(Y

(2)
t )

)
≡ 0,

where Y (2) is the dual process defined by (4.6) in the case n = 2. Since d is continuous in
t, it follows that u = ũ almost surely. Therefore, by the Yamada-Watanabe argument (see
Yamada and Watanabe [36] and Kurtz [18]), we obtain the strong existence and weak
uniqueness of equation (3.1). This proves Theorem 3.3. Recall Propositions 4.5 and 4.13.
The weak uniqueness of equation (3.1) also implies that every limit of the convergent

1 dt(x) may be negative for some (t, x) ∈ [0, T ]×Rd. In this case dt is considered as the density of a signed
measure ν, where |ν|(1) ≤ |ut(1)|+ |ũt(1)| <∞ a.s.. The moment duality still holds.
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subsequence of {Xn}n≥1 constructed in Section 4.1 is continuous (see Lemma 4.4) and
unique in law. In other words, {Xn}n≥1 is convergent in D([0, T ];MF ) to a continuous
MF (Rd)-valued process in law. The limit has a density almost surely, that is a weak
solution the SPDE (3.1).

The following corollary is a direct consequence of Theorem 3.3 and Proposition 4.13.

Corollary 4.14. Assume Hypotheses [H0], [H1], and assume that X0 ∈MF (Rd) has a
bounded density. Then, the martingale problem (4.4)–(4.5) is well-posed.

5 Moment estimates for one-particle motion

In this section, we focus on the one-particle motion without branching. By using the
techniques of Malliavin calculus, we will obtain moment estimates for the transition
probability density of the particle motion conditional on the environment W . A brief
introduction and several theorems on Malliavin calculus are stated in Appendix A. For a
detailed account on this topic, we refer the readers to the book of Nualart [24].

Fix a time interval [0, T ]. Let B = {Bt, 0 ≤ t ≤ T} be a standard d-dimensional
Brownian motion and let W be a d-dimensional space-time white Gaussian random field
on [0, T ] × Rd that is independent of B. Assume that h ∈ H3

2 (Rd;Rd ⊗ Rd). For any
0 ≤ r < t ≤ T , we denote by ξt = ξr,xt , the path of one-particle motion, with initial
position ξr = x. It satisfies the SDE

ξt = x+Bt −Br +

∫ t

r

∫
Rd
h(y − ξu)W (du, dy). (5.1)

We will apply the Malliavin calculus on ξt with respect to the Brownian motion
B. Let H = L2([0, T ];Rd) be the associated Hilbert space. By the Picard iteration
scheme (see e.g. Theorem 2.2.1 of Nualart [24]), we can prove that for any t ∈ (r, T ],
ξt ∈ ∩p≥1D

3,p(Rd). Particularly, Dξt satisfies the following system of SDE’s

D
(k)
θ ξit = δik −

d∑
j1,j2=1

∫ t

θ

∫
Rd
∂j1h

ij2(y − ξs)D(k)
θ ξj1s W

j2(ds, dy), 1 ≤ i, k ≤ d, (5.2)

for any θ ∈ [r, t], and D(k)
θ ξit = 0 for all θ > t.

In order to simplify the expressions, we rewrite the stochastic integrals in (5.2) as
integrals with respect to martingales. To this end, let M = {Mt, r ≤ t ≤ T} be the d× d
matrix-valued process given by

Mt =

d∑
k=1

∫ t

r

∫
Rd
gk(s, y)W k(ds, dy),

where gk : Ω× [r, T ]×Rd → Rd ⊗Rd is given by

gijk (t, y) = ∂ih
jk(y − ξt), 1 ≤ i, j, k ≤ d.

Notice that Mt is the sum of stochastic integrals, so it is a matrix-valued martingale. The
quadratic covariations of {M ij}di,j=1 are bounded and deterministic:

〈
M i1j1 ,M i2j2

〉
t

=

d∑
k=1

∫ t

r

∫
Rd
∂i1h

j1k(y − ξs)∂i2hj2k(y − ξs)dyds (5.3)

=(t− r)
d∑
k=1

∫
Rd
∂i1h

j1k(y)∂i2h
j2k(y)dy := Qi1,j1i2,j2

(t− r) ≤ ‖h‖3,2(t− r).
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Now equation (5.2) can be rewritten as follows:

D
(k)
θ ξit = δik −

d∑
j=1

∫ t

θ

∫
Rd
D

(k)
θ ξjsdM

ji
s , 1 ≤ i, k ≤ d. (5.4)

Lemma 5.1. For any 0 ≤ r < t ≤ T , x ∈ Rd, let γt = γξt be the Malliavin matrix of
ξt = ξr,xt , then γt is nondegenerate almost surely.

Proof. We prove the lemma following Stroock’s idea (see Chapter 8 of Stroock [28]). Let
λθ(t) be the d× d symmetric random matrix given by

λijθ (t) =

d∑
k=1

D
(k)
θ ξitD

(k)
θ ξjt .

Then, the Malliavin matrix of ξt is the integral of λθ(t):

γt =

∫ t

r

λθ(t)dθ.

By (5.2), (5.3) and Itô’s formula, we have

D
(k)
θ ξitD

(k)
θ ξjt =δikδkj −

d∑
k1=1

∫ t

θ

D
(k)
θ ξisD

(k)
θ ξk1s dM

k1j
s −

d∑
k2=1

∫ t

θ

D
(k)
θ ξjsD

(k)
θ ξk2s dM

k2i
s

+

d∑
k1,k2=1

Qk1,jk2,i

∫ t

θ

D
(k)
θ ξk1s D

(k)
θ ξk2s ds.

Therefore,

λθ(t) =I −
∫ t

θ

λθ(s)dMs −
∫ t

θ

dM∗s · λθ(s)

+

d∑
k=1

∫ t

θ

∫
Rd
g∗k(s, y)λθ(s)gk(s, y)dyds. (5.5)

For any θ ∈ [r, t], we claim that λθ(t) is invertible almost surely, and its inverse βθ(t)

satisfies the following SDE:

βθ(t) =I +

∫ t

θ

βθ(s)dM
∗
s +

∫ t

θ

dMs · βθ(s) (5.6)

+

d∑
k=1

∫ t

θ

∫
Rn

(
gk(s, y)2βθ(s) + gk(s, y)βθ(s)g

∗
k(s, y) + βθ(s)g

∗
k(s, y)2

)
dyds.

Indeed, by Itô’s formula, we have

d[λθ(t)βθ(t)] =− dM∗t · [λθ(t)βθ(t)] + [λθ(t)βθ(t)]dM
∗
t (5.7)

+

d∑
k=1

(∫
Rd

(
[λθ(t)βθ(t)]g

∗
k(t, y)2 − g∗k(t, y)[λθ(t)βθ(t)]g

∗
k(t, y)

)
dy
)
dt.

Note that λθ(t)βθ(t) ≡ I solves the SDE (5.7) with initial value λθ(θ)βθ(θ) = I. Therefore,
the strong uniqueness of the linear SDE (5.7) implies that λ−1

θ (t) = βθ(t) almost surely.
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Denote by ‖ · ‖2 the Hilbert-Schmidt norm of matrices. By Jensen’s inequality (see
Lemma 8.14 of Stroock [28]), the following inequality holds almost surely

∥∥γ−1
t

∥∥
2

=

∥∥∥∥(∫ t

r

λθ(t)dθ
)−1

∥∥∥∥
2

≤ 1

(t− r)2

∥∥∥∫ t

r

βθ(t)dθ
∥∥∥

2
. (5.8)

It is easy to show that sup
θ∈[r,t]

∥∥‖βθ(t)‖2∥∥2p
< ∞ for all p ≥ 1. Therefore, the right-hand

side of (5.8) is finite a.s., and thus γt is nondegenerate almost surely.

We denote by σt = γ−1
t the inverse of the Malliavin matrix of ξt. In the following

lemma, we obtain some moment estimates for the derivatives of ξt and σt. Before
estimates, we introduce the following generalized Cauchy-Schwarz’s inequality.

Lemma 5.2. Let n1, n2 be nonnegative integers, let u1 ∈ L2p(Ω; (H⊗n1)), and let u2 ∈
L2p(Ω, (H⊗n2)). Then, u1 ⊗ u2 ∈ Lp(Ω; (H⊗(n1+n2))), and∥∥‖u1 ⊗ u2‖H⊗(n1+n2)

∥∥
p
≤
∥∥‖u1‖H⊗n1

∥∥
2p

∥∥‖u2‖H⊗n2

∥∥
2p
. (5.9)

Proof. The lemma can be obtained by the classical Cauchy-Schwarz inequality.

Lemma 5.3. For any p ≥ 1 and 0 ≤ r < t ≤ T , there exists a constant C > 0, that
depends on T , d, ‖h‖3,2, p, such that

max
1≤i≤d

∥∥‖Dξit‖H∥∥2p
≤C(t− r) 1

2 . (5.10)

max
1≤i,j≤d

∥∥σijt ∥∥2p
≤C(t− r)−1, (5.11)

max
1≤i,j≤d

∥∥‖Dσijt ‖H∥∥2p
≤C, (5.12)

max
1≤i≤d

∥∥‖D2ξit‖H⊗2

∥∥
2p
≤C(t− r) 3

2 . (5.13)

max
1≤i,j≤d

∥∥‖D2σijt ‖H⊗2

∥∥
2p
≤C(t− r) 1

2 , (5.14)

max
1≤i≤d

∥∥‖D3ξit‖H⊗3

∥∥
2p
≤C(t− r)2. (5.15)

Proof of (5.10). By (5.3), (5.4), Jensen’s, Burkholder-Davis-Gundy’s, and Minkowski’s
inequalities, we have

d∑
i,k=1

∥∥D(k)
θ ξit

∥∥2

2p
≤

d∑
i,k=1

(
δik +

d∑
j=1

∥∥∥∫ t

θ

∫
Rd
D

(k)
θ ξjsdM

ji
s

∥∥∥
2p

)2

≤(d+ 1)

d∑
i,k=1

(
δik +

d∑
j=1

∥∥∥ ∫ t

θ

∫
Rd
D

(k)
θ ξjsdM

ji
s

∥∥∥2

2p

)

≤d(d+ 1) + (d+ 1)cp

d∑
i,j,k=1

Qjiji

∥∥∥∫ t

θ

∣∣D(k)
θ ξjs

∣∣2ds∥∥∥
p

≤d(d+ 1) + 2cpd(d+ 1)‖h‖23,2
d∑

j,k=1

∫ t

θ

∥∥D(k)
θ ξjs

∥∥2

2p
ds. (5.16)

Thus by Gronwall’s lemma, we have

d∑
i,j=1

∥∥D(k)
θ ξjt

∥∥2

2p
≤ d(d+ 1) exp

(
2cpd(d+ 1)‖h‖23,2T

)
:= C. (5.17)
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Therefore, by (5.17) and Minkowski’s inequality, we have

∥∥‖Dξit‖H∥∥2

2p
=

∥∥∥∥ d∑
k=1

∫ t

r

|D(k)
θ ξit|2dθ

∥∥∥∥
p

≤
d∑
k=1

∫ t

r

∥∥D(k)
θ ξit

∥∥2

2p
dθ ≤ C(t− r).

This completes the proof of (5.10).

Proof of (5.11). In order to prove (5.11), we rewrite the SDE (5.6) in the following way:

βijθ (t) =δij +

d∑
k1=1

∫ t

θ

βik1θ (s)dM jk1
s +

d∑
k2=1

∫ t

θ

βk2jθ (s)dM ik2
s

+

d∑
k1,k2=1

(
Qi,k1k1,k2

∫ t

θ

βk2jθ (s)ds
)

+

d∑
k1,k2=1

(
Qi,k1j,k2

∫ t

θ

βk1k2θ (s)ds
)

+

d∑
k1,k2=1

(
Qk2,k1j,k2

∫ t

θ

βik1θ (s)ds
)
. (5.18)

Similarly as we did in step (i), by Burkholder-Davis-Gundy’s, and Minkowski’s inequali-
ties, we can show that the martingale terms satisfies the following inequality

∥∥∥∫ t

θ

βik1θ (s)dM jk1
s

∥∥∥2

2p
≤ 2cp‖h‖23,2

∫ t

θ

∥∥βik1θ (s)
∥∥2

2p
ds. (5.19)

For the drift terms, by Minkowski’s and Jensen’s inequality, we have

∥∥∥∫ t

θ

βk1k2θ (s)ds
∥∥∥2

2p
≤ (t− θ)

∫ t

θ

∥∥βk1k2θ (s)
∥∥2

2p
ds. (5.20)

Then, by (5.18)–(5.20), and Gronwall’s lemma, we have

d∑
i,j=1

∥∥βijθ (t)
∥∥2

2p
≤ C.

Thus by Minkowski’s and Jensen’s inequalities, we have

∥∥∥∥∥∥∥ ∫ t

r

βθ(t)dθ
∥∥∥

2

∥∥∥∥
2p

≤ cd
d∑

i,j=1

∫ t

r

∥∥βijθ (t)
∥∥

2p
dθ ≤ C(t− r). (5.21)

Therefore, (5.11) follows from (5.8), (5.21), Minkowski’s and Jensen’s inequalities.

Proof of (5.12). By integrating equation (5.5) on both sides with respect to θ, and ap-
plying the stochastic Fubini theorem (see e.g. Lemma 4.1 on page 116 of Ikeda and
Watanabe [15]), we have

γt =

∫ t

r

λθ(t)dθ =I(t− r)−
∫ t

r

γsdMs −
∫ t

r

dM∗s · γs (5.22)

+

d∑
m=1

∫ t

r

∫
Rd
g∗m(y, s)γsgm(y, s)dyds.
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Taking the Malliavin derivative on both sides of (5.22), we have the following SDE:

D
(k)
θ γijt =−

d∑
k1=1

∫ t

θ

D
(k)
θ γik1s dMk1j

s −
d∑

k1=1

∫ t

θ

γik1s d
(
D

(k)
θ Mk1j

s

)

−
d∑

k2=1

∫ t

θ

D
(k)
θ γk2js dMk2i

s −
d∑

k2=1

∫ t

θ

γk2js d
(
D

(k)
θ Mk2i

s

)

+

d∑
k1,k2=1

(
Qk1,ik2,j

∫ t

θ

D
(k)
θ γk1k2s ds

)
, (5.23)

where

D
(k)
θ M ij

s = −
d∑

i1,i2=1

∫ s

θ

∫
Rd
∂i,i2h

ji1 (y − ξr)D(k)
θ ξi2r W

i1(dr, dy). (5.24)

For the first and the third term, by similar arguments as in (5.16), we can show that∥∥∥∫ t

θ

D
(k)
θ γik1s dMk1j

s

∥∥∥2

2p
≤ cd,p‖h‖23,2

∫ t

θ

∥∥D(k)
θ γik1s

∥∥2

2p
ds. (5.25)

To estimate the second and the fourth term, notice that by (5.10), we have

max
1≤i,j≤d

∥∥γijt ∥∥2p
= max

1≤i,j≤d

∥∥〈Dξit, Dξjt 〉H∥∥2p

≤ max
1≤i≤d

∥∥‖Dξit‖H∥∥4p
max

1≤j≤d

∥∥‖Dξjt ‖H∥∥4p
≤ C(t− r). (5.26)

Therefore, by (5.17), (5.24), (5.26), Jensen’s, Burkholder-Davis-Gundy’s, Minkowski’s,
and Cauchy-Schwarz’s inequalities, we have∥∥∥∫ t

θ

γik1s d
(
D

(k)
θ Mk1j

s

)∥∥∥2

2p
≤cd,p‖h‖23,2

d∑
k2=1

∫ t

θ

∥∥γik1s ‖24p‖D
(k)
θ ξk2s

∥∥2

4p
ds

≤C(t− r)3. (5.27)

For the last term, by Minkowski’s and Jensen’s inequalities, we have∥∥∥ ∫ t

θ

D
(k)
θ γk1k2s ds

∥∥∥2

2p
≤ (t− θ)

∫ t

θ

∥∥D(k)
θ γk1k2s

∥∥2

2p
ds ≤ T

∫ t

θ

∥∥D(k)
θ γk1k2s

∥∥2

2p
ds. (5.28)

Combining (5.23)–(5.28), we obtain the following inequality

d∑
i,j=1

∥∥D(k)
θ γijt

∥∥2

2p
≤ c1

∫ t

θ

d∑
i,j=1

∥∥D(k)
θ γijs

∥∥2

2p
ds+ c2(t− r)3, (5.29)

where c1, c2 depends on T , d, ‖h‖23,2, and p. Thus by Gronwall’s lemma, we have

d∑
i,j=1

∥∥D(k)
θ γijt

∥∥2

2p
≤ C(t− r)3. (5.30)

It follows that ∥∥‖Dγijt ‖H∥∥2p
≤ C(t− r)2. (5.31)

Notice that γtσt = I, a.s., as a consequence, D (γtσt) = DI ≡ 0. That implies

Dσijt = −
d∑

i1,i2=1

σii1t Dγi1i2t σi2jt . (5.32)

Then, (5.12) follows from (5.9), (5.11), (5.31) and (5.32).
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Proof of (5.13). Fix 0 ≤ r < t ≤ T . For any θ1, θ2 ∈ [r, t], let θ = θ1 ∨ θ2. Taking the
Malliavin derivative on both sides of (5.4), we have the following SDE:

D
(k1,k2)
θ1,θ2

ξit =−
d∑

j1=1

∫ t

θ

D
(k1,k2)
θ1,θ2

ξj1s dM
j1i
s

+

d∑
j1,j2,j3=1

∫ t

θ

∫
Rd
∂j2,j3h

ij1(y − ξs)D(k1)
θ1

ξj2s D
(k2)
θ2

ξj3s W
j1(ds, dy). (5.33)

Similarly as in (5.16), we can show the following inequalities∥∥∥ ∫ t

θ

D
(k1,k2)
θ1,θ2

ξj1s dM
j1i
s

∥∥∥2

2p
≤ cd,p‖h‖23,2

∫ t

θ

∥∥D(k1,k2)
θ1,θ2

ξj1s
∥∥2

2p
ds, (5.34)

and ∥∥∥ ∫ t

θ

∫
Rd
∂j2,j3h

ij1(y − ξs)D(k1)
θ1

ξj2s D
(k2)
θ2

ξj3s W
j1(ds, dy)

∥∥∥2

2p

≤cp‖h‖23,2
∫ t

θ

∥∥D(k1)
θ1

ξj2s
∥∥2

4p

∥∥D(k2)
θ2

ξj3s
∥∥2

4p
ds ≤ C(t− r). (5.35)

Thus combining (5.33)–(5.35), we have

d∑
i=1

∥∥D(k1,k2)
θ1,θ2

ξit
∥∥2

2p
≤c1

d∑
i=1

∫ t

θ

∥∥D(k1,k2)
θ1,θ2

ξis
∥∥2

2p
ds+ c2(t− r).

Then, it follows from Gronwall’s lemma that

d∑
i=1

∥∥D(k1,k2)
θ1,θ2

ξit
∥∥2

2p
≤ C(t− r). (5.36)

Inequality (5.13) is a consequence of (5.36), Jensen’s and Minkowski’s inequalities.

Proof of (5.14). For any θ1, θ2 ∈ [r, t] and θ = θ1 ∨ θ2, by taking the Malliavin derivative
on both sides of (5.23), we have

D
(k1,k2)
θ1,θ2

γijt =−
d∑

i1=1

(∫ t

θ

D
(k1,k2)
θ1,θ2

γii1s dM i1j
s +

∫ t

θ

D
(k1)
θ2

γii1s d
(
D

(k2)
θ1

M i1j
s

))

−
d∑

i1=1

(∫ t

θ

D
(k2)
θ2

γii1s d
(
D

(k1)
θ1

M i1j
s

)
+

∫ t

θ

γii1s d
(
D

(k1,k2)
θ1,θ2

M i1j
s

))

−
d∑

i2=1

(∫ t

θ

D
(k1,k2)
θ1,θ2

γi2js dM i2i
s +

∫ t

θ

D
(k1)
θ γi2js d

(
D(k2)M i2i

s

))

−
d∑

i2=1

(∫ t

θ

D
(k2)
θ1

γi2js d
(
D

(k1)
θ2

M i2i
s

)
+

∫ t

θ

γi2js d
(
D

(k1,k2)
θ1,θ2

M i2i
s

))

+

d∑
i1,i2=1

(
Qi1,ii2,j

∫ t

θ

D
(k1,k2)
θ1,θ2

γi1i2s ds
)
, (5.37)

where

D
(k1,k2)
θ1,θ2

M ij
s =−

d∑
j1,j2,j3=1

∫ s

θ

∫
Rd
∂i,j2,j3h

jj1 (y − ξr)D(k1)
θ1

ξj2r D
(k2)
θ2

ξj3r W
j1(dr, dy)

+

d∑
j1,j2=1

∫ s

θ

∫
Rd
∂i,j2h

jj1 (y − ξr)D(k1,k2)
θ1,θ2

ξj2r W
j1(dr, dy).
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Hölder continuity of the solutions to a class of SPDE’s

By (5.17), (5.26), (5.30), (5.36), Burkholder-Davis-Gundy’s, Minkowski’s and Hölder’s
inequalities, we have the following inequalities∥∥∥∫ t

θ

D
(k1,k2)
θ1,θ2

γii1s dM i1j
s

∥∥∥2

2p
≤ cd,p‖h‖23,2

∫ t

θ

∥∥D(k1,k2)
θ1,θ2

γii1s
∥∥2

2p
ds, (5.38)

∥∥∥∫ t

θ

D
(k1)
θ2

γii1s d
(
D

(k2)
θ1

M i1j
s

)∥∥∥2

2p
≤cd,p‖h‖23,2

d∑
i2=1

∫ t

θ

∥∥D(k1)
θ2

γii1s D
(k2)
θ2

ξi2s
∥∥2

2p
ds

≤cd,p‖h‖23,2
d∑

i2=1

∫ t

θ

∥∥D(k1)
θ2

γii1s
∥∥2

4p

∥∥D(k2)
θ2

ξi2s
∥∥2

4p
ds

≤C(t− r)4, (5.39)

and ∥∥∥∫ t

θ

γii1t d
(
D

(k1,k2)
θ1,θ2

M i1j
s

)∥∥∥2

2p

≤cd
( d∑
j1,j2,j3=1

∥∥∥ ∫ t

θ

∫
Rd
γii1s ∂i1,j2,j3h

jj1 (y − ξr)D(k1)
θ1

ξj2s D
(k2)
θ2

ξj3s W
j1(ds, dy)

∥∥∥2

2p

+

d∑
j1,j2=1

∥∥∥∫ t

θ

∫
Rd
γii1s ∂i1,j2h

jj1 (y − ξs)D(k1,k2)
θ1,θ2

ξj2s W
j1(ds, dy)

∥∥∥2

2p

)
:= cd (I1 + I2) .

We estimate I1, I2 as follows:

I1 ≤d‖h‖23,2
d∑

j2,j3=1

∫ t

θ

∥∥γii1s ∥∥2

6p

∥∥D(k1)
θ1

ξj2s
∥∥2

6p

∥∥D(k2)
θ2

ξj3s
∥∥2

6p
ds ≤ C(t− r)3,

and

I2 ≤ d‖h‖23,2
d∑

j2=1

∫ t

θ

∥∥γii1s ∥∥2

4p

∥∥D(k1,k2)
θ1,θ2

ξj2s
∥∥2

4p
ds ≤ C(t− r)4 ≤ CT (t− r)3.

Thus we have ∥∥∥∫ t

θ

γii1t d
(
D

(k1,k2)
θ1,θ2

M i1j
s

)∥∥∥2

2p
≤ C(t− r)3. (5.40)

Therefore, combine (5.37)–(5.40), we have

d∑
i,j=1

∥∥D(k1,k2)
θ1,θ2

γijt
∥∥2

2p
≤ c1(t− r)3 + c2

d∑
i,j=1

∫ t

θ

∥∥D(k1,k2)
θ1,θ2

γijs
∥∥2

2p
ds.

By Gronwall’s lemma, we have

d∑
i,j=1

∥∥D(k1,k2)
θ1,θ2

γijt
∥∥2

2p
≤ C(t− r)3, (5.41)

which implies ∥∥‖D2γijt ‖H⊗2

∥∥
2p
≤ C(t− r) 5

2 .

By taking the second Malliavin derivative of γtσt ≡ I, we have

D2σijt =−
d∑

i1,i2=1

σii1t
(
D2γi1i2t σi2jt +Dγi1i2t ⊗Dσi2jt +Dσi2jt ⊗Dγ

i1i2
t

)
. (5.42)

Then, (5.14) can be deduced by (5.9), (5.11), (5.12), (5.31) and (5.42).
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Hölder continuity of the solutions to a class of SPDE’s

Proof of (5.15). For any θ1, θ2, θ3 ∈ [r, t], let θ = θ1∨θ2∨θ3. Taking the Malliavin derivative
on both sides of (5.33), we have

D
(k1,k2,k3)
θ1,θ2,θ3

ξit =

d∑
j1,j2,j3=1

∫ t

θ

∫
Rd
∂j2,j3h

ij1(y − ξs)D(k1,k2)
θ1,θ2

ξj2s D
(k3)
θ3

ξj3s W
j1(ds, dy)

−
d∑

j1,j2=1

∫ t

θ

∫
Rd
∂j2h

ij1(y − ξs)D(k1,k2,k3)
θ1,θ2,θ3

ξj2s W
j1(ds, dy)

−
d∑

j1,...,j4=1

∫ t

θ

∫
Rd
∂j2,j3,j4h

ij1(y − ξs)D(k1)
θ1

ξj2s D
(k2)
θ2

ξj3s D
(k3)
θ3

ξj4s W
j1(ds, dy)

+

d∑
j1,j2,j3=1

∫ t

θ

∫
Rd
∂j2,j3h

ij1(y − ξs)D(k1,k3)
θ1,θ3

ξj2s D
(k2)
θ2

ξj3s W
j1(ds, dy)

+

d∑
j1,j2,j3=1

∫ t

θ

∫
Rd
∂j2,j3h

ij1(y − ξs)D(k1)
θ1

ξj2s D
(k2,k3)
θ2,θ3

ξj3s W
j1(ds, dy). (5.43)

By (5.17), (5.36), Burkholder-Davis-Gundy’s, Minkowski’s, and Hölder’s inequalities, we
have the following inequalities:∥∥∥ ∫ t

θ

∫
Rd
∂j2,j3h

ij1(y − ξs)D(k1,k2)
θ1,θ2

ξj2s D
(k3)
θ3

ξj3s W
k1(ds, dy)

∥∥∥2

2p

≤cp‖h‖23,2
∫ t

θ

∥∥D(k1,k2)
θ1,θ2

ξj2s
∥∥2

4p

∥∥D(k3)
θ3

ξj3s
∥∥2

4p
ds ≤ C(t− r)2, (5.44)

∥∥∥∫ t

θ

∫
Rd
∂j2h

ij1(y − ξs)D(k1,k2,k3)
θ1,θ2,θ3

ξj2s W
j1(ds, dy)

∥∥∥2

2p
≤ cp‖h‖23,2

∫ t

θ

∥∥D(k1,k2,k3)
θ1,θ2,θ3

ξj2s
∥∥2

2p
ds,

(5.45)

and ∥∥∥∫ t

θ

∫
Rd
∂j2,j3,j4h

ij1(y − ξs)D(k1)
θ1

ξj2s D
(k2)
θ2

ξj3s D
(k3)
θ3

ξj3s W
j1(ds, dy)

∥∥∥2

2p

≤cp‖h‖23,2
∫ t

θ

∥∥D(k1)
θ1

ξj2s
∥∥2

6p

∥∥D(k2)
θ2

ξj3s
∥∥2

6p

∥∥D(k3)
θ3

ξj3s
∥∥2

6p
ds ≤ C(t− r). (5.46)

Thus combining (5.43)–(5.46), by Jensen’s inequality, we have

d∑
i=1

∥∥D(k1,k2,k3)
θ1,θ2,θ3

ξit
∥∥2

2p
≤c1

d∑
i=1

∫ t

θ

∥∥D(k1,k2,k3)
θ1,θ2,θ3

ξit
∥∥2

2p
ds+ c2(t− r).

Then, the following inequality follows from Gronwall’s lemma

d∑
i=1

∥∥D(k1,k2,k3)
θ1,θ2,θ3

ξit
∥∥2

2p
≤ C(t− r). (5.47)

Therefore, (5.15) is a consequence of (5.47).

In the next lemma, we derive estimates for the moments of increments of the deriva-
tives of ξt and σt.
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Lemma 5.4. For any p ≥ 1, 0 ≤ r < s < t ≤ T , and 1 ≤ i, j ≤ d, there exists a constant
C > 0 depends on T , d, p, and ‖h‖3,2, such that

max
1≤i≤d

∥∥‖Dξit −Dξis‖H∥∥2p
≤C(t− s) 1

2 , (5.48)

max
1≤i,j≤d

∥∥∥σijt − σijs ∥∥∥
2p
≤C(t− r)− 1

2 (s− r)−1(t− s) 1
2 , (5.49)

max
1≤i,j≤d

∥∥∥‖Dσijt −Dσijs ‖H∥∥∥
2p
≤C(t− r)− 1

2 (t− s) 1
2 , (5.50)

max
1≤i≤d

∥∥‖Dξit −D2ξis‖H⊗2

∥∥
2p
≤C(t− r)(t− s) 1

2 . (5.51)

Proof of (5.48). By (5.4), we have

D
(k)
θ ξit −D

(k)
θ ξis = δik1[s,t](θ)−

d∑
j=1

∫ t

θ∨s
D

(k)
θ ξjudM

ji
u .

Thus by (5.17), Burkholder-Davis-Gundy’s, Jensen’s, and Minkowski’s inequalities, we
have ∥∥D(k)

θ ξit −D
(k)
θ ξis

∥∥2

2p
≤ C

[
δik1[s,t](θ) + (t− s)

]
.

Thus we can show (5.48) by Minkowski’s inequality:

∥∥‖Dξit −Dξis‖H∥∥2

2p
≤

d∑
k=1

∫ t

r

∥∥D(k)
θ ξit −D

(k)
θ ξis

∥∥2

2p
dθ

≤
d∑
k=1

C
(∫ t

s

δikdθ +

∫ t

r

(t− s)dθ
)
≤ C(t− s).

Proof of (5.49). Note that σt−σs = σt (γs − γt)σs. Then, by (5.11) and Hölder’s inequality,
it suffices to estimate the moment of γt − γs. By (5.22), we have

γijt − γijs =δij(t− s)−
d∑

k1=1

∫ t

s

γik1u dMk1j
u −

d∑
k2=1

∫ t

s

γjk2u dMk2i
u

+

d∑
k1,k2=1

Qi,k1k2,j

∫ t

s

γk1k2u du.

Then, by (5.26), Minkowski’s, Jensen’s, and Burkholder-Davis-Gundy’s inequalities, for
all 1 ≤ i, j ≤ d, we have∥∥γijt − γijs ∥∥2

2p
≤C

(
(t− s)2 + (t− r)2(t− s) + (t− r)2(t− s)2

)
≤C(1 + T )2(t− r)(t− s). (5.52)

Then, (5.49) is a consequence of (5.11) and (5.52).

Proof of (5.50). By (5.23), we have the following equation:

D
(k)
θ γijt −D

(k)
θ γijs =−

d∑
k1=1

∫ t

θ∨s
D

(k)
θ γik1u dMk1j

u −
d∑

k1=1

∫ t

θ∨s
γik1u d

(
D

(k)
θ Mk2j

u

)
−

d∑
k2=1

∫ t

θ∨s
D

(k)
θ γk2ju dMk2i

u −
d∑

k2=1

∫ t

θ∨s
γk2ju d

(
D

(k)
θ Mk2i

u

)
+

d∑
k1,k2=1

(
Qk1,ik2,j

∫ t

θ∨s
D

(k)
θ γk1k2u du

)
.
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Then, by (5.17), (5.26), and (5.30), Burkholder-Davis-Gundy’s, Jensen’s, Minkowski’s,
and Cauchy-Schwarz’s inequalities, we have

∥∥D(k)
θ γijt −D

(k)
θ γijs

∥∥2

2p
≤ cd,p‖h‖23,2

[ d∑
k1=1

∫ t

θ∨s

∥∥D(k)
θ γik1u

∥∥2

2p
du

+

d∑
k2=1

∫ t

θ∨s

∥∥γik1u

∥∥2

4p

∥∥D(k)
θ ξk2u

∥∥2

4p
du+ (t− s)

∫ t

θ∨s

∥∥D(k)
θ γk1k2u

∥∥2

2p
du

]
≤ C(t− r)2(t− s).

This implies ∥∥‖Dγijt −Dγijs ‖H∥∥2p
≤ C(t− r) 3

2 (t− s) 1
2 . (5.53)

By (5.32), we have

Dσijt −Dσijs =

d∑
i1,i2=1

(
σii1t Dγi1i2t σi2jt − σii1s Dγi1i2s σi2js

)
=

d∑
i1,i2=1

σii1t
(
Dγi1i2t −Dγi1i2s

)
σi2jt +

d∑
i1,i2=1

(
σii1t − σii1s

)
Dγi1i2s σi2jt

+

d∑
i1,i2=1

σii1s Dγi1i2s

(
σi2jt − σi2js

)
.

Thus (5.50) follows from (5.9), (5.11), (5.31), (5.49) and (5.53).

Proof of (5.51). Let θ = θ1 ∨ θ2, by (5.33), we have the following equation:

D
(k1,k2)
θ1,θ2

ξit −D
(k1,k2)
θ1,θ2

ξis =−
d∑

j1,j2=1

∫ t

θ∨s

∫
Rd
∂j2h

ij1(y − ξu)D
(k1,k2)
θ1,θ2

ξj2u W
j1(du, dy)

+

d∑
j1,j2,j3=1

∫ t

θ∨s

∫
Rd
∂j2,j3h

ij1(y − ξu)D
(k1)
θ1

ξj2u D
(k2)
θ2

ξj3u W
j1(du, dy).

As a consequence, by (5.17), (5.36), Burkholder-Davis-Gundy’s, Minkowski’s, and Cauchy-
Schwarz’s inequalities, we have

∥∥D(i,j)
θ1,θ2

ξkt −D
(i,j)
θ1,θ2

ξks
∥∥2

2p
≤cp

[ d∑
j1=1

‖h‖23,2
∫ t

θ∨s

∥∥D(i,j)
θ1,θ2

ξj1u
∥∥2

2p
du

+

d∑
j1,j2

‖h‖23,2
∫ t

θ∨s

∥∥D(i)
θ1
ξj1u
∥∥2

4p

∥∥D(j)
θ2
ξj2u
∥∥2

4p
du

]
≤C(t− s). (5.54)

Therefore, we obtain (5.51) by integrating (5.54) and Minkowski’s inequality.

We define the following functionals of ξt

H(i)(ξt, 1) = −
d∑
j=1

δ
(
σjit Dξ

j
t

)
, 1 ≤ i ≤ d, (5.55)
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and

H(i,j)(ξt, 1) = −
d∑
k=1

σ
(
H(i)(ξt, 1)σkjt Dξ

k
t

)
, 1 ≤ i, j ≤ d. (5.56)

A more detailed description of these functionals can be seen in Appendix A. In the next
lemma, we establish moment estimates for the functionals H(i)(ξt, 1) and H(i,j)(ξt, 1).

Lemma 5.5. Suppose that h ∈ H3
2 (Rd;Rd ⊗ Rd), then the following inequalities are

satisfied:

max
1≤i≤d

∥∥H(i)(ξt, 1)
∥∥

2p
≤ C(t− r)− 1

2 , (5.57)

max
1≤i,j≤d

∥∥H(i,j)(ξt, 1)
∥∥

2p
≤ C(t− r)−1. (5.58)

Proof. Due to Meyer’s inequality (see e.g. Proposition 1.5.4 and 2.1.4 of Nualart [24]), it
suffices to estimate∥∥‖σjit Dξjt ‖H∥∥2p

,
∥∥‖D(σjit Dξjt )‖H⊗2

∥∥
2p

and
∥∥‖D2

(
σjit Dξ

j
t

)
‖H⊗3

∥∥
2p
.

By (5.10) and Lemma 5.2–5.3, we have∥∥‖σjit Dξjt ‖H∥∥2p
≤
∥∥σjit ∥∥4p

∥∥‖Dξjt ‖H∥∥4p
≤ C(t− r)− 1

2 ,

∥∥‖D(σjit Dξjt )‖H⊗2

∥∥
2p
≤
∥∥‖Dσjit ⊗Dξjt ‖H⊗2

∥∥
2p

+
∥∥‖σjit D2ξjt ‖H⊗2

∥∥
2p

≤
∥∥‖Dσjit ‖H∥∥4p

∥∥‖Dξjt ‖H∥∥4p
+
∥∥σjit ∥∥4p

∥∥‖D2ξjt ‖H⊗2

∥∥
4p

≤C(t− r) 1
2 ,

and ∥∥‖D2
(
σjit Dξ

j
t

)
‖H⊗3

∥∥
2p
≤
∥∥‖D2σjit ⊗Dξ

j
t ‖H⊗2

∥∥
2p

+
∥∥‖Dσjit ⊗D2ξjt ‖H⊗2

∥∥
2p

+
∥∥‖σjit D3ξjt ‖H⊗2

∥∥
2p

≤C(t− r).

The above inequalities hold for all 1 ≤ i, j ≤ d. Then, (5.57) and (5.58) follows.

The next lemma provides the moment estimate for the increment of H(i)(ξt, 1).

Lemma 5.6. Suppose that h ∈ H3
2 (Rd;Rd ⊗Rd). Then,

max
1≤i≤d

∥∥H(i)(ξt, 1)−H(i)(ξs, 1)
∥∥

2p
≤ C(s− r)− 1

2 (t− r)− 1
2 (t− s) 1

2 . (5.59)

Proof. Notice that, by definition, we have

H(i)(ξt, 1)−H(i)(ξs, 1) =−
d∑
j=1

δ
(
σjit Dξ

j
t

)
+

d∑
j=1

δ
(
σjis Dξ

j
s

)
=−

d∑
j=1

δ
(
σjit Dξ

j
t − σjis Dξjs

)
.

Thus by Meyer’s inequality again, it suffices to estimate

I1 :=
∥∥‖σjit Dξjt − σjis Dξjs‖H∥∥2p

and I2 :=
∥∥∥∥D(σjit Dξjt − σjis Dξjs)∥∥H⊗2

∥∥
2p
.
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For I1, we have

I1 ≤
∥∥∥∥(σjit − σjis )Dξks∥∥H∥∥2p

+
∥∥‖σjit (Dξjt −Dξjs)‖H∥∥2p

.

Notice that by Lemmas 5.2–5.4, we can write∥∥∥∥(σjit − σjis )Dξjs∥∥H∥∥2p
≤
∥∥σjit − σjis ∥∥4p

∥∥‖Dξjs‖H∥∥4p

≤C(t− r)− 1
2 (s− r)− 1

2 (t− s) 1
2

and ∥∥∥∥σjit (Dξjt −Dξjs)∥∥H∥∥2p
≤
∥∥σjit ∥∥4p

∥∥∥∥Dξjt −Dξjs∥∥H∥∥4p

≤C(t− r)−1(t− s) 1
2 ≤ C(t− r)− 1

2 (s− r)− 1
2 (t− s) 1

2 .

Thus combining the above inequalities, we have the following estimate for I1:

I1 ≤ C(t− r)− 1
2 (s− r)− 1

2 (t− s) 1
2 . (5.60)

By Lemmas 5.2–5.4, we have the following estimate for I2:

I2 ≤
∥∥Dσjit ⊗Dξjt −Dσjit ⊗Dξjs∥∥2p,H⊗2 +

∥∥σjit D2ξjs − σjis D2ξjs
∥∥

2p,H⊗2

≤
∥∥‖Dσjit ‖H∥∥4p

∥∥∥∥(Dξjt −Dξjs)∥∥H∥∥4p
+
∥∥∥∥(Dσjit −Dσjis )∥∥H∥∥4p

∥∥∥∥Dξjs∥∥H∥∥4p

+
∥∥σjit ∥∥4p

∥∥‖D2ξjt −D2ξjs‖H⊗2

∥∥
4p

+
∥∥σjit − σjis ∥∥4p

∥∥‖D2ξjs‖H⊗2

∥∥
2p

≤C(t− s) 1
2 . (5.61)

Therefore, (5.59) follows from (5.60), (5.61) and Meyer’s inequality.

The next lemma shows that ξ is a d-dimensional Gaussian process in the whole
probability space. Notice that, however, conditionally on W , the process ξ is no longer
Gaussian, because it is the solution to a nonlinear SDE.

Lemma 5.7. The process ξ given by equation (5.1) is a d-dimensional Gaussian process,
with mean x and covariance matrix

Σs,t = (t ∧ s− r)(I + ρ(0)), (5.62)

where ρ(0) is defined in (2.2). Moreover, the probability density of ξt, denoted by pξt(y),
is bounded by a Gaussian density:

pξt(y) ≤ (2π(t− r))−
d
2 exp

(
− k|x− y|2

t− r

)
, (5.63)

where

k = [2(d‖h‖22,3 + 1)]−1. (5.64)

Proof. Since B is a d-dimensional Brownian motion and W is a d-dimensional space-time
white Gaussian random field independent of B, then ξ = {ξt, r ≤ t ≤ T} is a square
integrable d-dimensional martingale. The quadratic covariation of ξ is given by

〈ξi, ξj〉t =δij(t− r) +

d∑
k=1

∫ t

r

∫
Rd
hik(ξs − y)hjk(ξs − y)dyds

=
(
δij + ρij(0)

)
(t− r). (5.65)
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Hölder continuity of the solutions to a class of SPDE’s

Note that ρ(0) is a symmetric nonnegative definite matrix. As a consequence, I +

ρ(0) is strictly positive definite, and thus nondegenerate. Therefore, we can find a
nondegenerate matrix M , such that M∗(I + ρ(0))M = I. Let η = Mξ, then η = {ηt, t ∈
[0, T ]} is a martingale with quadratic covariation

〈ηi, ηj〉t = (t− r)
d∑

k1,k2=1

M ik1M jk2〈ξk1 , ξk2〉t = δij(t− r).

By Levy’s martingale characterization, η is a d-dimensional Brownian motion. Then,
ξ = M−1η is a Gaussian process, with covariance matrix (5.62).

Since for any t > r, Σt := Σt,t = (t− r)(I + ρ(0)) is symmetric and positive definite,
the probability density of the Gaussian random vector ξt is given by

pξt(y) =
1√

(2π)d|Σt|
exp

(
− 1

2
(y − x)∗Σ−1

t (y − x)
)
. (5.66)

Recall that ρ(0) is symmetric and nonnegative definite. Then it has eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λd ≥ 0. Let λ be the diagonal matrix with diagonal elements λ1, . . . , λd. There
is an orthogonal matrix U , such that ρ(0) = U∗λU . Let k be defined in (5.64). It follows
that

λ1 + 1 ≤
d∑

i,j=1

|ρij(0)|+ 1 ≤ ‖ρ‖∞ + 1 ≤ d‖h‖23,2 + 1 =
1

2k
.

Thus for any nonzero x ∈ Rd, we have

1

2
x∗Σ−1

t x− k

t− r
x∗x =

1

2
x∗
(

Σ−1
t −

2k

t− r
I
)
x

=
1

2(t− r)
x∗U∗

(
(I + λ)

−1 − 2kI
)
Ux ≥ 0,

because (I + λ)−1 − 2kI is a nonnegative diagonal matrix. Thus for any x, y ∈ Rd, t > r,
we have

exp
(
− 1

2
(y − x)∗Σ−1

t (y − x)
)
≤ exp

(
− k|x− y|2

t− r

)
. (5.67)

On the other hand, we have

|Σt| = |U∗ (I + λ)U(t− r)| ≥ (t− r)d. (5.68)

Therefore, we obtain (5.63) by plugging (5.67)–(5.68) into (5.66).

Denote by PW , EW , and ‖ · ‖Wp the probability, expectation and Lp-norm conditional
on W . The following two propositions are estimates for the conditional distribution of ξ.

Proposition 5.8. Fix 0 ≤ r < t ≤ T and recall that ξr = ξr,xr = x. Let c > 0, choose
ρ ∈ (0, c

√
t− r]. Then, for any p1, p2 ≥ 1 and y ∈ Rd, there exists C > 0, depending on p1,

p2, c, ‖h‖2, and d, such that

∥∥PW (|ξt − y| ≤ ρ)
1
p1

∥∥
p2
≤ C exp

(
− k|x− y|2

p(t− r)

)
, (5.69)

where k is defined in (5.64) and p = p1 ∨ p2.

Proof. Let p = p1 ∨ p2. Then, by Jensen’s inequality, we have∥∥PW (|ξt − y| ≤ ρ)
1
p1

∥∥
p2

=
∥∥∥∥1{ξt−y|≤ρ}∥∥Wp1∥∥p2 ≤ ∥∥1{ξt−y|≤ρ}∥∥p.
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We consider two different cases.
(i) Suppose that 2ρ ≤ |x− y|. If |ξt − y| ≤ ρ ≤ c

√
t− r, then

|ξt − x| ≥ |x− y| − |ξt − y| ≥ |x− y| − ρ ≥
|x− y|

2
,

and equivalently {|ξt − y| < ρ} ⊂ {|ξt − x| ≥ |x−y|2 }. Then, by Lemma 5.7, we have

∥∥PW (|ξt − y| ≤ ρ)
1
p1

∥∥
p2

=
∥∥1{|ξt−x|≥ |x−y|2 }∩{|ξt−y|<ρ}

∥∥
p
≤ C

[
Vdρ

d sup
|z−x|≥ |x−y|2

pξt(z)
] 1
p

≤C
[
Vdc

d(2π)−
d
2 exp

(
− k|x− y|2

t− r

)] 1
p

, (5.70)

where Vd = π
d
2

Γ(1+ d
2 )

is the volume of the unit sphere in Rd.

(ii) On the other hand, suppose that 2ρ > |x− y|. Then |x− y| ≤ 2ρ ≤ 2c
√
t− r. Thus

by Lemma 5.7 again, we have∥∥PW (|ξt − y| ≤ ρ)
1
p1

∥∥
p2
≤C
(
Vdρ

d(2π(t− r))− d2
) 1
p

≤C
(
Vdc

d(2π)−
d
2

) 1
p exp

(4kc2

p
− 4kc2

p

)
≤C
(
Vdc

d(2π)−
d
2

) 1
p e

4kc2

p exp
(
− k|x− y|2

p(t− r)

)
. (5.71)

Therefore, (5.69) follows from (5.70)–(5.71).

Denote by pW (r, x; t, y) the transition probability density of ξ conditional on W . In
other words, pW (r, x; t, y) is the conditional probability density of ξt = ξr,xt . The existence
of pW (r, x; t, y) is guaranteed by Theorem A.3. By applying Theorem A.4, we can further
obtain the following estimate:

Proposition 5.9. For any 0 ≤ r < t ≤ T , p ≥ 1, and y ∈ Rd, there exist C > 0, depending
on T , d, ‖h‖3,2, p, and q, such that

∥∥pW (r, x; t, y)
∥∥

2p
≤ C exp

(
− k|x− y|2

6pd(t− r)

)
(t− r)− d2 , (5.72)

where k is defined in (5.64).

Proof. Choose p1 ∈ (d, 3pd], let p2 = 2p1, and p3 = p1p2
p2−p1 = p2. Then, by (A.12) and

Hölder’s inequality, we have∥∥pWξt (y)
∥∥

2p
≤ C max

1≤i≤d

{∥∥PW (|ξt − y| < 2ρ)
1
p2

∥∥
6p

∥∥(‖H(i)(ξt, 1)‖Wp1
)d−1∥∥

6p

×
[1

ρ
+
∥∥‖H(i)(ξt, 1)‖Wp2

∥∥
6p

]}
. (5.73)

By Jensen’s inequality, we have for any 1 ≤ i ≤ d∥∥( ∥∥H(i)(ξt, 1)
∥∥W
p1

)d−1∥∥
6p
≤
∥∥H(i)(ξt, 1)

∥∥d−1

6p∨p1
≤
∥∥H(i)(ξt, 1)

∥∥d−1

6pd
, (5.74)

and ∥∥∥∥H(i)(ξt, 1)
∥∥W
p2

∥∥
6p
≤
∥∥H(i)(ξt, 1)

∥∥
6pd
. (5.75)

Let ρ =
√
t−r
4 . (5.72) is a consequence of (5.73)–(5.75), Lemma 5.5, and Proposition

5.8.
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6 A conditional convolution representation

In this section, we follow the idea of Li et al. (see Section 3 of [20]) to obtain a
conditional convolution formulation of the SPDE (3.1). Consider the following SPDE:

ut(x) =

∫
Rd
µ(z)pW (0, z; t, x)dz +

∫ t

0

∫
Rd
pW (r, z; t, x)ur(z)V (dr, dz), (6.1)

where W and V are the same random fields as in (3.1), pW is the transition density of ξt
given by (5.1) conditional on W .

In order to define the stochastic integral on the right-hand side of (6.1), we introduce
the following filtrations. First, for any t ∈ [0, T ], we set

Ft := σ{W (s, x), (s, x) ∈ [0, T ]×Rd} ∨ σ{V (s, x), (s, x) ∈ [0, t]×Rd}. (6.2)

The stochastic integral in (6.1) is defined for all Ft-adapted processes. But later we
will see that the solution u, as a limit of Picard iteration, is in fact adapted to a smaller
filtration defined as follows: for any t ∈ [0, T ],

Gt := σ{W (s, x), (s, x) ∈ [0, t]×Rd} ∨ σ{V (s, x), (s, x) ∈ [0, t]×Rd}. (6.3)

Definition 6.1. A random field u = {ut(x), t ∈ [0, T ], x ∈ Rd} is said to be a strong
solution to the SPDE (6.1), if the following properties are satisfied:

(i) u is Gt-adapted.

(ii) u is square integrable in the following sense:

E
(∫ T

0

∫
Rd
|ut(x)|2dxdt

)
<∞. (6.4)

(iii) The stochastic integral in (6.1) is defined as Walsh’s integral and the equality holds
almost surely for all t ∈ [0, T ] and almost every x ∈ Rd.

Lemma 6.2. Assume that κ and µ are bounded. Then the SPDE (6.1) has a unique strong
solution (in the sense of Definition 6.1). Denote the solution by u = {ut(x), 0 ≤ t ≤ T, x ∈
Rd}. Then, for any p ≥ 1, the following inequality holds:

sup
0≤t≤T

sup
x∈Rd

‖ut(x)‖2p <∞. (6.5)

Proof. We prove the lemma by the Picard iteration. Let u0(t, x) ≡ µ(x) and let

un(t, x) =

∫
Rd
µ(z)pW (0, z; t, x)dz +

∫ t

0

∫
Rd
pW (r, z; t, x)un−1(r, z)V (dr, dz), (6.6)

for all n ≥ 1 and 0 ≤ t ≤ T . Since W and V are independent, then V is a martingale
with respect to the filtration {Ft}t∈[0,T ]. Notice that for any r ∈ [0, T ], Ft includes all
the information of W , and pW depends only on W . Then, pW (r, z; t, x) is Fr-measurable,
and by induction un−1(r, z) is Fr-measurable for all [r, t] ⊂ [0, T ] and x, z ∈ Rd. Thus the
stochastic integral is well-defined, and un is an Ft-adapted random field. In addition, we
know that pW (r, z; t, x) is Gt-measurable, and by induction we can assume that un−1(t) is
Gt-measurable as well. Thus the stochastic integral in (6.6) is Gt-measurable. Therefore,
the limit of un(t, x) in L2(Ω), if exists, is also Gt-measurable.

Let dn(t, x) := un+1(t, x)− un(t, x). Then

dn(t, x) :=

∫ t

0

∫
Rd
pW (r, z; t, x)dn−1(r, z)V (dr, dz).
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For any p ≥ 1, let

d∗n(t) :=

∫
Rd
‖dn(t, x)‖22pdx. (6.7)

We aim to prove the existence and convergence of {un}n≥1 in L2p(Ω;L2(Rd)) by showing
that

√
d∗n(t) is summable in n. Then, we will show that the limit is a solution to (6.1).

By the definition of un(t), Burkholder-Davis-Gundy, Minkowski’s and Cauchy-Schwarz’s
inequalities, we have

d∗n(t) ≤cp‖κ‖∞
∫
Rd

∫ t

0

(∫
Rd

∥∥pW (r, z; t, x)dn−1(r, z)
∥∥

2p
dz
)2

drdx. (6.8)

By the Markov property, pW (r, z; t, x) depends only on {W (s, z)−W (r, z), s ∈ (r, t], z ∈ Rd}.
On the other hand, dn−1(r, z) depends on V and {W (s, z), s ∈ [0, r], z ∈ Rd}. Thus,
pW (r, z; t, x) and dn−1(r, z) are independent. That implies

E
(
|pW (r, z; t, x)dn−1(r, z)|2p

)
= E

(
|pW (r, z; t, x)|2p

)
E
(
|dn−1(r, z)|2p

)
. (6.9)

Then, by (6.8), (6.9), Young’s convolution inequality, Fubini’s theorem and Proposition
5.9, we have

d∗n(t) ≤cp‖κ‖∞
∫ t

0

∫
Rd×Rd

∫
Rd
‖pW (r, z1; t, x)‖2p‖pW (r, z2; t, x)‖2pdx

× ‖dn−1(r, z1)‖2p‖dn−1(r, z2)‖2pdz1dz2dr

≤C
∫ t

0

(t− r)− d2 exp
(
− k|z1 − z2|2

12pd(t− r)

)
‖dn−1(r, z1)‖2p‖dn−1(r, z2)‖2pdz1dz2dr

≤C
∫ t

0

d∗n−1(r)dr, (6.10)

where C > 0 depends on p, T , d, h, and ‖κ‖∞.
Thus by iteration, we have

d∗n(t) ≤ Cn
∫ t

0

∫ rn

0

· · ·
∫ r2

0

d∗0(r1)dr1 · · · drn. (6.11)

To estimate d∗0, we observe that

d∗0(t) =

∫
Rd

∥∥∥∫
Rd

(µ(z)− µ(x)) pW (0, z; t, x)dz

+

∫ t

0

∫
Rd
pW (r, z; t, x)µ(z)V (dr, dz)

∥∥∥2

2p
dx

≤3

∫
Rd

∥∥∥∫
Rd
µ(z)pW (0, z; t, x)dz

∥∥∥2

2p
dx+ 3

∫
Rd

∥∥∥∫
Rd
µ(x)pW (0, z; t, x)dz

∥∥∥2

2p
dx

+ 3

∫
Rd

∥∥∥ ∫ t

0

∫
Rd
pW (r, z; t, x)µ(z)V (dr, dz)

∥∥∥2

2p
dx. (6.12)

By an argument similar to the proof of (6.10), we can show that d∗0(t) < C. Therefore,
we have

d∗n(t) ≤C
∫ t

0

∫ rn

0

· · ·
∫ r2

0

1dr1 . . . drn = C
tn

n!
. (6.13)

Notice that
√
dn(t) is summable in n and the corresponding series is bounded on [0,T].

Therefore, for any fixed t ∈ [0, T ], {un(t, ·)}n≥0 is convergent in L2p(Ω;L2(Rd)). Denote
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by ut(x) the limit of this sequence. We claim that u = {ut(x), t ∈ [0, T ], x ∈ Rd} is a
strong solution to (6.1). Clearly u satisfies (6.4) and is Gt-adapted. Therefore, it suffices
to show that as n→∞,∫ t

0

∫
Rd
pW (r, z; t, ·)un(r, z)V (dr, dz)→

∫ t

0

∫
Rd
pW (r, z; t, ·)u(r, z)V (dr, dz), (6.14)

in L2p(Ω) for all t ∈ [0, T ]. Actually, by Burkholder-Davis-Gundy’s, Minkowski’s, Young’s
convolution inequalities, and the fact that {pW (r, z; t, x), x, z ∈ Rd} and {un(r, z) −
u(r, z), z ∈ Rd} are independent, we can write

∥∥∥∫ t

0

∫
Rd
pW (r, z; t, x) (un(r, z)− u(r, z))V (dr, dz)

∥∥∥2

2p
≤ C

∫ t

0

∫
Rd
‖un(r, z)− u(r, z)‖22pdzdr.

This implies that (6.14) is true. As we discussed before, the limit u(t, x) is Gt-measurable,
it follows that u(t, x) is a strong solution to (6.1).

In order to show the uniqueness, we assume that v = {vt(x), t ∈ [0, T ], x ∈ Rd} is
another strong solution to (6.1). Let dt(x) = ut(x) − vt(x) for any t ∈ [0, T ] and x ∈ Rd.
Then,

dt(x) =

∫ t

0

∫
Rd
pW (r, z; t, x)dr(z)V (dr, dz).

By the Ito isometry, Minkowski’s and Young’s convolution inequalities and the fact that
the families {dr(x), x ∈ Rd} and {pW (r, z; t, x), x, z ∈ Rd} are independent, we have∫

Rd
‖dt(x)‖22dx ≤

∫ t

0

sup
x∈Rd

‖dr(x)‖22
(∫

Rd

∥∥pW (r, z; t, x)
∥∥

2
dz
)2

dr

≤C
∫ t

0

∫
Rd
‖dr(x)‖22dxdr. (6.15)

Notice that by definition,∫
Rd
‖dt(x)‖22dx ≤

∫
Rd
E|ut(x)|2dx+

∫
Rd
E|vt(x)|2dx <∞,

for almost every t ∈ [0, T ]. As a consequence of Gronwall’s lemma and the fact that
d0 ≡ 0, inequality (6.15) implies d(t, x) ≡ 0, a.s for almost every (t, x) ∈ [0, T ] × Rd. It
follows that the solution to (6.1) in the sense of Definition 6.1 is unique.

In order to obtain the uniform boundedness (6.5), we need to estimate the following
expression when applying the Picard iteration:

d̃∗n(t) := sup
x∈Rd

‖dn(t, x)‖22p,

instead of d∗n(t) defined in (6.7). By a similar argument as we did before, the following
inequality can be proved:

d̃∗n(t) ≤ CT
n

n!
,

where C > 0 is independent of n. Then, inequality (6.5) follows immediately.

Proposition 6.3. Assume that κ and µ are bounded. Let u = {ut(x), 0 < t ≤ T, x ∈ Rd}
be the unique strong solution to (6.1) in the sense of Definition 6.1. Then, u is the strong
solution to (3.1) in the sense of Definition 3.1.
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Proof. Let u = {ut(x), t ∈ [0, T ], x ∈ Rd} be the unique solution to the SPDE (6.1), and
write Z(dt, dx) = ut(x)V (dt, dx) for all t ∈ [0, T ] and x ∈ Rd. Then, it suffices to show
that u satisfies the following equation:

〈ut, φ〉 =〈µ, φ〉+

∫ t

0

〈us, Aφ〉ds+

∫ t

0

∫
Rd
〈us,∇φ∗h(y − ·)〉W (ds, dy)

+

∫ t

0

∫
Rd
φ(x)Z(ds, dx), (6.16)

for any φ ∈ C2
b

(
Rd
)
.

Denote by

EWs,x(φ(ξt)) := E
(
φ(ξt)|W, ξs = x

)
=

∫
Rd
φ(z)pW (s, x; t, z)dz.

As u is the strong solution to (6.1), the following equations are satisfied

〈ut, φ〉 =
〈
µ,EW0,·(φ(ξt))

〉
+

∫ t

0

∫
Rd
EWs,z(φ(ξt))Z(ds, dz),∫ t

0

〈us, Aφ〉ds =

∫ t

0

〈
µ,EW0,·(Aφ(ξs))

〉
ds+

∫ t

0

∫ s

0

∫
Rd
EWr,z(Aφ(ξs))Z(dr, dz)ds,

and∫ t

0

∫
Rd
〈us,∇φ∗h(y − ·)〉W (ds, dy) =

∫ t

0

∫
Rd

〈
µ,EW0,·

(
∇φ(ξs)

∗h(y − ξs)
)〉
W (ds, dy)

+

∫ t

0

∫
Rd

∫ s

0

∫
Rd
EWr,z

(
(∇φ(ξs)

∗h(y − ξs)
)
Z(dr, dz)W (ds, dy).

Notice that φ ∈ C2
b (Rd), h ∈ H3

2 (Rd;Rd ⊗Rd), and ‖ut(x)‖22 is integrable on [0, T ]×Rd.
These properties allow us to write

E
(∫ T

0

∫
Rd
|∇φ(ξs)

∗h(y − ξs)|2dyds
)
≤ T‖φ‖1,∞‖h‖22 <∞,

E

∫ T

0

∫ T

0

∫
Rd×Rd

|Aφ(ξs)||κ(z1, z2)ur(z1)ur(z2)|dz1dz2dsdr

≤‖φ‖2,∞‖κ‖∞
∫ T

0

∫
Rd
‖ur(x)‖22dxdr <∞,

and

E
(∫ T

0

∫ T

0

∫
Rd

∫
Rd×Rd

|∇φ(ξs)
∗h(y − ξs)|2|κ(z1, z2)ur(z1)ur(z2)|dydz1dz2dsdr

)
≤‖φ‖1,∞‖h‖2‖κ‖∞

∫ T

0

∫
Rd
‖ur(x)‖22dxdr <∞.

Thus by the stochastic Fubini theorem (see e.g. Lemma 4.1 on page 116 of Ikeda and
Watanabe [15]), we have

〈ut, φ〉 − 〈µ, φ〉 −
∫ t

0

〈us, Aφ〉ds−
∫ t

0

∫
Rd
〈us,∇φ∗h(y − ·)〉W (ds, dy) (6.17)

=

〈
µ,EW0,·

(
φ(ξt)− φ(ξ0)−

∫ t

0

Aφ(ξs)ds−
∫ t

0

∫
Rd
∇φ(ξs)

∗h(y − ξs)W (ds, dy)
)〉

+

∫ t

0

∫
Rd
EWs,z

(
φ(ξt)−

∫ t

s

Aφ(ξr)dr −
∫ t

s

∫
Rd
∇φ(ξr)

∗h(y − ξr)W (dr, dy)
)
Z(ds, dz).
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Hölder continuity of the solutions to a class of SPDE’s

The last stochastic integral in (6.17) is well-defined, because the integrand is an Fs-
adapted process, where Fs is defined in (6.2). Notice that by Itô’s formula, we have

φ(ξs,xt ) =φ(x) +

∫ t

s

Aφ(ξs,xr )dr +

∫ r

s

∇φ(ξs,xr )∗dBr

+

∫ t

s

∫
Rd
∇φ(ξs,xr )∗h(y − ξs,xr )W (dr, dy). (6.18)

Then, (6.16) follows from (6.17) and (6.18).

7 Proof of Theorem 3.4

In this section, we prove Theorem 3.4 by showing the the Hölder continuity of ut(x)

in spatial and time variables separately:

Proposition 7.1. Suppose that h ∈ H2
3

(
Rd
)
, ‖κ‖∞ < ∞, and µ ∈ L1

(
Rd
)

is bounded.
Then, for any 0 < s < t ≤ T , x, y ∈ Rd β ∈ (0, 1) and p > 1, there exists a constant C
depending on T , d, ‖h‖3,2, ‖µ‖∞, ‖κ‖∞, p, and β, such that the following inequalities are
satisfied:

‖ut(y)− ut(x)‖2p ≤Ct
− 1

2 (y − x)β , (7.1)

‖ut(x)− us(x)‖2p ≤Cs
− 1

2 (t− s) 1
2β . (7.2)

Then, Theorem 3.4 is simply a corollary of Proposition 7.1. In order to prove Proposi-
tion 7.1, we need the following Hölder continuity results for the conditional transition
density pW (r, z; t, x):

Lemma 7.2. Suppose that h ∈ H3
2 (Rd), 0 ≤ r < s < t ≤ T , x, y ∈ Rd, and β ∈ (0, 1).

Then, there exists C > 0, depending on T , d, ‖h‖3,2, p and β, such that the following
inequalities are satisfied:∫

Rd

∥∥pW (r, z; t, y)− pW (r, z; t, x)
∥∥

2p
dz ≤C(t− r)− 1

2β |y − x|β , (7.3)∫
Rd

∥∥pW (r, z; t, x)− pW (r, z; s, x)
∥∥

2p
dz ≤C(s− r)− 1

2β(t− s) 1
2β . (7.4)

Before showing the proof, let us firstly derive a variant of the density formula (A.11).
It will be used in the proof of (7.4). Choose φ ∈ C2

b (Rn), such that 1B(0,1) ≤ φ ≤ 1B(0,4),
and its first and second partial derivatives are all bounded by 1. For any x ∈ Rd and
ρ > 0, we set φxρ := φ( ·−xρ ). Assume that F satisfies all the properties in Theorem A.3.
Let Qn be the n-dimensional Poisson kernel (see (A.10)). Then, the density of F can be
represented as follows:

pF (x) =

n∑
i,j1,j2=1

E
[
∂j1Qn(F − x)

〈
DF j1 , DF j2

〉
H
σj2iH(i)(F, φ

x
ρ(F ))

]
=E

[〈
DQn(F − x),

m∑
i,j2=1

H(i)(F, φ
x
ρ(F ))σj2iDF j2

〉
H

]

=

m∑
i=1

E
[
Qn(F − x)

m∑
j2=1

δ
[
H(i)(F, φ

x
ρ(F ))σj2iDF j2

] ]
=−

m∑
i=1

E
[
Qn(F − x)H(i,i)(F, φ

x
ρ(F ))

]
. (7.5)

Let ξt = ξr,zt be defined in (5.1).
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Hölder continuity of the solutions to a class of SPDE’s

Proof of (7.3). Choose p1 ∈ (d, 3pd], let p2 = 2p1, and p3 = p1p2
p2−p1 = p2. Then, by (A.13)

and Hölder’s inequality, for any fixed z, x, y ∈ Rd and ρ > 0, we can show that

I(z) :=‖pW (r, z; t, x)− pW (r, z; t, y)‖2p

≤C|y − x|
∥∥∥PW (ξt − τ ≤ 4ρ)

1
p2

∥∥∥
6p

max
1≤i≤d

{∥∥∥(‖H(i)(ξt; 1)‖Wp2
)d−1

∥∥∥
6p

×
( 1

ρ2
+

2

ρ

∥∥‖H(i)(ξt;1)‖Wp2
∥∥

6p
+
∥∥‖H(i,j)(ξt; 1)‖Wp2

∥∥
6p

)}
,

where τ = cx+ (1− c)y, for some c ∈ (0, 1) that depends on z, x, y.

Let ρ =
√
t−r
8 . Similarly as proved in Proposition 5.9, we can show that

I(z) ≤C|y − x|(t− r)−
d+1
2 exp

(
− k|τ − z|2

(6p ∨ p2)(t− r)

)
≤C|y − x|(t− r)−

d+1
2 exp

(
− k|τ − z|2

6pd(t− r)

)
, (7.6)

where k is defined in (5.64) and C > 0 depends on T , d, p, and ‖h‖3,2.

Notice that even if we fix x, y ∈ Rd, τ is still a function of z that does not have an
explicit formulation. Thus it is not easy to calculate the integral of I directly. Without
losing generality, assume that x = 0, and y = (y1, 0, . . . , 0), where y1 ≥ 0. Then τ =

((1− c)y1, 0, . . . , 0), where c = c(z) ∈ (0, 1). Let k̂ = k
6pd . For any z = (z1, . . . , zd) ∈ Rd, we

consider the following cases.

(a) If z1 ≤ 0, then

exp
(
− k|τ − z|2

6pd(t− r)

)
≤ exp

(
− k̂|z|2

t− r

)
. (7.7)

(b) If z1 ≥ y1, then

exp
(
− k|τ − z|2

6pd(t− r)

)
≤ exp

(
− k̂|y − z|2

t− r

)
. (7.8)

(c) If 0 < z1 < y1, then

exp
(
− k|τ − z|2

6pd(t− r)

)
≤ exp

(
− k̂|τ0 − z|2

t− r

)
, (7.9)

where τ0 = (z1, 0, . . . , 0).

Therefore, combining (7.6)–(7.9), we have∫
Rd
I(z)dz ≤ C|y − x|(t− r)−

d+1
2 (I1 + I2 + I3) , (7.10)

where

I1 =

∫ 0

−∞
dz1

∫
Rd−1

exp
(
− k̂|z|2

t− r

)
dzd . . . dz2,

I2 =

∫ ∞
|y|

dz1

∫
Rd−1

exp
(
− k̂|y − z|2

t− r

)
dzd . . . dz2,

I3 =

∫ |y|
0

dz1

∫
Rd−1

exp
(
− k̂|τ0 − z|2

t− r

)
dzd . . . dz2.
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Hölder continuity of the solutions to a class of SPDE’s

By a changing of variables, it is easy to show that

I1 + I2 =

∫
Rd

exp
(
− k̂|z|2

t− r

)
dz = k̂−

d
2 (t− r) d2 . (7.11)

For I3, we compute the integral as follows:

I3 =

∫ |y|
0

dz1

∫
Rd−1

exp
(
−
k̂
(
z2

2 + . . . z2
d

)
t− r

)
dzd . . . dz2

=
(
2πk̂−1

) d−1
2 (t− r)

d−1
2 |y|. (7.12)

Thus combining (7.10)–(7.12), we have∫
Rd
I(z)dz ≤C

[
(t− r)− 1

2 |y|+ (t− r)−1|y|2
]

=C
[
(t− r)− 1

2 |y − x|+ (t− r)−1|y − x|2
]
. (7.13)

It is easy to see that inequality (7.13) holds for all x, y ∈ Rd.
On the other hand, by Proposition 5.9, we have∫

Rd
I(z)dz ≤

∫
Rd
‖pW (r, z; t, y)‖2p + ‖pW (r, z; t, x)‖2pdz ≤ C. (7.14)

Therefore by (7.13) and (7.14), for any β1, β2 ∈ (0, 1), we have∫
Rd
I(z)dz ≤ C

[
(t− r)− 1

2β1 |y − x|β1 + (t− r)−β2 |y − x|2β2
]
.

Then, (7.3) follows by choosing β = β1 = 2β2.

Proof of (7.4). Let ρ1 =
√
t− r and ρ2 =

√
s− r. By density formula (7.5), we have∣∣pW (r, z; t, x)− pW (r, z; s, x)
∣∣

≤
d∑
i=1

∣∣EW {[Qd(ξt − x)−Qd(ξs − x)]H(i,i)(ξs, φ
x
ρ2(ξs))

} ∣∣
+

d∑
i=1

∣∣EW {Qd(ξt − x)
[
H(i,i)(ξt, φ

x
ρ1(ξt))−H(i,i)(ξs, φ

x
ρ2(ξs))

]} ∣∣
=I1 + I2. (7.15)

Estimation for I1: Note that by the local property of δ (see Proposition 1.3.15 of
Nulart [24]), H(i,i)(ξs, φ

x
ρ2(ξs)) vanishes except if ξs ∈ B(x, 4ρ2). Choose p1 ∈ (d, 2pd]. Let

p2 = 3p1 and p3 = 3p1
3p1−2 . Then, 2

p2
+ 1

p3
= 1. Thus, by Hölder’s inequality, we have

‖I1‖2p ≤d
∥∥‖1B(x,4ρ2)(ξs)‖Wp2

∥∥
6p

∥∥‖Qd(ξt − x)−Qd(ξs − x)‖Wp3
∥∥

6p

× max
1≤i≤d

∥∥‖H(i,i)(ξs, φ
x
ρ2(ξs))‖Wp2

∥∥
6p
. (7.16)

By Proposition 5.8, and the fact that p2 = 3p1 ≤ 6pd, the first factor satisfies the following
inequality

∥∥‖1B(x,4ρ2)(ξs)‖Wp2
∥∥

6p
=
∥∥PW (|ξs − x| < 4ρ2)

1
p2

∥∥
6p
≤ C exp

(
− k|z − x|

6pd(s− r)

)
. (7.17)
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By Lemmas 5.5 and A.2, for all 1 ≤ i ≤ d, the last factor can be estimated as follows:

∥∥‖H(i,i)(ξs, φ
x
ρ2(ξs))‖Wp2

∥∥
6p
≤ 1

ρ2
2

+
2

ρ2

∥∥‖H(i)(ξs, 1)‖Wp2
∥∥

6p
+
∥∥‖H(i,i)(ξs, 1)‖Wp2

∥∥
6p

≤C(s− r)−1. (7.18)

We estimate the second factor by the mean value theorem. Let η1 = |ξt − x| and
η2 = |ξs − x|. Then, we can write

Qd(ξt − x)−Qd(ξs − x) =

{
A−1

2 (log η1 − log η2) , if d = 2,

−A−1
d

[
η
−(d−2)
1 − η−(d−2)

2

]
, if d ≥ 3.

Thus, by the mean value theorem, it follows that

|Qd(ξt − x)−Qd(ξs − x)| = cd|η1 − η2|
|ζη1 + (1− ζ)η2|d−1

,

where cd is a constant coming from the Poisson kernel, and ζ ∈ (0, 1) is a random number
that depends on η1 and η2. Notice that f(x) = x−(d−1) is a convex function on (0,∞), and
P(η1 > 0) = P(η2 > 0) = 1, then we have

|ζη1 + (1− ζ)η2|−(d−1) ≤ |ζη1|−(d−1) + |(1− ζ)η2|−(d−1), a.s.

Let q = p1
p1−1 , then 1

q + 1
p2

= 1
p3

. As a consequence of Hölder’s inequality, we have

∥∥‖Qd(ξt − x)−Qd(ξs − x)‖Wp3
∥∥

6p
≤ cd

∥∥∥∥∥∥∥ |η1 − η2|
|ζη1 + (1− ζ)η2|d−1

∥∥∥W
p3

∥∥∥∥
6p

(7.19)

≤ C
∥∥‖η1 − η2‖Wp2

∥∥
12p

∥∥∥∥|ζη1 + (1− ζ)η2|−(d−1)
∥∥W
q

∥∥
12p

≤ C‖η1 − η2‖12pd

[∥∥∥∥ζη−(d−1)
1

∥∥W
q

∥∥
12p

+
∥∥∥∥(1− ζ)η

−(d−1)
2

∥∥W
q

∥∥
12p

]
≤ C

∥∥ξt − ξs∥∥12pd

[∥∥∥∥|ξt − y|−(d−1)
∥∥W
q

∥∥
12p

+
∥∥∥∥|ξs − y|−(d−1)

∥∥W
q

∥∥
12p

]
.

The negative moments of ξt − y can be estimated by (5.57), Jensen’s inequality, and
Lemma A.6:∥∥∥∥|ξt − x|−(d−1)

∥∥W
q

∥∥
12p
≤C max

1≤i≤d

∥∥(‖Hi(ξt, 1)‖Wp1
)d−1∥∥

12p

≤C max
1≤i≤d

∥∥H(i)(ξt, 1)
∥∥d−1

12pd
≤ C(t− r)−

d−1
2 . (7.20)

Then, by (7.19)–(7.20), we have∥∥‖Qd(ξt − x)−Qd(ξs − x)‖Wp3
∥∥

6p
≤ C(t− s) 1

2 (s− r)−
d−1
2 . (7.21)

Thus combining (7.16), (7.17), (7.18) and (7.21), we have

‖I1‖2p ≤ C exp
(
− k|z − x|

6pd(s− r)

)
(s− r)−

d+1
2 (t− s) 1

2 .

This implies ∫
Rd
‖I1‖2pdz ≤ C(s− r)− 1

2 (t− s) 1
2 . (7.22)
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Estimates for I2: Recall that γt = (〈Dξi, Dξj〉H)di,j=1 = σ−1
t . By computation analogue

to (7.5) going backward, we can show that

EW
[
Qd(ξt − x)

(
H(i,i)(ξt, φ

x
ρ1(ξt))−H(i,i)(ξs, φ

x
ρ2(ξs))

)]
=−

d∑
j1,j2=1

EW
[
∂j2Qd(ξt − x)〈Dξj2t , Dξ

j1
t 〉HH(i)

(
ξt, φ

x
ρ1(ξt)

)
σj1it

]
+

d∑
j1,j2=1

EW
[
∂j2Qd(ξt − x)〈Dξj2t , Dξj1s 〉HH(i)

(
ξs, φ

x
ρ2(ξr,zs )

)
σj1is

]
=− EW

[
∂iQd(ξt − x)

(
H(i)

(
ξt, φ

x
ρ1(ξt)

)
−H(i)

(
ξs, φ

x
ρ2(ξs)

)) ]
+

d∑
j1,j2=1

EW
[
∂j2Qd(ξt − x)〈Dξj2t −Dξj2s , Dξj1s 〉HH(i)

(
ξs, φ

x
ρ2(ξs)

)
σj1is

]
:=J1 + J2. (7.23)

By Lemma A.2, we have

∣∣H(i)

(
ξt, φ

x
ρ1(ξt)

)
−H(i)

(
ξs, φ

x
ρ2(ξs)

)∣∣ ≤ ∣∣∂iφxρ1(ξt)− ∂iφxρ2(ξs)
∣∣ (7.24)

+ |φxρ2(ξs)|
∣∣H(i)(ξt, 1)−H(i)(ξs, 1)

∣∣+
∣∣H(i)(ξt, 1)

∣∣ ∣∣φxρ1(ξt)− φxρ2(ξs)
∣∣ .

By the mean value theorem, for some random numbers c1, c2 ∈ (0, 1), we have

∣∣φxρ1(ξt)− φxρ2(ξs)
∣∣ =
∣∣1B(x,4ρ1)(ξt) ∨ 1B(x,4ρ2)(ξs)

∣∣∣∣∣φ(ξt − x
ρ1

)
− φ

(ξs − x
ρ2

)∣∣∣
=
∣∣1B(x,4ρ1)(ξt) ∨ 1B(x,4ρ2)(ξs)

∣∣
×
∣∣∣∇φ(c1 ξt − x

ρ1
+ (1− c1)

ξs − x
ρ2

)∗
·
(ξt − x

ρ1
− ξs − x

ρ2

)∣∣∣
≤
∣∣1B(x,4ρ1)(ξt) ∨ 1B(x,4ρ2)(ξs)

∣∣∣∣∣ξt − x
ρ1

− ξs − x
ρ2

∣∣∣, (7.25)

and

∣∣∂iφxρ1(ξt)− ∂iφxρ2(ξs)
∣∣ =
∣∣∣ρ−1

1 ∂iφ
(ξt − x

ρ1

)
− ρ−1

2 ∂iφ
(ξs − x

ρ2

)∣∣∣
≤ 1

ρ1

∣∣∣∇∂iφ(c2 ξt − x
ρ1

+ (1− c2)
ξs − x
ρ2

)∗
·
(ξt − x

ρ1
− ξs − x

ρ2

)∣∣∣
+
∣∣∂iφxρ2(ξs)

∣∣∣∣∣ 1

ρ1
− 1

ρ2

∣∣∣
≤ 1

ρ1

(
1B(x,4ρ1)(ξt) ∨ 1B(x,4ρ2)(ξs)

)∣∣∣ξt − x
ρ1

− ξs − x
ρ2

∣∣∣
+ 1B(x,4ρ2)(ξs)

∣∣∣ 1

ρ1
− 1

ρ2

∣∣∣. (7.26)

Choose q ∈ (d, 3pd], let p1 = q
q−1 , p2 = 2q, p3 = 4q. Then,

1

p1
+

2

p2
=

1

p1
+

1

p2
+

2

p3
= 1.
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Then, by (7.24)–(7.26), and Hölder’s inequality, we have

‖J1‖2p ≤ρ−1
1

∥∥‖∂iQd(ξt − x)‖Wp1
∥∥

6p

∥∥∥∥∥1B(x,4ρ1)(ξt) ∨ 1B(x,4ρ2)(ξs)
∥∥W
p2

∥∥∥
6p

×
∥∥∥∥∥∥ξt − x

ρ1
− ξs − x

ρ2

∥∥∥W
p2

∥∥∥
6p

+
∥∥‖∂iQd(ξt − x)‖Wp1

∥∥
6p

∥∥∥∥∥1B(x,4ρ2)(ξs)
∥∥W
p2

∥∥∥
6p

∥∥‖ρ−1
1 − ρ

−1
2 ‖p2

∥∥
6p

+
∥∥‖∂iQd(ξt − x)‖Wp1

∥∥
6p

∥∥∥∥∥1B(x,4ρ2)(ξs)
∥∥W
p2

∥∥∥
6p

∥∥‖H(i)(ξt, 1)−H(i)(ξs, 1)‖Wp2
∥∥

6p

+
∥∥‖∂iQd(ξt − x)‖Wp1

∥∥
6p

∥∥∥∥∥1B(x,4ρ1)(ξt) ∨ 1B(x,4ρ2)(ξs)
∥∥W
p2

∥∥∥
6p

×
∥∥∥∥∥∥ξt − x

ρ1
− ξs − x

ρ2

∥∥∥W
p3

∥∥∥
12p

∥∥‖H(i)(ξt, 1)‖Wp3
∥∥

12p

:=L1 + L2 + L3 + L4. (7.27)

In order to estimate the moments of ξt−x
ρ1
− ξs−x

ρ2
, we rewrite this random vector in the

following way:

ξt − x
ρ1

− ξs − x
ρ2

=
ξt − ξs
ρ1

+ (ξs − z)
( 1

ρ1
− 1

ρ2

)
+ (z − x)

( 1

ρ1
− 1

ρ2

)
.

It follows that∥∥∥ξt − x
ρ1

− ξs − x
ρ2

∥∥∥
12p∨p3

≤ (t− r)− 1
2

∥∥ξt − ξs∥∥12pd

+
(t− r) 1

2 − (s− r) 1
2

(t− r) 1
2 (s− r) 1

2

∥∥ξs − z∥∥12pd
+ |z − x| (t− r)

1
2 − (s− r) 1

2

(t− r) 1
2 (s− r) 1

2

.

According to Lemma 5.7, ξt − ξs and ξs − z are Gaussian random vectors with mean 0,
and covariance matrix (t− s)(I + ρ(0)) and (s− r)(I + ρ(0)) respectively. Therefore, we
have ∥∥∥ξt − x

ρ1
− ξs − x

ρ2

∥∥∥
12pd
≤cp,d(t− r)−

1
2 (t− s) 1

2 + cp,d
(t− r) 1

2 − (s− r) 1
2

(t− r) 1
2 (s− r) 1

2

(s− r) 1
2

+ |z − x| (t− r)
1
2 − (s− r) 1

2

(t− r) 1
2 (s− r) 1

2

≤C
(
|z − x|(s− r)− 1

2 + 1
)
(t− r)− 1

2 (t− s) 1
2 . (7.28)

Therefore, by (7.28), Proposition 5.8 and Lemma A.6, we have

L1 + L4 ≤C(t− r)− d2
[

exp
(
− k|z − x|2

6pd(t− r)

)
+ exp

(
− k|z − x|2

6pd(s− r)

)]
×
(
1 + |z − x|(s− r)− 1

2

)
(t− s) 1

2 , (7.29)

and

L2 + L3 ≤C(t− r)− d2 exp
(
− k|z − x|2

6pd(s− r)

)
(s− r)− 1

2 (t− s) 1
2 . (7.30)

Plugging (7.29) and (7.30) into (7.27), we have∫
Rd
‖J1‖2p dz ≤ C(s− r)− 1

2 (t− s) 1
2 . (7.31)
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For J2, notice that, by definition,

〈Dξj2t −Dξj2s , Dξj1s 〉H =

d∑
k=1

∫ s

r

(
D

(k)
θ ξj2t −D

(k)
θ ξj2s

)
D

(k)
θ ξj1s dθ.

By (5.2), we have

D
(k)
θ ξj2t −D

(k)
θ ξj2s = 1[s,t](θ)δj2k −

d∑
i=1

1[r,t](θ)

∫ t

s

D
(k)
θ ξirdM

ij2
r .

By an argument similar to the one used in the proof of Lemma 5.3, we can show that∥∥1[r,s](θ)
(
D

(k)
θ ξj2t −D

(k)
θ ξj2s

)∥∥2

2p
≤ C1[r,s](θ)(t− s).

Therefore, by Hölder’s and Minkowski’s inequalities, we have

∥∥〈Dξj2t −Dξj2s , Dξj1s 〉H∥∥2p
≤

d∑
k=1

∫ s

r

∥∥1[r,s](θ)
(
D

(k)
θ ξj2t −D

(k)
θ ξj2s

)∥∥
4p

∥∥D(k)
θ ξj1s

∥∥
4p
dθ

≤C(s− r)(t− s) 1
2 . (7.32)

Choose q ∈ (d, 3pd]. Let p1 = q
q−1 , p2 = 2q and p3 = 6q. Then 1

p1
+ 1

p2
+ 3

p3
= 1. Thus, by

(7.32), Hölder’s inequality, Lemmas 5.3, 5.5, A.6, and Proposition 5.8, we have

‖J2‖2p ≤
d∑

j1,j2=1

∥∥‖1B(x,4ρ2)(ξs)‖Wp2
∥∥

6p

∥∥‖∂j2Qd(ξt − x)‖Wp1
∥∥

6p

×
∥∥‖〈Dξj2t −Dξj2s , Dξj1s 〉H‖Wp3∥∥18p

∥∥‖H(i)(ξs, φ
y
ρ2(ξs))‖Wp3

∥∥
18p

∥∥‖σj1is ‖Wp3∥∥18p

≤C exp
(
− k|z − x|2

6pd(s− r)

)
(t− r)−

d−1
2 (t− s) 1

2 (s− r)− 1
2 .

As a consequence, we have ∫
Rd
‖J2‖2p dz ≤ C(t− s) 1

2 . (7.33)

Finally, combining (7.22), (7.31) and (7.33), we have∫
Rd

∥∥pW (r, z; t, x)− pW (r, z; s, x)
∥∥

2p
dz ≤ C(s− r)− 1

2 (t− s) 1
2 . (7.34)

On the other hand, by (5.72), we have∫
Rd
‖I2‖2pdz ≤

∫
Rd
‖pW (r, z; t, y)‖2p + ‖pW (r, z; s, y)‖2p ≤ C. (7.35)

Thus (7.4) follows from (7.34) and (7.35).

Proof of Proposition 7.1. By the convolution representation (6.1), Burkholder-Davis-
Gundy’s, and Minkowski’s inequalities, we have

‖ut(y)− ut(x)‖2p ≤
∥∥∥∫

Rd
µ(z)

(
pW (0, z; t, y)− pW (0, z; t, x)

)
dz
∥∥∥

2p

+
∥∥∥∫ t

0

∫
Rd
ur(z)

(
pW (r, z; t, y)− pW (r, z; t, x)

)
V (dz, dr)

∥∥∥
2p

≤ ‖µ‖∞
∫
Rd

∥∥pW (0, z; t, y)− pW (0, z; t, x)
∥∥

2p
dz

+ ‖κ‖
1
2∞

(∫ t

0

(∫
Rd

∥∥ur(z) (pW (r, z; t, y)− pW (r, z; t, x)
)∥∥

2p
dz
)2

dr
) 1

2

:= I1 + ‖κ‖
1
2∞I2. (7.36)
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Note that I1 can be estimated by Lemma 7.2. For I2, recall that u(r, z) is independent of
pW (r, z; t, y)2. Then, by Lemma 6.2 and 7.2, we have

I2 ≤
(∫ t

0

sup
z∈Rd

‖ur(z)‖22p
(∫

Rd

∥∥pW (r, z; t, y)− pW (r, z; t, x)
∥∥

2p
dz
)2

dr
) 1

2

≤C|y − x|β
(∫ t

0

(t− r)−βdr
) 1

2 ≤ Ct
1−β
2

√
1− β

|y − x|β . (7.37)

Therefore (7.1) follows from (7.3), (7.36) and (7.37).
The proof of (7.2) is quite similar. As in (7.36), we can show that

‖ut(x)− us(x)‖2p ≤ ‖µ‖∞
∫
Rd

∥∥pW (0, z; t, x)− pW (0, z; s, x)
∥∥

2p
dz

+ C‖κ‖
1
2∞

[ ∫ t

s

sup
z∈Rd

‖ur(z)‖22p
(∫

Rd

∥∥pW (r, z; t, x)
∥∥

2p
dz
)2

dr
] 1

2

+ C‖κ‖
1
2∞

[ ∫ s

0

sup
z∈Rd

‖ur(z)‖22p
(∫

Rd

∥∥(pW (r, z; t, x)− pW (r, z; s, x)
)∥∥

2p
dz
)2

dr
] 1

2

.

Then, the estimate (7.2) follows from (7.4), Proposition 5.9 and Lemma 6.2.

A Basic introduction on Malliavin calculus

In this section, we present some preliminaries on the Malliavin calculus. We refer
the readers to book of Nualart [24] for a detailed account on this topic.

Fix a time interval [0, T ]. Let B = {B1
t , . . . , B

d
t , 0 ≤ t ≤ T} be a standard d-dimensional

Brownian motion on [0, T ]. Denote by S the class of smooth random variables of the form

G = g (Bt1 , . . . , Btm) = g
(
B1
t1 , . . . , B

d
t1 , . . . , B

1
tm , . . . , B

d
tm

)
, (A.1)

where m is any positive integer, 0 ≤ t1 < · · · < tm ≤ T , and g : Rmd → R is a smooth
function that has all partial derivatives with at most polynomial growth. We make use
of the notation x =

(
xki
)

1≤i≤m,1≤k≤d for any element x ∈ Rmd. The basic Hilbert space

associated with B is H = L2
(
[0, T ];Rd

)
.

Definition A.1. For any G ∈ S given by (A.1), the Malliavin derivative, is the H-valued
random variable DG given by

D
(k)
θ G =

m∑
i=1

∂g

∂xki
(Bt1 , . . . , Btm)1[0,ti](θ), 1 ≤ k ≤ d, θ ∈ [0, T ].

In the same way, for any n ≥ 1, the iterated derivative DnG of a random variable
of the form (A.1) is a random variable with values in H⊗n = L2

(
[0, T ]n;Rd

n)
. For each

p ≥ 1, the iterated derivative Dn is a closable and unbounded operator on Lp(Ω) taking
values in Lp(Ω;H⊗n). For any n ≥ 1, p ≥ 1 and any Hilbert space V , we can introduce
the Sobolev space Dn,p(V ) of V -valued random variables as the closure of S with respect
to the norm

‖G‖2n,p,V =‖G‖2Lp(Ω;V ) +

n∑
k=1

‖DkG‖2Lp(Ω;H⊗k⊗V )

=
[
E
(
‖G‖pV

)] 2
p +

n∑
k=1

[
E
(
‖DkG‖p

H⊗k⊗V
)] 2

p .

2 The same idea has been used in the proof of Lemma 6.2.
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By definition, the divergence operator δ is the adjoint operator of D in L2(Ω). More
precisely, δ is an unbounded operator on L2 (Ω;H), taking values in L2(Ω). We denote by
Dom(δ) the domain of δ. Then, for any u = (u1, . . . , ud) ∈ Dom(δ), δ(u) is characterized
by the duality relationship: for all for all G ∈ D1,2 = D1,2(R).

E (δ(u)G) = E (〈DG,u〉H) . (A.2)

Let F be an n-dimensional random vector, with components F i ∈ D1,1, 1 ≤ i ≤ n.
We associate to F an n× n random symmetric nonnegative definite matrix, called the
Malliavin matrix of F , denoted by γF . The entries of γF are defined by

γijF =
〈
DF i, DF j

〉
H

=

d∑
k=1

∫ T

0

D
(k)
θ F iD

(k)
θ F jdθ. (A.3)

Suppose that F ∈ ∩p≥1D
2,p(Rn), and its Malliavin matrix γF is invertible. Denote by

σF the inverse of γF . Assume that σijF ∈ ∩p≥1D
1,p for all 1 ≤ i, j ≤ n. Let G ∈ ∩p≥1D

1,2.
Then GσijFDF

k ∈ Dom(δ) for all 1 ≤ i, j, k ≤ n. For such F and G, we define

H(i)(F,G) = −
n∑
j=1

δ
(
GσjiFDF

j
)
, 1 ≤ i ≤ n. (A.4)

If furthermore H(i)(F,G) ∈ ∩p≥1D
1,p for all 1 ≤ i ≤ n, then we define

H(i,j)(F,G) = H(j)

(
F,H(i)(F,G)

)
, 1 ≤ i, j ≤ n. (A.5)

The following lemma is a Wiener functional version of Lemma 9 of Bally and Caramell-
ino [1].

Lemma A.2. Suppose that F ∈ ∩p≥1D
2,p(Rn), (γ−1

F )ij = σijF ∈ ∩p≥1D
2,p for all 1 ≤ i, j ≤

n, and φ ∈ C1
b (Rn). Then, for any 1 ≤ i ≤ n, we have

H(i) (F, φ(F )) =∂iφ(F ) + φ(F )H(i)(F, 1). (A.6)

Suppose that F ∈ ∩p≥1D
3,p(Rn) and φ ∈ C2

b (Rn). Then, for any 1 ≤ i, j ≤ n, we have

H(i,j) (F, φ(F )) =∂ijφ(F ) + ∂iφ(F )H(j)(F, 1)

+ ∂jφ(F )H(i)(F, 1) + φ(F )H(i,j)(F, 1). (A.7)

Proof. For any F ∈ ∩p≥1D
2,p(Rn) and φ ∈ C1

b (Rn), it is easy to check that φ(F ) ∈
∩p≥1D

1,p. Then, H(i)(F, φ(F )) is well defined. For any G ∈ D1,2, by the duality of D and
δ, we have

E
(
H(i) (F, φ(F ))G

)
=−

n∑
j=1

E
(
δ
(
φ(F )σjiFDF

j
)
G
)

=−
n∑
j=1

E
(
φ(F )σjiF

〈
DF j , DG

〉
H

)
. (A.8)

On the other hand, by the product rule for the operator D, we have

E
(
φ(F )H(i)(F, 1)G

)
= −

m∑
j=1

E
(〈
σjiFDF

j , D
(
φ(F )G

)〉
H

)
=−

m∑
j=1

E
(
φ(F )σjiF

〈
DF j , DG

〉
H

)
−

m∑
j1,j2=1

E
(
G∂j2φ(F )σj1iF

〈
DF j1 , DF j2

〉
H

)
.
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Note that σF is the inverse of γF =
(
〈DF i, DF j〉H

)n
i,j=1

, then

m∑
j1,j2=1

E
(
G∂j2φ(F )σj1iF

〈
DF j1 , DF j2

〉
H

)
= E

(
G∂iφ(F )

)
. (A.9)

Then, (A.6) follows from (A.8)–(A.9). Equality (A.7) can be proved similarly.

The next theorem is a density formula using the Riesz transformation. The formula
was first introduced by Malliavin and Thalmaier (see Theorem Section 4.23 of [21]), then
further studied by Bally and Caramenillo [1].

For any integer n ≥ 2, let Qn be the n-dimensional Poisson kernel. That is,

Qn(x) =

{
A−1

2 log |x|, n = 1,

−A−1
n |x|2−n, n > 2,

(A.10)

where An is the area of the unit sphere in Rn. Then, ∂iQn(x) = cnxi |x|−n, where
c2 = A−1

2 and cn = (n2 − 1)A−1
n for n > 2.

The theorem below is the density formula for a class of differentiable random vari-
ables.

Theorem A.3. (Proposition 10 of Bally and Caramenillo [1]) Let F ∈ ∩p≥1D
2,p(Rn).

Assume that (γ−1
F )ij = σijF ∈ ∩p≥1D

1,p for all 1 ≤ i, j ≤ n. Then, the law of F has a
density pF .

More precisely, for any x ∈ Rn and r > 0, let B(x, r) be the sphere on Rn centered at
x with radius r. Suppose that φ ∈ C1

b (Rd), such that 1B(0,1) ≤ φ ≤ 1B(0,2), and |∇φ| ≤ 1.
Define φxρ := φ( ·−xρ ) for any ρ > 0 and x ∈ Rn. Then,

pF (x) =

n∑
i=1

E
(
∂iQn(F − x)H(i)(F, 1)

)
=

n∑
i=1

E
(
∂iQn(F − x)H(i)(F, φ

x
ρ(F ))

)
=

n∑
i=1

E
(
1B(x,2ρ)

(F )∂iQn(F − x)H(i)(F, φ
x
ρ(F ))

)
. (A.11)

The next theorem provides the estimates for the density and its increment.

Theorem A.4. Suppose that F satisfies the conditions in Theorem A.3. Then, for any
p2 > p1 > n, let p3 = p1p2

p2−p1 , there exists a constant C that depends on p1, p2 and n, such
that

pF (x) ≤CP(|F − x| < 2ρ)
1
p3 max

1≤i≤n

[ ∥∥H(i)(F, 1)
∥∥n−1

p1

(1

ρ
+
∥∥H(i)(F, 1)

∥∥
p2

)]
. (A.12)

If furthermore, F ∈ ∩p≥1D
3,p(Rn), there exists a constant C that depends on p1, p2, and

m, such that for all x1, x2 ∈ Rn,

|pF (x1)− pF (x2)| ≤ C|x1 − x2|P(|F − y| < 4ρ)
1
p3 (A.13)

× max
1≤i,j≤n

[ ∥∥H(i)(F, 1)
∥∥n−1

p1

( 1

ρ2
+

2

ρ

∥∥H(i)(F, 1)
∥∥
p2

+
∥∥H(i,j)(F, 1)

∥∥
q2

)]
,

where y = cx1 + (1− c)x2 for some c ∈ (0, 1) which may depend on x1 and x2.
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Remark A.5. Inequalities stated in Theorem A.4 are an improved version of those
estimates by Bally and Caramillino (see Theorem 8 of [1]). We refer to Nualart and
Nualart (see Lemma 7.3.2 of [25]) for a related statement. For the sake of completeness,
we present below a proof of Theorem A.4. The proof follows the same idea as in Theorem
8 of [1]. The only difference occurs when choosing the radius of the ball in the estimate
for the Poisson kernel. If we optimize the radius, then the exponent of ‖H(i)(F, 1)‖p is

n− 1, instead of q1(n−1)
q1−n > n− 1 in [1].

In order to prove Theorem A.4, we first give the estimate for the Poisson kernel:

Lemma A.6. Suppose that F satisfy the conditions in Theorem A.3. For any p > n, let
q = p

p−1 . Then, there exists a constant C > 0 depends on m and p, such that

sup
x∈Rn

‖∂iQn(F − x)‖q ≤ sup
x∈Rn

∥∥|F − x|−(n−1)
∥∥
q
≤ C max

1≤i≤n

∥∥H(i)(F, 1)
∥∥n−1

p
. (A.14)

Proof. Assume that
‖pF ‖∞ := sup

x∈Rd
pF (x) <∞.

Denote by M = sup
1≤i≤n

‖H(i)(F, 1)‖p. Then by Hölder’s inequality, for all x ∈ Rd, we have

pF (x) =

n∑
i=1

E
(
∂iQn(F − x)H(i)(F, 1)

)
≤

m∑
i=1

‖∂iQn(F − x)‖q‖H(i)(F, 1)‖p

≤n sup
x∈Rn

∥∥∥|F − x|−(n−1)
∥∥∥
q
M,

which implies

‖pF ‖∞ ≤ n sup
x∈Rn

∥∥∥|F − x|−(n−1)
∥∥∥
q
M. (A.15)

In order to estimate ‖|F − x|−(n−1)‖q, choose any ρ > 0. Then for all x ∈ Rn,

E(|F − x|−(n−1)q) =

∫
Rd
|y − x|−(n−1)qpF (y)dy

=

∫
|y−x|≤ρ

|y − x|−(n−1)qpF (y)dy +

∫
|y−x|>ρ

|y − x|−(n−1)qpF (y)dy

≤‖pF ‖∞
∫ ρ

0

r−(n−1)qrn−1dr + ρ−(n−1)q

=kn,q‖pF ‖∞ρ1−(n−1)(q−1) + ρ−(n−1)q, (A.16)

where kn,q = [1−(n−1)(q−1)]−1. The last equality is due to the fact that 1−(n−1)(q−1) >

0.
Combining (A.15) and (A.16), we have

‖pF ‖∞ ≤
[
nk

1
q
n,q‖pF ‖

1
q
∞ρ

1−(n−1)(q−1)
q + ρ−(n−1)

]
M. (A.17)

By optimizing the right-hand side of (A.17), we choose

ρ = ρ∗ :=
[ (n− 1)q

n

] q
n ‖pF ‖

− 1
n∞ .

Plugging ρ∗ into (A.17), we obtain

‖pF ‖∞ ≤
(
nk

1
q
n,q

[ (n− 1)q

n

] 1−(n−1)(q−1)
n

+
[ (n− 1)qM

n

]− q(n−1)
n
)
M |pF ‖

n−1
n∞ .
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Then, it follows that

‖pF ‖∞ ≤ CMn = C max
1≤i≤n

‖H(i)(F, 1)‖np , (A.18)

where C is a constant that depends on p and n. Thus (A.14) follows from (A.17) and
(A.18).

The result can be generalized to the case without the assumption ‖pF ‖∞ <∞ by the
same argument as in Theorem 5 of [1].

Proof of Theorem A.4. Choose p2 > p1 > n, let p3 = p1p2
p2−p1 and q = p1

p1−1 . Then 1
q + 1

p2
+

1
p3

= 1. Thus by density formula (A.11) and Hölder’s inequality, we have

pF (x) ≤
n∑
i=1

‖1B(x,2ρ)
(F )‖p3‖∂iQn(F − x)‖q‖H(i)(F, φ

x
ρ(F ))‖p2 . (A.19)

Then, (A.12) is a consequence of (A.19), Lemma A.2 and A.6. Inequality (A.13) can be
proved similarly.
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