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Abstract

We study the random planar maps obtained from supercritical Galton–Watson trees by
adding the horizontal connections between successive vertices at each level. These
are the hyperbolic analog of the maps studied by Curien, Hutchcroft and Nachmias in
[15], and a natural model of random hyperbolic geometry. We first establish metric
hyperbolicity properties of these maps: we show that they admit bi-infinite geodesics
and satisfy a weak version of Gromov-hyperbolicity. We also study the simple random
walk on these maps: we identify their Poisson boundary and, in the case where the
underlying tree has no leaf, we prove that the random walk has positive speed. Some
of the methods used here are robust, and allow us to obtain more general results
about planar maps containing a supercritical Galton–Watson tree.
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Introduction

Causal maps and random hyperbolic geometry Causal triangulations were intro-
duced by theoretical physicists Ambjørn and Loll [2], and have been the object of a
lot of numerical investigations. However, their rigorous study is quite recent [18, 15].
They are a discrete model of Lorentzian quantum gravity with one time and one space
dimension where, in contrast with uniform random planar maps, time and space play
asymmetric roles.

Here is the definition of the model. For any (finite or infinite) plane tree t, we denote
by C(t) the planar map obtained from t by adding at each level the horizontal connections
between consecutive vertices, as on Figure 1 (this includes an horizontal connection
between the leftmost and rigtmost vertices at each level). Our goal here is to study the
graph C(T ), where T is a supercritical Galton–Watson tree conditioned to survive.

t

ρ

C(t)

ρ

Figure 1: An infinite plane tree t and the associated causal map C(t). The edge in red
joins the root vertex to its leftmost child.

This defines a new model of random “hyperbolic” graph. Several other such models
have been investigated so far, such as supercritical Galton–Watson trees [24], Poisson–
Voronoi tesselations of the hyperbolic plane [9], or the Planar Stochastic Hyperbolic
Infinite Triangulations (PSHIT) of [13]. Many notions appearing in the study of these
models are adapted from the study of Cayley graphs of nonamenable groups, and an
important idea is to find more general versions of the useful properties of these Cayley
graphs. Let us mention two such tools.

• For example, the three aforementioned models are all stationary, which means
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their distribution is invariant under rerooting along the simple random walk1. This
property generalizes the transitivity of Cayley graphs, and is a key tool to prove
positive speed for the simple random walk on supercritical Galton–Watson trees
[24, 1] or on the PSHIT [13]. More generally, in the context of stationary random
graphs, general relations are known between the exponential growth rate, the
speed of the random walk, and its asymptotic entropy, which is itself related to
the Poisson boundary and the Liouville property. See [8, Proposition 3.6], which
adapts classical results about Cayley graphs [20]. On the other hand, supercritical
causal maps are not stationary, and it seems hard to find a stationary environment
for the simple random walk2. In absence of stationarity, we will be forced to use
other properties of our graphs such as the independence properties given by the
structure of Galton–Watson trees.

• Another important property in the study of random hyperbolic graphs is anchored
expansion, which is a weaker version of nonamenability, and may be thought of
as a natural generalization of nonamenability to random graphs. It is known to
imply positive speed and heat kernel decay bounds of the form exp(−n1/3) for
bounded-degree graphs [29]. This property also played an important role in the
study of non-bounded-degree graphs such as Poisson-Voronoi tesselations of the
hyperbolic plane [9], and the half-planar versions of the PSHIT [6]. However, we
have not been able to establish this property for causal maps, and need once again
to use other methods.

Supercritical causal maps In all that follows, we fix an offspring distribution µ with∑∞
i=0 iµ(i) > 1. Note that we do not require the mean number of children to be finite. We

denote by T a Galton–Watson tree with offspring distribution µ conditioned to survive.
The goal of this work is to study the maps C(T ). We will study both large-scale metric
properties of C(T ), and the simple random walk on this map. All the results that we will
prove show that C(T ) has a hyperbolic flavour, which is also true for the tree T .

Metric hyperbolicity properties The first goal of this work is to establish two metric
hyperbolicity properties of C(T ). We recall that a graph G is hyperbolic in the sense of
Gromov if there is a constant k ≥ 0 such that all the triangles are k-thin in the following
sense. Let x, y and z be three vertices of G and γxy, γyz, γzx be geodesics from x to y,
from y to z and from z to x. Then for any vertex v on γxy, the graph distance between v
and γyz ∪ γzx is at most k. However, such a strong, uniform statement usually cannot
hold for random graphs. For example, if µ(1) > 0, then C(T ) contains arbitrarily large
portions of the square lattice, which is not hyperbolic. Therefore, we suggest a weaker,
“anchored” definition3.

Definition 0.1. Let M be a rooted planar map. We say that M is weakly anchored
hyperbolic if there is a constant k ≥ 0 such that the following holds. Let x, y and z be
three vertices of M and γxy (resp. γyz, γzx) be a geodesic from x to y (resp. y to z, z to
x). Assume the triangle formed by γxy, γyz and γzx surrounds the root vertex ρ. Then

dM (ρ, γxy ∪ γyz ∪ γzx) ≤ k.
1This is not exactly true for Galton–Watson trees, but it is true for the closely related augmented Galton–

Watson trees.
2See for example [27] for the particular case where the tree is the complete binary tree: the existence and

uniqueness of a stationary environment are proved, but it is very difficult to say anything explicit about the
distribution of this environment.

3The most natural definition would be to require that any geodesic triangle surrounding the root is k-thin,
but this is still too strong (consider the triangle formed by root vertex and two vertices x, y in a large portion
of square lattice).
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Theorem 0.2 (Metric hyperbolicity of C(T )). Let T be a supercritical Galton–Watson tree
conditioned to survive, and let C(T ) be the associated causal map.

1. The map C(T ) is a.s. weakly anchored hyperbolic.

2. The map C(T ) a.s. admits bi-infinite geodesics, i.e. paths (γ(i))i∈Z such that for any
i and j, the graph distance between γ(i) and γ(j) is exactly |i− j|.

These two results are very robust and hold in a much more general setting that
includes the PSHIT. In particular, the second point for the PSHIT answers a question
of Benjamini and Tessera [11]. More general results are discussed in the end of this
introduction.

Poisson boundary The second goal of this work is to study the simple random walk
on C(T ) and to identify its Poisson boundary. First note that C(T ) contains as a subgraph
the supercritical Galton–Watson tree T , which is transient, so C(T ) is transient as well.
We recall the general definition of the Poisson boundary. Let G be an infinite, locally
finite graph, and let G ∪ ∂G be a compactification of G, i.e. a compact metric space in
which G is dense. Let also (Xn) be the simple random walk on G started from ρ. We say
that ∂G is a realization of the Poisson boundary of G if the following two properties hold:

• (Xn) converges a.s. to a point X∞ ∈ ∂G,

• every bounded harmonic function h on G can be written in the form

h(x) = Ex [g (X∞)] ,

where g is a bounded measurable function from ∂G to R.

We denote by ∂T the space of infinite rays of T . If γ, γ′ ∈ ∂T , we write γ ∼ γ′ if γ = γ′

or if γ and γ′ are two “consecutive” rays in the sense that there is no ray between them.
Then ∼ is a.s. an equivalence relation for which countably many equivalence classes
have cardinal 2 and all the others have cardinal 1. We write ∂̂T = ∂T/ ∼. There is a
natural way to equip C(T ) ∪ ∂̂T with a topology that makes it a compact space. We refer
to Section 3.1 for the construction of this topology, but we mention right now that ∂̂T is
homeomorphic to the circle, whereas ∂T is homeomorphic to a Cantor set. The space
C(T )∪ ∂̂T can be seen as a compactification of the infinite graph C(T ). We show that this
is a realization of its Poisson boundary.

Theorem 0.3 (Poisson boundary of C(T )). Almost surely:

1. the limit lim(Xn) = X∞ exists and its distribution has full support and no atoms in
∂̂T ,

2. ∂̂T is a realization of the Poisson boundary of C(T ).

Note that, by a result of Hutchcroft and Peres [19], the second point will follow from
the first one.

Positive speed A natural and strong property shared by many models of hyperbolic
graphs is the positive speed of the simple random walk. See for example [24] for super-
critical Galton–Watson trees, and [13, 6] for the PSHIT or their half-planar analogs. The
third goal of this work is to prove that the simple random walk on C(T ) has a.s. positive
speed. Unfortunately, we have only been able to prove it in the case where µ(0) = 0, i.e.
when the tree T has no leaf. We recall that (Xn) is the simple random walk on C(T ), and
denote by dC(T ) the graph distance on C(T ).
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Theorem 0.4 (Positive speed on C(T )). If µ(0) = 0 and µ(1) < 1, then there is vµ > 0

such that
dC(T )(ρ,Xn)

n

a.s.−−−−−→
n→+∞

vµ.

However, we expect to still have positive speed if µ(0) = 0. As mentioned above, this
result is not obvious because of the lack of stationarity (for stationary graphs, the results
of [8] show that positive speed is equivalent to being non-Liouville under some mild
assumptions).

The critical case We note that similar properties have been studied in the critical case
in [15]. The results of [15] show that the geometric properties of causal maps are closer
to those of uniform random maps than to those of the trees from which they were built.
This contrasts sharply with the supercritical case, where the properties of the causal
map are very close to those of the associated tree. More precisely, in the finite variance
case, the distance between vertices at some fixed height r is o(r), but r1−o(1). Moreover,
the exponents describing the behaviour of the simple random walk are the same as for
the square lattice, and different from the exponents we would obtain in a tree.

Robustness of the results and applications to other models Another motivation
to study causal maps is that many other models of random planar maps can be obtained
by adding connections (and, in some cases, vertices) to a random tree. For example, the
UIPT [3] or its hyperbolic variants the PSHIT [13] can be constructed from a reverse
Galton–Watson tree or forest via the Krikun decomposition [21, 16, 12]. Among all the
maps that can be obtained from a tree t in such a way that the branches of the tree
remain geodesics, the causal map is the one with the “closest” connections, which makes
it a useful toy model. The causal map may even provide general bounds for any map
obtained from a fixed tree (we will see such applications in this paper, see also [14] for
applications to uniform planar maps via the Krikun decomposition).

Here, the causal maps C(T ) fit in a more general framework. We define a strip as
an infinite, one-ended planar map s with exactly one infinite face, such that the infinite
face has a simple boundary ∂s, and equipped with a root vertex on the boundary on the
infinite face. If t is an infinite tree with no leaf and (si)i∈N is a sequence of strips, let
M (t, (si)) be the map obtained by filling the (infinite) faces of t with the strips si (see
Section 1 for a more careful construction). Some of our results can be generalized to
random maps of the form M (T, (si)), where T is a supercritical Galton–Watson tree
with no leaf, and the si are strips (which may depend on T).

By the backbone decomposition for supercritical Galton–Watson trees (that we recall
in Section 1), the maps of the form C(T ), where T is a supercritical Galton–Watson tree
with leaves, are a particular case of this construction. The results of [12] prove that
the PSHIT Tλ can also be obtained by this construction: the tree T is then the tree of
infinite leftmost geodesics of Tλ and has geometric offspring distribution.

We will show that Theorem 0.2 is very robust and applies to this general context,
see Theorem 2.1. A particular case of interest are the PSHIT. In particular, point 2 of
Theorem 0.2 for the PSHIT answers a question of Benjamini and Tessera [11].

As for causal maps, any map of the formM (T, (si)) contains the transient graph T,
so it is transient itself. Most of our proof of Theorem 0.3 can also be adapted to the
general setting where the strips si are i.i.d. and independent of T. However, Theorem 0.3
cannot be true if the strips si are too large (for example if themselves have a non-trivial
Poisson boundary). On the other hand, we can still show that the Poisson boundary is
non-trivial. See Theorem 3.9 for a precise statement, and Figure 2 for a summary of the
results proved in this paper and the results left to prove.
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non-Liouville ∂̂T is the Poisson boundary positive speed
T 3 3 3

C(T ) (if µ(0) = 0) 3 3 3

C(T ) (if µ(0) > 0) 3 3 ?
PSHIT 3 3 3

M with (Si) i.i.d.,
recurrent,

bounded-degree

3 3 7

M with (Si) i.i.d.,
recurrent

3 ? 7

M with (Si) i.i.d. 3 7 7

generalM 7 7 7

Figure 2: The symbol 3 means that the property is proved in an earlier work or in this
one. The symbol ? indicates properties that we believe to be true but did not prove in
this paper, and the symbol 7 means the property is false in general. See Section 5 for a
quick description of some counterexamples.

As we will see later, Theorem 3.9 is not strictly speaking more general than Theorem
0.3, since the strips used to construct C(T ) from the backbone of T are not completely
independent. On the other hand, once again, the PSHIT satisfy these assumptions (up
to a root transformation, since the strip containing the root has a slightly different
distribution). However, it was already known that the PSHIT are non-Liouville (see [13],
or [4] for another identification of the Poisson boundary via circle packings). We also
prove in [12], by a specific argument based on the peeling process, that ∂̂T is indeed a
realization of the Poisson boundary in the case of the PSHIT.

Structure of the paper The paper is structured as follows. In Section 1, we fix
some definitions and notations that will be used in all the rest of this work, and recall
the backbone decomposition of supercritical Galton–Watson trees. In Section 2, we
investigate metric properties and establish Theorem 2.1, of which Theorem 0.2 is a
particular case. Section 3 is devoted to the study of the Poisson boundary and to the
proof of Theorems 0.3 and 3.9. In Section 4, we prove Theorem 0.4 about positive speed.
Finally, in Section 5, we discuss some counterexamples related to Figure 2, and state a
few conjectures.

1 General framework and the backbone decomposition

The goal of this section is to give definitions and notations, and to make a few useful
remarks that will be needed in all the paper. All our constructions will be based on
infinite, locally finite plane trees. We insist that the plane tree structure is important to
define the associated causal map. We will use normal letters to denote general infinite
trees, and bold letters like t for trees with no leaf. All the trees will be rooted at a vertex
ρ. If v is a vertex of a tree t, we denote by h(v) its distance to the root, which we will
sometimes call its height. A ray in a tree t is an infinite sequence (γ(i))i≥0 of vertices
such that γ(0) = ρ, and γ(i+ 1) is a child of γ(i) for every i ≥ 0. If t is an infinite tree, the
backbone of t is the union of its rays, i.e. the set of the vertices of t that have infinitely
many descendants. We will denote it by B(t), and we note that B(t) is always an infinite
tree with no leaf.

We recall that if t is an infinite plane tree, then C(t) is the map obtained from t by
adding horizontal edges at every height between consecutive vertices. We also define
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t

ρ

v

S(t)

ρ

Figure 3: The same infinite tree t as on Figure 1 and the associated causal slice S(t).
Note that two vertices have been deleted. On the left part, the backbone of t is in red.
We have c(v) = 4, cB(v) = 2 and Av = {2, 4}.

the causal slice S(t) associated to t, which will be used a lot in all that follows. Let γ`
(resp. γr) be the leftmost (resp. rightmost) infinite ray of B(t). Then S(t) is the map
obtained from t by deleting all the vertices on the left of γ` and on the right of γr, and
by adding the same horizontal edges as for C(t) between the remaining vertices, except
the edge between γ` and γr at each level (cf. Figure 3). The union of γ` and γr is the
boundary of S, and is written ∂S.

In all this work, µ will denote a supercritical offspring distribution, i.e. a distribution
satisfying

∑
i≥0 iµ(i) > 1, and T will be a Galton–Watson tree with offspring distribution

µ conditioned to survive. For every n ≥ 0, we will denote by Zn the number of vertices
of T at height n. We will write C for C(T ) and S for S(T ), unless stated otherwise.

If v is a vertex of B(T ), we will denote by T [v] the tree of descendants of v in T , and
by S[v] the causal slice associated to T [v]. An important consequence of the backbone
decomposition stated below is that for each v ∈ T , conditionally on v ∈ B(T ), the slice
S[v] has the same distribution as S. Moreover, these slices are independent for base
points that are not ancestors of each other.

If G is a graph rooted at a vertex ρ, we will denote by dG its graph distance and by
Br(G) (resp. ∂Br(G)) the set of vertices of G at distance at most r (resp. exactly r) from
ρ. Note that the vertices of Br(T ) and of Br(C) are the same. For any vertex v of T , we
also denote by cT (v) (or by c(v) when there is no ambiguity) the number of children of v
in T . Note that the degree of v in C is equal to cT (v) + 3 if v 6= ρ, and to cT (v) if v = ρ.
For every graph G and every vertex v of G, we will denote by PG,v the distribution of the
simple random walk on G started from v.

We now recall the backbone decomposition for supercritical Galton–Watson trees
conditioned to survive, as it appears e.g. in [23]. Let f be the generating function of µ,
i.e. f(x) =

∑
i≥0 µ(i)xi. Let also q be the extinction probability of a Galton–Watson tree

with offspring distribution µ, i.e. the smallest fixed point of f in [0, 1]. We define f and f̃
by

f(s) =
f(q + (1− q)s)− q

1− q
and f̃(s) =

f(qs)

q
(1.1)

for s ∈ [0, 1]. Then f is the generating function of a supercritical offspring distribution µ
with µ(0) = 0, and f̃ is the generating function of a subcritical offspring distribution µ̃.
For every vertex x of B(T ), we denote by Ax the set of indices 1 ≤ i ≤ c(x) such that the
i-th child of x is in the backbone, and we write cB(x) = |Ax|. Finally, let B′(T ) be the set
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of vertices y of T such that the parent of y is in B(T ), but y is not. The following result
characterizes entirely the distribution of T .

Theorem 1.1. 1. The tree B(T ) is a Galton–Watson tree with offspring distribution
µ.

2. Conditionally on B(T ), the variables c(x)− cB(x) are independent, with distribution
characterized by

E
[
sc(x)−cB(x)

∣∣B(T )
]

=
f (cB(x))(qs)

f (cB(x))(q)

for every s ∈ [0, 1], where f (k) stands for the k-th derivative of f .

3. Conditionally on B(T ) and the variables c(x) for x ∈ B(T ), the sets Ax for x ∈ B(T )

are independent and, for every x, the set Ax is uniformly distributed among all the
subsets of {1, 2, . . . , c(x)} with cB(x) elements.

4. Conditionally on everything above, the trees T [y] for y ∈ B′(T ) are independent
Galton–Watson trees with offspring distribution µ̃.

In particular, this decomposition implies that, for every h ≥ 1, conditionally on Bh(T )

and on the set ∂Bh(T )∩B(T ), the trees T [x] for x ∈ ∂Bh(T )∩B(T ) are i.i.d. copies of T .
Therefore, the slices S[x] for x ∈ ∂Bh(T )∪B(T ) are i.i.d. copies of S. This “self-similarity”
property of S will be used a lot later on.

We end this section by adapting these notions to the more general setting of strips
glued in the faces of a tree with no leaf. We recall that a strip is an infinite, one-ended
planar map with an infinite, simple boundary, such that all the faces except the outer
face have finite degree. A strip is also rooted at a root vertex on its boundary. Let t be
an infinite plane tree with no leaf. We draw t in the plane in such a way that its edges
do not intersect (except at a common endpoint), and every compact subset of the plane
intersects finitely many vertices and edges. Then t separates the plane into a countable
family (fi)i≥0 of faces, where f0 is the face delimited by the leftmost and the rightmost
rays of t, and the other faces are enumerated in a deterministic fashion. For every index
i ≥ 0, we denote by ρi the lowest vertex of t adjacent to fi, and by hi its height. Note
that this vertex is always unique. On the other hand, for every vertex v of t, there are
exactly ct(v)− 1 faces fi such that ρi = v.

Let (si)i≥0 be a family of random strips. We denote byM (t, (si)i≥0) the infinite planar
map obtained by gluing si in the face fi for every i ≥ 0, in such a way that the root vertex
of si coincides with ρi for every i. We also denote by S (t, (si)i≥0) the map obtained by
gluing si in the face fi for every i > 0 (this is a map with an infinite boundary analog to
the slice S). If v is a vertex of t, we also define the “slice of descendants” of v as the map
enclosed between the leftmost and the rightmost rays of t started from v. We denote it
by S (t, (si)) [v].

We note that causal maps are a particular case of this construction. This is trivial
for supercritical Galton–Watson trees with no leaf. Thanks to Theorem 1.1, this can be
extended to the case µ(0) > 0, with B(T ) playing the role of t. This time, however, the
strips are random, but they are not independent. Indeed, if v is a vertex of B(T ) and
w one of its children in B(T ), the children of v on the left of w and the children on the
right of w belong to different strips. However, by points 2 and 3 of Theorem 1.1, the
numbers of children on the left and on the right are not independent, except in some
very particular cases (for example if µ is geometric).

In what follows, we will study maps of the formM (T, (si)i≥0), where T is a super-
critical Galton–Watson tree with no leaf. We notice right now that if the strips si are
random and i.i.d., then the slice S (T, (si)) has the same self-similarity property as the
causal slices of the form S(T ). Let h > 0. We condition on Bh(T) and on all the strips si
such that hi ≤ h− 1. Then the trees T[v] for v ∈ ∂Bh(T) are independent copies of T, so
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the slices S (T, (si)) [v] for v ∈ ∂Bh(T) are i.i.d. copies of S (T, (si)). This will be useful
in Section 3.

2 Metric hyperbolicity properties

The goal of this section is to prove the following result, of which Theorem 0.2 is a
particular case. Note that we make no assumption about the strips si below. In particular,
they may be deterministic or random, and may depend on the tree T.

Theorem 2.1. Let T be a supercritical Galton–Watson tree with no leaf, and let (si) be a
sequence of strips. Then:

1. the mapM (T, (si)) is a.s. weakly anchored hyperbolic,

2. the mapM (T, (si)) a.s. admits bi-infinite geodesics.

In all this section, we will only deal with the general case ofM (T, (si)) where T is a
supercritical Galton–Watson tree with no leaf and the si are strips. We will writeM for
M (T, (si)) and S for S (T, (si)). Our main tool will be the forthcoming Proposition 2.2,
which roughly shows that S is hard to cross horizontally at large heights.

2.1 A hyperbolicity result about slices

We call γ` and γr the left and right boundaries of S, and ρ its root (note that γ` and
γr may have an initial segment in common near ρ). Both points of Theorem 2.1 will be
consequences of the following hyperbolicity result about S.

Proposition 2.2. There is a (random) K ≥ 0 such that any geodesic in S from a point
on γ` to a point on γr contains a point at distance at most K from ρ.

We first give a very short proof of this proposition in the particular case of a causal
slice of the form S(T ). Let i, j > 0 and let γ be a geodesic in S(T ) from γ`(i) to γr(j). Let
v0 be the lowest point of γ, and let h0 be the height of v0. By the structure of S(T ), each
step of γ is either horizontal or vertical. Since the height varies by at most 1 at each
vertical step, we need at least (i−h0) + (j−h0) vertical steps. Moreover, for every h ≥ 0,
let ZB

h be the number of vertices of B(T ) at height h. Then γ needs to cross all the trees
T [x] for x ∈ B(T ) at height h0, so γ contains at least ZB

h0
horizontal steps. On the other

hand, γ is a geodesic so it is shorter than the “obvious” path following γ` from γ`(i) to ρ
and then γr until γr(j). Therefore, we have

i+ j − 2h0 + ZB
h0
≥ |γ| ≥ i+ j,

so ZB
h0
≤ 2h0. However, ZB has a.s. exponential growth, so this inequality only holds for

finitely many values of h0, so h0 is bounded independently of i and j.
To generalize this proof, there are two obstacles: first, the branches of the tree are

no longer geodesics in S in the general case, so a single step may change the height by
more than one. Second, an edge of S can play the role both of a vertical and a horizontal
step if it crosses a strip and joins two vertices of T at different heights. However, we
can still cross at most one strip per step in this way.

In order to prove the general Proposition 2.2, we first state a lemma showing roughly
that if a path in T with nondecreasing height stays at height h during a time subexpo-
nential in h, it cannot cross S from left to right.

More precisely, we fix a sequence of positive integers (ui)i≥0 and a height k ≥ 0. Let
x ∈ ∂Bk(T). We define by induction two sequences (yi)i≥k and (zi)i≥k of vertices of T
with yi, zi ∈ ∂Bi(T) as follows (see Figure 4 for an example):

(i) yk = x,
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γrγ`

∂Bk(T)

∂Bk+1(T)

∂Bk+2(T)

∂Bk+3(T)

ρ

x = yk zk

yk+1 zk+1

yk+2

zk+2

yk+3 zk+3

Figure 4: The sequences (yi)i≥k and (zi)i≥k. Here we have taken ui = 1 for every i. The
tree T is in red.

(ii) for every i ≥ k, if there are at least ui vertices on the right of yi on ∂Bi(T) (yi
excluded), then zi is the ui-th such vertex,

(iii) if there are less than ui vertices of ∂Bi(T) on the right of yi, the sequences (yi)

and (zi) are killed at time i,

(iv) for every i ≥ k, if zi /∈ γr, the vertex yi+1 is the rightmost child of zi in T. If zi ∈ γr,
both sequences are killed.

We call (yi)i≥k and (zi)i≥k the sequences escaping from x on the right. We say that x is
u-far from γr if the sequences (yi) and (zi) survive, that is, yi and zi are well-defined and
do not hit γr for all i ≥ k.

Note that being u-far from γr is a monotonic property: if we shift the point x to the
left, then the points yi and zi are also shifted to the left. Hence, if a point x ∈ ∂Bk(T) is
u-far from γr and x′ ∈ ∂Bk(T) lies on the left of x, then x′ is also u-far from γr. We can
similarly define the sequences escaping on the left, and a vertex u-far from γ`.

Lemma 2.3. Assume u is subexponential, i.e. ui = o(ci) for every c > 1. Then there is
a (random) K such that for any k ≥ K, the vertex γ`(k) is u-far from γr and the vertex
γr(k) is u-far from γ`.

Proof. The idea is to reduce the proof to the study of a supercritical Galton–Watson
process where ui individuals are killed at generation i. It is enough to show that γ`(k)

is u-far from γr for k large enough. Note that if γ`(k) is u-far from γr and (yi)i≥k is its
sequence escaping on the right, then (yi)i≥k+1 is the sequence escaping on the right of
yk+1, so yk+1 is also u-far from γr and, by monotonicity, so is γ`(k + 1). Therefore, it is
enough to show that there is k ≥ 0 such that γ`(k) is u-far from γr.

Let k ≥ 0 and x = γ`(k). Let (yi)i≥k and (zi)i≥k be the sequences escaping from x

on the right. We also denote by Zki the number of vertices of ∂Bi(T) lying (strictly) on
the right of zi. We first remark that the evolution of the process Zk can be described
explicitly. We have Zkk = Zk − 1. Moreover, we recall that µ is the offspring distribution
of T. Conditionally on (Zkk , Z

k
k+1, . . . , Z

k
i ), the variable Zki+1 has the same distribution as Zki∑

j=1

Xi,j

− ui+1

+

,

EJP 24 (2019), paper 86.
Page 10/43

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP341
http://www.imstat.org/ejp/


Supercritical causal maps

where the Xi,j are i.i.d. with distribution µ. Moreover, the process Zk is killed when
it hits 0. To prove our lemma, it is enough to show that P

(
∀i ≥ k, Zki > 0

)
goes to 1

as k goes to +∞. Since the process Z describing the number of individuals at each
generation is a supercritical Galton–Watson process, there is a constant c > 1 such that

P
(
∂Bk(T) > ck

)
−−−−−→
k→+∞

1.

Therefore, by a monotonicity argument, it is enough to prove that

P
(
∀i ≥ k, Zki > 0

∣∣Zkk = bckc
)
−−−−−→
k→+∞

1.

To prove this, we show that Zk dominates a supercritical Galton–Watson process. Let
δ > 0 be such that (1− δ)

∑
i≥0 iµ(i) > 1. Let also Z∗ be the Markov chain defined by

Z∗k = bckc and Z∗i+1 =

 Z∗i∑
j=1

Xi,j

−Ni+1,

where the Xi,j are i.i.d. with distribution µ and, conditionally on (Xi,j)i,j≥0 and (Nj)1≤j≤i,

the variable Ni+1 has binomial distribution with parameters δ and
∑Z∗i
j=1Xi,j . In other

words, Z∗ is a Galton–Watson process in which at every generation, right after reproduc-
tion, every individual is killed with probability δ. By our choice of δ, the process Z∗ is a
supercritical Galton–Watson process and, on survival, grows exponentially. By an easy
large deviation argument, we have

P
(
∀i ≥ k,Ni ≥ ui|Z∗k = bckc

)
−−−−−→
k→+∞

1.

If this occurs, then Z∗i ≤ Zki for every i ≥ k (by an easy induction on i), so

P
(
∀i ≥ k, Zki ≥ Z∗i > 0|Zkk = bckc

)
−−−−−→
k→+∞

1

and the lemma follows.

The proof of Proposition 2.2 given Lemma 2.3 only relies on deterministic considera-
tions.

Proof of Proposition 2.2. We note that for any a ∈ T, the slice S[a] is of the form
S (T[a], (s′i)) where T[a] is a supercritical Galton–Watson tree with no leaf, so we can
apply Lemma 2.3 to S[a].

Now let a, a′ be two vertices of T, neither of which is an ancestor of the other,
as on Figure 5. Then S[a] and S[a′] are disjoint. Without loss of generality, we may
assume that S[a] lies on the right of S[a′]. Let K (resp. K ′) be given by the conclusion
of Lemma 2.3 for S[a] (resp. S[a′]) and ui = 2 (i+ max(d(ρ, a), d(ρ, a′))) + 1. We take
K ′′ = max (d(ρ, a) +K + 1, d(ρ, a′) +K ′ + 1). We consider a geodesic γ from a vertex
γ`(m) to a vertex γr(n) in S. Let k be the minimal height of γ ∩T. We assume k > K ′′,
and we will get a contradiction.

Let b be the leftmost vertex of S[a]∩T that lies at height k, and let b′ be the rightmost
vertex of S[a′] ∩T that lies at height k (cf. Figure 5). By Lemma 2.3 and our choice of
K ′′, the point b is ũ-far from γr in S and b′ is ũ-far from γ` in S, where ũi = 2i + 1 (the
change of the sequence u to the sequence ũ is due to the fact that the distances to the
root are not the same in S[a] and S, so the sequence needs to be shifted). But any vertex
of ∂Bk(T) lies either on the left of b or on the right of b′, so it is either ũ-far from γ` or
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S[a′] S[a]

γrγ`

∂Bk(T)

a′

a

ρ

x b′ = b′k

b′k+1

b′k+2

b = bk

bk+1

bk+2

Figure 5: Proof of Proposition 2.2: the point b is u-far from γr and b′ is u-far from γ`, so
any point on ∂Bk(T) is u-far from either γr or γ`. Here we have taken ui = 1.

from γr (see Figure 5). In particular, let x be the first point of γ lying on T at height k.
We may assume that x is ũ-far from γr, the other case can be treated in the same way.

Recall that n is the height of the endpoint of γ. For every k ≤ i ≤ n, let

ji = max
{
j ∈ [[0, |γ|]]

∣∣γ(j) ∈ T and h (γ(j)) ≤ i
}
,

and let xi = γ(ji). Note that we have h(xi) ≤ i, but since the height can increase by
more than 1 in one step, the inequality may be strict.

Let also (yi)i≥k and (zi)i≥k be the sequences escaping from x on the right in S (for
ũi = 2i+ 1). By our assumption that x is ũ-far from γr, these sequences are well-defined
and do not hit γr. Moreover, for every k ≤ i ≤ n, the vertices xi and zh(xi) are both in
T and at the same height h(xi). We claim that for every i ≥ k, the vertex xi lies strictly
on the left of the vertex zh(xi). This is enough to prove the proposition, since then xn
cannot lie on γr.

We show this claim by induction on i, and we start with the case i = k. Let j∗ be the
index such that x = γ(j∗). The vertices x = γ(j∗) and xk = γ(jk) both lie on ∂Bk(T), so
the distance in S between them is at most 2k. Hence, since γ is a geodesic, we have
|jk − j∗| ≤ 2k. Now, we consider the slices S[v] for v ∈ ∂Bk(T). These slices are disjoint
and, by definition of k, the path (γ(j))j∗≤j≤jk does not cross T below height k, so it
cannot intersect more than 2k < ũk of these slices, which implies that xk lies on the left
on zk.

We now move on to the induction step. We assume xi lies strictly on the left of zh(xi).
We recall that h(xi+1) ≤ i+ 1, and split the proof in two cases.

• If h(xi+1) < i+ 1, then xi+1 is the last point of γ at height at most i+ 1, so it is also
the last point of γ at height at most i, so xi+1 = xi. In particular, it is strictly on the
left of zh(xi+1) = zh(xi).

• If h(xi+1) = i+ 1, we need to introduce some more notation that is summed up on
Figure 6. We denote by x′ the first point of γ after xi that belongs to T (note that
h(x′) ≥ i+1 by definition of xi), and by x′′ the ancestor of x′ at height i+1. Let also
y′ be the leftmost descendant of zh(xi) at height i + 1. Note that by construction
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xi zh(xi)

x′

x′′ y′ yi+1 xi+1 zi+1

< ũi+1

ũi+1

h(xi)

i

i+ 1

Figure 6: The induction step in the proof of Proposition 2.2. The path γ between xi
and xi+1 is in blue. Branches of T are in red. The dashed lines are not edges of S, but
indicate the height. We see that x′′ is on the left of y′ which is on the left of yi+1, so xi+1

is on the left of zi+1.

of the sequences (yi) and (zi), the vertex y′ is on the left of yi+1. We know that
between xi and x′, the path γ does not cross T, so xi and x′ must be adjacent to
the same strip. Since xi is strictly on the left of zh(xi), it implies that x′ lies on the
left of any descendant of zh(xi), so x′′ is on the left of y′, and therefore on the left of
yi+1. Moreover, by the definition of xi, all the vertices of γ between xi and xi+1 that
belong to T have height at least i+ 1. By the same argument as before, the length
of the part of γ between xi and xi+1 is at most h(xi) + h(xi+1) ≤ 2(i + 1) < ũi+1.
Hence, this part cannot cross ũi+1 of the slices S[v] with v ∈ ∂Bi+1(T), so the
distance between x′′ and xi+1 along ∂Bi+1(T) is less than ũi+1. Since x′′ is on the
left of yi+1 and zi+1 is at distance ũi+1 on the right of yi+1, it follows (see again
Figure 6) that xi+1 is strictly on the left of zi+1, which concludes the induction and
the proof of the proposition.

2.2 Weak anchored hyperbolicity and bi-infinite geodesics

We can now deduce Theorem 2.1 from Proposition 2.2.

Proof of point 1 of Theorem 2.1. Let (ai)1≤i≤4 be four points of T, neither of which is
an ancestor of another. The slices S[ai] are disjoint and satisfy the assumptions of
Proposition 2.2. For every 1 ≤ i ≤ 4, let Ki be given by Proposition 2.2 for S[ai]. Now
consider three vertices x, y, z ofM and three geodesics γxy (resp. γyz, γzx) from x to y
(resp. y to z, z to x) that surround ρ. There is an index 1 ≤ i ≤ 4 such that S[ai] contains
none of the points x, y and z. Assume it is S[a1]. Since the triangle formed by γxy, γyz
and γzx surrounds ρ, one of these three geodesics must either intersect the path in T

from ρ to a1, or cross the slice S[a1], as on Figure 7. We assume this geodesic is γxy. In
the first case, γxy contains a point at distance at most h(a1) from ρ. In the second case,
assume γxy crosses S[a1] from left to right. Let γ` and γr be respectively the left and
right boundaries of S[a1]. Let v be the last point of γxy that lies on γ` and let w be the
first point of γxy after v that lies on γr. Then the portion of γxy between v and w is a
geodesic inM so it is also a geodesic in S[a1] that crosses S[a1]. Hence, it contains a
point z such that d(z, a1) ≤ K1. This concludes the proof by taking

K = max
1≤i≤4

(Ki + h(ai)) .
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ρ
a1

a2 a3

a4

S[a1]

S[a2] S[a3]

S[a4]
x

y

z

v

Figure 7: Illustration of the proof of point 1 of Theorem 2.1. Here S[a1] contains none of
the vertices x, y and z, so it is crossed by the geodesic from x to y, and contains a point
v at bounded distance from ρ.

ρ

a1a2 S[a1]

S[a2]

γ`(i)

γr(j)

Case (ii)
Case (i)

Case (iii)

Figure 8: Reinforcement of Proposition 2.2. In blue, the geodesic γ. It must intersect a
geodesic from ρ to a1 or a2, or cross S[a1] or S[a2].

Proof of point 2 of Theorem 2.1. Let a1, a2 ∈ T, neither of which is an ancestor of the
other, so that S[a1] and S[a2] are disjoint. Let γ` and γr be the left and right boundaries
of S[a1]. The idea of our construction is the following: we first “approximate” the paths
γ` and γr by two infinite geodesics γ̃` and γ̃r, and we then try to connect γ̃` to γ̃r in the
shortest possible way. Note that the first step is needed because γr and γ` may not
be geodesics in the general case. Before making this construction explicit, we need to
reinforce slightly Proposition 2.2.

By Proposition 2.2, we know that any geodesic γ in S[a1] between a point of γ` and a
point of γr contains a vertex at bounded distance from ρ. We claim that this is also the
case if we consider geodesics inM instead of S[a1]. Indeed, let K1 (resp. K2) be given
by Proposition 2.2 for S[a1] (resp. S[a2]). Let i, j ≥ 0 and let γ be a geodesic from γ`(i) to
γr(j) inM. We are in one of the three following cases (cf. Figure 8):

(i) γ intersects the path in T from ρ to a1 or from ρ to a2,

(ii) γ crosses S[a1],

(iii) γ crosses S[a2].

In all three cases, γ contains a point at distance at most K from ρ, where

K = max (h(a1) +K1, h(a2) +K2) . (2.1)

We can now build our infinite geodesics γ̃` and γ̃r. For every n, let γn` be a geodesic
from ρ to γ`(n). By an easy compactness argument, there is an infinite geodesic γ̃` such
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that, for every i ≥ 0, there are infinitely many n such that γ̃`(i) = γn` (i). We build an
infinite geodesic γ̃r from γr in a similar way.

For every i, j ≥ 0, we define

ai,j = i+ j − dM (γ̃`(i), γ̃r(j)) .

This quantity measures “by how much” the concatenation of γ̃` and γ̃r between γ̃`(i) and
γ̃r(j) is not a geodesic. We note that for any i, j ≥ 0, we have

dM (γ̃`(i+ 1), γ̃r(j)) ≤ dM (γ̃`(i+ 1), γ̃`(i)) + dM (γ̃`(i), γ̃r(j)) = 1 + dM (γ̃`(i), γ̃r(j)) ,

so ai+1,j ≥ ai,j , so ai,j is nondecreasing in i. Similarly, it is nondecreasing in j. We claim
the following.

Lemma 2.4. Almost surely, (ai,j)i,j≥0 is bounded.

Proof of Lemma 2.4. Let i, j ≥ 0. By the definition of γ̃` and γ̃r, there are two indices m
and n such that γ̃`(i) lies on a geodesic from ρ to γ`(m) and γ̃r(j) lies on a geodesic from
ρ to γr(n). Therefore, we have

dM (γ`(m), γr(n)) ≤ dM (γ`(m), γ̃`(i)) + dM (γ̃`(i), γ̃r(j)) + dM (γ̃r(j), γr(n))

= dM (ρ, γ`(m))− i+ dM (γ̃`(i), γ̃r(j)) + dM (ρ, γr(n))− j
= dM (ρ, γ`(m)) + dM (ρ, γr(n))− ai,j .

On the other hand, we know that for any m,n ≥ 0, any geodesic from γ`(m) to γr(n)

contains a vertex v0 at distance at most K from ρ, where K is given by (2.1). Therefore,
we have

dM (γ`(m), γr(n)) = dM (γ`(m), v0) + dM (v0, γr(n))

≥ dM (γ`(m), ρ) + dM (γr(n), ρ)− 2dM(ρ, v0)

≥ dM (γ`(m), ρ) + dM (γr(n), ρ)− 2K.

By combining the last two equations, we obtain ai,j ≤ 2K for every i, j ≥ 0.

The construction of a bi-infinite geodesic is now easy. Let i0, j0 be two indices such
that ai0,j0 = sup{ai,j |i, j ≥ 0}, and let d = dM (γ̃`(i0), γ̃r(j0)). Let also γ̂ be a geodesic
from γ̃`(i0) to γ̃r(j0) inM. We define a bi-infinite path γ as follows:

γ(i) =


γ̃`(i0 − i) if i ≤ 0,

γ̂(i) if 0 ≤ i ≤ d,
γ̃r(i− d+ j0) if i ≥ d.

We finally check that this is indeed a bi-infinite geodesic. Let i ≥ i0 and j ≥ j0. We have
ai,j = ai0,j0 , so

dM (γ̃`(i), γ̃r(j)) = d+ (i− i0) + (j − j0),

so d (γ(i0 − i), γ(d+ j − j0)) = (d+ j − j0)− (i0 − i). Therefore, we have d (γ(i′), γ(j′)) =

j′ − i′ for i′ ≤ 0 small enough and j′ ≥ 0 large enough, so γ is a bi-infinite geodesic.

3 Poisson boundary

3.1 General setting

The goal of this subsection is to build a compactification of maps that, as we will
later prove, is under some assumptions a realization of their Poisson boundary. We
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will perform this construction directly in the general frameworkM =M (T, (si)). This
construction is exactly the same as the construction performed for the PSHIT in Section
3.1 of [12].

We recall that ∂T is the set of infinite rays from ρ in T. If γ, γ′ ∈ ∂T, we write γ ∼ γ′
if γ = γ′ or if γ and γ′ are “consecutive” in the sense that there is no ray between them
(in particular, if γ` and γr are the leftmost and rightmost rays of T, then γ` ∼ γr). It is
equivalent to saying that γ and γ′ are the left and right boundaries of some strip si in
the mapM. Note that a.s., every ray of T contains infinitely many branching points, so
no ray is equivalent to two distinct other rays. It follows that ∼ is a.s. an equivalence
relation for which countably many equivalence classes have cardinal 2, and all the others
have cardinal 1. We write ∂̂T = ∂T/ ∼ and we denote by γ → γ̂ the canonical projection
from ∂T to ∂̂T. Finally, for every strip si, the left and right boundaries of si correspond
to the same point of ∂̂T, that we denote by γ̂i.

Our goal is now to define a topology onM∪ ∂̂T. It should be possible to define it by
an explicit distance, but such a distance would be tedious to write down, so we prefer
to give an “abstract” construction. Let si and sj be two distinct strips of M, and fix
h > 0 such that both si and sj both intersect Bh(T). ThenM\ (Bh(M) ∪ si ∪ sj) has two
infinite connected components, that we denote by (si, sj) and (sj , si) (the vertices on the
boundaries of si and sj do not belong to (si, sj) and (sj , si)). We also write

∂̂ (si, sj) = {γ̂| γ is a ray of T such that γ(k) ∈ (si, sj) for k large enough}.

We define ∂̂ (sj , si) similarly. Note that ∂̂ (si, sj) and ∂̂ (sj , si) are disjoint subsets of ∂̂T,

and their union is ∂̂T\{γ̂i, γ̂j}.
We can now equip the setM∪ ∂̂T with the topology generated by the following open

sets:

• the singletons {v}, where v is a vertex ofM,

• the sets (si, sj) ∪ ∂̂ (si, sj), where si and sj are two distinct strips ofM.

This topology is separated (if γ̂1 6= γ̂2, then there are two strips separating γ1 and γ2)
and has a countable basis, so it is induced by a distance. Moreover, any open set of our
basis intersectsM, soM is dense inM∪ ∂̂T. Finally, we state an intuitive result about
the topology ofM∪ ∂̂T. Its proof in the particular case of the PSHIT can be found in
[12], and adapts without any change to the general case.

Lemma 3.1. The spaceM∪ ∂̂T is compact, and ∂̂T is homeomorphic to the unit circle.

3.2 Transience away from the boundary in causal slices

The goal of this section is to prove Proposition 3.2, which is the main tool in the
proof of Theorem 0.3. We recall that S is the causal slice associated to a supercritical
Galton–Watson tree T , and ∂S is the boundary of S, i.e. the set of vertices of S that
are either the leftmost or the rightmost vertex of their generation. We also write
τ∂S = min{n ≥ 0|Xn ∈ ∂S}, where (Xn) is the simple random walk on S.

Proposition 3.2. Almost surely, there is a vertex x ∈ S such that

PS,x (τ∂S = +∞) > 0.

Note that if such a vertex x exists, then we have PS,v(Xn /∈ ∂S for n large enough) >

0 for every vertex v ∈ S. The proof of Proposition 3.2 is based on estimates of effective
resistances. We will use the following inequality, that holds for every graph and every
vertex x:

PS,x (τ∂S < +∞) ≤ RSeff(x↔ {∂S,∞})
RSeff(x↔ ∂S)

≤ RSeff(x↔∞)

RSeff(x↔ ∂S)
. (3.1)
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For example, this is a particular case of Exercise 2.36 of [26]. We will find a sequence
(xn) of vertices satisfying the following two properties:

1. we have RSeff(xn ↔ ∂S)→ +∞ a.s. when n→ +∞,

2. for every n ≥ 0, the resistance RSeff(xn ↔ ∞) is stochastically dominated by
RSeff(ρ↔∞). In particular, a.s.,

(
RSeff(xn ↔∞)

)
has a bounded subsequence.

By (3.1), this will guarantee that

PS,xn (τ∂S < +∞) −−−−−→
n→+∞

0

along some subsequence, which is enough to prove Proposition 3.2.
We choose for the sequence (xn) the nonbacktracking random walk on the backbone

of T . More precisely, we take x0 = ρ and, for every n ≥ 0, conditionally on S and
x0, . . . , xn, the vertex xn+1 is chosen uniformly among the children of xn in B(T ). We
can give a “spinal decomposition” of B(T ) along (xn). We recall that µ is the offspring
distribution of B(T ), cf. (1.1). For every n ≥ 0, let Ln (resp. Rn) be the number of
children of xn in B(T ) on the left (resp. on the right) of xn+1. A vertex v of B(T ) will be
called a spine brother if the parent of v is equal to xn for some n but v 6= xn+1. Then the
pairs (Ln, Rn) are i.i.d. with distribution ν given by

P (Ln = `, Rn = r) = ν ({(`, r)}) =
1

r + `+ 1
µ(r + `+ 1). (3.2)

Moreover, conditionally on (Ln) and (Rn), the backbones of the trees of descendants
of the spine brothers are i.i.d. Galton–Watson trees with offspring distribution µ. The
distribution of T conditionally on this backbone is then given by Theorem 1.1. In
particular, for every n ≥ 0, the tree of descendants of xn has the same distribution as T ,
so S[xn] has the same distribution as S.

Therefore, for every n, we have

RSeff(xn ↔∞) ≤ RS[xn]
eff (xn ↔∞),

where R
S[xn]
eff (xn ↔ ∞) has the same distribution as RSeff(ρ ↔ ∞). This proves the

second property that we wanted (xn) to satisfy. Hence, it only remains to prove that
RSeff(xn ↔ ∂S) almost surely goes to +∞, which is the goal of the next lemma.

Lemma 3.3. There are disjoint vertex sets (Ak)k≥0, satisfying the following properties:

(i) for any k ≥ 1, the set Ak separates ∂S from all the sets Ai with i > k, and from xn
for n large enough,

(ii) the parts of S lying between A2k and A2k+1 for k ≥ 0 are i.i.d.,

(iii) we have RSeff(A2k ↔ A2k+1) > 0 a.s. for every k ≥ 0.

Proof of Proposition 3.2 given Lemma 3.3. Fix k and choose n large enough, so that
xn is separated from ∂S by A0, A1, . . . , A2k−1. Since A0, . . . , A2k−1 are disjoint cutsets
separating xn from ∂S, we have

RSeff(xn ↔ ∂S) ≥ RSeff(∂S ↔ A0) +RSeff(xn ↔ A2k−1) +

2k−2∑
i=0

RSeff(Ai ↔ Ai+1)

≥
k−1∑
i=0

RSeff(A2i ↔ A2i+1).

Since the variables RSeff(A2i ↔ A2i+1) for 0 ≤ i ≤ k − 1 are i.i.d. and a.s. positive, this
goes to +∞ as k → +∞, so we have RSeff(xn ↔ A0) → +∞ a.s. when n → +∞, which
ends the proof.
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ρ

(xn)A0 A1

xh0

xh′0

xh1

xh′1

Figure 9: The slice S with the sequences of vertices (xn) (in red), and the separating
sets Ak (in blue). Here we have h0 = 1, h′0 = 3, h1 = 5 and h′1 = 6.

Remark 3.4. The law of large numbers even shows that there is a constant c > 0 such
that, for n large enough, we have RSeff(xn ↔ ∂S) ≥ cn. This is quite similar to the
resistance estimates proved in [7] in the case where T is the complete binary tree, and it
might be interesting to apply our results to the study of the Gaussian free field on causal
maps. Unfortunately, our estimates only hold in “typical” directions, and not uniformly
for all the vertices. We also note that the idea to “cut” S along the sets Ak was inspired
by the proof of Lemma 1 of [7].

We now build the subsets Ak. We define by induction the heights hk and h′k for k ≥ 0

by

h0 = min{n ≥ 0|Ln > 0},
h′k = min{n > hk|Rn > 0},

hk+1 = min{n > h′k|Ln > 0}.

Note that the pairs (Ln, Rn) are i.i.d. with P(Ln > 0) > 0 and P(Rn > 0) > 0, so hk and
h′k are a.s. well-defined for every k. We define Ak as the union of the leftmost ray of B(T )

from xhk , the rightmost ray of B(T ) from xh′k and the vertices xi with hk ≤ i ≤ h′k (see
Figure 9).

It is easy to see that the sets Ak are disjoint and that Ak separates ∂S from Ai for
every i > k, and from xn for n large enough, so they satisfy property (i) of Lemma 3.3.

For every k ≥ 0, let Uk be the sub-map of S whose vertices are the vertices between
Ak and Ak+1 (the vertices of Ak and Ak+1 are included), rooted at xhk . By using (3.2)
and the backbone decomposition, it is quite straightforward to prove that the maps U2k

for k ≥ 0 are i.i.d.. We do not give a precise description of the distribution of Uk, the only
property of Uk that we will need later is that it contains a copy of T on each side of the
spine.

Remark 3.5. It is still true that the Uk for k ≥ 0 are identically distributed. However, Uk
and Uk+1 are not independent. Indeed, for hk+1 ≤ n < h′k+1, the variables Ln and Rn are
not independent, and Ln affects Uk+1, whereas Rn affects Uk. This is why we restrict
ourselves to even values of k.
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It only remains to prove property (iii) in Lemma 3.3. Let U be distributed as the Uk,
and let Ab (resp. At) be its bottom (resp. top) boundary, playing the same role as Ak
(resp. Ak+1). The proof that RUeff (Ab ↔ At) > 0 relies on a duality argument. We first
recall a classical result about duality of resistances in planar maps. Let M be a finite
planar map drawn in the plane, and let a and z be two vertices adjacent to its outer face.
We draw two infinite half-lines from a and z that split the outer face in two faces a∗ and
z∗. Now let M∗ be the dual planar map whose vertices are a∗, z∗ and the internal faces
of M . Then we have

RMeff(a↔ z) =
(
RM

∗

eff (a∗ ↔ z∗)
)−1

. (3.3)

In our case, the infinite graph U has two ends∞` (on the left of the spine) and∞r (on
the right). Informally, we would like to write

RUeff(Ab ↔ At) =
(
RU
∗

eff (∞∗` ↔∞∗r)
)−1

, (3.4)

which would reduce the problem to the proof of RU
∗

eff (∞∗` ↔∞∗r) < +∞. Our first job will
be to state and prove (a proper version of) (3.4).

More precisely, we denote by U` (resp. Ur) the part of U lying on the left (resp. on the
right) of the spine. We also define U∗ as the dual map of U in the following sense: the
vertices of U∗ are the finite faces of U , and for every edge of U that does not link two
vertices of Ab or two vertices of At, we draw an edge e∗ between the two faces adjacent
to e. Let θ∗ be a flow on U∗ with no source. We assume that θ∗ is unitary in the sense
that the mass of θ∗ crossing the spine from left to right is equal to 1. We recall that the
energy E(θ∗) of θ∗ is the sum over all edges e∗ of U∗ of θ∗(e∗)2. For every n ≥ 0, let Ab(n)

(resp. At(n)) be the set of vertices of Ab (resp. At) at height at most n. We consider
the map U(n) obtained by cutting U above height n. The restriction of θ to the dual of
this map becomes a unitary flow crossing U(n)∗ from left to right. Therefore, the dual
resistance from left to right in U(n)∗ is at most E(θ∗) so, by (3.3), we obtain

RUeff(Ab(n)↔ At(n)) ≥ E(θ∗)−1

and, by letting n→ +∞, we get RUeff(Ab ↔ At) ≥ E(θ∗)−1. In particular, if there is such a
flow θ∗ with finite energy, then RUeff(Ab ↔ At) > 0 and Lemma 3.3 is proved.

We now define U` (resp. Ur) as the part of U lying on the left (resp. on the right) of
the spine. Let f` and fr be two faces of U lying respectively on the left and on the right of
the same edge of the spine. A simple way to construct a unitary flow θ∗ with no sources
is to concatenate a flow θ∗` from infinity to f` in U∗` , a flow of mass 1 in the dual edge
from f` to fr and a flow θ∗r from fr to infinity in U∗r . For this flow to have finite energy,
we need θ∗` and θ∗r to have finite energy, so we need both U∗` and U∗r to be transient.

We now define S∗ as the dual of the slice S (as above, the vertices of S∗ are the
inner faces of S). We note that, for every vertex v0 ∈ U` ∩B(T ) that does not belong to
the spine, the tree of descendants of v0 has the same distribution as T and is entirely
contained in U`. Therefore, U` contains a copy of S, so U∗` contains a copy of S∗, and the
same is true for U∗r . Hence, we have reduced the proof of Proposition 3.2 to the next
result.

Lemma 3.6. The dual slice S∗ is a.s. transient.

Proof. We will show that we can embed a transient tree in S∗. The idea will be to follow
the branches of the tree T in the dual, to obtain a tree T ∗ that is similar to T . However,
vertices of high degree become obstacles: if a vertex v of T has degree d in T , we need d
dual edges to “move around” v in S∗. Therefore, it becomes difficult to control the ratio
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ρ

v0
v∗0

Figure 10: The construction of the dual tree T ∗ (in blue) from the tree T [v0]bdd (in red).
Here, we have taken cmax = 3. The vertices of T ∗ are the faces adjacent to the vertices
of T [v0]bdd at their bottom-left corners.

between resistances in T ∗ and in T . To circumvent this problem, we will use the fact
that T contains a supercritical Galton–Watson tree with bounded degrees.

More precisely, we fix a constant cmax large enough to have

cmax∑
i=0

iµ(i) > 1.

If t is a (finite or infinite) tree, for every vertex v with more than cmax children, we remove
all the edges between v and its children, and we call tbdd the connected component of
the root. If T ′ is a Galton–Watson tree with distribution µ, then T ′bdd is a Galton–Watson
tree with offspring distribution µbdd given by

µbdd(i) =


0 if i > cmax,

µ(i) if 0 < i ≤ cmax,

µ(0) +
∑
j>cmax

µ(j) if i = 0.

In particular, we have
∑
i iµbdd(i) =

∑cmax

i=0 iµ(i) > 1, so T ′bdd is supercritical, and it
survives with positive probability. But T is a Galton–Watson tree conditioned to survive,
so it contains infinitely many i.i.d. copies of T (take for examples the trees of descendants
of the children of the right boundary). Therefore, there is a.s. a vertex v0 ∈ T that is not
on the left boundary of S, such that T [v0]bdd is a Galton–Watson tree and survives. In
particular, it is transient and, for every v ∈ T [v0]bdd, the number of children of v in T is
bounded by cmax.

From here, can can build a tree T ∗ in S∗ whose branches follow the branches of
T [v0]bdd on their left, and which circumvents branching points of T [v0]bdd by the top.
See Figure 10 for the construction of this tree. The tree T ∗ is then a subgraph of S∗.
Therefore, it is enough to prove that T ∗ is transient. But since the vertex degrees in
T [v0]bdd are bounded, it is easy to see that T [v0]bdd and T ∗ are quasi-isometric, so T ∗ is
also transient (by e.g. Section 2.4.4 of [17]).
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3.3 Consequences on the Poisson boundary

We recall that (Xn) is the simple random walk on C started from ρ. By a result of
Hutchcroft and Peres (Theorem 1.3 of [19]), the first point of Theorem 0.3 implies the
second.

Proof of Theorem 0.3. We first show the almost sure convergence of (Xn). By compact-
ness (Lemma 3.1), it is enough to prove that (Xn) a.s. has a unique subsequential limit
in ∂̂T . Note that if γ̂1 6= γ̂2 are two distinct points of ∂̂T , then there are two vertices
v, v′ ∈ B(T ) such that the slices S[v] and S[v′] separate γ1 from γ2. Therefore, if γ1 and γ2

are subsequential limits of (Xn), by transience of C(T ), the walk (Xn) crosses infinitely
many times either S[v] or S[v′] horizontally. Therefore, it is enough to prove that for
every v0 ∈ B(T ), the walk (Xn) cannot cross infinitely many times S[v0] horizontally.

For every v ∈ S[v0], let f(v) = PS[v0],v

(
τ∂S[v0] < +∞

)
. The function f is harmonic

on S[v0]\∂S[v0]. Moreover, by Proposition 3.2, there is a vertex v1 ∈ S[v0] such that
f(v1) < 1. Let (Yn) be a simple random walk started from v1 and killed when it hits ∂S[v0].
Then f(Yn) is a martingale and, by the martingale convergence theorem, it converges
a.s. to 1τ∂S[v0]<+∞. In particular, it has limit zero with positive probability, so there is an
infinite path (wk) going to infinity in S[v0], such that f(wk)→ 0.

We fix k0 > 0. Everytime the walk (Xn) crosses S[v0] horizontally at a large enough
height, it must cross the path (wk)k≥0. Since C is transient, if X crosses S[v0] infinitely
many times, it must cross (wk)k≥k0 , and then hit ∂S[v0]. If this happens, let K be such
that wK is the first of the points (wk)k≥k0 to be hit by X (if none of these points is hit,
we take K = +∞). We have

P (X hits (wk)k≥k0 and then ∂S[v0]) = E [1K<+∞f(wK)] ≤ E
[

sup
k≥k0

f(wk)

]
.

Since f(wk)→ 0, by dominated convergence, this goes to 0, which proves that X cannot
cross S[v0] infinitely many times. This implies the almost sure convergence of X to a
point X∞ of ∂̂T .

The proof that X∞ has full support is quite easy. Let v0 ∈ B(T ). Then (Xn) has a
positive probability to visit the slice S[v0] and, by Proposition 3.2, it a.s. has a positive
probability to stay there ever after. But if Xn ∈ S[v0] for n large enough, then X∞ must
correspond to a ray of descendants of v0, so the distribution of X∞ gives a positive mass
to rays that are descendants of v0. This is almost surely true for any v0 ∈ B(T ), so the
distribution of X∞ has a.s. full support.

Finally, to prove the almost sure nonatomicity, it is enough to prove that if X and
Y are two independent simple random walks on C, then X∞ 6= Y∞ almost surely. The
idea of the proof is that everytime X and Y reach a new height for the first time, by
Proposition 3.2, they have a positive probability to get “swallowed” in two different slices
of the form S[x] and S[y], so this will almost surely happen at some height.

More precisely, in this proof and in this proof only, until the end of Section 3.3,
we assume that T is a non-conditioned Galton-Watson tree with offspring distribution
µ. We recall that Zh is the number of vertices of T at height h. For every h ≥ 0, let

τXh = min{n ≥ 0|h(Xn) = h} and τYh = min{n ≥ 0|h(Yn) = h}.

Note that if T survives, then τXh , τ
Y
h < +∞ for every h. Let also Fh be the σ-algebra

generated by Bh (C(T )), (Xn)0≤n≤τXh
and (Yn)0≤n≤τYh

, and let F∞ be the σ-algebra gen-
erated by

⋃
h≥0 Fh. We note right now that (Fh)h≥0 is nondecreasing and that F∞ is the

σ-algebra generated by (C, X, Y ). Finally, for every h > 0, let Ah be the event
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{
There are four distinct vertices (xi)1≤i≤4 of T at height h such that:

• the vertices x1, x2, x3 and x4 lie in this cyclic order,

• the trees T [xi] all survive,

• for every n ≥ τXh , we have Xn ∈ T [x1]

• for every n ≥ τYh + 2, we have Yn ∈ T [x3].
}

.

Lemma 3.7. There is a constant δ > 0 such that for every h, if Zh ≥ 4, then

P (Ah|Fh) ≥ δ.

Once this lemma is known, the end of the proof is quite easy: let A =
⋃
h≥0Ah. If T

survives, then Zh ≥ 4 for h large enough, so

δ ≤ P(Ah|Fh) ≤ P(A|Fh)
a.s.−−−−−→

h→+∞
P(A|F∞) = 1A,

by the martingale convergence theorem and the fact that (C, X, Y ) is F∞-measurable.
Therefore, almost surely, if T survives, there is an h such that Ah occurs. But if it does,
the slices S[x2] and S[x4] separate X and Y eventually, so they separate X∞ from Y∞,
so X∞ 6= Y∞, which ends the proof of Theorem 0.3.

Remark 3.8. It is easy to show by using Proposition 3.2 that P (Ah|Fh) > 0 a.s.. However,
this is not sufficient to prove Lemma 3.7. Indeed, this is the one point in our proof of
Theorem 0.3 at which our argument fails to hold in a more general setting. More
precisely, in the setting of a tree T filled with i.i.d. strips, the lower degree of XτXh

(i.e.
the number of edges joining this vertex to a lower vertex) is not constant but depends on
Fh, and we might imagine that it goes to +∞ as h→ +∞. In this case, we might have
P(Ah|Fh)→ 0 (with high probability, X goes back down right after τXh ). This problem
does not occur in C(T ), where the lower degree is always equal to 1, but it explains why
the proof of Lemma 3.7 needs to be treated with some care.

Proof of Lemma 3.7. The proof will be split into three cases: the case where XτXh
= YτYh ,

the case where XτXh
and YτYh are distinct but neighbours, and the case where they are

not neighbours. We treat carefully the first one, which is slightly more complicated than
the others.

In the first case, we write x1 = XτXh
= YτYh . We also denote by x2 and x3 the two

vertices at height h on the right of x1, and by x4 the left neighbour of x1. Let also A′h be
the following event:{

The trees T [xi] for 1 ≤ i ≤ 4 survive. Moreover, we have Xn ∈ T [x1] for every n ≥ τXh
and YτYh +1 = x2, YτYh +2 = x3 and Yn ∈ T [x3] for every n ≥ τYh + 2.

}
.

If A′h occurs, then so does Ah. Moreover, we claim that the probability for A′h to occur
is independent of h and Fh. The reason why this is true is that for every vertex v in
one of these trees (say T [x1]), the number of neighbours of v in C that are not in S[x1]

is fixed: there are 3 such neighbours if v = x1, there is 1 such neighbour if v 6= x1 is on
the boundary of S[x1] and 0 if it is not. Therefore, the probability given C that X stays
in S[x1] after time τXh only depends on T [x1]. Similarly, the probability for Y to perform
the right first two steps after time τYh only depends on the numbers of children of x1

and x2, and the probability to stay in T [x3] ever after only depends on T [x3]. All this is
independent of h and Fh, which proves our claim. If we write δ1 = P(A′h|Fh), we have
δ1 > 0 by Proposition 3.2 and P (Ah|Fh) ≥ δ1 for every h in this first case.
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The other two cases can be treated similarly with minor adaptations in the choices of
the vertices xi, and the first two steps of Y after τYh . While we needed to control exactly
the first two steps of Y in the first case, we only need one step for the second case and
zero step for the third one. The other two cases yield two constants δ2 and δ3, which
proves the lemma by taking δ = min(δ1, δ2, δ3).

3.4 Robustness of Proposition 3.2

The goal of this subsection is to explain why Proposition 3.2 still holds in a quite
general setting and to deduce the following result. We recall that a graph G is Liouville if
its Poisson boundary is trivial, i.e. if every bounded harmonic function on G is constant.

Theorem 3.9. Let T be a supercritical Galton–Watson tree with offspring distribution µ
such that µ(0) = 0, and let (Si)i≥0 be an i.i.d. sequence of random strips. We assume
that (Si) is also independent from T.

1. Proposition 3.2 holds if we replace S by S (T, (Si)i≥0).

2. The mapM (T, (Si)) is a.s. non-Liouville.

3. If furthermore the strips (Si) are a.s. recurrent and bounded-degree, then ∂̂T is
the Poisson boundary ofM (T, (Si)).

Note that the assumption that the Si are recurrent is necessary. For example, if some
strips Si have a non-trivial Poisson boundary, then the Poisson boundary ofM (T, (Si))

is larger than ∂̂T. See Section 5 for a more developed discussion.

Proof of the first point. Most of the proof works exactly along the same lines as the proof
of Proposition 3.2, with T playing the same role as the backbone tree. In particular, we
choose for (xn) a nonbacktracking random walk on T, and the sets Ak are built in the
same way as in the original proof, but from T instead of B(T ). The proof of Proposition
3.2 from Lemma 3.3 is very similar, as well as points (i) and (ii) of Lemma 3.3. The only
difference is that the proof of point (ii) of Lemma 3.3 is easier in our new framework,
because of the independence of the strips, and we do not need anymore to restrict
ourselves to even values of k.

Exactly as in the first proof, by using the “self-similarity” property of S (T, (Si)i≥0),
the proof of point (iii) of Lemma 3.3 can be reduced to the proof that the dual map
of S (T, (Si)i≥0) is transient (it is also important that the sets Ak do not touch each
other, which is why we have required that the boundaries of the strips are simple). The
adaptation of the proof of Lemma 3.6 (transience of the dual slice), however, is not
obvious.

More precisely, let S∗ be the graph whose vertices are the finite faces of S (T, (Si)i≥0)

and where, for every edge e of S (T, (Si)i≥0) that is adjacent to two finite faces, we draw
an edge e∗ between these two faces. We note right now that, since all the strips have
only finite faces, the graph S∗ is a connected graph, and we need to prove that it is
transient. The idea of the proof is the following: we will build a genealogy on the set
of strips, which contains a complete binary tree. As in the proof of Lemma 3.6, we will
then kill the strips whose root is “too far” from its children, in order to preserve some
quasi-isometry.

We first build a genealogy on the set of strips. We recall that the root of a strip
Si is the lowest vertex of its boundary, and is denoted by ρi. The height of Si is the
height of ρi. We call two strips adjacent if their respective boundaries share at least
one edge. If Si is a strip, we consider the first vertex on the left boundary of Si (apart
from ρi) that is also a branching point of T. This vertex is also the root of some strips,
exactly one of which is adjacent to Si. We call this strip the left child of Si (cf. Figure
11). We can similarly define its right child. Note that almost surely, every branch of T
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ρ

S1

S2

Figure 11: The tree T (in red), and the tree Tstr of descendants of the strip S1 (in
blue). Note that the strip S2 has one parent on each side, but the right parent is not a
descendant of S1.

branches eventually, so these childs always exist. We now fix a strip S1. We claim that
the restriction of this genealogy to the set of descendants of S1 is encoded by a complete
binary tree, which we denote by Tstr. Indeed, all the descendants of the left child of a
strip S lie on the left of S, whereas all the descendants of its right child lie on its right.
Therefore, it is not possible to obtain the same strip by two different genealogical lines
from S1 (see Figure 11).

We now kill some of the strips. We fix a constant `max > 0. For every strip Si, let e`i
(resp. eri ) be the first edge on the left (resp. right) boundary of Si that is also adjacent to
its left (resp. right) child. We call a strip Si good if, for every face f of Si that is adjacent
to ρi, the dual of Si contains a path of length at most `max from f to e`i , and similarly for
eri .

Note that the fact that Si is good or not only depends on the internal geometry of Si,
and on the numbers of children of the vertices on the part of ∂Si lying between e`i and eri .
These parts for different values of i ∈ Tstr are disjoint. Hence, since the strips are i.i.d.
and T is a Galton–Watson tree, the events

{Si is good}

for i ∈ Tstr are independent, and have the same probability. Therefore, removing from
Tstr all the strips that are not good is equivalent to performing a Bernoulli site percolation
on the complete binary tree Tstr. Moreover, the probability for a strip to be good goes to
1 as `max goes to +∞, so we can find `max such that this percolation is supercritical. We
fix such an `max until the end of the proof.

Let T ′str be an infinite connected component of Tstr containing only good strips. Then
T ′str is a supercritical Galton–Watson tree and survives, so it is transient. We can now
define a submap S∗bdd of S∗. For every strip Si ∈ T ′str, let p`i (resp. pri ) be a dual path
of length at most `max joining the face of Si that is adjacent to its parent to the face
adjacent to e`i (resp. eri ). Then the edges of S∗bdd are the edges of these paths for all i
such that Si ∈ T ′str, as well as the dual edges of the edges e`i and eri (cf. Figure 12). The
vertices of S∗bdd are simply the vertices adjacent to these edges. Since the lengths of the
paths p`i and pri are bounded by `max, it is easy to see that S∗bdd is quasi-isometric to the
tree T ′str, so it is transient. This implies that S∗ is transient as well, which concludes the
proof of the first point.

Proof of point 2 of Theorem 3.9. We mimic the beginning of the proof of Theorem 0.3,
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ρ

Figure 12: Construction of S∗bdd (in blue). The tree T is in red. The hatched strips do
not belong to Tstr. The green strips are the strips that are not good, and the yellow ones
are the descendants of the green ones, so they are not in T ′str. For the sake of clarity, we
have not drawn the interiors of the strips that do not belong to T ′str.

but we use the first point of Theorem 3.9 instead of Proposition 3.2. The proof of the
first two points is robust, and shows that almost surely, the simple random walk X on
M (T, (Si)i≥0) converges a.s. to a point X∞ of ∂T, and that the distribution of X∞ has

a.s. full support. In particular, for every x ∈ T, let ∂̂T[y] be the set of the classes γ̂, where
γ is a ray passing through y. Let y1, y2 be two vertices such that ∂̂T[y1] ∩ ∂̂T[y2] = ∅. We
define the function h onM by

h(x) = PM,x (X∞ ∈ ∂T[y1]) .

Then h is harmonic and bounded on M. Moreover, by the same argument as in the
beginning of the proof of Theorem 0.3, there is a sequence (xn) of vertices in S[y1] such
that h(xn)→ 1. On the other hand, by the first point of Theorem 3.9, there is a positive
probability that X stays in S[y2] eventually, so h(x) < 1 for every x, so h is non-constant.
It follows thatM is non-Liouville.

Proof of point 3 of Theorem 3.9. We know from the proof of point 2 of Theorem 3.9 that
the simple random walk X on M (T, (Si)) converges a.s. to a point X∞ on ∂̂T. As in
the proof of Theorem 0.3, it is enough to prove that the law of X∞ is a.s. non-atomic,
i.e. that if X and Y are two independent simple random walks on the same instance of
M (T, (Si)), then X∞ 6= Y∞ a.s..

To prove this, we rely on a variant of Lemma 3.7. For h ≥ 0, we denote by τXh the
smallest n for which Xn is a point of T of height at least h. We define τYh similarly. The
recurrence of the strips guarantees that the times τXh and τYh are all a.s. finite. However,
the vertices XτXh

and YτYh may have height larger than h, which prevents us to re-use
Lemma 3.7 as such. For h ≥ 1, let F be the σ-algebra generated by the finite tree Bh(T),
the family of the strips whose root is at height at most h− 1 and the paths (Xn)0≤n≤τXh
and (Yn)0≤n≤τYh

. Note that this makes sense since up to time τXh , the walk X may only
visit strips whose root as height at most h− 1.

Let also A′h be the following event:{
There are four distinct vertices (xi)1≤i≤4 of T at height ≥ h, neither of which is an

ancestor of another, such that:

• the trees T[x1], T[x2], T[x3] and T[x4] lie in this cyclic order,

• for every n ≥ τXh + 2, we have Xn ∈ S (T, (Si)) [x1]
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ρ

h

S[x1]

S[x2] S[x3]

S[x4]

X

Y

x1

x2 x3

x4XτXh

YτYh

Figure 13: Sketch of the proof of (3.5) in the case where YτYh is a descendant of XτXh
.

The tree T is in red. The trajectories of X and Y are in blue and green respectively. For
the sake of clarity, the interiors of the strips have not been drawn.

• for every n ≥ τYh + 2, we have Yn ∈ S (T, (Si)) [x3].
}

.

As in the proof of Theorem 0.3, it is enough to prove that there is δ > 0 such that almost
surely, for h large enough, we have

P (A′h|Fh) ≥ δ. (3.5)

As in the proof of Lemma 3.7, there are several cases to treat separately according to the
relative positions of XτXh

and YτYh . Since this is the most different case from the proof of
Lemma 3.7, let us treat in details the case where YτYh is a strict descendant of XτXh

.

If this is the case, then right before τYh the walk Y lies in a strip SY intersecting
Bh−1(T). Without loss of generality, we assume that SY is on the right of XτXh

. As on
Figure 13, the point YτYh must be the rightmost descendant of XτXh

at its height. Note
also that the conditioning on Fh does not give any information about the numbers of
children of the vertices of T between XτXh

and YτYh .
Let K be a bound on the degrees in the strips. With conditional probability at

least (1 − µ(1)) × 1
3K , the vertex XτXh

is a branching point in T and XτXh +1 is a child
of XτXh

which is not the rightmost one. If this occurs, let x1 = XτXh +1. Then the slice
S (T, (Si)) [x1] has the same law as S (T, (Si)), so by the first point of Theorem 3.9, the
walk X has a probability bounded away from 0 to stay in S (T, (Si)) [x1] aver after τXh + 1.

Similarly, independently of the behaviour of X, there is a probability at least 1−µ(1)
3K

that x3 = YτYh +1 is a child of YτYh which is not the leftmost one, and that Y stays in

S (T, (Si)) [x3] ever after τYh . To see that A′h occurs if this is the case, we just need to
take as x2 the leftmost child of YτYh , and as x4 a vertex of T which is different from XτXh
(which a.s. exists if h is large enough).

This proves (3.5) in the case where YτYh is a strict descendant of XτXh
. As in the proof

of Theorem 0.3, the other cases can be treated in a very similar way. This finishes the
proof of Theorem 3.9.
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T−2 T−1 T0 T1 T2

. . . . . .

ρ

Figure 14: On the left, an infinite forest (Ti)i∈Z. On the right, the half-planar map H
obtained from this forest. The root vertex is in red.

4 Positive speed of the simple random walk

4.1 Sketch of the proof and definition of the half-plane model H
The goal of this section is to prove Theorem 0.4. In all this section, we assume

µ(0) = 0. We first give a quick sketch of the proof. Our main task will be to prove positive
speed in a half-planar model H, constructed from an infinite forest of supercritical
Galton–Watson trees, and where we have more vertical stationarity than in C. The results
of Section 3 will allow us to pass from H to C. Note that Theorem 0.4 is very easy in the
case where µ(0) = µ(1) = 0, since then the height of the simple random walk dominates a
random walk on Z with positive drift. Therefore, we need to make sure that the vertices
with only one child do not slow down the walk too much. Our proof in H relies on two
ingredients:

• An exploration method of H will allow us to prove that the walk cannot be too far
away from a point with at least two children. This will guarantee that the walk
spends some time at vertices with at least two children. At these vertices, the
height of the walk accumulates a positive drift. This will give a “quasi-positive
speed” result: the height at time n is n1−o(1).

• Thanks to the stationarity properties of H, we can study regeneration times, i.e.
times at which the walk reaches some height for the first time, and stays above this
height ever after. The estimates obtained in the first point are sufficient to prove
that the first regeneration time has finite expectation. As in many other models
(like random walks in random environments, see [28]), this is enough to ensure
positive speed.

We now define our half-plane model. Let (Ti)i∈Z be a family of i.i.d. Galton–Watson
trees with offspring distribution µ. We draw the trees Ti with their roots on a horizontal
line, and for every h ≥ 0, we add horizontal connections between successive vertices of
height h. Finally, for every vertex v of height 0, we add a parent of v at height −1, which
is linked only to v. We root the obtained map at the root of T0 (which has height 0), and
denote it by H (see Figure 14). As for C, if v is a vertex of H, the height h(v) of v in H
is defined as its height in the forest (Ti). We denote by ∂H the set of vertices of H at
height −1.

We first explain why it is enough to prove the result in H instead of C. We denote by
XG the simple random walk on a graph G.

Lemma 4.1. If in H we have 1
nh(XHn ) → vµ > 0 a.s. as n → +∞, then Theorem 0.4 is

true.

Proof. For every i ∈ Z, let S(Ti) be the slice associated to the tree Ti. Then almost
surely, if the walk (Xn) stays in S(Ti) eventually, the distance between Xn and the root
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x−2 x−1 x0 x1 x2

Figure 15: An example for Definition 4.2: the point x = x0 is 2-bad, but not 3-bad.

of Ti is equivalent to vµn. Since S(Ti) has the same distribution as S, the simple random
walk on S has a.s. speed vµ on the event that it does not hit ∂S.

Back in C, by Theorem 0.3, we know that XC converges to a point X∞ ∈ ∂̂T and that
X∞ is a.s. not the point of ∂̂T corresponding to the leftmost and rightmost rays of T .
Therefore, almost surely, the walk XC only hits the boundary of S(T ) finitely many times,
so it has a.s. speed vµ > 0.

4.2 An exploration method of H
Let k > 0 and let x be a vertex of H at height h ≥ 0. We write x0 = x. Let also

x−1, . . . , x−k be the k first neighbours at height h on the left of x, and let x1, . . . , xk be
the k first neighbours of x on its right.

Definition 4.2. Let x be a vertex of H at height h ≥ 0. We say that x is k-bad if all the
descendants of x−k, x−(k−1), . . . , xk at heights h, h+ 1, . . . , h+ k have only one child (cf.
Figure 15).

The goal of this section is to show that the probability for the walk to visit a “very
bad” point in its first n steps is very small. More precisely, we will prove the following
result.

Lemma 4.3. There is a constant c > 0 such that for every k, n > 0, we have

P (one of the points X0, X1, . . . , Xn is k-bad) ≤ ck(n+ 1)2µ(1)k
2

.

The presence of the factor µ(1)k
2

is not surprising. For example, the probability
for the root vertex X0 to be k-bad is exactly µ(1)(k+1)(2k+1). The idea of the proof is
to explore H at the same time as the random walk moves, in such a way that every
time we discover a new vertex, either its k neighbours on the right or its k neighbours
on the left have all their descendants undiscovered. If this is the case, the probability
for the discovered vertex to be k-bad is at most µ(1)k

2

. The factor ck(n + 1)2 means
that our exploration method needs to explore at most ck(n + 1)2 vertices to discover
{X0, X1, . . . , Xn}.

The rest of Section 4.2 is devoted to the proof of Lemma 4.3. We first define our
exploration method. We then state precisely the properties that we need this exploration
to satisfy (Lemmas 4.4, 4.5 and 4.6), and explain how to conclude the proof from here.
Finally, we prove these properties.

Exploration methods By an exploration method, we mean a nondecreasing sequence
(Ei)i≥0 of finite sets of vertices of H. For every i ≥ 0, the part of H discovered at time i
is the finite map formed by:
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x1

x2

−→
x1

x2

Figure 16: On the left, the map H and the set of vertices Ei (in red). On the right, the
explored map Ei. The edge in orange means that at the current time, the random walk is
leaving the vertex x1 towards its right child. The vertex x1 is 2-free on the right, but not
3-free. The vertex x2 is k-free on the right for every k ≥ 0. It is also 5-free on the left,
but not 6-free. By only looking at Ei, we can be sure that x1 is 2-free on the right and x2

is 4-free on the left, but not that x2 is 5-free on the left.

• the vertices of Ei,

• the edges of H whose two endpoints belong to Ei,

• for every edge of H with exactly one endpoint in Ei, the half-edge adjacent to Ei.

We denote this map by Ei (see Figure 16). In particular, when we explore a vertex, we
know how many children it has, even if these children are yet undiscovered. Moreover,
for every i, the map Ei will be equipped with an additional marked oriented edge or half-
edge ei describing the current position of the simple random walk. In all the explorations
we will consider, we can pass from Ei−1 to Ei by either adding one vertex to the explored
set Ei−1, or moving the marked edge to a neighbour edge or half-edge. In the first case,
we call i an exploration step and, in the second, we call i a walk step. In particular, the
time of the exploration is not the same as the time of the random walk.

We say that a vertex v ∈ Ei is k-free on the right in Ei if none of the k first neighbours
on the right of the rightmost child of Ei belongs to Ei. We define similarly a k-free on
the left vertex. We would like to build an exploration of H such that at every exploration
step i, the unique vertex of Ei+1\Ei is either k-free on the left or on the right in Ei+1.
Note that it is not always possible by looking at Ei to decide whether a vertex v ∈ Ei is
k-free or not (cf. vertex v2 on Figure 16). However, as we will see later (proof of Lemma
4.6), it is sometimes possible to be sure that a vertex is k-free.

Choice of the exploration method The simplest exploration method coming into
mind is to explore a vertex when it is hit for the first time by the walk (Xn). However,
this is not suitable for our purpose. If for example we discover some descendants of
a vertex v and explore v afterwards, then we have some partial information about the
descendance of v, so we cannot control the probability for v to be k-bad. For this reason,
we never want to discover a vertex before discovering all its ancestors. We will therefore
require that the sets Ei are stable, which means that for every vertex v ∈ Ei, all the
ancestors of v lie in Ei as well.

A second natural exploration method is now the following: everytime the walk
(Xn) hits a vertex v for the first time, we discover all the ancestors of v that are yet
undiscovered (including v), from the lowest to the highest. Although more convenient
than the first one, this method is not sufficient either. Indeed, assume that at some point
we explore a vertex v such that the k first neighbours on the left and on the right of
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p0

p1
p2 p3

p4

Figure 17: On the left, we move around Ei by crossing all the half-edges. On the right,
the unique pit of Ei. It has width 3 and height 0. In particular, the map Ei is 1-flat, but
not 2-flat.

v have already been discovered, as well as many of their descendants. Then we have
accumulated some partial information about the descendances of all the neighbours of v,
so we cannot control the probability for v to be k-bad.

More generally, this problem occurs if we allow the formation of “narrow pits” in the
explored part of H. Therefore, the idea of our exploration is the following: everytime the
walk (Xn) hits a vertex v for the first time, we explore all the ancestors of v that are yet
undiscovered (including v), from the lowest to the highest. If by doing so we create a pit
of width at most 2k, then we explore completely the bottom of this pit, until it has width
greater than 2k.

To define this exploration more precisely, we need to define precisely a pit. We assume
that the set Ei is stable, which implies that Ei is simply connected. Then there is a unique
way to move around the map Ei from left to right by crossing all the half-edges exactly
once, as on Figure 17. A pit is a sequence of consecutive half-edges p0, p1, . . . , pj+1 such
that:

• the half-edges p1, . . . , pj point upwards, and start from the same height h,

• the half-edge p0 points to the right and lies at height h+ 1,

• the half-edge pj+1 points to the left and lies at height h+ 1.

Note that all the pits are half-edge-disjoint. We call j and h the width and the height of
the pit. Finally, we say that Ei is k-flat if it has no pit of width j ≤ 2k (see Figure 17).

If e is an oriented edge or half-edge, we will denote by e− its starting point and e+ its
endpoint. We can now describe our exploration algorithm precisely. We take for E0 the
set formed by the root vertex ρ of H and its parent at height −1, and pick e0 uniformly
among all the edges and half-edges started from ρ. For every i ≥ 0, we recall that ei is
the oriented edge or half-edge of Ei marking the position of the simple random walk. For
every i ≥ 1, given (Ei−1, ei−1), we construct (Ei, ei) as follows.

(i) If the marked edge ei−1 is a full edge and Ei−1 is k-flat, we perform a walk step:
we set Ei = Ei−1 and pick ei uniformly among all the edges and half-edges whose
starting point is e+

i−1.

(ii) If ei−1 is a half-edge, we perform an exploration step: we denote by vi the lowest
ancestor of e+

i−1 that does not belong to Ei−1. If vi lies at height −1, then Ei is the
union of Ei−1, the vertex vi and its child at height 0 (this is the only case where we
explore two vertices at once, to make sure that Ei remains connected). If not, then
Ei = Ei−1 ∪ {vi}. Note that if vi = e+

i−1, then the marked half-edge becomes a full
edge.
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ei

e∗

Figure 18: The second case of our exploration algorithm. We move around the boundary
of Ei towards the right: we encounter one horizontal half-edge, and then a vertical
half-edge e∗. This e∗ has descendents at the same height as ei, and the leftmost such
descendant is e+

i .

(iii) If ei−1 is a full edge but Ei−1 is not k-flat, we also perform an exploration step:
let (p0, p1, . . . , pj+1) be the leftmost pit of width at most 2k. We then take Ei =

Ei−1 ∪ {p+
1 }. This means that we explore the endpoint of the leftmost vertical

half-edge of the pit.

It is easy to check that the sets Ei we just defined are all stable.

The exploration is Markovian An important feature of our exploration that we need
to check is that it is Markovian. More precisely, for every i ≥ 0, let ∂Ei be the set of
vertices consisting of:

• the endpoints of the half-edges of Ei pointing upwards,

• the vertices of H of height 0 that do not belong to Ei.

Lemma 4.4. Conditionally on (Ej , ej)0≤j≤i, the trees of descendants of the vertices of
∂Ei are independent Galton–Watson trees with offspring distribution µ.

Proof. Given the Markovian structure of supercritical Galton–Watson tree, it is enough
to check that at every step, our exploration is independent of the part of H that has not
yet been discovered. This is easy in the case (i): conditionally on Ei, the choice of ei is
independent of the rest of H. We claim that in the other two cases, the discovered vertex
is either the endpoint of a vertical half-edge which is a deterministic function of (Ei, ei),
or the root of the first infinite tree on the left or on the right of Ei. This claim is obvious
in the case (iii).

In the case (ii), the half-edge ei points either to the top, the left or the right. If it
points to the top, then all the ancestors of e+

i have been discovered, so the explored
vertex is e+

i . If ei does not point to the top, we assume without loss of generality that it
points to the right. We then start from the half-edge ei and move around Ei towards the
right. We first cross horizontal half-edges pointing to the right at decreasing heights,
until either we reach height 0, or we cross a vertical half-edge pointing to the top. If
we cross a first vertical half-edge e, then e must be an ancestor of e+

i (indeed, e has
descendants at the same height as e+

i , and there is no other half-edge pointing to the top
between e−i and e−∗ , see Figure 18). Therefore, the explored vertex must be e+

∗ . Finally,
if we reach the bottom boundary, then the explored vertex is the root of the first tree on
the right of Ei (and its parent at height −1).

We denote by ϕ(n) the n-th walk step of our exploration, with ϕ(0) = 0. Note that
the marked edge or half-edge from the time ϕ(n) to the time ϕ(n+ 1)− 1 corresponds
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to the edge in H from Xn to Xn+1. Therefore, at time ϕ(n), the explored part covers
{X0, X1, . . . , Xn}. As explained in the beginning of this subsection, it is important to
control ϕ. We can now state the two important properties that our exploration satisfies.

Lemma 4.5. There is a deterministic constant c such that for every n ≥ 0, we have

ϕ(n+ 1)− ϕ(n) ≤ ck(n+ 1).

Lemma 4.6. For every exploration step i, the unique vertex vi of Ei\Ei−1 that does not
lie at height −1 is either k-free on the left or k-free on the right.

Note that our exploration method was precisely designed to satisfy Lemma 4.6. Both
these lemmas are completely deterministic: they hold if we replace H by any infinite
causal map with no leaf, and (Xn) by any infinite path. Before proving them, we explain
how to conclude the proof of Lemma 4.3 given these two results.

Proof of Lemma 4.3 given Lemmas 4.5 and 4.6. For every i ≥ 0, let Fi be the σ-algebra
generated by (Ej , ej)0≤j≤i. We first show that, for every exploration step i ≥ 0, we have

P (vi is k-bad|Fi) ≤ µ(1)k
2

. (4.1)

Let i ≥ 0 be an exploration step. By Lemma 4.6, without loss of generality, we may
assume that vi is k-free on the right. Let v1

i , . . . , v
k
i be the k first neighbours on the

right of the rightmost child of vi. Since vi is k-free on the right, these vertices do not
belong to Ei. By Lemma 4.4, conditionally on Fi, their trees of descendants are i.i.d.
Galton–Watson trees with offspring distribution µ. If the vertex vi is k-bad, each of the
vertices v1

i , . . . , v
k
i has only one descendant at height h+ k + 1, so we have

P (vi is k-bad|Fi) ≤ P
(
v1
i , . . . , v

k
i have one descendant each at height h+ k + 1|Fi

)
=

k∏
j=1

P
(
vji has exactly one descendant at height h+ k + 1|Fi

)
=

(
µ(1)k

)k
,

and we obtain (4.1), which implies

P (i is an exploration step and vi is k-bad) ≤ µ(1)k
2

for every i ≥ 0. By summing Lemma 4.5, we obtain ϕ(n+ 1) ≤ ck(n+ 1)2. Therefore, the
vertices X0, X1, . . . , Xn all lie in Eck(n+1)2 . If one of these points is k-bad, it cannot lie at
height −1 by definition of a bad point, so it is equal to vi for some 0 ≤ i ≤ ck(n + 1)2.
Therefore, we have

P (one of the points X0, X1, . . . , Xn is k-bad) ≤
ck(n+1)2∑
i=0

P (vi is k-bad)

≤ ck(n+ 1)2µ(1)k
2

,

which ends the proof.

Proof of Lemma 4.5. To bound ϕ(n + 1) − ϕ(n), we describe precisely what happens
between the times ϕ(n) and ϕ(n + 1). Note that Eϕ(n) = Eϕ(n)−1 is k-flat (if it was not,
ϕ(n) would have to be an exploration step). Hence, if eϕ(n) is a full edge, then ϕ(n) + 1

is a walk step and we have ϕ(n+ 1) = ϕ(n) + 1, so it is only necessary to treat the case
where eϕ(n) is a half-edge.
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eϕ(n)

−→

Eϕ(n)

eϕ(n)+2

Eϕ(n)+2

eϕ(n)
−→

Eϕ(n)

eϕ(n)+1

Eϕ(n)+1

Figure 19: The two ways our exploration can create new pits between two walk steps.
On the top, a pit of width 3 is split into two pits of width 1. On the bottom, the width of a
pit decreases from 3 to 2. The new pits of width at most 2 are indicated in blue.

In this case, the first thing our algorithm does is to explore the vertex e+
ϕ(n) and all

its undiscovered ancestors. We know that e+
ϕ(n) = Xn+1, so in particular its height is at

most n+ 1. Therefore, exploring all its ancestors takes at most n+ 2 steps.
We can now perform the (n+1)-th walk step, except if exploring e+

ϕ(n) and its ancestors
has created a new pit of width at most 2k. This can happen in two different ways, as on
Figure 19:

• if eϕ(n) is vertical, exploring e+
ϕ(n) may split an existing pit in two,

• if eϕ(n) is horizontal (say it points to the right), exploring its ancestors may decrease
the width of an existing pit on the right of eϕ(n).

Note that in the first case, we can create at most two new pits, whereas in the second,
we can shrink only one (cf. Figure 19). Hence, we will create at most 2 narrow pits, at
the same height h.

In the first case (top of Figure 19), our algorithm will then fill the pit on the left if
it has width at most 2k, and then the pit on the right. The number of steps this takes
is at most 2× 2k = 4k. By doing so, we may create a new pit at height h+ 1. However,
since the trees we work with have no leaf, this pit is at least as wide as the pit of Eϕ(n)

in which eϕ(n) lies. Hence, the new pit at height h + 1 has width greater than 2k, and
does not need to be filled. Therefore, in the first case, the number of exploration steps
needed to fill all the narrow pits is at most 4k.

In the second case (bottom of Figure 19), if the pit has width at most 2k, our algorithm
will explore all the vertical half-edges of this pit, from left to right. This takes at most
2k steps. Once again, this creates a new pit at height h+ 1, but this time this pit may
have width 2k or less. If this is the case, our algorithm will explore all its half-edges
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and perhaps create a pit at height h + 2, and so on. Note that the maximal height of
Eϕ(n) is at most n. Indeed, the only times at which this maximal height increases is when
the random walk reaches some height for the first time, so the maximal height of Eϕ(n)

cannot be larger than the maximal height of the random walk during its first n steps.
Therefore, we will need to fill at most n pits (at heights between 0 and n− 1), each of
which taking at most 2k steps. Hence, filling the narrow pits takes at most 2kn steps.

Therefore, in both cases, the number of steps needed to obtain a k-flat map and
perform a new walk step is bounded by max(4k, 2kn). If we add the number of steps
needed to explore the ancestors of e+

ϕ(n) and the walk step ϕ(n+ 1), we obtain

ϕ(n+ 1)− ϕ(n) ≤ max(4k, 2kn) + (n+ 2) + 1 ≤ ck(n+ 1),

with e.g. c = 7.

We finally prove Lemma 4.6. The proof will make use of the “step by step” description
of our exploration that we also used in the last proof. We recall that for every exploration
step i, we call vi the unique vertex of nonnegative height in Ei\Ei−1, and ei the oriented
edge or half-edge marking the current position of the random walk.

Proof of Lemma 4.6. We fix an exploration step i ≥ 0. Note that the vertex vi is always
the endpoint of some half-edge of Ei−1, that we denote by e∗.

Before moving on to the details of the proof, we explain how it is possible, by only
looking at the map Ei−1, to be sure that the vertex vi is k-free on the right in Ei. We
move along the boundary of Ei−1 from e∗ towards the right, and stop when we encounter
a vertex of height h(vi) + 1. If this never occurs, it means that in Ei−1 and Ei, there is
no vertex at height h(vi) + 1 on the right of vi, so vi is k-free on the right. If this occurs,
assume that by moving so, we cross at least k vertical half-edges. Since the trees we
consider have no leaf, all these vertical half-edges have descendants at height h(vi) + 1,
which lie on the right of all the children of vi. Moreover, none of these descendants
belongs to Ei. Therefore, vi must be k-free on the right in Ei. Of course, this is also true
for k-free on the left vertices (see the end of the caption of Figure 16 for an example).
This remark will be implicitly used in all the cases below.

Let n be the integer such that ϕ(n) < i < ϕ(n + 1). We distinguish two cases,
corresponding to the two “phases” of exploration between ϕ(n) and ϕ(n + 1) that we
described in the proof of Lemma 4.5. Both of these cases will be separated in a few
subcases.

• We first treat the case where ei−1 is a half-edge, so the explored vertex vi is an
ancestor of e+

i−1.

– We start with the subcase where ei−1 is vertical, and lies in a pit p. Since ei−1 is
vertical, exploring the ancestors of e+

i−1 takes only one step, so i = ϕ(n)+1 and
vi = e+

i−1. Since i− 1 is a walk step, the pit p has width at least 2k+ 1. Without
loss of generality, we may assume that at least k of the vertical half-edges of p
are on the right of ei−1, so vi is k-free on the right.

– If ei−1 is vertical but is not in a pit, as in the previous case, we have i = ϕ(n)+1

and vi is the endpoint of ei−1. Moreover, there is a direction (left or right)
such that when we start from ei−1 and move along the boundary of Ei−1 in this
direction, the height decreases before increasing for the first time (if not, ei−1

would be in a pit). Without loss of generality, this direction is the right. Let p
be the first pit that we encounter on the right of ei−1. If p does not exist, it
means that the height never increases again, so there is no vertex on the right
of ei−1 in Ei−1 that is higher than e−i−1. Therefore, the vertex vi = e+

i−1 is k-free
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on the right in Ei. If p exists, it has width at least 2k + 1, so vi is (2k + 1)-free
on the right, and in particular k-free.

– If ei−1 is horizontal, without loss of generality it points to the right. As
explained earlier (see Figure 18), the edge e∗ is in this case the first vertical
half-edge we meet when we move around Ei−1 from ei−1 towards the right
(except if no such vertical half-edge exists, in which case vi is the root of a
new tree on the right of Ei−1, and vi is obviously k-free on the right). By the
same argument as in the previous case, if there is no pit on the right of e∗,
then vi is k-free on the right (and even ∞-free). If there is one and p is the
first such pit, note that between the times ϕ(n) and i, the pit p has either been
untouched, or has been shrunk by 1. Therefore, at time i it has width at least
2k, so vi is k-free in Ei.

• We now consider the second “phase”, i.e. the case where Ei−1 has a pit of width at
most 2k, and the goal of the exploration step i is to fill it.

– If ei−1 points to the top, then the pit has been created at time ϕ(n) + 1 as
in the top part of Figure 19. Hence, the half-edge e∗ belonged at time ϕ(n)

to a pit (p0, p1, . . . , pj+1) of height h and width j > 2k. Therefore, either k
of the vertical half-edges p1, . . . , pj lie on the left of e∗, or k of them lie on
its right (the two cases are not symmetric since the pit is filled from left to
right). If k of these half-edges lie on the left of e∗, then their k endpoints (of
height h + 1) have been explored before vi, but none of the descendants of
these endpoints has been discovered. Therefore, the map Ei contains at least
k vertical half-edges at height h + 1 on the left of vi, so vi is k-free on the
left. This case is the reason why, in the definition of a k-free vertex, we asked
the neighbours of the children of v to be undiscovered, and not simply the
neighbours of v. If k of the half-edges of p lie on the right of e∗, the argument
is similar (it is actually simpler since the half-edges on the right of e∗ have not
yet been explored).

– If ei−1 points to the right, then we are in the bottom case of Figure 19: a pit p
of width 2k + 1 has been shrunk to width 2k during the first phase, resulting
in a pit (p0, p1, . . . , p2k+1) of width 2k at some height h. Let also h′ ≥ h be the
height of e∗. Since the pit is filled layer by layer from the bottom, the half-edge
e∗ must be a descendant of a half-edge p`0 with 1 ≤ `0 ≤ 2k. Moreover, our
algorithm fills the layers from left to right. Therefore, at time i, for every
1 ≤ ` ≤ 2k, we have already explored the descendants of e` up to height h′ + 1

if ` ≤ `0 and up to height h′ if ` > `0. But the vertex vi lies at height h′ + 1.
Therefore, if `0 ≥ k+1, then vi has k vertical half-edges on its left so it is k-free
on the left. On the other hand, if `0 ≤ k, then vi has k vertical half-edges on
its right at height h, so it is k-free on the right. This concludes the proof.

4.3 Quasi-positive speed in H
The goal of this subsection is to use Lemma 4.3 to prove that the walk has a speed

n1−o(1), which is slightly weaker than positive speed. We will need to “bootstrap” this
result in Section 4.4 to obtain positive speed. We denote by Hn the height of Xn. We
also write

Dn = max{Hk −H`|0 ≤ k < ` ≤ n}

for the greatest “descent” of X before time n.

Proposition 4.7. Let 0 < δ < 1 and β > 0. Then we have

P
(
Hn ≤ n1−δ) = o

(
n−β

)
and P

(
Dn ≥ nδ

)
= o

(
n−β

)
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as n→ +∞.

Proof. We start with the proof of the first estimate, the proof of the second will follow
the same lines. We call a vertex of H good if it has height −1 or if it has at least two
children. The idea of the proof is the following: by Lemma 4.3, with high probability, the
walk does not visit any k-bad point before time n for some k. Hence, it is never too far
from a good point. Therefore, the walk always has a reasonable probability to reach a
good point in a near future. It follows that X will visit many good points, so (Hn) will
accumulate a large positive drift.

More precisely, let a > 0 (we will take a large later). We define two events formalizing
the ideas we just explained:

A1 = {none of the vertices X0, X1, . . . , Xn is a
√

log n-bad},
A2 = {for every 0 ≤ m ≤ n− nδ/2, one of the points Xm, Xm+1, . . . , Xm+nδ/2 is good}.

Then we have

P
(
Hn ≤ n1−δ) ≤ P(Ac1) + P(A1\A2) + P

(
A2 ∩ {Hn ≤ n1−δ}

)
. (4.2)

We start with the first term. By Lemma 4.3, we have

P(Ac1) ≤ ca
√

log n (n+ 1)2 µ(1)a
2 logn.

Hence, if we choose a large enough (i.e. a2 > β+2
− log µ(1) ), we have P(Ac1) = o(n−β).

We now bound the second term of (4.2). For every 0 ≤ m ≤ n, let Fm be the σ-
algebra generated by H and (X0, X1, . . . , Xm). If Xm is not a

√
log n-bad (which is an

Fm-measurable event), let Y be the closest good vertex from Xm (we may have Y = Xm).
We have dH(Xm, Y ) ≤ 2a

√
log n, so there is a path from Xm to Y of length at most

2a
√

log n, and visiting only vertices of degree 4 (except of course Y ). Therefore, we have

P
(
X visits the vertex Y between time m and time m+ 2a

√
log n|Fm

)
≥
(

1

4

)2a
√

logn

if Xm is not a
√

log n-bad. By induction on i, we easily obtain, for every i ≥ 0,

P
(
Xm, Xm+1, . . . , Xm+2ia

√
logn are neither good nor a

√
log n-bad

)
≤
(

1− 1

42a
√

logn

)i
≤ exp

(
− i

42a
√

logn

)
.

In particular, by taking i = nδ/2

2a
√

logn
, we obtain, for every m:

P
(
Xm, Xm+1, . . . , Xm+nδ/2 are neither good nor a

√
log n-bad

)
≤ exp

(
− nδ/2

2a
√

log n 42a
√

logn

)
.

If the event A1\A2 occurs, then there is an m with 0 ≤ m ≤ n− nδ/2 such that the above
event occurs. Therefore, by summing the last equation over 0 ≤ m ≤ n− nδ/2, we obtain

P(A1\A2) ≤ n exp

(
− nδ/2

2a
√

log n 42a
√

logn

)
= o(n−β).

Finally, we bound the third term of (4.2) by the Azuma inequality. For every n ≥ 0, let

Mn = Hn −
n−1∑
i=0

EH [Hi+1 −Hi|X0, X1, . . . , Xi] .
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It is clear that M is a martingale with |Mn+1−Mn| ≤ 2 for every n, and M0 = 0. Moreover,
we have

EH [Hi+1 −Hi|X0, X1, . . . , Xi] =
c(Xi)− 1

c(Xi) + 3
1Xi /∈∂H + 1Xi∈∂H,

where we recall that c(v) is the number of children of a vertex v. In particular, we have
EH [Hi+1 −Hi|X0, X1, . . . , Xi] ≥ 0, and EH [Hi+1 −Hi|X0, X1, . . . , Xi] ≥ 1

5 if Xi is a good
vertex. If A2 occurs, the walk X must visit at least n1−δ/2 good vertices before time n,
so we have

n−1∑
i=0

EH [Hi+1 −Hi|X0, X1, . . . , Xi] ≥
1

5
n1−δ/2.

Therefore, if the event in the third term of (4.2) occurs, we have

Mn ≤ n1−δ − 1

5
n1−δ/2 < 0.

On the other hand, the Azuma inequality applied to M gives

PH,ρ

(
Mn ≤ n1−δ − 1

5
n1−δ/2

)
≤ exp

(
− 1

8n

(
1

5
n1−δ/2 − n1−δ

)2
)
,

so

P

(
Mn ≤ n1−δ − 1

5
n1−δ/2

)
= o(n−β),

which bounds the third term of (4.2), and proves the first part of Proposition 4.7.
To prove the second part, we decompose the event {Dn ≥ nδ} in the same way as in

(4.2). By the definition of Dn, it is enough to show

max
0≤k≤`≤n

P
(
A2 ∩ {H` −Hk ≤ −nδ}

)
= o(n−(β+2)), (4.3)

and then to sum over k and `. To prove (4.3), note that if ` < k+ nδ, then H` −Hk > −nδ
deterministically. If ` ≥ k+nδ, we use the same argument based on the Azuma inequality
as for the first part. Let 0 ≤ k < k + nδ ≤ ` ≤ n. If A2 occurs, then X visits at least `−k

nδ/2

good vertices between times k and `, so

`−1∑
i=k

EH[Hi+1 −Hi|X0, . . . , Xi] ≥
1

5

`− k
nδ/2

.

Hence, if the event of (4.3) occurs for k and `, we have

M` −Mk ≤ H` −Hk −
1

5

`− k
nδ/2

≤ −nδ − 1

5

`− k
nδ/2

≤ − 2√
5

(`− k)1/2nδ/4.

But the Azuma inequality gives

P

(
M` −Mk ≤ −

2√
5

(`− k)1/2nδ/4
)
≤ exp

(
− (2(`− k)1/2nδ/4)2

8× 5(`− k)

)
= exp

(
−n

δ/2

10

)
= o(n−(β+2)),

which proves (4.3) and the second point of Proposition 4.7.
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4.4 Positive speed in H via regeneration times

For every 0 ≤ h < h′ ≤ +∞, we denote by Bh,h′ the map formed by the vertices of H
with height in {h, h+ 1, . . . , h′}, in which for every vertex v at height h, we have added a
vertex below v that is linked only to v. We root Bh,h′ at the vertex ρh corresponding to
the leftmost descendant of ρ at generation h. The height of a vertex in Bh,h′ is its height
in H, minus h, and the height of the additional vertices is −1. We denote by ∂Bh,h′ the
set of these additional vertices. Note that for any h ≥ 0, the rooted map (Bh,∞, ρh) is
independent of B0,h and has the same distribution as (H, ρ). Since this distribution is
invariant by horizontal root translation, this is still true for any choice of the root vertex
of Bh,h′ at height 0, as long as the choice of the root is independent of Bh,∞.

Definition 4.8. We say that n > 0 is a regeneration time if Hi < Hn for every i < n, and
Hi ≥ Hn for every i ≥ n. We denote by τ1 < τ2 < . . . the list of regeneration times in
increasing order.

We also denote by T∂ the first time at which the simple random walk X on H hits ∂H.
The key of the proof of Theorem 0.4 will be to combine the two following results.

Proposition 4.9. We have E
[
τ1
]
< +∞. In particular, τ1 < +∞ a.s..

Lemma 4.10. 1. Almost surely, τ j < +∞ for every j ≥ 1.

2. The path-decorated maps
(
BHτj ,Hτj+1 , (Xτj+i)0≤i≤τj+1−τj

)
for j ≥ 1 are i.i.d. and

have the same distribution as
(
B0,Hτ1

, (Xi)0≤i≤τ1

)
conditioned on {T∂ = +∞}.

3. In particular, the pairs
(
τ j+1 − τ j , Hτj+1 −Hτj

)
for j ≥ 1 are i.i.d. and have the

same distribution as (τ1, Hτ1) conditioned on {T∂ = +∞}.
Proposition 4.9 will be deduced from the results of Sections 4.2 and 4.3. On the

other hand, Lemma 4.10 is the reason why regeneration times have been used to prove
positive speed for many other models. The same property has already been observed
and used in various contexts such as random walks in random environments [28], or
biased random walks on Galton–Watson trees [25]. Although the proof is basically the
same for our model, we write it formally in Appendix A.

Finally, we note that the finiteness of the times τ i could be deduced directly from the
results of Section 3, even in the case µ(0) > 0. However, this is not sufficient to ensure
positive speed.

We now explain how to conclude the proof of Theorem 0.4 from the last two results.

Proof of Theorem 0.4 given Proposition 4.9 and Lemma 4.10. By Lemma 4.1, it is
enough to prove the result on H. By item 3 of Lemma 4.10 and Proposition 4.9, we have

E
[
τ2 − τ1

]
=

E[τ11∀n≥0, Hn≥0]

P(∀n ≥ 0, Hn ≥ 0)
< +∞.

Moreover, Hτ2 −Hτ1 ≤ τ2 − τ1, so E [Hτ2 −Hτ1 ] < +∞ as well. By Lemma 4.10 and the
law of large numbers, we have

τ j

j

a.s.−−−−→
j→+∞

E
[
τ2 − τ1

]
and

Hτj

j

a.s.−−−−→
j→+∞

E [Hτ2 −Hτ1 ] .

For every n > τ1, let j(n) be the index such that τ j(n) ≤ n < τ j(n)+1. Then we have
j(n)
n → E[τ2 − τ1]−1 a.s.. Moreover, we have Hτj(n) ≤ Hn ≤ Hτj(n)+1 by the definition of

regeneration times, so Hn
j(n) → E[Hτ2 −Hτ1 ] a.s.. The result follows, with

vµ =
E [Hτ2 −Hτ1 ]

E [τ2 − τ1]
> 0.
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Proof of Proposition 4.9. We will actually show that τ1 has a subpolynomial tail, i.e. for
every β > 0, we have

P
(
τ1 > n

)
= o(n−β).

We first need to introduce a few notation. We define by induction stopping times τj and
τ ′j for every j ≥ 1:

• τ1 = inf{n|Hn > 0},
• τ ′j = inf{n ≥ τj |Hn < Hτj} for every j ≥ 1,

• τj+1 = inf
{
n > τ ′j |Hn > max

(
H0, H1, . . . ,Hτ ′j

)}
.

Let also J be the largest index such that τJ < +∞. We claim that J is a geometric
variable. Indeed, on the one hand, we know that Hn → +∞ when n→ +∞, so almost
surely, if τ ′j < +∞, then τj+1 < +∞. On the other hand, if τj < +∞, let Fτj be the
σ-algebra generated by B0,Hτj

and (X0, X1, . . . , Xτj ). Then the variable(
BHτj ,∞, (Xτj+i)0≤i≤τ ′j−τj

)
is independent of Fτj and has the same distribution as

(
B1,∞, (Xτ1+i)0≤i≤τ ′1−τ1

)
. In

particular, if τj < +∞, we have

P
(
τ ′j < +∞|Fτj

)
= P (τ ′1 < +∞) = P (T∂ = +∞) ,

so P (τj+1 < +∞|τj < +∞) does not depend on j. This shows that J is a.s. finite and
geometric. Note that τ1 = τJ . For any n > 0, we also denote by Jn the largest index j
such that τj ≤ n. Finally, we recall that Dn is the greatest “descent” of X before time n.

In order to estimate the tail of τ1, we partition the event {τ1 > n} into several “bad”
events. Let δ > 0 be small (we will actually only need δ < 1/3). We have

P
(
τ1 > n

)
= P

(
τ1 6= τJn

)
≤ P

(
Jn ≥ nδ

)
+ P

(
Dn ≥ nδ

)
+ P

(
Jn < nδ, Dn < nδ, τ1 6= τJn

)
. (4.4)

We now bound these terms one by one. First, we know that Jn ≤ J , which is a geometric
variable. Hence, the first term is at most exp(−cnδ) for some constant c, so it is o(n−β)

for any β > 0. Moreover, the second part of Proposition 4.7 shows that the second term
is o(n−β) as well.

Finally, we study the third term of (4.4). We first show that if Dn < nδ and Jn < nδ,
then HτJn

< n2δ (this is a deterministic statement). If Dn < nδ, let 1 ≤ j < Jn. We have
τj+1 ≤ n, so τ ′j ≤ n and Hτ ′j

= Hτj − 1 by the definition of τ ′j . By the definitions of τj+1

and of Dn, we have

Hτj+1
−Hτj = 1 + max

[0,τ ′j ]
H − (Hτ ′j

+ 1) ≤ Dn < nδ.

By summing over j (and remembering Hτ1 = 1), we obtain

HτJn
≤ 1 + nδ(Jn − 1) < 1 + nδ(nδ − 1) < n2δ.

Therefore, if the event in the third term of (4.4) occurs, we have HτJn
< n2δ but

τ ′Jn < +∞, so there is k > n such that Hk < n2δ. On the other hand, if δ < 1/3, we have

P
(
∃k > n,Hk ≤ n2δ

)
≤ P

(
∃k > n,Hk ≤ k1−δ) ≤∑

k>n

P
(
Hk ≤ k1−δ) =

∑
k>n

o
(
k−(β+1)

)
by the first point of Proposition 4.7. This proves that the third term of (4.4) decays
superpolynomially, which concludes the proof.
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5 Counterexamples and open questions

We finally discuss the necessity of the various assumptions made in the results of this
paper, and we state a few conjectures. See Figure 2 for a quick summary.

Liouville property We first note that if we do not require the strips (Si) to be i.i.d.,
then Theorem 3.9 fails. Indeed, we start from C(T) and choose a ray γ0 of T. We then
duplicate many times the horizontal edges to add a very strong lateral drift towards γ0.
If we also duplicate the edges of γ0 enough times, we can make sure that the simple
random walk eventually stays on the path γ0. This yields a map of the formM (T, (Si))

which has the intersection property, so it is Liouville.

Poisson boundary The description of the Poisson boundary given by Theorem 0.3
cannot be true for any map of the form M (T, (Si)), even if the strips (Si) are i.i.d..
Indeed, it is possible to choose Si such that the walk (Xn) has a positive probability to
stay in Si forever, and such that Si itself has a non-trivial Poisson boundary. In this case,
the Poisson boundary of M (T, (Si)) is larger than ∂̂T, and nonatomicity in Theorem
0.3 is false. On the other hand, we conjecture that if we furthermore assume that all
the slices Si are recurrent graphs (and i.i.d.), then ∂̂T is a realization of the Poisson
boundary. As explained in Remark 3.8, our arguments cannot handle this general setting.

Positive speed The positive speed is also false in general maps of the formM (T, (Si))

if the strips Si are too large and do not add vertical drift. For example, if they are
equal to the half-planar regular triangular lattice, then the random walk will spend long
periods in the same strip, where it has speed zero. On the other hand, we conjecture
that the assumption µ(0) = 0 is not necessary in Theorem 0.4.

As for Galton–Watson trees, another process of interest on the maps C(T ) is the
λ-biased random walk Xλ. If a vertex x has c(x) children and Xλ

n = x, then Xλ
n+1 is equal

to y with probability 1
c(x)+3λ for every child y of x, and to z with probability λ

c(x)+3λ if z is
the parent or one of the two neighbours of x.

If λ > 1, we expect that, whether µ(0) = 0 or not, the process behaves in the same way
as on trees [25]: the walk is recurrent for λ > λc (as easily shown by the Nash–Williams
criterion) and should have positive speed for λ < λc, where λc =

∑
iµ(i). If λ < 1 and

µ(0) = 0, it is easy to see that the speed is positive on C(T ) since the drift at every
vertex is positive. For λ < 1 and µ(0) > 0, the λ-biased walk on T has speed zero for λ
small enough (λ ≤ f ′(q), where q is the extinction probability of T and f the generating
function of µ). We believe that this regime disappears on causal maps, and that the
λ-biased walk on C(T ) has positive speed for every λ < 1.

Other properties of the simple random walk (for µ(0) = 0) As shown by Theorem
0.3, the harmonic measure of C(T ) on ∂̂T is a.s. nonatomic and has full support. It would
be interesting to investigate finer properties of this measure, as it has been done for
Galton–Watson trees [24, 22]. We believe that as for Galton–Watson trees, the harmonic
measure is not absolutely continuous with respect to the mass measure, and should
satisfy a dimension drop.

Another quantity of interest related to the simple random walk is the heat kernel
decay, i.e. the probability of returning to the root at time n. Perhaps surprisingly,
the annealed and quenched heat kernels might have different behaviours: if µ(1) > 0,
the possibility that T does not branch during the first n1/3 steps gives an annealed
lower bound of order e−n

1/3

. On the other hand, the worst possible traps after the first
branching points seem to be large portions of square lattice, which yield a quenched
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lower bound of order e−n
1/2

. Our argument for quasi-positive speed could be adapted to
prove that the heat kernel decays quicker than any polynomial, which seems far from
optimal. On the other hand, a natural first step to show that the lower bounds are tight
would be to prove anchored expansion for C(T ). However, this property does not seem
well suited to the study of causal maps since connected subsets of C(T ) can be quite
nasty.

Other random processes Finally, other random processes such as percolation on C(T )

might be investigated. We expect that we should have pc < pu, i.e. there is a regime
where infinitely many infinite components coexist, as it is generally conjectured for
graphs with a hyperbolic behaviour (like for example nonamenable transitive graphs
[10]). We note that oriented percolation is studied in a work in progress of David
Marchand.

More generally, for unimodular, planar graphs, other notions of hyperbolicity (includ-
ing pc < pu) have been studied in [5] and proved to be equivalent to each other. It might
be interesting to study the relation with our setting: if it is true that any hyperbolic (in
the sense of [5]) unimodular map contains a supercritical Galton–Watson tree, then our
results of Section 2 apply. On the other hand, it is clear that every unimodular planar
map containing a supercritical Galton–Watson tree is hyperbolic in the sense of [5].

A The regeneration structure

The goal of this appendix is to prove Lemma 4.10. We recall that ∂H is the set of
vertices at height −1, and that T∂ is the first time at which X hits ∂H. We will first prove
the following intermediate result.

Lemma A.1. 1. We have τ1 < +∞ a.s..

2. The path-decorated map
(
BHτ1 ,∞, (Xτ1+i)i≥0

)
is independent of

(
B0,Hτ1

, (Xi)0≤i≤τ1

)
and has the same distribution as (H, (Xi)i≥0) conditioned on the event {T∂ = +∞}.

Note that the first point follows from Proposition 4.9, so we only need to focus on the
second point.

Proof of Lemma A.1. We first note that, by Proposition 4.7, we have Hn → +∞ a.s., so
the conditioning on {T∂ = +∞} is non-degenerate.

For every h ≥ 0, let Th = min{n ≥ 0|Hn = h}, and let T ′h = min{n ≥ Th|Hn < h}. By
Proposition 4.7, we have Th < +∞ a.s.. We also know that the rooted map (Bh,∞, XTh)

is independent of (B0,h, (Xi)0≤i≤Th) and has the same distribution as H. Therefore, the

path-decorated map
(
Bh,∞, (XTh+i)0≤i≤T ′h−Th

)
is independent of (B0,h, (Xi)0≤i≤Th) and

has the same distribution as (H, (Xi)0≤i≤T∂ ).

It follows that, for any two measurable sets A and B of path-decorated maps, we have

P
((
B0,Hτ1

, (Xi)0≤i≤τ1

)
∈ A and

(
BHτ1 ,∞, (Xτ1+i)i≥0

)
∈ B

)
=
∑
h≥0

P
(
(B0,h, (Xi)0≤i≤Th) ∈ A and (Bh,∞, (XTh+i)i≥0) ∈ B and τ1 = h

)
=
∑
h≥0

P
(
(B0,h, (Xi)0≤i≤Th) ∈ A and ∀i < h, T ′i ≤ Th

and (Bh,∞, (XTh+i)i≥0) ∈ B and T ′h = +∞
)
,

by noting that Hτ1 is the smallest height i such that T ′i = +∞. Note that the event
{∀i < h, T ′i ≤ Th} is a measurable function of (B0,h, (Xi)0≤i≤Th), and the event {T ′h =

+∞} is a measurable function of (Bh,∞, (XTh+i)i≥0). Hence, by the independence and
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the distribution of (Bh,∞, (XTh+i)i≥0) found above, we have

P
((
B0,Hτ1

, (Xi)0≤i≤τ1

)
∈ A and

(
BHτ1 ,∞, (Xτ1+i)i≥0

)
∈ B

)
=
∑
h≥0

P((B0,h,(Xi)0≤i≤Th) ∈ A and ∀i < h, T ′i ≤ Th)P((B0,∞, (Xi)i≥0) ∈ B and T∂ = +∞)

= P
(
(B0,∞, (Xi)i≥0) ∈ B

∣∣T∂ = +∞
)
f(A),

where f(A) is a function of A. Therefore, the path-decorated maps
(
B0,Hτ1

, (Xi)0≤i≤τ1

)
and

(
BHτ1 ,∞, (Xτ1+i)i≥0

)
are independent and, by taking A = Ω, we obtain that the

distribution of the second is a multiple of the distribution of (H, (Xi)i≥0) conditioned on
the event {T∂ = +∞}. Since both are probability measures, they coincide.

Proof of Lemma 4.10. We define the shift operator θ as follows:

(H, (Xi)i≥0) ◦ θ =
(
BHτ1 ,∞(H), (Xτ1+i)i≥0

)
.

We first notice that Lemma A.1 remains true if we consider (H, X) under the measure
P (·|T∂ = +∞) instead of P. Indeed, conditioning on an event of positive probability does
not change the fact that τ1 < +∞ a.s.. Moreover, the event {T∂ = +∞} only depends
on
(
B0,Hτ1

, (Xi)0≤i≤τ1

)
and not on

(
BHτ1 ,∞, (Xτ1+i)i≥0

)
, so conditioning on this event

affects neither the independence of these two path-decorated maps, nor the distribution
of the second.

But by Lemma A.1, the map (H, (Xi)i≥0) ◦ θ has the same distribution as (H, (Xi)i≥0)

under P (·|T∂ = +∞), so Lemma A.1 applies after composition by θ. In particular, we
have τ1 ◦ θ < +∞ a.s., i.e. τ2 < +∞ a.s.. Moreover, the two following path-decorated
maps are independent:

•
(
B0,Hτ1

, (Xi)0≤i≤τ1

)
◦ θ =

(
BHτ1 ,Hτ2 , (Xτ1+i)0≤i≤τ2−τ1

)
,

•
(
BHτ1 ,∞, (Xτ1+i)i≥0

)
◦ θ =

(
BHτ2 ,∞, (Xτ2+i)i≥0

)
,

and the second one has the same distribution as (H, (Xi)i≥0) under P (·|T∂ = +∞). From
here, an easy induction on j shows that for any j ≥ 1, we have τ j < +∞ and the
path-decorated map

(
BHτj ,Hτj+1 , (Xτj+i)0≤i≤τj+1−τj

)
has indeed the right distribution

and is independent of
(
BHτj+1 ,∞, (Xτj+1+i)i≥0

)
. This proves Lemma 4.10 (the third item

is a direct consequence of the first two).
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