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Abstract

We establish several existence, uniqueness and comparison results for L1 solutions of
non-reflected BSDEs and reflected BSDEs with one and two continuous barriers under
the assumptions that the generator g satisfies a one-sided Osgood condition together
with a very general growth condition in y, a uniform continuity condition and/or a
sub-linear growth condition in z, and a generalized Mokobodzki condition for reflected
BSDEs which relates the growth of g and that of the barriers. This generalized
Mokobodzki condition is proved to be necessary for existence of L1 solutions of the
reflected BSDEs. We also prove that the L1 solutions of reflected BSDEs can be
approximated by a penalization method and by some sequences of L1 solutions of
reflected BSDEs. The approach is based on a combination between existing methods,
their refinement and perfection, but also on some novel ideas and techniques. These
results strengthen some existing work on the L1 solutions of non-reflected BSDEs and
reflected BSDEs.
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1 Introduction

In 1990, Pardoux and Peng [47] first introduced the notion of nonlinear backward
stochastic differential equations (BSDEs for short) and established the well known
existence and uniqueness result of an L2 solution for a BSDE with square-integrability
data under the assumption that the generator g is uniformly Lipschitz continuous in
(y, z). Under the square-integrability assumption on data and the uniformly Lipschitz
continuity assumption on generator, El Karoui et al. [10] and Cvitanić and Karatzas [8]
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L1 solutions of BSDEs under general assumptions

respectively introduced the notion of nonlinear reflected BSDEs (RBSDEs) with one and
two continuous barriers, established the existence and uniqueness of the L2 solution,
and explored that these equations have natural connections with the obstacle problem
for PDEs, the optimal stopping problem, the mixed control problem and Dynkin games.
Since, the theory of BSDEs and reflected BSDEs has rapidly been developed and applied
in many areas. For instance, among others readers are referred to El Karoui et al. [11],
El Karoui et al. [12], Jia [36], Peng [48], Peng [49], Peng [50], Peng and Xu [52] and
Rosazza Gianin [54] for the applications in mathematical finance, risk measures and
the nonlinear expectation theory, Bayraktar and Yao [2], Hamadène and Lepeltier [28],
Hamadène et al. [30] and Hu and Tang [33] for the applications in the stochastic control
and game theory, and Hamadène and Zhang [31], Hu and Tang [32], Ma and Zhang
[43], Pardoux [46], Peng and Xu [51] and Ren and El Otmani [53] for the applications in
optimality problems, PDEs and others.

During more than two decades, for the theoretical interests of investigation and
interesting applications a lot of works have been devoted to studying the existence and
uniqueness of a solution for a non-reflected BSDE and a RBSDE by relaxing the square-
integrability assumption on data and the uniformly Lipschitz continuity assumption on
generator used in the pioneer papers [47], [10] and [8]. For instance, the uniformly
Lipschitz condition of g in (y, z) has been weakened to the monotonicity and general
growth condition in y (see assumption (H1) with ρ(x) = k|x| for some constant k ≥ 0 in
Subsection 2.3 of this paper) and the uniform continuity condition in z (see assumption
(H2)(i) in Subsection 2.3) in the existence and uniqueness results for L2 solutions or
Lp (p > 1) solutions established respectively in, e.g., Pardoux [46], Briand et al. [3],
Briand et al. [5], Jia [35], Jia [36], Chen [7], Fan and Jiang [20], Fan et al. [23] and
Fan [14] for non-reflected BSDEs, and Lepeltier et al. [40], Klimsiak [38], Rozkosz
and Słomiński [55], Klimsiak [39], Fan [16] and Fan [18] for RBSDEs. And, in the
existence and uniqueness results for L2 solutions or Lp (p > 1) solutions established
respectively in Fan and Jiang [22], Fan [13], Fan [14], Fan [16], Yao [58] and Fan [18], the
monotonicity condition of g in y was further weakened to the one-sided Osgood condition
(see assumption (H1)(i) in Subsection 2.3) and the weak monotonicity condition, which
both unify the monotonicity condition, the Mao’s non-Lipschitz condition (see Mao [44])
and the usual Osgood condition (see Fan et al. [24]). On the other hand, in the case of
concerning only the wellposedness or existence of the L2 solution or Lp (p > 1) solution,
the assumptions required by the generator g have been further relaxed. For example,
in Briand et al. [5], Xu [57], Fan [16] and Fan [18], besides the (weak) monotonicity
condition in y and the continuity condition in (y, z), a general growth condition in y

and a linear growth condition in z (see assumption (HH) with α = 1 in Section 4)
is the only requirement for the generator g, and in Lepeltier and San Martin [41],
Matoussi [45], Hamadène et al. [29] and Jia and Xu [37], the generator g needs only
to be continuous and has a linear growth in (y, z) (see assumption (AA) with α̃ = 1 in
Subsection 2.3).

During the evolution of BSDE theory, many papers have also been interested in the
existence and uniqueness of the L1 solutions for non-reflected BSDEs and RBSDEs with
only integrability data. To the best of our knowledge, this problem was first investigated
in Peng [48] for BSDEs with positive terminal conditions. In 2003, Briand et al. [3]
established an important existence and uniqueness result on the L1 solutions for BSDEs,
where the generator g satisfies the monotonicity and general growth condition in y,
the uniformly Lipschitz condition in z and an additional sub-linear growth condition
in z (see assumption (H2)(ii)). Recently, this result was successfully extended to the
case of reflected BSDEs in Rozkosz and Słomiński [55] and Klimsiak [39] (see also
Klimsiak [38] and Bayraktar and Yao [2]). On the other hand, the investigation on the
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existence and/or uniqueness of the L1 solutions for non-reflected BSDEs kept going
deeper. For example, the monotonicity condition in y of the generator g employed in the
existence and uniqueness result of the L1 solutions in [3] was weakened to the one-sided
Osgood condition in Fan [19] and Fan [14], and the uniformly Lipschitz condition in z

was also, respectively, weakened to the α-Hölder continuity condition (i.e., φ(x) = |x|α
in (H2)(i) for some constant α ∈ (0, 1)) in Fan and Liu [25] and the uniform continuity
condition in z in Fan [14] (but in Fan [14], the generator g needs to be dominated by
a deterministic process). And, several existence results on the L1 solutions of non-
reflected BSDEs were also obtained in Briand and Hu [4], Fan [14] and Fan [17], where
the generator g does not need to satisfy the uniformly Lipschitz condition or the uniform
continuity condition in z. In particular, in Fan [17] the sub-linear growth condition (H2)(ii)
employed in [3] was relaxed to assumption (H2’)(ii) in Subsection 2.3. We also would like
to mention that Hu and Tang [34] and Buckdahn et al. [6] investigated, from a totally
new perspective, the existence and uniqueness on the L1 solutions for non-reflected
BSDEs, where the generator g does not need to satisfy the sub-linear growth condition
(H2)(ii) or (H2’)(ii), but the terminal condition needs to satisfy a stronger integrability
condition.

In order to ensure existence of a solution for RBSDEs with two barriers, a Moko-
bodzki condition (i.e., there exists a quasi-martingale between two barriers) or a certain
regularity condition on one of the barriers usually needs to be satisfied as in Cvitanić
and Karatzas [8], Bahlali et al. [1] and Peng and Xu [51]. By virtue of the notion of local
solutions, these two conditions were replaced with the completely separated condition
of the two barriers, which can be more easily verified or checked, in Hamadène and
Hassani [26], Hamadène et al. [27], El Asri et al. [9], Bayraktar and Yao [2] and so on.
Recently, several generalized Mokobodzki conditions, see (ii) of assumptions (H3), (H3L)
and (H3U) in Subsection 2.3 for the case of L1 solution, were put forward and proved to
be sufficient and necessary to ensure the existence of an Lp (p > 1) or L1 solution for a
RBSDE with one or two barriers when the generator g has a general growth in y, see
Klimsiak [38], Klimsiak [39], Fan [16] and Fan [18] for more details. Many efforts in this
direct can also be found in Lepeltier et al. [40], Xu [56], Xu [57], Rozkosz and Słomiński
[55], Li and Shi [42] and references therein.

Enlightened by these works aforementioned, especially by Peng and Xu [51], Klimsiak
[38], Bayraktar and Yao [2] and Fan [16], we dedicate this paper to the L1 solution of
non-reflected BSDEs and RBSDEs with one and two continuous barriers under general
assumptions on the generator and the data, i.e., (H1), (H2), (H2’), (H3), (H3L), (H3U)
and (AA) mentioned above, see Subsection 2.3 again. Our results strengthen some
corresponding known works on the L1 solutions of on-reflected BSDEs and RBSDEs (see
Remark 7.6 in Section 7 for more details). Our approach is based on a combination
between existing methods, their refinement and perfection, but also on some novel ideas
and techniques.

The rest of this paper is organized as follows. Section 2 contains some notations,
definitions, assumptions and lemmas which will be used later. Section 3 consists of four
subsections, which establish three convergence results respectively with respect to the
penalization scheme and the approximation scheme for the L1 solutions of RBSDEs with
one and two barriers under general assumptions, and a general comparison theorem
for the L1 solutions of RBSDEs under assumptions (H1)(i) and (H2). These elementary
results will play important roles in the proof of our main results in the subsequent
sections. Section 4 is devoted to the L1 solution of non-reflected BSDEs. In this section,
we prove an existence and uniqueness result for the L1 solution of a BSDE under
assumptions (H1) and (H2) (see Theorem 4.2), and an existence result for the minimal
and maximal L1 solutions of a BSDE with generator g := g1 + g2, where the generator g1
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satisfies assumptions (H1)(i), (H2’)(i) and (HH) (resp. (H1) and (H2’)), and g2 satisfies
assumption (AA) (see Theorem 4.4 and Corollary 4.5). Section 5 deals with the L1

solution of RBSDEs with one continuous barrier. By Theorem 5.1 we prove the existence
and uniqueness of an L1 solution for a RBSDE with one lower (resp. upper) barrier under
assumptions (H1), (H2) and (H3L) (resp. (H3U)) by the penalization method, and show
the sufficient and necessary property of (H3L)(ii) (resp. (H3U)(ii)). And, in Theorem 5.3
we study the same problem, but on existence of a minimal (resp. maximal) L1 solution
for a RBSDE with one lower (resp. upper) barrier and a generator g := g1 + g2, where
the generator g1 satisfies assumptions (H1) and (H2’) and the generator g2 satisfies
assumption (AA). Furthermore, by Theorem 5.4 we show that under the assumptions of
Theorem 5.3, the minimal and maximal L1 solutions for the RBSDE with one lower or
upper barrier can be both approximated by a sequence of L1 solutions for RBSDEs with
generators satisfying (H1) and (H2). Section 6 investigates the L1 solution of RBSDEs
with two continuous barriers. By Theorem 6.1 we prove the existence and uniqueness
of an L1 solution for a doubly RBSDE under assumptions (H1), (H2) and (H3) by the
penalization method, and show the sufficient and necessary property of (H3)(ii). And, in
Theorem 6.3 we study the same problem, but on existence of the minimal and maximal
L1 solutions for a doubly RBSDE with a generator as in Theorem 5.3. Furthermore, by
Theorem 6.4 we prove that under the assumptions of Theorem 6.3, the minimal and
maximal L1 solutions for the doubly RBSDE can be both approximated by a sequence
of L1 solutions for doubly RBSDEs with generators satisfying (H1) and (H2). Finally,
in Section 7 several examples and remarks are introduced to illustrate further the
theoretical results in this paper. And, the proofs of Proposition 3.1 and Proposition 3.3
in Section 3 are detailed in Appendix.

2 Notations, definitions, assumptions and lemmas

2.1 Notations

Let T > 0 be a fixed real number and (Ω,FT ,P; (Ft)t∈[0,T ]) be a complete filtered
probability space carrying a standard d-dimensional Brownian motion (Bt)t∈[0,T ] together
with the completed σ-algebra filtration (Ft)t∈[0,T ] generated by B·. Denote by 1A the
indicator function of a set A and by Ac the complement of A. Let R+ := [0,+∞),
a+ := max{a, 0} and a− := (−a)+ for any real number a, and let sgn(x) represent the
sign of a real number x and |y| the Euclidean norm of y ∈ Rn with n ≥ 1. Furthermore,
denote by S the set of all (Ft)-progressively measurable and continuous real-valued
processes (Yt)t∈[0,T ], and for p > 0 we denote by Sp the set of processes Y· ∈ S satisfying

‖Y ‖Sp :=

(
E[ sup
t∈[0,T ]

|Yt|p]

)1∧1/p

< +∞.

M is the set of all (Ft)-progressively measurableRd-valued processes (Zt)t∈[0,T ] satisfying

P

(∫ T

0

|Zt|2dt < +∞

)
= 1,

and for p > 0, Mp is the set of processes Z· ∈ M satisfying

‖Z‖Mp :=

E
(∫ T

0

|Zt|2dt

)p/2
1∧1/p

< +∞.

We also use the following spaces with respect to variables and processes defined on
Ω× [0, T ]:
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• L1(FT ) the set of FT -measurable real-valued random variables ξ satisfying E[|ξ|] <
+∞;

• H the set of (Ft)-progressively measurable real-valued processes X· satisfying

P

(∫ T

0

|Xt|dt < +∞

)
= 1;

• H1 the set of processes X· ∈ H satisfying ‖X‖H1 := E
[∫ T

0
|Xt|dt

]
< +∞;

• V the set of (Ft)-progressively measurable and continuous real-valued processes of
finite variation;

• V+ the set of increasing processes V· ∈ V valued 0 at 0;

• V1 (resp. V+,1) the set of processes V· ∈ V (resp. V+) satisfying E [|V |T ] < +∞.

Here and hereafter, for each (Ft)-stopping time τ valued in [0, T ], |V |τ represents the
random finite variation of V· ∈ V on the stochastic interval [0, τ ]. It is clear that |V |τ = Vτ
when V· ∈ V+.

For any two processes K1
· and K2

· in the space V1, we say dK1⊥dK2 means that
there exists an (Ft)-progressively measurable set D ⊂ Ω× [0, T ] such that

E

[∫ T

0

1D(t, ω) dK1
t (ω)

]
= E

[∫ T

0

1Dc(t, ω) dK2
t (ω)

]
= 0.

And, we say dK1 ≤ dK2 means that for each (Ft)-progressively measurable set D ⊂
Ω× [0, T ],

E

[∫ T

0

1D(t, ω) dK1
t (ω)

]
≤ E

[∫ T

0

1D(t, ω) dK2
t (ω)

]
,

i.e., K1
t −K1

s ≤ K2
t −K2

s , 0 ≤ s ≤ t ≤ T .

Finally, we recall that a process (Yt)t∈[0,T ] belongs to the class (D) if the family of
variables {|Yτ | : τ is an (Ft)-stopping time bounded by T} is uniformly integrable.

In the rest of this paper, the variable ω in random elements is often omitted and all
equalities and inequalities between random variables are understood to hold P − a.s.
without a special illustration.

2.2 Definitions

In this paper, we always assume that ξ ∈ L1(FT ), V· ∈ V, L· ∈ S (or L· = −∞), U· ∈ S
(or U· = +∞), L· ≤ U·, and that a random function, which is usually called a generator,

g(ω, t, y, z) : Ω× [0, T ]×R×Rd 7−→ R

is (Ft)-progressively measurable for each (y, z), and continuous in (y, z) for almost each
(ω, t).

We use the following definition for the L1 solution of non-reflected BSDEs and
reflected BSDEs with one and two continuous barriers.

Definition 2.1. By an L1 solution to BSDE (ξ, g + dV ) we understand a pair
(Yt, Zt)t∈[0,T ] ∈ Sβ × Mβ for each β ∈ (0, 1) such that (Yt)t∈[0,T ] belongs to the class
(D) and

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

dVs −
∫ T

t

Zs · dBs, t ∈ [0, T ].
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By an L1 solution to RBSDE (ξ, g + dV,L) we understand a triple (Yt, Zt,Kt)t∈[0,T ] ∈
Sβ ×Mβ × V+,1 for each β ∈ (0, 1) such that (Yt)t∈[0,T ] belongs to the class (D) and

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

dVs +

∫ T

t

dKs −
∫ T

t

Zs · dBs, t ∈ [0, T ],

Lt ≤ Yt, t ∈ [0, T ] and

∫ T

0

(Yt − Lt)dKt = 0.

By an L1 solution to R̄BSDE (ξ, g + dV,U) we understand a triple (Yt, Zt, At)t∈[0,T ] ∈
Sβ ×Mβ × V+,1 for each β ∈ (0, 1) such that (Yt)t∈[0,T ] belongs to the class (D) and

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

dVs −
∫ T

t

dAs −
∫ T

t

Zs · dBs, t ∈ [0, T ],

Yt ≤ Ut, t ∈ [0, T ] and

∫ T

0

(Ut − Yt)dAt = 0.

By an L1 solution to DRBSDE (ξ, g + dV,L, U) we understand a quadruple
(Yt, Zt,Kt, At)t∈[0,T ] ∈ Sβ ×Mβ ×V+,1×V+,1 for each β ∈ (0, 1) such that both Y· belongs
to the class (D), and

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

dVs +

∫ T

t

dKs −
∫ T

t

dAs −
∫ T

t

Zs · dBs, t ∈ [0, T ],

Lt ≤ Yt ≤ Ut, t ∈ [0, T ],

∫ T

0

(Yt − Lt)dKt =

∫ T

0

(Ut − Yt)dAt = 0 and dK⊥dA.

Furthermore, an L1 solution (Yt, Zt)t∈[0,T ] of BSDE (ξ, g+ dV ) is called the minimal (resp.
maximal) L1 solution if for any L1 solution (Y ′t , Z

′
t)t∈[0,T ] of BSDE (ξ, g + dV ), we have

Yt ≤ Y ′t , t ∈ [0, T ] (resp. Yt ≥ Y ′t , t ∈ [0, T ]).

Similarly, we can define the minimal (resp. maximal) L1 solution for RBSDE (ξ, g+ dV,L),
R̄BSDE (ξ, g + dV,U) and DRBSDE (ξ, g + dV,L, U).

2.3 Assumptions

In this paper, we will use the following assumptions with respect to the generator,
the terminal condition and the barriers.

(H1) (i) g satisfies the one-sided Osgood condition in y, i.e., there exists a nonde-
creasing and concave function ρ(·) : R+ 7→ R+ with ρ(0) = 0, ρ(u) > 0 for
u > 0 and

∫
0+

du
ρ(u) = +∞ such that dP× dt− a.e., ∀ y1, y2 ∈ R, z ∈ Rd,

(g(ω, t, y1, z)− g(ω, t, y2, z))sgn(y1 − y2) ≤ ρ(|y1 − y2|);

(ii) g(·, 0, 0) ∈ H1;
(iii) g has a general growth in y, i.e, dP× dt− a.e., ∀r > 0,

ψ·(r) := sup
|y|≤r

|g(·, y, 0)− g(·, 0, 0)| belongs to the space H.

(H2) (i) g is uniformly continuous in z, i.e., there exists a nondecreasing and con-
tinuous function φ(·) : R+ 7→ R+ with φ(0) = 0 such that dP × dt − a.e.,
∀ y ∈ R, z1, z2 ∈ Rd,

|g(ω, t, y, z1)− g(ω, t, y, z2)| ≤ φ(|z1 − z2|);

EJP 24 (2019), paper 88.
Page 6/48

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP345
http://www.imstat.org/ejp/


L1 solutions of BSDEs under general assumptions

(ii) g has a stronger sub-linear growth in z, i.e., there exist two constants
γ ≥ 0 and α ∈ (0, 1) together with a nonnegative process f· ∈ H1 such that
dP× dt− a.e., ∀ y ∈ R, z ∈ Rd,

|g(ω, t, y, z)− g(ω, t, y, 0)| ≤ γ(ft(ω) + |y|+ |z|)α.

(H2’) (i) g is stronger continuous in (y, z), i.e., dP × dt − a.e., ∀ y ∈ R, g(ω, t, y, ·) is
continuous, and g(ω, t, ·, z) is continuous uniformly with respect to z;

(ii) g has a sub-linear growth in z, i.e., there exist three constants µ, λ ≥ 0 and
α ∈ (0, 1) together with a nonnegative process f· ∈ H1 such that dP×dt−a.e.,
∀ y ∈ R, z ∈ Rd,

|g(ω, t, y, z)− g(ω, t, y, 0)| ≤ ft(ω) + µ|y|+ λ|z|α.

(H3) (i) L· ∈ S (or L· = −∞), U· ∈ S (or U· = +∞), L· ≤ U·, ξ ∈ L1(FT ) and
LT ≤ ξ ≤ UT ;

(ii) There exists two processes (C·, H·) ∈ V1 ×Mβ for each β ∈ (0, 1) such that

Xt := X0 +

∫ t

0

dCs +

∫ t

0

Hs · dBs, t ∈ [0, T ]

belongs to the class (D), g(·, X·, 0) ∈ H1 and Lt ≤ Xt ≤ Ut for each t ∈ [0, T ].
(H3L) (i) L· ∈ S (or L· = −∞), ξ ∈ L1(FT ) and LT ≤ ξ;

(ii) There exists two processes (C·, H·) ∈ V1 ×Mβ for each β ∈ (0, 1) such that

Xt := X0 +

∫ t

0

dCs +

∫ t

0

Hs · dBs, t ∈ [0, T ]

belongs to the class (D), g−(·, X·, 0) ∈ H1 and Lt ≤ Xt for each t ∈ [0, T ].
(H3U) (i) U· ∈ S (or U· = +∞), ξ ∈ L1(FT ) and ξ ≤ UT ;

(ii) There exists two processes (C·, H·) ∈ V1 ×Mβ for each β ∈ (0, 1) such that

Xt := X0 +

∫ t

0

dCs +

∫ t

0

Hs · dBs, t ∈ [0, T ]

belongs to the class (D), g+(·, X·, 0) ∈ H1 and Xt ≤ Ut for each t ∈ [0, T ].
(AA) g has a linear growth in y and a sub-linear growth in z, i.e., there exist three

constants µ̃, λ̃ ≥ 0 and α̃ ∈ (0, 1) together with a nonnegative process f̃· ∈ H1

such that dP× dt− a.e., ∀ y ∈ R, z ∈ Rd,

|g(ω, t, y, z)| ≤ f̃t(ω) + µ̃|y|+ λ̃|z|α̃.

Remark 2.2. It is clear that the assumption (H1)(i) is strictly weaker than both the
uniformly Lipschitz condition and the monotonicity condition in y of g employed in
Pardoux and Peng [47], El Karoui et al. [10], Cvitanić and Karatzas [8], Briand et al.
[3], Xu [57], Klimsiak [38], Rozkosz and Słomiński [55], Bayraktar and Yao [2] and so
on, the assumptions (H1)(ii) and (iii) are strictly weaker than the usual linear-growth
condition in y of g, and the assumption (H2)(i) is also strictly weaker than both the
uniformly Lipschitz condition in z of g used in the references mentioned above and the
α-Hölder continuity condition in z of g used in Fan and Liu [25]. In addition, note that
the assumption (H2’)(ii) is strictly weaker than the assumption (H2)(ii), and that the
assumption (H2) will be used in the existence and uniqueness results on non-reflected
BSDEs and reflected BSDEs with one and two barriers, and the assumptions (H2’) and
(AA) will be employed in the existence results. Note also that the assumptions (H3L),
(H3U) and (H3) will be, respectively, used for RBSDEs, R̄BSDEs and DRBSDEs, which
relate the growth of g and that of the barriers, and which are the so-called generalized
Mokobodzki conditions.
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Remark 2.3. Since the ρ(·) defined in (H1)(i) is a nondecreasing and concave func-
tion defined on R+ with ρ(0) = 0, by Lemma 6.1 in Fan and Jiang [22] we know that
ρ(x)/x (x > 0) is non-increasing and then the function ρ(·) is of linear growth. At the
same time, we can choose the continuous modular function of g with respect to the
variable z as the φ(·) defined in (H2)(i), which is also of linear growth. Thus, without loss
of generality, we will always assume that there exists a constant A > 0 such that

∀ x ∈ R+, ρ(x) ≤ A(x+ 1) and φ(x) ≤ A(x+ 1).

In addition, it follows from Proposition 1 in Fan [13] that the concavity condition of
the function ρ(·) defined in the assumption (H1)(i) can be replaced with the continuity
condition.

2.4 Lemmas

In this subsection, let us introduce several lemmas, which will play an important role
later. Firstly, the following a priori estimate comes from Lemma 3.1 in Fan [16].

Lemma 2.4. Let the triple (Ȳ·, Z̄·, V̄·) ∈ S ×M× V satisfy the following equation:

Ȳt = ȲT +

∫ T

t

dV̄s −
∫ T

t

Z̄s · dBs, t ∈ [0, T ]. (2.1)

We have

(i) For each p > 0, there exists a constant C1 > 0 depending only on p such that for
each t ∈ [0, T ] and each (Ft)-stopping time τ valued in [0, T ],

E

[(∫ τ

t∧τ
|Z̄s|2ds

) p
2

∣∣∣∣∣Ft
]
≤ C1E

 sup
s∈[t,T ]

|Ȳs∧τ |p + sup
s∈[t,T ]

[(∫ τ

s∧τ
ȲrdV̄r

)+
] p

2

∣∣∣∣∣∣Ft
 ;

(ii) If Ȳ· ∈ Sp for some p > 1, then there exists a constant C2 > 0 depending only on p
such that for each t ∈ [0, T ] and each (Ft)-stopping time τ valued in [0, T ],

E

[
sup
s∈[t,T ]

|Ȳs∧τ |p +

∫ τ

t∧τ
|Ȳs|p−21{|Ȳs|6=0}|Z̄s|2ds

∣∣∣∣∣Ft
]

≤ C2E

[
|Ȳτ |p + sup

s∈[t,T ]

(∫ τ

s∧τ
|Ȳr|p−1sgn(Ȳr)dV̄r

)+
∣∣∣∣∣Ft
]
.

Secondly, the following observation will be used several times later.

Lemma 2.5. Let the generator g satisfy (H1)(i) and (H2’)(ii) (resp. (H2)(ii)), and
(X ·, Y·, X̄·, Z·) ∈ S × S × S ×M satisfy X · ≤ Y· ≤ X̄·. Then, dP× dt− a.e.,

|g(·, Y·, Z·)| ≤ |g(·, X ·, 0)|+ |g(·, X̄·, 0)|+ (µ+A)(|X ·|+ |X̄·|) + f· +A+ λ|Z·|α (2.2)

(resp. |g(·, Y·, Z·)|≤|g(·, X ·, 0)|+|g(·, X̄·, 0)|+(γ +A)(|X ·|+|X̄·|)+γ(1 + f·) +A+ γ|Z·|α).

Proof. We only prove the case of (H2’). Another case is similar. Indeed, by (H1)(i) and
(H2’)(ii) together with X · ≤ Y· ≤ X̄· and Remark 2.3 we know that dP× dt− a.e.,

g(·, Y·, Z·) ≤ g(·, Y·, Z·)− g(·, X ·, Z·) + |g(·, X ·, Z·)− g(·, X ·, 0)|+ |g(·, X ·, 0)|
≤ ρ(|Y· −X ·|) + f· + µ|X ·|+ λ|Z·|α + |g(·, X ·, 0)|
≤ A(|X̄· −X ·|) +A+ f· + µ|X ·|+ λ|Z·|α + |g(·, X ·, 0)|,
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L1 solutions of BSDEs under general assumptions

and

−g(·, Y·, Z·) ≤ g(·, X̄·, Z·)− g(·, Y·, Z·) + |g(·, X̄·, Z·)− g(·, X̄·, 0)|+ |g(·, X̄·, 0)|
≤ ρ(|X̄· − Y·|) + f· + µ|X̄·|+ λ|Z·|α + |g(·, X̄·, 0)|
≤ A(|X̄· −X ·|) +A+ f· + µ|X̄·|+ λ|Z·|α + |g(·, X̄·, 0)|.

Then, the desired conclusion (2.2) follows immediately.

Thirdly, the following lemma has a close connection with the generalized Mokobodzki
condition, which will be shown in subsequent sections.

Lemma 2.6. Assume that ξ ∈ L1(FT ), V̄ ∈ V1, g is a generator and (Y·, Z·) is an L1

solution of BSDE (ξ, g + dV̄ ). If the generator g satisfies (H1)(i)(ii) and (H2’)(ii) (resp.
(H2)(ii)), then

g(·, Y·, Z·) ∈ H1 and g(·, Y·, 0) ∈ H1. (2.3)

Proof. In view of Remark 2.2 we only need to prove the case of (H2’)(ii). Indeed, for
each positive integer k ≥ 1, define the following (Ft)-stopping time:

τk := inf{t ∈ [0, T ] :

∫ t

0

|Zs|2ds ≥ k} ∧ T.

Note that τk → T as k → +∞ due to the fact that Z· ∈ M. By Itô-Tanaka’s formula we
deduce that

−
∫ τk

0

sgn(Ys)g(s, Ys, Zs)ds ≤ |Yτk | − |Y0|+
∫ τk

0

sgn(Ys)dV̄s −
∫ τk

0

sgn(Ys)Zs · dBs.

Then, ∫ τk

0

[ρ(|Ys|)− sgn(Ys)(g(s, Ys, Zs)− g(s, 0, Zs))]ds

≤ |Yτk |+ |V̄ |τk +

∫ τk

0

(ρ(|Ys|) + |g(s, 0, Zs)|)ds−
∫ τk

0

sgn(Ys)Zs · dBs.

By taking mathematical expectation and letting k →∞ in the previous inequality, in view
of (H1)(i), Levi’s lemma and the fact that Y· belongs to the class (D), we can obtain

E

[∫ T

0

|ρ(|Ys|)− sgn(Ys)(g(s, Ys, Zs)− g(s, 0, Zs))|ds

]

≤ E

[
|ξ|+ |V̄ |T +

∫ T

0

(ρ(|Ys|) + |g(s, 0, Zs)|)ds

]
.

(2.4)

Furthermore, noticing that

E

[∫ T

0

|g(s, Ys, Zs)− g(s, 0, Zs)|ds

]
= E

[∫ T

0

|sgn(Ys)(g(s, Ys, Zs)− g(s, 0, Zs))|ds

]

≤ E

[∫ T

0

[|sgn(Ys)(g(s, Ys, Zs)− g(s, 0, Zs))− ρ(|Ys|)|+ ρ(|Ys|)] ds

]
,
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we get that, in view of (2.4), (H2’)(ii), (H1)(ii) and Remark 2.3,

E

[∫ T

0

|g(s, Ys, Zs)|ds

]

≤ E

[∫ T

0

(|g(s, Ys, Zs)− g(s, 0, Zs)|+ |g(s, 0, Zs)|) ds

]

≤ E

[
|ξ|+ |V̄ |T + 2

∫ T

0

(ρ(|Ys|) + |g(s, 0, Zs)|)ds

]

≤ E

[
|ξ|+ |V̄ |T + 2

∫ T

0

(A|Ys|+A+ |g(s, 0, 0)|+ fs + λ|Zs|α)ds

]

and

E

[∫ T

0

|g(s, Ys, 0)|ds

]
≤ E

[∫ T

0

(|g(s, Ys, 0)− g(s, Ys, Zs)|+ |g(s, Ys, Zs)|) ds

]

≤ E

[∫ T

0

|g(s, Ys, Zs)|ds

]
+ E

[∫ T

0

(fs + µ|Ys|+ λ|Zs|α)ds

]
.

Finally, in view of the conditions of Lemma 2.6 together with Hölder’s inequality, we get
(2.3).

Finally, a similar argument as in Lemma 3.4 of Fan [16] yields the following two
estimates.

Lemma 2.7. Let g be a generator and (Y·, Z·, V·) ∈ S × M × V satisfy the following
equation:

Yt = YT +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

dVs −
∫ T

t

Zs · dBs, t ∈ [0, T ].

Assume that there exist two constants µ̄, λ̄ > 0 and a nonnegative process f̄· ∈ H such
that

dP× dt− a.e., sgn(Y·)g(·, Y·, Z·) ≤ f̄· + µ̄|Y·|+ λ̄|Z·|. (2.5)

Then for each p > 0, there exists a nonnegative constant C̄ depending only on p, µ̄, λ̄, T
such that for each t ∈ [0, T ] and each (Ft)-stopping time τ valued in [0, T ], we have

E

[(∫ τ

t∧τ
|Zs|2ds

) p
2

+

(∫ τ

t∧τ
|g(s, Ys, Zs)|ds

)p∣∣∣∣∣Ft
]

≤ C̄E

[
sup
s∈[t,T ]

|Ys∧τ |p + |V |pτ +

(∫ τ

t∧τ
f̄s ds

)p∣∣∣∣∣Ft
]
.

Lemma 2.8. Let g be a generator and (Y·, Z·, V·,K·) ∈ S×M×V×V+ satisfy the following
equation:

Yt = YT +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

dVs +

∫ T

t

dKs −
∫ T

t

Zs · dBs, t ∈ [0, T ]

or

Yt = YT +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

dVs −
∫ T

t

dKs −
∫ T

t

Zs · dBs, t ∈ [0, T ].
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Assume that there exist two constants µ̄, λ̄ > 0 and a nonnegative process f̄· ∈ H such
that

dP× dt− a.e., |g(·, Y·, Z·)| ≤ f̄· + µ̄|Y·|+ λ̄|Z·|. (2.6)

Then for each p > 0, there exists a nonnegative constant C̄ depending only on p, µ̄, λ̄, T
such that for each t ∈ [0, T ] and each (Ft)-stopping time τ valued in [0, T ], we have

E

[(∫ τ

t∧τ
|Zs|2ds

) p
2

+ |Kτ −Kt∧τ |p +

(∫ τ

t∧τ
|g(s, Ys, Zs)|ds

)p∣∣∣∣∣Ft
]

≤ C̄E

[
sup
s∈[t,T ]

|Ys∧τ |p + |V |pτ +

(∫ τ

t∧τ
f̄s ds

)p∣∣∣∣∣Ft
]
.

3 Penalization, approximation and comparison theorem

3.1 Penalization for RBSDEs

In this subsection, we prove the following convergence result on the sequence of L1

solutions of penalized RBSDEs with one continuous barrier.

Proposition 3.1 (Penalization for RBSDEs). Assume that V· ∈ V1, (H3)(i) holds true for
L·, U· and ξ, and g is a generator. We have

(i) For each n ≥ 1, let (Y n· , Z
n
· , A

n
· ) be an L1 solution of R̄BSDE (ξ, ḡn + dV,U) with

ḡn(t, y, z) := g(t, y, z) + n(y − Lt)−, i.e.,

Y nt = ξ +

∫ T

t

ḡn(s, Y ns , Z
n
s )ds+

∫ T

t

dVs −
∫ T

t

dAns −
∫ T

t

Zns · dBs, t ∈ [0, T ],

Y nt ≤ Ut, t ∈ [0, T ] and

∫ T

0

(Ut − Y nt )dAnt = 0,

Kn
t := n

∫ t

0

(Y ns − Ls)− ds, t ∈ [0, T ].

(3.1)
If for each n ≥ 1, Y n· ≤ Y n+1

· ≤ Ȳ· with a process Ȳ· ∈ ∩β∈(0,1)Sβ of the class (D),
dAn ≤ dAn+1, Kn

· ≤ K̄n
· ∈ V+,1 with supn≥1E[|K̄n

T |β ] < +∞ for each β ∈ (0, 1),
lim
j→∞

K̄
nj
T = K̄T ∈ L1(FT ) for a subsequence {nj} of {n} and supn≥1E[|K̄n

τ |2] ≤

E[|Ỹτ |2] for a process Ỹ· ∈ S and each (Ft)-stopping time τ valued in [0, T ], and
there exist two constants λ̄ > 0, α ∈ (0, 1) and a nonnegative process f̄· ∈ H1 such
that for each n ≥ 1,

dP× dt− a.e., |g(·, Y n· , Zn· )| ≤ f̄· + λ̄|Zn· |α, (3.2)

then there exists an L1 solution (Y·, Z·,K·, A·) of DRBSDE (ξ, g+ dV,L, U) such that

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖An· −A·‖S1) = 0

holds true for each β ∈ (0, 1), and there exists a subsequence {Knj
· } of {Kn

· } such
that

lim
j→∞

sup
t∈[0,T ]

|Knj
t −Kt| = 0.

(ii) For each n ≥ 1, let (Y n· , Z
n
· ,K

n
· ) be an L1 solution of RBSDE (ξ, g

n
+ dV,L) with
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g
n
(t, y, z) := g(t, y, z)− n(y − Ut)+, i.e.,

Y nt = ξ +

∫ T

t

g
n
(s, Y ns , Z

n
s )ds+

∫ T

t

dVs +

∫ T

t

dKn
t −

∫ T

t

Zns · dBs, t ∈ [0, T ],

Lt ≤ Y nt , t ∈ [0, T ] and

∫ T

0

(Y nt − Lt)dKn
t = 0,

Ant := n

∫ t

0

(Y ns − Us)+ ds, t ∈ [0, T ].

(3.3)
If for each n ≥ 1, Y n· ≥ Y n+1

· ≥ Y · with a process Y · ∈ ∩β∈(0,1)Sβ of the class
(D), dKn ≤ dKn+1, An· ≤ Ān· ∈ V+,1 with supn≥1E[|ĀnT |β ] < +∞ for each β ∈ (0, 1),
lim
j→∞

Ā
nj
T = ĀT ∈ L1(FT ) for a subsequence {nj} of {n} and supn≥1E[|Ānτ |2] ≤

E[|Ỹτ |2] for a process Ỹ· ∈ S and each (Ft)-stopping time τ valued in [0, T ], and
there exist two constants λ̄ > 0, α ∈ (0, 1) and a nonnegative process f̄· ∈ H1 such
that (3.2) holds for each n ≥ 1, then there exists an L1 solution (Y·, Z·,K·, A·) of
DRBSDE (ξ, g + dV,L, U) such that

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖Kn
· −K·‖S1) = 0

holds true for each β ∈ (0, 1), and there exists a subsequence {Anj· } of {An· } such
that

lim
j→∞

sup
t∈[0,T ]

|Anjt −At| = 0.

Proof. We only prove the claim (i). The claim (ii) can be proved in the same way. Now
we assume that all the assumptions in (i) are satisfied. Since Y n· increases in n, there
exists an (Ft)-progressively measurable process Y· such that Y nt ↑ Yt for each t ∈ [0, T ].
In view of (3.1) and (3.2) with the fact that for each n ≥ 1, Y 1

· ≤ Y n· ≤ Ȳ· and Kn
T ≤ K̄n

T

with supn≥1E[|K̄n
T |β ] < +∞ for each β ∈ (0, 1), by Lemma 2.8 we deduce that for each

β ∈ (0, 1), there exists a Cβ > 0 depending only on β, λ̄, T such that

sup
n≥1

E

(∫ T

0

|Zns |2ds

) β
2

+ |AnT |β +

(∫ T

0

|g(s, Y ns , Z
n
s )|ds

)β
≤ Cβ

E
 sup
s∈[0,T ]

(|Y 1
s |+ |Ȳs|)β + |V |βT +

(∫ T

0

f̄s ds

)β+ sup
n≥1

E
[
|Kn

T |β
] < +∞.

(3.4)
For each positive integer k ≥ 1, we define the following (Ft)-stopping time:

τk := inf

{
t ≥ 0 : |Y 1

t |+ |Ȳt|+ |V |t +

∫ t

0

f̄s ds+ |Ỹt|+ L+
t ≥ k

}
∧ T.

Then
P ({ω : ∃k0(ω) ≥ 1, ∀k ≥ k0(ω), τk(ω) = T}) = 1. (3.5)

Note the fact that supn≥1E[|Kn
τk
|2] ≤ E[|Ỹτk |2] ≤ k2 for each k ≥ 1. Again by Lemma 2.8

we deduce that there exists a nonnegative constant C̄ depending only on λ̄, T such that
for each k ≥ 1,

sup
n≥1

E

[∫ τk

0

|Zns |2ds+ |Anτk |
2 +

(∫ τk

0

|g(s, Y ns , Z
n
s )|ds

)2
]

≤ C̄E

[
sup

s∈[0,T ]

(|Y 1
s∧τk |+ |Ȳs∧τk |)

2 + |V |2τk +

(∫ τk

0

f̄s ds

)2

+ |Ỹτk |2
]
≤ 4C̄k2.

(3.6)

EJP 24 (2019), paper 88.
Page 12/48

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP345
http://www.imstat.org/ejp/


L1 solutions of BSDEs under general assumptions

Furthermore, since dAn ≤ dAn+1, there exists an (Ft)-progressively measurable and
increasing process (At)t∈[0,T ] with A0 = 0 such that Ant ↑ At for each t ∈ [0, T ], and for
each j ≥ n ≥ 1,

0 ≤ Ajt −Ant ≤ A
j
T −A

n
T , t ∈ [0, T ].

Letting first j →∞, and then taking supremum with respect to t in [0, T ], finally letting
n→∞ in the previous inequality yields that

lim
n→∞

sup
t∈[0,T ]

|Ant −At| = 0, (3.7)

which means that A· ∈ V+. On the other hand, note by (3.6) that supn≥1E[|Anτk |
2] < +∞

for each k ≥ 1. It follows that for each (Ft)-stopping time τ valued in [0, T ] and each
k ≥ 1,

lim
n→∞

E[|Anτ∧τk −Aτ∧τk |] = 0. (3.8)

The rest proof is divided into 7 steps, which will be detailed in Appendix.

Step 1. In view of (3.2), (3.5), (3.6) and (3.8), by using a weak convergence argument,
Lemma 4.4 of Klimsiak [38] and Lemma A.3 in Bayraktar and Yao [2], we show that Y· is
a càdlàg process.

Step 2. By virtue of the conclusion of the step 1 together with the definition of Kn
· and

Dini’s theorem, we show that Yt ≥ Lt for each t ∈ [0, T ] and lim
n→∞

sup
t∈[0,T ]

(Y nt − Lt)− = 0.

Step 3. Making use of (ii) of Lemma 2.4, the definition of Kn
· and An· with (3.1),

Hölder’s inequality, (3.2), (3.6), the conclusion of the step 2 and Lebesgue’s dominated
convergence theorem, we show that as n → ∞, the sequence {Y n· } converges to the
process Y· in the space of Sβ for each β ∈ (0, 1).

Step 4. Making use of (i) of Lemma 2.4, (3.4) and the conclusion of the step 3, we
show that as n→∞, the sequence {Zn· } converges to a process Z· in the space of Mβ

for each β ∈ (0, 1).

Step 5. By virtue of the continuity of g and the conclusions of the steps 3 and 4
together with (3.7), we show that there exists a subsequence {Knj

· } of the sequence
{Kn
· } which converges uniformly in t to a process K· ∈ V+,1 in the sense of almost surely

as j →∞.

Step 6. Utilizing (3.2), (3.7) and Lebesgue’s dominated convergence theorem, we
show that the sequence {An· } converges the process A· in the space of S1.

Step 7. Based on all the conclusions of the steps 1–6, we finally show that the
(Y·, Z·,K·, A·) is an L1 solution of RBSDE (ξ, g+dV,L, U). The proof is then completed.

3.2 Penalization for BSDEs

In this subsection, we prove the following convergence result on the sequence of L1

solutions of penalized non-reflected BSDEs.

Proposition 3.2 (Penalization for BSDEs). Assume that V· ∈ V1, (H3)(i) holds true for
L·, U· and ξ, and g is a generator. We have

(i) Let (Y n· , Z
n
· ) be an L1 solution of BSDE (ξ, ḡn + dV ) with ḡn(t, y, z) := g(t, y, z) +

n(y − Lt)− for each n ≥ 1, i.e.,
Y nt = ξ +

∫ T

t

ḡn(s, Y ns , Z
n
s )ds+

∫ T

t

dVs −
∫ T

t

Zns · dBs, t ∈ [0, T ],

Kn
t := n

∫ t

0

(Y ns − Ls)− ds, t ∈ [0, T ].

(3.9)
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If for each n ≥ 1, Y n· ≤ Y n+1
· ≤ Ȳ· with a process Ȳ· ∈ ∩β∈(0,1)Sβ of the class (D),

and there exist two constants λ̄ > 0, α ∈ (0, 1) and a nonnegative process f̄· ∈ H1

such that (3.2) holds true for each n ≥ 1, then supn≥1E[|Kn
T |β ] < +∞ for each

β ∈ (0, 1), supn≥1E[|Kn
τ |2] ≤ E[|Ỹτ |2] for a process Ỹ· ∈ S and each (Ft)-stopping

time τ valued in [0, T ], there exists an L1 solution (Y·, Z·,K·) of RBSDE (ξ, g+dV,L)

such that for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ ) = 0

and there exists a subsequence {Knj
· } of {Kn

· } such that

lim
j→∞

sup
t∈[0,T ]

|Knj
t −Kt| = 0.

(ii) Let (Y n· , Z
n
· ) be an L1 solution of BSDE (ξ, g

n
+ dV ) with g

n
(t, y, z) := g(t, y, z) −

n(y − Ut)+ for each n ≥ 1, i.e.,
Y nt = ξ +

∫ T

t

g
n
(s, Y ns , Z

n
s )ds+

∫ T

t

dVs −
∫ T

t

Zns · dBs, t ∈ [0, T ],

Ant := n

∫ t

0

(Y ns − Us)+ ds, t ∈ [0, T ].

(3.10)

If for each n ≥ 1, Y n· ≥ Y n+1
· ≥ Y · with a process Y · ∈ ∩β∈(0,1)Sβ of the class (D),

and there exist two constants λ̄ > 0, α ∈ (0, 1) and a nonnegative process f̄· ∈ H1

such that (3.2) holds true for each n ≥ 1, then supn≥1E[|AnT |β ] < +∞ for each

β ∈ (0, 1), supn≥1E[|Anτ |2] ≤ E[|Ỹτ |2] for a process Ỹ· ∈ S and each (Ft)-stopping
time τ valued in [0, T ], there exists an L1 solution (Y·, Z·, A·) of R̄BSDE (ξ, g+dV,U)

such that for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ ) = 0

and there exists a subsequence {Anj· } of {An· } such that

lim
j→∞

sup
t∈[0,T ]

|Anjt −At| = 0.

Proof. We only prove (i), the proof of (ii) is similar. Note first that for each n ≥ 1,
Y n· ≤ Y n+1

· ≤ Ȳ· ∈ ∩β∈(0,1)Sβ. In view of (3.2), by Lemma 2.8 we can deduce that for
each β ∈ (0, 1), there exists a nonnegative constant Cβ depending only on β, λ̄, T such
that

sup
n≥1

E

(∫ T

0

|Zns |2ds

) β
2

+ |Kn
T |β +

(∫ T

0

|g(s, Y ns , Z
n
s )|ds

)β
≤ CβE

 sup
s∈[0,T ]

(|Y 1
s |+ |Ȳs|)β + |V |βT +

(∫ T

0

f̄s ds

)β < +∞,

(3.11)

and there also exists a nonnegative constant C̄ depending only on λ̄, T such that for each
(Ft)-stopping time τ valued in [0, T ], we have

sup
n≥1

E

[∫ τ

0

|Zns |2ds+ |Kn
τ |2
]
≤ C̄E

[
sup

s∈[0,T ]

(|Y 1
s∧τ |+ |Ȳs∧τ |)2 + |V |2τ +

(∫ τ

0

f̄s ds

)2
]
.

(3.12)
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L1 solutions of BSDEs under general assumptions

For each positive integer k ≥ 1, define the following (Ft)-stopping time:

τk := inf

{
t ≥ 0 : |Y 1

t |+ |Ȳt|+ |V |t +

∫ t

0

f̄s ds+ L+
t ≥ k

}
∧ T.

Then
P ({ω : ∃k0(ω) ≥ 1, ∀k ≥ k0(ω), τk(ω) = T}) = 1.

Thus, by letting An· ≡ 0 and U· ≡ +∞, a same argument as in the proof of the steps 1–5
of Proposition 3.1 yields that there exists a triple (Y·, Z·,K·) ∈ Sβ ×Mβ × V+ for each
β ∈ (0, 1) satisfying

Kt = Y0 − Yt −
∫ t

0

g(s, Ys, Zs)ds−
∫ t

0

dVs +

∫ t

0

Zs · dBs.

Furthermore, for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ ) = 0

and there exists a subsequence {Knj
· } of {Kn

· } such that

lim
j→∞

sup
t∈[0,T ]

|Knj
t −Kt| = 0.

In the sequel, a similar proof to the step 6 of Proposition 3.1 yields that

E[KT ] ≤ |Y0|+ E[|ξ|] + E[|V |T ] + ‖f̄·‖H1 + λ̄T
2−α
2 ‖Z·‖Mα < +∞,

which means that K· ∈ V+,1. Finally, similar to the step 7 of Proposition 3.1, it is easy to
prove that (Y·, Z·,K·) is an L1 solution of RBSDE (ξ, g+dV,L). The proof is complete.

3.3 Approximation

In this subsection, we prove the following general approximation result for L1 solu-
tions of DRBSDEs and both RBSDEs and non-reflected BSDEs as its special cases.

Proposition 3.3 (Approximation). Assume that V· ∈ V1, (H3)(i) holds true for L·, U· and
ξ, gn is a generator and (Y n· , Z

n
· ,K

n
· , A

n
· ) is an L1 solution of DRBSDE (ξ, gn + dV,L, U)

for each n ≥ 1. If for each n ≥ 1, Y n· ≤ Y n+1
· ≤ Ȳ·, dAn ≤ dAn+1 ≤ dĀ and dKn+1 ≤

dKn ≤ dK1 with Ȳ· ∈ ∩β∈(0,1)Sβ of the class (D) and Ā ∈ V+,1 (resp. Y · ≤ Y n+1
· ≤ Y n· ,

dAn+1 ≤ dAn ≤ dA1 and dKn ≤ dKn+1 ≤ dK̄ with Y · ∈ ∩β∈(0,1)Sβ of the class (D) and
K̄ ∈ V+,1), gn tends locally uniformly in (y, z) to a generator g as n→∞, there exists a
constant λ̄ > 0 and a nonnegative process f̃· ∈ H1 such that for each n ≥ 1,

dP× dt− a.e., sgn(Y n· )gn(·, Y n· , Zn· ) ≤ f̃· + λ̄|Zn· |, (3.13)

and for each k ≥ 1, there exists a nonnegative process f̄k· ∈ H such that for each n ≥ 1,

dP× dt− a.e., |gn(·, Y n· , Zn· )1|Y n· |≤k| ≤ f̄
k
· + λ̄|Zn· |, (3.14)

then there exists an L1 solution (Y·, Z·,K·, A·) of DRBSDE (ξ, g + dV,L, U) such that for
each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖Kn
· −K·‖S1 + ‖An· −A·‖S1) = 0.

Proof. We only prove the case that for each n ≥ 1, Y n· ≤ Y n+1
· ≤ Ȳ·, dAn ≤ dAn+1 ≤ dĀ

and dKn+1 ≤ dKn ≤ dK1 with Ȳ· ∈ ∩β∈(0,1)Sβ of the class (D) and Ā ∈ V+,1. Another
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case can be proved in the same way. Firstly, a same argument as that in proving (3.7)
together with Lebesgue’s dominated convergence theorem yields that there exists an
(Ft)-progressively measurable process (Yt)t∈[0,T ] together with K·, A· ∈ V+,1 such that
Y nt ↑ Yt for each t ∈ [0, T ], and

lim
n→∞

(‖Kn
· −K·‖S1 + ‖An· −A·‖S1) = 0. (3.15)

Furthermore, in view of (3.13), by Lemma 2.7 we can deduce that for each β ∈ (0, 1),
there exists a nonnegative constant Cβ depending only on β, λ̄, T such that

sup
n≥1

E

(∫ T

0

|Zns |2ds

) β
2

+

(∫ T

0

|gn(s, Y ns , Z
n
s )|ds

)β
≤ CβE

 sup
s∈[0,T ]

(|Y 1
s |+ |Ȳs|)β + |V |βT + |K1

T |β + |ĀT |β +

(∫ T

0

f̃s ds

)β < +∞,

(3.16)
and there also exists a constant C̄ > 0 depending only on λ̄, T such that for each
(Ft)-stopping time τ valued in [0, T ], we have

sup
n≥1

E

[∫ τ

0

|Zns |2ds

]
≤ C̄E

[
sup

s∈[0,T ]

(|Y 1
s∧τ |+ |Ȳs∧τ |)2 + |V |2τ + |K1

τ |2 + |Āτ |2 +

(∫ τ

0

f̃s ds

)2
]
.

(3.17)

The rest proof is divided into 3 steps, which will be detailed in Appendix.

Step 1. In view of (3.14) and (3.17), making use of the technique of stopping times
and (ii) of Lemma 2.4 together with Hölder’s inequality and Lebesgue’s dominated
convergence theorem, we show that as n → ∞, the sequence {Y n· } converges to the
process Y· in the space of Sβ for each β ∈ (0, 1).

Step 2. Making use of (i) of Lemma 2.4, (3.16) and the conclusion of the step 1, we
show that as n→∞, the sequence {Zn· } converges to a process Z· in the space of Mβ

for each β ∈ (0, 1).

Step 3. By virtue of (3.14), (3.15) and the conclusions of the previous two steps, we
show that the (Y·, Z·,K·, A·) is an L1 solution of DRBSDE (ξ, g+dV,L, U). Proposition 3.3
is then proved.

Remark 3.4. Observe that if there exists a constant λ̄ > 0 and a nonnegative process
f̄· ∈ H1 such that for each n ≥ 1,

dP× dt− a.e., |gn(·, Y n· , Zn· )| ≤ f̄· + λ̄|Zn· |, (3.18)

then both (3.13) and (3.14) are satisfied.

3.4 Comparison theorem

We now establish a general comparison theorem for L1 solutions of RBSDEs with one
and two continuous barriers as well as non-reflected BSDEs.

Proposition 3.5 (Comparison Theorem). Assume that V j· ∈ V1, (H3)(i) holds for Lj· , U
j
·

and ξj , gj is a generator and (Y j· , Z
j
· ,K

j
· , A

j
· ) is an L1 solution of DRBSDE (ξj , gj +

dV j , Lj , U j) for j = 1, 2. If ξ1 ≤ ξ2, dV 1 ≤ dV 2, L1
· ≤ L2

· , U
1
· ≤ U2

· , and either{
g1 satisfies (H1)(i) and (H2);

dP× dt− a.e., 1{Y 1
t >Y

2
t }
(
g1(t, Y 2

t , Z
2
t )− g2(t, Y 2

t , Z
2
t )
)
≤ 0
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or {
g2 satisfies (H1)(i) and (H2);

dP× dt− a.e., 1{Y 1
t >Y

2
t }
(
g1(t, Y 1

t , Z
1
t )− g2(t, Y 1

t , Z
1
t )
)
≤ 0

is satisfied, then Y 1
t ≤ Y 2

t for each t ∈ [0, T ].

Proof. For each positive integer k ≥ 1, define the following (Ft)-stopping time:

τk := inf{t ∈ [0, T ] :

∫ t

0

(|Z1
s |2 + |Z2

s |2)ds ≥ k} ∧ T.

It follows from Itô-Tanaka’s formula that for each t ∈ [0, T ] and k ≥ 1,

(Y 1
t∧τk − Y

2
t∧τk)+

≤ (Y 1
τk
− Y 2

τk
)+ +

∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)(dV 1

s − dV 2
s )

+

∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)

(
g1(s, Y 1

s , Z
1
s )− g2(s, Y 2

s , Z
2
s )
)

ds

+

∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)

(
dK1

s − dK2
s

)
+

∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)

(
dA2

s − dA1
s

)
+

∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)(Z1

s − Z2
s ) · dBs.

Since L1
t ≤ L2

t ≤ Y 2
t , L1

t ≤ Y 1
t , t ∈ [0, T ] and

∫ T
0

(Y 1
s − L1

s)dK
1
s = 0, we have∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)

(
dK1

s − dK2
s

)
≤

∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)dK1

s ≤
∫ τk

t∧τk
sgn((Y 1

s − L1
s)

+)dK1
s

=

∫ τk

t∧τk
1{Y 1

s >L
1
s}|Y

1
s − L1

s|−1(Y 1
s − L1

s)dK
1
s = 0.

Similarly, since Y 1
t ≤ U1

t ≤ U2
t , Y 2

t ≤ U2
t , t ∈ [0, T ] and

∫ T
0

(U2
s − Y 2

s )dA2
s = 0, we have∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)

(
dA2

s − dA1
s

)
≤

∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)dA2

s ≤
∫ τk

t∧τk
sgn((U2

s − Y 2
s )+)dA2

s

=

∫ τk

t∧τk
1{U2

s>Y
2
s }|U

2
s − Y 2

s |−1(U2
s − Y 2

s )dA2
s = 0.

Thus, noticing that dV 1 ≤ dV 2, by virtue of the previous three inequalities we get that

(Y 1
t∧τk − Y

2
t∧τk)+

≤ (Y 1
τk
− Y 2

τk
)+ +

∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)

(
g1(s, Y 1

s , Z
1
s )− g2(s, Y 2

s , Z
2
s )
)

ds

+

∫ τk

t∧τk
sgn((Y 1

s − Y 2
s )+)(Z1

s − Z2
s ) · dBs, t ∈ [0, T ].

Finally, in view of the assumptions of g1 and g2 together with ξ1 ≤ ξ2, the rest proof
runs as the proof of Theorem 2.4 and Theorem 2.1 in Fan [14] with u(t) = v(t) ≡ 1 and
λ(t) ≡ γ, which is omitted.

EJP 24 (2019), paper 88.
Page 17/48

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP345
http://www.imstat.org/ejp/


L1 solutions of BSDEs under general assumptions

Remark 3.6. Observe that in the proof of Proposition 3.5 the following two assumptions
are not utilized: ∫ T

0

(Y 2
s − L2

s)dK
2
s = 0 and

∫ T

0

(U1
s − Y 1

s )dA1
s = 0.

By virtue of Proposition 3.5, the following corollary follows immediately.

Corollary 3.7. Assume that V j· ∈ V1, (H3)(i) holds for Lj· , U
j
· and ξj , gj is a generator

and (Y j· , Z
j
· ,K

j
· , A

j
· ) is an L1 solution of DRBSDE (ξj , gj + dV j , Lj , U j) for j = 1, 2. If

ξ1 ≤ ξ2, dV 1 ≤ dV 2, L1
· ≤ L2

· , U
1
· ≤ U2

· , g
1 or g2 satisfies (H1)(i) and (H2), and for each

(y, z) ∈ R×Rd,
dP× dt− a.e., g1(t, y, z) ≤ g2(t, y, z),

then Y 1
t ≤ Y 2

t for each t ∈ [0, T ].

Remark 3.8. From the proof of Proposition 3.5, it is not hard to see that the conclusions
in Proposition 3.5 and Corollary 3.7 hold still true when V j only belongs to V instead of
V1, and both Kj and Aj only belong to V+ instead of V+,1 for j = 1, 2.

Theorem 3.9 (Uniqueness). Let V· ∈ V1, (H3)(i) hold true for L·, U· and ξ, and the
generator g satisfy assumptions (H1)(i) and (H2). Then DRBSDE (ξ, g + dV,L, U) admits
at most one L1 solution, i.e, if both (Y·, Z·,K·, A·) and (Y ′· , Z

′
· ,K

′
· , A
′
·) are L1 solutions of

DRBSDE (ξ, g + dV,L, U), then dP× dt− a.e.,

Y· = Y ′· , Z· = Z ′· , K· = K ′· and A· = A′·.

Proof. The conclusion follows from Corollary 3.7, Itô’s formula and the Ham-Bananch
composition of sign measure.

4 Existence, uniqueness and approximation for L1 solutions of
BSDEs

In this section, we will establish some existence, uniqueness and approximation
results on L1 solutions of BSDEs under general assumptions.

We need the following lemma, which is a direct corollary of Theorem 6.5 in Fan [14].

Lemma 4.1. Let ξ ∈ L1(FT ) and the generator g satisfy assumptions (H1)(i) and (H2)(i).
If g is also bounded, then BSDE (ξ, g) admits a unique L1 solution.

Let us start with the following existence and uniqueness result.

Theorem 4.2. Let ξ ∈ L1(FT ), V· ∈ V1 and the generator g satisfy assumptions (H1) and
(H2). Then BSDE (ξ, g + dV ) admits a unique L1 solution.

Proof. The uniqueness part follows immediately from Theorem 3.9 with L· ≡ −∞ and
U· = +∞. In the sequel, we prove the existence part. Let ξ ∈ L1(FT ), V· ∈ V1 and g

satisfy (H1) and (H2).
We first assume that g is bounded. Note that V· ∈ V1. It follows from Lemma 4.1 that

the following BSDE

Ȳs = ξ + VT +

∫ T

t

g(s, Ȳs − Vs, Z̄s)ds−
∫ T

t

Z̄sdBs, t ∈ [0, T ]

admits a unique L1 solution (Ȳ·, Z̄·). Then the pair (Y·, Z·) := (Ȳ· − V·, Z̄·) is just the
unique L1 solution of BSDE (ξ, g + dV ).

Now suppose that g is bounded from below. Write gn = g ∧ n. Then gn is bounded,
nondecreasing in n and tends locally uniformly to g as n → ∞, and it is not difficult
to check that all gn satisfy (H1) and (H2) with the same ρ(·), ψ·(r), φ(·), γ, f· and α.
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Then by the first step of the proof there exists a unique L1 solution (Y n· , Z
n
· ) of BSDE

(ξ, gn + dV ). Furthermore, in view of Remark 2.3, it follows from (H1)(i) and (H2)(ii) of
gn that dP× dt− a.e., for each n ≥ 1 and (y, z) ∈ R×Rd,

sgn(y)gn(·, y, z) ≤ sgn(y)(gn(·, y, z)− gn(·, 0, z)) + |gn(·, 0, z)− gn(·, 0, 0)|+ |gn(·, 0, 0)|
≤ ρ(|y|) + γ(f· + |z|)α + |g(·, 0, 0)|
≤ A+ γ(1 + f·) + |g(·, 0, 0)|+A|y|+ γ(1 + |z|)α =: ḡ(·, y, z). (4.1)

Note that ξ ∈ L1(FT ), V· ∈ V1, f· ∈ H1, g(·, 0, 0) ∈ H1, and the generator ḡ is uniformly
Lipschitz in (y, z) and has a sub-linear growth in z. By Theorems 3.9 and 3.11 in Klimsiak
[39] we know that BSDE (|ξ|, ḡ+d|V |) admits a unique L1 solution (Ȳ·, Z̄·) with Ȳ· ≥ 0, and
BSDE (−|ξ|,−ḡ − d|V |) admits a unique L1 solution (Y ·, Z·) with Y · ≤ 0. Furthermore,
note by (4.1) that dP× dt− a.e.,

1{Y nt >Ȳt} (gn(t, Y nt , Z
n
t )− ḡ(t, Y nt , Z

n
t )) ≤ 0

and
1{Y t>Y nt } (−ḡ(t, Y nt , Z

n
t )− gn(t, Y nt , Z

n
t )) ≤ 0.

It follows from Proposition 3.5 and Corollary 3.7 with L· = −∞ and U· = +∞ that
Y · ≤ Y n· ≤ Y n+1

· ≤ Ȳ· for each n ≥ 1. Thus, by (4.1) we know that (3.13) holds true. In
addition, in view of assumptions (H2)(ii) and (H1)(iii), we have for each n, k ≥ 1,

|gn(·, Y n· , Zn· )1|Y n· |≤k| ≤ |g(·, Y n· , Zn· )|1|Y n· |≤k
≤ |g(·, Y n· , Zn· )− g(·, Y n· , 0)|1|Y n· |≤k + |g(·, Y n· , 0)− g(·, 0, 0)|1|Y n· |≤k + |g(·, 0, 0)|
≤ γ

(
1 + f· + |Y n· |1|Y n· |≤k + |Zn· |

)
+ ψ·(k) + |g(·, 0, 0)|

≤ |g(·, 0, 0)|+ γ (1 + f· + k) + ψ·(k) + γ|Zn· |.

Hence, (3.14) holds also true since ψ·(k) ∈ H and f·, g(·, 0, 0) ∈ H1. Now, we have
checked all the conditions in Proposition 3.3 with L· = −∞, U· = +∞ and Kn

· = An· ≡ 0,
and it follows that BSDE (ξ, g + dV ) admits an L1 solution.

Finally, in the general case, we can approximate g by the sequence gn, where gn :=

g ∨ (−n), n ≥ 1. By the previous step there exists a unique L1 solution (Y n· , Z
n
· ) of BSDE

(ξ, gn + dV ) for each n ≥ 1. Repeating arguments in the proof of the previous step yields
that (Y n· , Z

n
· ) converges in Sβ ×Mβ for each β ∈ (0, 1) to the unique L1 solution (Y·, Z·)

of BSDE (ξ, g + dV ).

Next, we will establish a general existence result on the minimal (resp. maximal) L1

solution of BSDEs. Before that, let us introduce the following weaker assumption (HH)
w.r.t. the generator g.

(HH) g has a general growth in y and a sub-linear growth in z, i.e., there exist two
constants λ ≥ 0 and α ∈ (0, 1), a nonnegative process f· ∈ H1 and a nonnegative
function ϕ·(r) ∈ S such that

dP× dt− a.e., ∀ y ∈ R and z ∈ Rd, |g(ω, t, y, z)| ≤ ft(ω) + ϕt(ω, |y|) + λ|z|α,

here and hereafter, S denotes the set of nonnegative functions ϕt(ω, r) : Ω× [0, T ]×
R+ 7→ R+ satisfying the following two conditions:

• dP× dt− a.e., the function r 7→ ϕt(ω, r) is increasing and ϕt(ω, 0) = 0;
• for each r ≥ 0, ϕ·(·, r) ∈ H.

Remark 4.3. It is not difficult to see that assumption (HH) is strictly weaker than the
assumptions (H1)(ii)(iii) and (H2)(ii) (or (H2’)(ii)).
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Theorem 4.4. Let ξ ∈ L1(FT ), V· ∈ V1, g1 satisfy (H1)(i), (H2’)(i) and (HH), g2 satisfy
(AA) and the generator g := g1 + g2. Then BSDE (ξ, g + dV ) admits a minimal (resp.
maximal) L1 solution.

Proof. We only need to prove the case of the minimal solution. The case of the maximal
solution can be proved in the same way. Now, we assume that ξ ∈ L1(FT ), V· ∈ V1, g1

satisfies (H1)(i), (H2’)(i) and (HH) with ρ(·), f·, ϕ·(r), λ and α, g2 satisfies (AA) with f̃·, µ̃,
λ̃ and α̃, and the generator g := g1 + g2.

In view of assumptions of g, it is not very hard to prove that for each n ≥ 1 and
(y, z) ∈ R×Rd, the following function

gn(ω, t, y, z) := g1
n(ω, t, y, z) + g2

n(ω, t, y, z)

with

g1
n(ω, t, y, z) := inf

u∈Rd

[
g1(ω, t, y, u) + (n+ 2λ)|u− z|α

]
(4.2)

and

g2
n(ω, t, y, z) := inf

(u,v)∈R×Rd

[
g2(ω, t, u, v) + (n+ 2µ̃)|u− y|+ (n+ 2λ̃)|v − z|α̃

]
(4.3)

is well defined and (Ft)-progressively measurable, dP × dt − a.e., gn increases in n,
is continuous in (y, z), and converges locally uniformly in (y, z) to the generator g as
n → ∞, g1

n satisfies (H1)(i) with the same ρ(·), (HH) with the same f·, ϕ·(r), λ and α,
(H1)(ii) with |g1

n(·, 0, 0)| ≤ f·, (H1)(iii) with the same ψ·(r) := 2f· + ϕ·(r) and (H2) with
φ(x) := (n+ 2λ)|x|α, γ := n+ 2λ, f· :≡ 0 and α, g2

n satisfies (H1)(i) with ρ(x) := (n+ 2µ̃)x,
(HH) with the same f̃·, µ̃r, λ̃ and α̃, (H1)(ii) with |g2

n(·, 0, 0)| ≤ f̃·, (H1)(iii) with the same
ψ·(r) := 2f̃· + µ̃r and (H2) with φ(x) := (n + 2λ̃)|x|α̃, γ := n + 2λ̃, f· :≡ 0 and α̃. Hence,
both (H1) and (H2) are satisfied by the generator gn for each n ≥ 1. It then follows from
Theorem 4.2 that BSDE (ξ, gn + dV ) admits a unique L1 solution (Y n· , Z

n
· ) for each n ≥ 1.

Furthermore, in view of Remark 2.3, it follows from (H1)(i) and (HH) of g1
n together with

(HH) of g2
n that dP× dt− a.e., for each n ≥ 1 and (y, z) ∈ R×Rd,

sgn(y)gn(·, y, z) ≤ sgn(y)(g1
n(·, y, z)− g1

n(·, 0, z)) + |g1
n(·, 0, z)|+ |g2

n(·, y, z)|
≤ ρ(|y|) + f· + λ|z|α + f̃· + µ̃|y|+ λ̃|z|α̃

≤ A+ f· + f̃· + (A+ µ̃)|y|+ λ(1 + |z|)α + λ̃(1 + |z|)α̃ =: ḡ(·, y, z).
(4.4)

In the sequel, in the same way as in the proof of Theorem 4.2, we can deduce that BSDE
(|ξ|, ḡ + d|V |) admits a unique L1 solution (Ȳ·, Z̄·) with Ȳ· ≥ 0, BSDE (−|ξ|,−ḡ − d|V |)
admits a unique L1 solution (Y ·, Z·) with Y · ≤ 0, and in view of (4.4) and the fact that
dP× dt− a.e.,

1{Y nt >Ȳt} (gn(t, Y nt , Z
n
t )− ḡ(t, Y nt , Z

n
t )) ≤ 0

and

1{Y t>Y nt } (−ḡ(t, Y nt , Z
n
t )− gn(t, Y nt , Z

n
t )) ≤ 0,

it follows from Proposition 3.5 and Corollary 3.7 that Y · ≤ Y n· ≤ Y n+1
· ≤ Ȳ· for each

n ≥ 1. Thus, by (4.4) we deduce that (3.13) holds. In addition, in view of (HH) of g1
n and

g2
n, we have for each n, k ≥ 1,

|gn(·, Y n· , Zn· )1|Y n· |≤k| ≤ f· + ϕ·(|Y n· |)1|Y n· |≤k + λ|Zn· |α + f̃· + µ̃|Y n· |1|Y n· |≤k + λ̃|Zn· |α̃

≤ f· + f̃· + ϕ·(k) + µ̃k + λ+ λ̃+ (λ+ λ̃)|Zn· |.
(4.5)
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L1 solutions of BSDEs under general assumptions

Hence, (3.14) holds also true since ϕ·(k) ∈ H and f·, f̃· ∈ H1. Now, we have checked
all the conditions in Proposition 3.3 with L· = −∞, U· = +∞ and Kn

· = An· ≡ 0, and it
follows that BSDE (ξ, g + dV ) admits an L1 solution (Y·, Z·) such that for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ ) = 0. (4.6)

Finally, we show that (Y·, Z·) is just the minimal L1 solution of BSDE (ξ, g + dV ). In
fact, if (Y ′· , Z

′
·) is also an L1 solution of BSDE (ξ, g + dV ), then noticing that gn ≤ g and

gn satisfies (H1) and (H2) for each n ≥ 1, it follows from Corollary 3.7 that that Y nt ≤ Y ′t
for each t ∈ [0, T ] and n ≥ 1. Thus, by (4.6) we know that for each t ∈ [0, T ],

Yt ≤ Y ′t .

Theorem 4.4 is then proved.

In view of Remark 4.3, the following corollary follows immediately from Theorem 4.4.

Corollary 4.5. Let ξ ∈ L1(FT ), V· ∈ V1, g1 satisfy (H1) and (H2’), g2 satisfy (AA) and
the generator g := g1 + g2. Then BSDE (ξ, g + dV ) admits a minimal (resp. maximal) L1

solution.

By Corollary 3.7 together with the proof of Theorem 4.4 it is easy to verify that under
(H1)(i), (H2’)(i) and (HH) (resp. (H1) and (H2’)) together with (AA), the comparison
theorem for the maximal (resp. minimal) L1 solutions of the BSDEs holds true. More
precisely, we have

Corollary 4.6. Assume that for j = 1, 2, ξj ∈ L1(FT ), V j· ∈ V1, gj,1 satisfies (H1)(i),
(H2’)(i) and (HH) (resp. (H1) and (H2’)), gj,2 satisfies (AA), gj := gj,1 + gj,2 and that
(Y j· , Z

j
· ) is the maximal (resp. minimal) L1 solution of BSDE (ξj , gj + dV j) (recall Theo-

rem 4.4 and Corollary 4.5). If ξ1 ≤ ξ2, dV 1 ≤ dV 2, and

dP× dt− a.e., ∀ (y, z) ∈ R×Rd, g1,1(t, y, z) ≤ g2,1(t, y, z) and g1,2(t, y, z) ≤ g2,2(t, y, z),

then Y 1
t ≤ Y 2

t for each t ∈ [0, T ].

Remark 4.7. Observe that either g1 ≡ 0 or g2 ≡ 0 is a special case of the generator
g := g1 + g2 in Theorem 4.4, Corollary 4.5 and Corollary 4.6. Hence, they generalize
some known results on the L1 solution of BSDEs. In addition, by Remark 3.8 we know
that the conclusion of Corollary 4.6 is still true when both V 1 and V 2 only belong to V
instead of V1.

5 Existence, uniqueness and approximation for L1 solutions of
RBSDEs

In this section, we will establish some existence, uniqueness and approximation re-
sults on L1 solutions of RBSDEs with one continuous barrier under general assumptions.

Theorem 5.1. Let V· ∈ V1 and the generator g satisfy assumptions (H1) and (H2).

(i) Assume that (H3L)(i) holds true for L· and ξ. Then RBSDE (ξ, g + dV,L) admits
an L1 solution iff (H3L)(ii) is satisfied. Furthermore, if (H3L)(ii) holds also true,
then RBSDE (ξ, g+ dV,L) admits a unique L1 solution (Y·, Z·,K·) such that for each
β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖Kn
· −K·‖Sβ ) = 0, (5.1)

where for each n ≥ 1, (Y n· , Z
n
· ) is the unique L1 solution of BSDE (ξ, ḡn + dV ) with

ḡn(t, y, z) := g(t, y, z) + n(y − Lt)−, i.e., (3.9), (recall Theorem 4.2), and

Kn
t := n

∫ t

0

(Y ns − Ls)−ds, t ∈ [0, T ]. (5.2)
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(ii) Assume that (H3U)(i) holds true for U· and ξ. Then R̄BSDE (ξ, g + dV,U) admits
an L1 solution iff (H3U)(ii) is satisfied. Furthermore, if (H3U)(ii) holds also true,
then R̄BSDE (ξ, g+dV,U) admits a unique L1 solution (Y·, Z·, A·) such that for each
β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖An· −A·‖Sβ ) = 0, (5.3)

where for each n ≥ 1, (Y n· , Z
n
· ) is the unique L1 solution of BSDE (ξ, g

n
+ dV ) with

g
n
(t, y, z) := g(t, y, z)− n(y − Ut)+, i.e., (3.10), (recall Theorem 4.2), and

Ant := n

∫ t

0

(Y ns − Us)+ds, t ∈ [0, T ]. (5.4)

Proof. We only prove the case of (i), the proof of (ii) is similar. We assume that V· ∈ V1,
the generator g satisfies (H1) and (H2), and (H3L)(i) holds true for L· and ξ. If RBSDE
(ξ, g + dV,L) admits an L1 solution (Y·, Z·,K·), then from Lemma 2.6 we know that
g(·, Y·, Z·) ∈ H1 and g(·, Y·, 0) ∈ H1. Thus, (H3L)(ii) is satisfied with

(C·, H·) := (−
∫ ·

0

g(s, Ys, Zs)ds− V· −K·, Z·)

and X· := Y·. The necessity is proved.
We further assume that (H3L)(ii) holds. The uniqueness of the L1 solution of RBSDE

(ξ, g + dV,L) follows from Proposition 3.5. In the sequel, we prove (5.1). For each
n ≥ 1, let (Y n· , Z

n
· ) be the unique L1 solution of BSDE (ξ, ḡn + dV ) with ḡn(t, y, z) :=

g(t, y, z) + n(y−Lt)− and (5.2). We first show that there exists a process X̄· ∈ ∩β∈(0,1)Sβ
of the class (D) such that for each n ≥ 1,

Y 1
· ≤ Y n· ≤ Y n+1

· ≤ X̄·. (5.5)

In fact, it follows from (H3L)(ii) that there exists two processes (C·, H·) ∈ V1 ×Mβ for
each β ∈ (0, 1) such that

Xt = XT −
∫ T

t

dCs −
∫ T

t

Hs · dBs, t ∈ [0, T ] (5.6)

belongs to the class (D), g−(·, X·, 0) ∈ H1 and Lt ≤ Xt for each t ∈ [0, T ]. And, by (H2)(ii)
together with Hölder’s inequality we know that dP× dt− a.e.,

g−(·, X·, H·) ≤ g−(·, X·, 0) + γ(f· + |X·|+H·)
α ∈ H1.

Then, the equation (5.6) can be rewritten in the form

Xt = XT +

∫ T

t

g(s,Xs, Hs)ds +

∫ T

t

dVs −
∫ T

t

(
g+(s,Xs, Hs)ds+ dC0,+

s + dV 0,+
s

)
+

∫ T

t

(
g−(s,Xs, Hs)ds+ dC0,−

s + dV 0,−
s

)
−
∫ T

t

Hs · dBs, t ∈ [0, T ],

where V·−V0 = V 0,+
· −V 0,−

· and C·−C0 = C0,+
· −C0,−

· with V 0,+
· , V 0,−

· , C0,+
· , C0,−

· ∈ V+,1.
On the other hand, in view of (H1) and (H2), by Theorem 4.2 we know that there exists a
unique L1 solution (X̄·, Z̄·) of the BSDE

X̄t = XT ∨ ξ +

∫ T

t

g(s, X̄s, Z̄s)ds +

∫ T

t

dVs

+

∫ T

t

(
g−(s,Xs, Hs)ds+ dC0,−

s + dV 0,−
s

)
−
∫ T

t

Z̄s · dBs, t ∈ [0, T ].
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And, it follows from Proposition 3.5 and Remark 3.8 that Lt ≤ Xt ≤ X̄t for each t ∈ [0, T ].
Therefore, for each n ≥ 1,

X̄t = XT ∨ ξ +

∫ T

t

g(s, X̄s, Z̄s)ds +

∫ T

t

dVs + n

∫ T

t

(
X̄s − Ls

)−
ds

+

∫ T

t

(
g−(s,Xs, Hs)ds+ dC0,−

s + dV 0,−
s

)
−
∫ T

t

Z̄s · dBs, t ∈ [0, T ].

Thus, by Corollary 3.7 we know that (5.5) holds true.
In the sequel, in view of assumptions (H1) and (H2), it follows from Lemma 2.6 that

g(·, Y 1
· , 0) ∈ H1 and g(·, X̄·, 0) ∈ H1, then from Lemma 2.5 together with (5.5) that (3.2)

holds true for each n ≥ 1, with

f̄· := |g(·, Y 1
· , 0)|+ |g(·, X̄·, 0)|+ (γ +A)(|Y 1

· |+ |X̄·|) + γ(1 + f·) +A ∈ H1,

λ̄ := γ and α. Thus, we have verified that all conditions in Proposition 3.2 (i) are satisfied,
and then it follows that there exists an L1 solution (Y·, Z·,K·) of RBSDE (ξ, g + dV,L)

such that for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ ) = 0 (5.7)

and there exists a subsequence {Knj
· } of {Kn

· } such that

lim
j→∞

sup
t∈[0,T ]

|Knj
t −Kt| = 0.

Finally, in view of (5.7), in order to prove (5.1) we need only to show that for each
β ∈ (0, 1)

lim
n→∞

∥∥∥∥∫ ·
0

g(s, Y ns , Z
n
s )ds−

∫ ·
0

g(s, Ys, Zs)ds

∥∥∥∥
Sβ

= 0. (5.8)

The proof is similar to that of Theorem 5.8 in Fan [16], but for readers’ convenience we
list it as follows. In fact, it follows from (H2) (i) that dP× dt− a.e., for each n ≥ 1,

|g(·, Y n· , Zn· )− g(·, Y·, Z·)|
≤ |g(·, Y n· , Zn· )− g(·, Y n· , Z·)|+ |g(·, Y n· , Z·)− g(·, Y·, Z·)|
≤ |g(·, Y n· , Z·)− g(·, Y·, Z·)|+ φ(|Zn· − Z·|).

Thus, making use of the following basic inequality (see Fan and Jiang [20] for details)

φ(x) ≤ (m+ 2A)x+ φ

(
2A

m+ 2A

)
, ∀ x ≥ 0, ∀m ≥ 1

together with Hölder’s inequality, we get that for each n,m ≥ 1 and β ∈ (0, 1),∥∥∥∥∫ ·
0

g(s, Y ns , Z
n
s )ds−

∫ ·
0

g(s, Ys, Zs)ds

∥∥∥∥
Sβ

≤ E

(∫ T

0

|g(t, Y nt , Z
n
t )− g(t, Yt, Zt)|dt

)β
≤ E

(∫ T

0

|g(t, Y nt , Zt)− g(t, Yt, Zt)|dt

)β+ (m+ 2A)βT
β
2 ‖Zn· − Z·‖Mβ

+φβ(
2A

m+ 2A
)T β .

(5.9)
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Furthermore, in view of assumptions (H1) and (H2) together with (5.5), it follows from
Lemma 2.5 and Lemma 2.6 that for each n ≥ 1,

|g(·, Y n· , Z·)− g(·, Y·, Z·)| ≤ |g(·, Y n· , Z·)|+ |g(·, Y·, Z·)| ≤ f̄· + γ|Z·|α + |g(·, Y·, Z·)| ∈ H1.

Then, Lebesgue’s dominated convergence theorem yields that for each β ∈ (0, 1),

lim
n→∞

E

(∫ T

0

|g(t, Y nt , Zt)− g(t, Yt, Zt)|dt

)β = 0. (5.10)

Thus, letting first n→∞, and then m→∞ in (5.9), in view of (5.10), (5.7) and the fact
that φ(·) is continuous and φ(0) = 0, we get (5.8). The proof of Theorem 5.1 is then
completed.

Corollary 5.2. Assume that ξ1, ξ2 ∈ L1(FT ) with ξ1 ≤ ξ2, V 1
· , V

2
· ∈ V1 with dV 1 ≤ dV 2,

and both generators g1 and g2 satisfy (H1) and (H2) with

dP× dt− a.e., ∀ (y, z) ∈ R×Rd, g1(t, y, z) ≤ g2(t, y, z).

We have

(i) For i = 1, 2, let (H3L) hold for ξi, Li· and Xi
· associated with gi, and (Y i· , Z

i
· ,K

i
· ) be

the unique L1 solution of RBSDE (ξi, gi + dV i, Li) (recall Theorem 5.1). If L1
· = L2

· ,
then dK1 ≥ dK2.

(ii) For i = 1, 2, let (H3U) hold for ξi, U i· and Xi
· associated with gi, and (Y i· , Z

i
· , A

i
·) be

the unique L1 solution of R̄BSDE (ξi, gi + dV i, U i) (recall Theorem 5.1). If U1
· = U2

· ,
then dA1 ≤ dA2.

Proof. We only prove (i). The proof is classical, and we list it for readers’ convenience.
For n ≥ 1 and i = 1, 2, by Theorem 4.2 we let (Y i,n· , Zi,n· ) be the unique L1 solution of the
following penalization BSDE:

Y i,nt = ξi +

∫ T

t

gi(s, Y i,ns , Zi,ns )ds+

∫ T

t

dV is +

∫ T

t

dKi,n
s −

∫ T

t

Zi,ns · dBs, t ∈ [0, T ]

with

Ki,n
t := n

∫ t

0

(
Y i,ns − Lis

)−
ds, t ∈ [0, T ].

In view of the assumptions of Corollary 5.2, it follows from Corollary 3.7 that for each
n ≥ 1, Y 1,n

· ≤ Y 2,n
· , and then

K1,n
t2 −K

1,n
t1 = n

∫ t2

t1

(
Y 1,n
s − L1

s

)−
ds ≥ n

∫ t2

t1

(
Y 2,n
s − L2

s

)−
ds = K2,n

t2 −K
2,n
t1

for every n ≥ 1 and 0 ≤ t1 ≤ t2 ≤ T . Since for each β ∈ (0, 1), both ‖K1,n
· −

K1
· ‖Sβ and ‖K2,n

· − K2
· ‖Sβ converge to zero as n → ∞ by Theorem 5.1, it follows

that K1
t2 −K

1
t1 ≥ K

2
t2 −K

2
t1 for every 0 ≤ t1 ≤ t2 ≤ T , which proves the desired result.

Theorem 5.3. Let V· ∈ V1, g1 satisfy assumptions (H1) and (H2’), g2 satisfy assumption
(AA) and the generator g := g1 + g2.

(i) Assume that (H3L)(i) holds true for L· and ξ. Then RBSDE (ξ, g + dV,L) admits an
L1 solution iff (H3L)(ii) is satisfied for X·, L· and g (or g1). Furthermore, if (H3L)(ii)
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holds also true for X·, L· and g (or g1), then RBSDE (ξ, g + dV,L) admits a minimal
L1 solution (resp. an L1 solution) (Y·, Z·,K·) such that for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ ) = 0 (5.11)

and there exists a subsequence {Knj
· } of {Kn

· } such that

lim
j→∞

sup
t∈[0,T ]

|Knj
t −Kt| = 0,

where for each n ≥ 1, (Y n· , Z
n
· ) is the minimal (resp. maximal) L1 solution of BSDE

(ξ, ḡn + dV ) with ḡn(t, y, z) := g(t, y, z) +n(y−Lt)−, i.e., (3.9), (recall Corollary 4.5),
and

Kn
t := n

∫ t

0

(Y ns − Ls)−ds, t ∈ [0, T ]. (5.12)

(ii) Assume that (H3U)(i) holds true for U· and ξ. Then R̄BSDE (ξ, g + dV,U) admits
an L1 solution iff (H3U)(ii) is satisfied for X·, U· and g (or g1). Furthermore, if
(H3U)(ii) holds also true for X·, U· and g (or g1), then R̄BSDE (ξ, g+ dV,L) admits a
maximal L1 solution (resp. an L1 solution) (Y·, Z·, A·) such that for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ ) = 0 (5.13)

and there exists a subsequence {Anj· } of {An· } such that

lim
j→∞

sup
t∈[0,T ]

|Anjt −At| = 0,

where for each n ≥ 1, (Y n· , Z
n
· ) is the maximal (resp. minimal) L1 solution of BSDE

(ξ, g
n

+dV ) with g
n
(t, y, z) := g(t, y, z)−n(y−Ut)+, i.e., (3.10), (recall Corollary 4.5),

and

Ant := n

∫ t

0

(Y ns − Us)+ds, t ∈ [0, T ]. (5.14)

Proof. We only prove (i), and (ii) can be proved in the same way. In view of Corollary 4.5,
Corollary 4.6, Remark 4.7, Lemma 2.5, Lemma 2.6 and Proposition 3.2, by a similar
argument to that in the proof of Theorem 5.1 we can prove that all conclusions in (i)
of Theorem 5.3 hold true except for the minimal property of the L1 solution (Y·, Z·,K·)

of RBSDE (ξ, g + dV,L) when (Y n· , Z
n
· ) is the minimal L1 solution of penalized BSDE

(ξ, ḡn + dV ) for each n ≥ 1. Now, we will show this property.
Indeed, for any L1 solution (Y ′· , Z

′
· ,K

′
·) of RBSDE (ξ, g+ dV,L), it is not hard to check

that (Y ′· , Z
′
·) is an L1 solution of BSDE (ξ, ḡn + dV̄ ) with V̄· := V· + K ′· for each n ≥ 1.

Thus, in view of the assumption that (Y n· , Z
n
· ) is the minimal L1 solution of penalized

BSDE (ξ, ḡn + dV ) for each n ≥ 1, Corollary 4.6 yields that for each n ≥ 1,

Y nt ≤ Y ′t , t ∈ [0, T ].

Furthermore, since lim
n→∞

‖Y n· − Y·‖Sβ = 0 for each β ∈ (0, 1), we know that

Yt ≤ Y ′t , t ∈ [0, T ],

which is the desired result.

Theorem 5.4. Let V· ∈ V1, g1 satisfy assumptions (H1) and (H2’), g2 satisfy assumption
(AA) and the generator g := g1 + g2.
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(i) Assume that (H3L) holds true for L·, ξ, X· and g (or g1). Then RBSDE (ξ, g + dV,L)

admits a maximal (resp. minimal) L1 solution (Y·, Z·,K·) such that for each β ∈
(0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖Kn
· −K·‖S1) = 0,

where, for each n ≥ 1, (Y n· , Z
n
· ,K

n
· ) is the unique L1 solution of RBSDE (ξ, gn +

dV,L) with a generator gn satisfying (H1), (H2) and (H3L) (recall Theorem 5.1(i)).

(ii) Assume that (H3U) holds true for U·, ξ, X· and g (or g1). Then R̄BSDE (ξ, g + dV,U)

admits a maximal (resp. minimal) L1 solution (Y·, Z·, A·) such that for each β ∈
(0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖An· −A·‖S1) = 0,

where, for each n ≥ 1, (Y n· , Z
n
· , A

n
· ) is the unique L1 solution of R̄BSDE (ξ, gn +

dV,U) with a generator gn satisfying (H1), (H2) and (H3U) (recall Theorem 5.1(ii)).

Proof. We only prove (i) and consider the case of the maximal L1 solution. Now, we
assume that V· ∈ V1, g1 satisfies (H1) and (H2’) with ρ(·), ψ·(r), f·, µ, λ and α, g2 satisfies
(AA) with f̃·, µ̃, λ̃ and α̃, the generator g := g1 + g2, and (H3L) holds true for L·, ξ, X· and
g (or g1). In view of assumptions of g, it is not very hard to prove that for each n ≥ 1 and
(y, z) ∈ R×Rd, the following function

gn(ω, t, y, z) := g1
n(ω, t, y, z) + g2

n(ω, t, y, z)

with

g1
n(ω, t, y, z) := sup

u∈Rd

[
g1(ω, t, y, u)− (n+ 2λ)|u− z|α

]
(5.15)

and

g2
n(ω, t, y, z) := sup

(u,v)∈R×Rd

[
g2(ω, t, u, v)− (n+ 2µ̃)|u− y| − (n+ 2λ̃)|v − z|α̃

]
(5.16)

is well defined and (Ft)-progressively measurable, dP × dt − a.e., gn decreases in n,
is continuous in (y, z), and converges locally uniformly in (y, z) to the generator g as
n→∞, gn satisfies (H1) and (H2), and dP× dt− a.e., for each n ≥ 1 and (y, z) ∈ R×Rd,

|g1
n(·, y, z)− g1(·, y, 0)| ≤ f· + µ|y|+ λ|z|α, (5.17)

and

|g2
n(·, y, z)| ≤ f̃· + µ̃|y|+ λ̃|z|α̃. (5.18)

Then, in view of (5.17) and (5.18), we know that dP×dt−a.e., ∀ n ≥ 1 and (y, z) ∈ R×Rd,

g−n (·, y, z) ≤ (g1
n(·, y, z))− + (g2

n(·, y, z))−

≤ (g1(·, y, 0))− + f· + µ|y|+ λ|z|α + f̃· + µ̃|y|+ λ̃|z|α̃.
(5.19)

Hence, g−n (·, X·, 0) ∈ H1 due to (g1(·, X·, 0))− ∈ H1, and then (H3L) holds true for L·, ξ,
X· and gn. It then follows from Theorem 5.1(i) that there exists a unique L1 solution
(Y n· , Z

n
· ,K

n
· ) of RBSDE (ξ, gn + dV,L) for each n ≥ 1.

In the sequel, let

g(·, y, z) := g1(·, y, 0)− (f· + f̃·)− (µ+ µ̃)|y| − λ|z|α − λ̃|z|α̃ (5.20)

and

ḡ(·, y, z) := g1(·, y, 0) + (f· + f̃·) + (µ+ µ̃)|y|+ λ|z|α + λ̃|z|α̃. (5.21)
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Then by (5.17) and (5.18), g ≤ gn ≤ ḡ for each n ≥ 1, and both g and ḡ satisfy (H1) and
(H2) with

g−(·, X·, 0) ≤ (g1(·, X·, 0))− + (f· + f̃·) + (µ+ µ̃)|X·| ∈ H1,

ḡ−(·, X·, 0) ≤ (g1(·, X·, 0))− ∈ H1.

Thus, (H3L) holds also true for L·, ξ, X·, g and ḡ. It then follows from Theorem 5.1 that
RBSDE (ξ, g + dV,L) and RBSDE (ξ, ḡ + dV,L) admit respectively a unique L1 solution
(Y ·, Z ·,K·) and (Ȳ·, Z̄·, K̄·), and by Corollary 3.7 and Corollary 5.2 we know that for each
n ≥ 1,

Y · ≤ Y n+1
· ≤ Y n· ≤ Ȳ· and dK̄ ≤ dKn ≤ dKn+1 ≤ dK. (5.22)

Furthermore, it follows from Lemma 2.6 that g(·, Y ·, 0) ∈ H1 and ḡ(·, Ȳ·, 0) ∈ H1, and
then from (5.20) and (5.21) that g1(·, Y ·, 0) ∈ H1 and g1(·, Ȳ·, 0) ∈ H1. And, in view of
(5.22) together with assumptions (H1) and (H2’) of g1, it follows from Lemma 2.5 that
for each n ≥ 1,

|g1(·, Y n· , Zn· )| ≤ |g1(·, Y ·, 0)|+ |g1(·, Ȳ·, 0)|+ (µ+A)(|Y ·|+ |Ȳ·|) + f· +A+ λ|Zn· |α. (5.23)

Then, by (5.23), (5.18) and (5.22) we can conclude that (3.18) holds true with

f̄· := |g1(·, Y ·, 0)|+ |g1(·, Ȳ·, 0)|+ (µ+A+ µ̃)(|Y ·|+ |Ȳ·|) + f· + f̃· +A+ λ+ λ̃ ∈ H1

and λ̄ := λ + λ̃. Thus, in view of Remark 3.4, we have checked all the conditions in
Proposition 3.3 with U· = +∞ and An· ≡ 0, and it follows that RBSDE (ξ, g+dV,L) admits
an L1 solution (Y·, Z·,K·) such that for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖Kn
· −K·‖S1) = 0. (5.24)

Finally, we show that (Y·, Z·,K·) is just the maximal L1 solution of RBSDE (ξ, g+dV,L).
In fact, if (Y ′· , Z

′
· ,K

′
·) is also an L1 solution of RBSDE (ξ, g + dV,L), then noticing that

gn ≥ g and gn satisfies (H1) and (H2) for each n ≥ 1, it follows from Corollary 3.7 that
Y nt ≥ Y ′t for each t ∈ [0, T ] and n ≥ 1. Thus, by (5.24) we know that for each t ∈ [0, T ],

Yt ≥ Y ′t .

Theorem 5.4 is then proved.

By Corollary 3.7, Corollary 5.2 and the proof of Theorem 5.4, it is not hard to verify
the following comparison result for the minimal (resp. maximal) L1 solutions of Reflected
BSDEs.

Corollary 5.5. Assume that ξ1, ξ2 ∈ L1(FT ) with ξ1 ≤ ξ2, V 1
· , V

2
· ∈ V1 with dV 1 ≤ dV 2,

g1,1 and g2,1 satisfy (H1) and (H2’), g1,2 and g2,2 satisfy (AA), g1 := g1,1 + g1,2 and
g2 := g2,1 + g2,2 with

dP× dt− a.e., ∀ (y, z) ∈ R×Rd, g1,1(t, y, z) ≤ g2,1(t, y, z) and g1,2(t, y, z) ≤ g2,2(t, y, z).

We have

(i) For i = 1, 2, let (H3L) hold for ξi, Li· and Xi
· associated with gi (or gi,1), and

(Y i· , Z
i
· ,K

i
· ) be the minimal (resp. maximal) L1 solution of RBSDE (ξi, gi + dV i, Li)

(recall Theorem 5.4). If L1
· ≤ L2

· , then Y 1
t ≤ Y 2

t for each t ∈ [0, T ], and if L1
· = L2

· ,
then dK1 ≥ dK2.
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(ii) For i = 1, 2, let (H3U) hold for ξi, U i· and Xi
· associated with gi (or gi,1), and

(Y i· , Z
i
· , A

i
·) be the minimal (resp. maximal) L1 solution of R̄BSDE (ξi, gi + dV i, U i)

(recall Theorem 5.4). If U1
· ≤ U2

· , then Y 1
t ≤ Y 2

t for each t ∈ [0, T ], and if U1
· = U2

· ,
then dA1 ≤ dA2.

The following corollary follows immediately from Theorem 5.4.

Corollary 5.6. Let V· ∈ V1, (H3)(i) hold true for L·, U· and ξ, and the generator g satisfy
(AA).

(i) If L+
· ∈ S1, then RBSDE (ξ, g+ dV,L) admits a minimal (resp. maximal) L1 solution.

(ii) If U−· ∈ S1, then R̄BSDE (ξ, g+dV,U) admits a minimal (resp. maximal) L1 solution.

6 Existence, uniqueness and approximation for L1 solutions of
DRBSDEs

In this section, we will establish some existence, uniqueness and approximation
results on L1 solutions of RBSDEs with two continuous barriers under general assump-
tions.

Theorem 6.1. Assume that V· ∈ V1, the generator g satisfies assumptions (H1) and (H2),
and assumption (H3)(i) holds true for L·, U· and ξ. Then, DRBSDE (ξ, g+ dV,L, U) admits
an L1 solution iff (H3)(ii) is satisfied. And, if (H3)(ii) holds also true, then DRBSDE
(ξ, g + dV,L, U) admits a unique L1 solution (Y·, Z·,K·, A·). Moreover,

(i) Let (Y n· , Z
n
· , A

n
· ) be the unique L1 solution of R̄BSDE (ξ, ḡn+dV,U) with ḡn(t, y, z) :=

g(t, y, z) + n(y − Lt)− for each n ≥ 1, i.e.,

Y nt = ξ +

∫ T

t

ḡn(s, Y ns , Z
n
s )ds+

∫ T

t

dVs −
∫ T

t

dAns −
∫ T

t

Zns · dBs, t ∈ [0, T ],

Y nt ≤ Ut, t ∈ [0, T ] and

∫ T

0

(Ut − Y nt )dAnt = 0,

Kn
t := n

∫ t

0

(Y ns − Ls)− ds, t ∈ [0, T ]

(6.1)
(Recall Theorem 5.1(ii)). Then, for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖Kn
· −K·‖Sβ + ‖An· −A·‖S1) = 0. (6.2)

(ii) Let (Ȳ n· , Z̄
n
· , K̄

n
· ) be the unique L1 solution ofRBSDE (ξ, g

n
+dV,L) with g

n
(t, y, z) :=

g(t, y, z)− n(y − Ut)+ for each n ≥ 1, i.e.,

Ȳ nt = ξ +

∫ T

t

g
n
(s, Ȳ ns , Z̄

n
s )ds+

∫ T

t

dVs +

∫ T

t

dK̄n
s −

∫ T

t

Z̄ns · dBs, t ∈ [0, T ],

Lt ≤ Ȳ nt , t ∈ [0, T ] and

∫ T

0

(Ȳ nt − Lt)dK̄n
t = 0,

Ānt := n

∫ t

0

(Ȳ ns − Us)+ ds, t ∈ [0, T ]

(6.3)
(Recall Theorem 5.1(i)). Then, for each β ∈ (0, 1),

lim
n→∞

(
‖Ȳ n· − Y·‖Sβ + ‖Z̄n· − Z·‖Mβ + ‖K̄n

· −K·‖S1 + ‖Ān· −A·‖Sβ
)

= 0. (6.4)
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(iii) Let (Y n· , Z
n
· ) be the unique L1 solution of BSDE (ξ, gn + dV ) with gn(t, y, z) :=

g(t, y, z) + n(y − Lt)− − n(y − Ut)+ for each n ≥ 1, i.e.,
Y nt = ξ +

∫ T

t

gn(s, Y ns , Z
n
s )ds+

∫ T

t

dVs −
∫ T

t

Zns · dBs, t ∈ [0, T ],

Kn
t := n

∫ t

0

(Y ns − Ls)− ds and Ant := n

∫ t

0

(Y ns − Us)+ ds, t ∈ [0, T ]

(6.5)

(Recall Theorem 4.2). Then, for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖(Kn
· −An· )− (K· −A·)‖Sβ ) = 0. (6.6)

Proof. We assume that V· ∈ V1, the generator g satisfies (H1) and (H2), and (H3)(i) holds
true for L·, U· and ξ. If DRBSDE (ξ, g + dV,L, U) admits an L1 solution (Y·, Z·,K·, A·),
then from Lemma 2.6 we know that g(·, Y·, Z·) ∈ H1 and g(·, Y·, 0) ∈ H1. Thus, (H3)(ii) is
satisfied with

(C·, H·) := (−
∫ ·

0

g(s, Ys, Zs)ds− V· −K· +A·, Z·)

and X· := Y·. The necessity is proved.
We further assume that (H3)(ii) holds. The uniqueness of the L1 solution of DRBSDE

(ξ, g+ dV,L, U) follows from Proposition 3.5. In what follows, it follows from (H3)(ii) that
there exists two processes (C·, H·) ∈ V1 ×Mβ for each β ∈ (0, 1) such that

Xt = XT −
∫ T

t

dCs −
∫ T

t

Hs · dBs, t ∈ [0, T ] (6.7)

belongs to the class (D), g(·, X·, 0) ∈ H1 and Lt ≤ Xt ≤ Ut for each t ∈ [0, T ]. And, by
(H2)(ii) together with Hölder’s inequality we know that dP × dt − a.e., |g(·, X·, H·)| ≤
|g(·, X·, 0)|+ γ(f· + |X·|+H·)

α ∈ H1, and then

Ǩ· :=

∫ ·
0

g−(s,Xs, Hs)ds+

∫ ·
0

dC0,−
s +

∫ ·
0

dV 0,−
s ∈ V+,1

and

Ǎ· :=

∫ ·
0

g+(s,Xs, Hs)ds+

∫ ·
0

dC0,+
s +

∫ ·
0

dV 0,+
s ∈ V+,1,

where V·−V0 = V 0,+
· −V 0,−

· and C·−C0 = C0,+
· −C0,−

· with V 0,+
· , V 0,−

· , C0,+
· , C0,−

· ∈ V+,1.
Thus, the equation (6.7) can be rewritten in the form

Xt = XT +

∫ T

t

g(s,Xs, Hs)ds +

∫ T

t

dVs +

∫ T

t

dǨs −
∫ T

t

dǍs −
∫ T

t

Hs · dBs, t ∈ [0, T ].

Furthermore, in view of (H1) and (H2), by Theorem 4.2 we can let (X ·, Z·) be the
unique L1 solution of the following BSDE

Xt = XT ∧ ξ +

∫ T

t

g(s,Xs, Zs)ds +

∫ T

t

dVs −
∫ T

t

dǍs −
∫ T

t

Zs · dBs, t ∈ [0, T ]

and (X̄·, Z̄·) be the unique L1 solution of the BSDE

X̄t = XT ∨ ξ +

∫ T

t

g(s, X̄s, Z̄s)ds +

∫ T

t

dVs +

∫ T

t

dǨs −
∫ T

t

Z̄s · dBs, t ∈ [0, T ].
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It follows from Corollary 3.7 that X · ≤ X· ≤ X̄·. And, for each n ≥ 1, by Theorem 4.2
again we can let (Ẏ n· , Ż

n
· ) and (Ÿ n· , Z̈

n
· ) be respectively the unique L1 solution of the

following BSDEs:

Ẏ nt = XT ∧ ξ+

∫ T

t

g(s, Ẏ ns , Ż
n
s )ds +

∫ T

t

dVs +n

∫ T

t

(Ẏ ns −Ls)−ds−
∫ T

t

dǍs−
∫ T

t

Żns ·dBs

and

Ÿ nt = XT ∨ ξ+

∫ T

t

g(s, Ÿ ns , Z̈
n
s )ds +

∫ T

t

dVs+

∫ T

t

dǨs−n
∫ T

t

(Ÿ ns −Us)+ds−
∫ T

t

Z̈ns ·dBs

with

K̇n
t := n

∫ t

0

(Ẏ ns − Ls)−ds and Änt := n

∫ t

0

(Ÿ ns − Us)+ds, t ∈ [0, T ].

In view of L· ≤ X· ≤ U·, it follows from Corollary 3.7 that for each n ≥ 1,

X · ≤ Ẏ n· ≤ X· ≤ U· and L· ≤ X· ≤ Ÿ n· ≤ X̄·. (6.8)

Note that (H3L) holds true for L·, XT ∧ ξ and X·, and (H3U) holds true for U·, XT ∨ ξ and
X·. In view of (H1) and (H2), it follows from Theorem 5.1 together with Proposition 3.2
that for each β ∈ (0, 1),

sup
n≥1

(E[|K̇n
T |β ] + E[|ÄnT |β ]) < +∞, (6.9)

for a subsequence {nj} of {n},

lim
j→∞

K̇
nj
T = K̇T ∈ L1(FT ) and lim

j→∞
Ä
nj
T = ÄT ∈ L1(FT ), (6.10)

and for a process Ỹ· ∈ S and each (Ft)-stopping time τ valued in [0, T ],

sup
n≥1

(E[|K̇n
τ |2] + E[|Änτ |2]) ≤ E[|Ỹτ |2]. (6.11)

In the sequel, let (Y n· , Z
n
· , A

n
· ), (Ȳ n· , Z̄

n
· , K̄

n
· ) and (Y n· , Z

n
· ) be respectively defined in

(i), (ii) and (iii) of Theorem 6.1 for each n ≥ 1. Firstly, in view of (6.8), it follows from
Corollary 3.7 and Corollary 5.2 that for each n ≥ 1,

Y 1
· ≤ Y

n
· ≤ Y

n+1
· ≤ X̄·, dAn ≤ dAn+1 (6.12)

and
X · ≤ Ȳ n+1

· ≤ Ȳ n· ≤ Ȳ 1
· , dK̄n ≤ dK̄n+1. (6.13)

It then follows from Lemma 2.5 that for each n ≥ 1, in view of (H1) and (H2),

|g(·, Y n· , Z
n
· )| ≤ |g(·, Y 1

· , 0)|+|g(·, X̄·, 0)|+(γ+A)(|Y 1
· |+|X̄·|)+γ(1+f·)+A+γ|Zn· |α (6.14)

and

|g(·, Ȳ n· , Z̄n· )| ≤ |g(·, X ·, 0)|+|g(·, Ȳ 1
· , 0)|+(γ+A)(|X ·|+|Ȳ 1

· |)+γ(1+f·)+A+γ|Z̄n· |α (6.15)

with, by Lemma 2.6,

g(·, Y 1
· , 0) ∈ H1, g(·, X̄·, 0) ∈ H1, g(·, X ·, 0) ∈ H1 and g(·, Ȳ 1

· , 0) ∈ H1. (6.16)

And, in view of (6.8), by Proposition 3.5 with Remark 3.6 we deduce that for each n ≥ 1,

Ẏ n· ≤ Y
n
· and Ȳ n· ≤ Ÿ n· ,
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which means that

Kn
· = n

∫ ·
0

(Y ns − Ls)−ds ≤ n
∫ ·

0

(Ẏ ns − Ls)−ds = K̇n
· (6.17)

and

Ān· = n

∫ ·
0

(Ȳ ns − Us)+ds ≤ n
∫ ·

0

(Ÿ ns − Us)+ds = Än· . (6.18)

Thus, in view of (6.12)-(6.18) together with (6.9)-(6.11), all conditions in Proposition 3.1
are satisfied, and it follows that there exists an L1 solution (Y·, Z·,K·, A·), indeed a
unique L1 solution, of DRBSDE (ξ, g + dV,L, U) such that, for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖An· −A·‖S1

+‖Ȳ n· − Y·‖Sβ + ‖Z̄n· − Z·‖Mβ + ‖K̄n
· −K·‖S1

)
= 0,

and there exists a subsequence {Knj
· } (resp. {Ānj· }) of {Kn

· } (resp. {Ān· }) such that

lim
j→∞

sup
t∈[0,T ]

(
|Knj

t −Kt|+ |Ā
nj
t −At|

)
= 0.

Furthermore, in the same way as in the proof of Theorem 5.1 we can prove that for each
β ∈ (0, 1),

lim
n→∞

(∥∥∥∥∫ ·
0

g(s, Y ns , Z
n
s )ds−

∫ ·
0

g(s, Ys, Zs)ds

∥∥∥∥
Sβ

+

∥∥∥∥∫ ·
0

g(s, Ȳ ns , Z̄
n
s )ds−

∫ ·
0

g(s, Ys, Zs)ds

∥∥∥∥
Sβ

)
= 0.

(6.19)

Thus, (6.2) and (6.4) follow immediately.

Finally, in view of the fact that Y n· ≤ U· and L· ≤ Ȳ n· for each n ≥ 1, it follows from
Corollary 3.7 that for each n ≥ 1,

Y 1
· ≤ Y

n
· ≤ Y n· ≤ Ȳ n· ≤ Ȳ 1

· ,

which means that, in view of (6.17) and (6.18),

Kn
· = n

∫ ·
0

(Y ns − Ls)−ds ≤ n
∫ ·

0

(Y ns − Ls)−ds = Kn
· ≤ K̇n

· (6.20)

and

An· = n

∫ ·
0

(Y ns − Us)+ds ≤ n
∫ ·

0

(Ȳ ns − Us)+ds = Ān· ≤ Än· . (6.21)

Thus, by (6.2) and (6.4) we know that for each β ∈ (0, 1),

lim
n→∞

‖Y n· − Y·‖Sβ = 0. (6.22)

Now, we show the convergence of the sequence {Zn· }. Indeed, for each n ≥ 1, observe
that

(Ȳ·, Z̄·, V̄·) := (Y n· − Y·, Zn· − Z·,∫ ·
0

(g(s, Y ns , Z
n
s )− g(s, Ys, Zs)) ds+ (Kn

· −K·)− (An· −A·))
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satisfies equation (2.1). It follows from (i) of Lemma 2.4 with t = 0 and τ = T that there
exists a constant C ′ > 0 such that for each n ≥ 1 and β ∈ (0, 1),

‖Zn· − Z·‖Mβ ≤ C ′E

 sup
t∈[0,T ]

|Y nt − Yt|β + sup
t∈[0,T ]

(∫ T

t

(Y ns − Ys) (dKn
s − dKs)

)+

β
2


+C ′E

 sup
t∈[0,T ]

(∫ T

t

(Y ns − Ys) (dAs − dAns )

)+

β
2


+C ′E

(∫ T

0

|Y ns − Ys| |g(s, Y ns , Z
n
s )− g(s, Ys, Zs)|ds

) β
2

 .
It then follows from the fact of L· ≤ Y· ≤ U· and the definitions of Kn

· and An· as well as
Hölder’s inequality that

‖Zn· − Z·‖Mβ

≤ C ′‖Y n· − Y·‖Sβ + C ′‖Y n· − Y·‖
1
2

Sβ ·
((
E[|KT |β ]

) 1
2 +

(
E[|AT |β ]

) 1
2

)
+C ′‖Y n· − Y·‖

1
2

Sβ ·

E
(∫ T

0

(|g(t, Y nt , Z
n
t )|+ |g(t, Yt, Zt)|) dt

)β 1
2

.

(6.23)

Thus, in view of (H1) and (H2) of g, it follows from (6.22), (6.23), (6.20), (6.21) and (6.9)
together with Lemma 2.7 that for each β ∈ (0, 1),

lim
n→∞

‖Zn· − Z·‖Mβ = 0. (6.24)

Furthermore, by (6.22) and (6.24), a similar argument to (6.19) yields that for each
β ∈ (0, 1),

lim
n→∞

∥∥∥∥∫ ·
0

g(s, Y ns , Z
n
s )ds−

∫ ·
0

g(s, Ys, Zs)ds

∥∥∥∥
Sβ

= 0. (6.25)

Finally, (6.6) follows from (6.22), (6.24) and (6.25). The proof of Theorem 6.1 is then
complete.

By virtue of (i) of Theorem 6.1, Corollary 3.7 and (ii) of Corollary 5.2, a similar
argument to that in Corollary 5.2 yields the following corollary.

Corollary 6.2. Assume that ξ1, ξ2 ∈ L1(FT ) with ξ1 ≤ ξ2, V 1
· , V

2
· ∈ V1 with dV 1 ≤ dV 2,

and both generators g1 and g2 satisfy (H1) and (H2) with

dP× dt− a.e., ∀ (y, z) ∈ R×Rd, g1(t, y, z) ≤ g2(t, y, z).

For i = 1, 2, let (H3) hold for ξi, Li· , U
i
· and Xi

· associated with gi, and (Y i· , Z
i
· ,K

i
· , A

i
·) be

the unique L1 solution of DRBSDE (ξi, gi + dV i, Li, U i) (recall Theorem 6.1). If L1
· = L2

·
and U1

· = U2
· , then

dK1 ≥ dK2 and dA1 ≤ dA2.

Theorem 6.3. Let V· ∈ V1, g1 satisfy assumptions (H1) and (H2’), g2 satisfy assumption
(AA), the generator g := g1 + g2, and assumption (H3)(i) hold true for L·, U· and ξ. Then,
DRBSDE (ξ, g + dV,L, U) admits an L1 solution iff (H3)(ii) is satisfied for X·, L·, U· and g
(or g1). Moreover, we assume that (H3)(ii) holds also true for X·, L·, U· and g (or g1).
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(i) For each n ≥ 1, let (Y n· , Z
n
· , A

n
· ) be the minimal (resp. maximal) L1 solution of

R̄BSDE (ξ, ḡn + dV,U) with ḡn(t, y, z) := g(t, y, z) + n(y − Lt)− and Kn
· , i.e., (6.1),

(recall Theorem 5.4(ii)). Then, DRBSDE (ξ, g + dV,L, U) admits a minimal L1

solution (resp. an L1 solution) (Y ·, Z·,K·, A·) such that for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y ·‖Sβ + ‖Zn· − Z ·‖Mβ + ‖An· −A·‖S1) = 0,

and there exists a subsequence {Knj
· } of {Kn

· } such that

lim
j→∞

sup
t∈[0,T ]

|Knj
t −Kt| = 0.

(ii) For each n ≥ 1, let (Ȳ n· , Z̄
n
· , K̄

n
· ) be the maximal (resp. minimal) L1 solution of

RBSDE (ξ, g
n

+ dV,L) with g
n
(t, y, z) := g(t, y, z) − n(y − Ut)+ and Ān· , i.e., (6.3),

(recall Theorem 5.4(i)). Then, DRBSDE (ξ, g+dV,L, U) admits a maximal L1 solution
(resp. an L1 solution) (Ȳ·, Z̄·, K̄·, Ā·) such that for each β ∈ (0, 1),

lim
n→∞

(
‖Ȳ n· − Ȳ·‖Sβ + ‖Z̄n· − Z̄·‖Mβ + ‖K̄n

· − K̄·‖S1

)
= 0,

and there exists a subsequence {Ānj· } of {Ān· } such that

lim
j→∞

sup
t∈[0,T ]

|Ānjt − Āt| = 0.

Proof. We only prove (i), and (ii) can be proved in the same way. In view of Theorem 5.4,
Corollary 5.5, Lemma 2.5, Lemma 2.6 and Proposition 3.1, by a similar argument to
that in the proof of Theorem 6.1 we can prove that all conclusions in (i) of Theorem 6.3
hold true except for the minimal property of the L1 solution (Y ·, Z·,K·, A·) of DRBSDE
(ξ, g + dV,L, U) when (Y n· , Z

n
· , A

n
· ) is the minimal L1 solution of R̄BSDE (ξ, ḡn + dV,U)

for each n ≥ 1. Now, we will show this property.
Indeed, for any L1 solution (Y·, Z·,K·, A·) of DRBSDE (ξ, g + dV,L, U), it is not hard

to check that (Y·, Z·, A·) is an L1 solution of R̄BSDE (ξ, ḡn + dV̄ , U) with V̄· := V· +K· for
each n ≥ 1. Thus, in view of the assumption that (Y n· , Z

n
· , A

n
· ) is the minimal L1 solution

of R̄BSDE (ξ, ḡn + dV,U) for each n ≥ 1, Corollary 5.5 yields that for each n ≥ 1,

Y nt ≤ Yt, t ∈ [0, T ].

Furthermore, since lim
n→∞

‖Y n· − Y ·‖Sβ = 0 for each β ∈ (0, 1), we know that

Y t ≤ Yt, t ∈ [0, T ],

which is the desired result.

In view of Theorem 6.1, Corollary 6.2 and Proposition 3.3, a similar argument to that
in Theorem 5.4 yields the following convergence result, whose proof is omitted.

Theorem 6.4. Let V· ∈ V1, g1 satisfy assumptions (H1) and (H2’), g2 satisfy assumption
(AA), the generator g := g1 + g2, and (H3) holds true for L·, U·, ξ, X· and g (or g1). Then
DRBSDE (ξ, g + dV,L, U) admits a minimal (resp. maximal) L1 solution (Y·, Z·,K·, A·)

such that for each β ∈ (0, 1),

lim
n→∞

(‖Y n· − Y·‖Sβ + ‖Zn· − Z·‖Mβ + ‖Kn
· −K·‖S1 + ‖An· −A·‖S1) = 0,

where for each n ≥ 1, (Y n· , Z
n
· ,K

n
· , A

n
· ) is the unique L1 solution of DRBSDE (ξ, gn +

dV,L, U) with a generator gn satisfying (H1), (H2) and (H3) (recall Theorem 6.1).
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By Corollary 3.7, Corollary 6.2 and the proof of Theorem 6.4, it is not hard to verify the
following comparison result for the minimal (resp. maximal) L1 solutions of DRBSDEs.

Corollary 6.5. Assume that ξ1, ξ2 ∈ L1(FT ) with ξ1 ≤ ξ2, V 1
· , V

2
· ∈ V1 with dV 1 ≤ dV 2,

g1,1 and g2,1 satisfy (H1) and (H2’), g1,2 and g2,2 satisfy (AA), g1 := g1,1 + g1,2 and
g2 := g2,1 + g2,2 with

dP× dt− a.e., ∀ (y, z) ∈ R×Rd, g1,1(t, y, z) ≤ g2,1(t, y, z) and g1,2(t, y, z) ≤ g2,2(t, y, z).

For i = 1, 2, let (H3) hold for Li· , U
i
· , ξ

i and Xi
· associated with gi (or gi,1), and

(Y i· , Z
i
· ,K

i
· , A

i
·) be the minimal (resp. maximal) L1 solution of DRBSDE (ξi, gi+dV i, Li, U i)

(recall Theorem 6.4). If L1
· ≤ L2

· and U1
· ≤ U2

· , then Y 1
t ≤ Y 2

t for each t ∈ [0, T ], and if
L1
· = L2

· and U1
· = U2

· , then

dK1 ≥ dK2 and dA1 ≤ dA2.

7 Examples and remarks

We first introduce several examples which the results of this paper can be applied
to. Note that to the best of our knowledge, all conclusions of these examples can not be
obtained by any existing results.

Example 7.1. Let the generator g(ω, t, y, z) = |y| +
√
|z|. Clearly, this g satisfies the

uniformly Lipschitz condition in y and the α-Hölder continuity condition in z, and then,
in view of Remark 2.2, both assumptions (H1) and (H2) hold true for this g. Then, we
have

1) It follows from Theorem 4.2 that for each ξ ∈ L1(FT ) and V· ∈ V1, BSDE (ξ, g + dV )

admits a unique L1 solution.

2) It follows from Theorem 5.1 that if (H3L)(i) (resp. (H3U)(i)) is satisfied, L+
· ∈ S1

(resp. U−· ∈ S1) and V· ∈ V1, then RBSDE (ξ, g+ dV,L) (resp. R̄BSDE (ξ, g+ dV,U))
admits a unique L1 solution.

3) It follows from Theorem 6.1 that if (H3) is satisfied and V· ∈ V1, then DRBSDE
(ξ, g + dV,L, U) admits a unique L1 solution.

Example 7.2. Let the generator g be defined as follows:

g(ω, t, y, z) = h(|y|) + e−y|Bt(ω)|2 + (e−y ∧ 1) · (
√
|z|+ 3

√
|z|) +

1√
t
1t>0

where, with δ > 0 small enough,

h(x) =


−x lnx , 0 < x ≤ δ;
h′(δ−)(x− δ) + h(δ) , x > δ;

0 , other cases.

It is not very hard to verify that this g satisfies assumption (H1) with ρ(x) = h(x),
g(t, 0, 0) = 1√

t
1t>0 + 1, and ψt(ω, r) = h(δ) + h′(δ−)r + er|Bt(ω)|2 + 1, and assumption (H2)

with φ(x) =
√
|x|+ 3

√
|x|, γ = 2, ft(ω) ≡ 1 and α = 1/2. We have

1) It follows from Theorem 4.2 that for each ξ ∈ L1(FT ) and V· ∈ V1, BSDE (ξ, g + dV )

admits a unique L1 solution.

2) It follows from Theorem 5.1 that if V· ∈ V1 and (H3L) (resp. (H3U)) is satisfied,
then RBSDE (ξ, g+ dV,L) (resp. R̄BSDE (ξ, g+ dV,U)) admits a unique L1 solution.

3) It follows from Theorem 6.1 that if V· ∈ V1 and (H3) is satisfied, then DRBSDE
(ξ, g + dV,L, U) admits a unique L1 solution.
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Example 7.3. Let the generator g(ω, t, y, z) = e−y + 3
√
|z| sin |z|. It is easy to see that

this g satisfies assumptions (H1) and (H2’) with ρ(x) = x in view of the fact that it is
decreasing in y. However, it can be checked that this generator does not satisfy the
assumption (H2)(i). We have

1) It follows from Corollary 4.5 that for each ξ ∈ L1(FT ) and V· ∈ V1, BSDE (ξ, g+ dV )

admits a maximal and a minimal L1 solutions.

2) It follows from Theorem 5.4 that if V· ∈ V1 and (H3L) (resp. (H3U)) is satisfied,
then RBSDE (ξ, g + dV,L) (resp. R̄BSDE (ξ, g + dV,U)) admits a maximal and a
minimal L1 solutions.

3) It follows from Theorem 6.4 that if V· ∈ V1 and (H3) is satisfied, then DRBSDE
(ξ, g + dV,L, U) admits a maximal and a minimal L1 solutions.

Example 7.4. Let the generator g := g1 + g2 with

g1(ω, t, y, z) = h(|y|)− y3e|Bt(ω)|4 − ey sin2 |z|+
√
|z| cos |z|+ 1

3
√
t
1t>0

and
g2(ω, t, y, z) = 3

√
|y|+ y cos y + 4

√
|y| · |z|+ |Bt(ω)|,

where h(·) is defined in Example 7.2. It is not very hard to verify that g1 satisfies (H1)(i)
with ρ(x) = h(x), (H2’)(i) and (HH) with ft(ω) = 1 + 1

3√t1t>0 + h(δ), ϕt(ω, r) = h′(δ−)r +

r3e|Bt(ω)|4 + er − 1, λ = 1 and α = 1/2, and that g2 satisfies (AA) with f̃t(ω) = |Bt(ω)|+ 2,
µ̃ = 3, λ̃ = 1 and α̃ = 1/2. We have

1) It follows from Theorem 4.4 that for each ξ ∈ L1(FT ) and V· ∈ V1, BSDE (ξ, g + dV )

admits a maximal and a minimal L1 solutions.

2) It follows from Corollary 5.6 that if V· ∈ V1, (H3L)(i) (resp. (H3U)(i)) is satisfied and
L+
· ∈ S1 (resp. U−· ∈ S1), then RBSDE (ξ, g2 + dV,L) (resp. R̄BSDE (ξ, g2 + dV,U))

admits a maximal and a minimal L1 solutions.

3) It follows from Theorem 6.4 that if V· ∈ V1 and (H3) is satisfied for g2, then DRBSDE
(ξ, g2 + dV,L, U) admits a maximal and a minimal L1 solutions.

We also note that this g1 satisfies neither assumption (H2) nor assumption (H2’)(ii).

Example 7.5. Let the generator g := g1 + g2 with

g1(ω, t, y, z) = h̄(|y|)− ey|Bt(ω)|3 + (e−y ∧ 1) ·
√
|z| cos |z|+ 1

4
√
t
1t>0

and
g2(ω, t, y, z) = y cos |z|+ 3

√
|z| sin y +

√
1 + |y|+ |z|+ |Bt(ω)|2,

where, with δ > 0 small enough,

h̄(x) =


x| lnx| ln | lnx| , 0 < x ≤ δ;
h̄′(δ−)(x− δ) + h̄(δ) , x > δ;

0 , other cases.

It is not very hard to verify that g1 satisfies assumption (H1) with ρ(x) = h̄(x), g(t, 0, 0) =
1
4√t1t>0 − 1, and ψt(ω, r) = h̄(δ) + h̄′(δ−)r + er|Bt(ω)|3 + 1, and assumption (H2’) with

ft(ω) ≡ 0, µ = 0, λ = 1 and α = 1/2, and that g2 satisfies (AA) with f̃t(ω) = |Bt(ω)|2 + 2,
µ̃ = 2, λ̃ = 2 and α̃ = 1/2. We have

1) It follows from Corollary 4.5 that for each ξ ∈ L1(FT ) and V· ∈ V1, BSDE (ξ, g+ dV )

admits a maximal and a minimal L1 solutions.
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2) It follows from Theorem 5.4 that if V· ∈ V1 and (H3L) (resp. (H3U)) is satisfied,
then RBSDE (ξ, g + dV,L) (resp. R̄BSDE (ξ, g + dV,U)) admits a maximal and a
minimal L1 solutions.

3) It follows from Theorem 6.4 that if V· ∈ V1 and (H3) is satisfied, then DRBSDE
(ξ, g + dV,L, U) admits a maximal and a minimal L1 solutions.

4) It follows from Corollary 5.6 that if V· ∈ V1, (H3L)(i) (resp. (H3U)(i)) is satisfied and
L+
· ∈ S1 (resp. U−· ∈ S1), then RBSDE (ξ, g2 + dV,L) (resp. R̄BSDE (ξ, g2 + dV,U))

admits a maximal and a minimal L1 solutions.

We also note that this g1 does not satisfy assumption (H2)(i).

Finally, we give the following remark to end this paper.

Remark 7.6. With respect to the work of this paper, we would like to mention the
following things.

1) The basic assumptions (H1) and (H2) of the generator g used in this paper are
strictly weaker than the corresponding assumptions used in Briand et al. [3],
Klimsiak [38], Klimsiak [39], Rozkosz and Słomiński [55] and Bayraktar and Yao
[2] for the L1 solutions, where ρ(x) = kx and φ(x) = kx for some constant k ≥
0. Furthermore, assumption (H2’)(ii) is weaker than assumption (H2)(ii), and
assumption (HH) is weaker than (H1)(ii)(iii) and (H2’)(ii).

2) All of conditions (2.5), (2.6), (3.2), (3.13), (3.14) and (3.18) used respectively in
Lemma 2.7, Lemma 2.8, Proposition 3.1, Proposition 3.2, Proposition 3.3 and
Remark 3.4 are very general, which is strictly weaker than the usual linear/sub-
linear growth condition of g in (y, z). Indeed, when these conditions are satisfied,
the generator g can still have a general growth in (y, z), as can be seen in the proof
of our main results in Section 4, Section 5 and Section 6.

3) The way by which the comparison theorem (Proposition 3.5) is used in Theorem 4.2
and Theorem 4.4 is interesting in its own right.

4) It is uncertain that the generator g used in Theorem 4.4, Corollary 4.5, Theorem 5.3,
Theorem 5.4, Theorem 6.3 and Theorem 6.4 satisfies assumption (H1)(i), as can be
seen in Example 7.4 and Example 7.5.

5) Generally speaking, under the assumptions of Theorem 5.3, we do not know
whether the maximal L1 solution of RBSDE (ξ, g + dV,L) (resp. the minimal L1

solution of R̄BSDE (ξ, g+dV,U)) can be approximated by a sequence of L1 solutions
of BSDEs.

6) Generally speaking, under the assumptions of Theorem 6.3, we do not know
whether the maximal (resp. minimal) L1 solution of DRBSDE (ξ, g + dV,L, U) can
be approximated by a sequence of L1 solutions of R̄BSDEs with upper barrier U·
(resp. RBSDEs with lower barrier L·). In particular, under the same assumptions
we also do not know whether an L1 solution of DRBSDE (ξ, g + dV,L, U) can be
approximated by a sequence of L1 solutions of BSDEs in general.

7) The continuity condition of g2 (resp. g) in (y, z) used in Theorem 4.4, Corollary 4.5,
Theorem 5.3, Theorem 5.4, Theorem 6.3 and Theorem 6.4 (resp. Corollary 5.6) can
be relaxed to the left-continuity and lower semi-continuity condition in case of the
minimal L1 solution and the right-continuity and upper semi-continuity condition in
case of the maximal L1 solution, with a similar argument as in Fan and Jiang [21],
Fan [15] and Fan [18]. The same is in Corollary 4.6, Corollary 5.5 and Corollary 6.5.

8) Since the associated assumptions are more general, the results of this paper
strengthen some known corresponding works with respect to the L1 solutions
obtained, for example, in Briand et al. [3], Briand and Hu [4], Fan and Liu [25], Fan
[17], Klimsiak [38] and Rozkosz and Słomiński [55].
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9) Under assumptions (H1)(i), (H2’)(i), (HH) and (H3L) (resp. (H3U)), the existence of
an L1 solution for RBSDE (ξ, g + dV,L) (resp. R̄BSDE (ξ, g + dV,U)) is still open.
And, under assumptions (H1)(i), (H2’)(i), (HH) and (H3), the existence of an L1

solutions for DRBSDE (ξ, g + dV,L, U) is also open.

A Appendix

In this section, we will supply the details omitted in the proof procedures of Proposi-
tion 3.1 and Proposition 3.3.

Complementary of the details for the proof of Proposition 3.1

Now, we will detail the proof of steps 1–7 after the equality (3.8).

Step 1. We show that Y· is a càdlàg process. Let us first fix a positive integer
k ≥ 1 arbitrarily. Note that f̄· ∈ H1 and supn≥1 ‖Zn· 1·≤τk‖M2 < +∞ by (3.6). It follows
from (3.2) that there exists a subsequence {g(·, Y nj· , Z

nj
· )1·≤τk}∞j=1 of the sequence

{g(·, Y n· , Zn· )1·≤τk}∞n=1 which converges weakly to a process kh· in H1. Then, for every
(Ft)-stopping time τ valued in [0, T ], as j →∞, we have∫ τ

0

1s≤τkg(s, Y njs , Znjs )ds →
∫ τ

0

khsds weakly in L1(FT ). (A.1)

Furthermore, since

sup
n≥1

E

[∫ T

0

|Znt 1t≤τk |2dt

]
< +∞,

it follows from Lemma 4.4 of Klimsiak [38] that there exists a process kZ· ∈ M2 and
a subsequence of the sequence {nj}∞j=1, still denoted by itself, such that for every
(Ft)-stopping time τ valued in [0, T ],∫ τ

0

1s≤τkZ
nj
s · dBs →

∫ τ

0

kZs · dBs weakly in L2(FT ) and then in L1(FT ), as j →∞.
(A.2)

In the sequel, we define

kKt := Y0 − Yt −
∫ t

0

khsds−
∫ t

0

dVs −
∫ t

0

dAs +

∫ t

0

kZs · dBs, t ∈ [0, T ].

Then, for each (Ft)-stopping time τ valued in [0, T ], in view of (3.8), (A.1), (A.2) and the
fact that Y nτ ↑ Yτ in L1(FT ), we can deduce that the sequence

K
nj
τ∧τk = Y

nj
0 −Y

nj
τ∧τk−

∫ τ∧τk

0

g(s, Y njs , Znjs )ds−
∫ τ∧τk

0

dVs−
∫ τ∧τk

0

dAnjs +

∫ τ∧τk

0

Znjs ·dBs

converges weakly to kKτ∧τk in L1(FT ) as j →∞. Thus, since Kn
· ∈ V+ for each n ≥ 1,

we know that
kKσ1∧τk ≤ kKσ2∧τk

for any (Ft)-stopping times σ1 ≤ σ2 valued in [0, T ]. Furthermore, in view of the definition
of kK· together with the facts that V· ∈ V, A· ∈ V+, Y n· ↑ Y· and Y n· ∈ S for each n ≥ 1, it
is not hard to check that kK· is an optional process with P− a.s. upper semi-continuous
paths. Thus, Lemma A.3 in Bayraktar and Yao [2] yields that kK·∧τk is a nondecreasing
process, and then it has P − a.s. right lower semi-continuous paths. Hence, kK·∧τk is
càdlàg and so is Y·∧τk from the definition of kK·. Finally, it follows from (3.5) that Y· is
also a càdlàg process.
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Step 2. We show that Yt ≥ Lt for each t ∈ [0, T ] and

lim
n→∞

sup
t∈[0,T ]

(Y nt − Lt)− = 0. (A.3)

In fact, it follows from Fatou’s lemma and the definition of Kn
· that for each β ∈ (0, 1),

0 ≤ E
[(∫ T

0
(Yt − Lt)−dt

)β]
≤ lim inf

n→∞
E

(∫ T

0

(Y nt − Lt)−dt

)β
≤ lim

n→∞

supn≥1E[|Kn
T |β ]

nβ
= 0.

Since Y· − L· is a càdlàg process, it follows that (Yt − Lt)− = 0 and hence Yt ≥ Lt for
each t ∈ [0, T ). Moreover, YT = Y nT = ξ ≥ LT . Hence

(Y nt − Lt)− ↓ 0

for each t ∈ [0, T ] and by Dini’s theorem, (A.3) follows.

Step 3. We show the convergence of the sequence {Y n· } in the space of Sβ for each
β ∈ (0, 1). For each n,m ≥ 1, observe that

(Ȳ·, Z̄·, V̄·) := (Y n· − Y m· , Zn· − Zm· ,∫ ·
0

(g(s, Y ns , Z
n
s )− g(s, Y ms , Zms )) ds+ (Kn

· −Km
· )− (An· −Am· ))

(A.4)
satisfies equation (2.1). It then follows from (ii) of Lemma 2.4 with p = 2, t = 0 and
τ = τk that there exists a constant C > 0 such that for each n,m, k ≥ 1,

E

[
sup
t∈[0,T ]

|Y nt∧τk − Y
m
t∧τk |

2

]

≤ CE

[
|Y nτk − Y

m
τk
|2 + sup

t∈[0,T ]

(∫ τk

t∧τk
(Y ns − Y ms ) (dKn

s − dKm
s )

)+

+ sup
t∈[0,T ]

(∫ τk

t∧τk
(Y ns − Y ms ) (dAms − dAns )

)+

+

∫ τk

0

|Y ns − Y ms | |g(s, Y ns , Z
n
s )− g(s, Y ms , Zms )|ds

]
.

(A.5)

Furthermore, by virtue of the definition of Kn
· and An· with (3.1) we know that for each

t ∈ [0, T ],∫ τk

t∧τk
(Y ns − Y ms ) (dKn

s − dKm
s )

=

∫ τk

t∧τk
[(Y ns − Ls)− (Y ms − Ls)] dKn

s −
∫ τk

t∧τk
[(Y ns − Ls)− (Y ms − Ls)] dKm

s

≤
∫ τk

t∧τk
(Y ms − Ls)−dKn

s +

∫ τk

t∧τk
(Y ns − Ls)−dKm

s

≤ sup
s∈[0,T ]

(Y ms∧τk − Ls∧τk)−|Kn
T |+ sup

s∈[0,T ]

(Y ns∧τk − Ls∧τk)−|Km
T |

(A.6)
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and ∫ τk

t∧τk
(Y ns − Y ms ) (dAms − dAns )

=

∫ τk

t∧τk
[(Us − Y ms )− (Us − Y ns )] (dAms − dAns )

= −
∫ τk

t∧τk
(Us − Y ms )dAns −

∫ τk

t∧τk
(Us − Y ns )dAms ≤ 0.

(A.7)

Combining (3.2), (A.5), (A.6) and (A.7) with Hölder’s inequality yields that for each
m,n, k ≥ 1,

E

[
sup
t∈[0,T ]

|Y nt∧τk − Y
m
t∧τk |

2

]

≤ CE

[
|Y nτk − Y

m
τk
|2 + 2

∫ τk

0

|Y nt − Y mt |(f̄t + λ̄)dt

]

+C

(
E

[
sup
t∈[0,T ]

∣∣(Y mt∧τk − Lt∧τk)−
∣∣2]) 1

2 (
E
[
|Kn

τk
|2
]) 1

2

+C

(
E

[
sup
t∈[0,T ]

∣∣(Y nt∧τk − Lt∧τk)−
∣∣2]) 1

2 (
E
[
|Km

τk
|2
]) 1

2

+2Cλ̄

(
E

[∫ τk

0

|Y nt − Y mt |2dt

]) 1
2
(
E

[∫ τk

0

(|Znt |+ |Zmt |)
2

dt

]) 1
2

.

(A.8)

Note that Y n· ↑ Y·, f̄· ∈ H1, |Y 1
·∧τk |+|Ȳ·∧τk |+L

+
·∧τk ≤ k and supn≥1(E[|Kn

τk
|2]+‖Zn· 1·≤τk‖M2)

< +∞ for each k ≥ 1 by (3.6). In view of (A.3), from (A.8) and Lebesgue’s dominated
convergence theorem it follows that for each k ≥ 1, as n,m→∞,

E

[
sup
t∈[0,T ]

|Y nt∧τk − Y
m
t∧τk |

2

]
→ 0,

which implies that for each k ≥ 1, as n,m→∞,

sup
t∈[0,T ]

|Y nt∧τk − Y
m
t∧τk | → 0 in probability P.

And, by (3.5) and the fact that Y n· ↑ Y· we know that

sup
t∈[0,T ]

|Y nt − Yt| → 0, as n→∞. (A.9)

So, Y· is a continuous process, and then belongs to the space Sβ for each β ∈ (0, 1) and
the class (D) due to the fact that both Y 1

· and Ȳ· belong to them as well as Y 1
· ≤ Y n· ≤ Ȳ·.

Finally, from (A.9) and Lebesgue’s dominated convergence theorem it follows that for
each β ∈ (0, 1),

lim
n→∞

‖Y n· − Y·‖Sβ = lim
n→∞

E

[
sup
t∈[0,T ]

|Y nt − Yt|β
]

= 0. (A.10)

Step 4. We show the convergence of the sequence {Zn· } in the space of Mβ for each
β ∈ (0, 1). Note that (A.4) solves (2.1). It follows from (i) of Lemma 2.4 with t = 0 and
τ = T that there exists a nonnegative constant C ′ ≥ 0 such that for each m,n ≥ 1 and
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β ∈ (0, 1), we have

E

(∫ T

0

|Znt − Zmt |2dt

) β
2


≤ C ′E

 sup
t∈[0,T ]

|Y nt − Y mt |β + sup
t∈[0,T ]

(∫ T

t

(Y ns − Y ms ) (dKn
s − dKm

s )

)+

β
2


+C ′E

 sup
t∈[0,T ]

(∫ T

t

(Y ns − Y ms ) (dAms − dAns )

)+

β
2


+C ′E

(∫ T

0

|Y ns − Y ms | |g(s, Y ns , Z
n
s )− g(s, Y ms , Zms )|ds

) β
2

 .
Then, it follows from Hölder’s inequality together with (A.7) that

E

(∫ T

0

|Znt − Zmt |2dt

) β
2


≤ C ′E

[
sup
t∈[0,T ]

|Y nt − Y mt |β
]

+ C ′

(
E

[
sup
t∈[0,T ]

|Y nt − Y mt |β
]) 1

2

(E [|Kn
T |β
]) 1

2

+
(
E
[
|Km

T |β
]) 1

2 +

E
(∫ T

0

(|g(t, Y nt , Z
n
t )|+ |g(t, Y mt , Zmt )|) dt

)β 1
2

 ,

from which together with (3.4) and (A.10) yields that there exists a process (Zt)t∈[0,T ]

∈ ∩β∈(0,1)M
β satisfying, for each β ∈ (0, 1),

lim
n→∞

‖Zn· − Z·‖Mβ = lim
n→∞

E

(∫ T

0

|Znt − Zt|2dt

) β
2

 = 0. (A.11)

Step 5. We show the uniform convergence of a subsequence of the sequence {Kn
· }

in the sense of almost surely. Since g is continuous in (y, z) and satisfies (3.2), by (A.9)
and (A.11) we can deduce that there exists a subsequence {nj} of {n} such that

lim
j→∞

∫ T

0

|g(t, Y
nj
t , Z

nj
t )− g(t, Yt, Zt)|dt = 0,

and then

lim
j→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

g(t, Y
nj
t , Z

nj
t )dt−

∫ t

0

g(t, Yt, Zt)dt

∣∣∣∣ = 0. (A.12)

Thus, combining (3.7), (A.9), (A.11) and (A.12) yields that P− a.s., for each t ∈ [0, T ],

K
nj
t = Y

nj
0 − Y njt −

∫ t

0

g(s, Y njs , Znjs )ds−
∫ t

0

dVs −A
nj
t +

∫ t

0

Znjs · dBs

tends to

Kt := Y0 − Yt −
∫ t

0

g(s, Ys, Zs)ds−
∫ t

0

dVs −At +

∫ t

0

Zs · dBs
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as j →∞ and that

lim
j→∞

sup
t∈[0,T ]

|Knj
t −Kt| = 0. (A.13)

Hence, K· ∈ V+ due to Kn
· ∈ V+ for each n ≥ 1. Furthermore, note by the assumption

that Kn
T ≤ K̄n

T for each n ≥ 1 with lim
k→∞

K̄nk
T = K̄T ∈ L1(FT ) for a subsequence {nk} of

{n}. It follows that KT ∈ L1(FT ) and then K· ∈ V+,1.

Step 6. We show that the convergence of the sequence {An· } in the space of S1.
Indeed, for each k ≥ 1, define the following (Ft)-stopping time:

σk := inf{t ∈ [0, T ] :

∫ t

0

|Zs|2ds ≥ k} ∧ T.

It is clear that σk → T as k → +∞ due to the fact that Z· ∈ M. For each k ≥ 1, we have

Aσk = Yσk − Y0 +

∫ σk

0

g(s, Ys, Zs)ds+

∫ σk

0

dVs +Kσk −
∫ σk

0

Zs · dBs,

and then

E[Aσk ] ≤ |Y0|+ E

[
|Yσk |+

∫ T

0

|g(s, Ys, Zs)|ds+ |V |T +KT

]
.

Letting k → ∞, in view of Fatou’s lemma and the fact that Y· belongs to the class (D),
yields that

E[AT ] ≤ |Y0|+ E

[
|ξ|+

∫ T

0

|g(s, Ys, Zs)|ds+ |V |T +KT

]
.

Furthermore, in view of (A.12) and (3.2), it follows from Hölder’s inequality that

E

[∫ T

0

|g(s, Ys, Zs)|ds

]

= E

[
lim
j→∞

∫ T

0

|g(t, Y
nj
t , Z

nj
t )|dt

]
≤ E

[
lim
j→∞

∫ T

0

(f̄t + λ̄|Znjt |α)dt

]

= E

[∫ T

0

(f̄t + λ̄|Zt|α)dt

]
≤ ‖f̄·‖H1 + λ̄T

2−α
2 ‖Z·‖Mα < +∞.

Thus, we have E[AT ] <∞ and A· ∈ V+,1. Finally, note that 0 ≤ An· ≤ A· for each n ≥ 1.
From (3.7) and Lebesgue’s dominated convergence theorem it follows that

lim
n→∞

‖An· −A·‖S1 = 0. (A.14)

Step 7. We show that the (Y·, Z·,K·, A·) is an L1 solution of RBSDE (ξ, g + dV,L, U).
In fact, it has been proved that Y· belongs to the class (D), (Y·, Z·,K·, A·) ∈ Sβ ×Mβ ×
V+,1 × V+,1 for each β ∈ (0, 1) and it solves

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

dVs +

∫ T

t

dKs −
∫ T

t

dAs −
∫ T

t

Zs · dBs, t ∈ [0, T ].

By Step 2 we know that Yt ≥ Lt for each t ∈ [0, T ], and then∫ T

0

(Yt − Lt)dKt ≥ 0.
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On the other hand, in view of (A.9) and (A.13), it follows from the definition of Kn
· that∫ T

0

(Yt − Lt)dKt = lim
j→∞

∫ T

0

(Y
nj
t − Lt)dK

nj
t ≤ 0.

Consequently, we have ∫ T

0

(Yt − Lt)dKt = 0.

Furthermore, noticing that Y n· ≤ U· and
∫ T

0
(Ut−Y nt ) dAnt = 0 for each n ≥ 1, from (A.10)

and (A.14) we can deduce that Yt ≤ Ut for each t ∈ [0, T ], and∫ T

0

(Ut − Yt) dAt = lim
n→∞

∫ T

0

(Ut − Y nt ) dAnt = 0.

Finally, let us show that dK⊥dA. In fact, for each n ≥ 1, we can define the following
(Ft)-progressively measurable set

Dn := {(ω, t) ⊂ Ω× [0, T ] : Y nt (ω) ≥ Lt(ω)}.

Then, from the definition of Kn
· we know that for each n ≥ 1,

E

[∫ T

0

1DndKn
t

]
= 0,

and, in view of
∫ T

0
(Ut − Y nt )dAnt = 0,

E

[∫ T

0

1DcndAnt

]
= E

[∫ T

0

1{Y nt <Lt≤Ut}|Ut − Y
n
t |−1(Ut − Y nt ) dAnt

]
= 0.

Thus, noticing that Dn ⊂ Dn+1 for each n ≥ 1 due to Y n· ≤ Y n+1
· , by (A.13) and (A.14)

we can deduce that

E

[∫ T

0

1∪DndKt

]
= lim
j→∞

E

[∫ T

0

1Dnj dK
nj
t

]
= 0

and

E

[∫ T

0

1∩DcndAt

]
= lim
n→∞

E

[∫ T

0

1DcndAnt

]
= 0.

Hence, dK⊥dA. Proposition 3.1 is then proved.

Complementary of the details for the proof of Proposition 3.3

Now, we will detail the proof of steps 1–3 after eq. (3.17).

Step 1. We show the convergence of the sequence {Y n· } in the space of Sβ for each
β ∈ (0, 1). For each positive integer k, l ≥ 1, we introduce the following two (Ft)-stopping
times:

σk := inf

{
t ≥ 0 : |Y 1

t |+ |Ȳt|+ |V |t +K1
t + Āt +

∫ t

0

f̃s ds ≥ k
}
∧ T ;

τk,l := inf

{
t ≥ 0 :

∫ t

0

f̄ks ds ≥ l
}
∧ σk.

Then we have

P ({ω : ∃k0(ω), l0(ω) ≥ 1, ∀k ≥ k0(ω), ∀l ≥ l0(ω), τk,l(ω) = T}) = 1. (A.15)
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For each n,m ≥ 1, observe that

(Ȳ·, Z̄·, V̄·) := (Y n· − Y m· , Zn· − Zm· ,∫ ·
0

(gn(s, Y ns , Z
n
s )− gm(s, Y ms , Zms )) ds+ (Kn

· −Km
· ) + (Am· −An· ))

(A.16)
satisfies equation (2.1). It then follows from (ii) of Lemma 2.4 with p = 2, t = 0 and
τ = τk,l that there exists a constant C > 0 such that for each n,m, k, l ≥ 1,

E

[
sup
t∈[0,T ]

|Y nt∧τk,l − Y
m
t∧τk,l |

2

]

≤ CE

|Y nτk,l − Y mτk,l |2 + sup
t∈[0,T ]

(∫ τk,l

t∧τk,l
(Y ns − Y ms ) (dKn

s − dKm
s )

)+

+ sup
t∈[0,T ]

(∫ τk,l

t∧τk,l
(Y ns − Y ms ) (dAms − dAns )

)+

+

∫ τk,l

0

|Y ns − Y ms | |gn(s, Y ns , Z
n
s )− gm(s, Y ms , Zms )|ds

]
.

(A.17)

Furthermore, note that L· ≤ Y n· ≤ U· and that
∫ T

0
(Y nt − Lt)dKn

t =
∫ T

0
(Ut − Y nt )dAnt = 0

for each n ≥ 1. It follows that for each t ∈ [0, T ] and k, l,m, n ≥ 1,∫ τk,l

t∧τk,l
(Y ns − Y ms ) (dKn

s − dKm
s )

=

∫ τk,l

t∧τk,l
[(Y ns − Ls)− (Y ms − Ls)] (dKn

s − dKm
s )

= −
∫ τk,l

t∧τk,l
(Y ns − Ls)dKm

s −
∫ τk,l

t∧τk,l
(Y ms − Ls)dKn

s ≤ 0

(A.18)

and ∫ τk,l

t∧τk,l
(Y ns − Y ms ) (dAms − dAns )

=

∫ τk,l

t∧τk,l
[(Us − Y ms )− (Us − Y ns )] (dAms − dAns )

= −
∫ τk,l

t∧τk,l
(Us − Y ms )dAns −

∫ τk,l

t∧τk,l
(Us − Y ns )dAms ≤ 0.

(A.19)

By the definition of τk,l and the fact that Y 1
· ≤ Y n· ≤ Ȳ·, we know that 1·≤τk,l ≤ 1|Y n· |≤k

holds true for each k, l, n ≥ 1. Then, combining (3.14), (A.17), (A.18), (A.19) and Hölder’s
inequality yields that

E

[
sup
t∈[0,T ]

|Y nt∧τk,l − Y
m
t∧τk,l |

2

]

≤ CE

[
|Y nτk,l − Y

m
τk,l
|2 + 2

∫ τk,l

0

|Y nt − Y mt |f̄kt dt

]
+2Cλ̄

(
E

[∫ τk,l

0

|Y nt − Y mt |2dt

]) 1
2
(
E

[∫ τk,l

0

(|Znt |+ |Zmt |)
2

dt

]) 1
2

.

(A.20)

Note that Y 1
· ≤ Y n· ↑ Y· ≤ Ȳ·. By the definition of τk,l and (3.17), it follows from (A.20)

and Lebesgue’s dominated convergence theorem that for each k, l ≥ 1, as n,m→∞,

E

[
sup
t∈[0,T ]

|Y nt∧τk,l − Y
m
t∧τk,l |

2

]
→ 0,
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which implies that for each k, l ≥ 1, as n,m→∞,

sup
t∈[0,T ]

|Y nt∧τk,l − Y
m
t∧τk,l | → 0 in probability P.

And, by (A.15) and the monotonicity of Y n· with respect to n we know that

sup
t∈[0,T ]

|Y nt − Yt| → 0, as n→∞. (A.21)

So, Y· is a continuous process, and then belongs to the space Sβ for each β ∈ (0, 1) and
the class (D) due to the fact that both Y 1

· and Ȳ· belong to them as well as Y 1
· ≤ Y n· ≤ Ȳ·.

Finally, from (A.21) and Lebesgue’s dominated convergence theorem it follows that for
each β ∈ (0, 1),

lim
n→∞

‖Y n· − Y·‖Sβ = lim
n→∞

E

[
sup
t∈[0,T ]

|Y nt − Yt|β
]

= 0. (A.22)

Step 2. We show the convergence of the sequence {Zn· } in the space of Mβ for each
β ∈ (0, 1). Note that (A.16) solves (2.1). It follows from (i) of Lemma 2.4 with t = 0 and
τ = T that there exists a nonnegative constant C ′ ≥ 0 such that for each m,n ≥ 1 and
β ∈ (0, 1), we have

E

(∫ T

0

|Znt − Zmt |2dt

) β
2


≤ C ′E

 sup
t∈[0,T ]

|Y nt − Y mt |β + sup
t∈[0,T ]

(∫ T

t

(Y ns − Y ms ) (dKn
s − dKm

s )

)+

β
2


+C ′E

 sup
t∈[0,T ]

(∫ T

t

(Y ns − Y ms ) (dAms − dAns )

)+

β
2


+C ′E

(∫ T

0

|Y ns − Y ms | |gn(s, Y ns , Z
n
s )− gm(s, Y ms , Zms )|ds

) β
2

 .
Then, in view of (A.18) and (A.19), it follows from Hölder’s inequality that

E

(∫ T

0

|Znt − Zmt |2dt

) β
2


≤ C ′E

[
sup
t∈[0,T ]

|Y nt − Y mt |β
]

+ C ′

(
E

[
sup
t∈[0,T ]

|Y nt − Y mt |β
]) 1

2

·

E
(∫ T

0

(|gn(t, Y nt , Z
n
t )|+ |gm(t, Y mt , Zmt )|) dt

)β 1
2

,

from which together with (A.22) and (3.16) yields that there exists a process (Zt)t∈[0,T ] ∈
∩β∈(0,1)M

β satisfying, for each β ∈ (0, 1),

lim
n→∞

‖Zn· − Z·‖Mβ = lim
n→∞

E

(∫ T

0

|Znt − Zt|2dt

) β
2

 = 0. (A.23)
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Step 3. We show that the (Y·, Z·,K·, A·) is an L1 solution of DRBSDE (ξ, g + dV,L, U).
Since gn tends locally uniformly in (y, z) to the generator g as n→∞ and satisfies (3.14),
by (A.21) and (A.23) together with (A.15) we can deduce that there exists a subsequence
{nj} of {n} such that

lim
j→∞

∫ T

0

|gnj (t, Y
nj
t , Z

nj
t )− g(t, Yt, Zt)|dt = 0.

Then,

lim
j→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

gnj (t, Y
nj
t , Z

nj
t )dt−

∫ t

0

g(t, Yt, Zt)dt

∣∣∣∣ = 0. (A.24)

Combining (3.15), (A.21), (A.23) and (A.24) yields that

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds+

∫ T

t

dVs +

∫ T

t

dKs −
∫ T

t

dAs −
∫ T

t

Zs · dBs, t ∈ [0, T ].

Since Lt ≤ Y nt ≤ Ut and Y nt ↑ Yt for each t ∈ [0, T ], we have Lt ≤ Yt ≤ Ut for each
t ∈ [0, T ]. Furthermore, in view of (A.22) and (3.15), it follows that∫ T

0

(Yt − Lt)dKt = lim
n→∞

∫ T

0

(Y nt − Lt)dKn
t = 0

and ∫ T

0

(Ut − Yt)dKt = lim
n→∞

∫ T

0

(Ut − Y nt )dAnt = 0.

Finally, let us show that dK⊥dA. In fact, for each n ≥ 1, since dKn⊥dAn, there exists
an (Ft)-progressively measurable set Dn ⊂ Ω× [0, T ] such that

E

[∫ T

0

1DndKn
t

]
= E

[∫ T

0

1DcndAnt

]
= 0.

Then, in view of (3.15) and the fact that dK ≤ dKn for each n ≥ 1,

0 ≤ E

[∫ T

0

1∪DndKt

]
≤
∞∑
n=1

E

[∫ T

0

1DndKt

]
≤
∞∑
n=1

E

[∫ T

0

1DndKn
t

]
= 0

and

0 ≤ E

[∫ T

0

1∩DcndAt

]
= lim
m→∞

E

[∫ T

0

1∩DcndAmt

]
≤ lim
m→∞

E

[∫ T

0

1DcmdAmt

]
= 0.

Hence, dK⊥dA. Proposition 3.3 is then proved.
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