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Abstract

We introduce a class of probability measure-valued diffusions, coined polynomial, of
which the well-known Fleming–Viot process is a particular example. The defining
property of finite dimensional polynomial processes considered in [8, 21] is transferred
to this infinite dimensional setting. This leads to a representation of conditional
marginal moments via a finite dimensional linear PDE, whose spatial dimension
corresponds to the degree of the moment. As a result, the tractability of finite
dimensional polynomial processes are preserved in this setting. We also obtain a
representation of the corresponding extended generators, and prove well-posedness
of the associated martingale problems. In particular, uniqueness is obtained from the
duality relationship with the PDEs mentioned above.
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1 Introduction

In this paper we develop probability measure-valued versions of a class of processes
known as polynomial diffusions, which have – due to their inherent tractability – broad
applications in population genetics, interacting particle systems, and finance; see e.g. [14,
33, 19]. The result is a class of stochastic processes that model randomly evolving
probability measures, including examples such as Fleming–Viot processes [23, 16], as
well as conditional laws of jump-diffusions on (subsets of) Rd.

Finite dimensional polynomial diffusions form a rich class that includes Kimura diffu-
sions [25], Wishart correlation matrices [1], and affine processes [13], just to name a
few subclasses. See e.g. [8, 21, 22, 9] for further details and examples. This suggests
transferring their defining property and tractability features to infinite dimensional pro-
cesses. Such processes also appear as limits of empirically well-suited finite-dimensional
polynomial models, whose limiting behavior is of key interest in population dynamics,
but also in other areas, such as capital distribution curve modeling; see e.g. [31]. In a
nutshell our contribution can be summarized as follows:

• it is the first time that polynomial processes in infinite dimension are considered;

• important examples of polynomial probability measure-valued diffusions, e.g. the
Fleming–Viot and conditional law processes mentioned above, have not previously
been considered from this angle. In fact, analogous definitions and methods apply
to more general measure-valued diffusions such as super-Brownian motion and the
Dawson–Watanabe superprocess;

• a remarkably large class of processes is characterized via the polynomial prop-
erty; in this paper, we find necessary and sufficient conditions for measure valued
diffusions to be polynomial and to take values in the space of probability mea-
sures;

• to achieve this, we rely on the maximum principle of the respective operators; we
obtain new optimality conditions which are applicable for all martingale problems
on the space of probability measures.

More precisely, the infinite dimensional setup that we consider here are polynomial
diffusions X taking values in the space of probability measures on a locally compact
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Probability measure-valued polynomial diffusions

Polish space E. We define them as path-continuous solutions of martingale problems for
certain operators L acting on classes of cylinder polynomials, i.e. functions p of the form

p(ν) = φ
(∫
E
g1(x)ν(dx), . . . ,

∫
E
gm(x)ν(dx)

)
,

where φ is a polynomial in m variables, g1, . . . , gm are continuous and bounded, and
the argument ν is a probability measure. Any such function p can be regarded as a
homogeneous polynomial in the probability measure ν, and admits a natural notion of
degree as discussed in Section 2. The defining property of a probability measure-valued
polynomial diffusion is that Lp is again a homogeneous polynomial with the same degree
as p (or is the zero polynomial). The precise definitions are actually somewhat more
general; the details are in Section 4.

A consequence is that moments admit tractable representations. Specifically, for a
probability measure-valued polynomial diffusion X starting at X0 = ν, we establish in
Section 5.1 (under suitable conditions) the moment formula

E
[ ∫

Ek

g(x1, . . . , xk)Xt(dx1) · · ·Xt(dxk)
]

=

∫
Ek

u(t, x1, . . . , xk)ν(dx1) · · · ν(dxk),

(1.1)

where u(t, x1, . . . , xk) solves the linear partial integro-differential equation (PIDE)

∂u

∂t
= Lku in (0,∞)× Ek (1.2)

with initial data u(0, x1, . . . , xk) = g(x1, . . . , xk), and where Lk is a linear operator derived
from the generator L of X, acting on (a subspace of) C(Ek). The k-dimensional PIDE
(1.2) is significantly simpler than the Kolmogorov equation, whose state space in this
context consists of measures on E. Indeed, (1.2) corresponds to the Feynman-Kac
PIDE associated to an Ek-valued Markov process. When E consists of finitely many
points, we recover the finite dimensional case where (1.2) reduces to a linear ODE
associated to a certain Markov chain with values in Ek, whose solution is computed
by matrix exponentiation. These PIDEs fall exactly in the setup considered in [3], who
develop numerical solution procedures based on neural networks. These methods do
not suffer from the curse of dimensionality, and give the whole function (x1, . . . , xk) 7→
u(t, x1, . . . , xk).

The moment formula forms a particular instance of duality, which is often used to
prove uniqueness for measure-valued martingale problems. This is the case also here,
and we obtain uniqueness under broad circumstances. Being solutions of PIDEs, our
dual “processes” are deterministic, in contrast to other commonly used duals such as the
Kingman coalescent in the Fleming–Viot case; see e.g. [12]. Note that moment formulas
for Fleming–Viot type process are classical (see e.g. [12] or [11, Section 2.8]); we show
here that they are actually available much more broadly.

Existence of measure-valued processes is often proved via large population limits of
carefully constructed particle systems; see e.g. [11, Section 2] for a semigroup approach,
or [16, 15] for an approach via martingale problems. We also work with martingale
problems, but rather than using approximations by finite particle systems, we obtain
existence directly via the positive maximum principle. This relies on new optimality
conditions for polynomials of measure arguments developed in Section 3. As a result, we
can describe large parametric families of specifications. In particular, we obtain a full
characterization of probability measure-valued polynomial diffusions whose generator
L has a sufficiently large domain. This yields extensions of the so-called Fleming–Viot
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process with weighted sampling discussed in [11, Section 5.7.8], where the sampling-
replacement rate is allowed to depend on the type. On the other hand, by restricting the
domain of L we obtain a richer class, including e.g. the model of exchangeable diffusions
considered in [32]; see also [11, Section 5.8.1]. Our existence and well-posedness results
are in Section 5.2.

Arguably, the bulk of applications of measure-valued processes come from population
genetics. But tractable specifications like those developed here are for instance also of
interest in non-parametric Bayesian statistics (see e.g. [29, 30] who consider distributions
of functionals of random probability measures), age distribution and longevity risk
modeling (see e.g. [5]), or high-dimensional financial modeling. Let us sketch a situation
from stochastic portfolio theory (see [18, 20] for an introduction to this subject.) Let
Z be a process with values in the unit simplex ∆d = {z ∈ [0, 1]d : z1 + . . . + zd = 1},
representing the capitalization weights of d stocks. For tractability, it is natural select Z
to be a polynomial diffusion on ∆d as in [7]. To compute basic moment statistics of the
capitalization weights, one uses a moment formula similar to (1.1). For homogeneous
polynomials q(z1, . . . , zd), it takes the form

E[q(Zt)] =
∑
α

ut(α) zα1
1 · · · z

αd

d ,

where Z0 = z ∈ ∆d, and the sum extends over all multi-indices α = (α1, . . . , αd) with
|α| = α1 + · · · + αd = k := deg(q). There are N :=

(
k+d−1
k

)
such multi-indices, and the

RN -valued function ut = (ut(α) : |α| = k) solves the linear ODE

∂u

∂t
= Lku, (1.3)

whose initial condition is the coefficient vector of q, and where Lk here is an N × N
matrix derived from the generator of Z. For small or moderate dimensions d and degrees
k, solving (1.3) is feasible. However, d is typically on the order of 103, which renders
(1.3) computationally taxing even for small k, since the ODE dimension is N ∼ dk.

Now, consider instead a linear factor model Z̃ = (Z̃1, . . . , Z̃d) for the capitalization
weights. This means that Z̃i =

∫
E
gi(x)Xt(dx) for some nonnegative functions g1, . . . , gd

that sum to one, and a probability measure-valued polynomial diffusion X with, say,
E = [0, 1]. In this case,

E[q(Z̃t)] = E[p(Xt)]

for some measure polynomial p(ν) of degree k = deg(q). This expectation can be
computed using the moment formula (1.1), which amounts to solving the PDE (1.2) up
to time t. Discretizing the space domain Ek using n points in each dimension yields
a complexity of order nk. This can be made orders of magnitude smaller than the
complexity dk of solving (1.3). Importantly, n is a parameter that is chosen based on
accuracy requirements, while d is an input to the problem. This illustrates how probability
measure-valued polynomial diffusions can enhance tractability in high-dimensional
models. On top of this, as projections of an infinite-dimensional process, these linear
factor models constitute a much richer class than polynomial models on subsets of ∆d.

The remainder of the paper is organized as follows. After reviewing some basic
notation and definitions in the following subsection, we turn to polynomials of measure
arguments in Section 2, and prove optimality conditions for such polynomials in Section 3.
In Section 4 we define polynomial operators and study their form in the diffusion case.
Section 5 contains the moment formula as well as our main results on well-posedness
of the martingale problem. Applications and examples are treated in Section 6. Some
proofs and supplementary material are gathered in appendices.
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1.1 Notation and basic definitions

Throughout this paper, E is a locally compact Polish space endowed with its Borel
σ-algebra. The following notation is used.

• M+(E) denotes the finite measures on E, M1(E) ⊂ M+(E) the probability mea-
sures, and M(E) = M+(E) −M+(E) the signed measures of bounded variation
(i.e., of the form ν+ − ν− with ν+, ν− ∈M+(E)). All three are topologized by weak
convergence, which turns M+(E) and M1(E) into Polish spaces. For µ, ν ∈M(E)

we write µ ≤ ν if ν − µ ∈M+(E) and |ν| for ν+ + ν−.

• C(E), Cb(E), C0(E), Cc(E) have the usual meaning of continuous (and bounded,
and vanishing at infinity, and compactly supported) real functions on E. The
topology on the latter three is that of uniform convergence, and ‖ · ‖ denotes the
supremum norm.

• If E is noncompact, then E∆ = E ∪ {∆} is the one-point compactification, itself a
compact Polish space. If E is compact we write E∆ = E, which mitigates the need
to consider the compact and noncompact cases separately. We also define

C∆(Ek) :=
{
f |Ek : f ∈ C((E∆)k)

}
,

a closed subspace of Cb(Ek). The spaces C∆(E) and C(E∆) can be identified, and
we occasionally regard elements of the former as elements of the latter, and vice
versa. When E is compact, we have C(E) = Cb(E) = C0(E) = Cc(E) = C∆(E) and
we then simply write C(E). Note that the constant function 1 lies in C∆(E), but
of course not in C0(E). This is one reason the spaces C∆(Ek) are useful; other
reasons are discussed in Remarks 2.6 and 4.6.

• Ĉ∆(Ek) is the closed subspace of C∆(Ek) consisting of symmetric functions f ,
i.e., f(x1, . . . , xk) = f(xσ(1), . . . , xσ(k)) for all σ ∈ Σk, the permutation group on k

elements. Ĉ0(Ek) and Ĉ(Ek) are defined similarly. For any g ∈ Ĉ∆(Ek), h ∈ Ĉ∆(E`)

we denote by g ⊗ h ∈ Ĉ∆(Ek+`) the symmetric tensor product, given by

(g ⊗ h)(x1, . . . , xk+`)

=
1

(k + `)!

∑
σ∈Σk+`

g
(
xσ(1), . . . , xσ(k)

)
h
(
xσ(k+1), . . . , xσ(k+`)

)
. (1.4)

For a linear subspace D ⊆ C∆(E) we set D ⊗ D := span{g ⊗ g : g ∈ D}. We
emphasize that only symmetric tensor products are used in this paper.

Two key notions are the positive maximum principle and conservativity for certain
linear operators. In general, for a Polish space X and a subset S ⊆ X , these notions are
defined as follows. An operator A : D → Cb(X ) with domain D ⊆ Cb(X ) is said to satisfy
the positive maximum principle on S if

f ∈ D, x ∈ S, sup
S
f = f(x) ≥ 0 implies Af(x) ≤ 0.

If S locally compact, A is called S-conservative if there exist functions fn ∈ D ∩ C0(S)

such that limn→∞ fn = 1 on E and limn→∞(Afn)− = 0 on E∆, both in the bounded
pointwise sense; c.f. Chapter 4.2 in [17]. For us, S will be E, E∆, M1(E), or M1(E∆).

It is well-known that the positive maximum principle, combined with conservativity,
is essentially equivalent to the existence of S-valued solutions to the martingale problem
for A; see for instance Theorem 4.5.4 of [17]. We use this extensively, and review the
relevant results in Section D. Here an important issue is that while M1(E) is compact
when E is compact, M1(E) is not even locally compact when E is noncompact.
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2 Polynomials of measure arguments

In this section we develop basic properties of polynomials of measure arguments.
The notation and results introduced here play a central role throughout this paper.
Throughout this section, E is a locally compact Polish space.

2.1 Monomials and polynomials

A monomial on M(E) is an expression of the form

〈g, νk〉 =

∫
Ek

g(x1, . . . , xk)ν(dx1) · · · ν(dxk)

for some k ∈ N0, where g ∈ Ĉ∆(Ek) is referred to as the coefficient of the monomial; see
e.g. [11, Chapter 2]. We identify Ĉ∆(E0) with R, so that for k = 0 we have 〈g, ν0〉 = g ∈ R.
It is clear that the map ν 7→ 〈g, νk〉 is homogeneous of degree k, and that g 7→ 〈g, νk〉
is linear. Furthermore, one has the identity 〈g, νk〉〈h, ν`〉 = 〈g ⊗ h, νk+`〉, where the
symmetric tensor product g ⊗ h is defined in (1.4).

A polynomial on M(E) is now defined as a (finite) linear combination of monomials,

p(ν) =

m∑
k=0

〈gk, νk〉, (2.1)

with coefficients gk ∈ Ĉ∆(Ek). The degree of the polynomial p(ν), denoted by deg(p), is
the largest k such that gk is not the zero function, and −∞ if p is the zero polynomial.
The representation (2.1) is unique; see Corollary 2.4 below.

Example 2.1. Let E = {1, . . . , d} be a finite set. Then every element ν ∈M(E) is of the
form

ν = z1δ1 + · · ·+ zdδd, (z1, . . . , zd) ∈ Rd,

where δi is the Dirac mass concentrated at {i}. Monomials take the form

〈g, νk〉 =
∑

i1,...,ik

g(i1, . . . , ik) zi1 · · · zik ,

where the summation ranges over Ek = {1, . . . , d}k. Therefore, as g(·) ranges over all
symmetric functions on Ek, we recover all homogeneous polynomials of total degree
k in the d variables z1, . . . , zd. In particular, in view of Corollary 2.5 later, this relation
provides a one to one correspondence between polynomials on the unit simplex ∆d,
namely

∆d :=
{
z ∈ Rd :

d∑
i=1

zi = 1, zi ≥ 0
}
,

and polynomials on M1(E).

The following function space will play an important role.

Definition 2.2. Let

P := {ν 7→ p(ν) : p is a polynomial on M(E)}

denote the algebra of all polynomials on M(E) regarded as real-valued maps, equipped
with pointwise addition and multiplication.
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2.2 Continuity and smoothness of polynomials

Just like ordinary polynomials, the elements of P are smooth. This is made precise
in Lemma 2.3 below. In its statement, we use a directional derivative of functions on
M(E) that is well-known since the work of [23]. A function f : M(E) → R is called
differentiable at ν in direction δx for x ∈ E if

∂xf(ν) := lim
ε→0

f(ν + εδx)− f(ν)

ε

exists. We write ∂p(µ) for the map x 7→ ∂xp(µ), and use the notation

∂kx1x2···xk
f(ν) := ∂x1

∂x2
· · · ∂xk

f(ν)

for iterated derivatives. We write ∂kp(ν) for the corresponding map from Ek to R. Ob-
serve that for p ∈ P of the form p(ν) = 〈g, ν〉 we get ∂xp(ν) = limε→0(

∫
g(y)εδx(dy))ε−1 =

g(x) for each x ∈ E.
The following lemma asserts basic properties of polynomials, in particular that

polynomials on M(E) can be uniquely extended to polynomials on M(E∆), which will
often be the object of interest for our purposes.

Lemma 2.3. (i) Each p ∈ P is continuous on M+(E), sequentially continuous on
M(E), and can be uniquely extended to a polynomial on M(E∆).1

(ii) Let p ∈ P be a monomial of the form p(ν) = 〈g, νk〉. Then, for every x ∈ E and
ν ∈M(E),

∂xp(ν) = k〈g( · , x), νk−1〉,

where g( · , x) is the function (x1, . . . , xk−1) 7→ g(x1, . . . , xk−1, x). If k = 0, the
right-hand side should be read as zero.

(iii) For each p ∈ P and x ∈ E the map ∂xp : ν 7→ ∂xp(ν) lies in P .

(iv) For each p ∈ P and ν ∈M(E), the map ∂p(ν) : x 7→ ∂xp(ν) lies in C∆(E).

(v) The identity

∂x(pq)(ν) = p(ν)∂xq(ν) + q(ν)∂xp(ν)

holds for all p, q ∈ P , x ∈ E, ν ∈M(E).

(vi) The Taylor representation

p(ν + µ) =

k∑
`=0

1

`!
〈∂`p(ν), µ`〉,

holds for all p ∈ P and ν, µ ∈M(E), where k denotes the degree of p.

Proof. (i): For h ∈ C∆(E)⊗k we can write h =
∑L
`=1 λ`h

⊗k
` for some h` ∈ C∆(E) and

λ` ∈ R. Since 〈h`, ν〉 is continuous by definition of weak convergence,

〈h, νk〉 =

L∑
`=1

λ`〈h⊗k` , νk〉 =

L∑
`=1

λ`〈h`, ν〉k

is continuous as well. Note then that by linearity in (2.1) it is enough to prove the result
for p(ν) = 〈g, νk〉 and g ∈ Ĉ∆(Ek). Choose h ∈ C∆(E)⊗k such that ‖g − h‖ ≤ ε and let

1It can be shown that sequential continuity cannot be strengthened to continuity.
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νn ∈ M(E) form a convergent sequence with limit ν ∈ M(E). Observe that, by the
Banach–Steinhaus theorem, supn |νn|(E) <∞. Then∣∣〈g, νkn〉 − 〈g, νk〉∣∣ ≤ ∣∣〈h, νkn〉 − 〈h, νk〉∣∣+ ε

(
sup
n
|νn|(E)k + |ν|(E)k

)
→ Cε

for some C ≥ 0. Since ε is arbitrary, this proves sequential continuity of p on M(E).
In particular we get continuity on M+(E) since this is a Polish space. The last part
follows from the observation that every function in C∆(E) can be uniquely extended to a
function in C(E∆).

(ii): Using the symmetry of g, a direct calculation yields

p(ν + εδx)− p(ν) = εk

∫
g(x1, . . . , xk−1, x)

k−1∏
j=1

ν(dxj) + o(ε).

The expression for ∂xp(ν) follows.
For the remaining part of the proof it suffices to consider monomials p(ν) = 〈g, νk〉

for g ∈ Ĉ∆(Ek) due to the linearity in (2.1).
(iii): Fix x ∈ E and note that kg( · , x) ∈ Ĉ∆(Ek−1). The claim follows by (ii).
(iv): For p(ν) = 〈g, νk〉, |∂xp(ν)| = |〈kg( · , x), νk−1〉| ≤ k‖g‖|ν|(E)k−1 <∞. Continuity

of x 7→ ∂xp(ν) follows from the dominated convergence theorem and the fact that E is
Polish, and thus a sequential space.

(v): For monomials p(ν) = 〈g, νk〉 and q(ν) = 〈h, ν`〉, we have pq(ν) = 〈g ⊗ h, νk+`〉.
Since for all x ∈ E and ν ∈M(E)

(k + `)〈g ⊗ h( · , x), νk+`−1〉 = k〈g( · , x), νk−1〉〈h, ν`〉+ `〈g, νk〉〈h( · , x), ν`−1〉,

the claim follows by (ii).
(vi): Observing that for p(ν) := 〈g, νk〉

p(ν + µ) =

k∑
`=0

(
k

`

)∫
g(x1, . . . , xk)

k∏
i=`+1

ν(dxi)
∏̀
i=1

µ(dxi)

the result follows by (ii).

From Lemma 2.3(ii) one can deduce the uniqueness of the representation (2.1).

Corollary 2.4. Suppose p(ν) =
∑m
k=0〈gk, νk〉 equals zero for all ν ∈M(E). Then gk = 0

for all k.

Proof. Let x1, . . . , xm ∈ E be arbitrary and differentiate m times using Lemma 2.3(ii) to
get m!gm(x1, . . . , xm) = ∂x1x2···xm

p(ν) = 0. Thus gm = 0. Now repeat this successively for
gm−1, gm−2, . . ., g0.

The following property turns out to be particularly useful in the context of the moment
formula. In the finite-dimensional setting, the result states that every polynomial on the
unit simplex has a homogeneous representative.

Corollary 2.5. Every polynomial on M(E) has a unique homogeneous representative on
M1(E). That is, for every p ∈ P with deg(p) = m there is a unique g ∈ Ĉ∆(Em) such that

p(ν) = 〈g, νm〉 for all ν ∈M1(E).

Proof. Corollary 2.4 yields a unique set of coefficients g0, . . . , gm with gk ∈ Ĉ∆(Ek) and
p(ν) =

∑m
k=0〈gk, νk〉. The result now follows by setting g :=

∑m
k=0 gk ⊗ 1⊗(m−k).
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Remark 2.6. If we choose to work with coefficients in Ĉ0(Ek) instead of Ĉ∆(Ek) we
would obtain the same class of polynomials on M1(E). This is because every g ∈ Ĉ∆(Ek)

equals
∑k
i=0 gi ⊗ 1⊗(k−i) for some gi ∈ Ĉ0(Ei), and therefore 〈g, νk〉 =

∑k
i=0〈gi, νi〉 for all

ν ∈M1(E). Indeed, the gi are given iteratively by

g0 := g(∆, . . . ,∆) and gi :=

(
k

i

)(
g(∆, . . . ,∆, · )−

i−1∑
j=0

gj ⊗ 1⊗(i−j)
)
.

However, not every such polynomial admits a homogenous representative on M1(E) in
the sense of Corollary 2.5, unless E is compact. An example is 1 + 〈g, ν〉 with g ∈ C0(E)

nonzero. The existence of homogeneous representatives leads to significant notational
simplifications when E is not compact (see Remark 4.6 for more details). This is the
main reason for working with the spaces Ĉ∆(Ek).

2.3 Polynomials with regular coefficients

For a polynomial p, the derivative map x 7→ ∂xp(ν) is only as regular as the coefficients
of p. This leads us to consider subspaces of polynomials with more regular coefficients.
Let D ⊆ C∆(E) be a dense linear subspace containing the constant function 1 and define

PD := span
{

1, 〈g, ν〉k : k ≥ 1, g ∈ D
}
. (2.2)

Thus PD is the subalgebra of P consisting of all (finite) linear combinations of the
constant polynomial and “rank-one” monomials 〈g ⊗ · · · ⊗ g, νk〉 = 〈g, ν〉k with g ∈ D.
Equivalently, PD consists of all polynomials p(ν) = φ(〈g1, ν〉, . . . , 〈gk, ν〉) with k ∈ N,
g1, . . . , gk ∈ D, and φ a polynomial on Rk.

Lemma 2.7. For any p ∈ PD and ν ∈ M(E), we have ∂kp(ν) ∈ D⊗k. Moreover PD

is dense in C(M1(E∆)). Here the elements of PD are viewed as functions on M1(E∆)

by first extending them to M(E∆) using Lemma 2.3 (i) and then restricting them to
M1(E∆).

Proof. For p(ν) := φ(〈g, ν〉) where φ is polynomial we have ∂kp(ν) = φ(k)(〈g, ν〉)g⊗k ∈
D⊗k. Thus the first part of the result holds for all such p, and by linearity for all
p ∈ PD. For the second part, continuity of polynomials follows by Lemma 2.3(i). Stone–
Weierstrass and the fact that D is densely contained in C(E∆) yield the density.

3 Optimality conditions

We now develop optimality conditions for polynomials of measure arguments, which
are instrumental when working with the positive maximum principle on M1(E∆). Our
first result, Theorem 3.1, extends the classical first and second order Karush–Kuhn–
Tucker conditions for functions on the finite-dimensional simplex (see e.g. [4]). It is
derived by perturbing an optimizer ν∗ ∈M1(E∆) by shifting small amounts of mass to
arbitrary points in E∆. Our second result, Theorem 3.4, is obtained by deforming the
optimizer ν∗ using a group of isometries of C∆(E). The resulting condition is genuinely
infinite-dimensional; see Lemma 3.6. We will use the operator Ψ, which maps any
function g : E × E → Rk to the function Ψ(g) : E × E → Rk given by

Ψ(g)(x, y) =
1

2
(g(x, x) + g(y, y)− 2g(x, y)) . (3.1)

Note that we use Lemma 2.3(i) to extend polynomials from M1(E) to M1(E∆).

Theorem 3.1. Let p ∈ P and ν∗ ∈ M1(E∆) satisfy p(ν∗) = maxM1(E∆) p. Then the
following first and second order optimality conditions hold:
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(i) 〈∂p(ν∗), µ〉 = supE ∂p(ν∗), for all µ ∈ M1(E∆) such that supp(µ) ⊆ supp(ν∗). In
particular,

∂xp(ν∗) = sup
E
∂p(ν∗) for all x ∈ supp(ν∗). (3.2)

(ii) 〈∂2p(ν∗), µ
2〉 ≤ 0 for all signed measures µ ∈ M(E∆) such that 〈1, µ〉 = 0 and

supp(|µ|) ⊆ supp(ν∗). In particular,

Ψ
(
∂2p(ν∗)

)
(x, y) ≤ 0 for all x, y ∈ supp(ν∗). (3.3)

Proof. (i): Pick any x ∈ supp(ν∗) and y ∈ E∆. For each n ∈ N, let An be the ball
of radius 1/n centered at x, intersected with supp(ν∗). Then ν∗(An) > 0, and the
probability measures µn := ν∗( · ∩An)/ν∗(An) converge weakly to δx as n→∞. Choose
εn ∈ (0, ν∗(An)). Then ν∗ ≥ εnµn since for all B ∈ B(E)

ν∗(B)− εn
ν∗(B ∩An)

ν∗(An)
≥ ν∗(B ∩An)

ν∗(An)
(ν∗(An)− εn) ≥ 0.

Hence νn := ν∗+εn(δy−µn) is a probability measure. Maximality of ν∗ and Lemma 2.3(vi)
now give

0 ≥ p(νn)− p(ν∗) = εn〈∂p(ν∗), δy − µn〉+ o(εn).

Dividing by εn, sending n to infinity, and using that x 7→ ∂xp(ν∗) is bounded and continu-
ous, we obtain ∂xp(ν∗) ≥ ∂yp(ν∗). We deduce (3.2), which immediately implies (i).

(ii): In addition to the above, suppose y is in supp(ν∗). Since we also have that
supp(|µn|) ⊆ supp(ν∗), we get 〈∂p(ν∗), δy − µn〉 = 0 due to (i). Maximality of ν∗ and
Lemma 2.3(vi) then give

0 ≥ p(νn)− p(ν∗) =
1

2
ε2
n〈∂2p(ν∗), (δy − µn)2〉+ o(ε2

n),

and therefore 〈∂2p(ν∗), (δy − δx)2〉 ≤ 0. More generally, consider measures of the form

νn := ν∗ + εn

(
m∑
i=1

λiδyi −
m∑
i=1

γiµi,n

)

for some points yi ∈ supp(ν∗), convex weights λ1, . . . , λm and γ1, . . . , γm, and µi,n con-
structed as µn above with x replaced by xi ∈ supp(ν∗). Letting εn decrease to zero
sufficiently rapidly, the above argument gives 〈∂2p(ν∗), µ

2〉 ≤ 0 for the signed measure

µ =

m∑
i=1

λiδyi −
m∑
i=1

γiδxi .

Passing to the weak closure yields (ii) with the additional restriction that the positive and
negative parts of µ are probability measures. The general case is obtained by scaling.
Finally, since 〈∂2p(ν∗), (δy − δx)2〉 = 2Ψ(∂2p(ν∗))(x, y) we obtain (3.3).

Remark 3.2. Note the similarity between Theorem 3.1 and the classical Karush–Kuhn–
Tucker conditions on the finite-dimensional simplex ∆d. Let f ∈ C2(Rd) and x∗ ∈ ∆d

satisfy f(x∗) = max∆d f . Then the first and second order (necessary) Karush–Kuhn–
Tucker conditions on ∆d hold:

(i) For each v ∈ ∆d such that vi = 0 whenever x∗i = 0,∇f(x∗)>v = maxj∈{1,...,d}
∂f
∂xj

(x∗).
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(ii) For each v ∈ Rd such that 1>v = 0 and vi = 0 whenever x∗i = 0, v>∇2f(x∗)v ≤ 0,

where 1 := (1, . . . , 1)>.

Remark 3.3. Taking again E = {1, . . . , d} as example, the appearance of Ψ in (3.3) can
be understood as follows. Suppose z ∈ ∆d maximizes a function f ∈ C2(Rd) over ∆d.
Then for every i, j such that zi > 0 and zj > 0, we must have (ei−ej)>∇2f(z)(ei−ej) ≤ 0,
where ei is the i-th canonical unit vector. Indeed, otherwise z ± ε(ei − ej) would lie in ∆d

and give a higher function value for small ε > 0. More explicitly, we must have

∂2
iif(z) + ∂2

jjf(z)− 2∂2
ijf(z) ≤ 0,

where the left hand side is equal to 2Ψ(∂2f(z))(i, j) on E = {1, . . . , d}.
For the remainder of this section, D ⊆ C∆(E) is a linear subspace, and PD is defined

by (2.2).
Our next optimality condition is more subtle, in that it becomes trivial in the finite-

dimensional case; see Lemma 3.6. The basic observation is that a group of isometries Tt
of C∆(E) induces a flow of measures µt ∈M+(E∆) via the formula 〈g, µt〉 = 〈Ttg, µ〉 for
every g ∈ C∆(E), where µ ∈M+(E∆) is fixed. The value of a polynomial in its maximizer
ν∗ cannot be less than its value in ν∗ − µ+ µt, for any t, and this leads to an optimality
condition in terms of the group generator A.

For example, if E = R, the generator could be Ag = τg′ for some τ ∈ C1
∆(R). The

isometries would then be Ttg := g(φ(t, · )), where φ solves d
dtφ(t, x) = τ(φ(t, x)) with

initial condition φ(0, x) = x. The corresponding flow of measures would consist of the
pushforwards of µ with respect to φ(t, · ). For more details see Lemma 6.1.

The tensor notation A⊗A is used to denote the linear operator from D⊗D to Ĉ∆(E2)

determined by

(A⊗A)(g ⊗ g) := (Ag)⊗ (Ag)

for a given linear operator A : D → C∆(E).

Theorem 3.4. Fix p ∈ PD and ν∗ ∈ M1(E∆) with p(ν∗) = maxM1(E∆) p. Let A be the
generator of a strongly continuous group of positive isometries of C∆(E), and assume
the domain of A contains both D and A(D). Then

〈A2(∂p(ν∗)), µ〉+ 〈(A⊗A)(∂2p(ν∗)), µ
2〉 ≤ 0

for every µ ∈M+(E∆) with µ ≤ ν∗.

Proof. Let {Tt}t∈R be the group generated by A. For any µ ∈M+(E∆), the group induces
a flow of measures µt ∈ M(E∆) via the formula 〈g, µt〉 = 〈Ttg, µ〉 for g ∈ C∆(E). The
positivity and isometry property of Tt implies that µt is nonnegative and has constant
total mass µt(E∆) = µ(E∆). Therefore, assuming henceforth that µ ≤ ν∗, it follows that
ν∗ + µt − µ is a probability measure. Since ‖Ttg − g‖ = O(t) for every g ∈ D, we have
〈g, (µt − µ)k〉 = O(tk) for every g ∈ D⊗k. Maximality of ν∗ and Lemma 2.3(vi) then give

0 ≥ p(ν∗ + µt − µ)− p(ν∗) = 〈∂p(ν∗), µt − µ〉+
1

2
〈∂2p(ν∗), (µt − µ)2〉+ o(t2)

= 〈(Tt − id)∂p(ν∗), µ〉+
1

2
〈(Tt ⊗ Tt − 2Tt ⊗ id + id⊗ id)∂2p(ν∗), µ

2〉+ o(t2). (3.4)

We claim that both A and −A satisfy the positive maximum principle on E∆. Indeed, for
f ∈ D and x ∈ E∆ with f(x) = maxE∆ f ≥ 0, the positivity and isometry property give

Ttf(x) ≤ Ttf+(x) ≤ ‖Ttf+‖ = ‖f+‖ = f(x). (3.5)
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We thus have Af(x) = limt↓0(Ttf(x)− f(x))/t ≤ 0 as well as −Af(x) = limt↓0(T−tf(x)−
f(x))/t ≤ 0, proving the claim. Since ∂xp(ν∗) = supE ∂p(ν∗) for all x ∈ supp(ν∗) due
to Theorem 3.1, it follows that A(∂p(ν∗))(x) = 0 for all such x. As a result, using that
supp(µ) ⊆ supp(ν∗) and that the domain of A contains A(D), we get

〈(Tt − id)∂p(ν∗), µ〉 = 〈(Tt − id− tA)∂p(ν∗), µ〉 =
1

2
t2〈A2(∂p(ν∗)), µ〉+ o(t2). (3.6)

Furthermore, using that

(Tt ⊗ Tt − 2Tt ⊗ id + id⊗ id)(g ⊗ g) = (Ttg − g)⊗ (Ttg − g)

for all g ∈ D, we deduce that

〈(Tt ⊗ Tt − 2Tt ⊗ id + id⊗ id)g, µ2〉 = t2〈(A⊗A)g, µ2〉+ o(t2) (3.7)

for all g ∈ D ⊗ D. Inserting (3.6) and (3.7) into (3.4), dividing by t2, and sending t to
zero yields

0 ≥ 1

2
〈A2(∂p(ν∗)), µ〉+

1

2
〈(A⊗A)∂2p(ν∗), µ

2〉.

This completes the proof.

Remark 3.5. We claim that for A as in Theorem 3.4, the operator A2 satisfies the positive
maximum principle on E∆. Indeed, let f ∈ D and x ∈ E∆ with f(x) = maxE∆ f ≥ 0.
Then, as in (3.5) and with the same notation, we have Ttf(x) ≤ f(x), and Af(x) = 0

since both A and −A satisfy the positive maximum principle on E∆. Hence A2f(x) =

limt↓0(Ttf(x)− f(x)−Af(x))/t ≤ 0, which proves the claim.

The following lemma illustrates the pure infinite-dimensional nature of the condition
provided in Theorem 3.4.

Lemma 3.6. Let A be the generator of a strongly continuous group of positive isometries
of C∆(E). If the domain of A is all of C∆(E), then A = 0. This is in particular the case if
A is bounded or E consists of finitely many points.

Proof. Both A and −A satisfy the positive maximum principle on E, and A1 = 0. There-
fore Lemma C.2 implies that A and −A are both of the form (C.1) with B = ±A. As a
result,

0 = Ag(x)−Ag(x) =

∫
(g(ξ)− g(x))(νA + ν−A)(x, dξ)

for all x ∈ E and g ∈ C(E∆). This implies that 1{x}c(ξ)νA(x, dξ) and 1{x}c(ξ)ν−A(x, dξ)

are zero for all x ∈ E and hence that A = 0. Since each linear operator on a finite-
dimensional vector space is bounded, and the domain of a bounded operator on C∆(E)

can be extended to all of C∆(E), the second part follows.

4 Polynomial operators

Let E be a locally compact Polish space. We now define polynomial operators, which
constitute a class of possibly unbounded linear operators acting on polynomials. They
are not defined on all of P in general, but only on the subspace PD for some dense
subspace D ⊆ C∆(E); see (2.2). An analog of this notion has appeared previously in
connection with finite-dimensional polynomial processes; see e.g. [8, 21, 9].

Definition 4.1. Fix S ⊆ M(E). A linear operator L : PD → P is called S-polynomial if
for every p ∈ PD there is some q ∈ P such that q|S = Lp|S and

deg(q) ≤ deg(p).
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Given a linear operator L : PD → P , its associated carré-du-champ operator is the
symmetric bilinear map Γ: PD × PD → P defined by

Γ(p, q) = L(pq)− pLq − qLp. (4.1)

The carré-du-champ operator gives information about the quadratic variation of the
martingales appearing in the martingale problem for the operator L. It also gives
information about path continuity of solutions to such martingale problems. We return
to this issue in Lemma 5.2, which roughly speaking states that path continuity holds
precisely when the carré-du-champ operator Γ is a derivation, which is defined as follows.

Definition 4.2. Fix S ⊆M(E). A symmetric bilinear map Γ: PD × PD → P is called an
S-derivation if for all p, q, r ∈ PD, Γ(pq, r) = pΓ(q, r) + qΓ(p, r) on S.

For a finite-dimensional diffusion it is known that its generator is polynomial if and
only if the drift and diffusion coefficients are polynomial of first and second degree,
respectively; see [8] and [21]. The following result is the generalization of this fact to
the probability-valued setting. The proof is given in Section A.

Theorem 4.3. Let L : PD → P be a linear operator. Then L is M1(E)-polynomial and its
carré-du-champ operator Γ is an M1(E)-derivation if and only if

Lp(ν) =
〈
B(∂p(ν)), ν

〉
+

1

2

〈
Q(∂2p(ν)), ν2

〉
, ν ∈M1(E),

for some linear operators B : D → C∆(E) and Q : D ⊗D → Ĉ∆(E2).

(4.2)

In this case, B and Q are uniquely determined by L.

An analogue of Theorem 4.3 holds for L being S-polynomial, where S is an arbitrary
subset of M(E); see Theorem A.1.

Example 4.4 (The Fleming-Viot generator). Let E = R and D = C2
∆(R). The Fleming–

Viot diffusion was introduced in [23] and subsequently studied by several other authors.
This process takes values in M1(R), and its generator L acts on polynomials p ∈ PD by

Lp(ν) =

∫
E

B(∂p(ν))(x)ν(dx) +
1

2

∫
E2

∂2
xyp(ν)ν(dx)(δx(dy)− ν(dy)),

where Bg := 1
2σ

2g′′ for some σ ∈ R. This is an M1(R)-polynomial operator of the form
(4.2), where Q = Ψ as defined in (3.1). For more details, see Chapter 10.4 of [17].

Corollary 2.5 states that any polynomial on M1(E) has a unique homogeneous repre-
sentative. Therefore, an operator L satisfying (4.2) actually maps any monomial 〈g, νk〉
to a unique monomial 〈h, νk〉 on M1(E). This induces an operator Lk acting on the
corresponding coefficients by Lkg := h. The operators L1, L2, . . . are the key objects
needed to compute conditional moments of polynomial diffusions corresponding to L.

Definition 4.5. Let L : PD → P satisfy (4.2). The k-th dual operator of L is defined as
the unique linear operator Lk : D⊗k → Ĉ∆(Ek) determined by

Lp(ν) = 〈Lkg, νk〉, ν ∈M1(E), (4.3)

for every p(ν) = 〈g, νk〉 with g ∈ D⊗k.

Because of (4.2), the k-th dual operator Lk can be written

Lk = kB ⊗ id⊗(k−1) +
k(k − 1)

2
Q⊗ id⊗(k−2), (4.4)

where the tensor notation B1 ⊗ . . .⊗BN is used to denote the linear operator from D⊗k

to Ĉ∆(Ek) determined by (B1 ⊗ . . .⊗BN )(g⊗k) := B1(g⊗n1)⊗ . . .⊗BN (g⊗nN ) for given
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linear operators Bi : D⊗ni → Ĉ∆(Eni) with n1 + · · ·+ nN = k. More explicitly, we have

Lk = Bk +Qk

where Bk and Qk are defined by

Bkg :=

k∑
i=1

B(i)g and Qkg :=
1

2

k∑
i,j=1

Q(ij)g (4.5)

for B(i)g(x) := Bg(. . . , xi−1, · , xi+1, . . .)(xi) and

Q(ij)g(x) := Q
(
g(. . . , xi−1, · , xi+1, . . . , xj−1, · , xj+1, . . .)

)
(xi, xj).

Remark 4.6. Observe that without the existence of an homogeneous representative
(guaranteed by Corollary 2.5), expression (4.3) would read

Lp(ν) = 〈Lkkg, νk〉+ 〈Lk−1
k g, νk−1〉+ · · ·+ L0

kg, ν ∈M1(E),

and the k-th dual operator would thus consist in a (k + 1)-tuple of operators Lkk, . . . , L
0
k.

In the context of the moment formula, as stated in Theorem 5.3 below, the PIDE of
(5.2) would then translate to a system of (k + 1) PIDEs. If one is interested in studying
jump-diffusions taking value in other subspaces of M(E), as e.g. M+(E), a homogeneous
representative can no longer be found and one has to deal with systems of PIDEs to
compute the moments.

5 Existence and uniqueness of polynomial diffusions on M1(E)

Let E be a locally compact Polish space, D a dense linear subspace of C∆(E) contain-
ing the constant function 1, and L : PD → P a linear operator. In this section we study
existence and uniqueness of M1(E)-valued polynomial diffusions, and derive the moment
formula.

An M1(E)-valued process X with càdlàg paths defined on some filtered probability
space (Ω,F , (Ft)t≥0,P) is called a solution to the martingale problem for L with initial
condition ν ∈M1(E) if X0 = ν P-a.s. and

Np
t = p(Xt)− p(X0)−

∫ t

0

Lp(Xs)ds (5.1)

defines a martingale for every p ∈ PD. Uniqueness of solutions to the martingale problem
is always understood in the sense of law. The martingale problem for L is well–posed
if for every ν ∈ M1(E) there exists a unique M1(E)-valued solution to the martingale
problem for L with initial condition ν. We are interested in solutions with continuous
paths (with respect to the topology of weak convergence) corresponding to polynomial
operators.

Definition 5.1. Let L be M1(E)-polynomial. Any continuous solution to the martingale
problem for L is called a probability-valued polynomial diffusion.

The following lemma relates path continuity of solutions to the martingale problem
to the carré-du-champ operator being a derivation. This explains why we consider
derivations in Theorem 4.3.

Lemma 5.2. If the carré-du-champ operator Γ associated to L is an M1(E)-derivation,
then any solution to the martingale problem for L has continuous paths. Conversely,
if for every initial condition ν ∈ M1(E) there is a solution to the martingale problem
for L with continuous paths, then the carré-du-champ operator Γ associated to L is an
M1(E)-derivation.
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Proof. Let X be a solution to the martingale problem for L. By Proposition 2 in [2], the
real-valued process p(X) is continuous for every p ∈ PD, in particular for every linear
monomial p(ν) = 〈h, ν〉 with h ∈ D. Since D is dense in C∆(E), we can conclude that X
is continuous with respect to the topology of weak convergence on M1(E).

Conversely, if X is a solution to the martingale problem for L with continuous paths,
then, by Lemma 2.3(i), the map t 7→ p(Xt) is continuous for all p ∈ PD. The result now
follows by Proposition 1 in [2].

5.1 Moment formula and uniqueness in law

Polynomial diffusions are of interest in applications because they generally satisfy a
moment formula, which allows moments of the process to be computed tractably. If E is
a finite set, the moment formula always holds, but technical conditions, in particular on
the dual operators, are needed in the general case. For details regarding operators and
semigroups, we refer e.g. to [17].

Theorem 5.3. Suppose L satisfies (4.2) and fix k ∈ N. Assume that the k-th dual
operator Lk is closable, and let g be in the domain of its closure Lk. Suppose that there
is a solution u : R+ × Ek → R of

∂u

∂t
(t, x) = Lku(t, · )(x), (t, x) ∈ R+ × Ek,

u(0, x) = g(x), x ∈ Ek,
(5.2)

and suppose that supt∈[0,T ] ‖Lku(t, · )‖ < ∞ for all T ∈ R+. In particular, u(t, · ) is

assumed to be in the domain of Lk for all t ≥ 0. Then for any continuous solution X to
the martingale problem for L, one has the moment formula

E
[
〈g,Xk

T 〉 | Ft
]

= 〈u(T − t, ·), Xk
t 〉. (5.3)

Proof. We will follow the proof of Theorem 4.4.11 in [17] and extend it to obtain also the
formula for the conditional moments. Fix T ∈ R+, t ∈ [0, T ], and A ∈ Ft. Define for all
(s1, s2) ∈ [0, T − t]× [0, T − t] define f(s1, s2) := E[〈u(s1, · ), Xk

t+s2〉1A]. Fix s2 ∈ [0, T − t].
Equation (5.2) and the fundamental theorem of calculus then yield

f(s1, s2)− f(0, s2) = E[〈u(s1, · )− u(0, · ), Xk
t+s2〉1A] =

∫ s1

0

E[〈Lku(s, · ), Xk
t+s2〉1A]ds.

Fix then s1 ∈ [0, T − t]. Since u(t, · ) is in the domain of Lk for all t ∈ R+, (5.1) yields

f(s1, s2)− f(s1, 0) = E[E[〈u(s1, · ), Xk
t+s2〉 − 〈u(s1, · ), Xk

t 〉|Ft]1A]

=

∫ s2

0

E[〈Lku(s1, · ), Xk
t+s〉1A]ds.

Since sups1,s2∈[0,T−t]
∣∣E[〈Lku(s1, · ), Xk

t+s2〉1A]
∣∣ ≤ sups1∈[0,T ] ‖Lku(s1, · )‖ < ∞, we can

then conclude that both f( · , s2) and f(s1, · ) are absolutely continuous with bounded
derivatives. Lemma 4.4.10 in [17] then yields f(T − t, 0)− f(0, T − t) = 0, and the result
follows.

In order to avoid confusion, for the rest of the section we denote by ug the solution of
(5.2) with initial condition ug(0, · ) = g.

In most of the cases of interest (see Remark 5.7(iii) below) the operator Lk satisfies
the positive maximum principle on Ek, for each k ∈ N. If this is the case, the existence
of a solution ug of (5.2) satisfying the conditions of Theorem 5.3 for sufficiently many
g, is essentially equivalent to the fact that Lk generates a strongly continuous positve
contraction semigroup on Ĉ∆(Ek) or in other words that it is the generator of a Feller
process on Ek. We state this precisely in the following remark.
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Remark 5.4. Let L satisfy (4.2) and let X denote a solution to the corresponding martin-
gale problem with initial condition X0 = ν ∈M1(E). Assume that the corresponding k-th
dual operator Lk satisfies the positive maximum principle on (E∆)k (which in particular
implies that Lk is closable), for each k ∈ N.

Let D0 be a dense subset of the domain of Lk and suppose that the conditions of
Theorem 5.3 hold true for all g ∈ D0. By Proposition 1.3.4 of [17], if we additionally
have that t 7→ Lkug(t, · ) is continuous, then Lk is the generator of a strongly continuous

contraction semigroup {Y kt }t≥0 on Ĉ∆(Ek) and Y kt g = ug(t, · ). In this case the moment
formula reads as

E
[
〈g,Xk

T 〉 | Ft
]

= 〈Y kT−tg,Xk
t 〉, for all g ∈ Ĉ∆(Ek).

Conversely, if Lk is the generator of a strongly continuous contraction semigroup {Y kt }t≥0

on Ĉ∆(Ek), then for all g in the domain of Lk the map ug(t, x) := Y kt g(x) satisfies the
conditions of Theorem 5.3. By the Hille–Yosida theorem, this is for instance the case if
the range of λ− Lk is dense in Ĉ∆(Ek) for some λ > 0. In this case, Corollary 4.2.8 in
[17] yields a solution Z(k) (without loss of generality defined on the same probability
space as X) to the martingale problem for Lk with values in (E∆)k and satisfying

Y kt g(x) = E[g(Z
(k)
t )|Z(k)

0 = x]. The moment formula then yields

E[g(Z
(k)
t )|Z(k)

0 ∼ νk] = E[〈g,Xk
t 〉]. (5.4)

This gives an alternative interpretation to (5.3), namely that the PIDE in (5.2) is the
Feynman-Kac PIDE associated to the k-dimensional process Markov process Z(k). Note
that in the case of a finite state space E, (5.2) reduces to an ODE and Lk is automatically
the generator of k-dimensional Markov chain.

As in the finite-dimensional case, the moment formula gives well-posedness of the
martingale problem.

Corollary 5.5. Suppose L satisfies (4.2), and let X be a continuous solution to the
martingale problem for L with initial condition ν ∈M1(E). If the moment formula (5.3)
holds for all g ∈ D⊗k and k ∈ N, then the law of X is uniquely determined by L and ν.

Proof. By the moment formula (5.3) we have E[〈g,Xk
T 〉] = 〈ug(T, · ), νk〉 for all k ∈ N and

g ∈ D⊗k. Since g 7→ ug is determined by L, Lemma 2.7 yields that the one-dimensional
distributions of X are uniquely determined by L and ν. The conclusion follows by
Theorem 4.4.2 in [17].

5.2 Existence and well-posedness

Our first main result of this section gives abstract sufficient conditions for existence
of solutions to the martingale problem. Applications of this result are discussed in
Section 6. Recall that E is throughout a locally compact Polish space.

Theorem 5.6. Let D ⊆ C∆(E) be a dense linear subspace containing the constant
function 1. Let L : PD → P be a linear operator satisfying (4.2), where

(i) B is E-conservative and satisfies B1 = 0,

(ii) Q is given by

Q(g) = αΨ(g) +

n∑
i=1

(Ai ⊗Ai)(g), g ∈ D ⊗D,

where α : E2 → R is a nonnegative symmetric function and, for i = 1, . . . , n, Ai is
the generator of a strongly continuous group of positive isometries of C∆(E), and
the domain of Ai contains both D and Ai(D),
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(iii) B − 1
2

∑n
i=1A

2
i satisfies the positive maximum principle on E∆.

Then L is M1(E)-polynomial and its martingale problem has a solution with continuous
paths for every initial condition ν ∈M1(E). If in addition the moment formula (5.3) holds
for all g ∈ D⊗k and k ∈ N, then the martingale problem for L is well–posed.

Note that (4.2) imposes the implicit condition on α that αΨ(g) must lie in Ĉ∆(E2)

for every g ∈ D ⊗ D. If D = C∆(E), then α is necessarily bounded, as is seen from
Theorem 5.9 below. However, this does not hold for general D ⊆ C∆(E), as one can see
by considering E = R, D ⊆ C1

∆(R), and α(x, y) = |x− y|−11{x 6=y}.

Proof. Theorem 4.3 shows that L is M1(E)-polynomial. Lemma D.2 yields existence of a
solution to the martingale problem for any initial condition (necessarily with continuous
paths due to Lemma 5.2) once we check that L satisfies the positive maximum principle
on M1(E∆). Let therefore ν∗ ∈ M1(E∆) be a maximizer of p ∈ PD over M1(E∆). The
optimality conditions in Theorem 3.1 yield

∂xp(ν∗) = sup
E
∂p(ν∗) and Ψ

(
∂2p(ν∗)

)
(x, y) ≤ 0, x, y ∈ supp(ν∗).

Therefore, since B − 1
2

∑n
i=1A

2
i satisfies the positive maximum principle and α is non-

negative, we get

Lp(ν∗) ≤
1

2

n∑
i=1

(
〈A2

i (∂p(ν∗)), ν∗〉+ 〈(Ai ⊗Ai)(∂2p(ν∗)), ν
2
∗〉
)
.

The optimality condition in Theorem 3.4 now yields Lp(ν∗) ≤ 0. This proves the positive
maximum principle and thus the existence statement. The assertions regarding the
moment formula and well–posedness follow from Theorem 5.3 and Corollary 5.5.

Remark 5.7. (i) With regard to item (iii) in Theorem 5.6, note that a linear operator
G : D → C∆(E) satisfies the positive maximum principle on E∆ if and only if G
satisfies the positive maximum principle on E and Gg(∆) ≥ 0 for every nonnegative
g ∈ C0(E) ∩D. In many cases of interest, for instance E ⊆ Rd and D ⊆ R+ Cc(E),
the positive maximum principle on E implies the positive maximum principle on
E∆.

(ii) Let us also remark that the k-th dual operator Gk of 〈G(∂p(ν)), ν〉 satisfies the
positive maximum principle on (E∆)k if it holds for G on E∆. Indeed, if x∗ ∈ (E∆)k

is a maximum of g, then x∗i is a maximum of g(. . . , x∗i−1, · , x∗i+1, . . .). Hence Gk given
by

Gkg = kG ⊗ id⊗(k−1)g =

k∑
j=1

G(j)g,

where we use the same notation as in (4.5), clearly satisfies the positive maximum
principle on (E∆)k.

(iii) Consider the setting and the assumptions of Theorem 5.6 and define

Gk := k
(
B − 1

2

n∑
i=1

A2
i

)
⊗ id⊗(k−1), Ck :=

k(k − 1)

2
(αΨ)⊗ id⊗(k−2),

Tk := k
(1

2

n∑
i=1

A2
i

)
⊗ id⊗(k−1) +

k(k − 1)

2

( n∑
i=1

(Ai ⊗Ai)
)
⊗ id⊗(k−2).

Note that by (4.4) we have Lk = Gk +Ck +Tk. We claim that Gk, Ck, Tk, and hence
Lk, satisfy the positive maximum principle on (E∆)k.
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By item (iii) in Theorem 5.6, B− 1
2

∑n
i=1A

2
i satisfies the positive maximum principle

on E∆, whence by (ii) it holds also for Gk on (E∆)k. The form of Ψ and the
nonnegativity of α guarantee that this holds also for Ck. Finally, since Tk =∑n
i=1

1
2 (
∑n
j=1A

(j)
i )2 where A

(j)
i g(x) = Aig(. . . , xj−1, · , xj+1, . . .)(xj), Remark 3.5

yields the positive maximum principle on (E∆)k also for Tk and thus for Lk.

The following result gives a useful condition for uniqueness when all the operators Ai
are zero. Due to Lemma 3.6 this happens, for instance, if D = C∆(E) and in particular
if E consists of finitely many points. An example where uniqueness holds when those
operators are not all zero is given in Example 6.7.

Lemma 5.8. Consider setting and assumptions of Theorem 5.6, and assume that Ai = 0

for all i. Assume additionally that α is bounded and B is closable and its closure is the
generator of a strongly continuous contraction semigroup on C∆(E). Then the moment
formula (5.3) holds for all g ∈ Ĉ∆(Ek) and k ∈ N.

Since B satisfies the positive maximum principle on E∆ due to Theorem 5.6(iii), the
Hille–Yosida theorem guarantees that the conditions of the lemma are satisfied whenever
λ−B has dense range in C∆(E) for some λ > 0.

Proof. Let {Y 1
t }t≥0 be the semigroup corresponding to B. Fix any k ∈ N and let Bk

and Qk be as in (4.5). It is straightforward to check that Bk is the restriction to D⊗k of
the generator of the strongly continuous contraction semigroup {(Y 1

t )⊗k}t≥0 on Ĉ∆(Ek).
Moreover, one has the estimate

‖Qkg‖ ≤ k(k − 1)‖α‖‖g‖, g ∈ Ĉ∆(Ek),

whence Qk is a bounded operator. It follows as in Theorem 1.7.1 and Corollary 1.7.2
in [17] that Lk = Bk + Qk is closable and its closure is the generator of a strongly
continuous contraction semigroup on Ĉ∆(Ek). By Remark 5.4 and Theorem 5.3 the
result follows.

While Theorem 5.6 only gives sufficient conditions for existence, the result is sharp.
Indeed, we now show that if D = C∆(E), no other polynomial specifications exist. For
instance, this is the case if E is a finite set. The following theorem, which is our second
main result of this section, makes this precise. The proof is given in Section B.

Theorem 5.9. Let D = C∆(E) and let L : PD → P be a linear operator. Then L is M1(E)-
polynomial, its martingale problem is well posed, and all solutions have continuous paths,
if and only if L satisfies (4.2) with

Bg =

∫
(g(ξ)− g( · )) νB( · , dξ) and Qg = αΨ(g), (5.5)

where νB is a nonnegative, finite kernel from E to E, and α : (E∆)2 → R is nonnegative,
symmetric, bounded, and continuous on (E∆)2 \ {x = y}. In this case, for each k ∈ N the
k-th dual operator Lk satisfies the hypothesis of Theorem 5.3, and the moment formula
(5.3) holds for all g ∈ Ĉ∆(Ek). Moreover, B and Q, and hence each Lk, are bounded
operators.

As in Theorem 5.6, condition (4.2) imposes implicit conditions on the different pa-
rameters. This is the case for the measure νB, which in particular needs to satisfy∫

(g(ξ) − g( · ))νB( · , dξ) ∈ C∆(E) for all g ∈ C∆(E). This condition is clearly satisfied if
the map from E to M+(E) given by x 7→ νB(x, · ) is continuous. However the converse
fails to be true as one can see by considering the following kernel

νB(x, dξ) = δφ(x)1{φ(x)6=x},

for some continuous φ : E → E such that φ 6= id.
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Corollary 5.10. Let D ⊆ C∆(E) be a dense linear subspace containing the constant
function 1 and let L satisfy (4.2) with B and Q as in Theorem 5.9. Then L is M1(E)-
polynomial, its martingale problem is well–posed, and all solutions have continuous
paths. Moreover, the moment formula (5.3) holds for all g ∈ D⊗k and k ∈ N.

Proof. Since by Theorem 5.9 each Lk is bounded, the operator L can be uniquely
extended to PC∆(E). The result then follows by the same theorem.

The last main result of this section characterizes probability-valued polynomial
martingales. An M1(E)-valued process X is called a martingale if 〈g,X〉 is a martingale
for every g ∈ C∆(E). Note that, unlike Theorem 5.6, the conditions are both necessary
and sufficient, regardless of the choice of domain D.

Theorem 5.11. Let D ⊆ C∆(E) be a dense linear subspace containing the constant
function 1. Let L : PD → P be a linear operator. Then L is M1(E)-polynomial, its
martingale problem has a solution for any initial condition, and every solution is a
martingale with continuous paths, if and only if L satisfies (4.2) with

B = 0 and Q = αΨ

for some nonnegative symmetric function α : E2 → R. In this case, if in addition α is
bounded, the martingale problem is well–posed.

Proof. To prove the forward implication, first note that Lemma 5.2 and Theorem 4.3
imply that L satisfies (4.2). To see that B = 0, pick any g ∈ D and x ∈ E, and let X be a
solution to the martingale problem with initial condition δx. Since 〈g,X〉 is a martingale,
we have 〈Bg,X〉 = 0 and hence Bg(x) = 〈Bg,X0〉 = 0. The form of Q will follow from
Lemma C.3. To verify its hypotheses, fix g ∈ D and ν ∈ M1(E), and define p ∈ PD by
p(µ) := −(〈g, ν〉 − 〈g, µ〉)2. Then ∂2p(ν) = −2g ⊗ g, p ≤ 0, and p(ν) = 0, so the positive
maximum principle yields

−〈Q(g ⊗ g), ν2〉 = Lp(ν) ≤ 0.

Next, fix g ∈ D and ν ∈M1(E) such that g is constant on the support of ν. Define p ∈ PD
by p(µ) := 〈g, µ〉2 − 〈g2, µ〉. Then, again, ∂2p(ν) = 2g ⊗ g, and Jensen’s inequality yields
p ≤ 0 and p(ν) = 0. Consequently,

〈Q(g ⊗ g), ν2〉 = Lp(ν) ≤ 0.

The form of Q thus follows from Lemma C.3.
To prove the reverse implication, observe that existence of solutions to the martingale

problem, along with path continuity, follows from Corollary 5.10, as does well–posedness
if in addition α is bounded. Since B = 0, it is clear that 〈g,X〉 is a martingale for
every g ∈ D and every solution X to the martingale problem. This implies that X is a
martingale.

6 Examples and applications

6.1 Finite underlying space

Let E = {1, . . . , d}. Then C∆(E) = C(E) is finite-dimensional, so any dense linear
subspace must equal the whole space. We therefore take D = C(E). In this setting,
any M1(E)-valued process X is of the form Xt =

∑d
i=1 Z

i
tδi for some ∆d-valued process

Z = (Z1, . . . , Zd). When X is a polynomial diffusion, Theorem 5.9 describes its generator
L in terms of a kernel νB from E to E and a nonnegative symmetric function α : E2 → R.
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As we now show, the process Z then also solves a martingale problem whose generator
can be written down explicitly.

In view of Example 2.1, any polynomial f on ∆d can be represented as

f(z) = p(z1δ1 + · · ·+ zdδd)

for some p ∈ PD. We may then define an operator A acting on such polynomials f by the
formula

Af(z) := Lp(z1δ1 + · · ·+ zdδd).

Since f(Z) = p(X) and Af(Z) = Lp(X), it is clear that Z is a solution to the martingale
problem for A with polynomials f as test functions. Conversely, if a solution Z to this
martingale problem is given, a solution to the martingale problem for L is obtained by
setting X :=

∑d
i=1 Z

iδi.
Next, a computation shows that A has the form

Af(z) =

d∑
i,j=1

νB(i, {j})zi
(
∂f

∂zj
(z)− ∂f

∂zi
(z)

)

+
1

2

d∑
i,j=1

α(i, j)zizj

(
∂2f

∂z2
i

(z) +
∂2f

∂z2
j

(z)− 2
∂2f

∂zi∂zj
(z)

)
.

(6.1)

This can alternatively be written Af(z) = b(z)
>∇f(z) + 1

2 Tr
(
a(x)∇2f(x)

)
, where the

coefficients b and a are given by

bk(z) :=

d∑
i=1

(
νB(i, {k})zi − νB(k, {i})zk

)
, k = 1, . . . , d,

ak`(z) := −1

2
α(k, `)zkz`, k, ` = 1, . . . , d, k 6= `,

and akk(z) = −
∑
` 6=k ak`(z). Here well-posedness was obtained in [21], which we thus

recover as a special case. In particular, Z is a polynomial diffusion on ∆d in the sense
of [21, Definition 2.1]. Furthermore, Theorem 5.9 yields the moment formula for X,
which reduces to the corresponding formula for Z given in [21, Theorem 3.1].

6.2 Underlying space E ⊆ Rd

Let E ⊆ Rd be a closed subset and set

D := {f |E : f ∈ R+ C∞c (Rd)}.

Our goal is to analyze Theorem 5.6 in this setting. If E is not all of Rd, the dynamics of
the spatial motion is restricted. Intuitively, its diffusion component must be tangential to
the boundary of E. This is encoded as follows.

Σd(E) :=
{
τ ∈ C1

∆(Rd,Rd×d) :
g ∈ D, x ∈ E, g(x) = maxE g

imply τ(x)>∇g(x) = 0

}
. (6.2)

Here C1
∆(Rd,Rd×d) consists of the matrix-valued functions with components in C1

∆(Rd) =

C∆(Rd) ∩ C1(Rd).

Lemma 6.1. Fix τ ∈ Σd(E) with columns τ1, . . . , τd. The operators Ai : D → C∆(E) given
by

Aig := τ>i ∇g, g ∈ D, (6.3)

satisfy the conditions of Theorem 3.4. That is, each Ai is the generator of a strongly
continuous group of positive isometries of C∆(E), and its domain contains both D and
Ai(D).
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Note that Ai is well-defined by (6.3) in the sense that Aig only depends on g through
its values on E. This is a direct consequence of the definition (6.2) of Σd(E).

Proof. By Proposition 2.5 in [10], for each i = 1, . . . , d, there exists a map (t, x) 7→ φi(t, x)

from R× E to E such that

∂

∂t
φi(t, x) = τi(φi(t, x)), φi(0, x) = x,

and the flow property φi(s + t, x) = φi(s, φi(t, x)) holds since τi ∈ C1
∆(Rd,Rd). This

implies that Ti,tg(x) := g(φi(t, x)), t ∈ R, defines a strongly continuous group of positive
isometries of C∆(E) with generator Ai. It is clear that the domain of Ai contains D, and
it also contains Ai(D) since the components of τi lie in C1

∆(Rd).

Theorem 6.2. Let L : PD → P be a linear operator satisfying (4.2), where

(i) B is E-conservative and B1 = 0,

(ii) Q is given by

Q(g ⊗ g) = αΨ(g ⊗ g) + Tr
(
(τ>∇g)⊗ (τ>∇g)>

)
g ∈ D,

where τ ∈ Σd(E) and α : E2 → R is a nonnegative symmetric function,

(iii) B −
∑d
i=1(τ>i ∇)2 satisfies the positive maximum principle on E, where τ1, . . . , τd

are the columns of τ .

Then conditions (i)–(iii) of Theorem 5.6 hold.

Proof. This follows directly from Lemma 6.1, up to the fact that in (iii) we need to verify
that the positive maximum principle holds on E∆, not just on E. Since D ⊆ Cc(E), this
follows from Remark 5.7(i).

The rest of the section is devoted to the case d = 1 and E = R. In view of Lemma C.1,
the operator B should satisfy the positive maximum principle on E = R. It is well-known,
see e.g. [6] or [24], that under this condition B is a Lévy type operator, i.e.

Bg = bg′ +
1

2
ag′′ +

∫
(g( · + ξ)− g − χ(ξ)g′)F ( · , dξ), g ∈ D, (6.4)

for some continuous functions a, b with a ≥ 0, a truncation function χ, and a kernel
F ( · , dξ) from R to R such that

∫
|ξ|2 ∧ 1F ( · , dξ) < ∞. Every operator of this form

satisfies B1 = 0 and the positive maximum principle on R. The following result expresses
Theorem 6.2 in this setting.

Corollary 6.3. Let L : PD → P be a linear operator satisfying (4.2), where B is given
by (6.4) with a := σ2 + τ2 for some continuous functions σ and τ , and Q is given by

Q(g ⊗ g)(x, y) =
1

2
α(x, y)(g(x)− g(y))2 + τ(x)τ(y)g′(x)g′(y), g ∈ D,

where α ∈ Ĉ∆(R2) is nonnegative and τ ∈ C1
∆(R). Assume also that B is R-conservative.

Then conditions (i)–(iii) of Theorem 5.6 hold true.

The coefficient α quantifies the diffusive exchange of mass between different points
in the support of Xt(dx). This is perhaps most clearly seen when E = {1, . . . , d}; see
Section 6.1. The role of τ is different, as it governs random fluctuations of the support of
Xt(dx). The following example illustrates this point.
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Example 6.4. Consider an operator L of the form given in Corollary 6.3 with α = 0,
Bg = 1

2g
′′, and τ = 1 (hence σ = 0). The resulting operator Q is given by Q(g⊗g) = g′⊗g′.

A solution to the martingale problem for L is given by X = δW , where W is a Brownian
motion. Indeed, applying Itô’s formula to 〈g,Xt〉k = g(Wt)

k for any g ∈ D and k ∈ N0

establishes that (5.1) is a martingale for any p ∈ PD.

In this example, as well as in Corollary 6.3, a nonzero τ in the specification of Q is
coupled with a corresponding diffusive component in the specification (6.4) of B. The
following result shows that this is a general phenomenon.

Proposition 6.5. Let L : PD → P be a linear operator satisfying (4.2) with B given by
(6.4). Suppose that L satisfies the positive maximum principle on R. If a = 0, then
Q = αΨ for some nonnegative symmetric function α : R2 → R.

Proof. Lemma 6.6 below with λ = 0, 1, 1/2, along with Lemma C.1, imply that the
conditions of Lemma C.3(i) are satisfied. The result follows.

The next lemma constitutes the main tool to prove Proposition 6.5. But it also has
other consequences. In particular, it implies that Q(g⊗g)(x, y) depends on g just through
g(x), g(y), g′(x), and g′(y), provided that L satisfies the positive maximum principle on
M1(E). This illustrates that the form of Q as given in Theorem 6.2 is very general.

Lemma 6.6. Let L : PD → P be a linear operator satisfying (4.2) with B given by (6.4).
Suppose that L satisfies the positive maximum principle on R. Then, for all λ ∈ [0, 1],
g ∈ D, and x, y ∈ R such that g(x) = g(y), we have that〈

Q(g ⊗ g), ν2
λ

〉
≤
〈
(ag′)2, νλ

〉
, νλ = λδx + (1− λ)δy.

Proof. Fix g ∈ D such that g(x) = g(y). Since, by Lemma C.1, B1 = 0 and Q(g ⊗ 1) = 0 it
is enough to consider the case g(x) = g(y) = 1. The result will follow from Lemma C.4.
Indeed, if we let (pn)n∈N and (fn)n∈N be the sequences described there, by the positive
maximum principle of L on R we get

0 ≥ Lpn(νλ) =
〈
Bfn, νλ

〉
+

1

2

〈
Q(g ⊗ g), ν2

λ

〉
and letting n go to∞ we can conclude the proof.

To verify the hypotheses of Lemma C.4, observe that Lemma C.1 yields

〈Q(g ⊗ g), ν2
λ〉 ≥ 0 for all λ ∈ [0, 1].

Fix some g ∈ D and x, y ∈ R such that g(z) = g′(z) = 0 for z ∈ {x, y}, and suppose that
‖g‖ = 1. Let Fn : [0, 1] → R be the function defined in Lemma B.1. Consider then the
sequence of polynomials given by

pn(ν) = 〈g, ν〉2Fn
(
〈H, ν〉

)
− 1

n
〈H, ν〉,

where, for some compactly supported function ρ ∈ C∞∆ (R) such that ρ = 1 on some
neighborhood of x and y and ρ(R) ⊆ [0, 1],

H(z) = C|z − x|2|z − y|2ρ(z) + (1− ρ(z)).

Observe that the conditions on g guarantee that for C big enough |g| ≤ H and thus
|〈g, ν〉| ≤ 〈H, ν〉 for all ν ∈M1(R). For supp(ρ) small enough we also have that ‖H‖ ≤ 1.
Lemma B.1 then yields 〈g, ν〉2Fn

(
〈H, ν〉

)
≤ 1

n 〈H, ν〉 for all ν ∈ M1(R), and therefore
pn ≤ 0 on M1(R). This automatically implies that pn has a maximum at νλ for all λ ∈ [0, 1].
Proceeding as in the proof of Theorem 5.9 we then obtain that 〈Q(g ⊗ g), ν2

λ〉 = 0 for any
g ∈ D such that g(x) = g(y) = 1 and g′(x) = g′(y) = 0. Choosing λ = 0, 1, 1/2 we get the
result.
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The following example gives a simple condition for well-posedness. We let Gk, Ck,
and Tk be as in Remark 5.7(iii).

Example 6.7. Consider the setting of Corollary 6.3. Suppose that σ2 is bounded away
from zero, let the jump kernel F ( · , dξ) in (6.4) be zero, and assume that the parameters
b and σ2 are Lipschitz continuous and bounded. Then, by Theorem 8.1.6 of [17], B is
R-conservative and the closure of Gk + Tk generates a strongly continuous semigroup
on Ĉ∆(Ek) for each k ∈ N. Since Ck is bounded, Lk generates a strongly continuous
contraction semigroup on Ĉ∆(Ek) as well (see e.g. Theorem 1.7.1 in [17] for more
details). Since Remark 5.7(iii) shows that Lk satisfies the positive maximum principle,
Remark 5.4 and Theorem 5.3 yield the moment formula for all g ∈ D⊗k. Well-posedness
thus follows from Theorem 5.6.

6.3 Conditional laws of jump-diffusions are polynomial

In this section we deal with particle systems driven by some idiosyncratic noise
(Brownian motion and jumps) and one common Brownian motion. We show that for
essentially all such jump diffusions the conditional law with respect to the common
Brownian motion is polynomial.

Throughout E = R and D ⊆ R+C∞c (R). Let b, σ, τ and F ( · , dξ) be as in Corollary 6.3
with the additional integrability conditon

∫
|ξ|2 ∧ |ξ|F ( · , dξ) <∞. For these parameters

and α = 0 we define L to be the corresponding polynomial operator as of Corollary 6.3.
Moreover, let (Zi)i∈N be a weak solution of the system

dZit = b(Zit)dt+ σ(Zit)dW
i
t + τ(Zit)dW

0
t +

∫
ξ
(
pi(dt, dξ)− F (Zit , dξ)dt

)
, (6.5)

with Zi0 = x ∈ R, where W 0 is a Brownian motion and (W 1, p1), (W 2, p2), . . . is a sequence
of couples of Brownian motions and random measures with compensator F ( · , dξ). We
assume that each couple is independent of the other couples and of W 0. Note that the
generator of each Zi is given by B as defined in (6.4).

Assume now that Z1, Z2, . . . are exchangeable and set

Xt = lim
n→∞

1

n

n∑
i=1

δZi
t
.

By De Finetti’s theorem (see e.g. Theorem 4.1 in [27] or, for a general overview, also
Section 12.3 in [26]) we get that (Zit)i∈N are conditionally i.i.d. with respect to the
invariant σ-algebra F∞t = σ(Xs, s ≤ t) and that X can be expressed as

Xt = P(Z1
t ∈ · |F∞t ). (6.6)

This implies in particular that for all g ∈ D⊗k and k ∈ N it holds

〈g,Xk
t 〉 = E[g(Z1

t , . . . , Z
k
t )|F∞t ]. (6.7)

Note that (see e.g. Theorem 2.3 in [28]) that under the additional assumption of
pathwise uniqueness for the solution of (6.5), we get that

Xt = P(Z1
t ∈ · |F0

t ), where F0
t = σ(W 0

s , s ≤ t),

since F0
t = F∞t in this case.

In the following proposition we now show that X is polynomial by proving that it
solves the martingale problem for the polynomial operator L specified above.

Proposition 6.8. Let X be given by (6.6). Then X solves the martingale problem for L
with initial condition δx.
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Proof. Let g ∈ D⊗k and set Z := (Z1, . . . , Zk). Then we get that

Ng,k
t := g(Zt)− g(x, . . . , x)−

∫ t

0

Lkg(Zs)ds

is a bounded (Ft)t≥0-martingale, where, in accordance with (4.4),

Lk = kB ⊗ id⊗(k−1) +
k(k − 1)

2
Στ ⊗ Στ ⊗ id⊗(k−2)

for Στg := τg′. Since F∞t ⊆ Ft this implies that E[Ng,k
t |F∞t ] is an (F∞t )t≥0-martingale

and hence setting p(ν) := 〈g, νk〉 we can compute using (6.7)

E[p(Xt)|F∞s ]− p(Xs) = E

[ ∫ t

s

Lkg(Zu)du

∣∣∣∣F∞s ]
= E

[ ∫ t

s

E[Lkg(Zu)|F∞u ]du

∣∣∣∣F∞s ] = E

[ ∫ t

s

Lp(Xu)du

∣∣∣∣F∞s ]
proving that X is a solution to the martingale problem for L.

A Proof of Theorem 4.3 and a generalization

We first prove Theorem 4.3. Assume first L is of the stated form. Then for monomials
p(ν) = 〈g, ν〉k with g ∈ D, k ∈ N and ν ∈M1(E) one has

Lp(ν) =
〈
B
(
∂p(ν)

)
, ν
〉

+
1

2

〈
Q
(
∂2p(ν)

)
, ν2
〉

= k〈g, ν〉k−1〈Bg, ν〉+
1

2
k(k − 1)〈g, ν〉k−2〈Q(g ⊗ g), ν2〉,

which is a polynomial in ν of degree at most k. Moreover, L1 = 0. By linearity, this shows
that L is M1(E)-polynomial. Next, a direct calculation yields

Γ(p, q)(ν) =
〈
Q
(
∂p(ν)⊗ ∂q(ν)

)
, ν2
〉

for all ν ∈M1(E),

which is easily seen to be an M1(E)-derivation due to the product rule give in Lem-
ma 2.3(v).

Conversely, assume L is M1(E)-polynomial and Γ is an M1(E)-derivation. Consider
arbitrary first degree monomials q(ν) = 〈g, ν〉 and r(ν) = 〈h, ν〉, g, h ∈ D. The M1(E)-
polynomial property and Corollary 2.5 yield

Lq(ν) = 〈Bg, ν〉 for all ν ∈M1(E),

for some map B : D → C∆(E) that are easily seen to be linear due to the linearity of
L. Furthermore, the M1(E)-polynomial property, definition (4.1) of Γ, and Corollary 2.5
imply that

Γ(q, r)(ν) = 〈Q(g ⊗ h), ν2〉 for all ν ∈M1(E),

where Q inherits symmetry and linearity from Γ and take values in Ĉ∆(E2). Thus, by
taking linear combinations, we can and do extend them to operators on D ⊗D.

Explicit calculation now shows that Lp is of the form (4.2) for p = q and p = q2.
Furthermore, since Γ is an M1(E)-derivation we have Γ(1, 1) = 2Γ(1, 1), hence Γ(1, 1) = 0,
and therefore L1 = L(12) = 0 + 2L1. Thus L1 = 0, so that (4.2) holds also for p = 1.

We now make more substantial use of the fact that Γ is an M1(E)-derivation in order
to extend (4.2) to higher degree monomials. We proceed by induction on k, and assume
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Lp is of the form (4.2) for all p = ql, l ≤ k. So far we have proved this for k = 2. The
definition (4.1) of Γ and the fact that it is an M1(E)-derivation give the identity on M1(E)

L(qk+1) = 2qL(qk)− q2L(qk−1) + qk−1Γ(q, q)

for k ≥ 2. Due to the induction assumption, the right-hand side can be computed
explicitly using (4.2). The result is

(k + 1)q(ν)k〈Bg, ν〉+
1

2
(k + 1)kq(ν)k−1〈Q(g ⊗ g), ν2〉,

which is equal to 〈B(∂p(ν)), ν〉+ 1
2 〈Q(∂2p(ν)), ν2〉 with p = qk+1, for all ν ∈M1(E). This

concludes the induction step. It follows by induction that (4.2) holds for all monomials
〈g, ν〉k, and by linearity for all p ∈ PD. Finally, the uniqueness assertion is immediate
from the way B and Q were obtained above. This completes the proof of Theorem 4.3.

We now state a generalization of Theorem 4.3, where M1(E) is replaced by a general
state space. We let E be a locally compact Polish space, D ⊆ C∆(E) be a dense linear
subspace, and fix S ⊆M(E).

Theorem A.1. Let L : PD → P be a linear operator. Then L is S-polynomial and its carré-
du-champs operator Γ is an M1(E)-derivation if and only if L admits a representation

Lp(ν) =B0(∂p(ν)) +
〈
B1(∂p(ν)), ν

〉
+

1

2

(
Q0(∂2p(ν)) +

〈
Q1(∂2p(ν)), ν

〉
+
〈
Q2(∂2p(ν)), ν2

〉)
, ν ∈ S

for some linear operators B0 : D → R, B1 : D → C∆(E), Q0 : D ⊗D → R, Q1 : D ⊗D →
C∆(E), Q2 : D ⊗D → Ĉ∆(E2). If S contains an open subset of M(E), these operators
are uniquely determined by L.

Proof. The proof of this result follows the proof of Theorem 4.3.

B Proof of Theorem 5.9

Assume L satisfies (4.2) with B and Q as in (5.5), where νB is a nonnegative, finite
kernel from E to E, and α : (E∆)2 → R is nonnegative, symmetric, bounded, and
continuous on (E∆)2\{x = y}. ClearlyQ is bounded with operator norm 2‖α‖. Identifying
C∆(E) and C(E∆), we infer from Lemma C.2 that B is bounded, satisfies B1 = 0 as well
as the positive maximum principle on E∆, and that {etB}t≥0 is a strongly continuous
contraction semigroup. By considering any sequence of functions gn ∈ C0(E) with
0 ≤ gn(x) ↑ 1 for all x ∈ E, and using that νB(x, {∆}) = 0 for all x ∈ E, one sees that B is
E-conservative. Theorem 5.6 then yields that L is M1(E)-polynomial and its martingale
problem has an solution with continuous paths for every initial condition ν ∈ M1(E).
Well–posedness follows by Lemma 5.8.

We now prove the opposite implication. Assume L is M1(E)-polynomial, its martingale
problem is well–posed, and all solutions have continuous paths. Theorem 4.3 and
Lemma 5.2 imply that L satisfies (4.2), and then also the positive maximum principle on
M1(E) due to Lemma D.1.

By Lemma C.1 B satisfies the positive maximum principle on E and Lemma C.2 thus
shows that B has the form in (5.5) for some nonnegative, finite kernel νB from E∆ to E∆.
Additionally, B is bounded, satisfies the positive maximum principle on E∆, and is the
generator of the strongly continuous contraction semigroup {etB}t≥0. We must prove
that νB(x, {∆}) = 0 for all x ∈ E; this will allow us to view νB as a kernel from E to E.
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Assume by contradiction that there is some x ∈ E with νB(x, {∆}) > 0. Let Z be the
Markov process associated to the semigroup {etB}t≥0. Then, by approximating 1{·∈∆} by
a sequence of bounded continuous functions gn and applying relation (5.4), we find

0 < P[Zt ∈ ∆|Z0 = x] = E[1{Zt∈∆}|Z0 = x] = lim
n→∞

E[gn(Zt)|Z0 = x]

= lim
n→∞

E[〈gn(·), Xt〉|X0 = δx] = E[〈1{·∈∆}, Xt〉|X0 = δx]

for all t ≥ 0. This contradicts the fact that Xt is M1(E)-valued and proves that B is of
the stated form.

The form of Q will follow from Lemma C.3. To verify its hypotheses, note that by
Lemma C.1 〈Q(g ⊗ g), ν2〉 ≥ 0. Next, fix some g ∈ D and ν ∈ M1(E) such that g = 0 on
the support of ν, and suppose that ‖g‖ = 1. For each n ∈ N, define the polynomial

pn(µ) = 〈g, µ〉2Fn (〈|g|, µ〉)− 1

n
〈|g|, µ〉,

where Fn is as in Lemma B.1. Since D = C∆(E), we have pn ∈ PD. Moreover, since
Fn(z)zn ≤ 1 for all z ∈ [0, 1], we get

〈g, µ〉2Fn (〈|g|, µ〉) ≤ 1

n
〈|g|, µ〉, µ ∈M1(E),

and therefore pn ≤ 0 on M1(E). Since g = 0 on the support of ν, pn(ν) = 0. Applying the
positive maximum principle and using the form (4.2) of L, as well as 〈g, ν〉 = 〈|g|, ν〉 = 0

and Fn(0) = 1 we obtain

0 ≥ Lpn(ν) = − 1

n
〈B(|g|), ν〉+ 〈Q(g ⊗ g), ν2〉

for all n, whence 〈Q(g ⊗ g), ν2〉 ≤ 0. By scaling, this actually holds for any g ∈ D and
ν ∈M1(E) such that g = 0 on the support of ν. If g equals some other constant c ∈ R on
the support of ν, we still get

〈Q(g ⊗ g), ν2〉 = 〈Q((g − c)⊗ (g − c)), ν2〉 ≤ 0

using that Q(g ⊗ 1) = 0 by Lemma C.1. Thus Lemma C.3(ii) holds, and we conclude that
Q = αΨ for some nonnegative symmetric function α : E2 → R. It remains to use that
αΨ(g) ∈ Ĉ∆(E2) to show that this function can be extended to a bounded continuous
function on (E∆)2 \ {x = y}.

Continuity is clear. For proving boundedness, choose a sequence of pairs (xn, yn) ∈
(E∆)2 \ {x = y} such that α(xn, yn)

n→∞−−−−→ ∞. Since we can assume without loss of
generality that α(xi, yi) > 0, xi 6= xj , xi 6= yj , and yi 6= yj for all i, j ∈ N, we can
construct g ∈ C∆(E) such that

(g(xn)− g(yn))4 = α(xn, yn)−1.

This yields α(xn, yn)Ψ(g ⊗ g)(xn, yn) = α(xn, yn)1/2 proving that αΨ(g ⊗ g) is unbounded
and providing the necessary contradiction.

Lemma B.1. Define Fn(z) := n−1
n (1− z)n + 1

n for all z ∈ [0, 1]. Then

Fn(z) ∈ [0, 1], Fn(z)zn ≤ 1, and Fn(z)
√
zn ≤ 1,

for all z ∈ [0, 1].
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C Auxiliary lemmas

Let E be a locally compact Polish space.

Lemma C.1. Let D ⊆ C∆(E) be a dense linear subspace containing the constant func-
tion 1, and let L : PD → P be a linear operator satisfying (4.2) and the positive maximum
principle on M1(E). Then B satisfies the positive maximum principle on E, B1 = 0,
〈Q(g ⊗ g), ν2〉 ≥ 0, and Q(g ⊗ 1) = 0 for all g ∈ D and ν ∈M1(E).

Proof. By (4.2) we get L1 = 0. Note also that for any g ∈ D and x ∈ E such that g(x) =

maxE g ≥ 0, the polynomial p(ν) = 〈g, ν〉 lies in PD and satisfies p(δx) = maxM1(E) p ≥ 0.
Thus Bg(x) = Lp(δx) ≤ 0. Furthermore, taking p(ν) = 〈1, ν〉 we get p ≡ 1 on M1(E)

and hence B1(x) = Lp(δx) = 0 for all x ∈ E. Fix then g and ν as in the lemma and
define p ∈ PD by p(µ) = −(〈g, ν〉 − 〈g, µ〉)2. Then p ≤ 0, p(ν) = 0, ∂p(ν) = 0, and
∂2p(ν) = −2g ⊗ g, so the positive maximum principle yields −〈Q(g ⊗ g), ν2〉 = Lp(ν) ≤ 0.

Furthermore, taking p(ν) = 〈g ⊗ 1, ν2〉 − 〈g, ν〉 we get p ≡ 0 on M1(E) and hence
0 = 〈g, ν〉〈B1, ν〉+ 〈Q(g⊗ 1), ν2〉 = 〈Q(g⊗ 1), ν2〉 for all ν ∈M1(E), proving the claim.

Lemma C.2. Let B : C(E∆)→ C(E∆) be a linear operator. Then B1 = 0 and B satisfies
the positive maximum principle on E if and only if there is a nonnegative, finite kernel
νB from E to E∆ such that

Bg(x) =

∫
(g(ξ)− g(x))νB(x, dξ) (C.1)

for all x ∈ E and g ∈ C(E∆). In this case, B is bounded and satisfies the positive
maximum principle on E∆, and {etB}t≥0 is a strongly continuous contraction semigroup.
Moreover, there is some nonnegative (finite) measure νB(∆, · ) such that (C.1) holds also
for x = ∆.

Proof. Assume there is a nonnegative, finite kernel νB from E to E∆ such that (C.1)
holds for all x ∈ E and g ∈ C(E∆). Then clearly B1 = 0. Suppose g ∈ C(E∆), x ∈ E,
and g(x) = maxE g ≥ 0. Then g(x) = maxE∆ g, so that g(ξ)− g(x) ≤ 0 for all ξ ∈ E∆ and
hence Bg(x) ≤ 0. Thus B satisfies the positive maximum principle on E, which proves
sufficiency.

To prove necessity, assume B1 = 0 and B satisfies the positive maximum principle
on E. By Lemmas 4.2.1 and 1.2.11 in [17], the restriction B|C0(E) is dissipative, hence
closable, and even closed since it is globally defined on C0(E). By the closed graph
theorem B|C0(E) is bounded, and then so is B since B1 = 0. Pick any g ∈ C(E∆) with
g(∆) = maxE∆ g ≥ 0. Then g − g(∆) ≤ 0, so there exist functions hn ∈ Cc(E) with hn ≤ 0

and hn → g − g(∆) uniformly. Then Bhn → B(g − g(∆)) = Bg uniformly as well. Taking
xn such that hn(xn) = 0 and xn → ∆, we obtain Bg(∆) = limn→∞Bhn(xn) ≤ 0. We
have thus proved that B is bounded and satisfies the positive maximum principle on
E∆. As a result, Lemma 4.2.1 and Theorem 1.7.1 in [17] yield that {etB}t≥0 is a strongly
continuous contraction semigroup.

It remains to exhibit a kernel νB from E∆ to E∆ such that (C.1) holds for all x ∈ E∆

and g ∈ C(E∆). To this end, fix x ∈ E∆ and define h ∈ C(E∆) by h(y) := d(x, y), where
d( · , · ) is a compatible metric for the Polish space E∆. Since B satisfies the positive
maximum principle on E∆, the map

C(E∆)→ R, g 7→ B(gh)(x)

is a positive linear functional. By the Riesz–Markov representation theorem, there is a
measure µ(x, · ) ∈M+(E∆) such that B(gh)(x) =

∫
E∆ g(ξ)µ(x, dξ) for all g ∈ C(E∆). We
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define

νB(x, dξ) := 1E∆\{x}(ξ)
1

h(ξ)
µ(x, dξ),

which is permissible since h(y) > 0 for all y 6= x. For every g ∈ Cc(E∆ \ {x}) we have
g/h ∈ C(E∆), and therefore

Bg(x) = B
( g
h
h
)

(x) =

∫
E∆

g(ξ)

h(ξ)
µ(x, dξ) =

∫
E∆

g(ξ)νB(x, dξ).

Since B is bounded, the identity Bg(x) =
∫
E∆ g(ξ)νB(x, dξ) extends by continuity to all

g ∈ C(E∆) with g(x) = 0. Thus, using also that B1 = 0,

Bg(x) = B(g − g(x))(x) =

∫
E∆

(g(ξ)− g(x))νB(x, dξ).

Repeating this for every x ∈ E∆ yields that νB satisfies (C.1) for all x ∈ E∆ and
g ∈ C(E∆). To see that νB(x,E∆) < ∞, note that

∫
E∆ g(ξ)νB(x, dξ) ≤ ‖B‖ whenever

g ∈ C(E∆) satisfies 0 ≤ g ≤ 1 and g(x) = 0. Measurability of νB( · , A) for every Borel set
A ⊆ E∆ follows from a monotone class argument, so that νB is indeed a kernel from E∆

to E∆.

Lemma C.3. Let D ⊆ C∆(E) be a dense linear subspace containing the constant func-
tion 1, and let Q : D ⊗D → Ĉ∆(E2) be a linear operator. The following conditions are
equivalent:

(i) Q(g ⊗ g)(x, y) ≥ 0 for all g ∈ D, x, y ∈ E, with equality if g(x) = g(y).

(ii) 〈Q(g ⊗ g), ν2〉 ≥ 0 for all g ∈ D and ν ∈M1(E), with equality if g is constant on the
support of ν.

If either condition is satisfied, then Q is of the form Q = αΨ for some nonnegative
symmetric function α : E2 → R.

Proof. It is clear that (i) implies (ii). For the converse, first note that for any x ∈ E and
g ∈ D, trivially g is constant on the support of δx. Thus Q(g⊗ g)(x, x) = 〈Q(g⊗ g), δ2

x〉 = 0.
Taking ν = 1

2 (δx + δy) for any x, y ∈ E then yields Q(g⊗ g)(x, y) = 〈Q(g⊗ g), ν2〉 ≥ 0, with
equality if g(x) = g(y) since g is then constant on the support of ν. This proves that (ii)
implies (i).

It remains to obtain the stated form of Q under the assumption that (i) holds. If E
is a singleton then Q = 0, so we may assume that E contains at least two points. Fix
x, y ∈ E with x 6= y. Due to (i), the map (g, h) 7→ Q(g ⊗ h)(x, y) is bilinear and positive
semidefinite, and therefore satisfies the Cauchy–Schwarz inequality

|Q(g ⊗ h)(x, y)| ≤
√
Q(g ⊗ g)(x, y)

√
Q(h⊗ h)(x, y).

Along with (i) this implies that Q(g ⊗ h)(x, y) depends on g and h only through their
values at x and y. Moreover, since D is dense in C∆(E), for every a ∈ R2 there exists
g ∈ D such that a = (g(x), g(y)). Thus there is a unique map T : R2 ×R2 → R such that

Q(g ⊗ h)(x, y) = T (a, b) where a =

(
g(x)

g(y)

)
, b =

(
h(x)

h(y)

)
.

The map T inherits bilinearity and positive semidefiniteness. Since Q(g ⊗ 1)(x, y) = 0

due to the Cauchy–Schwarz inequality and (i), we also have T (a, b) = 0 for b = (1, 1). This
implies that T (a, b) = 1

2α(x, y)(a1 − a2)(b1 − b2) for some α(x, y) ∈ R+. Thus,

Q(g ⊗ h)(x, y) =
1

2
α(x, y)(g(x)− g(y))(h(x)− h(y)) = α(x, y)Ψ(g ⊗ h)(x, y).
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Defining α(x, x) arbitrarily, we obtain the map α : E2 → R, which is symmetric due to
the symmetry of Q(g ⊗ h).

Consider now the setting of Lemma 6.6, i.e. E = R and D = R+ C∞c (R).

Lemma C.4. Consider two operators B : D → C∆(R) and Q : D ⊗ D → Ĉ∆(R2) such
that B is as in (6.4) and Q satisfies

Q(h⊗ h)(x, y) ≥ 0 for all h ∈ D, with equality if h(x) = h(y) and h′(x) = h′(y) = 0.

Then, for each g ∈ D and x, y ∈ R such that g(x) = g(y) = 1 there exists a sequence
(pn)n∈N ⊆ PD such that

pn(νλ) = max
M1(R)

pn, ∂pn(νλ) = fn, and
〈
Q(∂2pn(νλ)), ν2

λ

〉
=
〈
Q(g ⊗ g), ν2

λ

〉
for all n ∈ N and λ ∈ [0, 1], where νλ = λδx + (1− λ)δy and (fn)n∈N satisfies

lim
n→∞

−2Bfn(z) = (a(z)g′(z))2, z ∈ {x, y}.

Proof. Fix g ∈ D such that g(x) = g(y) = 1. Let Fn : [0, 1]→ R as in Lemma B.1 and fix a
compactly supported function ρ ∈ C∞c (R) such that ρ = 1 on some neighborhoods of x
and y and ρ(R) ⊆ [0, 1]. Set then

gn(z) = 1 + g′(x)(z − x)
(z − y)2

(x− y)2
Fn4

(
|z − x|2

Cx

)
+ g′(y)(z − y)

(z − x)2

(x− y)2
Fn4

(
|z − y|2

Cy

)
,

where Cx = 2 supz∈supp(ρ)(z−x)2. Setting gn = 1 + (gn−1)ρ we get gn ∈ R+C∞c (R) = D.
For n even, define now the polynomial

pn(ν) =
1

n(n− 1)

(
〈gn, ν〉n − 〈gnn , ν〉

)
.

Since pn(νλ) = 0 and by Jensen inequality pn ≤ 0, we can conclude that νλ maximizes pn
for all n even and λ ∈ [0, 1]. Observe that

∂pn(νλ) =
1

n− 1

(
gn −

1

n
gnn

)
=: fn and ∂2pn(νλ) = gn ⊗ gn.

Proceeding as in the proof of Lemma C.3, we can use the assumptions on Q to prove
that Q(g ⊗ h)(x, y) depends on g and h only through their values and the values of their
derivatives at x and y. Since gn(z) = g(z) = 1 and g′n(z) = g′(z) for all n even and
z ∈ {x, y}, this implies that

〈
Q(gn ⊗ gn), ν2

λ

〉
=
〈
Q(g ⊗ g), ν2

λ

〉
. Finally, the representation

of B given by (6.4) yields

−2Bfn(z) =
(
a(z)g′(z)

)2 − 2

∫
1

n− 1

(
gn(z + ξ)− 1

n
gn(z + ξ)n

)
− 1

n
F (z, dξ),

for all z ∈ {x, y}. Since by the dominated convergence theorem the integral term
converges to 0 for n going to∞, this concludes the proof.

D Existence for martingale problems

The purpose of this section is to establish the (essential) equivalence between the
existence of a solution to the martingale problem for L and the positive maximum
principle for L. Here, E is a locally compact Polish space, D a dense linear subspace of
C∆(E) containing the constant function 1, and L : PD → P a linear operator satisfying
(4.2).

The first lemma asserts that the positive maximum principle is implied if a solution to
the martingale problem exists.
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Lemma D.1. If there exists a solution X to the martingale problem for L for each initial
condition in M1(E), then L satisfies the positive maximum principle on M1(E).

The proof of Lemma D.1 is standard and we thus omit it. See for instance the proof
of Lemma 2.3 in [21].

The next lemma is an adaptation of a classical result from [17]. For the application of
this result it is crucial that L is an operator on the space of bounded continuous functions
on a locally compact, separable, metrizable space. Since this is not the case for M1(E) if
E is noncompact, we work on M1(E∆), which is a compact Polish space with respect to
the topology of weak convergence.

The result of [17] can then be applied and we just have to check that if the initial
condition of an M1(E∆) solution X assigns mass 1 to E, then Xt(E) = 1 almost surely
for each t ≥ 0, so that the solution actually takes values in M1(E).

Lemma D.2. Suppose that L satisfies the positive maximum principle on M1(E∆). If B
is E-conservative, then there exists a solution to the martingale problem for L for every
initial condition in M1(E).

Proof. Recall that because of Lemma 2.3(i), the operator L can be seen as an operator on
the space polynomials on M1(E∆). The first part of the proof consists then in proving that
if L satisfies the positive maximum principle on M1(E∆) then there exists an M1(E∆)-
valued solution to the martingale problem for L for every initial condition inM1(E∆). This
result is a consequence of Theorem 4.5.4 in [17] and the successive Remark 4.5.5. We
now explain how the necessary conditions hold true. Observe that M1(E∆) is a compact
separable metrizable space and, by Lemma 2.7, that PD(M1(E∆)) := {p|M1(E∆) : p ∈ PD}
is a dense subset of the space of continuous functions on M1(E∆). Moreover, the positive
maximum principle implies that Lp|M1(E∆) = Lq|M1(E∆) for all p, q ∈ PD such that
p|M1(E∆) = q|M1(E∆). We may thus regard L as an operator on the space of continuous
functions on M1(E∆) with domain PD(M1(E∆)).

For the second part, recall that by definition of E-conservativity there exist functions
gn ∈ D ∩ C0(E) such that limn→∞ gn = 1, and limn→∞(Bgn)− = 0 bounded pointwise
on E and E∆, respectively. By the dominated convergence theorem, (5.1), and Fatou’s
lemma we can compute

E[Xt(E)] = lim
n→∞

E[〈gn, Xt〉] = lim
n→∞

(
〈gn, ν〉+ E

[ ∫ t

0

〈Bgn, Xs〉ds
])
≥ ν(E) = 1.

Finally, note that a càdlàg process X on M1(E∆) such that Xt(E) = 1 almost sure is
càdlàg also with respect to the topology of weak convergence on M1(E).
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