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Abstract

We study the notions of mild solution and generalized solution to a linear stochastic
partial differential equation driven by a pure jump symmetric Lévy white noise,
with symmetric α-stable Lévy white noise as an important special case. We identify
conditions for existence of these two kinds of solutions, and, together with a new
stochastic Fubini theorem, we provide conditions under which they are essentially
equivalent. We apply these results to the linear stochastic heat, wave and Poisson
equations driven by a symmetric α-stable Lévy white noise.
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1 Introduction

In this article, we consider a linear stochastic partial differential equation (SPDE) of
the form

Lu = Ẋ , (1.1)

where L is a partial differential operator and Ẋ is a symmetric pure jump Lévy white
noise. We study two different notions of solution to (1.1). On the one hand, from the
random field approach to SPDEs, we have the concept of mild solution, which is a random
field defined as the convolution of a fundamental solution of L with the noise. The mild
solution is therefore defined as a stochastic integral, and some conditions are needed for
its existence. For example, in the case of Gaussian white noise, the fundamental solution
must be square integrable. The literature for the existence of mild solutions to SPDEs
in the Gaussian case is already quite extensive (see [7, 13] for introductory lectures,
and see [8, 6] for more advanced presentations). The case of Lévy noise has been less
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Linear SPDE driven by Lévy white noise

studied, but the existence of mild solutions for various equations has been considered in
[1, 3], and the approach via evolution equations is considered in [17].

On the other hand, from the general theory of (deterministic) partial differential
equations, we have the notion of weak solution, or solution in the sense of (Schwartz)
distributions. Since the terms “weak” and “distribution” are often used with another
meaning, we will instead use the term “generalized solution,” in the spirit of the book
[10].

In this article, we are interested in the link between the notions of mild solution and
generalized solution to the linear stochastic partial differential equation (1.1). More
precisely, the questions that we study are the following:

(1) When it can be defined, is a mild solution also a generalized solution?

(2) When a generalized solution exists, under what conditions can it be represented by
a random field?

(3) What kinds of solution exist in the case of the stochastic heat equation, the stochas-
tic wave equation, or the stochastic Poisson equation driven by an α-stable noise?

A question related to (2) was studied in [8, Theorem 11]. More precisely, this
reference gives a necessary condition on the Green’s function of the differential operator
for the existence of a random field representation (see Definition 3.4) for the generalized
solution to an SPDE driven by a Gaussian colored noise.

To answer the above questions, we first give a precise definition in Section 3 of
the two different notions of solution to a linear SPDE. Then, in Section 4, we provide
a complete answer to questions (1) and (2) in the α-stable case (Theorem 4.1). In
particular, we give a necessary and sufficient condition on the fundamental solution ρ
of L (condition (INT) in Section 4) for the generalized solution to have a random field
representation. In this case, the mild solution is a random field representation of the
generalized solution.

These results are extended to the case of symmetric pure jump Lévy white noise
in Section 5 (Theorem 5.2). The restriction to symmetric Lévy white noise come from
the fact that in the symmetric case, the stochastic integral is an isomorphism between
the space of functions that are integrable with respect to the noise and their stochastic
integrals with respect to this noise [18, Theorem 3.4 and Proposition 3.6]. To prove these
extensions, we establish a new stochastic Fubini’s theorem that applies to symmetric
pure jump Lévy white noise (Theorem 5.1) and is interesting in its own right.

Finally, we address question (3) in Section 6, where we apply the above results
to the case of the stochastic heat, wave equation and Poisson equations in all spatial
dimensions. The main results can be found in Theorems 6.6, 6.12 and 6.13.

2 Notations and main definitions

We begin by recalling some properties of generalized functions and of Lévy white
noise.

2.1 Generalized functions

We will denote by D(Rd) the space of C∞ compactly supported functions, and D′(Rd)
its topological dual, the space of distributions or generalized functions (as defined and
studied in [22]). The evaluation of ρ ∈ D′(Rd) on ϕ ∈ D(Rd) is denoted 〈ρ, ϕ〉. We
suppose that L is a partial differential operator with adjoint L∗ (typically, L may be the
heat or wave operator). We consider a fundamental solution ρ ∈ D′(Rd) of the operator
L, that is a solution to

Lρ = δ0 in D′(Rd), (2.1)
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where δ0 denotes the Dirac delta function. The fundamental solution is not always
unique (and choosing this solution typically amounts to imposing initial and/or boundary
conditions), and in the following, we fix the choice of ρ. We recall the definition [22] of
the convolution between a distribution ρ and a smooth function ϕ with compact support:

ϕ ∗ ρ(t) := 〈ρ, ϕ(t− ·)〉 . (2.2)

Note that this convolution defines a C∞ function. Also, for ϕ ∈ D(Rd), we define
〈ρ̌, ϕ〉 := 〈ρ, ϕ̌〉, where for all t ∈ Rd, ϕ̌(t) := ϕ(−t). For any real valued function f , we
will define f+ := max(f, 0).

A generalized function usually cannot be evaluated pointwise. However, a general-
ized function can sometimes be represented by a true function. We first recall that a
measurable function f : Rd → R is locally integrable (that is, f ∈ L1

loc(Rd)) if, for all
compact sets K ⊂ Rd,

∫
K
|f(t)|dt <∞. Of course, it is sufficient to check that

for all n ∈ N,
∫

[−n,n]d
|f(t)|dt <∞, (2.3)

so checking local integrability only requires checking a countable number of conditions.
Condition (2.3) is equivalent to

for all ϕ ∈ D(Rd),

∫
Rd
|f(t)| |ϕ(t)| dt <∞, (2.4)

and in fact, the condition (2.4) only needs to be checked for a countable collection of ϕ
(say for any sequence (ϕn) ⊂ D(Rd) such that ϕn ≥ 0 and ϕn|[−n,n]d = 1, for all n ∈ N).

A Borel function f0 ∈ L1
loc(Rd) defines an element of D′(Rd) via the functional

ϕ 7→ 〈f0, ϕ〉 :=

∫
Rd
f0(t)ϕ(t) dt.

Conversely, we say that ρ ∈ D′(Rd) is represented by a function if there is a Borel
function ρ0 ∈ L1

loc(Rd) such that,

for all ϕ ∈ D(Rd), 〈ρ, ϕ〉 =

∫
Rd
ρ0(t)ϕ(t) dt =: 〈ρ0, ϕ〉.

For example, the Dirac distribution δ0 cannot be represented by a function.

2.2 Lévy white noise

On a probability space (Ω,F ,P), let Ẋ be a symmetric pure jump Lévy white noise on
S, where S is a Borel subset of Rd with positive Lebesgue measure, with characteristic
triplet (0, 0, ν) (the S we have in mind are typically S = R+ × Rd and S = Rd+). More
precisely, we suppose that there is a Poisson random measure J on S ×R with intensity
measure ds ν(dz) such that

X(ds) :=

∫
|z|61

zJ̃(ds, dz) +

∫
|z|>1

zJ(ds, dz) ,

and ν is a symmetric Lévy measure. In particular, ν is a nonnegative measure on R such
that

∫
R

(1∧|z|2)ν( dz) <∞. As usual, J̃(ds, dz) := J(ds, dz)− ds ν(dz) is the compensated
Poisson random measure associated to J . This Lévy white noise is a particular example
of an independently scattered random measure as introduced in [18]. For a link with
other definitions of Lévy white noise, we refer the reader to [9]. In [18, Theorem 2.7],
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Rajput and Rosinski identified the space L(Ẋ, S) of deterministic functions for which∫
S
f(s)X(ds) can be defined. In particular, in our framework, it turns out that

L(Ẋ, S) =

{
f : S → R measurable :

∫
S×R

(
|f(s)z|2 ∧ 1

)
ds ν(dz) < +∞

}
.

For properties of this space, we refer the reader to [18, p. 466]. In particular, it is a
linear complete metric space for the norm

‖f‖Φ0 = inf

{
c > 0 :

∫
S×R

min

(
1,

∣∣∣∣zf(s)

c

∣∣∣∣2
)

ds ν(dz) ≤ 1

}
.

The mapping

f 7→
∫
S

f(s)X( ds) = 〈Ẋ, f〉 (2.5)

from L(Ẋ, S) into L0(Ω) (the space of a.s. finite random variables with the metric of
convergence in probability) is an isomorphism [18, Theorem 3.4] (this property makes
use of the symmetry of Ẋ: see [18, Proposition 3.6]), and the convergence fn → f in
L(Ẋ, S) as n→ +∞ is equivalent to∫

S×R

(
|(fn(s)− f(s)) z|2 ∧ 1

)
ds ν(dz)→ 0 as n→ +∞ .

In particular, fn → f in L(Ẋ, S) implies fn → f in measure on compact subsets of S
[18, p.466]. In a spatio-temporal framework, we refer the reader to [4] for integrability
conditions for non-deterministic integrands.

A generalized stochastic process (or generalized random field) U is a linear map from
the space of test functions D(Rd) into L0(Ω). If, in addition, this map is continuous, then
by [25, Corollary 4.2], it has a version Ũ (i.e. for any ϕ ∈ D(Rd), 〈U,ϕ〉 = 〈Ũ , ϕ〉 a.s.) such
that for almost all ω ∈ Ω, for any sequence ϕn → ϕ in D(Rd), 〈Ũ , ϕn〉(ω) → 〈Ũ , ϕ〉(ω).
That is, Ũ defines a random element in D′(Rd). In this case, Ũ is called a continuous
generalized stochastic process, or a random distribution.

3 Notions of solution to a linear SPDE

We introduce two different notions of solutions to the linear SPDE (1.1) with associ-
ated fundamental solution ρ. Notice that in this framework, we are only considering the
case where the Green’s function of the operator L is given by a shift of a fundamental
solution.

3.1 Generalized solution

In the following, we will need a hypothesis on the fundamental solution ρ of the
differential operator L:

(H1) ρ is such that for any ϕ ∈ D(Rd), the convolution ϕ ∗ ρ̌ belongs to L(Ẋ, S).

The case where the noise is a symmetric α-stable noise for some α ∈ (0, 2) is already
quite rich, and provides some insights into the general theory. More precisely, suppose
that Ẇα is an α-stable symmetric Lévy white noise on S, with characteristic triplet
(0, 0, να), where να(dz) = c−1

α |z|−α−1 dz, with

cα =
Γ(1 + α)

π
sin

απ

2
= 2 Γ(−α) cos

απ

2
.
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The characteristic function of Ẇα is given by

E
(
eiuẆ

α(A)
)

= exp [−Lebd (A) |u|α] , u ∈ R ,

for any measurable set A ⊂ S with finite Lebesgue measure [21, Lemma 14.11]. This
notion coincides with that of a symmetric α-stable random measure developed in [20,
§3.3]. Since the skewness parameter β vanishes, it is well known that a function
f : Rd → R is Ẇα-integrable if and only if f ∈ Lα(S) (see [20, §3.4]). In this framework,
(H1) becomes:

(H1’) ρ is such that for any ϕ ∈ D(Rd), the convolution ϕ ∗ ρ̌ belongs to Lα(S).

As in (44) of [8], we can then define a generalized solution to the following linear
SDPE:

Lu = Ẋ 1S . (3.1)

Definition 3.1. Assume (H1). The generalized solution to the stochastic partial differ-
ential equation (3.1) is the linear functional ugen on D(Rd) such that for all ϕ ∈ D(Rd),

〈ugen, ϕ〉 := 〈Ẋ, ϕ ∗ ρ̌〉 . (3.2)

Notice that 〈Ẋ, ϕ〉 denotes
∫
S
ϕ(s)X(ds), and this accounts for the 1S in (3.1).

Remark 3.2. The generalized solution is in general not a distribution, since it may not
define a continuous linear functional on D(Rd). However, by [25, Corollary 4.2], ugen

does have a version in D′(Rd) if ϕ 7→ 〈ugen, ϕ〉 from D(Rd) to L0(Ω) is continuous. By the
isomorphism property mentioned in Section 2, this will be the case if ϕn → ϕ in D(Rd)

implies that ϕn ∗ ρ̌→ ϕ ∗ ρ̌ in L(Ẋ, S). This will occur in several examples, such as the
stochastic heat equation (see Remark 6.3) and the stochastic wave equation (see Remark
6.8).

Remark 3.3. When ugen has a version in D′(Rd), then the functional ugen is a solution to
(3.1) in the weak sense: indeed, for ϕ ∈ D(Rd),

〈Lugen, ϕ〉 = 〈ugen,L∗ϕ〉 = 〈Ẋ, (L∗ϕ) ∗ ρ̌〉 .

Also, by (2.1),

(L∗ϕ) ∗ ρ̌(t) = 〈ρ̌,L∗ϕ(t− ·)〉 = 〈ρ,L∗ϕ(t+ ·)〉 = 〈Lρ, ϕ(t+ ·)〉 = 〈δ0, ϕ(t+ ·)〉 = ϕ(t) .

Therefore, for all ϕ ∈ D(Rd),

〈Lugen, ϕ〉 = 〈Ẋ, ϕ〉 .

Definition 3.4. We say that a generalized stochastic process u has a random field
representation if there exists a jointly measurable random field (Yt)t∈Rd such that Y has
almost surely locally integrable sample paths and for any ϕ ∈ D(Rd),

〈u, ϕ〉 =

∫
Rd
Yt ϕ(t) dt a.s. (3.3)

The generalized stochastic processes that have a random field representation are
exactly those which can be evaluated pointwise.
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3.2 Mild solution

Generalized solutions are a useful generalization of classical solutions to a partial
differential equation. However, non-linear operations on generalized functions are in
general difficult to define, and we are often interested in finding solutions that can be
evaluated pointwise. One type of solution that is often used in the SPDE literature is
the notion of mild solution. In order to be able to define a mild solution to (3.1), we will
need another hypothesis on the fundamental solution ρ:

(H2) ρ is represented by a function ρ0 such that, for Lebd-a.a. t ∈ Rd,

ρ0(t− ·) ∈ L(Ẋ, S). (3.4)

Again, in the case where the noise is a symmetric α-stable noise for some α ∈ (0, 2)

(H2) becomes:

(H2’) ρ is represented by a function ρ0 such that, for Lebd-a.a. t ∈ Rd,

ρ0(t− ·) ∈ Lα(S). (3.5)

We will see in Remark 4.3 below that in certain special cases, such as S = R+×Rd−1,
then: (i) if (3.5) holds for a.a. t ∈ S, then it holds for all t ∈ S; and (ii) (H2’) implies
(H1’).

Definition 3.5. Under hypothesis (H2), the mild solution of (3.1) is the random field
(umild(t), t ∈ Rd) defined as follows: for those t ∈ Rd which satisfy (3.4) (respectively
(3.5) in the α-stable case),

umild(t) := 〈Ẋ, ρ0(t− ·)〉, (3.6)

and for those t such that ρ(t− ·) 6∈ L(Ẋ, S), we set umild(t) = 0.

Recall that u = (ut) and ũ = (ũt) are versions (also called modifications) of each
other if, for all t ∈ Rd, u(t) = ũ(t) a.s. (where the null set may depend on t). The random
field umild defined in (3.6) has a jointly measurable version. This is a consequence of the
following proposition, whose proof is based on a result of [5].

Proposition 3.6. Let f : Rn × Rd → R be a Borel measurable function such that for
Lebesgue-a.a. t ∈ Rn, f(t, ·) ∈ L(Ẋ, S). For any t ∈ Rn, let

u(t) =

{
〈Ẋ, f(t, ·)〉, if f(t, ·) ∈ L(Ẋ, S),

0, otherwise.

Then the random field u has a jointly measurable version.

Proof. Let A ⊂ Rn be a Borel null set such that for t ∈ Rn \ A, f(t, ·) ∈ L(Ẋ, S).
Set g(t, ·) = f(t, ·)1Ac(t). Then g : Rn × Rd → R is measurable and for all t ∈ Rn,
u(t) = 〈Ẋ, g(t, ·)〉 a.s. By [2, p. 925], u has a measurable modification.

3.3 Possible relationships between mild and generalized solutions

We point out that the generalized and mild solutions depend on the choice of the
fundamental solution ρ. Therefore, we fix a fundamental solution to the operator L,
and then it makes sense to study the generalized solution and the mild solution to (3.1)
(under (H1) and (H2), respectively), as defined in (3.2) and (3.6).

When it exists, the mild solution is always a random field. It may turn out that the
generalized solution has a random field representation, and we can then ask if this
representation is the mild solution.
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In general, if umild has locally integrable sample paths, then for any ϕ ∈ D(Rd),∫
Rd
umild(t)ϕ(t) dt is well-defined, and

〈umild, ϕ〉 :=

∫
Rd
umild(t)ϕ(t) dt =

∫
Rd
〈Ẋ, ρ(t− ·)〉ϕ(t) dt .

If we can exchange the stochastic integral and the Lebesgue integral, then we get

〈umild, ϕ〉 = 〈Ẋ,
∫
Rd
ρ(t− ·)ϕ(t) dt〉 = 〈Ẋ, ϕ ∗ ρ̌〉 = 〈ugen, ϕ〉 ,

and umild will be a random field representation of ugen.
In order to make the steps above rigorous, we need to know when umild has locally

integrable sample paths, and we need a stochastic Fubini’s theorem. We will consider
the α-stable case in Section 4 and the general case in Section 5.

We recall that in the case of a Gaussian noise, that can be spatially correlated, this
type of question has already been investigated under slightly different assumptions in [8,
Theorem 11]. Transposed to our framework, this theorem implies that in the case of an
SPDE driven by Gaussian white noise (in space and time), if the generalized solution has
a random field representation, then the fundamental solution of this SPDE is necessarily
represented by a square integrable function. Here, we first extend this kind of statement
to the setting of symmetric α-stable Lévy white noises.

4 The α-stable case

Fix α ∈ (0, 2) and let Ẇα be a symmetric α-stable noise as in Section 3.1. We consider
the linear SPDE

Lu = Ẇα 1S . (4.1)

We fix a fundamental solution ρ of L. We are interested in determining if ugen, as defined
in (3.2) with Ẋ replaced by Ẇα, has a random field representation, and if umild, as
defined in (3.6) with Ẋ replaced by Ẇα, is a random field representation of ugen. It will
turn out that condition (INT) below is a necessary and sufficient condition for this.

Notation. For any ϕ ∈ D(Rd), let µϕ(dt) = ϕ(t) dt and µ|ϕ|(dt) = |ϕ(t)|dt.

Consider the following condition.

Condition (INT). The fundamental solution ρ is represented by a function ρ0, and either

(i) α > 1 and for any ϕ ∈ D(Rd),∫
Rd

(∫
S

|ρ0(t− s)|α ds

) 1
α

µ|ϕ|(dt) < +∞ , (4.2)

or

(ii) α = 1 and ρ0 is such that for any ϕ ∈ D(Rd),∫
Rd
µ|ϕ|(dt)

∫
S

ds |ρ0(t−s)|

[
1 + log+

(
|ρ0(t− s)|

∫
Rd
µ|ϕ|(dr)

∫
S

dv|ρ0(r − v)|(∫
S
|ρ0(t− v)|dv

) (∫
Rd
|ρ0(r − s)|µ|ϕ|(dr)

))]<+∞.

(4.3)
or

(iii) α < 1 and ρ0 is such that for any ϕ ∈ D(Rd),
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∫
S

(∫
Rd
|ρ0(t− s)|µ|ϕ|(dt)

)α
ds < +∞ . (4.4)

The main result of this section is the following.

Theorem 4.1. Let α ∈ (0, 2). The following three conditions are equivalent.

(1) Condition (INT) holds;

(2) (H2’) holds and the jointly measurable version of umild has locally integrable sample
paths;

(3) (H1’) holds and ugen has a random field representation.

Under any one of these three equivalent conditions, umild is a random field representation
of ugen.

Proof of Theorem 4.1. (1) implies (2). Suppose that ρ is represented by a function ρ0

satisfying the properties in Condition (INT). When α > 1, since the condition in (4.2) can
be written

∫
Rd
‖ρ0(t − ·)‖Lα(S) µ|ϕ|( dt) < ∞, this condition implies that for a.a. t ∈ Rd,

ρ0(t− ·) ∈ Lα(S), that is, (H2’) holds. When α = 1, (4.3) clearly implies that∫
Rd
‖ρ(t− ·)‖L1(S) µ|ϕ|( dt) <∞, (4.5)

which clearly implies that for a.a. t ∈ Rd, ρ(t − ·) ∈ L1(S), that is, (H2’) holds. When
α < 1, then by Remark 4.3(3) below, (4.4) also implies that (H2’) holds. Therefore, for
α ∈ (0, 2), umild is well-defined.

According to [20, Theorem 11.3.2] (which uses the symmetry of Ẇα when α = 1),
Condition (INT) implies that for any ϕ ∈ D(Rd), a.s.,∫

Rd
|umild(t)|µ|ϕ|(dt) < +∞. (4.6)

As discussed in Subsection 2.1, we can find a single null set such that (4.6) holds
simultaneously for all ϕ ∈ D(Rd). Therefore, the sample paths of umild are almost surely
locally integrable. This proves (2).

(2) implies (3). Local integrability of the sample paths of umild implies that for all
ϕ ∈ D(Rd), (4.6) holds. According to the stochastic Fubini theorem in [20, Theorem
11.4.1], this implies that ∫

Rd
ρ0(t− ·)µ|ϕ|(dt) ∈ Lα(S),

or, equivalently, |ϕ| ∗ ρ̌0 ∈ Lα(S). This implies that (H1’) holds. By the same stochastic
Fubini theorem, for any ϕ ∈ D(Rd),∫

Rd
umild(t)ϕ(t) dt =

∫
S

(∫
Rd
ρ(t− s)ϕ(t) dt

)
Ẇα(ds) = 〈Ẇα, ϕ ∗ ρ̌〉 a.s. (4.7)

Therefore, for any ϕ ∈ D(Rd),

〈umild, ϕ〉 = 〈Ẇα, ϕ ∗ ρ̌〉 =: 〈ugen, ϕ〉 a.s. (4.8)

Therefore, umild = ugen in the sense of generalized stochastic processes, that is, umild is a
random field representation of ugen.

(3) implies (1). Let (Yt) be a random field representation of ugen, that is, (3.3) holds.
According to Definition 3.4, there exists a set Ω̃ ⊂ Ω of probability one such that for all
ω ∈ Ω̃, the function t 7→ Yt(ω) is locally integrable. Without loss of generality, we can
suppose that Ω = Ω̃. Let ϕ ∈ D(Rd) be such that ϕ > 0, suppϕ ⊂ B(0, 1) and

∫
Rd
ϕ = 1.
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For each t ∈ Rd and n ∈ N, we define ϕtn(·) = ndϕ(n(· − t)). Let Znt (ω) := 〈Y (ω), ϕtn〉.
Then

Znt (ω) =

∫
Rd
Ys(ω)ndϕ(n(s− t)) ds =

∫
Rd
Yr+t(ω)ndϕ(nr) dr . (4.9)

Define f(t, s, ω) := (t + s, ω). The function f is measurable as a map from (Rd × Rd ×
Ω, B(Rd)⊗B(Rd)⊗F) to (Rd ×Ω, B(Rd)⊗F), and Yr+t(ω) = Y ◦ f(r, t, ω). Since Y is a
jointly measurable process, by Fubini’s theorem, we deduce from the second equality in
(4.9) that Zn is a jointly measurable process. We define the set

A =
{

(t, ω) : 〈Y (ω), ϕtn〉 → Yt(ω) as n→ +∞
}
.

We can write

A =
⋂
k∈N∗

⋃
N∈N

⋂
n>N

{
(t, ω) : |Znt (ω)− Yt(ω)| 6 1

k

}
,

and since Zn and Y are both jointly measurable processes, A ∈ B(Rd)⊗F . By Lebesgue’s
differentiation theorem (see [26, Chapter 7, Exercise 2]), for any ω ∈ Ω,

∫
Rd

1(t,ω)∈Ac dt =

0. Then, by Fubini’s theorem, (Lebd × P)(Ac) = 0. Therefore, there is a non random set
Ã ⊂ Rd such that Lebd(Ã) = 0 and for all t /∈ Ã, P {ω : (t, ω) ∈ Ac} = 0, that is,

P
{
〈Y, ϕtn〉 → Yt as n→ +∞

}
= 1. (4.10)

By [20, Proposition 3.4.1], for any f ∈ Lα(S),

E
(
ei〈Ẇ

α,f〉
)

= e−‖f‖
α
Lα(S) . (4.11)

Therefore, by (3.2) and (3.3), for all ϕ ∈ D(Rd),

E
(
ei〈ugen,ϕ〉

)
= e−‖ϕ∗ρ̌‖

α
Lα = E

(
exp

(
i

∫
Rd
Ysϕ(s) ds

))
. (4.12)

Let t0 ∈ Ãc. Then
〈Y, ϕt0n 〉 → Yt0 a.s. as n→ +∞. (4.13)

We define ρt0n = ϕt0n ∗ ρ̌ ∈ Lα(S) by (H1’). By (4.12) and (4.10), for n,m ∈ N,

e−‖ρ
t0
n −ρ

t0
m‖

α
Lα = E

(
exp

(
i

∫
Rd
Ys
(
ϕt0n (s)− ϕt0m(s)

)
ds

))
→ 1 as n,m→ +∞ . (4.14)

We deduce that (ρt0n )n>1 is a Cauchy sequence in Lα(S). By completeness of this space,
there is a function gt0 ∈ Lα(S) such that

ρt0n → gt0 in Lα(S) as n→ +∞ . (4.15)

Furthermore, we know from the theory of generalized functions that ϕt0n → δt0 in D′(Rd)
as n→ +∞. Therefore,

ρt0n → δt0 ∗ ρ̌ , in D′(Rd) as n→ +∞ . (4.16)

From (4.15) and (4.16), we would like to deduce that the function gt0 represents δt0 ∗ ρ̌.
If this is true, then it will mean that s 7→ ρ(t0 − s) can be considered as a function in
Lα(S). However, in order to prove this equality, it suffices to show that for any θ ∈ D(S),
〈δt0 ∗ ρ̌, θ〉 = 〈gt0 , θ〉.

If α ∈ (0, 2) is arbitrary, we deduce from (4.11) and (4.14) that 〈Ẇα, ρt0n − gt0〉 → 0

in law as n→ +∞, and by [12, Lemma 4.7], the convergence is also in probability. By
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Linear SPDE driven by Lévy white noise

almost sure linearity, we deduce that 〈Ẇα, ρt0n 〉 → 〈Ẇα, gt0〉 in probability as n → +∞.
By uniqueness of the limit, and since 〈Ẇα, ρt0n 〉 = 〈ugen, ϕ

t0
n 〉 = 〈Y, ϕt0n 〉, it follows from

(4.13) that
for any t0 ∈ Ãc , Yt0 = 〈Ẇα, gt0〉 a.s. (4.17)

For any (t, s) ∈ Rd × S, let
g(t, s) = lim sup

n→+∞
ρtn(s) . (4.18)

For fixed n ∈ N, ρtn(s) = ϕtn ∗ ρ̌ = 〈ρ̌, ϕtn(s − ·)〉 = 〈ρ̌, ϕ0
n(s − · − t)〉, so (s, t) 7→ ρtn(s) is

continuous. Hence (t, s) 7→ g(t, s) is measurable, and by (4.15), for t ∈ Ãc, g(t, ·) = gt(·)
almost everywhere. Therefore, for t0 ∈ Ãc,

g(t0, ·) ∈ Lα(S), (4.19)

and
Yt0 = 〈Ẇα, g(t0, ·)〉 , a.s., (4.20)

where the “a.s.” depends on t0. Let (ũt, t ∈ Rd) be a jointly measurable version of
〈Ẇα, g(t, ·)〉 (which exists by Proposition 3.6). By (4.20),

for t0 ∈ Ãc, Yt0 = ũt0 a.s. (4.21)

Since both (Yt) and (ũt) are jointly measurable, (Lebd × P){(t, ω) : Yt(ω) 6= ũt(ω)} = 0.
By Fubini’s theorem, there is a P-null set N0 such that for ω 6∈ N0,

Yt(ω) = ũt(ω), for a.a. t ∈ Rd. (4.22)

Let ψ ∈ D(Rd). Then µψ(dt) := ψ(t) dt is a finite signed measure, that we can
decompose into positive and negative parts µ+

ψ and µ−ψ . Since Y is almost surely locally
integrable, ∫

Rd
|Yt|µ+

ψ (dt) < +∞ , and

∫
Rd
|Yt|µ−ψ (dt) < +∞ a.s.

By [20, Theorem 11.3.2], if α > 1, we get∫
Rd

(∫
S

|g(t, s)|α ds

) 1
α

|ψ(t)|dt < +∞ , (4.23)

if α = 1, we get∫
Rd

dt

∫
S

ds |g(t, s)ψ(t)|

[
1 + log+

(
|g(t, s)|

∫
Rd

∫
S
|g(r, v)|dv|ψ(r)|dr(∫

S
|g(t, v)|dv

) (∫
Rd
|g(r, s)ψ(r)|dr

))] < +∞ ,

(4.24)
and if α < 1, we get ∫

S

(∫
Rd
|g(t, s)ψ(t)| dt

)α
ds < +∞ . (4.25)

If α = 1 or α < 1, then (4.24) and (4.25) imply that there is a Lebesgue-null set Nψ such
that, for s ∈ S \Nψ,

∫
Rd
|g(t, s)ψ(t)|dt <∞. Let (ψn) ⊂ D(Rd) be such that 1[−n,n]d ≤ ψn,

for all n ∈ N. For s ∈ S \ ∪n∈NNψn , we have that for all n ∈ N,
∫

[−n,n]d
|g(t, s)|dt < ∞,

that is, t 7→ g(t, s) is locally integrable. When α > 1, by the generalized Minkowsky
inequality (see [23, A.1]) and by (4.23),(∫

S

∣∣∣∣∫
Rd
|g(t, s)ψ(t)| dt

∣∣∣∣α ds

) 1
α

6
∫
Rd

(∫
S

|g(t, s)|α ds

) 1
α

|ψ(t)|dt < +∞ .
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Linear SPDE driven by Lévy white noise

In particular, we see that also in the case α > 1, for almost all s ∈ S, t 7→ g(t, s) is locally
integrable (and therefore represents a distribution).

By (4.22), for all α ∈ (0, 2),∫
Rd
Yt µψ(dt) =

∫
Rd
ũ(t)ψ(t) dt =

∫
Rd
〈Ẇα, g(t, ·)〉ψ(t) dt, (4.26)

where 〈Ẇα, g(t, ·)〉 is the jointly measurable version of this process. By [20, Theorem
11.4.1], we can exchange the stochastic integral with the Lebesgue integral in (4.26), to
conclude that

〈Y, ψ〉 = 〈Ẇα,

∫
Rd
ψ(t)g(t, ·) dt〉 a.s. (4.27)

We define
∫
Rd
ψ(t)g(t, s) dt =: (ψ~g)(s) (this operation on ψ and g is not commutative).

From (4.27) and (3.3), we get

〈Ẇα, ψ ~ g − ψ ∗ ρ̌〉 = 〈Ẇα, ψ ~ g〉 − 〈Ẇα, ψ ∗ ρ̌〉 = 〈Y, ψ〉 − 〈ugen, ψ〉 = 0 a.s., (4.28)

and by (4.11), we deduce that ‖ψ ~ g − ψ ∗ ρ̌‖Lα(S) = 0. Then, for any ψ ∈ D(Rd), there
is a set Bψ such that Lebd (Bψ) = 0 and for any s ∈ S \Bψ, (ψ ~ g)(s) = (ψ ∗ ρ̌)(s). Since
D(Rd) is separable, there is a countable dense subset D ⊂ D(Rd). Let

B =
⋃
ψ∈D

Bψ .

Then Lebd (B) = 0 and, for all s ∈ S \B, for all ψ ∈ D,

〈g(·, s), ψ〉 = ψ ~ g(s) = ψ ∗ ρ̌(s) = 〈ρ, ψ(s+ ·)〉 = 〈δs ∗ ρ, ψ〉 ,

where we have used (2.2). Since two distributions equal on a dense subset of D(Rd)

are equal (by continuity), we get that for all s ∈ S \ B, g(·, s) = δs ∗ ρ in D′(Rd).
Then, ρ = δ−s ∗ g(·, s) in D′(S), and δ−s ∗ g(·, s) is in fact a function ρ0 depending
only on the t ∈ Rd variable, i.e., ρ0 represents ρ. Further, for almost all t ∈ Rd,
ρ0(t) = (δ−s ∗ g(·, s))(t) = g(t + s, s) which does not depend on s. Then, for almost all
(t, s) ∈ Rd × S, g(t, s) = ρ0(t − s). By (4.19), we deduce that for almost all t ∈ Rd,
ρ0(t− ·) ∈ Lα(S), so (H2’) holds and umild = 〈Ẇα, ρ0(t0 − ·)〉 is well-defined. Also, from
(4.23), (4.24) and (4.25), we get that (4.2)–(4.4) hold. This proves (1).

Finally, still assuming (3), by (4.20), for t0 ∈ Ãc, Yt0 = 〈Ẇα, ρ0(t0−·)〉 = umild(t0) = ũt0 ,
a.s. By Fubini’s theorem, a.s., Yt = ũt for a.a. t ∈ Rd. We conclude that (ũt) is a jointly
measurable version of umild, (ũt) a.s. has locally integrable sample paths, and (ũt) is a
random field representation of ugen (since this was the case of (Yt)). This proves the last
statement of Theorem 4.1.

Remark 4.2. For the implication “(3) implies (1)” in the proof of Theorem 4.1, in the
case α > 1, there is a different way of deducing from the considerations that lead to
(4.16) that gt0 represents δt0 ∗ ρ̌. Indeed, when α > 1, using the notation introduced in
the proof, by Hölder’s inequality,

|〈gt0 − ρt0n , θ〉| 6
∫
S

∣∣gt0(s)− ρt0n (s)
∣∣ |θ(s)|ds 6 ‖gt0 − ρt0n ‖Lα(S)‖θ‖L α

α−1 (S)
.

Passing to the limit as n → +∞, we get that for all t0 ∈ Ãc, δt0 ∗ ρ̌ = gt0 ∈ Lα(S) in
D′(S). Then, in the sense of distributions, ρ̌ = δ−t0 ∗ δt0 ∗ ρ̌ = δ−t0 ∗ gt0 . Therefore, ρ
is represented by the function t ∈ Rd 7→ gt0(t0 − t) =: ρ0(t), which therefore does not
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depend on t0, and is such that for almost all t ∈ Rd, δt ∗ ρ̌ = ρ0(t− ·) ∈ Lα(S), so (H2’)
holds. Also, for any t ∈ Ãc, by (3.3),

〈Y, ϕtn〉 = 〈ugen, ϕ
t
n〉 = 〈Ẇα, ϕtn ∗ ρ̌〉 = 〈Ẇα, ρtn〉 ,

and 〈Y, ϕtn〉 → Yt almost surely as n→ +∞ by (4.13), and

ρtn → gt = δt ∗ ρ̌ = ρ0(t− ·) , in Lα(S) as n→ +∞ . (4.29)

Therefore, 〈Ẇα, ρtn − ρ0(t − ·)〉 → 0 in law by (4.11), hence in probability, that is,
〈Ẇα, ρtn〉 → 〈Ẇα, ρ0(t − ·)〉 in probability as n → +∞. Therefore, using (4.13), we
see that Yt = 〈Ẇα, ρ0(t− ·)〉 a.s. Since we used Hölder’s inequality, this method does not
work in the case α < 1, and does not imply (4.2), (4.3) or (4.4), which is why the proof of
Theorem 4.1 uses a different argument that works for any α ∈ (0, 2).

Remark 4.3. It is not difficult to check the following statements:

(1) For α ∈ (1, 2), we have:

(a) Condition (4.2) is equivalent to local integrability of the function t 7→ ‖ρ0(t−
·)‖Lα(S), that is,

[t 7→ ‖ρ0(t− ·)‖Lα(S)] ∈ L1
loc(Rd) . (4.30)

(b) If S = Rd+, and ρ0(t) = 0 for all t ∈ Rd \ Rd+, then (4.2) is equivalent to
ρ0 ∈ Lαloc(Rd+).

(c) If S = R+ ×Rd−1, and ρ0(t, x) = 0 if t < 0, then (4.2) is equivalent to

for all t > 0,

∫ t

0

∫
Rd−1

|ρ0(s, y)|α dsdy < +∞ .

In particular, when (3.5) holds for a.a. (t, x) ∈ R+ ×Rd−1, then in fact, it holds
for all (t, x) ∈ R+ ×Rd−1. In addition, (H2’) implies (H1’).

(2) For α ∈ (0, 1), we have:

(a) Condition (4.4) can be written |ρ̌0| ∗ |ϕ| ∈ Lα(S), for all ϕ ∈ D(Rd), which
differs from (H1’) only because of the presence of the absolute values and
because ρ0 is a function. Further, condition (4.4) is equivalent to:

for any compact set K ⊂ Rd,
∫
S

(∫
K

|ρ0(t− s)|dt
)α

ds < +∞ .

(b) If S = Rd+, and ρ0(t) = 0 for all t ∈ Rd \ Rd+, then (4.4) is equivalent to
ρ0 ∈ L1

loc(Rd+).

(3) When α ∈ (0, 1), (4.4) implies (4.2).

Indeed, the equivalence of (4.2) and (4.30) occurs for the same reason as the equivalence
between (2.3) and (2.4). For (1)(b), if S = Rd+ and ρ0(t) = 0 for all t ∈ Rd \Rd+, then for
any n ∈ N, ∫

[−n,n]d
dt ‖ρ0(t− ·)‖Lα(S) =

∫
[−n,n]d

dt

(∫
Rd+

ds |ρ0(t− s)|α
) 1
α

=

∫
[0,n]d

dt

(∫
[0,t]

dr |ρ0(r)|α
) 1
α

=

∫
[0,n]d

dt ‖ρ01[0,t]‖Lα(S),
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where we have used the change of variables r = t − s and the notation [0, t] =

[0, t1]× · · · × [0, td] if t = (t1, . . . , td). Since ‖ρ01[0,t]‖Lα(S) is a nondecreasing function of
each coordinate of t, we conclude that [t 7→ ‖ρ0(t − ·)‖Lα(S)] ∈ L1

loc(Rd) if and only if
‖ρ01[0,t]‖Lα(S) <∞, for all t ∈ Rd+, that is, ρ0 ∈ Lαloc(Rd+).

The first two statements in property (1)(c) are checked in a similar way. For the
implication (H2’) implies (H1’), notice that for ϕ ∈ D(Rd), by Minkowski’s inequality
for integrals,

‖ϕ ∗ ρ̌‖Lα(R+×Rd−1) ≤
∫
Rd

dt |ϕ(t)| ‖ρ(t− ·)‖Lα(R+×Rd−1)

=

∫
Rd

dt |ϕ(t)| ‖ρ(·)‖Lα([0,t]×Rd−1) ≤ C‖ρ(·)‖Lα([0,T ]×Rd−1) <∞,

if supp(ϕ) ⊂ [0, T ]×Rd−1.

For (2)(a), it is clear that∫
S

(∫
Rd
|ρ0(t− s)|µ|ϕ|(dt)

)α
ds = ‖ |ρ̌0| ∗ |ϕ| ‖αLα(S).

The second statement (2)(a) is checked in the same way as (1)(a). For (2)(b), in the case
d = 1 and S = R+, with ρ0(t) = 0 for all t ∈ R \R+ and K = [−n, n],∫

S

(∫
K

|ρ0(t− s)|dt
)α

ds =

∫ n

0

(∫ n

s

|ρ0(t− s)| dt

)α
ds

=

∫ n

0

(∫ r

0

|ρ0(u)| du

)α
dr,

where we have used the changes of variables u = t− s (s fixed), then r = n− s. Since
the inner integral is an increasing function of r, we get ρ0 ∈ L1

loc(R+). The case d > 1 is
checked in a similar way.

For (3), we can write

∫
Rd
‖ρ0(t− ·)‖Lα(S) µ|ϕ|( dt) =

∫
Rd

(∫
S

|ρ0(t− s)|α ds

) 1
α

µ|ϕ|( dt)

=

∥∥∥∥∫
S

|ρ0(· − s)|α ds

∥∥∥∥ 1
α

L1/α(Rd, µ|ϕ|)

,

then apply Minkowski’s inequality for integrals (since 1/α > 1) to bound this above by

(∫
S

‖ |ρ0(· − s)|α‖L1/α(Rd, µ|ϕ|)
ds

) 1
α

=

(∫
S

(∫
Rd
|ρ0(t− s) |µ|ϕ|( dt)

)α
ds

) 1
α

<∞

(4.31)
by (4.4). Therefore, (4.2) holds.

Corollary 4.4. Suppose α ∈ (0, 1), (H1’) holds and ρ is represented by a function ρ0

such that ρ0 ≥ 0. Then the three equivalent conditions of Theorem 4.1 hold and umild is a
random field representation of ugen.

Proof. According to (2)(a) in Remark 4.3, for α ∈ (0, 1), when ρ is represented by
a nonnegative function ρ0, then (H1’) and condition (INT) are equivalent. So the
conclusion follows from Theorem 4.1.
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5 Case of symmetric pure jump Lévy noise

In this section, we suppose that the driving noise Ẋ is a pure jump symmetric Lévy
white noise, that is, a Lévy white noise with characteristic triplet (0, 0, ν), where ν is a
symmetric Lévy measure.

We consider the linear SPDE (3.1). We fix a fundamental solution ρ of L. As in
Section 4, we are interested in determining if ugen, as defined in (3.2), has a random
field representation, and if umild, as defined in (3.6), is a random field representation of
ugen. As we mentioned in Section 3.3, this requires a stochastic Fubini’s theorem, which
we now present.

5.1 A stochastic Fubini theorem

Using the isomorphism (2.5), we will extend the stochastic Fubini theorem of [20,
Theorem 11.4.1] to the noise Ẋ. Other stochastic Fubini theorems for L0-valued random
measures already exist in the literature, but they use a different set of hypotheses.
For instance, [15, Corollary 1] deals with stochastic integrands, but integration of
non-deterministic processes with respect to Lévy white noises relies on a space-time
framework, in which the time component is critical for the definition of predictable
processes. Other stochastic Fubini theorems, such as [14, Theorem 3.1], impose integra-
bility and/or regularity assumptions on the function f(s, t) instead of a condition such as
(5.1) below.

Theorem 5.1. Let Ẋ be a symmetric pure jump Lévy white noise on S ⊂ Rd, with
characteristic triplet (0, 0, ν). Let f : S ×Rn 7→ R be measurable and such that for any
t ∈ Rn, f(·, t) ∈ L(Ẋ, S), and let µ be a finite (nonnegative) measure on Rn. Suppose
that ∫

Rn

∣∣∣〈Ẋ, f(·, t)〉
∣∣∣µ(dt) < +∞ , a.s. (5.1)

Then, for almost all s ∈ S, f(s, ·) ∈ L1(µ), and the function µ~ f : s 7→
∫
Rn
f(s, t)µ(dt) is

in L(Ẋ, S), and ∫
Rn
〈Ẋ, f(·, t)〉µ(dt) = 〈Ẋ, µ~ f〉 a.s. (5.2)

(We emphasize that the ~ operation is not commutative. In particular, it involves a
measure and a measurable function whose roles are not interchangeable.)

Proof of Theorem 5.1. The main probability space is (Ω,F ,P). Since µ is a finite mea-
sure, we can suppose without loss of generality that it is a probability measure on Rn.
Let (Ω′,F ′,P′) be a probability space, and (Ti)i>1 be a sequence of i.i.d. random vectors
on this space with law µ. We write E′ for the expectation with respect to the probability
measure P′. In this framework, (5.1) is equivalent to

E′
(∣∣∣〈Ẋ, f(·, T1)〉

∣∣∣) < +∞ P− a.s.

(we are using the jointly measurable version of 〈Ẋ, f(·, t)〉 provided by Proposition 3.6).
More precisely, there is a set Ω1 ⊂ Ω such that P(Ω1) = 1, and for any ω ∈ Ω1,

E′
(∣∣∣〈Ẋ, f(·, T1)〉(ω)

∣∣∣) < +∞ .

By the strong law of large numbers, for any ω ∈ Ω1, there is a set Ω′1(ω) ⊂ Ω′ such that
P′ (Ω′1(ω)) = 1 and for any ω′ ∈ Ω′1(ω),

1

n

n∑
i=1

〈Ẋ, f(·, Ti(ω′))〉(ω)→ E′
(
〈Ẋ, f(·, T1)〉(ω)

)
as n→ +∞ . (5.3)
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We define

A = {(ω, ω′) ∈ Ω× Ω′ : (5.3) occurs} .

Then A ∈ F × F ′. For ω ∈ Ω, let

Aω = {ω′ ∈ Ω′ : (ω, ω′) ∈ A} .

Then, for any ω ∈ Ω1, P′ (Aω) = 1, and we deduce from Fubini’s theorem that P×P′(A) =

1.
For any n ∈ N, s ∈ S and ω′ ∈ Ω′, we set fn(s, ω′) = 1

n

∑n
i=1 f(s, Ti(ω

′)). Then

fn(·, ω′) ∈ L(Ẋ, S) since this is a vector space. For P′-a.e. ω′ ∈ Ω′, there is a set
Ωn(ω′) ⊂ Ω such that P (Ωn(ω′)) = 1 and for any ω ∈ Ωn(ω′),

1

n

n∑
i=1

〈Ẋ, f(·, Ti(ω′))〉(ω) = 〈Ẋ, fn(·, ω′)〉(ω) . (5.4)

For these ω′ ∈ Ω′, the set Ω∞(ω′) =
⋂+∞
n=1 Ωn(ω′) is such that P (Ω∞(ω′)) = 1 and for any

ω ∈ Ω∞(ω′), (5.4) holds for all n ∈ N. We define

B = {(ω, ω′) ∈ Ω× Ω′ : (5.4) occurs for all n ∈ N} .

Then B ∈ F × F ′, and for ω′ ∈ Ω′, let

Bω
′

= {ω ∈ Ω : (ω, ω′) ∈ B} .

For P′-a.e. ω′ ∈ Ω′, P
(
Bω
′
)

= 1, and we deduce from Fubini’s theorem that (P×P′)(B) =

1. Therefore,∫
Ω′

(∫
Ω

1(ω,ω′)∈A∩B P(dω)

)
P′(dω′) =

∫
Ω

(∫
Ω′

1(ω,ω′)∈A∩B P
′(dω′)

)
P(dω) = 1 . (5.5)

Let ω′ ∈ Ω. We define

(A ∩B)
ω′

= {ω ∈ Ω : (ω, ω′) ∈ A ∩B} .

From (5.5), for P′-almost all ω′ ∈ Ω′, P
(

(A ∩B)
ω′
)

= 1. In other words, for P′-almost all

ω′ ∈ Ω′,

1

n

n∑
i=1

〈Ẋ, f(·, Ti(ω′))〉(ω) = 〈Ẋ, fn(·, ω′)〉(ω)→ E′
(
〈Ẋ, f(·, T1)〉(ω)

)
as n→ +∞ ,

for P-almost all ω ∈ Ω. In particular, for P′-almost all ω′ ∈ Ω, the sequence of random
variables (〈Ẋ, fn(·, ω′)〉)n>1 on (Ω,F ,P) is a Cauchy sequence in probability. By P-a.s.
linearity of Ẋ and the isomorphism property in (2.5), we deduce that (fn(·, ω′))n>1 is a

Cauchy sequence in L(Ẋ, S). By completeness of L(Ẋ, S), for P′-almost all ω′ ∈ Ω′, there
is a function f̃(·, ω′) ∈ L(Ẋ, S) such that fn(·, ω′) → f̃(·, ω′) as n → +∞ in L(Ẋ, S). By
(5.1) and [19, Theorem 6] (which also uses the symmetry of Ẋ), for almost every s ∈ S,∫
Rd
|f(s, t)|µ(dt) < +∞, that is E′ (|f(s, T1)|) < +∞. By the strong law of large numbers,

we deduce that for almost all s ∈ S, there is a set Ω′s such that P′(Ω′s) = 1 and for any
ω′ ∈ Ω′s,

1

n

n∑
i=1

f(s, Ti(ω
′)) = fn(s, ω′)→ E′ (f(s, T1)) = µ~ f(s) as n→ +∞. (5.6)
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Linear SPDE driven by Lévy white noise

Let C = {(s, ω′) ∈ S × Ω′ : (5.6) holds}, for s ∈ S, Cs = {ω′ ∈ Ω′ : (s, ω′) ∈ C}, and for
ω′ ∈ Ω′, Cω

′
= {s ∈ S : (s, ω′) ∈ C}. Since for almost all s ∈ S, P′ (Cs) = 1, Fubini’s

theorem implies that (Lebd × P′)(C) = 1. We deduce that for almost all ω′ ∈ Ω′, (5.6)
holds for Lebd-almost every s ∈ S. We can then drop the dependence in ω′, so that there
is a sequence (ti)i>1 of deterministic times (for P) in Rn such that

1

n

n∑
i=1

f(s, ti)→ µ~ f(s) a.e. in s as n→ +∞, (5.7)

1

n

n∑
i=1

〈Ẋ, f(·, ti)〉 = 〈Ẋ, 1

n

n∑
i=1

f(·, ti)〉 →
∫
Rd
〈Ẋ, f(·, t)〉µ(dt) P− a.s., (5.8)

as n→ +∞, and
1

n

n∑
i=1

f(·, ti)→ f̃(·) in L(Ẋ, S) as n→ +∞. (5.9)

Since convergence in L(Ẋ, S) implies convergence almost everywhere along a subse-
quence (see [18, p. 466]), by uniqueness of the limit we get from (5.7) and (5.9) that
µ~ f = f̃ almost everywhere (and hence f̃ does not depend on ω′), and 1

n

∑n
i=1 f(·, ti)→

µ~ f in L(Ẋ, S). Therefore,

〈Ẋ, 1

n

n∑
i=1

f(·, ti)〉 → 〈Ẋ, µ~ f〉 as n→ +∞ , (5.10)

in P-probability. By uniqueness of the limit, gathering (5.8) and (5.10), we deduce that
P-almost surely, (5.2) holds.

5.2 Relationships between mild and generalized solutions

In this section, we aim to answer the following question. Suppose that (H1) is
satisfied. Then, the generalized solution ugen of (3.1) can be defined as in Definition 3.2.
Suppose also that the generalized solution has a random field representation Y . Then, is
(H2) satisfied? If so, then the mild solution umild can be defined as in (3.6). In this case,
is Y the mild solution? These questions are answered in the next theorem.

Theorem 5.2. Consider the following three conditions.

(1) ρ is represented by a function ρ0 ∈ L1
loc(Rd);

(2) (H2) holds and the jointly measurable version of umild has locally integrable sample
paths;

(3) (H1) holds and ugen has a random field representation.

Then (2) implies (1), and (2) and (3) are equivalent. If either (2) or (3) holds, then umild

is a random field representation of ugen.

Proof. (2) implies (1). Condition (H2) implies that ρ is represented by a function ρ0

such that for a.a. t ∈ Rd, ρ0(t− ·) ∈ L(Ẋ, S), and umild(t) =
∫
S
ρ0(t− s)X(ds).

Let ϕ ∈ D(Rd). By (2), the jointly measurable version of umild is such that∫
Rd
|ϕ(t)| |umild(t)| dt <∞, a.s.

By [19, Theorem 6], there is a Lebesgue-null set Nϕ ⊂ S such that for s ∈ S \Nϕ,∫
Rd
|ρ0(t− s)| |ϕ(t)| dt <∞. (5.11)
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Linear SPDE driven by Lévy white noise

Set N = ∪n∈NNϕn , where ϕn ∈ D(Rd) is such that 1[−n,n]d(t) ≤ ϕn(t), for all t ∈ Rd.
Then for s ∈ S \N ,

for all ϕ ∈ D(Rd),

∫
Rd
|ρ0(t− s)| |ϕ(t)| dt <∞,

or equivalently, for all n ∈ N,
∫

[−n,n]d
dt |ρ0(t− s)| <∞. Fix s̃ = (s̃1, . . . , s̃d) ∈ S \N and

do the change of variables r = t− s̃. Then for all n ∈ N,∫
[−n−s̃1,n−s̃1]×···×[−n−s̃d,n−s̃d]

|ρ0(r)| dr <∞,

and this implies that ρ0 ∈ L1
loc(Rd), proving (1).

(2) implies (3). Let ϕ ∈ D(Rd), and let µ+
ϕ (dt) := ϕ+(t) dt and µ−ϕ (dt) := ϕ−(t) dt,

where ϕ+ = max(ϕ, 0) and ϕ− = max(−ϕ, 0) are, respectively, the positive and negative
parts of ϕ. These two measures are finite, and are the positive and negative parts of
the signed measure µϕ(dt) := ϕ(t) dt. By (2), umild has almost surely locally integrable
sample paths, therefore,∫

Rd
|〈Ẋ, ρ(t− ·)〉|µ±ϕ (dt) =

∫
Rd
|umild(t)| µ±ϕ (dt) < +∞ a.s.

We can now apply Theorem 5.1 separately with the positive and negative part of µϕ, and
recombine them. Let f(s, t) = ρ(t − s). Notice that µϕ ~ f = ϕ ∗ ρ̌, and since µϕ ~ f is
Ẋ-integrable by Theorem 5.1, we see that (H1) holds. Using (3.6), Theorem 5.1 and
(3.2) yields∫

Rd
umild(t)ϕ(t) dt =

∫
Rd
〈Ẋ, ρ(t− ·)〉µϕ(dt) = 〈Ẋ, ϕ ∗ ρ̌〉 = 〈ugen, ϕ〉 , a.s.,

which proves that umild is a random field representation of ugen, therefore (3) holds.
(3) implies (2). Let (Yt) be a random field representation of ugen, that is, (3.3) holds.

We use the same notations as in the proof of “(3) implies (1)” in Theorem 4.1. By the
same reasoning as in the proof of Theorem 4.1, there is a non random set Ã ⊂ Rd such
that Lebd(Ã) = 0 and for all t /∈ Ã, P {〈Y, ϕtn〉 → Yt as n→ +∞} = 1. Then, we define
ρt0n = ϕt0n ∗ ρ̌ ∈ L(Ẋ, S) (by (H1)). For n,m ∈ N and t0 /∈ Ã,

E
(
ei〈Ẋ,ρ

t0
n −ρ

t0
m 〉
)

= E
(
ei

∫
Rd
Ys(ϕt0n (s)−ϕt0m (s)) ds

)
→ 1 as n,m→ +∞ .

We deduce that 〈Ẋ, ρt0n − ρt0m〉 converges to zero in law, hence in probability. Using the
isomorphism in (2.5), we see that the sequence (ρt0n )n∈N is Cauchy in L(Ẋ, S). This space

is complete, therefore there is a function gt0 such that ρt0n → gt0 in L(Ẋ, S). For any
(t, s) ∈ Rd × S, let

g(t, s) = lim sup
n→+∞

ρtn(s) .

Then (t, s) 7→ g(t, s) is measurable, and for t ∈ Ãc, g(t, ·) = gt(·) almost everywhere,
hence g(t, ·) ∈ L(Ẋ, S). As in (4.17) and (4.20), we get that

for all t0 ∈ Ãc, Yt0 = 〈Ẋ, gt0〉 = 〈Ẋ, g(t0, ·)〉, a.s. (5.12)

Let (ũt, t ∈ Rd) be a jointly measurable version of 〈Ẋ, g(t0, ·)〉 (which exists by Proposition
3.6). By (5.12), for t0 ∈ Ãc, Yt0 = ũt0 a.s. As in (4.22), we can find a P-null set N0 such
that

for ω ∈ N c
0 , Yt(ω) = ũt(ω) for a.a. t ∈ Rd. (5.13)
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Also, since Y has almost surely locally integrable sample paths, for any ψ ∈ D(Rd),∫
Rd
|Yt|µψ(dt) =

∫
Rd

∣∣∣〈Ẋ, gt〉∣∣∣µψ(dt) < +∞ a.s. ,

where µψ(dt) = |ψ(t)|dt. By Theorem 5.1, for a.a. s ∈ S,
∫
Rd
|g(t, s) |ψ(t)| dt < ∞,

ψ ~ g ∈ L(Ẋ, S) and as in (4.26)–(4.27),∫
Rd
Yt µψ( dt) =

∫
Rd
ũt ψ(t) dt =

∫
Rd
〈Ẋ, gt〉ψ(t) dt = 〈Ẋ, ψ ~ g〉 a.s.

Therefore, for any ψ ∈ D(Rd),

〈Ẋ, ψ ~ g〉 =

∫
Rd
〈Ẋ, gt〉ψ(t) dt =

∫
Rd
Ytψ(t) dt = 〈Ẋ, ρ̌ ∗ ψ〉 a.s.,

where the last equality is by Definitions 3.4 and 3.1. Therefore, for almost every
s ∈ S, ψ ~ g(s) = ψ ∗ ρ̌(s). Then, as in the proof of Theorem 4.1 after (4.28), we
deduce that ρ is represented by the function ρ0 = δ−s ∗ g(·, s) and g(t, s) = ρ0(t− s) for
a.a. (t, s) ∈ Rd×S. Therefore, for a.a. t ∈ Rd, ρ0(t− ·) ∈ L(Ẋ, S), which means that (H2)
holds and umild is well-defined. By (5.12) and the lines that follow (5.12), for all t0 ∈ Ãc,
Yt0 = ũt0 = 〈Ẋ, ρ0(t0 − ·)〉 = umild(t0) a.s., therefore (ũt, t ∈ Rd) is a version of umild. By
Fubini’s theorem a.s., ũt = Yt for a.a. t ∈ Rd, therefore, (ũt) a.s. has locally integrable
sample paths. This proves (2).

In addition, still assuming (3), (5.13) implies that (ũt) is a random field representation
of ugen (since this was the case of (Yt)). This proves the last statement in Theorem
5.2.

Remark 5.3. Contrary to the α-stable case (Theorem 4.1), where the condition (1) was
equivalent to conditions (2) and (3) there, in Theorem 5.2, condition (1) is only shown to
be necessary for conditions (2) and (3).

6 Examples

In this section, we give some examples to which Theorem 4.1 applies. We focus on
three well-known SPDEs: the linear stochastic heat, wave and Poisson equations, in all
spatial dimensions d ≥ 1. We focus on the case of a symmetric α-stable noise, in order to
determine the range of α ∈ (0, 2) and d ≥ 1 which correspond to the different cases.

6.1 The stochastic heat equation

Let Ẇα be an α-stable symmetric Lévy white noise on S = R+×Rd. The heat operator
H in dimension d is the constant coefficient partial differential operator given by

H =
∂

∂t
−

d∑
i=1

∂2

∂x2
i

.

A fundamental solution ρH for this operator (with support in S) is given by the nonnega-
tive function

ρH(t, x) =
1

(4πt)
d
2

exp

(
−|x|

2

4t

)
1t>0 .

We consider the following Cauchy problem{
Hu = Ẇα,

u(0, ·) = 0.
(6.1)
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6.1.1 Existence of a generalized solution

We are interested in the generalized solution of this equation associated with the
fundamental solution ρH.

Proposition 6.1. For any α ∈ (0, 2) and d > 1, (H1’) holds, so the generalized solution
to the linear stochastic heat equation driven by a symmetric α-stable Lévy white noise is
well defined.

Proof. Fix α ∈ (0, 2). We begin by checking (H1’). We must show that for all ϕ ∈
D(Rd+1), the convolution ϕ ∗ ρ̌H belongs to Lα(R+ ×Rd). Fix ϕ ∈ D(Rd+1). For (t, x) ∈
R×Rd,

ϕ ∗ ρ̌H(t, x) =

∫ +∞

t

ds

∫
Rd

dy
1

(4π(s− t))
d
2

exp

(
−|y − x|

2

4(s− t)

)
ϕ(s, y) . (6.2)

Since ϕ has compact support in R × Rd, we fix T > 0 and K ⊂ Rd compact such that
supp ϕ ⊂ [−T/2, T/2] × K. Then we see from (6.2) that for any t > T/2 and x ∈ Rd,
ϕ ∗ ρ̌H(t, x) = 0. Therefore, we need only to check that ϕ ∗ ρ̌H ∈ Lα([0, T/2]×Rd). The
function ϕ ∗ ρ̌H is smooth, so we only need to check integrability for x in a neighborhood
of infinity. Clearly, for t ∈ [0, T/2],

|ϕ ∗ ρ̌H(t, x)| 6 |ϕ| ∗ ρ̌H(t, x) = 1t6T/2

∫ T/2

t

ds

∫
K

dy
1

(4π(s− t))
d
2

exp

(
−|y − x|

2

4(s− t)

)
|ϕ(s, y)| .

The function s 7→ (4π(s− t))−
d
2 exp(− |y−x|

2

4(s−t) ) is increasing on ]t, t + 1
2d |x − y|2] (and

decreasing on [t+ 1
2d |x− y|

2,∞[). Suppose that K ⊂ B(0, r), the Euclidean ball centered
at 0 with radius r. Choose R large enough so that T < 1

2d (R− r)2. For |x| > R and y ∈ K,
we have T < t+ 1

2d |x− y|
2, therefore

|ϕ ∗ ρ̌H(t, x)| ≤ 1t6T/2 ‖ϕ‖∞
∫ T/2

t

ds

∫
K

dy
1

(4π(T − t))
d
2

exp

(
− |y − x|

2

4(T − t)

)
.

Since |x− y| ≥ |x| − r, this is bounded above by

1t6T/2
‖ϕ‖∞
(4π)

d
2

(
T

2

)− d2 +1 ∫
K

dy exp

(
− (|x| − r)2

4(T − t)

)
.

Then, using the inequality (a− b)2 > 1
2a

2 − b2 , we obtain

|ϕ ∗ ρ̌H(t, x)| 6 1t6T/2
‖ϕ‖∞
(4π)

d
2

(
T

2

)− d2 +1

exp

(
− |x|2

8(T − t)

)∫
K

dy exp

(
r2

2T

)
.

We deduce that for t ∈ R+ and |x| > R,

|ϕ ∗ ρ̌H(t, x)| 6 cT,K ‖ϕ‖∞1t6T/2 exp

(
−|x|

2

8T

)
, (6.3)

where cT,K is a constant that depends only on the support of ϕ. From (6.3), we deduce
that ϕ ∗ ρ̌H has compact support in the time variable (uniformly with respect to the space
variable), and has rapid decay in the space variable. Therefore ϕ ∗ ρ̌H ∈ Lα([0, T ]×Rd).

It follows that (H1’) holds, therefore, the linear stochastic heat equation driven by
symmetric α-stable Lévy white noise always has a generalized solution ugen defined by

〈ugen, ϕ〉 := 〈Ẇα, ϕ ∗ ρ̌H〉 , for all ϕ ∈ D(Rd+1). (6.4)
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Remark 6.2. The previous proof is still valid if we formally replace α by 2, and therefore
the same result is true in the Gaussian case.

Remark 6.3. From (6.3), we get that

‖ϕ ∗ ρ̌H‖Lα([0,T ]×Rd) 6 C‖ϕ‖∞ ,

for some constant C that depends on the support of ϕ. Therefore, if ϕn is a sequence of
test functions in D(Rd+1) such that ϕn → 0 in D(Rd+1), then

E
[
eiξ〈ugen,ϕn〉

]
= e
−|ξ|α‖ϕn∗ρ̌H‖αLα([0,T ]×Rd) → 1 , as n→ +∞ .

Therefore, 〈ugen, ϕn〉 → 0 in law as n→ +∞, and since convergence in law to a constant is
equivalent to the convergence in probability to this constant, we deduce that 〈ugen, ϕn〉 →
0 in probability as n→ +∞. Therefore, ugen defines a linear functional on D(Rd+1) that
is continuous in probability. The space D(Rd+1) is nuclear (see [24, p. 510]), so by [25,
Corollary 4.2], ugen has a version in D′(Rd+1).

6.1.2 Existence of a mild solution

The criterion for the existence of the mild solution to the linear stochastic heat equation
(6.1) is known (see [1]). However, we can also obtain this from (H2’).

Proposition 6.4. Condition (H2’) holds and the mild solution to the linear stochastic
heat equation driven by a symmetric α-stable noise, as defined in (3.6), exists if and only
if

α < 1 +
2

d
. (6.5)

In this case,

umild(t, x) := 〈Ẇα, ρH(t− ·, x− ·)〉 . (6.6)

Proof. According to Remark 4.3(1)(b), condition (H2’) holds if and only if the following
integral is finite for any (t, x) ∈ R+ ×Rd:∫

R+

ds

∫
Rd

dy ρH(t− s, x− y)α =

∫ t

0

ds
1

(4πs)
α d2

∫
Rd

dy exp

(
−α|y|

2

4s

)
=

∫ t

0

ds
1

(4πs)
d
2 (α−1)

α
d
2

, (6.7)

and the last integral is finite if and only if (6.5) holds. In this case, by Definition 3.5,

umild(t, x) := 〈Ẇα, ρH(t− ·, x− ·)〉 .

6.1.3 Existence of a random field representation

We have seen in the previous subsections that for any α and d, it is possible to define the
generalized solution ugen, and that the mild solution umild exists if and only if α < 1 + 2

d .
We now apply the results of Theorem 4.1 to learn more about the relations between
those two notions of solution.

Proposition 6.5. Condition (6.5) is equivalent to condition (INT). The generalized
solution ugen to the linear stochastic heat equation driven by a symmetric α-stable noise
has a random field representation Y if and only if (6.5) is satisfied, and in that case, umild

is a random field representation of ugen.
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Proof. We know from Theorem 4.1 that condition (INT) implies (H2’), therefore (6.5),
as we have seen in the proof of Proposition 6.4. For the converse implication, we assume
that (6.5) holds and we distinguish three cases.

If α ∈
(
1, 1 + d

2

)
, then the condition (4.2) is immediately verified using (6.7) and

Remark 4.3(1). If α < 1, we know that (H1’) holds by Proposition 6.1, and since ρH ≥ 0,
condition (INT) holds by Corollary 4.4. Therefore, for α 6= 1, (6.5) implies condition
(INT).

The case α = 1 is slightly more involved, since we need to check condition (4.3). Let
ϕ ∈ D(Rd+1). First, we have∫

R+×Rd
ρH(t− s, x− v) dv = t1t>0 ,

and for any x ∈ R+, log+(x) 6 | log(x)|, therefore, for t > 0

log+

 ρH(t− s, x− y)
∫
Rd+1

∫
R+×Rd |ρH(u− v, r − w)|dv dwµϕ(du,dr)(∫

R+×Rd ρH(t− v, x− w) dv dw
) (∫

Rd+1 ρH(u− s, r − y)µϕ(du,dr)
)


6 |log (ρH(t− s, x− y))|+
∣∣∣∣log

(∫
Rd+1

uµϕ(du,dr)

)∣∣∣∣+ |log(t)|

+ |log (ρ̌H ∗ |ϕ|(s, y))| .

Hence, to have (4.3), we need to check the finiteness of the following integrals:

II :=

∫
R+×Rd

(ρ̌H ∗ |ϕ|) (s, y) dsdy ,

I2 :=

∫
R+×Rd

((ρ̌H |log (ρ̌H)|) ∗ |ϕ|) (s, y) dsdy ,

I3 :=

∫
R+×Rd

(∫
Rd+1

ρH(t− s, x− y)| log(t)ϕ(t, x)|dtdx

)
dsdy ,

I4 :=

∫
R+×Rd

|log (ρ̌H ∗ |ϕ|(s, y))| (ρ̌H ∗ |ϕ|) (s, y) dsdy .

The case of I1 has already been treated after (6.3), and for I3, we can simply permute
the integrals and get

I3 =

∫
Rd+1

|t1t>0 log(t)ϕ(t, x)|dtdx < +∞ .

For I2 and I4, by the same considerations as for the case α 6= 1, we need to check that
for any ϕ ∈ D(Rd+1),

(t, x) ∈ R+ ×Rd 7→ |ρ̌H log(ρ̌H)| ∗ |ϕ|(t, x) ,

and

(t, x) ∈ R+ ×Rd 7→ (ρ̌H ∗ |ϕ|) (t, x) |log(ρ̌H ∗ |ϕ|(t, x))| ,

are in L1([0, T ] × Rd) for any T ∈ R+. By (6.3), we get that (ρ̌H ∗ |ϕ|) |log(ρ̌H ∗ |ϕ|)| ∈
L1(R+ ×Rd), therefore I4 < +∞. We now turn to I2. Observe that

|ρ̌H log(ρ̌H)| ∗ |ϕ|(t, x) = 1t6T

∫ T

t

ds

∫
K

dy
1

(4π(s− t))
d
2

exp

(
−|y − x|

2

4(s− t)

)
×
∣∣∣∣−d2 log (4π(s− t))− |y − x|

2

4(s− t)

∣∣∣∣ |ϕ(s, y)| .
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Again, by continuity (since |ϕ| is continuous and has compact support), we are only
concerned about integrability near a neighborhood of infinity (x→ ±∞, t ∈ [0, T ]). Since
log (4π(s− t)) is integrable at s = t and the polynomial term |y−x|2/(s− t) barely affects
the decay as x → ±∞ of exp

(
−|y − x|2/(4(s− t))

)
, we can obtain a bound similar to

(6.3): see [11, Proof of Proposition 4.4.4] for details. We conclude that (4.3) holds. This
completes the proof of the equivalence of (6.5) and condition (INT).

The remaining statements in Proposition 6.5 are now an immediate consequence of
Theorem 4.1.

Propositions 6.1, 6.4 and 6.5 together establish the following theorem.

Theorem 6.6. The generalized solution ugen to the stochastic heat equation (6.1) defined
by (6.4) always exists. The mild solution umild defined by (6.6) exists if and only if

α < 1 +
2

d
. (6.8)

Furthermore, ugen has a random field representation if and only if (6.8) is satisfied
and in this case, umild has locally integrable sample paths and umild is a random field
representation of ugen.

6.2 The stochastic wave equation

We now consider the stochastic wave equation. For an overview of this SPDE in the
Gaussian case, see [7]. Let Ẇα be a symmetric α-stable Lévy white noise on S = R+×Rd.
The wave operator O in spatial dimension d is the constant coefficient partial differential
operator given by

O =
∂2

∂t2
−

d∑
i=1

∂2

∂x2
i

.

The fundamental solution of this operator (with support in the forward light cone) is a
function only in spatial dimensions one and two. In spatial dimension one, it is given by

ρO1 (t, x) =
1

2
1|x|6t for all (x, t) ∈ R2 ,

and, in spatial dimension two, by

ρO2 (t, x) =
1

2π

1√
t2 − |x|2

1|x|<t for all (t, x) ∈ R×R2 .

In dimension d > 3, the fundamental solution is a distribution that can be characterized
by its Fourier transform in the space variable x (see [8]), but it cannot be represented
by a function.

This fundamental solution is related to the following Cauchy problem:
Ou = Ẇα ,

u(0, ·) = 0 ,
∂u
∂t (0, ·) = 0 .

(6.9)

6.2.1 Existence of the generalized solution

We first study the existence of the generalized solution in all dimensions d > 1.

Proposition 6.7. For any dimension d > 1 and α ∈ (0, 2), (H1’) holds, so the generalized
solution ugen to the linear stochastic wave equation driven by a symmetric α-stable Lévy
white noise is well-defined.
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Proof. We check that (H1’) holds.

d = 1: We need to check that for any ϕ ∈ D(R2), the convolution ϕ ∗ ρ̌O1 is in Lα(R+ ×R).
Clearly, for (t, x) ∈ R+ ×R,

ϕ ∗ ρ̌O1 (t, x) =

∫ +∞

0

ds

∫ s

−s
dy ϕ(s+ t, y + x) ,

and we can see from this expression that this is a smooth function with compact support,
hence in Lα(R+ ×R).

d = 2: Let ϕ ∈ D(R3). We will show that for all α ∈ (0, 2), the function ϕ ∗ ρ̌O2 belongs to
Lα(R+×Rd). By standard properties of the convolution, ϕ ∗ ρ̌O2 is a smooth function. Let
(t, x) ∈ R+ ×R2. Then

ϕ ∗ ρ̌O2 (t, x) =

∫
R

ds

∫
R2

dyρO2 (s− t, y − x)ϕ(s, y) .

Since ϕ has compact support and ρO2 has support in the set {(r, z) ∈ R+ ×R2 : |z| 6 r},
we can write

ϕ ∗ ρ̌O2 (t, x) = 1t6T

∫ T

t

ds

∫
Bx(T−t)

dyρO2 (s− t, y − x)ϕ(s, y) , (6.10)

for some T ∈ R+, where Bx(r) is the open ball of radius r centered at x. We see from
this expression that the convolution has compact support in space and time, since if
x is far enough from the support of ϕ, the integrand is zero. We deduce that for any
α ∈ (0, 2), ϕ ∗ ρ̌O2 ∈ Lα(R+ ×Rd), and the generalized solution to the linear stochastic
wave equation in dimension 2 always exists.

d > 3: For any ϕ ∈ D(R × Rd), the function ϕ ∗ ρ̌Od is smooth. By the same type of
considerations on the support of the convolution ϕ ∗ ρ̌Od as in dimensions one and two,
we see that this function has compact support, therefore ϕ ∗ ρ̌Od ∈ Lα(R+ ×Rd) for any
α ∈ (0, 2).

We conclude that (H1’) holds, and therefore the generalized solution is well-defined.

Remark 6.8. Looking at (6.10), since both ϕ and ρOd have compact support, we see that
there are T > 0 and a compact set K such that

‖ϕ ∗ ρ̌Od ‖αLα(R+×Rd) ≤
∫ T

0

∫
K

dx |ϕ ∗ ρ̌Od (t, x)|α,

and from the explicit formula for ρOd (see [16, p.281]), we see that

|ϕ ∗ ρ̌Od (t, x)| ≤ C sup
s∈[0,T ]

sup
i≤p
‖D(i)ϕ(s, ·)‖∞,

where i is a multi-index and D(i) is the corresponding derivative, and p ≤ d−2
2 . Therefore,

‖ϕ ∗ ρ̌Od ‖Lα(R+×Rd) ≤ C‖ sup
i≤p

D(i)ϕ‖∞,

where C depends only on the support of ϕ. We can then deduce, as in Remark 6.3,
that ugen defines a linear functional on D(Rd+1) that is continuous in probability, and
therefore ugen has a version in D′(Rd).
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6.2.2 Existence of the mild solution

Proposition 6.9. For all α ∈ (0, 2), (H2’) holds if and only if d ∈ {1, 2}, hence the mild
solution to the stochastic wave equation driven by a symmetric α-stable Lévy white noise
exists only in dimensions one and two.

Proof. We first check (H2’) for d ∈ {1, 2}.

d = 1: According to Remark 4.3(1)(b), we must show that for any (t, x) ∈ R+ × R,
ρO1 (t− ·, x− ·) ∈ Lα(R+ ×R). Therefore, for any T > 0, we need to check the finiteness
of the integral ∫ T

0

dt

∫
R

dxρO1 (t, x)α =

∫ T

0

dt

∫
R

dx
1

2α
1|x|6t =

T 2

2α
. (6.11)

We deduce that (H2’) holds for d = 1 and any α ∈ (0, 2).

d = 2: Again, we must show that ρO2 (t− ·, x− ·) ∈ Lα(R+ ×R) for any (t, x) ∈ R+ ×R2.
We have

‖ρO2 (t− ·, x− ·)‖α∨1
Lα(R+×R2) =

∫ t

0

ds

∫
Bx(t−s)

dy
1

(2π)α ((t− s)2 − |x− y|2)
α
2

=
1

(2π)α

∫ t

0

ds

∫
|u|6s

du
1

(s2 − |u|2)
α
2
.

Changing to polar coordinates, we get

‖ρO2 (t− ·, x− ·)‖α∨1
Lα(R+×R2) =

1

(2π)α−1

∫ t

0

ds

∫ s

0

dr
r

(s− r)α2 (s+ r)
α
2
.

This integral is finite if and only if α
2 < 1, that is α < 2. We can further evaluate this

integral and we get

‖ρO2 (t− ·, x− ·)‖α∨1
Lα(R+×R2) =

1

(2π)α−1

∫ t

0

ds

∫ s

0

dr

2

2r

(s2 − r2)
α
2

=
1

(2π)α−1

∫ t

0

ds
s2−α

2− α
=

t3−α

(2π)α−1(2− α)(3− α)
. (6.12)

Therefore, (H2’) holds for d = 2 and any α ∈ (0, 2).
We conclude that there is always a mild solution to the linear stochastic wave equation

with α-stable noise when d ∈ {1, 2}.
We now consider the case d > 3.

d > 3: Since fundamental solutions of the wave equation in dimensions d > 3 are not
functions, (H2’) cannot hold and there is no mild solution in such dimensions.

Remark 6.10. From this proof, we can deduce the already known result in the Gaussian
case (see [7, p. 46]) that a mild solution to the linear stochastic wave equation only
exists in spatial dimension one.

6.2.3 Existence of a random field representation

Proposition 6.11. Condition (INT) holds if and only if d ∈ {1, 2}. Therefore, the
generalized solution ugen to the linear stochastic wave equation driven by a symmetric
α-stable Lévy white noise has a random field representation if and only if d ∈ {1, 2}, and
in that case, umild is a random field representation of ugen.
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Proof. We will show that condition (INT) holds when d = 1 or d = 2 by considering
separately the two cases, and then we will show that condition (INT) does not hold for
d > 3.

d = 1: If α > 1, it suffices to check that for (t, x) ∈ R+ ×R, ‖ρO1 (t− ·, x− ·)‖Lα(R+×R) ∈
L1

loc(R+ × R), and this is the case by (6.11). If α < 1, we know that (H1’) holds by
Proposition 6.7, and since ρO1 ≥ 0, condition (INT) holds by Corollary 4.4. In the case
α = 1, it is necessary to check that for any compact set K ⊂ R2,∫

K

dtdx

∫
R+×R

dsdy |ρO1 (t− s, x− y)|

[
1 +

log+

 |ρO1 (t− s, x− y)|
∫
K

dudr
∫
R+×R dv dw|ρO1 (u− v, r − w)|(∫

R+×R dv dw|ρO1 (t− v, x− w)|
) (∫

K
|ρO1 (u− s, r − y)|dudr

)
 < +∞ .

(6.13)
The details of this calculation can be found in [11, Proof of Proposition 4.4.9].

We conclude that, for any α ∈ (0, 2), condition (INT) holds.

d = 2: For α > 1, by (6.12), (t, x) ∈ R+×R2 → ‖ρO2 (t−·, x−·)‖Lα(R+×R2) does not depend
on x and is continuous in the t variable, therefore (4.2) is verified. In the case where
α < 1, the same argument as in the case d = 1 shows that (4.4) is verified.

The case α = 1 is again more involved, since we need to consider the expression (4.3).
We must check that for any compact set K ⊂ R3,∫

K

dtdx

∫
R+×R2

dsdy |ρO2 (t− s, x− y)|

[
1 +

log+

 |ρO2 (t− s, x− y)|
∫
K

dudr
∫
R+×R2 dv dw|ρO2 (u− v, r − w)|(∫

R+×R2 dv dw|ρO2 (t− v, x− w)|
) (∫

K
|ρO2 (u− s, r − y)|dudr

)
 < +∞ .

(6.14)
For the details of this calculation, see [11, Proof of 4.4.9].

Therefore, for any α ∈ (0, 2), condition (INT) holds.

We conclude from the above and Theorem 4.1 that when d ∈ {1, 2}, then the general-
ized solution has a random field representation, the mild solution is well-defined and is a
random field representation of the generalized solution.

d > 3: Condition (INT) cannot hold because in these dimensions, ρOd is not represented
by a function. By Theorem 4.1, there cannot be any random field representation of the
generalized solution.

We summarize Propositions 6.7, 6.9 and 6.11 in the following theorem.

Theorem 6.12. The generalized solution ugen to the stochastic wave equation (6.9)
defined by (3.2) always exists. The mild solution umild exists if and only if d 6 2. Further-
more, a random field representation Y of the generalized solution exists if and only if
d ∈ {1, 2}, and in this case, umild is a random field representation of ugen.

6.3 The stochastic Poisson equation

Let Ẇα be an α-stable symmetric noise on Rd. The laplacian operator ∆ is given by

∆ =

d∑
i=1

∂2

∂x2
i

.
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The fundamental solution of the Poisson operator P = −∆ on Rd is given by

ρ1
P(x) =

1

2
|x|, x ∈ R,

ρ2
P(x) =

1

2π
ln

1

|x|
, x ∈ R2 \ {0},

ρdP(x) =
1

Cd

1

|x|d−2
, x ∈ Rd \ {0}, d ≥ 3,

where

Cd =
2π

d
2 (d− 2)

Γ(d2 )
.

We consider the following SPDE in Rd:

−∆u = Ẇα. (6.15)

Theorem 6.13. (a) For d ≥ 1 and α ∈ (0, 2), (H2’) does not hold and therefore, there is
no mild solution to (6.15).

(b) Condition (H1’) holds if and only if d > 4 and α ∈
(

d
d−2 , 2

)
. For these d and α,

there is a generalized solution ugen to (6.15), but there is no random field representation
of ugen.

Proof. (a) It is immediate to check that for all d ≥ 1 and α ∈ (0, 2), ρdP /∈ Lα(Rd), therefore
(H2’) does not hold and there is no mild solution to (6.15).

(b) Turning to the generalized solution, we first examine dimensions 1 and 2.

d = 1: Let ϕ ∈ D(R). Then

ρ̌1
P ∗ ϕ(x) = −1

2

∫
R

|x− y|ϕ(y) dy

= −1

2

(
x

(∫ x

−∞
ϕ(y) dy −

∫ +∞

x

ϕ(y) dy

)
+

∫ +∞

x

yϕ(y) dy −
∫ x

−∞
yϕ(y) dy

)
.

Since ϕ has compact support, for large enough |x|,

ρ̌1
P ∗ ϕ(x) = −1

2

(
x

∫
R

ϕ(y) dy −
∫
R

yϕ(y) dy

)
. (6.16)

In particular, we see that for any α ∈ (0, 2), ρ̌dP ∗ ϕ /∈ Lα(R) (unless the two integrals in
(6.16) vanish), therefore (H2’) does not hold.

d = 2: Let ϕ ∈ D(R2). Then

ρ̌2
P ∗ ϕ(x) =

1

2π

∫
R2

ln
1

|x− y|
ϕ(y) dy.

Assuming that ϕ ≥ 0 and ϕ 6≡ 0, for |x| large enough and ε small enough, the right-hand
side is bounded below by

‖ϕ‖∞
2

∫
|y|≤ε

ln
1

|x− y|
dy ≥ ε2 ‖ϕ‖∞

2

1

ln(|x|+ ε)
,

hence ρ̌2
P ∗ ϕ /∈ Lα(R2) and (H2’) does not hold.
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d ≥ 3: Let ϕ ∈ D(Rd). Then

ρ̌dP ∗ ϕ(x) =

∫
Rd

1

|x− y|d−2
ϕ(y) dy.

This is a C∞-function of x, hence we only need to consider its integrability as |x| → ∞.
Proceeding as for the case d = 2, for ϕ ≥ 0 and ϕ 6≡ 0, we can bound the integral below,
up to a constant, by ∫

|y|≤ε

1

|x− y|d−2
dy ≥ εd 1

(|x|+ ε)d−2
.

Passing to polar coordinates, we see that ρ̌dP ∗ ϕ /∈ Lα(Rd) unless α(2− d) + d < 0, which
is equivalent to α > d

d−2 . Since α < 2, this can only occur if d > 4.

On the other hand, if d > 4 and α > d
d−2 (≥ 1), then for N > 0, by the generalized

Minkowski inequality,[∫
|x|>N

dx

∣∣∣∣∫
Rd

1

|x− y|d−2
ϕ(y) dy

∣∣∣∣α
] 1
α

≤
∫
Rd
dy |ϕ(y)|

∣∣∣∣∣
∫
|x|>N

1

|x− y|α(d−2)
dx

∣∣∣∣∣
1
α

.

The dx-integral only needs to be evaluated for y in a bounded set. For large enough N ,
the dx-integral is finite if and only if α(2− d) + d < 0, which is the case since d > 4 and
α > d

d−2 .

In summary, ρ̌dP ∗ ϕ ∈ Lα(R2) if and only if d > 4 and α > d
d−2 , proving the first part

of statement (b).
For the second part, when d > 4 and α > d

d−2 , ugen cannot have a random field
representation, since by Theorem 4.1, this would imply that (H2’) holds, and this is not
the case by (a).
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