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Abstract

We prove annealed scaling relations for planar Voronoi percolation. To our knowledge,
this is the first result of this kind for a continuum percolation model. We are mostly
inspired by the proof of scaling relations for Bernoulli percolation by Kesten [22].
Along the way, we show an annealed quasi-multiplicativity property by relying on the
quenched box-crossing property proved by Ahlberg, Griffiths, Morris and Tassion [3].
Intermediate results also include the study of quenched and annealed notions of
pivotal events and the extension of the quenched box-crossing property of [3] to the
near-critical regime.
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1 The model and the main result

1.1 Percolation on planar lattices

Consider bond percolation on the square lattice Z2 or site percolation on the planar
triangular lattice T. In these models, each edge or site is open (respectively closed)
with probability p (respectively 1 − p) independently of the others. Let θ(p) be the
probability that there is an infinite open path starting from 0. It is well known (see for
instance [17, 8]) that there exists a critical point pc ∈ (0, 1) such that
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i) ∀p ∈ [0, pc), θ(p) = 0 ,

ii) ∀p ∈ (pc, 1], θ(p) > 0 .

It is a theorem by Kesten [21] that pc = 1/2 for these two models. Moreover, it has been
proved by Harris [19] that θ(1/2) = 0. Let us say a little more about the behaviour of this
model at and near the critical point: Thanks to the Russo-Seymour-Welsh (RSW) theory
and the study of interfaces between open and dual paths, one can obtain the so-called
quasi-multiplicativity property of arm events and derive estimates on “pivotal events”,
see [22, 36, 26, 31, 25]. Both are important tools in order to

(a) obtain the scaling relations proved by Kesten (see [22, 36, 26]),

(b) study dynamical percolation and noise sensitivity of percolation, see [5, 31, 12,
9, 15, 18, 16]

(c) study the scaling limits of percolation, near-critical percolation, and dynamical
percolation, see [30, 13, 14].

The goal of this paper is twofold: (1) We prove the quasi-multiplicativity property (and
some estimates on “pivotal events”) for planar Voronoi percolation, which is a continuum
percolation model. (2) We prove two scaling relations for Voronoi percolation.

Before recalling the definition of Voronoi percolation, let us note that the authors of
[3] and [1] have proved noise sensitivity results for Voronoi pecolation by following ideas
from [5, 31, 2]. We also see the present paper as a first step in order to be able to apply
the more quantitative noise sensitivity methods from [12]. Indeed, to apply methods
from [12], one needs to have good controls on the probabilities of arm events and pivotal
events.

1.2 Planar Voronoi percolation: box-crossing estimates and the quasi-
multiplicativity property

In this subsection, we introduce the model of Voronoi percolation. We refer to
Section 8.3 of [8] for more details.

A. Voronoi percolation. Let us define planar Voronoi percolation. To this purpose,
let us consider a homogeneous Poisson process of intensity 1 in R2, that we denote by
η. For each point x ∈ η, the Voronoi cell of x, denoted by C(x), is the set of all points
u ∈ R2 such that for all x′ ∈ η, ||u − x||2 ≤ ||u − x′||2. We say that x is the center of
C(x). Also, we say that two points of η are adjacent if their cells intersect each other.
It is not difficult to see that a.s. all the cells are bounded convex polygons. Now, let us
consider some parameter p ∈ [0, 1] and, given η, let us declare each x ∈ η open (we will
choose to say that “we color the point black”) with probability p and closed (white) with
probability 1− p, independently of the other points of η. Let ω ∈ {−1, 1}η be the colored
configuration we thus obtain (where 1 means black and −1 means white).1

We will always write η for the non-colored point process and ω for the colored point
process. The distribution of ω will be denoted by Pp.

Given the configuration ω, we define a coloring of the plane as follows: each point
u ∈ R2 is colored black if it is contained in the cell of a black point x ∈ η and is colored
white if it is contained in the cell of a white point x ∈ η (note that the points on the
boundary of the cells may be colored both black and white but this is not important in
this paper). Moreover, we call black (respectively white) path a continuous path included
in the black (respectively white) region of the plane.

1There is no problem of measurability here: ω can be seen for instance as a point process with values in
R2 × {−1, 1} whose intensity is LebR2 ⊗ (pδ1 + (1− p)δ−1), where LebR2 is the Lebesgue measure in the
plane.
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B. The critical point. Let {0↔ +∞} be the event that there is a black path from the
origin to infinity and let θan(p) = Pp [0↔∞] denote the (annealed) percolation function.
The critical point pc is defined as follows:

pc := inf {p ∈ [0, 1] : θan(p) > 0} .

It has been proved by Zvavitch [37] that θan(1/2) = 0 - hence pc ≥ 1/2 - and it is a result
of Bollobás and Riordan [7] that pc = 1/2. A crucial fact for this result is the so-called
self-duality property of the model: a.s., a rectangle is crossed lengthwise by a black path
if and only if it is not crossed widthwise by a white path (see for instance Lemma 12 in
Chapter 8 of [8]). An important step to show the result of Bollobás and Riordan is the
proof of a weak box-crossing property. A stronger version has more recently been proved
by Tassion [34] and has led to the derivation of quenched crossing estimates in [3]
that will be crucial in the present paper. Before stating these box-crossing results, let us
note that an alternative proof of pc = 1/2 can be found in the recent paper [10]. In the
said article, Duminil-Copin, Raoufi and Tassion prove the exponential decay of connection
probabilities for subcritical Voronoi percolation in any dimension. An alternative proof
of pc = 1/2 can also be found in [1] Ahlberg and Baldasso study the near-critical window
of Voronoi percolation.

C. Box-crossing properties. We first need two definitions/notations:

Definition 1.1. Given η, we write Pηp for the conditional distribution of ω given η (which

is simply the product law (pδ1 + (1− p)δ−1)
⊗η). More generally, if E is a countable set,

we write PEp = (pδ1 + (1− p)δ−1)
⊗E .

Definition 1.2. For any ρ1, ρ2 > 0, Cross(ρ1, ρ2) (respectively Cross∗(ρ1, ρ2)) denotes
the event that there is a black (respectively a white) path included in [−ρ1, ρ1]× [−ρ2, ρ2]

that connects the left side of this rectangle to its right side.

Now, we can state the annealed box-crossing property obtained by Tassion and the
quenched box-crossing property obtained by Ahlberg, Griffiths, Morris and Tassion. An
important step in the present paper is the extension of these results to the “near-critical
regime”, see Subsection 5.1.

Theorem 1.3 (Theorem 3 of [34]). Let ρ > 0. There exists a constant c = c(ρ) ∈ (0, 1)

such that, for every R ∈ (0,+∞),

c ≤ P1/2 [Cross(ρR,R)] ≤ 1− c .

Theorem 1.4 (Theorem 1.4 of [3] and the paragraph below it. See also our Appendix B
where we recall the main ingredients of the proof of this theorem.2). Let ρ > 0.

i) There exists an absolute constant ε > 0 and a constant C = C(ρ) < +∞ such that,
for every R ∈ (0,+∞),

Var
(
Pη1/2 [Cross(ρR,R)]

)
≤ C R−ε .

This implies the following estimate,

ii) For every γ ∈ (0,+∞), there exists a positive constant c = c(ρ, γ) ∈ (0, 1) such that,
for every R ∈ (0,+∞):

P
[
c ≤ Pη1/2 [Cross(ρR,R)] ≤ 1− c

]
≥ 1−R−γ .

2Actually, in Appendix B we will modify a little the proof of [3] so that this proof will be easier to adapt to
the near-critical phase.
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D. Arm events. Once we have such crossing properties, a natural goal is to study arm
events. Let us first define these events:

Definition 1.5 (j-arm events). Let j ∈ N∗ := {1, 2, · · · } and 0 ≤ r ≤ R. The j-arm event
between scales r and R is the event that there exist j paths of alternating colors in the
annulus [−R,R]2 \ [−r, r]2 from ∂[−r, r]2 to ∂[−R,R]2 (if j is odd, we ask that there are:
(a) j − 1 paths of alternating colors, and: (b) one additional black path such that there
is no Voronoi cell intersected by both this additional path and one of the j − 1 other
paths). Let Aj(r,R) denote this event. We write the annealed probability of this event
as follows:

αanj,p(r,R) = Pp [Aj(r,R)] .

We write αanj,p(R) = αanj,p(1, R) for any j ∈ N∗. If r > R, we choose that αanj,p(r,R) = 1.
Also, we will often use the following simplified notation:

αanj (r,R) = αanj,1/2(r,R) .

An important property of the quantities αanj,1/2(r,R) is that they decay polynomially fast:
There exists a constant C = C(j) ∈ [1,+∞) such that, for every 1 ≤ r ≤ R:

1

C

( r
R

)C
≤ αanj,1/2(r,R) ≤ C

( r
R

)1/C

. (1.1)

The right-hand-inequality is proved in [34] (Item 2 of Theorem 3) and we prove the
left-hand-inequality in Subsection 3.1. In the present paper, we prove the annealed
quasi-multiplicativity property for the quantities αanj,1/2(r,R). This is the most delicate
part of the paper. Even if this is an annealed result, the quenched box-crossing property
Theorem 1.4 will be a crucial ingredient of the proof.

Proposition 1.6 (Annealed quasi-multiplicativity property). Let j ∈ N∗. There exists a
constant C = C(j) ∈ [1,+∞) such that, for all 1 ≤ r1 ≤ r2 ≤ r3,

1

C
αanj,1/2(r1, r3) ≤ αanj,1/2(r1, r2)αanj,1/2(r2, r3) ≤ C αanj,1/2(r1, r3) . (1.2)

Remark 1.7. In Proposition 1.6, the case j = 1 is easier. More precisely, the right-hand-
inequality in this case is a direct consequence of the box-crossing property Theorem 1.3
and of the (annealed) FKG-Harris inequality (stated in Subsection 2.2). Moreover, the
proof of the left-hand-inequality in the case j = 1 is written in Subsection 3.1.

Remark 1.8. Our choice to impose that the radii ri are at least 1 is arbitrary. In fact,
we could have chosen any a > 0 and rather asked that a ≤ r1 ≤ r2 ≤ r3. We would have
obtained the same result with some constant C = C(j, a).

The main difficulty in the study of arm events (compared to crossing events for
instance) is that they are degenerate events. As a result, it could a priori be the case
that if r � R and if we condition on Aj(r,R), then with high probability the point process
η is very degenerate at scale r, see Figure 1. We refer to Subsection 2.3 for some
key properties and some tools developed to overcome this difficulty (see in particular
Propositions 2.4 and 2.5).

Let us now state the main result of our paper.

1.3 The main result: annealed scaling relations for Voronoi percolation

It is believed that, for a wide class of percolation models, the evolution as p goes
to pc = 1/2 of some key quantities is determined by some critical exponents. Such
quantities are for instance the percolation function, the correlation length and the
probabilities of arm events. The famous scaling relations proved by Kesten [22] are
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Figure 1: In this paper, we deal with degenerate events: the j-arm events Aj(r,R). It is
not clear that, when conditionning on Aj(r,R) with r � R, the random environment at
scale r is not typically degenerate. An example of a degenerate environment is illustrated
in the figure: the Voronoi tiling is extremly dense in some regions and not dense at all in
some other regions. In the region where the Voronoi tiling is extremly dense, it might be
very costly to extend the arms to other scales. The biggest issue comes from the regions
where the Voronoi tiling is not dense at all. In these regions, there are a lot of spatial
dependences.

simple relations between these exponents. More precisely, Kesten proved that, for bond
percolation on the square lattice (and site percolation on the triangular lattice): i) if
we assume that these key quantities are indeed described by exponents, then these
exponents satisfy the relations predicted by theoritical physicists in the 70’s (we refer
to [22] for references concerning these predictions), and ii) even if we do not assume
that these exponents exist, the corresponding relations between the percolation function,
the correlation length etc hold. There is only one planar percolation model for which
it is known that such exponents exist: site percolation on the triangular lattice, that
is the only model for which conformal invariance has been proved, see the proof by
Smirnov [32]. These exponents have even been computed thanks to the theory of SLE’s
(Schramm-Loewner Evolution), see [33, 24, 36].

Let us go back to Voronoi percolation. For this model, the existence of these exponents
is not known (conformal invariance is not proved for this model even if a first important
step has been made in this direction by Benjamini and Schramm [6]). To state our main
result, let us define the annealed correlation length.

Definition 1.9. Let ε0 ∈ (0, 1) be sufficiently small3 and let p ∈ (1/2, 1]. The annealed
correlation length at parameter p, denoted by Lan(p) = Lan,ε0(p), is defined as follows:

Lan(p) = inf {R ≥ 1 : Pp [Cross(2R,R)] ≥ 1− ε0} .
3More precisely, we need that 1− 2ε0 > P1/2 [Cross(2R,R)] for every R ≥ 1 - which is possible thanks to

Theorem 1.3 - and that ε0 is sufficiently small so that a Peierls argument works - see the proof of Lemma 6.2
for more about this second condition.
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An important property is that, for every p > 1/2, Lan(p) < +∞, see Lemma 5.1. The
idea behind the definition of the correlation length is that this is the largest scale such
that the percolation configuration at this scale “looks critical”. In particular, we prove in
Subsection 5.1 that the annealed and quenched box-crossing properties Theorems 1.3
and 1.4 are also true for p > 1/2 as soon as we work at scales smaller than the correlation
length (i.e. as soon as we work in the “near-critical phase”). Moreover, we prove the
following result in Section 6.

Proposition 1.10. Let4 p ∈ (1/2, 3/4] and let ε0 be the parameter of Definition 1.9.
Also, let j ∈ N∗. There exists a constant C = C(ε0, j) ∈ [1,+∞) such that, for every
1 ≤ r ≤ R ≤ Lan(p),

1

C
αanj,1/2(r,R) ≤ αanj,p(r,R) ≤ Cαanj,1/2(r,R) .

In the present paper, we focus on the following exponents: It is believed that there
exist ν ∈ (0,+∞), β ∈ (0,+∞) and ζj ∈ (0,+∞) such that:

∀p ∈ (1/2, 1), θan(p) = (p− 1/2)β+o(1) ,

∀p ∈ (1/2, 1), Lan(p) = (p− 1/2)−ν+o(1) ,

∀j ∈ N∗ and ∀1 ≤ r ≤ R, αanj,1/2(r,R) =
( r
R

)ζj+o(1)

,

where o(1) goes to 0 as p goes to 1/2 (respectively as r/R goes to 0). Moreover, it is
believed that the following relations hold between these exponents:

β = ν ζ1 ; ν =
1

2− ζ4
.

The main results of the present paper is that, if these exponents exist, then these two
scaling relations hold. As in [22], we also prove that, even if we do not assume that the
exponents exist, then the corresponding relations between the percolation function, the
correlation length and the probabilities of arm events hold. More precisely, we obtain
the following:

Theorem 1.11. Let p ∈ (1/2, 3/4] and let ε0 be the parameter of Definition 1.9. There
exists a constant C = C(ε0) ∈ [1,+∞) such that

1

C
αan1,1/2(Lan(p)) ≤ θan(p) ≤ C αan1,1/2(Lan(p)) , (1.3)

and
1

C

1

p− 1/2
≤ Lan(p)2 αan4,1/2(Lan(p)) ≤ C 1

p− 1/2
. (1.4)

Proposition 1.10 and Theorem 1.11 are proved in Section 6 by relying on all the other
sections.

Let us note that the recent paper [1] by Ahlberg and Baldasso also deals with near-
critical Voronoi percolation. More precisely, the authors of [1] use randomized algorithms
in the spirit of [11, 10] and thinning procedures to prove that the near-critical window is
of polynomial size. The present paper implies the following more precise result: the size
of the near-critical window is of order 1/(R2αan4 (R)). Our techniques are different from
[1] (the techniques of the present paper are much more geometrical). In particular, our
use of randomized algorithms is different from [1] (we use inequalities by Schramm and
Steif [31] in the spirit of [3] to prove quenched estimates and estimates on the 4-arm
event while Ahlberg and Baldasso use the OSSS inequality [27] to prove estimates on
the derivative of crossing probabilities).

4The number 3/4 does not have to be taken seriously, we consider p ∈ (1/2, 3/4] only to avoid problems
with p close to 1.
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Remark 1.12. Note that (1.3) (together with the quasi-multiplicativity property and (1.1))
implies that for every ε′0 > ε0 > 0 sufficiently small, there exist c = c(ε0, ε

′
0) > 0 such that,

for every p ∈ (1/2, 3/4],

cLan,ε0(p) ≤ Lan,ε′0(p) ≤ Lan,ε0(p) .

In [22], Kesten also proves other scaling relations. We believe that, with the results
of the present paper, analogues of these other scaling relations can also be proved, but
we have restricted ourself to the two scaling relations (1.3) and (1.4).

1.4 Estimates on the 4-arm events, θan(p), and Lan(p)

In the present paper, we prove some estimates on arm events. In particular, we
obtain the following estimates on the 4-arm events in Subsections 4.1 and 4.2:

Proposition 1.13. There exists an absolute constant ε > 0 such that the following holds:

i) For every R ∈ [1,+∞),

αan4,1/2(R) ≤ 1

ε
R−(1+ε) .

ii) For every 1 ≤ r ≤ R,

αan4,1/2(r,R) ≥ ε
( r
R

)2−ε
.

If we apply the first part of Proposition 1.13 to the scaling relation (1.4) of Theo-
rem 1.11, then we obtain that

Lan(p) ≥ ε (p− 1/2)
−(1+ε)

,

for some ε > 0. If we rather use the second part of Proposition 1.13, then we obtain that

Lan(p) ≤ C(p− 1/2)−C ,

for some C < +∞. As a result, if the exponent ν exists, then ν ∈ (1,+∞) (which is
exactly - as far as we know - what is known for Bernoulli percolation on Z2, see [22]). By
using the polynomial decay property (1.1) and the scaling relation (1.3) of Theorem 1.11,
we deduce from this that

ε (p− 1/2)
C ≤ θan(p) ≤ C (p− 1/2)

ε
, (1.5)

for some C < +∞ and ε > 0. In [23], Kesten and Zhang have proved the following for
Bernoulli percolation on Z2:

θ(p) ≥ ε (p− 1/2)
1−ε

. (1.6)

In the case of Bernoulli percolation on the triangular lattice, it is known (see [24]
and [33]) that

L(p) = (p− 1/2)
−4/3+o(1)

and
θ(p) = (p− 1/2)

5/36+o(1)
,

where o(1) → 0 as p ↘ 1/2. The estimate (1.5) is strengthened in the two following
papers:

• In [35], we prove that θan(p) ≥ ε(p− 1/2)1−ε (by relying a lot on the present paper
and in particular on Appendix D).

• In the recent work [10] Duminil-Copin, Raoufi and Tassion use the OSSS inequality
to prove that, for Voronoi percolation in any dimension d ≥ 2, there exists c =

c(d) > 0 such that, for any p > pc = pc(d),

θan(p) ≥ c (p− pc) .
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1.5 Quenched or annealed results?

In the present paper, our main goal is to prove annealed properties. The most
important ones are the annealed scaling relations (Theorem 1.11) and the annealed
quasi-multiplicativity property (Proposition 1.6). However, the quenched property
Theorem 1.4 will be one of our main tools. The multiple passages from quenched to
annealed properties will be rather technical, see in particular Section 7. As a result, it
seems at first sight that it would be easier to prove quenched properties. We indeed
believe that one could use Theorem 1.4 to prove a quenched quasi-multiplicativity
property (with a less technical proof than the annealed quasi-multiplicativity property).
However, proving scaling relations at the quenched level seems much more complicated
than proving them at the annealed level since the classical methods (that we follow in
the present paper) deeply rely on translation invariance properties.

2 Strategy and organization of the paper

2.1 Some notations

Before stating the main intermediate results and explaining the global strategy, let
us introduce some notations.

Boxes, annuli and quads. In all the paper, we will write BR = [−R,R]2 and we will
write A(r,R) = [−R,R]2 \ (−r, r)2. Also, for every y ∈ R2, we will write Br(y) = y + Br
and A(y; r,R) = y + A(r,R). A quad Q is a topological rectangle in the plane with
two distinguished opposite sides. Also, a black (respectively white) path included
in Q that joins one distinguished side to the other is called a crossing (respectively
dual crossing). The event that Q is crossed (respectively dual-crossed) will be written
Cross(Q) (respectively Cross∗(Q)).

Other notations. In all the paper, we will use the following notations: (a) O(1) is a
positive bounded function, (b) Ω(1) is a positive function bounded away from 0 and (c) if
f and g are two non-negative functions, then f � g means Ω(1)f ≤ g ≤ O(1) f .

We will also use the following notation: Let (Ω,F ,P) be a probability space. If G ⊆ F
is a σ-field, B is some event such that P [B] > 0, and A is some event, then

P [A | B, G] :=
P [A ∩B | G]

P [B | G]
1{P[B|G]>0} .

Note that, P[ · | B]-a.s., we have: P[A | B, G] is the conditional expectation of A with
respect to G and under P[ · | B].

2.2 Correlation inequalities for Voronoi percolation

In this subsection, we recall two very useful families of correlation inequalities: the
FKG-Harris inequalities and the BK inequalities, which are inequalities for increasing
events. First, let us define what is an increasing event in our context. Since we work
in random environment, it is interesting to consider quenched and annealed notions of
increasing events.

Definition 2.1. i) First, we recall the classical notion of increasing events. Let E be
a countable set. An event A of the product σ-algebra on {−1, 1}E is increasing if
for any ω, ω′ ∈ {−1, 1}E such that ω ≤ ω′ and ω ∈ A, we have ω′ ∈ A.

ii) An event A measurable with respect to the colored configuration ω is quenched-
increasing if, for every point configuration of the plane η and every ω, ω′ ∈ {−1, 1}η
such that ω ∈ A and ω ≤ ω′, we have ω′ ∈ A.
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iii) An event A is annealed-increasing if, for any colored configuration ω ∈ A and any
ω′ obtained from ω by adding black points or deleting white points, we have ω′ ∈ A.

Note that, if A is annealed-increasing, then A is quenched-increasing.

The FKG-Harris inequalities.

i) The classical FKG-Harris inequality is the following (see [17, 8]): Let E be a
countable set. Remember that we write PEp := (pδ1 + (1− p)δ−1)

⊗E . Let A and B
be increasing events. Then, for every p we have

PEp [A ∩B] ≥ PEp [A] · PEp [B] .

ii) In the quenched case, the FKG-Harris inequality is a direct consequence of the
above inequality and can be stated as follows: Let A and B be two quenched-
increasing events. Then, for every point configuration of the plane η and every p
we have

Pηp [A ∩B] ≥ Pηp [A] · Pηp [B] .

iii) In the annealed case, we have: Let A and B be two annealed-increasing events.
Then, for every p,

Pp [A ∩B] ≥ Pp [A] · Pp [B] .

See Lemma 14 in Chapter 8 of [8] for the proof of this inequality. (Note that this
does not hold in general for quenched-increasing events; indeed if A depends only
on η and if P [A] ∈]0, 1[ then A and Ac are quenched-increasing and 0 = P [A ∩Ac] <
P [A]P [Ac].)

The BK inequalities. Let A and B be two quenched increasing events measurable
with respect to ω restricted to a bounded domain. Define the disjoint occurrence of
A and B as follows (where, for every colored configuration ω, we write η(ω) for the
underlying (non-colored) point configuration):

A�B =
{
ω ∈ Ω : ∃I1, I2 finite disjoint subsets of η(ω), ωI1 ⊆ A and ωI2 ⊆ B

}
, (2.1)

where Ω is the set of all colored configurations and, if I ⊆ η(ω), ωI ⊆ {−1, 1}η(ω) is the
set of all ω′ such that ω′i = ωi for every i ∈ I.

We will use the following quenched BK inequality which is a direct consequence of
the classical BK inequality (see for instance [17] or [8]): For every η and every p we have

Pηp [A�B] ≤ Pηp [A] · Pηp [B] . (2.2)

Unfortunately, the annealed-version of the BK-inequality is only known for p = 1/2 (and
it seems actually not clear whether or not it should be true for p 6= 1/2). This will cause
some difficulties when we want to extend some results to the near-critical phase, see
Section 5.

Proposition 2.2 (Lemma 3.4 of [3],[20] - both refer to van den Berg). Let A and B be
two annealed increasing events measurable with respect to the colored configuration ω
restricted to a bounded domain. Then

P1/2 [A�B] ≤ P1/2 [A] · P1/2 [B] .
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2.3 Consequences of the annealed quasi-multiplicativity property

In this subsection, we discuss important consequences of the (annealed) quasi-
multiplicativity property Proposition 1.6. As mentioned in Subsection 1.2, Proposition 1.6
is the most technical result of the paper. For this reason, we have chosen to postpone
its proof to the final section: Section 7. We will use this property in most of the other
sections of the paper (for more about which section depends on which other section, see
the beginning of Subsection 2.5). Let us state some results that will be useful all along
the paper and which are consequences of the quasi-multiplicativity property (and of
intermediate results from Section 7). These results are essentially useful to overcome
the spatial dependencies of the model and will be crucial in Section 4 where we deal
with “pivotal events”. We first need a definition.

Definition 2.3. We let

Âj(r,R) =
{
P
[
Aj(r,R)

∣∣∣ω ∩A(r,R)
]
> 0
}
.

In words, Âj(r,R) is the event that, conditionally on the colored configuration in the
annulus A(r,R), the arm event Aj(r,R) holds with positive probability.

What is interesting with Âj(r,R) is that it is measurable with respect to ω ∩
A(r,R). Note also that a.s. Aj(r,R) ⊆ Âj(r,R) (i.e. P

[
Aj(r,R) \ Âj(r,R)

]
= 0).5 The

following result will be proved in Subsection 7.2:

Proposition 2.4. Let j ∈ N∗, let 1 ≤ r ≤ R, and write

fj(r,R) = fj,1/2(r,R) := P1/2

[
Âj(r,R)

]
. (2.3)

There exists a constant C = C(j) < +∞ such that

αanj,1/2(r,R) ≤ fj(r,R) ≤ C αanj,1/2(r,R) .

The following is a consequence of Proposition 2.4 and illustrates how this last propo-
sition can help us to overcome spatial dependency problems.

Proposition 2.5. Let j ∈ N∗. For every h ∈ (0, 1), there exists a constant ε = ε(j, h) ∈
(0, 1) such that, for every 1 ≤ r ≤ R and for every event G which is measurable with
respect to ω \A(2r,R/2) and satisfies P1/2 [G] ≥ 1− ε, we have

P1/2 [Aj(r,R) ∩G] ≥ (1− h)αanj,1/2(r,R) .

Proof. We have

P1/2 [Aj(r,R) \G] ≤ P1/2

[
Âj(2r,R/2) \G

]

= fj(2r,R/2) · P1/2 [¬G] ,

by spatial independence. Proposition 2.4 implies that fj(2r,R/2) � αanj,1/2(2r,R/2). More-
over, the quasi-multiplicativity property and (1.1) imply that αanj,1/2(2r,R/2) � αanj,1/2(r,R),
which ends the proof.

Remark 2.6. Note that, with essentially the same proof, we obtain the following result:
Let j ∈ N∗. For every h ∈ (0, 1), there exists a constant ε = ε(j, h) ∈ (0, 1) such that,
for every 1 ≤ r ≤ ρ ≤ R and for every event G which is measurable with respect to
ω \ (A(2r, ρ/2) ∪A(2ρ,R/2)) and satisfies P1/2 [G] ≥ 1− ε, we have

P1/2 [Aj(r,R) ∩G] ≥ (1− h)αanj,1/2(r,R) .
5To prove this, use for instance the following result with X = 1Aj(r,R) and G = σ(ω ∩ A(r,R)): Let X

be a non-negative random variable and let G be a sub-σ-field of the underlying σ-field. Then, a.s. we have:

E
[
X
∣∣∣G] = 0⇒ X = 0.
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In Section 7, we also use the quasi-multiplicativity property to compute universal
arm exponents. For every 1 ≤ r ≤ R, let αan,+j,1/2(r,R) denote the probability of the j-event
in the half plane (i.e. the event that there are j paths of alternating colors from ∂Br to
∂BR that live in the upper half-plane). See Subsection 7.3: the quasi-multiplicativity
property can also be proved for these quantities. We have the following:

Proposition 2.7. The computation of the universal arm-exponents (that goes back as
far as we know to Aizenman6) holds for Voronoi percolation: Let 1 ≤ r ≤ R, we have

i) αan,+2,1/2(r,R) � r/R ,

ii) αan,+3,1/2(r,R) � (r/R)
2 ,

iii) αan5,1/2(r,R) � (r/R)
2 .

Items i) and ii) of Proposition 2.7 are proved in Subsection 7.3 while Item iii) is proved
in Subsection 7.4.

2.4 Some important events: the pivotal events and the “good” events

2.4.1 Pivotal events

A crucial step in the proof of the scaling relations is the study of pivotal events for
crossing and arm events. In the present work, we introduce a quenched and an
annealed definitions for pivotal events. Let us begin with a classical definition: Let
E be a countable set and let A be an event of the product σ-algebra on {−1, 1}E . A point
i ∈ E is pivotal for a configuration ω ∈ {−1, 1}E and the event A if changing the value of
ωi changes the value of 1A(ω). We write PivEi (A) for the event that i is pivotal for A (if
E = {1, · · · , n}, we denote this event by Pivni (A)). More generally, if I is a finite subset
of E, we say that I is pivotal for ω and A if there exists ω′ ∈ {−1, 1}E such that ω and
ω′ coincide outside of I and 1A(ω′) 6= 1A(ω). We denote by PivEI (A) the corresponding
event. Let us now introduce a quenched and an annealed notions of pivotal sets. The
quenched version is very similar to the above notion:

Definition 2.8. Let A be an event measurable with respect to the colored configuration
ω and let η be the underlying (non-colored) point configuration. A bounded Borel set
D is quenched-pivotal for ω and A if there exists ω′ ∈ {−1, 1}η (note that ω′ has the
same underlying point configuration as ω) such that ω and ω′ coincide on η ∩ Dc and
1A(ω′) 6= 1A(ω). We write PivqD(A) for the event that D is quenched-pivotal for A.

We also use the following terminology: if x ∈ η, we say that x is quenched-pivotal for
A if changing the color of x modifies the value of 1A. If we work conditionally on η and if
x ∈ η, then {x is quenched-pivotal for A} is an event of the product space {−1, 1}η, and
we denote this event by Pivqx(A).

Definition 2.9. A bounded Borel setD is annealed-pivotal for some colored configuration
ω and some event A if both Pp [A |ω \D] and Pp [¬A |ω \D] are positive. We write
PivD(A) for the event that D is annealed-pivotal for A (note that we omit the parameter
p in the notation; actually, as far as p ∈ (0, 1) and since D is bounded, the event PivD(A)

does not depend on p).

We have the following link between annealed and quenched pivotal events: Let
p ∈ (0, 1), let D be a bounded Borel set, and let A be an event measurable with
respect to the colored configuration ω. Then, a.s. we have PivqD(A) ⊆ PivD(A),

6See the first exercise sheet of [36] for the proof in the case of Bernoulli percolation on the triangular
lattice.
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i.e. Pp [PivqD(A) \ PivD(A)] = 0. This is an easy consequence7 of the fact that, if
D is quenched-pivotal for A, then a.s. (since η ∩ D is finite) P [A |ω \D, η ∩D] and
P [¬A |ω \D, η ∩D] are positive.

Let Q be a quad. The event that some box is (quenched or annealed) pivotal for the
event Cross(Q) is closely related to arm events and particularly to the 4-arm events. We
prove estimates in this spirit in Subsections 4.1 and 4.3.

2.4.2 The events Dense, QBC and GI

In this subsection, we define three “good” events that we will use all along the paper.
Their introduction is motivated by the three following observations: i) There are less
spatial dependencies when the point configuration η is sufficiently dense. ii) It is often
interesting to condition on η since the conditional measure is the product measure
Pηp = (pδ1 + (1− p)δ−1)⊗η. To apply geometric arguments under this quenched measure,
we need Pηp[Cross(Q)] to be non-negligible for a large family of quads Q. iii) It is easier
to deal with arm events when the arms are well separated.

Definition 2.10. Let D be a bounded subset of the plane and let δ ∈ (0, 1). We denote
by Denseδ(D) the event that, for every point u ∈ D, there exists x ∈ η ∩ D such that
||x− u||2 ≤ δ · diam(D).

Lemma 2.11. Let R ≥ 1 and δ ∈ (0, 1). We have

P [Denseδ(BR)] ≥ 1−O(1) δ−2 exp

(
− (δ ·R)2

2

)
.

Proof. This lemma can be obtained by covering BR by a family (Si)1≤i≤N of N � δ−2

squares of side-length δ ·R/
√

2 and by observing that:

Denseδ(BR) ⊇ {∀i, η ∩ Si 6= ∅}

and:

∀i, P [η ∩ Si = ∅] = exp

(
− (δ ·R)2

2

)
.

See Lemma 18 in Chapter 8 of [8] for the proof of a similar result.

In the following, we restrict ourselves to the case p = 1/2. See Subsection 5.2 for the
extension of the results to the near-critical phase.

Definition 2.12. Let D be a subset of the plane and let δ ∈ (0, 1). We denote by Q′δ(D)

the set of all quads Q ⊆ D which are drawn on the grid (δ diam(D)) · Z2 (i.e. whose
sides are included in the edges of (δ diam(D)) · Z2 and whose corners are vertices of
(δ diam(D)) ·Z2). Also, we denote by Qδ(D) the set of all quads Q ⊆ D such that there
exists a quad Q′ ∈ Q′δ(D) satisfying Cross(Q′) ⊆ Cross(Q).

The following result will be proved in Subsection 3.2 by using Theorem 1.4.

Proposition 2.13. There is an absolute constant C < +∞ such that the following holds:
Let δ ∈ (0, 1) and γ ∈ (0,+∞). There exists a constant c = c(δ, γ) ∈ (0, 1) such that, for
every bounded subset of the plane D that satisfies diam(D) ≥ δ−2/100, we have

P [QBCγδ (D)] ≥ 1− Cdiam(D)−γ ,

7Use for instance the following result with X = 1A, G1 = σ(ω \ D) and G2 = σ(η, ω \ D): Let X be a
non-negative random variable and let G1 ⊆ G2 be two sub-σ-fields of the underlying σ-field. Then, a.s. we have:

E
[
X
∣∣∣G1

]
= 0⇒ E

[
X
∣∣∣G2

]
= 0.
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where

QBCγδ (D) =
{
∀Q ∈ Qδ(D), Pη1/2 [Cross(Q)] ≥ c(δ, γ)

}
.

The notation QBC means “Quenched Box-Crossing property”.

Let us end this subsection by defining quantities related to the well-separateness of
interfaces. Let δ ∈ (0, 1), let 1 ≤ r ≤ R, and let β1, · · · , βk be the interfaces from ∂Br to
∂BR (an interface is a continuous path β drawn on the edges of the Voronoi tiling and
such that one side of β is black and its other side is white). Also, let zexti (respectively
zinti ) denote the endpoint on ∂BR (respectively on ∂Br) of βi, and let sext(r,R) (resp.
sint(r,R)) be the least distance between zexti (respectively zinti ) and ∪j 6=iβj .

Let GIextδ (R) (for “Good Interfaces”) be the event that there does not exist y ∈ ∂BR
such that the 3-arm event in A(y; 10δR,R/4) ∩BR holds. Note that, if r ≤ 3R/4, then

GIextδ (R) ⊆ {sext(r,R) ≥ 10δR} .

This inclusion will be very useful. Note that {sext(r,R) ≥ 10δR} is not monotonic in
r. This is actually the reason why we have introduced the event GIextδ (R): this event
“depends only on the crossings in A(3R/4, R)” and is included in {sext(r,R) ≥ 10δR} (for
r ≤ 3R/4).

Similarly, let GIintδ (r) be the event that there does not exist y ∈ ∂Br such that the
3-arm event in A(y; 10δr, r/2) \Br holds. Note that, if R ≥ 3r/2,

GIintδ (r) ⊆ {sint(r,R) ≥ 10δr} .

We will prove the following lemma in Subsection 3.3:

Lemma 2.14. Let δ ∈ (0, 1) and let r,R ≥ 100 δ−1. There exist absolute constants
C < +∞ and ε > 0 such that

P1/2

[
GIextδ (R)

]
≥ 1− C δ ,

and

P1/2

[
GIintδ (r)

]
≥ 1− C δε .

2.5 Organization of the paper and interdependence of the sections

As explained in Subsection 2.3, we postpone the proof of the quasi-multiplicativity
property to the final section: Section 7. We summarize the interdependence of the
sections of the paper in Figures 2 and 3.

Preliminary results: Subs. 3.1 and 3.2

Quasi-multiplicativity property for j even: Subs. 7.1 and 7.2
Quasi-multiplicativity for events in the half-plane

“Strong” well-separateness of interfaces: Subs. 3.3

Quasi-multiplicativity for j odd

and universal arm exponents in the half-plane: Subs. 7.3

and exponent of the 5-arm event: Subs. 7.4

Figure 2: Interdependence between Sections 3 and 7.
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Preliminary results
and quasi-multiplicativity: Sect. 3 and 7 box-crossing properties

to near-criticality: Subs. 5.1

Pivotal events: Sect. 4

Extension of the

Extension of all the results
to near-criticality: Subs. 5.2

Kesten’s scaling relations: Sect. 6

Figure 3: Interdependence between Sections 3 to 7.

2.6 Some ideas of proof

Let us end Section 2 by giving a few more details about our strategies of proofs.

2.6.1 The quasi-multiplicativity property (at p = 1/2)

In this subsection, we work at the parameter p = 1/2, and we explain ideas behind
the proof of the quasi-multiplicativity property Proposition 1.6 in the case j ≥ 2 (see
Subsection 3.1 for the proof of the easier case j = 1). The proof is written in Section 7.
We begin with two observations that illustrate the new difficulties compared to the study
of Bernoulli percolation on a deterministic lattice.

(a) The first observation is that, for Voronoi percolation, the following result does not
seem easier to prove than the quasi-multiplicativity property itself: There exists a
constant C = C(j) such that, for every R ≥ 100,

αanj,1/2(100, R) ≤ C αanj,1/2(10, R) .

A first idea to prove the above would be to condition on the event Aj(100, R) and
on the colored configuration outside of B100 and then extend the arms to ∂B10 “by
hands”. The problem is that Aj(100, R) is a degenerated event and thus, as already
suggested in Figure 1, it does not seem obvious at all that the following does
not happen: “If we condition on Aj(100, R), then, with high probability, the point
configuration in the neighbourhood of ∂B100 is very dense”. This may be a problem
since it is difficult to extend the arms “by hands” when the point configuration is
very dense.

(b) For Bernoulli percolation on a deterministic lattice, the left-hand-inequality of
the quasi-multiplicativity property is an easy consequence of the independence
on disjoint sets. For Voronoi percolation, even the following does not seem easy
to prove: There exists C = C(j) < +∞ such that, for every 1 ≤ r1 ≤ r2 ≤
r3/2 : αanj (r1, r3) ≤ C αanj (r1, r2)αanj (2r2, r3). However, one can note that the left-
hand-inequality of the quasi-multiplicativity property is a direct consequence of
Proposition 2.4 (which enables to use spatial independence properties). Actually,
our strategy will be the following: we will first prove Lemma 7.7 and Corollary 7.8
which are results analogous to Proposition 2.4. Then, we will prove the quasi-
multiplicativity property, and finally we will prove Proposition 2.4.

Now, let us be a little more precise about the proof of the quasi-multiplicativity
property. In the spirit of [22, 36, 26, 31], we will prove the following properties:
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i) If Aj(r,R) holds and if the configuration “looks good” near ∂BR, then we can extend
the arms at larger scale, see Lemma 7.6.

ii) If we condition on Aj(r,R), then the configuration near ∂BR “looks good” with
non-negligible probability, see Lemma 7.7.

A difference with the case of Bernoulli percolation on a deterministic lattice is that,
in the notion of “looking good”, we will have to ask that both the random tiling and
the random coloring look good. Concerning the random coloring: As in the case
of Bernoulli percolation on Z2 or on T, we will ask that the interfaces between black
and white crossings are well separated so that we can use box-crossing estimates.
Concerning the random tiling: (1) To avoid spatial dependence problems, we will ask
that Denseδ(A(R/2, 2R)) (see Definitions 2.10) holds for some well-chosen δ > 0. (2) In
order to use box-crossing estimates when we condition on η, we will ask that QBC1

δ(A(R))

(see Proposition 2.13) holds for some well-chosen annulus A(R) at scale R and δ > 0.
The idea is that, if the interfaces are well separated, if the two conditions (1) and (2)

above are satisfied, and if we condition on η and on the interfaces, then we can extend
the arms by using box-crossing techniques and the (quenched) Harris-FKG inequality.
As we will see in Section 7, we will have to consider events a little more complicated
because we will want the events to be measurable with respect to ω ∩ A(R/2, 2R).

Also, we will see that, for technical reasons, we will have to consider different
notions of well-separateness of interfaces. More precisely, we will first prove the quasi-
multiplicativity property in the case j even (in Subsection 7.1) and by using the following
definition of well-separateness: two interfaces are well separated if their end-points are.
By following the same proof, we will also obtain the quasi-multiplicativity property for
j-arm events in the half-plane (with j either even or odd). Thanks to this last property, we
will be able to compute the universal exponent of the 3-arm event in the half-plane. Then,
it will be possible (by using our knowledge on α+

3,1/2(r,R)) to deal with the following
slightly different definition of well-separateness of interfaces: two interfaces are well-
separated if the end-point of each of them is far enough from the union of the other
interfaces (and not only far enough from the other end-points). This other notion of
well-separateness is the one defined in Subsection 2.4.2, and we will need this notion to
prove the quasi-multiplicativity property in the case j odd (see Subsection 7.4).

2.6.2 The anneled scaling relations

Once we have proved the quasi-multiplicativity property and all the results stated in
Section 2, the ideas for the proof of the annealed scaling relations are the same as in the
original paper of Kesten [22] (see also [36, 26]). The only difference is that we will need
to combine quenched and annealed notions of pivotal events.

3 Preliminary results

In this section, we only work at the parameter p = 1/2, hence we intentionally forget
the subscript p in the notations.

3.1 Warm-up: proof of (1.1) and of the quasi-multiplicativity property for j = 1

In this subsection, we prove that the probabilities of arm events decay polynomially
fast, i.e. we prove (1.1) (this can be seen as an illustration of how we use the events
“Dense” from Definition 2.10). We also prove the quasi-multiplicativity property in the
case j = 1 (this can be seen as an illustration of how we use the events “Dense” and
events of the kind Âj(r,R) from Definition 2.3). To prove these inequalities, we do not
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rely on any result proved in this paper but only on the (annealed) FKG property and on
the (annealed) box-crossing property Theorem 1.3.

Proof of (1.1). As explained below (1.1), the upper-bound is proved in [34]. Let us prove
the lower-bound. First, note that we can choose a constant M = M(j) ∈ [10,+∞) such
that we can define j sets of 2n � log(R/r) rectangles: {Q1

i · · · , Q2n
i }, i = 0, · · · , j − 1 that

satisfy:

(a) For every i ∈ {0, · · · , j−1} and every l ∈ {1, · · · , n}, Q2l−1
i andQ2l

i are (2lr)×(2l−Mr)

rectangles;
(b) For all i 6= i′ ∈ {0, · · · , j − 1} and all l, l′ ∈ {1, · · · , 2n}, Qli is at distance at least

max(2l−Mr, 2l
′−Mr) from Ql

′

i′ ;
(c) If for every l ∈ {1, · · · , 2n} and every i ∈ {0, · · · , j − 1} even (respectively odd) the

rectangle Qli is crossed lengthwise (respectively dual-crossed lengthwise), then
Aj(r,R) holds. (See Figure 4.)

Figure 4: The rectangles Qli for some i.

Let i ∈ {0, · · · , j − 1} even (respectively odd), and let D̃ense(Qli) be the event that,
for any u ∈ Qli, there exists a black (respectively white) point x ∈ η ∩ Qli at Euclidean

distance less than 2l−2Mr from x. Note that the event D̃ense(Qli) is slightly different
from the event Dense(Qli) of Definition 2.10; in particular, it is annealed increasing
(respectively annealed decreasing) if i is even (respectively odd).

We have

αanj (r,R) ≥ P


⋂

i,l

Cross(Qli)


 ≥ P


⋂

i,l

Cross(Qli) ∩ D̃ense(Qli)


 .

Next, note that the j events ∩2n
l=1

(
Cross(Qli) ∩ D̃ense(Qli)

)
are independent. As a

result the above equals

j−1∏

i=0

P

[
2n⋂

l=1

Cross(Qli) ∩ D̃ense(Qli)

]
.

We can now use the (annealed) FKG-Harris inequality. Indeed, for every i even (re-

spectively odd) and every l ∈ {1, · · · , 2n}, the event Cross(Qli) ∩ D̃ense(Qli) is annealed
increasing (respectively annealed decreasing). We thus obtain that the above is at least

j−1∏

i=0

2n∏

l=1

P
[
Cross(Qli) ∩ D̃ense(Qli)

]
.
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By the same proof as Lemma 2.11, we have: P
[
D̃ense(Qli)

]
≥ 1−C exp(−c22l), for some

C = C(M) < +∞ and c = c(M) > 0. By using this estimate and the box-crossing property
Theorem 1.3, we obtain that there exists a constant c′ = c′(M) > 0 such that, for every l

large enough (larger than some l0(M), say) and every i, P1/2

[
Cross(Qli) ∩ D̃ense(Qli)

]
≥

c′. Moreover, it is easy to see that, for every i ∈ {0, · · · , j − 1} and every l ∈ {1, · · · , l0},
we have P1/2

[
Cross(Qli) ∩ D̃ense(Qli)

]
≥ c′′ for some c′′ = c′′(M, l0) > 0. Thus, we have

αanj (r,R) ≥ (min{c′, c′′})2nj ,

which ends the proof.

Proof of the quasi-multiplicativity property in the case j = 1. As pointed out in Remark
1.7, if j = 1 then the right-hand-inequality of the quasi-multiplicativity property is a direct
consequence of the annealed FKG-Harris inequality and of the annealed box-crossing
result Theorem 1.3. Here, we prove the left-hand-inequality (by relying on the right-
hand-inequality). The main difficulty is the lack of spatial independence. To overcome
it, we work with the following events and quantities (analogous to those introduced in
Subsection 2.3). Let 1 ≤ r ≤ R and

Â
ext

1 (r,R) :=
{
P
[
A1(r,R)

∣∣∣ω ∩BR
]
> 0
}
,

Â
int

1 (r,R) :=
{
P
[
A1(r,R)

∣∣∣ω \Br
]
> 0
}
,

fext1 (r,R) := P
[
Â
ext

1 (r,R)
]
,

f int1 (r,R) := P
[
Â
int

1 (r,R)
]
.

Note that αan1 (r,R) ≤ fext1 (r,R) and αan1 (r,R) ≤ f int1 (r,R). What is interesting with these

events is that, if 1 ≤ r1 ≤ r2 ≤ r3, then Â
ext

1 (r1, r2) and Â
int

1 (r2, r3) are independent
(indeed, the first one is measurable with respect to ω ∩ Br2 while the second one is
measurable with respect to ω \Br2). Hence we have

αan1 (r1, r3) ≤ P
[
Â
ext

1 (r1, r2) ∩ Â
int

1 (r2, r3)
]

= fext1 (r1, r2) f int1 (r2, r3) .

As a result, it is sufficient to prove that fext1 (r,R), f int1 (r,R) ≤ O(1)αan1 (r,R). We prove
this only for f int1 (r,R) since the proof for fext1 (r,R) is the same.

Let Dense(r) := Dense1/100 (A(r/2, 2r)) where Denseδ(D) is defined in Definition 2.10.
With the same proof as Lemma 2.11, we have: P [Dense(r)] ≥ 1−O(1) exp

(
−Ω(1) r2

)
. If

Dense(r) holds, then we have the following: if x ∈ η is such that the Voronoi cell of x

intersects A(2r,R), then x /∈ Br. As a result, Â
int

1 (r,R) ∩ Dense(r) ⊆ A1(2r,R). So

f int1 (r,R) ≤ αan1 (2r,R) + P
[
Â
int

1 (r,R) \ Dense(r)
]
.

Moreover, by using the fact that Dense(r) and Â
int

1 (2r,R) are independent (the first one
is measurable with respect to η ∩ A(r/2, 2r) while the second one is measurable with
respect to ω \B2r), we obtain that f int1 (r,R) is at most

αan1 (2r,R) + P
[
Â
int

1 (r,R) \ Dense(r)
]
≤ αan1 (2r,R) + P

[
Â
int

1 (2r,R) \ Dense(r)
]

= αan1 (2r,R) + f int1 (2r,R) (1− P [Dense(r)])

≤ αan1 (2r,R) + f int1 (2r,R)O(1) exp
(
−Ω(1) r2

)
.
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By iterating the above inequality, we obtain that

f int1 (r,R) ≤ αan1 (2r,R) +O(1)

blog2(R/r)c−2∑

i=0

(
αan1 (2i+2r,R) exp

(
−Ω(1) (2ir)2

) )

+O(1) exp
(
−Ω(1) (2blog2(R/r)c−1r)2

)
.

We now use the right-hand-inequality of the quasi-multiplicativity property and (1.1),
which imply that there exists a constant C1 < +∞ such that, for every i ∈ {1, · · · ,
blog2(R/r)c+ 1}, we have

αan1 (2ir,R) ≤ Ci1 αan1 (r,R) .

We finally obtain

f int1 (r,R) ≤ O(1)αan1 (r,R)×
(
C1 +

blog2(R/r)c−2∑

i=0

(
Ci+2

1 exp
(
−Ω(1) (2ir)2

))

+ C
blog2(R/r)c+1
1 exp

(
−Ω(1) (2blog2(R/r)c−1r)2

))
.

This ends the proof since the quantity between parentheses can be bounded by some
absolute constant.

3.2 A generalization of Theorem 1.4 to a family of quads

The fact that we can choose any γ > 0 in the quenched box-crossing property
Theorem 1.4 is crucial for us. In particular, this implies that the quenched box crossing
property is true for a lot of quads simultaneously with high probability. In this
subsection, we use the notations from Definition 2.12 and Proposition 2.13 and we prove
Proposition 2.13.

Proof of Proposition 2.13. Let (Qi)i∈{1,··· ,N(D,δ)} be an enumeration of all 2δ diam(D)×
δdiam(D) rectangles that intersect D and that are drawn on the grid (δ diam(D)) · Z2.
Note that, if Q ∈ Qδ(D), then

N(D,δ)⋂

i=1

{Qi is crossed lengthwise} ⊆ Cross(Q) .

The (quenched) FKG-Harris inequality implies that, for every Q ∈ Qδ(D) and for every η
we have ∏

i∈{1,··· ,N(D,δ)}

Pη [Qi is crossed lengthwise] ≤ Pη [Cross(Q)] . (3.1)

Now, let γ′ > 0 to be fixed later. Theorem 1.4 implies that there exists a constant
c0 = c0(γ′) ∈ (0, 1) such that

∀i, P [Pη [Qi is crossed lengthwise] ≥ c0] ≥ 1− (δ diam(D))−γ
′
.

By a union bound we obtain that

P [∀i, Pη [Qi is crossed lengthwise] ≥ c0] ≥ 1−O(1)N(D, δ) (δ diam(D))−γ
′

≥ 1−O(1) δ−2 (δ diam(D))−γ
′
.

Together with (3.1), this implies that

P
[
∀Q ∈ Qδ(D), Pη [Cross(Q)] ≥ cN(D,δ)

0

]
≥ 1−O(1) δ−2 (δ diam(D))−γ

′
.

EJP 24 (2019), paper 39.
Page 19/71

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP293
http://www.imstat.org/ejp/


Annealed scaling relations for Voronoi percolation

We now use the fact that diam(D) ≥ δ−2/100 and we choose γ′ = 2 + 4γ. We have

δ−2 (δ diam(D))−γ
′

= δ−2−γ′ diam(D)−γ
′

≤ (100)1+γ′/2diam(D)1−γ′/2 = (100)2(1+γ)diam(D)−2γ .

This ends the result if diam(D) is sufficiently large (e.g. diam(D) ≥ (100)2) and if

c = c
supD N(D,δ)
0 (= c

O(1)δ−2

0 ). If diam(D) ≤ (100)2 then the proof is easy.

In Section 7, we will work with the following family of quads.

Definition 3.1. Let Q̃′δ(D) be the set of all quads Q ⊆ D such that there exists k ∈ N
such that Q is drawn on the grid (2k δ diam(D)) ·Z2 and the length of each side of Q is
less than 100 · 2k δ diam(D). Also, let Q̃δ(D) be the set of all quads Q ⊆ D such that there
exists a quad Q′ ∈ Q̃′δ(D) satisfying Cross(Q′) ⊆ Cross(Q).

Proposition 3.2. Let δ ∈ (0, 1) and γ ∈ (0,+∞). There exists c̃ = c̃(γ) ∈ (0, 1) such that,8

for every bounded subset of the plane D satisfying diam(D) ≥ δ−2/100, we have

P
[
∀Q ∈ Q̃δ(D), Pη [Cross(Q)] ≥ c̃

]
≥ 1−O(1) diam(D)−γ ,

where the constants in O(1) are absolute constants.

Remark 3.3. One could use Proposition 3.2 and gluing arguments to prove Proposi-
tion 2.13 (with c(δ, γ) = c̃(γ)O(1)δ−2

) but since we will essentially use Proposition 2.13 we
have chosen to write the proof of this proposition and then mimic it in order to obtain
Proposition 3.2.

Proof of Proposition 3.2. First, we work with the following set of quads: Let Q̂δ(D) ⊆
Qδ(D) be the set of all quads Q ⊆ D drawn on the grid (δ diam(D)) · Z2 such that the
length of each side of Q is less than 100 · δ diam(D). We have

Q̃δ(D) =

+∞⋃

k=0

Q̂2kδ(D) .

By following the proof of Proposition 2.13 we obtain that there exists c0 = c0(γ) ∈ (0, 1)

such that

P
[
∀Q ∈ Q̂δ(D), Pη [Cross(Q)] ≥ cO(1)

0

]
≥ 1−O(1) diam(D)−γ . (3.2)

The fact that we have cO(1)
0 instead of cO(1)δ−2

0 comes from the fact that we only consider
quads of side length ≤ 100 · δ diam(D). Now, note that the sets Q̂2kδ(D) are empty when
k > − log2(δ), hence

Q̃δ(D) =

− log2(δ)⋃

k=0

Q̂2kδ(D) .

Note also that − log2(δ) ≤ O(1) log2(diam(D)) since diam(D) ≥ δ−2/100. Let us ap-
ply (3.2) to Q̂2kδ(D) for every k ∈ {0, · · · ,− log2(δ)} and with γ + 1 instead of γ. A union
bound implies that there exists a constant c̃ = c̃(γ) > 0 such that

P
[
∀Q ∈ Q̃δ(D), Pη [Cross(Q)] ≥ c̃

]
≥ 1−O(1) log2(diam(D)) diam(D)−(γ+1)

≥ 1−O(1) diam(D)−γ .

8The fact that c̃ does not depend on δ will be crucial.
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3.3 “Strong” well-separateness of interfaces

In this subsection, we prove Lemma 2.14 i.e. we prove that the interfaces are well
separated with high probability. Subsections 3.1 and 3.2 do not depend on the other
subsections of the paper but this is not the case of the present subsection. Indeed,
we are going to rely on the results of Subsections 7.1, 7.2 and 7.3 where the quasi-
multiplicativity property is proved in the case of an even number of arms and in the
case of arm events in the half-plane, and where the exponent of the 3-arm event in the
half-plane is computed.

Remark 3.4. In Subsection 7.1 we will prove another “well-separateness of interfaces
lemma”: Lemma 7.4; but the notion of well-separateness of Lemma 7.4 is weaker than
the one in Lemma 2.14. Lemma 7.4 is actually enough to deal with an even number of
arms or with arm events restricted to a wedge, but is not enough to deal with an odd
number of arms.

Proof of Lemma 2.14. First, note that there exist � δ−1 points y ∈ ∂BR such that,
if the event GIextδ (R) does not hold, then there is a 3-arm event in one of the sets
A(y; 20δR,R/4) ∩BR. Note also that, if y ∈ ∂BR, then A(y; 20δR,R/4) ∩BR is included
in a half-plane whose boundary contains y. Together with Item ii) of Proposition 2.7, this
implies that

P
[
GIextδ (R)

]
≥ 1−O(1) δ−1

(
δ R

R

)2

= 1−O(1) δ .

Now, let us study GIintδ (r). As above, there exist � δ−1 points y ∈ ∂Br such that,
if the event GIintδ (r) does not hold, then there is a 3-arm event in one of the sets
A(y; 20δr, r/2) \Br. However, it is not true that, for every y ∈ ∂Br, A(y; 20δr, r/2) \Br is
included in a half-plane whose boundary contains y (there are problems at the corners
of Br). This is why we need the following result:

Claim 3.5. Let y ∈ ∂Br and let ρ be such that y is at distance at least ρ from the corners
of Br. Assume that ρ ∈ [20δr, r/2]. Then, there exists a constant ε > 0 such that

P [3-arm event in A(y; 20δr, r/2) \Br] ≤ O(1)

(
δ r

ρ

)2 (ρ
r

)ε
.

Proof. Note that A(y; 20δr, ρ) \Br is included in a half-plane whose boundary contains y.
Write A+

3 (y; 20δr, ρ) for the 3-arm event in A(y; 20δr, ρ) \Br and let

Â
+

3 (y; 20δr, ρ) =
{
P
[
A+

3 (y; 20δr, ρ)
∣∣∣ω ∩A(y; 20δr, ρ)

]
> 0
}
.

Let y0 be the corner of Br closest to y, let A3(y0; 2ρ, r/2) be the 3-arm event A3(2ρ, r/2)

translated by y0, and let

Â3(y0; 2ρ, r/2) =
{
P
[
A3(y0; 2ρ, r/2)

∣∣∣ω ∩A(y0; 2ρ, r/2)
]
> 0
}
.

The events Â
+

3 (y; 20δr, ρ) and Â3(y0; 2ρ, r/2) are independent. Moreover, if the 3-arm
event in A(y; 20δr, r/2) \ Br holds then both these events hold. Remember that in the
present subsection we rely on the results of Subsections 7.1, 7.2 and 7.3 where the
quasi-multiplicativity property and its consequences (e.g. Proposition 2.4) are proved for
j odd and also for arm events in the half plane for any j. We apply Proposition 2.4 to the
2-arm event in the whole plane and to the 3-arm event in the half-plane. We obtain that

P
[
Â3(y0; 2ρ, r/2)

]
≤ P

[
Â2(y0; 2ρ, r/2)

]
� αan2 (2ρ, r/2)

EJP 24 (2019), paper 39.
Page 21/71

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP293
http://www.imstat.org/ejp/


Annealed scaling relations for Voronoi percolation

and
P
[
Â

+

3 (y; 20δr, ρ)
]
� αan,+3 (20δr, ρ) .

If we combine these estimates with (1.1) and with the computation of the 3-arm event

in the half-plane (Item (ii) of Proposition 2.7), we obtain that P
[
Â3(y0; 2ρ, r/2)

]
≤

O(1)
(
ρ
r

)Ω(1)
and P

[
Â

+

3 (y; 20δ r, ρ)
]
�
(
δr
ρ

)2

. Finally,

P [3-arm event in A(y; 20 δ r, r/2) \Br] ≤ P
[
Â

+

3 (y; 20δr, ρ) ∩ Â3(y0; 2ρ, r/2)
]

≤ O(1)

(
δ r

ρ

)2 (ρ
r

)Ω(1)

,

which ends the proof.

We can (and do) assume that the constant ε of the claim is in (0, 1). Now, note that
there exist N(δ) � log2(δ−1) finite subsets of ∂Br: Y1, · · · , YN(δ) such that: (a) |Yi| � 2i,
(b) for every y ∈ Yi, there exists a corner of Br at distance � 2iδr from y and (c)
if GIintδ (r) does not hold, then there exists y ∈ ∪N(δ)

i=1 Yi such that the 3-arm event in
A(y; 20δr, r/2) \Br holds. Combined with the claim, this observation implies that

P
[
GIintδ (r)

]
≤ O(1)

N(δ)∑

i=1

2i
(
δ r

2iδr

)2 (
2iδr

r

)ε

≤ O(1) δε
N(δ)∑

i=1

2i(ε−1)

= O(1) δε .

4 Pivotal events and some estimates on arm events

In this section, we only work at the parameter p = 1/2, hence we intentionally forget
the subscript p in the notations. We will rely on the quasi-multiplicativity property (proved
in Section 7), on its consequences Propositions 2.4 and 2.5, and on the preliminary results
from Section 3. Our goal is to estimate pivotal events. We refer to Subsection 2.4.1 for
the notations we use for these events. Our main goal is to prove the following result:

Proposition 4.1. Let ρ ≥ 1 and R ≥ 100ρ. We have9

∑

S square of the grid (2ρZ)2

P1/2 [PivS(Cross(2R,R))] �
(
R

ρ

)2

αan4,1/2(ρ,R) .

The event PivS(Cross(2R,R)) is an annealed-pivotal event. We will also prove similar
bounds for quenched-pivotal events, see Lemma 4.6. Let us make two observations in
order to illustrate the difficulties that will arise in the proof of Proposition 4.1. Let S be
a square of the grid 2ρZ2.

i) Even if S is far-away from [−2R, 2R]× [−R,R], we have P1/2 [PivS(Cross(2R,R))] >

0.

ii) Assume that S ⊆ [−2R, 2R]× [−R,R] and let A�
4 (S,R) denote the event that there

are two black arms included in [−2R, 2R] × [−R,R] \ S from ∂S to the left and
right sides of [−2R, 2R] × [−R,R] and two white arms included in [−2R, 2R] ×

9The constant 2 in “2ρZ2” does not have to be taken seriously. The reason why we look at grids of mesh ≥ 2
is only that we have stated the quasi-multiplicativity property Proposition 1.6 for 1 ≤ r1 ≤ r2 ≤ r3 i.e. for arm
events around boxes of side length at least 2.

EJP 24 (2019), paper 39.
Page 22/71

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP293
http://www.imstat.org/ejp/


Annealed scaling relations for Voronoi percolation

[−R,R] \ S from ∂S to the top and bottom sides of [−2R, 2R]× [−R,R]. The events
PivS(Cross(2R,R)) and A�

4 (S,R) are closely related. However, we do not have
A�

4 (S,R) = PivS(Cross(2R,R)) (contrary to Bernoulli percolation on Z2).

Remark 4.2. Proposition 4.1 is stated for the crossing events Cross(2R,R) since we will
apply this result to 2R × R rectangles, but of course the proof works for any shape of
rectangle.

4.1 The case of the bulk

Let 1 ≤ ρ ≤ R/10 ≤ R, let y be a point of the plane and let S = Bρ(y) be the square of
size length 2ρ centered at y. In this subsection, we use the quasi-multiplicativity property
and its consequences to estimate the probability of PivS (Cross(2R,R)) when S is “in
the bulk”. We start with the following lemma:

Lemma 4.3. Let ρ, R and S be as above, and assume that S is at distance at least R/3
from the sides of the rectangle [−2R, 2R]× [−R,R]. Also, let A�

4 (S,R) be the event that
there are two black arms in [−2R, 2R]× [−R,R] \ S from ∂S to the left and right sides
of [−2R, 2R]× [−R,R] and two white arms in [−2R, 2R]× [−R,R] \ S from ∂S to the top
and bottom sides of [−2R, 2R]× [−R,R]. Then

P
[
A�

4 (S,R)
]
� αan4 (ρ,R) ,

where the constants in � are absolute constants.

Proof. The proof of the inequality P
[
A�

4 (S,R)
]
≤ O(1)αan4 (ρ,R) is a direct consequence

of the quasi-multiplicativity property (and of (1.1)). Let us prove the other inequality.
We write the proof only for y = 0 (i.e. for S = Bρ) since the proof for other values of
y is the same. Note that it is sufficient to prove the result for R sufficiently large. Let
δ ∈ (0, 1) to be determined later and assume that R ≥ δ−2. Consider the following events
(see Definition 2.10 and Proposition 2.13):

Denseδ(R) := Denseδ/100 (A(R/4, 2R)) ,

QBCδ(R) := QBC1
δ (A(3R/8, 2R)) ,

and let GIextδ (R/2) be defined as in Subsection 2.4.2.
Note that the event Denseδ(R)∩QBCδ(R)∩GIextδ (R/2) is measurable with respect to

ω\BR/4. With exactly the same proof as Lemma 2.11, we obtain that P [Denseδ(R)] ≥ 1−
O(1) δ−2 exp(−Ω(1)

(
δ ·R)2

)
≥ 1−O(1) exp

(
−Ω(1)δ−2

)
(since R ≥ δ−2). Moreover, Propo-

sition 2.13 implies that P [QBCδ(R)] ≥ 1−O(1)R−1 ≥ 1−O(1) δ2 and Lemma 2.14 implies
that P

[
GIextδ (R/2)

]
≥ 1−O(1) δ. Therefore, P

[
Denseδ(R) ∩ QBCδ(R) ∩ GIextδ (R/2)

]
can

be made as close to 1 as we want provided that we take δ sufficiently small. Hence, we
can use Proposition 2.5 (which is the key result here) to say that, if δ is sufficiently small,
then

P
[
A4(ρ,R/2) ∩ Denseδ(R) ∩ QBCδ(R) ∩ GIextδ (R/2)

]
≥ αan4 (ρ,R/2)/2 ≥ αan4 (ρ,R)/2 .

See Subsection 2.4.2: we have {sext(ρ,R/2) ≥ 5δR} = {sext(ρ,R/2) ≥ 10δR/2} ⊇
GIextδ (R). Hence, we also have

P
[
A4(ρ,R/2) ∩ Denseδ(R) ∩ QBCδ(R) ∩ {sext(ρ,R/2) ≥ 5δR}

]
≥ αan4 (ρ,R)/2 . (4.1)

Let η ∈ Denseδ(R)∩QBCδ(R) be such that Pη [A4(ρ,R/2) ∩ {sext(ρ,R/2) ≥ 5δR}] > 0 and
write β0, · · · , βk−1 for the interfaces that cross A(ρ,R) (in counter-clockwise order and
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such that the right-hand-side of β0 - when going from ∂S to ∂BR - is black, say). First,
we work under the following conditional probability measure:

νηρ,R,(βj)j

:= Pη
[
·
∣∣∣A4(ρ,R/2) ∩ Denseδ(R) ∩ QBCδ(R) ∩ {sext(ρ,R/2) ≥ 5δR}, β0, · · · , βk−1

]
.

Thanks to (4.1), it is sufficient to prove that there exists a constant c = c(δ) > 0 such that

νηρ,R,(βj)j

[
A�

4 (S,R)
]
≥ c .

Since η ∈ Denseδ(R) ∩ {sext(ρ,R/2) ≥ 5δR}, we can choose four quads Q(βj), j ∈
{0, · · · , 3} such that

(a) For every j ∈ {0, · · · , 3}, Q(βj) ∈ Qδ (A(3R/8, 2R));

(b) For every j ∈ {0, · · · , 3}, one of the distinguished sides of Q(βj) is included in βj;

(c) The other distinguished side of Q(β0) (respectively Q(β1), Q(β2) and Q(β3)) is
included in the right (respectively top, left and bottom) side of [−2R, 2R]× [−R,R];

(d) For every j ∈ {0, · · · , 3}, Q(βj) ∩ BR/2 is included in the region between βj and
βj−1 (where β−1 := βk−1);

(e) If 0 ≤ i 6= j ≤ 3, then there is no Voronoi cell that intersects both Q(βi) and Q(βj).

See Figure 5. Let F be the event that, for every j ∈ {0, · · · , 3}, Q(βj) is crossed
(respectively dual-crossed) when j is even (respectively odd). Note that conditioning
on (βj)j affects the percolation process as follows: if j is even (respectively odd) then
there is a black (respectively white) crossing from βj to βj−1. Hence, by using the fact
that η ∈ QBCδ(R) and by applying the (quenched) Harris-FKG inequality, we obtain that
there exists c = c(δ) > 0 such that

νηρ,R,(βj)j [F ] ≥ c > 0 .

This ends the proof since F ⊆ A�
4 (ρ,R).

β1

β0

R/2

Q(β1)

Q(β0)

ρ

Figure 5: The quads Q(β1) and Q(β2).

We have the following strengthening of Lemma 4.3, in the spirit of Proposition 2.5:

Corollary 4.4. There exists an absolute constant ε ∈ (0, 1) such that, for every event G
measurable with respect to ω \A(y; 2ρ,R/6) that satisfies P [G] ≥ 1− ε, we have

P
[
A�

4 (S,R) ∩G
]
≥ ε αan4 (ρ,R) .
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Proof. The proof is exactly the same as the similar result Proposition 2.5. More precisely,
this is a direct consequence of Lemma 4.3 and Proposition 2.4.

Now, let us prove the following result:

Lemma 4.5. Let ρ, R and S be as in Lemma 4.3. Then

P [PivS(Cross(2R,R))] � αan4 (ρ,R) .

Proof. The fact that P [PivS(Cross(2R,R))] ≥ Ω(1)αan4 (ρ,R) is a direct consequence of
Lemma 4.3. Indeed, (except on a zero probability set) we have10

A�
4 (S,R) ⊆ PivS(Cross(2R,R)) .

Now, let us prove that P [PivS(Cross(2R,R))] ≤ O(1)αan4 (ρ,R). We write the proof
in the case y = 0. For every ρ′ > 0, let Dense(ρ′) := Dense1/100 (A(ρ′, 2ρ′)) (remember
Definition 2.10). Note that we have

PivS(Cross(2R,R)) ⊆ A4(2ρ,R) ∪ (PivS(Cross(2R,R)) \ Dense(ρ)) .

More generally, for all k ∈
{

0, · · · , blog2( R4ρ )c =: k0

}
we have

PivS(Cross(2R,R)) ⊆ A4(2k+1ρ,R) ∪
(
PivS(Cross(2R,R)) \ Dense(2kρ)

)
, (4.2)

which implies that PivS(Cross(2R,R)) is included in:

A4

(
2ρ,R

) ⋃ ( k0⋃

k=0

A4

(
2k+2ρ,R

)
\ Dense(2kρ)

) ⋃
¬Dense(2k0+1ρ)

⊆ Â4

(
2ρ,R

) ⋃ ( k0⋃

k=0

Â4

(
2k+2ρ,R

)
\ Dense(2kρ)

) ⋃
¬Dense(2k0+1ρ) , (4.3)

where the events Â4

(
·, ·
)

are the events defined in Definition 2.3. By using Proposition 2.4

and the fact that Â4

(
2k+2ρ,R

)
and Dense(2kρ) are independent, we obtain that, for each

k ∈ {0, · · · , k0}),

P
[
Â4

(
2k+2ρ,R

)
\ Dense(2kρ)

]
≤ O(1)αan4

(
2k+2ρ,R

)
P
[
¬Dense(2kρ)

]
.

With the same proof as Lemma 2.11, we obtain that

P
[
¬Dense(2kρ)

]
≤ O(1) e−Ω(1)(2kρ)2 . (4.4)

Note also that the quasi-multiplicativity property and (1.1) imply that

αan4

(
2k+2ρ,R

)
≤ O(1) 2O(1)k αan4 (ρ,R) .

Therefore,

P
[
Â4

(
2k+2ρ,R

)
\ Dense(2kρ)

]
≤ O(1) αan4 (ρ,R) 2O(1)k e−Ω(1)(2kρ)2 . (4.5)

Similarly, 1 ≤ O(1) αan4 (ρ, 2k0ρ) 2O(1)k0 , hence

P
[
¬Dense(2k0+1ρ)

]
≤ O(1) αan4 (ρ, 2k0ρ) 2O(1)k0 e−Ω(1)(2k0ρ)2

≤ O(1)αan4 (ρ,R) 2O(1)k0 e−Ω(1)(2k0ρ)2 . (4.6)

Now, we can conclude by applying the union-bound to (4.3) and by using the inequali-
ties (4.5) and (4.6).

10Consider a configuration for which A�
4 (S,R) holds. If we replace the configuration restricted to S by

a sufficiently dense set of black (respectively white) points then Cross(2R,R) is satisfied (respectively not
satisfied).
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We still consider the case where S is in the bulk. We end this subsection by showing
another result which will be useful in the proof of the annealed scaling relations. The dif-
ference with Lemma 4.5 is that we study quenched pivotal events (see Subsection 2.4.1
for the definition of these pivotal events).

Lemma 4.6. Let R and S be as in Lemma 4.3, and assume that ρ = 1 (i.e. S is a 2× 2

square). We have

P [{|η ∩ S| = 1} ∩ PivqS (Cross(2R,R))] ≥ Ω(1)αan4 (R) .

Before proving Lemma 4.6, let us note that this lemma together with results from [3]
implies that αan4 (R) ≤ O(1)R−(1+ε) for some ε > 0, which is the first part of Proposi-
tion 1.13:

Proof of the first part of Proposition 1.13. By [3], if we let S1 be the set of all the squares
of the grid 2Z2 that are included in [−2R, 2R] × [−R,R] and at distance less than R/3

from the sides of [−2R, 2R]× [−R,R], then

E


∑

S∈S1

∑

x∈η∩S
Pη [Pivqx(Cross(2R,R)]

2


 ≤ O(1)R−Ω(1) . (4.7)

See the end of Appendix B where we recall how the authors of [3] have obtained this
estimate. (The definition of S1 is not the same as in Appendix B but the proof is exactly
the same with the present definition.) The left-hand-side of (4.7) is at least

∑

S∈S1

E
[
Pη [PivqS(Cross(2R,R)]

2
1|η∩S|=1

]

≥
∑

S∈S1

P [{|η ∩ S| = 1} ∩ PivqS (Cross(2R,R))]
2

(by Jensen).

We conclude by applying Lemma 4.6.

The difficulty in the proof of Lemma 4.6 is that it is not obvious that, if A4(100, R)

holds (for instance), then we can easily extend the arms until scale 1. We overcome this
difficulty by considering the event that the Voronoi tiling near 0 “looks like the hexagonal
lattice”.

Proof of Lemma 4.6. We write the proof in the case y = 0 (i.e. S = Bρ = B1). The
strategy is illustrated in Figure 6. Note that it is sufficient to prove the result for R larger
than some constant. Let r1 ≥ 1000 to be determined later and assume that R ≥ 10r1.

We first need the following definition. Let r ∈ [1, R/10]. The event Ã
�
4 (Br, R) is the

event that i) there are two black paths γ0 and γ2 in [−2R, 2R]× [−R,R] \Br from ∂Br to
the left and right sides of [−2R, 2R]× [−R,R], ii) there are two white paths γ1 and γ3 in
[−2R, 2R]× [−R,R] \Br from ∂Br to the top and bottom sides of [−2R, 2R]× [−R,R], iii)
we can choose the four paths such that, for every i ∈ {0, · · · , 3}, γi ∩A(r, 2r) ⊆ Qi where
the rectangles Qi = Qi(r) are defined in Figure 7.

With the same proof as Lemma 4.3 (except that we have to work both at scale r and
at scale R instead of working only at scale R) we obtain that, if r ≤ R/10 and if r is
sufficiently large, then

P
[
Ã
�
4 (Br, R)

]
≥ Ω(1)αan4 (r,R) .

As in Corollary 4.4, we also have the following stronger result: There exist r0 ≥ 1

and ε ∈ (0, 1) such that, if r ∈ [r0, R/10] and if G is an event measurable with respect to
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r1/2

3r1/2

r1

3r1

Figure 6: The proof of Lemma 4.6.

3r

r

Q0

Q1

Q2

Q3

r/10 0

3r

r
˜
Q0

˜
Q1

˜
Q2

˜
Q3

r/5 0

Figure 7: The rectangles Qi = Qi(r) and the rectangles Q̃i = Q̃i(r).

ω \A(2r,R/6) that satisfies P [G] ≥ 1− ε, then

P
[
Ã
�
4 (Br, R) ∩G

]
≥ ε αan4 (r,R) . (4.8)

Now, for any r≥1 and anyN∈N, write DenseN (r) for the event that Dense1/100(A(r/2, 2r))

holds and that |η ∩A(r/2, 2r)| ≤ N . This event is a little different from the other events
“Dense” that we study in this paper since this is an event that η is sufficiently dense but
not too much. Let ε > 0 as above and note that there exist r1 ≥ r0 and N ∈ N such that
P
[
DenseN (r1)

]
≥ 1− ε. Fix such an r1 and an N . By the above, we have

P
[
Ã
�
4 (Br1 , R) ∩ DenseN (r1)

]
≥ ε αan4 (r1, R) ≥ Ω(1)αan4 (R) . (4.9)
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The event DenseN (r1) provides sufficiently spatial independence so that, given a colored

configuration that satisfies Ã
�
4 (Br1 , R) ∩ DenseN (r1), one can extend the four arms until

scale 1 with probability larger than some constant independent of R. This can be done
for instance as follows:

Let Color(r) denote the event that each point of η∩ Q̃i is black (respectively white) if i
is even (respectively odd), where the Q̃i = Q̃i(r)’s are the rectangles defined in Figure 7.
Note that we have

i) By the quenched FKG-Harris inequality11 (for the first inequality) and (4.9) (for the
second inequality), we have

P
[
Ã
�
4 (Br1 , R) ∩ DenseN (r1) ∩ Color(r1/2)

]

= E
[
Pη
[
Ã
�
4 (Br1 , R) ∩ Color(r1/2)

]
1DenseN (r1)

]

≥ 1

2N
E
[
Pη
[
Ã
�
4 (Br1 , R)

]
1DenseN (r1)

]

=
1

2N
P
[
Ã
�
4 (Br1 , R) ∩ DenseN (r1)

]
≥ c1αan4 (R) ,

where c1 > 0 is a constant that depends only on r1 and N .

ii) The event

Ã
�
4 (Br1 , R) ∩ DenseN (r1) ∩ Color(r1/2)

is independent of ω ∩Br1/2.

As a result, for any event A measurable with respect to ω ∩Br1/2 we have

P
[
Ã
�
4 (Br1 , R) ∩ DenseN (r1) ∩ Color(r1/2) ∩A

]
≥ c1P [A]αan4 (R) ,

So it is sufficient for our purpose to find an event A measurable with respect to ω ∩Br1/2
such that P [A] > 0 and

P [{|η ∩ S| = 1} ∩ PivqS (Cross(2R,R))]

≥ Ω(1)P
[
Ã
�
4 (Br1 , R) ∩ DenseN (r1) ∩ Color(r1/2) ∩A

]
, (4.10)

where the constants in Ω(1) only depend on r1. We choose A = Hex(r1/2) where
Hex(r) is the event (measurable with respect to ω ∩ Br) that the Voronoi diagram
“looks like the hexagonal lattice” in Br. More precisely, we let T denote the triangular
lattice of mesh size 2 and we define Hex(r) as the event that there exists a bijection
f : T ∩ Br → η ∩ Br such that |f(y) − y| ≤ 1/100 for every y. On the event Hex(r1/2),
we have |η ∩ S| = 1. It is easy to see that P [Hex(r1/2)] > 0 and that, if we condition

on the event Ã
�
4 (Br1 , R) ∩ DenseN (r1) ∩ Color(r1/2) ∩ Hex(r1/2), then we can extend

the four arms “by hand” until the Voronoi cell of f(0) (where f is the above bijection)
with probability larger than some constant that depends only on r1 (see Figure 6).
Hence, (4.10) holds and we are done.

11Here, one actually needs a generalized FKG-Harris inequality which is a consequence of the classical
FKG-Harris inequality and can be stated as follows (see Lemma 13 of [26] for the proof): Work conditionally
on η, let A+, B+ ⊆ {−1, 1}η be two increasing events, let A−, B− ⊆ {−1, 1}η be two decreasing events,
and let A+,A,A− be three mutually disjoint finite subsets of η such that A+, A−, B+, B− depend only
on the configuration in, respectively, A ∪ A+, A ∪ A−, A+ and A−. Then, Pη

[
B+ ∩B− |A+ ∩A−

]
≥

Pη
[
B+
]
Pη
[
B−
]
.
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4.2 An estimate on the 4-arm event

Thanks to Proposition 2.7 (whose proof is written in Section 7), we have the following:
Let 1 ≤ r ≤ R, then

αan,+3 (r,R) �
( r
R

)2

� αan5 (r,R) ≤ αan4 (r,R) . (4.11)

We now prove that αan4 (r,R) ≥ Ω(1)(r/R)2−ε for some ε > 0 (which strengthens the above
inequality) i.e. we prove the second part of Proposition 1.13. In the case of percolation on
Z2 or on the triangular lattice, the analogue of this proposition is a direct consequence
of Reimer’s inequality ([28]). In the context of Voronoi percolation, it seems a priori
natural to try to prove the following annealed Reimer’s inequality: Let A and B be two
events measurable with respect to ω restricted to a bounded domain, and define the
disjoint occurrence of A and B as in (2.1); then, P [A�B] ≤ P [A]P [B]. Unfortunately,
this inequality is not true in general since it is not true as soon as A = B, A depends
only on η, and P [A] ∈]0, 1[ (indeed, if A and B depend only on η, then A�B = A ∩B).

Proof of the second part of Proposition 1.13. Let M ∈ [100,+∞) to be determined later.
We are inspired by the proof (by Beffara) of Proposition A.1 of [12]. For any ρ ≥ M ,
let Dense(ρ) := Dense1/100(A(ρ, 2ρ)) (remember Definition 2.10). Also, let Circ(r1, r2)

denote the event that there is a black circuit (i.e. an injective continuous function from
R/Z to the black region) in A(r1, r2) surrounding the origin and, for any c ∈ (0, 1), let

QACc(ρ) = {Pη [Circ(ρ, 2ρ)] ≥ c}

(for “Quenched Annulus Circuit”). Theorem 1.4 (applied for instance to four rectangles
that surround the origin) and the (quenched) Harris-FKG inequality imply that there
exists a constant c ∈ (0, 1) such that, for every ρ,

P [QACc(ρ)] ≥ 1− ρ−3 . (4.12)

Fix such a constant c. Now, let GP(ρ,M) (for “Good Point configuration”) be the following
event

blog5(M)c−1⋂

k=0

Dense(5kρ) ∩ QACc(5
kρ) .

If we use (a direct analogue of) Lemma 2.11 and (4.12), we obtain that

P [GP(ρ,M)] ≥ 1−
blog5(M)c−1∑

k=0

(
O(1) e−Ω(1)(5kρ)2 + (5kρ)−3

)
≥ 1−O(1) ρ−3 .

Now, let η ∈ GP(ρ,M) be such that Pη [A5(ρ,Mρ)] > 0. Also, let β0, β1, β2 be three simple
paths drawn in the Voronoi grid, included in A(ρ,Mρ), that go from ∂Bρ to ∂BMρ, and
that can arise as three consecutive interfaces. Write Sβ0,β1,β2

for the region between β0

and β2 that does not contain β1. Write Aβ0,β1,β2
for the event that β0, β1, β2 are indeed

consecutive interfaces, and write Bβ0,β1,β2
for the event that Aβ0,β1,β2

holds and that
there is an additional (i.e. disjoint from the Voronoi cells adjacent to β0 ∪ β1 ∪ β2) black
path in Sβ0,β1,β2 . Observe that, since η ∈ Dense(2kρ), the blog5(M)c events

{∃ a black path in Sβ0,β1,β2 ∩A(5kρ, 2 · 5kρ)

from a cell adjacent to β0 to a cell adjacent to β2} ,

for k = 0, · · · , blog5(M)c − 1, are independent under Pη. Therefore,

Pη
[
Bβ0,β1,β2

∣∣∣Aβ0,β1,β2

]
≤ (1− c)blog5(M)c .

EJP 24 (2019), paper 39.
Page 29/71

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP293
http://www.imstat.org/ejp/


Annealed scaling relations for Voronoi percolation

Since A5(ρ,Mρ) is the union over every possible β0, β1, β2 of Bβ0,β1,β2
, we have

Pη [A5(ρ,Mρ)] ≤ (1− c)blog5(M)c Eη
[
Y 31Y≥4

]
,

where Y = Y (ρ,M) is the number of interfaces from ∂Bρ to ∂BMρ. By taking the
expectation, we obtain that

αan5 (ρ,Mρ) ≤ (1− c)blog5(M)cE
[
Y 31Y≥4

]
+ P [¬GP(ρ,M)]

≤ (1− c)blog5(M)cE
[
Y 31Y≥4

]
+O(1) ρ−3 .

Now, we use the annealed BK inequality Proposition 2.2. Since A2j(ρ,Mρ) is included in
the j-disjoint occurrence of A1(ρ,Mρ), we have

P [Y ≥ 2j] = αan2j (ρ,Mρ) ≤ αan1 (ρ,Mρ)j .

The above together with (1.1) imply that P [Y ≥ j] ≤ O(1)M−ja for some a > 0. More-
over, P [Y ≥ 4] = αan4 (ρ,Mρ) ≥ Ω(1)M−b for some b < +∞. Hence,

E
[
Y 31Y≥4

]
≤ O(1)αan4 (ρ,Mρ) .

Therefore,
αan5 (ρ,Mρ) ≤ O(1) (1− c)blog5(M)c αan4 (ρ,Mρ) +O(1) ρ−3 .

Remember that ρ ≥M . By using the fact that the exponent of the 5-arm event is 2 (see
Proposition 2.7), we obtain that, if M is sufficiently large, then

αan5 (ρ,Mρ)−O(1) ρ−3 ≥ Ω(1)M−2 −O(1) M−3 ≥ Ω(1)M−2 .

Hence, if M is sufficiently large then for every ρ ≥M we have

M−2 ≤ O(1) (1− c)blog5(M)c αan4 (ρ,Mρ) ≤M−2ε αan4 (ρ,Mρ) , (4.13)

for some ε > 0.
Let us end the proof. Let C = C(j = 4) be the constant that appears in the statement

of the quasi-multiplicativity property Proposition 1.6 and fix M ≥ 100 sufficiently large
so that (4.13) holds and so that M ε ≥ C. First, note that it is sufficient to prove the
result for quantities of the form αan4 (M i,M j), where j ≥ i are positive integers. Next,
note that the quasi-multiplicativity property implies that

αan4 (M i,M j) ≥ C−(j−i)
j−1∏

k=i

αan4 (Mk,Mk+1) .

If we use (4.13), we obtain that

αan4 (M i,M j) ≥ C−(j−i)M (−2+2ε)(j−i) ,

which is at least M (−2+ε)(j−i) since M ε ≥ C. This ends the proof.

4.3 Pivotal events for crossing events and arm events

In this subsection, we prove Proposition 4.1. Note that, if in this proposition we
had summed only on the squares S in the “bulk” of the rectangle [−2R, 2R]× [−R,R], it
would have been a direct consequence of Lemma 4.5. We now have to deal with all the
other squares. This is essentially technical so the reader can skip this whole subsection
in a first reading and only keep in mind that we also prove the following analogue of
Proposition 4.1 for arm events:
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Proposition 4.7. Let ρ ≥ 1 and let R ≥ 100ρ. Also, let j ∈ N∗. Then,

∑

S square of the grid (2ρZ)2

P [PivS(Aj(1, R))] ≤ O(1)αanj (ρ,R) +O(1)αanj (R)

(
R

ρ

)2

αan4 (ρ,R) ,

where the constants in the O(1)’s may only depend on j. Note that, if ρ = 1 (and since
R2αan4 (R) ≥ Ω(1) by (4.11)), we have the following simpler formula:

∑

S square of the grid (2ρZ)2

P [PivS(Aj(1, R))] ≤ O(1)αanj (R)R2αan4 (R) .

In order to prove Proposition 4.1, we first pursue the analysis of Subsection 4.1.
To deal with the spatial dependencies of the model, we first need to introduce the
notation PivED(A) which in words denotes the event that, conditionally on the colored
configuration in the set E, the probability that the set D is annealed-pivotal for A is
positive. We introduce this quantity since it is measurable with respect to E. We will
often let E be an annulus which surrounds the set D. Let D be a bounded Borel set, let
A be an event measurable with respect to the colored configuration ω and let E be a
Borel set. We write

PivED(A) :=
{
P
[
PivD(A)

∣∣∣ω ∩ E
]
> 0
}
.

Let 1 ≤ ρ ≤ R/10 ≤ R, let y be a point of the plane and let S = Bρ(y) be the square of
side length 2ρ centered at y.

Lemma 4.8. Let y, ρ, R and S = Bρ(y) be as above. Let ρ1 ∈ [ρ,+∞) and ρ2 ∈ [ρ1,+∞)

and assume that S is included in the bounded connected component of A(y; ρ1, ρ2)c and
that A(y; ρ1, ρ2) ⊆ [−2R, 2R]× [−R,R] (in particular, y ∈ [−2R, 2R]× [−R,R]). Then,

P
[
PivA(y;ρ1,ρ2)

S (Cross(2R,R))
]
≤ O(1)αan4 (ρ1, ρ2) .

Proof. We write the proof for y = 0 since the proof in the other cases is the same. The
proof is very similar to the proof of the inequality P [PivS(Cross(2R,R))] ≤ O(1)αan4 (ρ,R)

of Lemma 4.5. Hence, we choose to indicate what is the result analogous to (4.2) (that
is the key estimate in the proof of Lemma 4.5) and to omit the rest of the proof. For
0 < ρ′ ≤ ρ′′, let

Dense(ρ′, ρ′′) := Dense1/100 (A(ρ′, 2ρ′)) ∩ Dense1/100 (A(ρ′′, 2ρ′′)) .

Then, for every k ∈ {0, · · · , blog2(ρ2/(4ρ1))c}, PivA(ρ1,ρ2)
S (Cross(2R,R)) is included in

A4(2k+1ρ1, ρ2/2) ∪
(
PivA(ρ1,ρ2)

S (Cross(2R,R)) \ Dense(2kρ1, ρ2/2)
)
.

We now use Lemma 4.8 to estimate the quantity P [PivS(Cross(2R,R))] when S

intersects the rectangle [−2R, 2R] × [−R,R] (for instance when S is included in this
rectangle). We first need the following notations: Let d0 = d0(S) be the distance between
S and the closest side of [−2R, 2R]× [−R,R] and let y0 be the orthogonal projection of y
on this side. Also, let d1 = d1(S) ≥ d0 be the distance between y0 and the closest corner
of [−2R, 2R]× [−R,R] and let y1 be this corner. Write αan,++

j (·, ·) for the probability of the
j-arm event in the quarter plane. The following lemma is a generalization of Lemma 4.5.

Lemma 4.9. Let 1 ≤ ρ ≤ R/10, let y be a point of the plane and let S = Bρ(y). Assume
that S intersects the rectangle [−2R, 2R]× [−R,R]. We have

P [PivS(Cross(2R,R))] ≤ O(1) αan,++
2 (d1 + ρ,R)αan,+3 (d0 + ρ, d1)αan4 (ρ, d0) .
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S1

y S

y0 y1

S0

A(y0; 10(d0 + ρ), d1)

d1

A(y; ρ, (ρ+ d0)/10)

d0
y

S1

y1

Figure 8: The points y, y0 and y1, the boxes S, S0 and S1, and some annuli centered at y
or y0.

Proof. We use the notations from above the lemma and we let S0 = B10(d0+ρ)(y0) and
S1 = B100(d1+ρ)(y1). We also consider the annuli A(y; ρ, (ρ + d0)/10) and A(y0; 10(d0 +

ρ), d1) (note that these annuli may be empty), see Figure 8. Since S ⊆ S0 ⊆ S1,
PivS(Cross(2R,R)) is included in the following event:

PivS1
(Cross(2R,R)) ∩ PivA(y0;10(d0+ρ),d1)

S0
(Cross(2R,R))

∩ PivA(y;ρ,(ρ+d0)/10)
S (Cross(2R,R)) .

Note furthermore that: i) S is the inner square of A(y; ρ, (ρ+d0)/10), ii) A(y; ρ, (ρ+d0)/10)

is included in S0, iii) S0 is the inner square of A(y0; 10(d0 + ρ), d1) and iv) A(y0; 10(d0 +

ρ), d1) is included in S1. Note also that

i) PivA(y;ρ,(ρ+d0)/10)
S (Cross(2R,R)) is measurable with respect to ω∩A(y; ρ, (ρ+d0)/10),

ii) PivA(y0;10(d0+ρ),d1)
S0

(Cross(2R,R)) is measurable with respect to ω ∩ A(y0; 10(d0 +

ρ), d1),

iii) PivS1
(Cross(2R,R)) is measurable with respect to ω \ S1.

Hence, by spatial independence, P [PivS(Cross(2R,R))] is at most

P [PivS1
(Cross(2R,R))]× P

[
PivA(y0;10(d0+ρ),d1)

S0
(Cross(2R,R))

]

× P
[
PivA(y;ρ,(ρ+d0)/10)

S (Cross(2R,R))
]
.

Lemma 4.8 implies that

P
[
PivA(y;ρ,(ρ+d0)/10)

S (Cross(2R,R))
]
≤ O(1)αan4 (ρ, ρ+ d0) .
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Moreover, by the quasi-multiplicativity property and (1.1), we have αan4 (ρ, ρ + d0) ≤
O(1)αan4 (ρ, d0).

By exactly the same proof as Lemma 4.8 but applied to the 3-arm event in the
half-plane, we have

P
[
PivA(y0;10(d0+ρ),d1)

S0
(Cross(2R,R))

]
≤ O(1)αan,+3 (d0 + ρ, d1)

and
P [PivS1

(Cross(2R,R))] ≤ O(1)αan,++
2 (d1 + ρ,R) ,

which ends the proof.

Let us now prove an estimate about the probability that boxes outside of [−2R, 2R]×
[−R,R] are pivotal. Roughly speaking, this estimate implies that, if we want to bound

∑

S square of the grid 2ρZ2 not included in [−2R,2R]×[−R,R]

P [PivS(Cross(2R,R))] ,

then it is enough to control the sum over the squares S that intersect ∂([−2R, 2R] ×
[−R,R]).

Lemma 4.10. Let ρ ≥ 1 and let R ≥ 100ρ. Also, let S be a square of the grid 2ρZ2 that
intersects ∂([−2R, 2R] × [−R,R]). Moreover, let S be the set of all squares S′ of the
grid 2ρZ2 that do not intersect [−2R, 2R]× [−R,R] and are such that S is the argmin of
S′′ 7→ dist(S′′, S′) where S′′ ranges over the set of squares of the grid 2ρZ2 that intersect
∂([−2R, 2R]× [−R,R]). Then,

∑

S′∈S

P [PivS′(Cross(2R,R))] ≤ O(1) αan,++
2 (d1 + ρ,R)αan,+3 (d0 + ρ, d1)αan4 (ρ, d0) ,

where d0 = d0(S) and d1 = d1(S) are the distances defined above Lemma 4.9.

Proof. If S′ ∈ S, we let d′ be the distance between S′ and [−2R, 2R]× [−R,R]. We first
observe that, if we sum only on the squares S′ that are at distance at least R/1000 from
[−2R, 2R] × [−R,R], then the result is easy. Indeed, PivS′(Cross(2R,R)) implies that,
given η \ S′, the probability that a Voronoi cell intersects both S′ and [−2R, 2R]× [−R,R]

is positive, which is an event of probability less than O(1) exp(−Ω(1)(d′)2) if d′ is at least
of order R. Thus, the sum over such squares S′ is less than O(1) exp(−Ω(1)R2), which is
much less than the desired bound.

Now, let S′ ∈ S be such that d′ ≤ R/1000. Let y be the center of S and let S̃ =

B3(ρ+d′)(y). Note that S̃ ⊇ S, S′. In particular, PivS′(Cross(2R,R)) ⊆ PivS̃(Cross(2R,R)).
Let ρ̃ = 3(ρ + d′). Since ρ̃ ≤ R/10 (this comes from the fact that d′ ≤ R/1000), we can
apply Lemma 4.9 to S̃ and we obtain that

P
[
PivS̃(Cross(2R,R))

]
≤ O(1)αan,++

2 (d̃1 + ρ̃, R)αan,+3 (d̃0 + ρ̃, d̃1)αan4 (ρ̃, d̃0) , (4.14)

where d̃0 = d0(S̃) and d̃1 = d1(S̃). Note that d̃0 and d̃1 satisfy |d0 − d̃0| ≤ O(1) (ρ+ d′) and
|d̃1 − d1| ≤ O(1) (ρ+ d′).

We now distinguish between the two cases d′ ≤ 4ρ and d′ ∈ [4ρ,R/1000]:

• If d′ ≤ 4ρ, then |ρ̃− ρ|, |d̃1 − d1| and |d̃0 − d0| are less than O(1) ρ. As a result, the
quasi-multiplicativity property and (4.14) imply that

P
[
PivS̃(Cross(2R,R))

]
≤ O(1)αan,++

2 (d1 + ρ,R)αan,+3 (d0 + ρ, d1)αan4 (ρ, d0) .

Since there are O(1) squares S′ ∈ S such that d′ ≤ 4ρ, the proof is over in this case.
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Figure 9: The boxes S, S′ and S̃ when d′ is at least of the order of ρ.

• Assume that d′ ∈ [4ρ,R/1000] and observe that PivS′(Cross(2R,R)) is included
in the intersection of the two independent events PivS̃(Cross(2R,R)) and

¬Dense1/100(S̃ \ S) (indeed, if Dense1/100(S̃ \ S) holds, then there cannot exist
a Voronoi cell that intersects both S′ and [−2R, 2R] × [−R,R], see Figure 9). By

using (4.14) and the fact that P
[
¬Dense1/100(S̃ \ S)

]
≤ O(1) exp(−Ω(1)(d′)2), we

obtain that P [PivS′(Cross(2R,R))] is at most

O(1) exp(−Ω(1)(d′)2)αan,++
2 (d̃1 + ρ̃, R)αan,+3 (d̃0 + ρ̃, d̃1)αan4 (ρ̃, d̃0) .

By the quasi-mutliplicativity property and since exp(−Ω(1)(d′)2) decays super-
polynomially fast, the above at most

O(1) exp(−Ω(1)(d′)2)αan,++
2 (d1 + ρ,R)αan,+3 (d0 + ρ, d1)αan4 (ρ, d0) .

Let us now sum over each S′ such that d′ ∈ [4ρ,R/1000]. Since, for each integer
k ∈ [log2(4ρ), log2(R/1000)], there exist at most O(1) 22k squares S′ such that d′ ∈
[2k, 2k+1], the sum is at most

O(1)

log2(R/1000)∑

k=log2(4ρ)

22k exp(−Ω(1)22k)αan,++
2 (d1 + ρ,R)αan,+3 (d0 + ρ, d1)αan4 (ρ, d0)

≤ O(1)αan,++
2 (d1 + ρ,R)αan,+3 (d0 + ρ, d1)αan4 (ρ, d0) .

This ends the proof.

Now, we can prove Proposition 4.1.

Proof of Proposition 4.1. Let S1 be the set of squares of the grid (2ρZ)2 that are included
in [−2R, 2R]× [−R,R] and are at distance at least R/3 from the sides of this rectangle,
and let S2 ⊇ S1 be the set of squares of the grid (2ρZ)2 that intersect [−2R, 2R]× [−R,R].
First, note that if we use Lemma 4.5, we obtain that

∑

S∈S1

P [PivS(Cross(2R,R))] �
(
R

ρ

)2

αan4 (ρ,R) .

Hence, it is sufficient to prove that

∑

S square of the grid (2ρZ)2

P [PivS(Cross(2R,R))] ≤ O(1)

(
R

ρ

)2

αan4 (ρ,R) .
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Moreover, by Lemma 4.10, it is sufficient to prove the estimate by summing only on
S2. Let S ∈ S2. By using Lemma 4.9 combined with the estimates (4.11) (to control
αan,+3 (·, ·)) and (1.1) (to control αan,++

2 (·, ·)), we obtain that there exists an exponent
a > 0 such that

P [PivS(Cross(2R,R))] ≤ O(1)

(
d1 + ρ

R

)a
αan4 (ρ, d0)αan4 (d0 + ρ, d1) .

The quasi-multiplicativity property (together with (1.1)) implies that

αan4 (ρ, d0)αan4 (d0 + ρ, d1) ≤ O(1)αan4 (ρ, d0 + ρ)αan4 (d0 + ρ, d1 + ρ) ≤ O(1) αan4 (ρ, d1 + ρ) .

If we use once again the quasi-multiplicativity property and the estimate (4.11), we
obtain that

P [PivS(Cross(2R,R))] ≤ O(1)

(
d1 + ρ

R

)a (
R

d1 + ρ

)2

αan4 (ρ,R) .

Now, note that the number of squares S ∈ S2 such that d1 + ρ ∈ [(2k − 1)ρ, 2k+1ρ] is 0 if
k ≥ log2(R/ρ) and is at most O(1) 22k otherwise. Therefore,

∑

S∈S2

P [PivS(Cross(2R,R))] ≤ O(1)αan4 (ρ,R)

blog2(R/ρ)c∑

k=0

22k

(
2kρ

R

)a−2

≤ O(1) αan4 (ρ,R)
( ρ
R

)a−2
blog2(R/ρ)c∑

k=0

2ka

≤ O(1) αan4 (ρ,R)
( ρ
R

)a−2
(
R

ρ

)a

= O(1) αan4 (ρ,R)

(
R

ρ

)2

,

which is the desired result.

Now, let us discuss the same kind of questions for arm events instead of crossing
events, i.e. let us prove Proposition 4.7. The main difference is that we will have to use
Item (ii) of Proposition 1.13 instead of the weaker estimate (4.11). As previously, let y be
a point of the plane, let ρ ≥ 1, let S = Bρ(y) and let R ∈ [10ρ,+∞). Also, let j ∈ N∗. We
will need the following lemmas which are similar to Lemmas 4.5, 4.9 and 4.10.

Lemma 4.11. Let y, ρ, R and S = Bρ(y) as above and assume that S ⊆ A(R/4, R/2).
Then,

P [PivS(Aj(1, R))] ≤ O(1)αanj (R)αan4 (ρ,R) .

The following is a generalization of Lemma 4.11.

Lemma 4.12. Let y, ρ, R and S = Bρ(y) as above and assume that S ⊆ BR/2. Also, let d
be the distance between y and 0. Then,

P [PivS(Aj(1, R))] ≤ O(1)αanj (R)αan4 (ρ, d) if d ≥ 2ρ ,

and

P [PivS(Aj(1, R))] ≤ O(1)αanj (ρ,R) otherwise.

Let d0 = d0(S) and d1 = d1(S) be defined as in the study of Cross(2R,R), except that
we consider distances to the box BR instead of the rectangle [−2R, 2R]× [−R,R].
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Lemma 4.13. Let y, ρ, R and S = Bρ(y) as above and assume that S ∩ A(R/2, R) 6= ∅.
Then,

P [PivS(Aj(1, R))] ≤ O(1)αanj (R)αan,++
3 (d1 + ρ,R)αan,+3 (d0 + ρ, d1)αan4 (ρ, d0) .

The following lemma is the analogue of Lemma 4.10:

Lemma 4.14. Let ρ ≥ 1 and let R ≥ 100ρ. Also, let S be a square of the grid 2ρZ2 that
intersects ∂BR. Moreover, let S be the set of all squares S′ of the grid 2ρZ2 that do not
intersect BR and are such that S is the argmin of S′′ 7→ dist(S′′, S) where S′′ ranges over
the squares of the grid 2ρZ2 that intersect ∂BR. Then,

∑

S′∈S

P [PivS′(Cross(2R,R))] ≤ O(1) αanj (R)αan,++
3 (d1 + ρ,R)αan,+3 (d0 + ρ, d1)αan4 (ρ, d0) .

Proof of Lemmas 4.11, 4.12, 4.13 and 4.14. The proof of these lemmas is very similar
to the proof of the analogous results for crossing events (Lemmas 4.5, 4.9 and 4.10).
However, there is a new difficulty when j is odd and larger than 1. More precisely, if
some box in the bulk is pivotal (and if η is sufficiently dense around this box) then there
is a 4-arm event around this box if j is even and there is either a 4-arm event or a 6-arm
event if j is odd. For more details, see Appendix C. See also [26] (e.g. Figure 12 therein)
where Nolin deals with the same problem for Bernoulli percolation on the triangular
lattice.

Proof of Proposition 4.7. Let S1 be the set of squares of the grid (2ρZ)2 that intersect
BcR/2. By using Lemmas 4.13 and 4.14 and by following the proof of Proposition 4.1, we
obtain that

∑

S∈S1

P [PivS(Aj(1, R))] ≤ O(1)αanj (R)

(
R

ρ

)2

αan4 (ρ,R) .

Let S2 be the set of squares of the grid (2ρZ)2 that are included in BR/2. Lemma 4.12
implies that

∑

S∈S2

P [PivS(Aj(1, R))] ≤ O(1)αanj (ρ,R) +O(1)αanj (R)

blog2(Rρ )c∑

k=0

22k αan4 (ρ, 2kρ) .

The quasi-multiplicativity property and the fact that αan4 (2kρ,R) ≥ Ω(1)
(
2kρ/R

)2−ε
(see

Item (ii) of Proposition 1.13) imply that

αan4 (ρ, 2kρ) ≤ O(1)αan4 (ρ,R)

(
R

2kρ

)2−ε

.

Therefore,
∑
S∈S2

P [PivS(Aj(1, R))] is less than or equal to

O(1)αanj (ρ,R) +O(1)αanj (R)αan4 (ρ,R)

blog2(Rρ )c∑

k=0

22k

(
R

2kρ

)2−ε

≤ O(1)αanj (ρ,R) +O(1)αanj (R)αan4 (ρ,R)

(
R

ρ

)2

.

We are done since S1 ∪ S2 = {squares of the grid (2ρZ)2}.
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5 Extension of the results to the near-critical phase

In this section, we extend the results of other sections to the near-critical phase.
Remember the definition of the correlation length Lan(p) from Definition 1.9. Let us first
prove the following result.

Lemma 5.1. For every p > 1/2, Lan(p) < +∞.

Proof. This is a simple consequence of the exponential decay property Theorem 2 of [7]
or Theorem 1 of [10]: for every p < 1/2, there exists a constant c = c(p) > 0 such that

αan1,p(R) ≤ exp(−c(p)R) .

Indeed, by duality, this implies that for every p > 1/2 there exists a constant c′ = c′(p) > 0

such that

Pp [Cross(2R,R)] ≥ 1− exp(−c′(p)R) .

5.1 Extension of the annealed and quenched box-crossing properties

Let us use the idea of Lemma 4.17 of [4] in order to extend the annealed box-crossing
property to the near-critical regime.

Proposition 5.2. Let ρ > 0. There exists a constant c = c(ρ) ∈ (0, 1) such that, for every
p ∈ (1/2, 3/4] and every R ∈ (0, Lan(p)],

c ≤ Pp [Cross(ρR,R)] ≤ 1− c .

The constant c may also depend on ε0 in the definition of Lan(p).

Proof. The left-hand-inequality is a direct consequence of Theorem 1.3 (and is true for
any R ∈ (0,+∞)). Let us prove the right-hand-inequality. Let Circ(r1, r2) be the event
that there is a black circuit (i.e. an injective continuous function from R/Z to the black
region) in the annulus A(r1, r2) surrounding the origin. Note that this event holds if and
only if there is no white path from ∂Br1 to ∂Br2 . Thanks to (1.1), we know that there
exists h > 0 such that P1/2 [Circ(ρ,Mρ)] ≥ 1− 1

hM
−h for any ρ ≥ 1 and M ≥ 1. Fix some

N ∈ N∗ such that (
1− 1

h
N−h

)3

≥ (1− ε0)
1/2

,

where ε0 is the constant used to define Lan(p). Next, fix some constant c ∈ (0, 1)

sufficiently small so that (
1− c

1
(4N)2

)4

≥ (1− ε0)1/2 .

By gluing arguments, it is sufficient to prove that for every r ∈ [N, L
an(p)

2 ] we have

Pp [Cross∗(2r, r)] = 1− Pp [Cross(r, 2r)] ≥ c .

Assume (for a contradiction) that there exists r ∈ [N, L
an(p)

2 ] such that Pp [Cross(r, 2r)] >

1 − c. By the standard square-root trick, this implies that there exist a segment Ir
included in the left side of [−r, r]× [−2r, 2r] and a segment I ′r included in the right side
of [−r, r]× [−2r, 2r] such that: (a) the length of Ir and I ′r is r/N and (b) the probability

(under Pp) that there is black path in [−r, r]× [−2r, 2r] from Ir to I ′r is at least 1− c
1

(4N)2 .
Let Cross(Ir, I

′
r) denote this last event.

Now, note that there exist four events obtained by applying a translation or a reflec-
tion symmetry to Cross(Ir, I

′
r) and three events obtained by applying a translation to
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Circ(r/N, r) such that, if these seven events hold, then Cross(4r, 2r) holds, see Figure 10.
By applying the (annealed) FKG-Harris inequality, we obtain that

Pp [Cross(4r, 2r)] ≥
(

(1− c
1

(4N)2

)4
(

1− 1

h
N−h

)3

≥ (1− ε0)1/2 (1− ε0)1/2 = 1− ε0 ,

which is a contradiction since 2r ≤ Lan(p). Note that we have used that (since p > 1/2)

Pp [Circ(r/N, r)] ≥ P1/2 [Circ(r/N, r)] .

Ir

I ′r

Figure 10: Seven events to obtain Cross(4r, 2r).

Now, we extend the quenched box-crossing result Theorem 1.4.

Proposition 5.3. Let ρ > 0. We have the following:

i) There exist an absolute constant ε > 0 and a constant C = C(ρ) < +∞ such that,
for every p ∈ (1/2, 3/4] and every R ∈ (0,+∞) we have

Var
(
Pηp [Cross(ρR,R]

)
≤ C R−ε .

This implies the following estimate:

ii) For every γ ∈ (0,+∞), there exists a positive constant c = c(ρ, γ) ∈ (0, 1) such that,
for every p ∈ (1/2, 3/4] and every R ∈ (0, Lan(p)],

P
[
c ≤ Pηp [Cross(ρR,R)] ≤ 1− c

]
≥ 1−R−γ .

The constants C and c may also depend on ε0 in the definition of Lan(p).

Proof. The way we obtain Item ii) from Item i) is exactly the same as in the proof of
Theorem 1.4 (see [3]) except that we use Proposition 5.2 instead of Theorem 1.3. So, let
us prove Item i). To this purpose, we rely on Appendix B where we recall the main steps
of the proof of Theorem 1.4. In the case p > 1/2, the first step is exactly the same and
we obtain that

Var
(
Pηp [ Cross(ρR,R) ]

)
≤ E

[∑

x∈η
Pηp [Pivqx(Cross(ρR,R))]

2

]
. (5.1)

For the second step, we cannot use the BK inequality in the case p > 1/2 since we do
not know whether this inequality is true or not. So we prove the result corresponding
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to this step for p > 1/2 by using the analogous result for p = 1/2. More precisely, since
p > 1/2, we have the following:

P
[
Pηp

[
A∗,cell

1 (S,R)
]
≥ R−ε

]
≤ P

[
Pη1/2

[
A∗,cell

1 (S,R)
]
≥ R−ε

]
, (5.2)

where S is the 1 × 1 square centered at 0 and A∗,cell
1 (S,R) is the event defined in the

paragraph above (B.3). Thanks to (5.2), the following is a direct consequence of (B.3):
For every γ > 0, there exists ε > 0 such that the following holds:

P
[
Pηp

[
A∗,cell

1 (S,R)
]
≥ R−ε

]
≤ 1

ε
R−γ .

This ends the second step. The third and last step is exactly the same as in Appendix B.
(Here we use that the theorems by Schramm and Steif stated in Appendix A - and more
precisely Corollary A.4 which is the inequality that we need - hold for every p. The only
dependence on p in Corollary A.4 is a factor 1

4p(1−p) , but this is not a problem since we

have restricted ourself to the case p ∈ (1/2, 3/4].) This ends the proof.

Remark 5.4. Now, we can explain the reason why, in Appendix B, we have (slightly)

changed the algorithm used to estimate the sum E
[∑

x∈η Pηp [Pivqx(Cross(ρR,R))]
2
]
. The

reason is that we wanted to bound the revealment of the algorithm with a quantity that
involves only white arms (so that we can use the obvious inequality (5.2)), which is not
possible with the algorithm chosen in [3].

5.2 Extension of the results of Sections 3, 4 and 7

Before proving the annealed scaling relations, we need to prove that the results of
Sections 3, 4 and 7 are also true in the near-critical phase. More precisely, we need to
prove that these results are also true for p ∈ (1/2, 3/4], providing that we assume that
every length is less than or equal to the correlation length Lan(p). An important fact
is that the different constants (e.g. the constant C = C(j) of the quasi-multiplicatitvity
property Proposition 1.6) will not depend on p but only on the parameter ε0 from the
definition of the correlation length.

In Subsection 5.1, we have proved that the annealed and quenched box crossing
estimates also hold in the near-critical phase. In Sections 3, 4 and 7, we use only two
properties specific to the parameter p = 1/2:

• The annealed BK inequality (see Subsection 2.2). The only place where we
have used this inequality is in the proof of the second part of Proposition 1.13
(see Subsection 4.2). In this proof, we have used this inequality and the fact that
A2j(r1, r2) is included in the j-disjoint occurrence of A1(r1, r2) to prove that

αan2j,1/2(r1, r2) ≤
(
αan1,1/2(r1, r2)

)j
.

Let A∗1(r1, r2) denote the event that there is a white path from ∂Br1 to ∂Br2 . Note
that A2j(r1, r2) is also included in the j-disjoint occurrence of A∗1(r1, r2), hence,

αan2j,p(r1, r2) ≤ Pp
[
A∗1(r1, r2)�j

]
≤ P1/2

[
A∗1(r1, r2)�j

]
≤ P1/2 [A∗1(r1, r2)]

j
,

since p > 1/2 and by the annealed BK inequality at p = 1/2. Hence, there exists
a > 0 such that αan2j,p(r1, r2) ≤ O(1) (r1/r2)a, which is exactly what we needed in the
proof of the second part of Proposition 1.13.
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• The fact that the model is self-dual. We have actually used this property implicitly
all along Sections 4 and 7. If Q is a quad, let Cross∗(Q) be the event that there is a
crossing of Q by a white path. We have used a lot Proposition 2.13 both for the
event Cross(Q) and the event Cross∗(Q) although we have proved this proposition
only for the event Cross(Q). When p = 1/2, this is not a problem since Cross(Q)

and Cross∗(Q) have the same Pη1/2-probabilities; but when p > 1/2 we need to prove

that Proposition 2.13 also holds with Cross∗(Q) instead of Cross(Q) as soon as we
consider a domain D such that diam(D) ≤ Lan(p). The proof is actually exactly the
same except that we have to use Proposition 5.3 instead of Theorem 1.4.

6 Proof of the annealed scaling relations

In this section, we prove our main result Theorem 1.11 by using the results of all
the other sections. We first prove Proposition 1.10 and the scaling relation (1.4) of
Theorem 1.11. We follow the classical strategy developped by Kesten [22] for Bernoulli
percolation, see also [36, 26]. The main difference is that we deal with both the annealed
notion and the quenched notion of pivotal events. We refer to Subsection 2.4.1 for these
two notions of pivotal events. Let us recall that, as explained in Section 5, all our results
on arm and pivotal events also hold for p ∈ (1/2, 3/4] (with constants that do not depend
on p) as soon as we work under the correlation length Lan(p).

Proof of Proposition 1.10 and of (1.4) from Theorem 1.11. We will need the following
lemma:

Lemma 6.1. Let p ∈ (1/2, 3/4] and R ∈ [1, Lan(p)]. We have

d

dp
Pp [Cross(2R,R)] � R2 αan4,p(R) , (6.1)

∀j ∈ N∗,
∣∣∣∣
d

dp
log(αanj,p(R))

∣∣∣∣ ≤ O(1) R2 αan4,p(R) . (6.2)

The constants in � and O(1) may only depend on the choice of ε0 in Definition 1.9 (and
on j for O(1)).

Before proving Lemma 6.1, let us explain why this lemma implies Proposition 1.10
and (1.4). If we integrate (6.1) from 1/2 to p, we obtain that

∫ p

1/2

R2 αan4,u(R) du � Pp [Cross(2R,R)]− P1/2 [Cross(2R,R)] ≤ 1 .

Moreover, if we integrate (6.2) from 1/2 to p, we obtain that

∣∣∣log(αanj,p(R))− log(αanj,1/2(R))
∣∣∣ ≤ O(1)

∫ p

1/2

R2 αan4,u(R) du .

Hence:
∣∣∣log(αanj,p(R))− log(αanj,1/2(R))

∣∣∣ ≤ O(1) i.e. αanj,p(R) � αanj,1/2(R) . Together with the

quasi-multiplicativity property, this implies Proposition 1.10.
Now, let us integrate (6.1) from 1/2 to p with the choice R = Lan(p). If we use

Proposition 1.10 with j = 4, we obtain that

(p− 1/2)Lan(p)2 αan4,1/2(Lan(p))

� Pp [Cross(2Lan(p), Lan(p))]− P1/2 [Cross(2Lan(p), Lan(p))]

∈ [1− ε0 − P1/2 [Cross(2Lan(p), Lan(p))] , 1] ,

which implies the scaling relation (1.4) from Theorem 1.11 since ε0 is sufficiently small.
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Proof of Lemma 6.1. One of Kesten’s ideas is to use Russo’s differential formula (see
for instance Theorem 2.25 in [17]) that can be stated as follows: Let n ∈ N∗ and let
A ⊆ {−1, 1}n be an increasing event. Also, let Pnp = (pδ1 + (1− p)δ−1)⊗n. Then,

d

dp
Pnp [A] =

n∑

i=1

Pnp [Pivni (A)] .

(See Subsection 2.4.1 for our notations for pivotal events.) To use this formula, we
have to work at the quenched level. Note that a.s. the number of points of η whose
cell intersects [−2R, 2R] × [−R,R] is finite. Hence, if we condition on η, the event
Cross(2R,R) depends on finitely many points. So, we can use Russo’s formula and we
obtain that

d

dp
Pηp [Cross(2R,R)] =

∑

x∈η
Pηp [Pivqx(Cross(2R,R))] .

Now, let R ∈ [1, Lan(p)] and let (Si)i∈N be an enumeration of the squares of the grid Z2.
For all i, let Ni(Cross(2R,R)) be the number of points x ∈ η ∩ Si which are quenched-
pivotal for Cross(2R,R). Note that, if one fixes R and let M > 0, then

Card{x : Pηp [Pivqx(Cross(2R,R))] > 0}

is larger than M with probability less than O(1) e−Ω(1)M2

. This implies that one can use
dominated convergence and obtain that

d

dp
Pp [Cross(2R,R)] =

∑

i∈N
Ep [Ni(Cross(2R,R))] . (6.3)

By using the fact that a.s. PivqSi(Cross(2R,R)) ⊆ PivSi(Cross(2R,R)) and that
PivSi(Cross(2R,R)) is independent of the configuration in Si we obtain that

Ep [Ni(Cross(2R,R))] ≤ Ep

[
|η ∩ Si|1PivqSi

(Cross(2R,R))

]

≤ Ep

[
|η ∩ Si|1PivSi (Cross(2R,R))

]

= Ep [|η ∩ Si|] Pp [PivSi(Cross(2R,R))]

≤ O(1)Pp [PivSi(Cross(2R,R))] .

If we combine the above with (6.3) and if we use Proposition 4.1 (or rather the analogous
result in the near-critical regime), we obtain that

d

dp
Pp [Cross(2R,R)] ≤ O(1)

∑

i∈N
Pp [PivSi(Cross(2R,R))] � O(1)R2 αan4,p(R) ,

which is the upper-bound of (6.1). The lower-bound is a simple consequence of Lemma 4.6.
Indeed, this lemma implies that, if Si is in the “bulk” of [−2R, 2R]× [−R,R], then,

Ep [Ni(Cross(2R,R))] ≥ Pp
[
{|η ∩ Si| = 1} ∩ PivqSi (Cross(2R,R))

]
≥ Ω(1)αan4,p(R) .

Now, let us prove (6.2) for j = 1. Since A1(R) is also an increasing event, by the same
techniques as above we have

d

dp
αan1,p(R) ≤ O(1)

∑

i∈N
Pp [PivSi(A1(R))] .

Together with Proposition 4.7, this implies (6.2) for j = 1.
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Let us now prove (6.2) for j ≥ 2. In this case, the events Aj(R) are not monotonic. In
particular, we cannot use Russo’s formula. We rather use the following inequality that
holds for any event and whose prove is exactly the same as Russo’s formula: Let n ∈ N∗
and A ⊆ {−1, 1}n. Then, ∣∣∣∣

d

dp
Pnp [A]

∣∣∣∣ ≤
n∑

i=1

Pnp [Pivni (A)] .

Thus, the proof of (6.2) in the case j ≥ 2 is the same as in the case j = 1.

This ends the proof of Proposition 1.10 and of the scaling relation (1.4) from Theo-
rem 1.11.

It only remains to prove the scaling relation (1.3) from Theorem 1.11. Thanks to
Proposition 1.10 applied to j = 1, it is sufficient to prove the following lemma:

Lemma 6.2. Let p ∈ (1/2, 3/4]. We have:

θan(p) � αan1,p (Lan(p)) ,

where the constants in � may only depend on the constant ε0 in the definition of Lan(p).

Proof. First, note that it is sufficient to prove the result for p ∈ (1/2, p0) for some p0 ∈
(1/2, 3/4]. For every bounded Borel subset of the plane D, let D̃ense(D) be the event that,
for any u ∈ D, there exists x ∈ η∩D that is black and satisifies ||x−u||2 ≤ diam(D)/100

(we study this event since it is annealed increasing). With the same proof as Lemma 2.11,
we can easily obtain that, if p ∈ (1/2, 3/4] and if R is sufficiently large (R ≥ R0 ≥ 1000,
say), then,

P
[
D̃ense([−2R, 2R]× [−R,R])

]
≥ 1− ε0 .

Let p0 be the larger parameter p ∈ [1/2, 3/4] such that Lan(p) ≥ R0. Note that p0 > 1/2.
Consider some parameter p ∈ (1/2, p0). We now apply a Peierls argument. If Q is a
4Lan(p)× 2Lan(p) rectangle, then we say that Q is good if: i) Q is crossed lengthwise, ii)
the two 2Lan(p)× 2Lan(p) squares whose union is Q are crossed from top to bottom and

from left to right and iii) D̃ense(Q) holds. Note that P [Q is good] ≥ 1− 4ε0 by definition
of the correlation length and that {Q is good} is annealed-increasing.

Now, let L(p) be the square lattice times 2Lan(p). We say that an edge e = {x, y}
of this lattice is good if the 4Lan(p) × 2Lan(p) rectangle which is the union of the two
2Lan(p) × 2Lan(p) squares centered at x and y is good. Note that we have defined a
2-dependent percolation model on L(p) with parameter at least 1−4ε0. A standard Peierls
argument implies that, if ε0 is small enough, the probability that there is an infinite good
path starting from 0 is larger than some positive constant that depends only on ε0.

Now, note that if the two following properties hold then the event {0 ↔ ∞} holds:
(a) in the 2-dependent percolation model on L(p), the twelve edges of L(p) closest
to 0 are good and there is an infinite path made of good edges starting from 0; (b)
A1(1, 3Lan(p)) holds and B1 = [−1, 1]2 is entirely colored black. This observation and
the above paragraph (together with the annealed FKG-Harris inequality) imply the
lemma.

7 The quasi-multiplicativity property

In this section, we only work at p = 1/2, hence we forget the subscript p in the
notations. In Subsections 7.1, 7.2 and 7.3, we only rely on the results of Subsections 3.1
and 3.2. In Subsections 7.4, we also use the results of Subsection 3.3 which are
consequences of Subsections 7.1, 7.2 and 7.3.
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7.1 The case j even

In this subsection, we prove the quasi-multiplicativity property Proposition 1.6 in the
case j even:

Proposition 7.1. Let j ∈ N∗ even. There exists a constant C = C(j) ∈ [1,+∞) such
that, for all 1 ≤ r1 ≤ r2 ≤ r3,

1

C
αanj (r1, r3) ≤ αanj (r1, r2)αanj (r2, r3) ≤ C αanj (r1, r3) . (7.1)

Remark 7.2. As we will see in Subsection 7.3, the same proof will imply the quasi-
multiplicativity property for the quantities αan,+j (·, ·), for any j.

As explained in Subsection 2.6.1, we first need to define what is a “good percolation
configuration” (i.e. a configuration for which it is not difficult to extend the j arms).
We write the proof of Proposition 7.1 for j = 4 since the proof for other even
integers is the same.

7.1.1 What does “looking good” means for the Voronoi percolation configura-
tions

The point configuration. We consider δ ∈ (0, 1/1000) and R ∈ [δ−2,+∞). In the proof
of Proposition 7.1, we use the following notations (the notations from the right-hand-side
are those from Definition 2.10 and Proposition 2.13):

Denseδ(R) := Denseδ (A(R/2, 2R)) ,

QBCδ(R) := QBC1
δ (A(3R/4, 3R/2)) ,

QBCext(R) := QBC1
1/100 (A(R, 4R)) ∩ Dense1/100 (A(R, 4R)) ,

QBCint(R) := QBC1
1/100 (A(R/4, R)) ∩ Dense1/100 (A(R/4, R)) .

Mind the presence of the events “Dense(·)” in the definition of QBCext(R) and QBCint(R)

(to simplify the notations). Next, we define the two following events:

GPextδ (R) :=
{
P
[
Denseδ(R) ∩ QBCδ(R) ∩ QBCext(R)

∣∣∣ η ∩A(R/2, 2R)
]
≥ 3/4

}
(7.2)

and

GPintδ (R) :=
{
P
[
Denseδ(R) ∩ QBCδ(R) ∩ QBCint(R)

∣∣∣ η ∩A(R/2, 2R)
]
≥ 3/4

}
(7.3)

(for “Good Point configuration”). In words, GPextδ (R) (respectively GPintδ (R)) is the
event that, conditionally on η ∩A(R/2, 2R), the probability that Denseδ(R) ∩ QBCδ(R) ∩
QBCext(R) (respectively Denseδ(R) ∩ QBCδ(R) ∩ QBCint(R)) holds is at least 3/4. Note
that, if Denseδ(R) holds and if the Voronoi cell of some x ∈ η intersects A(3R/4, 3R/2),
then x ∈ A(R/2, 2R). Hence, Denseδ(R) ∩ QBCδ(R) is measurable with respect to
η ∩A(R/2, 2R). As a result, we have

GPextδ (R) = Denseδ(R) ∩ QBCδ(R) ∩
{
P
[
QBCext(R)

∣∣∣ η ∩A(R/2, 2R)
]
≥ 3/4

}
,

and the analogous property for GPintδ (R). The reason why we do not choose to define
GPextδ (R) = Denseδ(R)∩QBCδ(R)∩QBCext(R) is that we want GPextδ (R) to be measurable
with respect to η ∩ A(R/2, 2R) (and similarly for GPintδ (R)). This will be crucial in the
whole proof.
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The interfaces. In Subsection 3.3, we have estimated the events GIextδ (R) and GIintδ (R)

which are events that “the interfaces are well separated”. In particular, we have proved
Lemma 2.14 by using that the exponent of the 3-arm event in the half-plane is 2. As
we will see in Subsection 7.3, the quasi-multiplicativity is a crucial ingredient in the
computation of this exponent. Consequently, we cannot use Lemma 2.14 in the present
proof. We rather choose to consider a variant of the quantities sext(r,R) and sint(r,R).
More precisely:

We still consider δ ∈ (0, 1/1000) and R ∈ [δ−2,+∞). We also consider some r ∈ [1, R].
Following the appendix of [31], we let s̃ext(r,R) be the least distance between any pair

of endpoints on ∂BR of two interfaces that go from ∂Br to ∂BR. We write G̃I
ext

δ (R) =

{s̃ext(3R/4, R) ≥ 10δR} and

Gextδ (R) = GPextδ (R) ∩ G̃I
ext

δ (R) .

Note that the event Denseδ(R) ∩ G̃I
ext

δ (R) is measurable with respect to ω ∩A(R/2, 2R).
Therefore, Gextδ (R) is measurable with respect to ω ∩A(R/2, 2R).

Similarly, we let s̃int(r,R) be the least distance between any pair of endpoints on

∂Br of two interfaces that go from ∂BR to ∂Br and we write G̃I
int

δ (R) = {s̃int(R, 3R/2) ≥
10δR}. We write Gintδ (R) = GPintδ (R) ∩ G̃I

int

δ (R). The event Gintδ (R) is measurable with
respect to ω ∩A(R/2, 2R).

Remark 7.3. As noted above, conditioning on Denseδ(R) implies nice spatial indepen-
dence properties. In what follows, we will often work with quads Q and Q′ at distance
more than δR from each other and we will often use implicitly that, if we condition on
Denseδ(R), then there is no Voronoi cell that intersects the two quads, which implies
that the events Cross(Q) and Cross∗(Q′) are (conditionally) independent.

We have the following estimates:

Lemma 7.4. There exists ε > 0 such that, for every δ ∈ (0, 1/1000) and every R ∈
[δ−2,+∞), we have

P
[
Gextδ (R)

]
≥ 1− 1

ε
δε (7.4)

and

P
[
Gintδ (R)

]
≥ 1− 1

ε
δε . (7.5)

Proof. We write only the proof of (7.4) since the proof of (7.5) is exactly the same. With
the same proof as Lemma 2.11 and thanks to Proposition 2.13, we have

P [Denseδ(R) ∩ QBCδ(R)] ≥ 1−O(1)
(
δ−2 exp

(
−Ω(1)(δ R)2

)
+R−1

)
.

Since R ≥ δ−2, the above is at least

1−O(1)
(
δ−2 exp

(
−Ω(1)δ−2

)
+ δ2

)
≥ 1−O(1) δ2 .

If we apply Lemma 2.11 and Proposition 2.13 once again, we obtain that P
[
QBCext(R)

]
≥

1−O(1)R−1. Therefore, with probability at least 1−O(1)R−1, we have

P
[
QBCext(R)

∣∣∣ η ∩A(R/2, 2R)
]
≥ 3/4 .

As a result,
P
[
GPextδ (R)

]
≥ 1−O(1) (R−1 + δ2) ≥ 1−O(1) δ2 .

It only remains to prove that P
[
G̃I

ext

δ (R)
]
≥ 1−O(1) δε for some ε > 0. To this purpose,

we follow the proof of Lemma A.2 in [31] (which is written for site percolation on T).
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First, we let α ⊆ ∂BR be an arc of diameter R/8 and we let Y be the set of points in BR
at distance at most R/8 from α. Let α1 be one of the two arcs in (∂Y ∩ ∂BR) \ α. Let
k be the number of interfaces crossing from ∂Y \ ∂BR to α and let β1, · · · , βk be these
interfaces ordered in a way that, if i1 < i2, βi1 separates α1 from βi2 in Y (we will say
that “βi2 is on the right-hand-side of βi1” and we will write Yi for the component of Y \ βi
separated from α1 by βi). Let zi denote the endpoint of βi on α. We want to prove that
there exists an absolute constant ε > 0 such that

P [∀i ∈ {1, · · · , k − 1}, |zi − zi+1| ≥ 10δR] ≥ 1−O(1) δε . (7.6)

The strategy in [31] is to condition on {i ≤ k} and on βi, use the fact that the perco-
lation configuration on the right-hand-side of βi remains unbiased and finally conclude
thanks to the box-crossing property. The fact that the (conditioned) configuration on the
right-hand-side of βi is unbiased is not true in the case of Voronoi percolation since it
gives information about the structure of the random tiling.

The strategy we choose is to condition on some η such that Denseδ(R) ∩ Q̃BCδ(R)

holds, where

Q̃BCδ(R) := {∀Q ∈ Q̃δ (A(R/2, 2R)) , Pη [Cross(Q)] ≥ c̃(1)}

(see Definition 3.1 for the definition of the set of quads Q̃δ(D); the constant c̃(1) is the
constant that comes from Proposition 3.2). Now, since η is fixed, if we condition on
{i ≤ k} and on βi, then the (conditioned) configuration on the right-hand-side of βi
remains unbiased. Moreover, the fact that Q̃BCδ(R) holds implies that we can use the
box-crossing properties that are used in the proof of Lemma A.2 of [31]. Finally (and we
refer to [31] for more details), we obtain that, for some absolute constant ε̃ > 0 and for
any η ∈ Denseδ(R) ∩ Q̃BCδ(R), we have

Pη [∀i ∈ {1, · · · , k − 1}, |zi − zi+1| ≥ 10δR] ≥ 1−O(1) δε̃ .

(The fact that ε̃ does not depend on δ is crucial and comes from the fact that c̃(1) does
not depend on δ.) Next, note that Lemma 2.11 and Proposition 3.2 imply that

P
[
Denseδ(R) ∩ Q̃BCδ(R)

]
≥ 1−O(1)

(
δ−2 exp

(
−Ω(1)(δ R)2

)
+R−1

)

≥ 1−O(1) δ2 .

So, we have obtained (7.6) (with ε = ε̃ ∧ 2). It is not difficult to see (by choosing an
appropriate covering of ∂BR by O(1) arcs α) that this implies that

P
[
G̃I

ext

δ (R)
]

= P
[
s̃ext(3R/4, R) ≥ 10δR

]
≥ 1−O(1) δε .

7.1.2 Extension of the arms when the configuration is good

Lemma 7.6 below is the analogue of Lemma A.3 of [31] and roughly says that if the
4-arm event holds at some scale and if the configuration is good at this scale then we can
extend the four arms to a larger scale with non-negligible probability. If δ ∈ (0, 1/1000),
R ∈ [δ−2,+∞) and r ∈ [1, R], we write

gext4,δ (r,R) = P
[
A4(r,R) ∩Gextδ (R)

]
.

Similarly, if δ ∈ (0, 1/1000), r ∈ [δ−2,+∞) and R ∈ [r,+∞), we write

gint4,δ (r,R) = P
[
A4(r,R) ∩Gintδ (r)

]
.
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Remark 7.5. Note that (1.1) implies that there exists a constant c > 0 such that, for all
1 ≤ ρ1 ≤ ρ2 that satisfy ρ1 ≥ ρ2/4

3, we have αan4 (ρ1, ρ2) ≥ c. Together with Lemma 7.4,
this implies that, if δ ∈ (0, 1/1000) is sufficiently small, then for all R ∈ [δ−2,+∞) and all
r ∈ [R/43, R], we have

gext4,δ (r,R) ≥ c/2 .
Similarly, if δ ∈ (0, 1/1000) is sufficiently small, then for all r ∈ [δ−2,+∞) and all
R ∈ [r, 43r], we have

gint4,δ (r,R) ≥ c/2 .
Lemma 7.6. There exists δ ∈ (0, 1/1000) such that, for any δ ∈ (0, 1/1000), there is some
constant a = a(δ) ∈ (0, 1) satisfying the following:

1. For every R ∈ [(δ ∨ δ)−2,+∞) and every r ∈ [1, R/4], we have

gext
4,δ

(r, 4R) ≥ a gext4,δ (r,R) . (7.7)

2. For every r ∈ [4(δ ∨ δ)−2,+∞) and every R ∈ [4r,+∞), we have

gint
4,δ

(r/4, R) ≥ a gint4,δ (r,R) . (7.8)

Moreover, we can (and do) assume that δ is sufficiently small so that Remark 7.5 holds
with δ = δ.

Proof of Lemma 7.6. Let us first prove (7.7). Let δ ∈ (0, 1/1000) to be determined later
and consider R, r and δ as in the statement of the lemma. We write PηB2R

for the
probability measure P conditioned on η ∩B2R. Note that this is the probability measure
obtained by coloring η∩B2R uniformly and by sampling (independently of the coloring of

η ∩B2R) a colored Poisson point process in R2 \B2R of intensity LebR2\B2R
⊗
(
δ−1+δ1

2

)
.

Fix some η ∈ GPextδ (R) such that PηB2R
[A4(r,R) ∩ {s̃ext(r,R) ≥ 10δR}] > 0 and write

β0, · · · , βk−1 for the interfaces that cross A(r,R) in counter-clockwise order. We assume
that the right-hand-side of β0 (if one goes from ∂Br to ∂BR) is black. First, we work
under the following conditional probability measure:

νηr,R,(βj)j := PηB2R

[
·
∣∣∣A4(r,R) ∩ GPextδ (R) ∩ {s̃ext(r,R) ≥ 10δR}, β0, · · · , βk−1

]
.

We keep such an η fixed until we explicitly say that we take the expectation under P (see
below (7.13)). Let us define four rectangles Qext(R, 0), · · · , Qext(R, 3) (which belong to
the set of quads Q1/100 (A(R, 4R)) from Definition 2.12) in Figure 11.

It is not difficult to see that we can choose four quads Q(βi) ∈ Qδ (A(3R/4, 3R/2)),
i ∈ {0, · · · , 3}, such that: (a) the intersection of Q(βi) and βi−1 ∪ βi is one of the two
distinguished sides of Q(βi), (b) Q(βi) ∩BR is in the region between βi−1 and βi, (c) if
Q(βi) is crossed, then Qext(R, i) is crossed widthwise, (d) if 0 ≤ i 6= j ≤ 3, then there is
no Voronoi cell that intersects both Q(βi) and Qext(R, j), (e) if 0 ≤ i 6= j ≤ 3, then there
is no Voronoi cell that intersects both Q(βi) and Q(βj). See Figure 12.

Note that, since the quads Q(βi) belong to the set Qδ (A(3R/4, 3R/2)), then the
probability under νηr,R,(βj)j that Q(βi) is crossed is at least c(δ, 1), where c(δ, 1) is the
constant of Proposition 2.13. (Note that we have implicitly used the (quenched) Harris-
FKG inequality since conditioning on (βj)j affects the percolation process as follows: if
the right-hand-side of βj is black (respectively white) then there is a black (respectively
white) crossing from βj to βj−1.) Now, let F = F (β0, · · · , βk−1) denote the event that
there are black crossings in Q(β0) and Q(β2) and white crossings in Q(β1) and Q(β3).
We have

νηr,R,(βj)j [F ] ≥ c(δ, 1)4 . (7.9)
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4R

5R/4

Qext(R, 0)

Qext(R, 1)

Qext(R, 2)

Qext(R, 3)

R/10

Figure 11: The quads Qext(R, 0), · · · , Qext(R, 3).

Qext (R, 0)

Qext (R, 1)

β1

β0

R
5R/4

3R/2

4R

Q(β1)

Q(β0)

Figure 12: The quads Q(β1) and Q(β2).

Our next goal is to prove the following:

νηr,R,(βj)j

[
QBCext(R)

∣∣∣F
]
≥ 3/4 . (7.10)

To this purpose, remember that

GPextδ (R) = Denseδ(R) ∩ QBCδ(R) ∩
{
P
[
QBCext(R)

∣∣∣ η ∩A(R/2, 2R)
]
≥ 3/4

}
.

Since σ
(
QBCext(R), η ∩A(R/2, 2R)

)
is independent of η ∩BR/2, we have

P
[
QBCext(R)

∣∣∣ η ∩A(R/2, 2R)
]

= PηB2R

[
QBCext(R)

]
.

Moreover, i) νηr,R,(βj)j [· |F ] is the probability measure PηB2R
conditioned on GPextδ (R) and

on other events which are measurable with respect to ω ∩ B2R and ii) QBCext(R) is
PηB2R

-independent of ω ∩B2R. This implies (7.10).
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We are now in shape to extend the arms to scale 4R since QBCext(R) gives quenched
box crossing estimates for enough quads in A(R, 4R). If F holds and if there are black
crossings of Qext(R, 0) and Qext(R, 2) and white crossings of Qext(R, 1) and Qext(R, 3),
then A4(r, 4R) holds. As a result, the (quenched) Harris-FKG inequality implies that
there exists an absolute constant c′ > 0 such that

νηr,R,(βj)j

[
A4(r, 4R)

∣∣∣F ∩ QBCext(R), η
]
≥ c′ ,

hence,

νηr,R,(βj)j

[
A4(r, 4R)

∣∣∣F ∩ QBCext(R)
]
≥ c′ . (7.11)

Let us use once again that νηr,R,(βj)j is the probability measure PηB2R
conditioned on

events measurable with respect to ω ∩ B2R. Let us also use that (under νηr,R,(βj)j ) the

event F is measurable with respect to ω ∩B2R. Moreover, Gext
δ̄

(4R) is measurable with
respect to ω \B2R. Together with Lemma 7.4, this implies that

νηr,R,(βj)j

[
Gext
δ

(4R)
∣∣∣F
]
≥ 1− 1

ε
δ
ε
. (7.12)

If we combine (7.10), (7.11) and (7.12), we obtain that

νηr,R,(βj)j

[
A4(r, 4R) ∩Gext

δ
(4R)

∣∣∣F
]
≥ 3c′/4− 1

ε
δ
ε
.

We choose δ sufficiently small so that 3c′/4− 1
ε δ
ε ≥ c′/2 (here the fact that c′ does not

depend on δ is crucial). Now, by combining the above inequality with (7.9) we obtain
that

νηr,R,(βj)j

[
A4(r, 4R) ∩Gext

δ
(4R)

]
≥ c(δ, 1)4 c′

2
. (7.13)

If we take the expectation under PηB2R
and then under P, we obtain that

gext
4,δ

(r, 4R) = P
[
A4(r, 4R) ∩Gext

δ
(4R)

]

≥ c(δ, 1)4 c′

2
P
[
A4(r,R) ∩ GPextδ (R) ∩ {s̃ext(r,R) ≥ 10δR}

]
.

Note that, if 1 ≤ r1 ≤ r2 ≤ r3, then s̃ext(r1, r3) ≥ s̃ext(r2, r3), hence,

P
[
A4(r,R) ∩ GPextδ (R) ∩ {s̃ext(r,R) ≥ 10δR}

]
≥ gext4,δ (r,R) .

Finally, we have obtained (7.7) (with a = a(δ) = c(δ, 1)4 c′/2).

Note that we have obtained the following more precise result: Let Ã
ext

4 (r,R) denote
the event that there are four arms of alternating colors γ0, · · · , γ3 from ∂Br to ∂BR such
that γi ∩A(R/2, R) ⊆ Qext(R/4, i) (see Figure 11 for the definition of these rectangles).
Let δ, r and R be as in the statement of Item 1 of Lemma 7.6. Then,

P
[
Ã
ext

4 (r, 4R) ∩Gext
δ

(4R)
]
≥ a gext4,δ (r,R) .

Actually, if we follow the proof we can see that we also have the following: Let FR be an
event measurable with respect to ω \B2R such that P [FR] ≥ 1− c′/4. Then,

P
[
Ã
ext

4 (r, 4R) ∩Gext
δ

(4R) ∩ FR
]
≥ a

2
gext4,δ (r,R) .

The proof of (7.8) is exactly the same. As in the case of (7.7), we can also obtain a
stronger result: Let Qint(r, 0), · · · , Qint(r, 3) be the four rectangles defined on Figure 13

EJP 24 (2019), paper 39.
Page 48/71

http://www.imstat.org/ejp/

https://doi.org/10.1214/19-EJP293
http://www.imstat.org/ejp/


Annealed scaling relations for Voronoi percolation

and write Ã
int

4 (r,R) for the event that there are four arms of alternating colors γ0, · · · , γ3

from ∂Br to ∂BR such that γi ∩A(r, 2r) ⊆ Qint(4r, i). If δ is sufficiently small and if δ, r
and R are as in Item 2 of Lemma 7.6, then the following holds: There exists a = a(δ) > 0

and c′ > 0 such that, for every event Fr measurable with respect to ω∩Br/2 that satisfies
P [Fr] ≥ 1− c′, we have

P
[
Ã
int

4 (r/4, R) ∩Gint
δ

(r/4) ∩ Fr
]
≥ a gint4,δ (r,R) . (7.14)

7r/8

r/4

Qint(r, 0)

Qint(r, 1)

Qint(r, 2)

Qint(r, 3)

r/40

Figure 13: The quads Qint(r, 0), · · · , Qint(r, 3).

7.1.3 The probability to look good if the 4-arm event holds

We now consider the following events:

Â
ext

4 (r,R) =
{
P
[
A4(r,R)

∣∣∣ω ∩BR
]
> 0
}
,

Â
int

4 (r,R) =
{
P
[
A4(r,R)

∣∣∣ω \Br
]
> 0
}
,

and the two following quantities:

fext4 (r,R) = P
[
Â
ext

4 (r,R)
]

; f int4 (r,R) = P
[
Â
int

4 (r,R)
]
.

We want to prove that the quantities αan4 (r,R), gext
4,δ̄

(r,R), gint
4,δ̄

(r,R), fext4 (r,R) and

f int4 (r,R) are of the same order. We have the following result (where δ is the constant of
Lemma 7.6):

Lemma 7.7. There exist C1 ∈ [1,+∞) and r ∈ [δ
−2
,+∞) such that, for every r ∈ [r,+∞)

and R ∈ [16r,+∞),

gext
4,δ

(r,R) ≥ fext4 (r,R)/C1 , (7.15)

and

gint
4,δ

(r,R) ≥ f int4 (r,R)/C1 . (7.16)

We have the following corollary (which is a direct consequence of Lemma 7.7 and
Remark 7.5):
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Corollary 7.8. There exists a constant C2 ∈ [1,+∞) such that, for every r ∈ [r,+∞) and
every R ∈ [r,+∞),

gext
4,δ

(r,R) ≤ αan4 (r,R) ≤ fext4 (r,R) ≤ C2 g
ext
4,δ

(r,R) ,

and

gint
4,δ

(r,R) ≤ αan4 (r,R) ≤ f int4 (r,R) ≤ C2 g
int
4,δ

(r,R) .

Proof of Lemma 7.7. We only prove (7.15) since the the proof of (7.16) is essentially
the same. Let δ ∈ (0, δ) to be chosen later, let r = 43 δ−2, and let r and R be as in the
statement of the lemma. First, note that if Denseδ(R/4) holds then every x ∈ η whose

Voronoi cell intersects A(r,R/4) is in BR. Hence, Â
ext

4 (r,R) ∩ Denseδ(R/4) ⊆ A4(r,R/4).
Remember that Denseδ(R/4) ⊆ Gextδ (R/4). As a result,

Â
ext

4 (r,R) ⊆
(
A4(r,R/4) ∩Gextδ (R/4)

)
∪
(
Â
ext

4 (r,R) \Gextδ (R/4)
)

⊆
(
A4(r,R/4) ∩Gextδ (R/4)

)
∪
(
Â
ext

4 (r,R/16) \Gextδ (R/4)
)
.

As a result, fext4 (r,R) is smaller than or equal to

P
[
A4(r,R/4) ∩Gextδ (R/4)

]
+ P

[
Â
ext

4 (r,R/16) \Gextδ (R/4)
]

= gext4,δ (r,R/4) + P
[
Â
ext

4 (r,R/16) \Gextδ (R/4)
]
.

Remember that Gextδ (R/4) is measurable with respect to ω ∩ A(R/8, R/2) and that

Â
ext

4 (r,R/16) is measurable with respect to ω ∩BR/16. Hence, by spatial independence,
the above equals

gext4,δ (r,R/4) + fext4 (r,R/16) · P
[
¬Gextδ (R/4)

]
. (7.17)

Since R/4 ≥ δ−2, Lemma 7.4 implies that

fext4 (r,R) ≤ gext4,δ (r,R/4) +
1

ε
δεfext4 (r,R/16) .

By repeating the above argument, we obtain that fext4 (r,R) is at most

l−1∑

i=0

((
1

ε
δε
)i
gext4,δ

(
r,

R

4 · 16i

))
+

(
1

ε
δε
)l

,

where l = blog16 (R/r)c. Lemma 7.6 then implies that that the above is at most

l−1∑

i=0

((
1

ε
δε
)i
a(δ)−1a(δ)−2i gext

4,δ
(r,R)

)
+

(
1

ε
δε
)l

. (7.18)

Lemma 7.6 also implies the following inequality:

gext
4,δ

(r,R) ≥ a(δ)2l−1gext
4,δ

(
r,

R

4 · 16l−1

)
. (7.19)

Remember Remark 7.5: there exists an absolute constant c > 0 such that

gext
4,δ

(
r,

R

4 · 16l−1

)
≥ c . (7.20)
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Let us end the proof: We choose δ ∈ (1, δ) small enough so that 1
ε δ
εa(δ)−2 ≤ 1/2. If we

combine (7.18), (7.19) and 7.20 we obtain that

fext4 (r,R) ≤ gext
4,δ

(r,R)

+∞∑

i=0

((
1

ε
δε
)i
a(δ)−1a(δ)−2i

)
+ gext

4,δ
(r,R)

(
1

ε
δε
)l
a(δ)−(2l−1)(c′)−1

≤ gext
4,δ

(r,R)

(
2

a(δ)
+
a(δ)

c

)
,

which ends the proof.

7.1.4 Proof of the quasi-multiplicativity property

We are now in shape to prove Proposition 7.1. We first prove it for r1 sufficiently large and
we prove separately the left-hand and right-hand inequalities. Below, r is the constant of

Lemma 7.7. Remember that r ≥ δ−2
where δ is the constant of Lemma 7.6.

Proof of the left-hand-inequality of Proposition 7.1 in the case r1 ≥ r. We have

αan4 (r1, r3) ≤ P [A4(r1, r2) ∩ A4(r2, r3)]

≤ P
[
Â
ext

4 (r1, r2) ∩ Â
int

4 (r2, r3)
]

= P
[
Â
ext

4 (r1, r2)
]
· P
[
Â
int

4 (r2, r3)
]
,

by spatial independence. The above inequality can be rewritten as follows:

αan4 (r1, r3) ≤ fext4 (r1, r2) f int4 (r2, r3) ,

so Corollary 7.8 implies the desired result.

Proof of the right-hand-inequality of Proposition 7.1 in the case r1≥ 16r. We distinguish
between four cases:

1. Assume that r1 ≥ r2/16 and r2 ≥ r3/16. Then, this is a direct consequence of (1.1).

2. Assume that r1 ≥ r2/16 and r2 ≤ r3/16. By Corollary 7.8, we have

αan4 (r1, r2)αan4 (r2, r3) ≤ αan4 (r2, r3) ≤ O(1) gint
4,δ

(r2, r3) .

By applying Lemma 7.6 (here, we use that r2 ≥ 16r ≥ 16δ
−2

since r1 ≥ 16r), we
obtain that the above is at most O(1)αan4 (r2/16, r3) (which is at most O(1)αan4 (r1, r3)

since r1 ≥ r2/16).

3. The case “r1 ≤ r2/16 and r2 ≥ r3/16” is treated similarly.

4. Now, we treat the case r1 ≤ r2/16 and r2 ≤ r3/16. First, we write the following
simple inequality:

αan4 (r1, r2)αan4 (r2, r3) ≤ αan4 (r1,
r2

3
)αan4 (3r2, r3) .

Corollary 7.8 implies that

αan4 (r1,
r2

3
)αan4 (3r2, r3) ≤ O(1) gext

4,δ
(r1,

r2

3
) gint

4,δ
(3r2, r3) . (7.21)

Now, the proof is very similar to the one of Lemma 7.6. However, we have to be a
little more careful because we have to deal with the interactions between scales
r2/3 and 3r2. First, as it is explained in the paragraph below (7.10), we can write
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the events GPextδ (R) (and similarly GPintδ (R)) a little differently. More precisely, we
have

GPext
δ

(r2/3)

= Denseδ(r2/3) ∩ QBCδ(r2/3) ∩
{
P
[
QBCext(r2/3)

∣∣∣ η ∩B2r2/3

]
≥ 3/4

}
(7.22)

and similarly

GPint
δ

(3r2)

= Denseδ(3r2) ∩ QBCδ(3r2) ∩
{
P
[
QBCint(3r2)

∣∣∣ η \B3r2/2

]
≥ 3/4

}
. (7.23)

Since QBCext(·) and QBCint(·) do not depend on the coloring, we actually have

P
[
QBCext(r2/3)

∣∣∣ η ∩B2r2/3

]
= P

[
QBCext(r2/3)

∣∣∣ω ∩B2r2/3

]
and

P
[
QBCint(3r2)

∣∣∣ η \B3r2/2

]
= P

[
QBCint(3r2)

∣∣∣ω \B3r2/2

]
.

As a result, (7.21) can be rewritten as follows:

αan4 (r1,
r2

3
)αan4 (3r2, r3)

≤ O(1)P
[
A4(r1, r2/3) ∩ G̃I

ext

δ (r2/3) ∩ Denseδ(r2/3) ∩ QBCδ(r2/3)

∩
{
P
[
QBCext(r2/3)

∣∣∣ω ∩B2r2/3

]
≥ 3/4

}]

× P
[
A4(3r2, r3) ∩ G̃I

int

δ (3r2) ∩ Denseδ(3r2) ∩ QBCδ(3r2)

∩
{
P
[
QBCint(3r2)

∣∣∣ω \B3r2/2

]
≥ 3/4

}]
.

We need the following lemma:

Lemma 7.9. Let F and G be two sub-σ-algebras, let A1 ∈ F , A2 ∈ G, and let
B1 and B2 be two events such that σ(B1,F) is independent of G and σ(B2,G) is
independent of F . Then,

P [A1∩B1∩A2∩B2]≥ 1

2
P
[
A1∩

{
P
[
B1

∣∣∣F
]
≥3/4

}]
P
[
A2∩

{
P
[
B2

∣∣∣G
]
≥3/4

}]
.

Proof. We have

P [A1 ∩B1 ∩A2 ∩B2]

≥ E
[
1A1∩B1∩A2∩B2

1{P[B1 | F∨G]≥3/4}1{P[B2 | F∨G]≥3/4}
]

= E
[
1A1∩A2

E
[
1B1∩B2

∣∣∣F ∨ G
]
1{P[B1 | F∨G]≥3/4}1{P[B2 | F∨G]≥3/4}

]

≥ 1

2
E
[
1A1

1{P[B1 | F∨G]≥3/4}1A2
1{P[B2 | F∨G]≥3/4}

]
.

But, since σ(B1,F) is independent of G, we have

P
[
B1

∣∣∣F ∨ G
]

= P
[
B1

∣∣∣F
]
.

Similarly,

P
[
B2

∣∣∣F ∨ G
]

= P
[
B2

∣∣∣G
]
.

This implies the result since F is independent of G.
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If we apply this lemma to F = σ(ω ∩B2r2/3), G = σ(ω \B3r2/2), A1 = A4(r1, r2/3) ∩
G̃I

ext

δ (r2/3)∩Denseδ(r2/3)∩QBCδ(r2/3), A2 = A4(3r2, r3)∩G̃I
int

δ (3r2)∩Denseδ(3r2)∩
QBCδ(3r2), B1 = QBCext(r2/3) and B2 = QBCint(3r2), we obtain that

αan4 (r1,
r2

3
)αan4 (3r2, r3)

≤ O(1)P
[
A4(r1, r2/3) ∩ G̃I

ext

δ (r2/3) ∩ Denseδ(r2/3) ∩ QBCδ(r2/3) ∩ QBCext(r2/3)

∩ A4(3r2, r3) ∩ G̃I
int

δ (3r2) ∩ Denseδ(3r2) ∩ QBCδ(3r2) ∩ QBCint(3r2)
]
.

Now, we can condition on η and on the interfaces and conclude (with arguments
similar to the proof of Lemma 7.6) that the above is at most O(1)αan4 (r1, r3).

We have obtained the quasi-multiplicativity property for r1 ≥ 16r: there exists a
constant C ′ ∈ [1,+∞) such that, for every 16r ≤ r1 ≤ r2 ≤ r3,

1

C ′
αan4 (r1, r3) ≤ αan4 (r1, r2)αan4 (r2, r3) ≤ C ′ αan4 (r1, r3) . (7.24)

In order to obtain the full result, we need the following lemma:

Lemma 7.10. For every r sufficiently large, there exists a constant C3 = C3(r) < +∞
such that, for every r ∈ [1, r] and every R ∈ [r,+∞), we have

αan4 (r,R) ≤ C3 α
an
4 (r,R) .

Before proving this lemma, let us explain why it enables us to conclude the proof of
Proposition 7.1. Fix a quantity r ≥ 16r sufficiently large so that Lemma 7.10 holds. Let
r1 ≤ r, r2 ∈ [r1,+∞) and r3 ∈ [r2,+∞). We distinguish between three cases:

1. If r3 ≤ r we are done thanks to (1.1).
2. If r3 ≥ r ≥ r2 then we can use Lemma 7.10 to obtain that

αan4 (r1, r3) ≤ αan4 (r2, r3)

=
1

αan4 (r1, r2)
αan4 (r1, r2)αan4 (r2, r3)

≤ 1

αan4 (1, r)
αan4 (r1, r2)αan4 (r2, r3)

≤ 1

αan4 (1, r)
αan4 (r2, r3)

≤ 1

αan4 (1, r)
αan4 (r, r3)

≤ C3

αan4 (1, r)
αan4 (r1, r3) .

The above implies the left-hand and right-hand sides of the quasi-multiplicativity
property.

3. If r2 ≥ r, we can use Lemma 7.10 and (7.24) to obtain that

αan4 (r1, r3) ≤ αan4 (r, r3)

≤ C ′ αan4 (r, r2)αan4 (r2, r3)

≤ C ′ C3 α
an
4 (r1, r2)αan4 (r2, r3)

≤ C ′ C3 α
an
4 (r, r2)αan4 (r2, r3)

≤ C ′ C3 C
′ αan4 (r, r3)

≤ C ′ C3 C
′ C3 α

an
4 (r1, r3) ,

and we are done.
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Sketch of proof of Lemma 7.10. The proof is very similar to the proof of Lemma 4.6.
Therefore, we only sketch it. Let DenseN (r) be the event defined in the proof of
Lemma 4.6. Corollary 7.8 and the inequality (7.14) imply that there exists an abso-
lute constant c ∈ (0, 1) such that, for every r sufficiently large, there exists N = N(r)

satisfying

∀R ≥ 4r, P
[
Ã
int

4 (r,R) ∩ DenseN (r)
]
≥ c αan4 (r,R) ,

where Ã
int

4 (r,R) is the event defined above (7.14). Now, if we follow the proof of
Lemma 4.6, we obtain that we can extend the four arms with probability larger than
some constant that depends only on r and N . More precisely, we obtain that there exists
a constant c′ = c′(r,N) such that

αan4 (R) ≥ c′P
[
Ã
int

4 (r,R) ∩ DenseN (r)
]
.

This ends the proof.

7.2 A consequence of the quasi-multiplicativity property

In this subsection, we prove Proposition 2.4 (where, instead of the events Â
ext

j (r,R)

and Â
int

j (r,R) studied in Subsection 7.1, we consider the analogous event Âj(r,R)). We
prove it only in the case j even. See Subsection 7.4 for the case j odd.

Proof of Proposition 2.4 in the case j even. We write the proof for j = 4 since the proof
for any j ∈ N∗ even is essentially the same. Let Dense(R) = Dense1/100(A(R/2, 2R)). We
have

Â4(r,R) ⊆ Â
int

4 (r,R/2) ∪
(
Â4(r,R) \ Dense(R)

)
.

Hence,
f4(r,R) ≤ f int4 (r,R/2) + P [¬Dense(R)] .

By Corollary 7.8, if r is sufficiently large, then f int4 (r,R/2) � αan4 (r,R/2). Moreover,
thanks to the quasi-multiplicativity property, αan4 (r,R/2) � αan4 (r,R). Furthermore,
P [¬Dense(R)] ≤ O(1) exp(−Ω(1)R2) while αan4 (r,R) decays polynomially fast in r/R ≥
1/R. Hence, if r sufficiently large (r ≥ r0, say) and if R ∈ [r,+∞), then,

f4(r,R) ≤ O(1)αan4 (r,R) .

If 1 ≤ r ≤ r0, then we have

f4(r,R) ≤ f4(r0, R) ≤ O(1)αan4 (r0, R) ≤ O(1)αan4 (r,R) ,

where the last inequality follows from the quasi-multiplicativity property. This ends the
proof.

7.3 Arm events in the half-plane

In this subsection, we study j-arm events in the half-plane for any j ∈ N∗.
Remark 7.11. In Subsection 7.1, we have restricted ourself to the case j even since we
wanted to deal with arms of alternating colors. In the case of the half-plane, whatever j
is odd or even, the arms are of alternating colors. As a result, if we follow the arguments
of Subsection 7.1, we obtain the quasi-multiplicativity property for j-arm events in the
half-plane for any j ∈ N∗. We also obtain the analogues of Propositions 2.4 and 2.5. (Of
course, the proofs also work for arm events in a wedge, for instance in the quarter-plane.)
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We now use the quasi-multiplicativity property to compute the exponents of the 2 and
3-arm events in the half-plane.

Proof of Items i) and ii) of Proposition 2.7. (We follow [36], first exercise sheet.) First,
note that thanks to the quasi-multiplicativity property, it is sufficient to prove the result
for r = 1 and for R ≥ 1 sufficiently large. We define the two following events (where H is
the upper half-plane):

1. For every j ∈ Z, let Ij = [j, j + 1]× {0} and write F 2,+
j (R) for the event that there

exist y ∈ Ij and γ1, γ2 two paths such that: (a) γ1 and γ2 are included in BR(y) ∩H,
(b) γ1 and γ2 join y to ∂BR(y), (c) γ1 is black and γ2 is white and (d) γ1 is on the
right-hand-side of γ2. (Note that this implies in particular that y belongs to the
intersection of two Voronoi cells.)

2. Let S be a 1× 1 square of the grid Z2 and write F 3,+
S (R) for the event that there

exists y ∈ S that is the lowest point in BR(y) of a black component that intersects
∂BR(y).

Let η ∈ Dense1/100 (B2R) ∩ QBC3
1/100 (B2R) (see Subsection 2.4.2 for the definition of

these events). If we follow the first exercise sheet of [36] (in this exercise sheet, one has
to use the BK inequality; this is not a problem since we work at the quenched level), we
obtain that there exists a constant C ∈ [1,+∞) such that12

1

C
≤

∑

j : Ij∩BR/2 6=∅

Pη
[
F 2,+
j (R)

]
≤ C

and
1

C
≤

∑

S :S∩BR/2 6=∅

Pη
[
F 3,+
S (R)

]
≤ C . (7.25)

Lemma 2.11 and Proposition 2.13 imply that

P
[
Dense1/100 (B2R) ∩ QBC3

1/100 (B2R)
]
≥ 1−

(
O(1) e−Ω(1)R2

+O(1)R−3
)
≥ 1−O(1)R−3 .

Let us conclude the proof in the case of the 3-arm event (the case of the 2-arm event is
treated similarly). If we combine the above estimate with (7.25), we obtain that

1

C
(1−O(1)R−3) ≤

∑

S :S∩BR/2 6=∅

P
[
F 3,+
S (R)

]

≤ C +O(1)R−3Card{S : S ∩BR/2 6= ∅} ≤ C +O(1)R−1 .

Since the annealed model is translation invariant, P
[
F 3,+
S (R)

]
does not depend on S,

and if R is sufficiently large, we have

P
[
F 3,+
S (R)

]
� R−2 .

Therefore, it is sufficient to prove that, for every R sufficiently large,

αan,+3 (R) � P
[
F 3,+
S (R)

]
.

i) The proof that P
[
F 3,+
S (R)

]
≤ O(1)αan,+3 (R) is essentially the same as the one of

the inequality P
[
A�

4 (S,R)
]
≤ O(1) αan4 (ρ,R) of Proposition 4.3. Hence, we leave it

to the reader.
12Actually, for the 3-arm event the proof in the case of Voronoi percolation is easier than in the case of

Bernoulli percolation since, for Voronoi percolation, a.s. a cluster cannot have two lowest points.
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ii) We also leave the proof that P
[
F 3,+
S (R)

]
≥ Ω(1)αan,+3 (R) to the reader since

one can show this by extending the arms “by hands” exactly as in the proof of
Lemma 7.10.

This ends the proof.

7.4 The case j odd

Let us prove the quasi-multiplicativity property in the case j odd.

Proof of Proposition 1.6 in the case j odd. To deal with an odd number of arms, it is

not sufficient to work with the events G̃I
ext

δ (R) and G̃I
int

δ (r) that we have studied in
Subsection 7.1. More precisely, in order to extend two consecutive arms of the same
color, we need to work with a configuration of interfaces that satisfy the following
condition: “the endpoints are far away from the other interfaces” (and not only “the
endpoints are far away from each other”). In other words, we need to work with a
configuration of interfaces that satisfy the event GIextδ (R) (or GIintδ (r)) defined above
Lemma 2.14. Since the proof of Lemma 2.14 (that gives estimates on the quantities
P
[
GIextδ (R)

]
and P

[
GIintδ (r)

]
) only relies on Subsections 7.1, 7.2 and 7.3, we can now

use this result.
If we modify the definition of Gextδ (R) and let

Gextδ (R) = GPextδ (R) ∩ GIextδ (R)

instead of
Gextδ (R) = GPextδ (R) ∩ G̃I

ext

δ (R) ,

and if we definie similarly Gintδ (R) = GPintδ (R) ∩ GIintδ (R), then the proof of the quasi-
multiplicativity property in the case j odd is the same as in the case j even (except that
we now need Lemma 2.14 to prove the analogue of Lemma 7.4).

We end this subsection by noting that: (a) now, the proof of Proposition 2.4 in the
case j odd is the same as in the case j even and (b) we can compute the universal
arm-exponent for the 5-arm event. Let us be a little more precise about the computation
of this exponent:

Proof of Item iii) of Proposition 2.7. We work with the following event:
Let S be a 1×1 square of the grid Z2 and write F 5

S(R) for the event that there exists a
point x ∈ η ∩ S such that: (a) the cell of x is white, (b) there exist five paths γ1, · · · , γ5 (in
counter-clockwise order, say) that join the cell of x to ∂BR(x), (c) γi is white (respectively
black) if i is odd (respectively even) and (d) if i 6= j then there is no Voronoi cell that is
intersected by both γi and γj .

If we follow the proof of Items i) and ii) of Proposition 2.7 (i.e. if we follow both the
first exercise sheet of [36] and Subsection 7.3 of the present paper), we obtain that there
exists a constant C ∈ [1,+∞) such that

∀η ∈ Dense1/100(B2R) ∩ QBC3
1/100(B2R),

1

C
≤

∑

S :S∩BR/2 6=∅

Pη [FS(R)] ≤ C ,

and thus that it is sufficient to prove that, for every R ≥ 1 sufficiently large, we have

αan5 (R) � P
[
F 5
S(R)

]
.

Since we now have the quasi-multiplicativity property in the case j = 5, the proof of this
last estimate is the same as the analogous estimates discussed in Subsection 7.3.
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A An extension of Schramm and Steif’s algorithm theorem

In this appendix, we state an extension of Schramm and Steif’s algorithm theorem
that has been proved by Roberts and Sengul in [29]. We first need the following definition:
Let n ∈ N and let f : {−1, 1}n → R. An algorithm that determines f is a procedure
that asks the values of the bits step by step where at each step the algorithm can ask
for the value of one or several bits and the choice of the new bit(s) to ask is based on
the values of the bits previously queried. We also ask that the algorithm stops once f is
determined. We denote by Pnp the probability measure on Ωn := {−1, 1}n defined by

Pnp = (pδ1 + (1− p)δ−1)
⊗n

.

A crucial quantity is the revealment of an algorithm A. This is defined as follows:

δpA = max
i∈{1,··· ,n}

Pnp [i is queried by A] .

To state Schramm and Steif’s result, we also need to introduce the notion of discrete
Fourier decomposition: Let S ⊆ {1, · · · , n} and let ω ∈ Ωn. We write

χpS(ω) =
∏

i∈S

(√
1− p
p
1ωi=1 −

√
p

1− p1ωi=−1

)
.

Note that (χpS)S⊆{1,··· ,n} is an orthonormal family of L2
(
Ωn,Pnp

)
, thus we can define(

f̂pS

)
S

, the Fourier coefficients of f : Ωn → R at level p, as follows:

f =
∑

S⊆{1,··· ,n}

f̂p(S)χpS .

The result by Schramm and Steif is the following (they proved it for p = 1/2 but the proof
for any p is the same):

Theorem A.1 (Theorem 1.8 of [31]). For every f : Ωn → R, every algorithm A that
determines f and every k ∈ N∗; we have

∑

S⊆{1,··· ,n} : |S|=k

f̂p(S)2 ≤ δpA kEnp
[
f2
]
.

We need the following extension of this theorem: Let I ⊆ {1, · · · , n} and, if A is some
algorithm, let us write

δpA(I) = max
i∈I

Pnp [i is queried by A] .

Proposition A.2 (Theorem 2.3 of [29]). For every f : Ωn → R, every algorithm A that
determines f , every I ⊆ {1, · · · , n} and every k ∈ N∗, we have

∑

S⊆I : |S|=k

f̂p(S)2 ≤ δpA(I) kEnp
[
f2
]
.

Proof. The proof is very close to the proof of Theorem 1.8 of [31], except that we need
to (slightly) change the definition of the function g therein. More precisely, we need to
work with

g : ω 7→
∑

S⊆I : |S|=k

f̂p(S)χpS(ω) .

See [29] for more details.
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The reason why we are interested in the above theorem is the following property (see
Subsection 2.4.1 for the definition of the pivotal event Pivni (A)):

Proposition A.3. Let A ⊆ Ωn be an increasing event. Also, let f be the ±1-indicator
function of A (i.e. f = 21A − 1). Then, for every i ∈ {1, · · · , n}, we have

f̂p({i}) = 2
√
p (1− p) Pnp [Pivni (A)] .

Proof. The proof is exactly the same as in the case p = 1/2, which can be found for
instance in [15], Proposition 4.5.

The two above propositions imply the following corollary, which is the result that we
will need:

Corollary A.4. Let A ⊆ Ωn be an increasing event. Then, for every algorithm A that
determines 1A and every I ⊆ {1, · · · , n}, we have

∑

i∈I
Pnp [Pivni (A)]

2 ≤ 1

4p (1− p) δ
p
A(I) .

B The proof of the quenched box-crossing property in [3]

In this section, we only work at p = 1/2, hence we forget the subscript p in the
notations. We recall the main steps of the proof of Theorem 1.4 by Ahlberg, Griffiths,
Morris and Tassion (which is Theorem 1.4 in [3]). There are two reasons why we need to
recall this proof: i) In [3], the theorem is proved for the analogous model in which η is
a family of n points sampled uniformly and independently in some fixed rectangle. As
pointed out in [3] (below the statement of their Theorem 1.4) the proof in the case we
are interested in (i.e. in which η is a Poisson process in the whole plane) is essentially
the same. We explain briefly why. ii) In order to extend this result to p > 1/2 (in
Subsection 5.1) we have to modify a little the end of the proof.

Let us first note that (as it explained at the end of the paper [3]) Item ii) of Theorem 1.4
is an easy consequence of Item i) of this theorem. As a result, we only explain the strategy
in order to obtain Item i).

A. A martingale estimate. First, the authors of [3] prove a martingale estimate. Let
ρ, R > 0. Also, let N ∈ N∗ and consider ηN a configuration of 4e2N points sampled
uniformly in [−eN , eN ]2, independently of each other. Remember the definition of pivotal
events from Subsection 2.4.1. The following is not exactly Theorem 2.1 of [3] but the
proof is the same:

Var (PηN [ Cross(ρR,R) ]) ≤ E
[∑

x∈ηN

PηN [PivηNx (Cross(ρR,R))]
2

]
, (B.1)

where PηN :=
(
δ1
2 + δ−1

2

)ηN
. (Note that the point process ηN is a.s. finite, hence we

have only finitely many Voronoi cells.) Now, note that we can couple ηN with a Poisson
process of intensity 1 in the plane (denoted by η) so that, with probability going to 1 as
N goes to +∞ superpolynomially fast in N , we have13

η ∩ [−N,N ]2 = ηN ∩ [−N,N ]2 .

13This is for instance a consequence of Le Cam’s identity which implies that:

+∞∑
k=0

∣∣P [|ηN ∩ [−N,N ]2| = k
]
− P

[
|η ∩ [−N,N ]2| = k

]∣∣ ≤ 2× 4N2 4N2

4e2N
≤ e−Ω(1)N .
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Since the event Cross(ρR,R) depends only on the points of η ∩ [−N,N ]2 with probability
that goes to 1 as N goes to +∞ superpolynomially fast in N , the above together with (B.1)
implies that

Var (Pη [ Cross(ρR,R) ]) ≤ E
[∑

x∈η
Pη [Pivqx(Cross(ρR,R))]

2

]
. (B.2)

(See Subsection 2.4.1 for the definition of Pivqx(·).)

B. An estimate on the 1-arm event. The next result we need is an analogue of
Proposition 3.11 of [3]. This proposition is proved in the case where η is a set of n
independent points sampled uniformly in a rectangle but with exactly the same proof we
obtain the following result:

Let S be the 1× 1 square centered at some point y and let A∗,cell
1 (S, r) be the event

that there exists a point x ∈ η ∩ S such that there is a white path from the cell of x to a
cell that intersects ∂Br(y) (note that the cell of x is not necessarily white). For every
γ > 0, there exists ε = ε(γ) > 0 such that the following holds:

P
[
Pη
[
A∗,cell

1 (S, r)
]
≥ r−ε

]
≤ 1

ε
r−γ . (B.3)

(Note that we have decided to study white arms instead of black arms. It will make sense
in Subsection 5.1.)

C. A Schramm and Steif’s algorithm method. The last step of the proof relies on
a theorem from [31]. In our case, we are going to use the extension of Schramm-Steif
result discussed in Appendix A. Let S1 (respectively S2) be the subset of all the 1 × 1

squares of the grid Z2 that are below (respectively above) the line R×{0} and that are at
distance at most (ρ+ 1)R from the rectangle [−ρR, ρR]× [−R,R] (we include the squares
that intersect R× {0} in both S1 and S2). Also, let S3 be all the remaining 1× 1 squares
of the grid Z2. The following is a direct consequence of (B.2) (and of the symmetries of
the model):

Var (Pη [ Cross(ρR,R) ])

≤
3∑

k=1

E


∑

S∈Sk

∑

x∈η∩S
Pη [Pivqx(Cross(ρR,R))]

2




= 2 E


∑

S∈S1

∑

x∈η∩S
Pη [Pivqx(Cross(ρR,R))]

2


+ E


∑

S∈S3

∑

x∈η∩S
Pη [Pivqx(Cross(ρR,R))]

2


 .

Let us first deal with the sum over S3. This sum is less than or equal to the expectation
of the number of points which are at distance at least (ρ + 1)R from the rectangle
[−ρR, ρR] × [−R,R] but whose cell intersects this rectangle. It is not difficult to see
that this quantity is less than O(1) e−Ω(1)R2

(where the constants in O(1) and Ω(1) may
depend on ρ).

Now, let us bound the sum over S1. Here, we follow the ideas of [3] but we use a
slightly different algorithm, which can be defined as follows: (we use the same notations
as [2] where the authors use this kind of algorithm to study the Boolean model): Let Q0

denote the set of all x ∈ η whose cell intersects the set (R× {R})∩ ([−ρR, ρR]× [−R,R]).
Also, let A0 be the set of all x ∈ Q0 which are white. For each k ∈ N∗, we define Ak and
Qk (for “active” and “queried” sets) inductively as follows:
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i) Let Qk be the set of all points x ∈ η such that: (a) the cell of x is adjacent to the cell
of some y ∈ Ak−1 and (b) the cell of x intersects the rectangle [−ρR, ρR]× [−R,R].
Reveal the color of each point of Qk.

ii) Let Ak be the set of all x ∈ Qk which are white.

iii) Stop if Ak = Ak−1.

Note that this algorithm (that we denote by AR) determines the event that there is a
white top-bottom crossing of [−ρR, ρR]× [−R,R] which is the complement of the event
Cross(ρR,R). As a result, this algorithm determines Cross(ρR,R). Corollary A.4 implies
that

E


∑

S∈S1

∑

x∈η∩S
Pη [Pivqx(Cross(ρR,R))]

2


 ≤ δAR(S1) ,

where

δAR(S1) = max
S∈S1

max
x∈η

Pη [x is queried by AR] .

It remains to show that this last quantity is at least polynomially small in R. This can be
done by noting that

max
S∈S1

max
x∈η

Pη [x is queried by AR] ≤ max
S∈S1

Pη
[
A∗,cell

1 (S,R− 1)
]
.

The fact that the above quantity is at least polynomially small in R is an easy consequence
of (B.3) (for instance with γ = 3). We refer to [3] for more details.

C Pivotal events for Aj(1, R) when j is odd

In this appendix, we prove Lemmas 4.11, 4.12, 4.13 and 4.14 in the case j odd.
We do not need them in order to prove our main result Theorem 1.11. However, we
need them in order to prove that Propositions 4.7 and 1.10 also hold when j is odd.
Let S ⊆ A(R/4, R/2) be a 2ρ × 2ρ square centered at some point y, let Dense(y; ρ′) =

Dense1/100(A(y; ρ′, 2ρ′)), and assume that PivS(Aj(1, R)) ∩ Dense(y; 2kρ) holds for some

k ∈ {0, · · · , blog2

(
R

16ρ

)
c =: k0}. This implies that Aj(1, R/8) holds. In the case j even,

this also implies that the 4-arm event A4(y; 2k+1ρ, 2k0ρ) holds, where A4(y; 2k+1ρ, 2k0ρ) is
A4(2k+1ρ, 2k0ρ) translated by y. If j is odd, this rather implies that the following more
complicated event holds:

k0−1⋃

l=k

(
Ã4(y; 2k+1ρ, 2l+1ρ) ∩ Ã5(y; 2l+2ρ, 2k0ρ)

)
,

where: i) Ã4(y; ρ′, ρ′′) is the event that there is a point x ∈ η such that: (a) C(x) (the
Voronoi cell of x) intersects A(y; ρ′′/2, 2ρ′′) and (b) there are four arms of alternating
colors in A(y; ρ′, 2ρ′′) from ∂Bρ′(y) to ∂Bρ′′(y) ∪ ∂C(x) and ii) Ã5(y; ρ′, ρ′′) is the event
that there is a point x ∈ η such that: (a) C(x) intersects A(y; ρ′/2, 2ρ′) and (b) there are
five arms of alternating colors in A(y; ρ′/2, ρ′′) from ∂Bρ′(y)∪∂C(x) to ∂Bρ′′(y). (Actually,
instead of the 5-arm event, we could have asked that a 6-arm event with colors following
the order (B,B,W,B,B,W ) holds, where B =black and W =white.) See [26] (for
instance Figure 12 therein) for a similar observation in the case of Bernoulli percolation
on the triangular lattice. Now, write

̂̃
A4(y; ρ′, ρ′′) =

{
P
[
Ã4(y; ρ′, ρ′′)

∣∣∣ω ∩A(y; ρ′, ρ′′)
]
> 0
}
,
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and
̂̃
A5(y; ρ′, ρ′′) =

{
P
[
Ã5(y; ρ′, ρ′′)

∣∣∣ω ∩A(y; ρ′, ρ′′)
]
> 0
}
.

By spatial independence and by a union-bound, we have

P

[
k0−1⋃

l=k

(
̂̃
A4(y; 2k+1ρ, 2l+1ρ) ∩ ̂̃A5(y; 2l+2ρ, 2k0ρ)

)]

≤
k0−1∑

l=k

P

[
̂̃
A4(y; 2k+1ρ, 2l+1ρ)

]
· P
[
̂̃
A5(y; 2l+2ρ, 2k0ρ)

]
.

By using arguments very similar to those of the proof of P [PivS(Cross(2R,R)] ≤
O(1) αan4 (ρ,R) in Lemma 4.5 and of the proof of Lemma 4.8, we obtain that

P

[
̂̃
A4(y; ρ′, ρ′′)

]
≤ O(1)αan4 (ρ′, ρ′′) ,

and

P

[
̂̃
A5(y; ρ′, ρ′′)

]
≤ O(1) αan5 (ρ′, ρ′′) .

Proposition 1.13 and Item iii) of Proposition 2.7 then imply that

αan5 (ρ1, ρ2) ≤ O(1)

(
ρ1

ρ2

)ε
αan4 (ρ1, ρ2) . (C.1)

Together with the above results and the quasi-multiplicativity property, this implies that

k0−1∑

l=k

P

[
̂̃
A4(y; 2k+1ρ, 2l+1ρ)

]
· P
[
̂̃
A5(y; 2l+2ρ, 2k0ρ)

]
≤ O(1) αan4 (ρ,R) .

Finally, if we had said that the event PivS(Aj(1, R))∩Dense(y; 2kρ) implied that the 4-arm
event A4(y; 2k+1ρ,R/8) held, then it would have given a true estimate. Now, the proof
of Lemma 4.11 is very similar to the proof of the inequality P [PivS(Cross(2R,R))] ≤
O(1) αan4 (ρ,R) of Lemma 4.5. To obtain the other lemmas, we need to make similar
observations for arm events near ∂BR. The only difference is that, instead of using the
estimate (C.1), we need to use the following similar results (whose proofs are exactly
the same as the proof of the second part of Proposition 1.13 written in Subsection 4.2):

αan,+4 (ρ′, ρ′′) ≤ O(1)

(
ρ′

ρ′′

)ε
αan,+3 (ρ′, ρ′′) ,

and

αan,++
4 (ρ′, ρ′′) ≤ O(1)

(
ρ′

ρ′′

)ε
αan,++

3 (ρ′, ρ′′) .

We leave the details to the reader.

D The quantities E
[
Pη [Aj(r, R)]2

]

In this appendix, we only work at p = 1/2, hence we forget the subscript p in the
notations. We study the following quantities:

α̃j(r,R) :=

√
E
[
Pη [Aj(r,R)]

2
]
.

More precisely, we prove that some of the results that we have proved for the quantities
αanj (r,R) are also true for the α̃j(r,R)’s. We actually do not need the results of this
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appendix in the present paper but we include them here since there will be crucial in
the paper [35] where we prove in particular that

α̃j(r,R) � αanj (r,R) . (D.1)

We refer to [35] for the motivations behind (D.1).
Let us start the study of the quantities α̃j(r,R). First note that, by Jensen’s inequality,

we have
α̃j(r,R)2 ≤ αanj (r,R) ≤ α̃j(r,R) . (D.2)

As a result, the following polynomial decay property is a direct consequence of (1.1):

1

C

( r
R

)C
≤ α̃j(r,R) ≤ C

( r
R

)1/C

. (D.3)

D.1 The quasi-multiplicativity property

In this subsection, we explain how the proof of the quasi-multiplicativity property
written in Section 7 can be adapted in order to prove the following:

Proposition D.1. The quasi-multiplicativity property also holds for the quantities α̃j(r,R)

i.e. there exists C = C(j) ∈ [1,+∞) such that, for every 1 ≤ r1 ≤ r2 ≤ r3,

1

C
α̃j(r1, r3) ≤ α̃j(r1, r2) α̃j(r2, r3) ≤ C α̃j(r1, r3) .

Proof. The proof is very close to the proof of Proposition 1.6. To simplify the notations,
we write the proof in the case j = 4. The proof for any other even integer is the same
and the proof for any odd integer requires the same modifications as in Subsection 7.4.
We use the same notations as in Subsection 7.1 (remember in particular the definition of
the events Gextδ (R) and Gintδ (r) in the beginning of this section).

Let us first state and prove an analogue of Lemma 7.6. We need the following notation:
If δ ∈ (0, 1/1000), R ∈ [δ−2,+∞) and r ∈ [1, R], we write

g̃ext4,δ (r,R) =

√
E
[
Pη [A4(r,R) ∩Gextδ (R)]

2
]
.

Similarly, if δ ∈ (0, 1/1000), r ∈ [δ−2,+∞) and R ∈ [r,+∞), we write

g̃int4,δ (r,R) =

√
E
[
Pη
[
A4(r,R) ∩Gintδ (r)

]2]
.

Lemma D.2. There exists δ ∈ (0, 1/1000) such that, for any δ ∈ (0, 1/1000), there is some
constant a = a(δ) ∈ (0, 1) satisfying the following:

1. For every R ∈ [δ
−2 ∨ δ−2,+∞) and every r ∈ [1, R/4], we have

g̃ext
4,δ

(r, 4R) ≥ a g̃ext4,δ (r,R) . (D.4)

2. For every r ∈ [4(δ
−2 ∨ δ−2),+∞) and every R ∈ [4r,+∞), we have

g̃int
4,δ

(r/4, R) ≥ a g̃int4,δ (r,R) . (D.5)

Proof. We write only the proof of (D.4) since the proof of (D.5) is the same. We use
exactly the same notations as in the proof of Lemma 7.6. By (7.13), if δ is sufficiently
small, then,

νηr,R,(βj)j

[
A4(r, 4R) ∩Gext

δ
(4R)

]
≥ c ,
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for some constant c = c(δ) > 0. If we take the expectation under PηB2R
, we obtain that

PηB2R

[
A4(r, 4R) ∩Gext

δ
(4R)

]

≥ cPηB2R

[
A4(r,R) ∩ GPextδ (R) ∩ {s̃ext(r,R) ≥ 10δR}

]

≥ cPηB2R

[
A4(r,R) ∩Gextδ (R)

]
.

We then conclude by using both the following martingale inequality:

g̃4,δ(r, 4R)2 = E
[
Pη
[
A4(r, 4R) ∩Gext

δ
(4R)

]2] ≥ E
[
PηB2R

[
A4(r, 4R) ∩Gext

δ
(4R)

]2]
,

and the following pointwise equality:

Pη
[
A4(r,R) ∩Gextδ (R)

]
= PηB2R

[
A4(r,R) ∩Gextδ (R)

]
.

Remark D.3. Note that Remark 7.5 and Jensen’s inequality imply the following: There
exists c′ > 0 such that, if δ ∈ (0, 1/1000) is sufficiently small, then for all R ∈ [δ−2,+∞)

and all r ∈ [R/43, R], we have

g̃ext4,δ (r,R) ≥ c′ .

Similarly, if δ ∈ (0, 1/1000) is sufficiently small, then for all r ∈ [δ−2,+∞) and all
R ∈ [r, 43r], we have

g̃int4,δ (r,R) ≥ c′ .

We can (and do) assume that the quantity δ of Lemma D.2 is sufficiently small so that the
above holds with δ = δ.

We now state and prove an analogue of Lemma 7.7. We first need the two following
notations:

f̃ext4 (r,R) =

√
E

[
Pη
[
Â
ext

4 (r,R)
]2]

; f̃ int4 (r,R) =

√
E

[
Pη
[
Â
int

4 (r,R)
]2]

.

Lemma D.4. There exist C1 ∈ [1,+∞) and r ∈ [δ
−2
,+∞) such that, for every r ∈ [r,+∞)

and R ∈ [16r,+∞),

g̃ext
4,δ

(r,R) ≥ f̃ext4 (r,R)/C1 , (D.6)

and

g̃int
4,δ

(r,R) ≥ f̃ int4 (r,R)/C1 . (D.7)

We have the following corollary (which is a direct consequence of Lemma D.4 and
Remark D.3):

Corollary D.5. There exists a constant C2 ∈ [1,+∞) such that, for every r ∈ [r,+∞) and
every R ∈ [r,+∞),

g̃ext
4,δ

(r,R) ≤ α̃4(r,R) ≤ f̃ext4 (r,R) ≤ C2 g̃
ext
4,δ

(r,R) ,

and

g̃int
4,δ

(r,R) ≤ α̃4(r,R) ≤ f̃ int4 (r,R) ≤ C2 g̃
int
4,δ

(r,R) .

Proof of Lemma D.4. Let us prove (D.6) (the proof of (D.7) is essentially the same). As
noted in the proof of Lemma 7.7, we have

Â
ext

4 (r,R) ⊆
(
A4(r,R/4) ∩Gextδ (R/4)

)
∪
(
Â
ext

4 (r,R/16) \Gextδ (R/4)
)
.
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This implies that f̃ext4 (r,R)2 is smaller than or equal to

E

[(
Pη
[
A4(r,R/4) ∩Gextδ (R/4)

]
+ Pη

[
Â
ext

4 (r,R/16) \Gextδ (R/4)
])2
]

= g̃ext4,δ (r,R/4)2 + 2E
[
Pη
[
A4(r,R/4) ∩Gextδ (R/4)

]
· Pη

[
Â
ext

4 (r,R/16) \Gextδ (R/4)
]]

+ E

[
Pη
[
Â
ext

4 (r,R/16) \Gextδ (R/4)
]2]

≤ g̃ext4,δ (r,R/4)2 + 3E
[
Pη
[
Â
ext

4 (r,R/16)
]
· Pη

[
Â
ext

4 (r,R/16) \Gextδ (R/4)
]]

= g̃ext4,δ (r,R/4)2 + 3f̃ext4 (r,R/16)2 · P
[
¬Gextδ (R/4)

]
,

by spatial independence. This inequality is the analogue of (7.17) in the proof of
Lemma 7.7. Now, the proof is exactly the same as the one of Lemma 7.7.

We are now in shape to prove Proposition D.1. We first prove it for r1 sufficiently
large.

Proof of the left-hand-inequality in the case r1 ≥ r. Thanks to Corollary D.5, the proof is
the same as in Subsection 7.1.

Proof of the right-hand-inequality in the case r1 ≥ 16r. If we do not have both r1 ≤ r2/6

and r2 ≤ r3/6 then the proof is exactly the same as in Subsection 7.1, so let us assume
that r1 ≤ r2/6 and r2 ≤ r3/6. By Corollary D.5, we have

α̃4(r1,
r2

3
) α̃4(3r2, r3) ≤ O(1) g̃ext

4,δ
(r1,

r2

3
) g̃int

4,δ
(3r2, r3) .

By (7.22) and (7.23),
(
g̃ext

4,δ
(r1,

r2
3 ) g̃int

4,δ
(3r2, r3)

)2

equals

E
[
Pη
[
A4(r1, r2/3) ∩ G̃I

ext

δ (r2/3) ∩ Denseδ(r2/3) ∩ QBCδ(r2/3)

∩
{
P
[
QBCext(r2/3)

∣∣∣ η ∩B2r2/3

]
≥ 3/4

}]2]

× E
[
Pη
[
A4(3r2, r3) ∩ G̃I

int

δ (3r2) ∩ Denseδ(3r2) ∩ QBCδ(3r2)

∩
{
P
[
QBCint(3r2)

∣∣∣ η \B3r2/2

]
≥ 3/4

}]2]
.

Write X1 = Pη
[
A4(r1, r2/3) ∩ G̃I

ext

δ (r2/3)
]
, A1 = Denseδ(r2/3) ∩ QBCδ(r2/3), B1 =

QBCext(r2/3), X2 = Pη
[
A4(3r2, r3) ∩ G̃I

int

δ (3r2)
]
, A2 = Denseδ(3r2) ∩ QBCδ(3r2) and

B2 = QBCint(3r2). Then, the above equals

E
[
X2

1 1A1
1{P[B1 | η∩B2r2/3]≥3/4}

]
E
[
X2

2 1A2
1{P[B2 | η\B3r2/2]≥3/4}

]
.

Let us use the following lemma whose proof is the same as Lemma 7.9.

Lemma D.6. Let F and G be two sub-σ-algebras, let A1 ∈ F , A2 ∈ G, let X1 be an
F -measurable random variable, X2 a G-measurable random variable, and let B1 and B2

be two events such that σ(B1,F) is independent of G and σ(B2,G) is independent of F .
Then,

E
[
(X1X2)2 1A1∩B1∩A2∩B2

]
≥ 1

2
E
[
X2

11A1
1{P[B1 | F ]≥3/4}

]
· E
[
X2

21A2
1{P[B2 | G]≥3/4}

]
.
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If we apply this lemma to F = σ(η ∩ B2r2/3) and G = σ(η \ B3r2/2), we obtain that
α̃4(r1,

r2
3 ) α̃4(3r2, r3) is less than or equal to

O(1)E
[
Pη
[
A4(r1, r2/3) ∩ G̃I

ext

δ (r2/3)
]2
1Denseδ(r2/3)∩QBCδ(r2/3)∩QBCext(r2/3)

× Pη
[
A4(3r2, r3) ∩ G̃I

int

δ (3r2)
]
1Denseδ(3r2)∩QBCδ(3r2)∩QBCint(3r2)

]
,

that equals

O(1)E
[
Pη
[
A4(r1, r2/3) ∩ G̃I

ext

δ (r2/3) ∩ Denseδ(r2/3) ∩ QBCδ(r2/3) ∩ QBCext(r2/3)

∩ A4(3r2, r3) ∩ G̃I
int

δ (3r2) ∩ Denseδ(3r2) ∩ QBCδ(3r2) ∩ QBCint(3r2)
]2]

.

Now, by “gluing” arguments, the above is at most O(1) α̃4(r1, r3)2 and we are done.

We have obtained the quasi-multiplicativity property for r1 ≥ 16r, so (as in Sub-
section 7.1) it only remains to prove the following lemma, which is the analogue of
Lemma 7.10.

Lemma D.7. For every r sufficiently large, there exists a constant C3 = C3(r) < +∞
such that, for every r ∈ [1, r] and every R ∈ [r,+∞), we have

α̃4(r,R) ≤ C3 α̃4(r,R) .

Sketch of proof of Lemma D.7. First note that, by making observations similar to the
end of the proof of Lemma 7.6 and by following the proof of Lemma D.2, we obtain the

following result: Let Ã
int

4 (r,R) be the event defined at the end of the proof of Lemma 7.6.
Then, if δ is sufficiently small and if δ, r and R are as in Item 2 of Lemma D.2, then
the following holds: there exists a = a(δ) > 0 and c > 0 such that, for every event Fr
measurable with respect to ω ∩Br/2 satisfying P [Fr] ≥ 1− c,

E

[
Pη
[
Ã
int

4 (r/4, R) ∩Gint
δ

(r/4) ∩ Fr
]2]
≥ a g̃int4,δ (r,R)2 .

Let DenseN (r) be the event defined in the proof of Lemma 4.6. Corollary D.5 and the
above inequality imply that there exists an absolute constant c ∈ (0, 1) such that, for
every r sufficiently large, there exists N = N(r) satisfying

∀R ≥ 4r, E

[
Pη
[
Ã
int

4 (r,R) ∩ DenseN (r)
]2]
≥ c α̃4(r,R)2 .

Now, if we follow the proof of Lemma 4.6, we obtain that there exists a constant
c′ = c′(r,N) such that

α̃4(R)2 ≥ c′E
[
Pη
[
Ã
int

4 (r,R) ∩ DenseN (r)
]2]

,

which ends the proof.

This also ends the proof of Proposition D.1.

We also have the following analogues of Propositions 2.4 and 2.5 (with the same
proofs):
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Proposition D.8. Let j ∈ N∗, let 1 ≤ r ≤ R, and write

f̃j(r,R) =

√
E

[
Pη
[
Âj(r,R)

]2]
. (D.8)

There exists a constant C = C(j) < +∞ such that

α̃j(r,R) ≤ f̃j(r,R) ≤ C α̃j(r,R) .

Proposition D.9. Let j ∈ N∗. For every h ∈ (0, 1), there exists a constant ε = ε(j, h) ∈
(0, 1) such that, for every 1 ≤ r ≤ R and for every event G which is measurable with
respect to ω \A(2r,R/2) and that satisfies P [G] ≥ 1− ε, we have

E
[
Pη [Aj(r,R) ∩G]

2
]
≥ (1− h) α̃j(r,R)2 .

D.2 Pivotal events

Let us first prove the following lemma which is the analogue of Lemma 4.6.

Lemma D.10. Let R ≥ 1 and let S be a 2× 2 square included in [−2R, 2R]× [−R,R] and
at distance at least R/3 from the sides of this rectangle. Then,

E
[
Pη [PivqS(Cross(2R,R)]

2
1|η∩S|=1

]
≥ Ω(1)α̃4(R)2 .

Proof. With exactly the same proof as in Subsection 4.1 (but by using Proposition D.1
instead of Proposition 1.6, Proposition D.8 instead of Proposition 2.4, and Proposition D.9
instead of Proposition 2.5), we have the following: There exists r0 ≥ 1 and ε ∈ (0, 1) such
that, for every r ≥ r0 and for every event G measurable with respect to ω \ A(2r,R/2)

that satisfies P [G] ≥ 1− ε,

E

[
Pη
[
Ã
�
4 (Br, R) ∩G

]2]
≥ ε α̃4(r,R)2 ,

where Ã
�
4 (Br, R) is the event defined in the beginning of the proof of Lemma 4.6. Now,

the proof is exactly the same as the one of Lemma 4.6.

The following is a direct consequence of Lemma D.10 and of results from [3]:

Corollary D.11. There exists ε > 0 such that, for every R ∈ (0,+∞),

α̃4(R) ≤ 1

ε
R1+ε .

Proof. In the proof of the first part of Proposition 1.13, we have explained how to prove
the analogous result for αan4 (R). In this proof (written in Subsection 4.1), we have used
the following result from [3]:

∑

S

E
[
Pη [PivqS(Cross(2R,R)]

2
1|η∩S|=1

]
≤ O(1)R−Ω(1) ,

where the sum is over all the squares of the grid Z2 included in [−2R, 2R]× [−R,R] and
at distance at least R/3 from the sides of this rectangle. We have then used Jensen’s
inequality and Lemma 4.6. If we do not use Jensen’s inequality and if we use Lemma D.10
instead of Lemma 4.6, we obtain the desired result.

As in Subsection 4.2, we prove an estimate about the 4 and 5-arm events. Note that
we know that αan5 (r,R) �

(
r
R

)2
but this does not imply that α̃5(r,R) � (r/R)2 (we will

prove this last estimate in [35]). We have the following:
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Proposition D.12. There exists an absolute constant ε > 0 such that, for every 1 ≤ r ≤
R,

α̃5(r,R) ≤ 1

ε
α̃4(r,R)

( r
R

)ε
.

Proof. First, fix some N ∈ N∗ sufficiently large so that

α̃5(ρ, ρ′)2 ≥ 1

N

(
ρ

ρ′

)N−1

.

Let M ≥ 100, ρ ≥M and

GP(ρ,M) =

blog2(M)c−1⋂

k=0

Dense1/100(A(2kρ, 5 · 2kρ)) ∩ QBCN1/100(A(2kρ, 5 · 2kρ)) .

Note that

P [GP(ρ,M)] ≥ 1−O(1) ρ−N ≥ 1−O(1)M−N .

As in the proof of the second part of Proposition 1.13 (written in Subsection 4.2), there
exists a constant c ∈ (0, 1) such that, if η ∈ GP(ρ,M), then

Pη [A5(ρ,Mρ)] ≤ (1− c)log(M) Eη
[
Y 31Y≥4

]
,

where Y is the number of interfaces from ∂Bρ to ∂BMρ. By Reimer’s inequality [28], we
have Pη [Y ≥ j] ≤ Pη [A1(ρ,Mρ)]

j . If η ∈ GP(ρ,M), then Pη [A1(ρ,Mρ)] ≤ (1 − a)log(M)

for some a ∈ (0, 1). Moreover, if η ∈ GP(ρ,M), then Pη [Y ≥ 4] = Pη [A4(ρ,Mρ)] ≥M−b/b
for some b ∈ (0,+∞). Hence,

Eη
[
Y 31Y≥4

]
≤ dPη [A4(ρ,Mρ)] ,

for some d ∈ (0,+∞). As a result,

α̃5(ρ,Mρ)2 ≤ O(1) (1− c)2 log(M) α̃4(ρ,Mρ)2 +O(1)M−N .

Now, the proof is essentially the same as the proof of the second part of Proposition 1.13
(except that we use Proposition D.1 instead of Proposition 1.6).

In [35], we will need results similar to the results of Subsections 4.1 and 4.3 but for

the quantity E
[
Pη [PivS(A)]

2
]

instead of P [PivS(A)] (where A is a crossing or an arm

event). In particular, we will need the following lemma whose proof is very closed to the
proof of Lemma 4.5 and of the different lemmas of Subsection 4.3.

Lemma D.13. Define PivED(A) as in the beginning of Subsection 4.3. Let ρ, r, R ∈ [1,+∞]

such that ρ ≤ r/10 and r ≤ R/2, let y be a point of the plane, and let S = Bρ(y) be the
2ρ× 2ρ square centered at y. We have the following:

i) Let ρ1 ∈ [ρ,+∞) and ρ2 ∈ [ρ1,+∞) and assume that Bρ2(y) ⊆ A(r,R). Then,

E

[
Pη
[
PivA(y;ρ1,ρ2)

S (Aj(r,R))
]2]
≤ O(1) α̃4(ρ1, ρ2)2 .

ii) Let ρ1 ∈ [1, R/4] and assume that S ⊆ A(ρ1, 4ρ1). Then,

E

[
Pη
[
PivA(r,ρ1)∪A(4ρ1,R)

S (Aj(r,R))
]2]
≤ O(1) α̃j(r,R)2 .
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Proof. We prove only i) since the proof of ii) is essentially the same (actually, in the case
j odd, the proof of i) is slightly more technical). We first prove i) in the case j even and
then in the case j odd. We use the following notation, where 0 < ρ′ ≤ ρ′′:

Dense(ρ′, ρ′′) = Dense1/100(A(y; ρ′, 2ρ′)) ∩ Dense1/100(A(y; ρ′′, 2ρ′′)) .

Since j is even, then for any k ∈ {0, · · · , blog2(ρ2/(4ρ1))c =: k0}, PivA(y;ρ1,ρ2)
S (Aj(r,R)) is

included in

A4(y; 2k+1ρ1, ρ2/2) ∪
(
PivA(y;ρ1,ρ2)

S (Aj(r,R)) \ Dense(2kρ1, ρ2/2)
)
,

where A4(y; ·, ·) is the 4-arm event translated by y. As a result, PivA(y;ρ1,ρ2)
S (Aj(r,R)) is

also included in

A4(y; 2ρ1, ρ2/2)
⋃(

k0⋃

k=0

A4(y; 2k+2ρ1, ρ2/2) \ Dense(2kρ1, ρ2/2)

)

⋃
¬Dense(2k0+1ρ1, ρ2/2)

⊆ Â4(y; 2ρ1, ρ2/2)
⋃(

k0⋃

k=0

Â4(y; 2k+2ρ1, ρ2/2) \ Dense(2kρ1, ρ2/2)

)

⋃
¬Dense(2k0+1ρ1, ρ2/2) ,

where

Â4(y; ρ′, ρ′′) =
{
P
[
A4(y; ρ′, ρ′′)

∣∣∣ω ∩A(y; ρ′, ρ′′)
]
> 0
}
.

By σ-additivity, Pη
[
PivA(y;ρ1,ρ2)

S (Aj(r,R))
]

is less than or equal to

Pη
[
Â4(y; 2ρ1, ρ2/2)

]
+

k0∑

k=0

Pη
[
Â4(y; 2k+2ρ1, ρ2/2)

]
1¬Dense(2kρ1,ρ2/2) +1¬Dense(2k0+1ρ1,ρ2/2) .

Now, note that, for every k ∈ {0, · · · , k0},

• Pη
[
Â4(y; 2k+2ρ1, ρ2/2)

]
is independent of 1¬Dense(2kρ1,ρ2/2);

• E

[
Pη
[
Â4(y; 2k+2ρ1, ρ2/2)

]2]
≤ C(2k)C α̃4(y; ρ1, ρ2) for some C < +∞ by Proposi-

tions D.8 and D.1;

• P
[
Dense(2kρ1, ρ2/2)

]
≤ O(1) exp(−Ω(1)(2kρ1)2).

Note also that

• E

[
Pη
[
Â4(y; 2ρ1, ρ2/2)

]2]
≤ Cα̃4(ρ1, ρ2) and:

• P
[
Dense(2k0+1ρ1, ρ2/2)

]
≤ O(1) exp(−Ω(1)(2k0ρ1)2).

Let us end the proof by showing that

E
[(

Pη
[
Â4(y; 2ρ1, ρ2/2)

]
+

k0∑

k=0

Pη
[
Â4(y; 2k+2ρ1, ρ2/2)

]
1¬Dense(2kρ1,ρ2/2) + 1¬Dense(2k0+1ρ1,ρ2/2)

)2]
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is at most O(1) α̃4(y; ρ1, ρ2)2. If we expand the above square, apply the Cauchy-Schwarz
inequality to each of the 2k0+3 terms and use the five items above, then we obtain the
desired result since

∑

k,l

√
(2k)C exp(−Ω(1)(2kρ1)2)(2l)C exp(−Ω(1)(2lρ1)2) < +∞ .

Let us now assume that j is odd. In this case, as explained in Appendix C, the pivotal
event can be described for instance by using the 4 and the 5-arm events (and not only the
4-arm event). As in Appendix C, the result is obtained by using a comparison estimate
between the 4 and 5-arm events. The only difference is that in the present case we use
Proposition D.12 instead of the analogous comparison estimate between αan4 (·, ·) and
αan5 (·, ·).
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