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Abstract

The purpose of this note is to show how simple Optimal Transport arguments, on the
real line, can be used in Superconcentration theory. This methodology is efficient to
produce sharp non-asymptotic variance bounds for various functionals (maximum,
median, lp norms) of standard Gaussian random vectors in Rn. The flexibility of this
approach can also provide exponential deviation inequalities reflecting preceding
variance bounds. As a further illustration, usual laws from Extreme theory and
Coulomb gases are studied.
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1 Introduction

As an introduction we recall some facts about Gaussian concentration of measure (cf.
[16]) and Superconcentration theory (cf. [10]).

It is well known that concentration of measure is an effective tool in various mathe-
matical areas (cf. [8]). In a Gaussian setting, classical concentration results typically
state that, for a Lipschitz function f : Rn → R with Lipschitz constant ‖f‖Lip,

γn
(
|f − Eγn [f ]| ≥ t

)
≤ 2e

− t2

2‖f‖2
Lip , t ≥ 0, (1.1)

with γn the standard Gaussian measure on Rn. Another example of concentration of
measure is the Poincaré inequality satisfied by γn. Namely, for f ∈ L2(γn) smooth
enough:

Varγn(f) ≤
∫
Rn
|∇f |2dγn, (1.2)

where | · | stands for the Euclidean norm on Rn. As effective as (1.1) and (1.2) are,
their generality can lead to sub-optimal bounds in some particular cases. For instance,
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Non asymptotic variance bounds and deviation inequalities

consider the 1-Lipschitz function on Rn f(x) = maxi=1,...,n xi. At the level of the variance,
(1.2) gives

Var(Mn) ≤ 1,

with Mn = maxi=1,...,nXi where (X1, . . . , Xn) stands for a standard Gaussian random
vector in Rn, whereas it has been proven that Var(Mn) ≤ C/ log n with C > 0 a numerical
constant. At an exponential level (1.1) is not satisfying either. Indeed, it is well known
in Extreme theory (cf. [15]) that Mn can be renormalized by some numerical constants
an =

√
2 log n and bn = an − log 4π+log logn

2an
, n ≥ 1, such that

an(Mn − bn)→ Λ0

in distribution, as n→∞, where Λ0 corresponds to the Gumbel distribution :

P(Λ0 ≤ x) = exp(−e−x), x ∈ R.

Then, it is clear that the asymptotics of Λ0 are not Gaussian but rather exponential
on the right tail and double exponential on the left tail. It is now obvious that (1.1) and
(1.2) lead to sub-optimal results for the function f(x) = maxi=1,...,n xi. This is referred
to as Superconcentration phenomenon (cf. [10]) This kind of phenomenon occurs for
different functionals of Gaussian random variables (and also, as we will see, for other
laws of probability) and has been studied in [7, 22, 23, 17, 24]. . . .

The purpose of this note is to show how simple transport arguments on the real line
can easily lead to weighted Poincaré inequalities together with deviation inequalities
which are relevant in Superconcentration theory. In particular, we will emphasize the
fact that such results can be obtained by transporting the Exponential measure toward
the measure of interest.

Let us describe the setting of our work before stating our main results. Let µ and ν
be two probability measures on R. Assume that both of these measures are absolutely
continuous with respect to the Lebesgue measure on R. More precisely, assume that
there exist two smooth functions g : R→ R and h : R→ R such that

dµ(x) = h(x)dx, dν(x) = g(x)dx

Then, let X be a random variable with law µ and Y be a random variable with law ν.
Denote by H (respectively by G) the cumulative distribution function of X (respectively
Y ) and define the hazard function associated to the probability measure µ by

κµ(x) =
h(x)

1−H(x)
, x ∈ supp(µ) ⊂ R.

Similarly, κν will be the hazard function associated to ν.
We also assume that ν satisfies a Poincaré inequality on R with constant Cν > 0. That

is to say, for f : R→ R smooth enough,

Varν(f) ≤ Cν
∫
R

f ′2dν.

Remark 1.1. It is known (cf. [16]) that νn = ν⊗ . . .⊗ν also satisfies a Poincaré inequality
with the same constant Cν .

We denote by T : Rn → Rn the transport map between µn and νn. It satisfies, for
any Borelian function f : Rn → R,

Eµn(f) = Eνn
(
f ◦ T

)
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Non asymptotic variance bounds and deviation inequalities

where T (x1, . . . , xn) =
(
t(x1), . . . , t(xn)

)
and t : R→ R is the monotone rearrangement

map pushing ν toward µ (cf. section two).
In the sequel of this note (unless stated otherwise), Y = (Y1, . . . , Yn) will stand for a

random vector in Rn with L(Y ) = νn and X = (X1, . . . , Xn) for a random vector in Rn

with L(X) = µn.
Now, let us state our main results.

Theorem 1.2. With the previous notations, for any function f : Rn → R smooth enough,
n ≥ 1, we have

Var
(
f(X)

)
≤ Cν

n∑
i=1

E

[
(∂if)2 ◦ T (Y )

(
κν(Yi)

κµ
(
t(Yi)

))2]
. (1.3)

As we will see, Theorem 1.2 can be used to obtain an exponential deviation inequality
for Mn = maxi=1,...,nXi.

Theorem 1.3. Assume that there exists a function x 7→ ψ(x) from R to R, non-increasing
such that ∣∣∣∣κν

(
t−1(x)

)
κµ(x)

∣∣∣∣ ≤ ψ(x), x ∈ R

and there exists εn such that

E

[
ψ(Mn)2

]
≤ εn.

Then, for any t ≥ 0 and n ≥ 1,

P(
√
εn
(
Mn − E[Mn]

)
≥ t) ≤ 3e−t.

Remark 1.4. As it will be clear in the sequel, the same arguments apply to any other
order statistics obtained from the random vector X.

To ease the understanding of our results, we give below an application of them when
ν is the (symmetric) Exponential measure on R and µ is the standard Gaussian measure
γ1 on R.

Proposition 1.5. For f : Rn → R smooth enough and n ≥ 1, we have

Varγn(f) ≤ C
n∑
i=1

Eγn

[
(∂if)2(X)

(
1

1 + |Xi|

)2]
with C > 0 a numerical constant.

In particular, applied to (a smooth approximation of) f(x) = maxi=1,...,n xi, we get, for
every n ≥ 1,

Var(Mn) ≤ CE
[

1

1 +M2
n

]
≤ C

1 + log n

Proposition 1.6. The following deviation inequality holds, for any n ≥ 1,

γn
(
Mn − E[Mn] ≥ t) ≤ 3e−ct

√
logn, t ≥ 0

Remark 1.7. Notice that preceding results improve upon classical concentration of
measure (namely (1.1) and (1.2)) and can also be used for other functionals such as the
Median.

Throughout the article C will stand for a positive numerical constant which may
change at each occurrence.
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Non asymptotic variance bounds and deviation inequalities

2 Tools and proofs of the main results

2.1 Basic facts

First, let us present the elementary tools from Optimal Transport, on the real line,
that are needed in the sequel. We want to highlight the fact that we will mostly choose
(in practice) ν as the Exponential measure on R+ (or as the symmetric Exponential
measure on R) from which we will improve some concentration properties satisfied by
the measure of interest µ. However, we will not specify the measures µ and ν in the
statement of our results.

Recall that the monotone transport from ν to µ (cf. [25] for more details) is obtained
by a mapping t : R→ R such that, for every x ∈ R,

G(x) = P(Y ≤ x) =

∫ x

−∞
dν =

∫ t(x)

−∞
dµ = P

(
X ≤ t(x)

)
= H

(
t(x)

)
, x ∈ R. (2.1)

Which leads, after differentiation, to the following equality

g(x) = h
(
t(x)

)
t′(x), x ∈ R. (2.2)

Then, the map T : Rn → Rn defined by T (x) =
(
t(x1), . . . , t(xn)

)
, for every x =

(x1, . . . , xn) ∈ Rn, transports νn on µn. In particular, for any f : Rn → R smooth
enough,

Varµn(f) = Varνn
(
f ◦ T

)
.

The following Lemma (cf. [16]) is also useful in the sequel.

Lemma 2.1. Let X a be centered random variable such that, for any 0 < θ < 1
2
√
Kn

,

Var(eθX/2) ≤ θ2

4
KnE[eθX ].

Then, there exists c > 0 such that :

P(X ≥ t
√
Kn) ≤ 3e−ct, ∀ t ≥ 0.

Remark 2.2. This Lemma has been fruitfully used in recent articles about Superconcen-
tration (cf. [12, 11, 22]).

Lemma 2.1 will be combined with Harris’s negative association inequality (cf. [8]) in
order to prove the deviation inequality from Theorem 1.3.

Now, let us state Harris’s result. Recall that a function f : Rn → R is considered
to be non-increasing (respectively non-decreasing) if it is non-increasing, (respectively
non-decreasing) in each coordinate while the others are fixed.

Proposition 2.3. [Harris] Let f : Rn → R be a non-decreasing function and g : Rn → R

be a non-increasing function. Let X1, . . . , Xn be independent random variables and set
X = (X1, . . . , Xn). Then

E
[
f(X)g(X)

]
≤ E

[
f(X)

]
E
[
g(X)

]
. (2.3)

Remark 2.4. As explained in detail later on, Harris’s negative association was a crucial
argument in the study of order statistics in [7].

2.2 Variance bounds

We give below the proof of Theorem 1.2.
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Non asymptotic variance bounds and deviation inequalities

Proof. Since T transports νn on µn, we have

Varµn(f) = Varνn
(
f ◦ T

)
.

Then, one can apply the Poincaré inequality satisfied by the measure νn, to the function
f ◦ T :

Varνn(f ◦ T ) ≤ CP
n∑
i=1

∫
Rn

(∂if)2 ◦ T (x)t′2(xi)dν
n(x).

Besides, relation (2.2) yields that

t′(x) =
g(x)

1−G(x)
×

1−H
(
t(x)

)
h
(
t(x)

) =
κν(x)

κµ
(
t(x)

) , x ∈ R,

under the condition that h(x) > 0, x ∈ R.

Remark 2.5. As we will see on the examples, the important step will be to estimate the
behavior of the transport map t in order to get some relevant bounds on the variance of
various functionals.

Notice that this approach is reminiscent of some previous work of Barthe and Roberto
[3] or Gozlan [14] on the so-called weighted Poincaré inequalities on the real line.
Although our approach is similar in nature, the method of Barthe and Roberto relies
on Hardy’s inequality whereas ours is based on monotone rearrangement argument on
the real line. Our methodology is very similar to Gozlan’s work [14] (in his article the
transport map T is denoted by ω−1).

2.3 Deviation inequality

Now, let us prove Theorem 1.3 with the combination of Theorem 1.2 together with
Lemma 2.1 and Proposition 2.3.

Recall that, given an i.i.d. sampleX1, . . . , Xn with common law µ we defineMn, n ≥ 1,

as

Mn = max
i=1,...,n

Xi.

Theorem 1.3. For any θ > 0, apply Theorem 1.2 to (a suitable approximation of) the func-
tion eθf with f(x) = maxi=1,...,n xi. To this task, notice first that the partial derivatives
∂if = 1Ai with Ai = {xi = maxj=1,...,n xj}, for i = 1, . . . , n, form a partition of Rn (that is
to say

∑n
i=1 1Ai = 1). This yields

Var(eθMn/2) ≤ C
θ2

4

n∑
i=1

E

[
1Aiψ(Xi)

2eθMn

]
= C

θ2

4
E

[
eθMnψ(Mn)2

]
,

with Mn = maxi=1,...,nXi. Then, under the hypothesis of Theorem 1.3, use Harris’s
inequality (2.3). Thus,

Var(eθMn/2) ≤ C
θ2

4
E[eθMn ]E

[
ψ(Mn)2

]
≤ C

θ2

4
εnE[eθMn ]

The conclusion follows easily with Lemma 2.1.
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3 Applications

In this section, we provide some applications of Theorem 1.2 and Theorem 1.3 in
different mathematical areas.

3.1 Extreme theory

We refer to [15, 13] for more details about Extreme Theory. Recall that, given a
probability measure µ (absolutely continuous with respect to the Lebesgue measure)
and an i.i.d. sample X1, . . . Xn with L(X1) = µ, it is a classical fact that one can find
renormalizing constants an and bn such that an(Mn − bn) (where Mn = maxi=1,...,nXi)
converges in distribution as n→∞ and the limiting distributions are now fully charac-
terized. We show that our main results can be used to obtain non-asymptotic variance
bounds and deviation inequalities in accordance to Extreme Theory.

Let us begin at the level of the variance.

3.1.1 Non-asymptotic variance bounds

Let us start with a pedagogical example from the Weibull’s domain of attraction. To do so,
we choose ν as the standard Exponential measure on R+ (that is to say H(x) = 1− e−x
if x ≥ 0, H(x) = 0 otherwise). Then, Theorem 1.2 yields the following Corollary:

Corollary 3.1. If Y follows a standard Exponential distribution on R+ then, for any
function f : Rn → R smooth enough and every n ≥ 1,

Var
(
f(X)

)
≤ 4

n∑
i=1

E

[(
∂if(X)

κµ(Xi)

)2]
, (3.1)

where X1, . . . , Xn are independant random variables with distribution µ.
In particular, for (any smooth approximation of) f(x) = maxi=1,...,n xi,

Var
(
Mn

)
≤ CE

[(
1

κµ(Mn)

)2]
, (3.2)

where Mn = maxi=1,...,nXi and C > 0 is a numerical constant.

In particular, if µ stands for the uniform measure on [0, 1] we have

Var(Mn) ≤ 4E[(1−Mn)2] = O(1/n2).

Proof. The first part is a straightforward application of Theorem (1.2).
Now, if µ stands for the uniform measure on [0, 1] we have κµ(x) = 1x∈[0,1]

1
1−x .

Therefore,
Var(Mn) ≤ 4E[(1−Mn)2].

It is now an easy task to show that the previous inequality is sharp. Indeed, for any
t ∈ [0, 1], P(Mn ≤ t) = tn. This implies that the maximum Mn admits t 7→ ntn−11[0,1] as
density with respect to the Lebesgue measure.
Thus,

E[Mn] =

∫ 1

0

ntndt =
n

n+ 1

and

E[M2
n] =

∫ 1

0

ntn+1dt =
n

n+ 2
.

Therefore, Var(Mn) = n
n+1 −

n2

(n+1)2 = 2n
(n+2)(n+1)2 = O(1/n2). The same estimates also

imply that
E[(1−Mn)2] = O

(
1/n2

)
.
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Remark 3.2. 1. Recall that, n(Mn − 1) converges in law toward the Weibull distribu-
tion. So, the preceding bound is the correct order of the variance of Mn.

2. More generally, if µ stands for the Beta law with parameter a, b > 0, it is not difficult
to show that, for every x ∈ [0, 1],

1

κµ(x)
=

∫ 1

x
(1− t)b−1ta−1dt
xa−1(1− x)b−1

≤ min

(
1

a

(1− xa)

xa−1
,

1

b

(1− x)

xa−1

)
Notice that if a = b = 1 we recover the estimates for the uniform measure. When
a > 0 and b > 0 it seems hard to achieve the expected bound (of order n−b) on the
variance from the preceding estimate of κµ.

3. It is also possible to send the standard exponential measure toward the Paréto
distribution (which belongs to the Fréchet domain of attraction), however this leads
to a trivial bound which is not really relevant.

Now, let us focus on the domain of attraction of the Gumbel distribution. To this
task, we will transport the symmetric Exponential measure (on R) ν towards strictly
log-concave measures µ (on R) (the standard Gaussian measure for instance).

Recall that ν admits the following density g(x) = 1
2e
−|x| with respect to the Lebesgue

measure and admits G(x) = 1
2e
x if x ≤ 0, G(x) = 1 − 1

2e
−x if x > 0 as a cumulative

distribution function. Elementary calculus yields that

κν(x) =

{
1, x > 0,

1
2e−x−1 , x ≤ 0.

(3.3)

Thus, Theorem 1.2 implies the following Corollary:

Corollary 3.3. If Y follows the symmetric Exponential distribution on R then, for any
function f : Rn → R smooth enough,

Var
(
f(X)

)
≤ 4

n∑
i=1

E

[
∂2i f(X)

(
κν
(
t−1(Xi)

)
κµ(Xi)

)2]
, (3.4)

where X = (X1, . . . , Xn) has distribution µn.

Remark 3.4. Here, the constant 4 stands for the Poincaré constant of the symmetric
Exponential measure (cf. [2]).

To illustrate the preceding Corollary, we will need a technical Lemma. This one is
a precise estimation of the behavior of the transport map which will permit to obtain
relevant bounds for the variance of the maximum of a symmetric (strictly) log-concave
measure dµ(x) = e−V (x)Z−1dx with Z a normalizing constant (e.g. V (x) = |x|α/α, α > 1).

Lemma 3.5. Consider the transport map t sending the symmetric of the Exponential
measure ν toward the measure dµ(x) = e−V (x)Z−1dx, where V (x) = |x|α/α, α > 1. Then,
the following holds

|t′ ◦ t−1(x)| ≤ Cα
V ′(|x|) + 1

, x ∈ R

with Cα > 0 a numerical constant depending only on α.

Proof. We would like to bound, for any x ∈ R, the following ratio

t′ ◦ t−1(x) =
κν
(
t−1(x)

)
κµ(x)

, (3.5)
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with κν defined by (3.3) and κµ(x) = e−V (x)Z−1
∫∞
x
e−V (t)dt, x ∈ R. Recall that

t−1(x) = G−1 ◦H(x), x ∈ R

with

G−1(y) =

 ln(2y), 0 ≤ y ≤ 1/2,

ln

(
1

2(1−y)

)
, 1/2 ≤ y ≤ 1.

(3.6)

Let A > 0 be sufficiently large. For x > A, the equation (3.5) is easily bounded by
standard estimates (cf. [1]) and we get

|t′ ◦ t−1(x)| = eV (x)

∫ ∞
x

e−V (t)dt ≤ C

V ′(x)
,

with C > 0.
For x belonging to the compact [0, A], there exists C > 0 such that |t′ ◦ t−1(x)| ≤ C.

To sum up,

|t′ ◦ t−1(x)| ≤ C

V ′(x) + 1
, x > 0.

For x = 0 we have |t′ ◦ t−1(x)| = 1 since t−1(0) = G−1 ◦H(0) = G−1(1/2) = 0 by symmetry.
Now if, x < −A, we get

|t′ ◦ t−1(x)| ≤ 2eV (x)

2e−t−1(x) − 1
,

since 1
κµ(x)

= eV (x)∫∞
x
e−V (t)dt

≤ 2eV (x) for x ≥ 0.

So, it is enough to bound from above t−1(x) when x < −A in order to conclude. Using
the symmetry of the law µ, we obtain

t−1(x) ≤ ln
(
2H(x)

)
= ln

(
2
[
1−H(−x)

])
≤ ln

[
2e−V (−x)

V ′(−x)

]
.

Thus, for x < −A,

|t′ ◦ t−1(x)| ≤ 2eV (−x)

V ′(−x)eV (−x) − 1
≤ C

V ′(−x)
.

Similarly, when −A ≤ x ≤ 0, we also obtain that |t′ ◦ t−1(x)| ≤ C.
Finally, all of this can be rewritten as follows∣∣∣∣κν(t−1(x))

κν(x)

∣∣∣∣ ≤ C

V ′(|x|) + 1
,

with C > 0.

If V is the quadratic potential associated to the standard Gaussian measure, we
obtain, thanks to Lemma 3.5 and Corollary 3.3, the following result (as announced in the
introduction).

Proposition 3.6. For f : Rn → R smooth enough, we have

Varγn(f) ≤ C
n∑
i=1

Eγn

[
(∂if)2(X)

(
1

1 + |Xi|

)2]
. (3.7)

In particular, applied to (a smooth approximation of) f(x) = maxi=1,...,n xi, we get, for
every n ≥ 1,

Var(Mn) ≤ CE
[

1

1 +M2
n

]
≤ C

1 + log n
(3.8)

EJP 24 (2019), paper 13.
Page 8/18

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/19-EJP265
http://www.imstat.org/ejp/


Non asymptotic variance bounds and deviation inequalities

Remark 3.7. Notice that inequality (3.7) has already been obtained, in dimension one,
in [6, 5].

Proof. Indeed, for the function maximum, ∂if = 1Ai , i = 1, . . . , n with

Ai = {Xi = max
j=1,...,n

Xj}

and, again, observe that (Ai)i=1,...,n is a partition of Rn. Therefore,

n∑
i=1

E

[
(∂if)2(X)

(
1

1 + |Xi|

)2]
≤ E

[
1

1 +M2
n

]
≤ 1

1 + log n
+ P(Mn ≤

√
log n)

≤ 1

1 + log n
+

(
1−

√
log n

1 + log n
e− logn/2

)n
≤ C

1 + log n

Since, for every t ≥ 0, P(Mn ≤ t) =
(
1 − P(X1 > t)

)n
with X1 a Gaussian standard

random variable. Then, we can use the following estimate (cf. [17] (Lemma 2.5) or the
appendix in [10]) to bound the preceding quantity : for any t ≥ 0,

P(X1 > t) ≥ t√
2π(1 + t2)

e−t
2/2.

Thus, Var(Mn) ≤ C
logn .

Remark 3.8. Let us make some remarks on what preceded.

1. As mentioned in the introduction,
√

2 log n(Mn−bn) converges, when n→∞, in law
toward the Gumbel distribution (the precise value of bn is irrelevant here but can
be found in [13, 15]). So, the previous Corollary gives a non-asymptotic variance
bound of the maximum in accordance with Extreme theory. Besides, such a bound
is classically obtained by hypercontractive and interpolation arguments (cf. [10]).
Here, we provide an alternative proof based on Optimal Transport arguments.

2. Let us further notice that the scheme of proof can also be performed for the
function f(x) = Med(x1, . . . , xn), n ≥ 1,

Var
(
Med(X)

)
≤ C

1 + n
+ CP(Med(X) ≤

√
n)n/2

≤ C

1 + n
+ o

(
1

1 + n

)
≤ C

1 + n

which corresponds to the correct order of magnitude of the variance of the median
(cf. [7]). Notice that, as far as we know, such bounds can not be obtained by
hypercontractive arguments.

More generally, if V (x) = |x|α/α, α > 1, the same proof, together with the Lemma
3.5, yields

Corollary 3.9.

Var(Mn) ≤ C
n∑
i=1

E

[
(∂if)2(X)

(
1

1 + V ′
(
|Xi|

))2]
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In particular, applied to (a smooth approximation of) f(x) = maxi=1,...,n xi, it gives, for
n ≥ N0 sufficiently large,

Var(Mn) ≤ CE
[

1

V ′2(Mn) + 1

]
≤ C

1 + Cα ln(n)2(α−1)/α
, (3.9)

with Cα > 0 and C > 0 some numerical constants.

Proof.

E

[
1

1 + |Mn|2(α−1)

]
≤ 1

1 + (log n)2(α−1)/α
+ P(Mn ≤ (lnn)1/α)

≤ 1

1 + (log n)2(α−1)/α
+ [1− P(X1 ≥ (lnn)1/α)]n

≤ 1

1 + (log n)2(α−1)/α
+

(
1− 1

2(log n)(α−1)/αn1/α

)n
≤ C

1 + Cα(log n)2(α−1)/α

Since, if X1 stands for a random variable with law µ, we can proceed as in the
Gaussian case. Indeed, P(X1 ≥ t) ∼ 1

tα−1 e
−tα/α as t → ∞. In particular, for t large

enough, this yields that P(X1 ≥ t) ≥ 1
2tα−1 e

−tα/α.

Remark 3.10. Following the proof (when α = 2 ) of [15], it can easily be proved that

an(Mn − bn)→ Λ0,

in law, when n→∞, with an =
√
α(log n)2(α−1)/α et bn = (log n)1/α − log(αZ)+α−1

α log logn

(logn)(α−1)/α .

Therefore, Corollary 3.9 gives a non-asymptotic bound of the variance of the maximum
reflecting this convergence result. We want to highlight the fact that such a bound is
another example of the Superconcentration phenomenon. Nevertheless, as far as we
know, such estimates can not be obtained by hypercontractive methods (when α > 2) as
in the Gaussian case.

3.1.2 Deviation inequalities

It is possible to use the preceding variance bounds to immediately obtain deviation
inequalities thanks to Theorem 1.3.

Proposition 3.11. The following deviation inequality holds, for any n ≥ 1,

γn
(
Mn − E[Mn] ≥ t) ≤ 3e−ct

√
logn, t ≥ 0 (3.10)

Remark 3.12. 1. Concerning Extreme theory, notice that this Theorem is only rele-
vant if µ belongs to the domain of attraction of the Gumbel distribution. Indeed,
the right tail of the Gumbel distribution behaves like t 7→ e−t (whereas the left tail
goes faster to 0 with the following asymptotic : t 7→ e−e

t

).

2. Proposition 3.11 still holds if one substitutes γn with dµ(x) = e−V (x)Z−1dx (where
V (x) = |x|α/α, α > 1) and uses the variance bound from (3.9) instead of the one
given by (3.8).

3. Similar results can also be obtained if one replaces the maximum by another order
statistics.
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Non asymptotic variance bounds and deviation inequalities

3.2 Variance of lp, p ≥ 2 norms of standard Gaussian vector

As a further illustration of our approach, we propose to recover some variance’s
bounds of lp-norms, p ≥ 1, of a standard Gaussian vector, obtained in [17]. The proof
will be based on Proposition 3.6. We will adopt the following notation: given a vector
x = (x1, . . . , xn) ∈ Rn we denote by ‖x‖pp =

∑n
i=1 |xi|p its norm.

In the article of Paouris et al. [17], the authors have noticed that the variance of ‖X‖p
is not precisely estimated by classical concentration theory. More precisely, classical
tools from the theory of concentration of measure such as Poincaré inequality or the
isoperimetric Gaussian inequality yield the following bound

Var(‖X‖p) ≤ max(n2/p−1, 1), p ≥ 1.

According to [17], this bound is only optimal when 1 ≤ p ≤ 2. The authors of [17]
improved this bound by using precise estimates of moments of Gaussian functionnals to-
gether with logarithmic Sobolev inequality (through the so-called Talagrand’s inequality).
More precisely,

Theorem 3.13 (Paouris,Valettas, Zinn ). Let X be a standard Gaussian vector on Rn

then

Var(‖X‖p) ≤
{
C 2p

p n
2/p−1, 2 < p ≤ c log n,

C/ log n, p > c log n,

with C, c > 0 some numerical constants, independent of n and p.

Here, we propose to recover Theorem 3.13 with Proposition 3.6. We will only deal
with the second assertion of the Proposition (the first part can be proved with similar
arguments).

Proposition 3.14. For n ≥ N0, we have the following inequality

Var(‖X‖p) ≤
C

log n
, p > c log n,

with C > 0 a numerical constant independent of p and n.

Proof. Let δ > 0 be a parameter to be chosen later on and denote by B∞(0, δ) = {x ∈
Rn, ‖x‖∞ < δ}. Thus,

Var(‖X‖p) ≤ C

n∑
i=1

(∫
B∞(0,δ)

|xi|2(p−1)

1 + |xi|2
1

‖x‖2(p−1)p

dγn(x)

+

∫
Bc∞(0,δ)

|xi|2(p−1)

1 + |xi|2
1

‖x‖2(p−1)p

dγn(x)

)
= C

( n∑
i=1

Ii + Ji
)

We recall the following relations between lp and lq norms, for p < q, which will be
freely used in the sequel,

‖x‖q ≤ ‖x‖p ≤ n1/p−1/q‖x‖q, ∀x ∈ Rn

On one hand, since p < 2(p− 1),

n∑
i=1

Ii ≤
∫
B∞(0,δ)

‖x‖2(p−1)2(p−1)

‖x‖2(p−1)p

dγn(x)

≤ P
(
X ∈ B∞(0, δ)

)
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Non asymptotic variance bounds and deviation inequalities

On the other hand, since p < 2(p− 2),

n∑
i=1

Ji ≤
∫
Bc∞(0,δ)

‖x‖2(p−2)2(p−2)

‖x‖2(p−1)p

dγn(x) =

∫
Bc∞(0,δ)

(‖x‖2(p−2)
‖x‖p

)2(p−2)
1

‖x‖2p
dγn(x)

≤
∫
Bc∞(0,δ)

dγn(x)

‖x‖2p

≤ 1

δ2
P
(
X ∈ Bc∞(0, δ)

)
Furthermore, notice that the following upper bound is satisfied

P
(
X ∈ Bc∞(0, δ)

)
= P( max

i=1,...,n
|Xi| ≥ δ) = P(∃j ∈ {1, . . . , n}, |Xj | ≥ δ)

≤ nP(|X1| ≥ δ) ≤ 2ne−δ
2/2.

So far we have obtained,

Var(‖X‖p) ≤ C
([

1− δ

1 + δ2
e−δ

2/2

]n
+

2ne−δ
2/2

δ2

)
.

Then, we choose δ =
√

2 log n (with n large enough) to conclude. Indeed, we have

P
(
X ∈ B∞(0, δ)

)
≤ (1− e−δ

2/3)n ∼ e−n
1/3

together with
2ne−δ

2/2

δ2
=

1

log n
.

In other terms

Var(‖X‖p) ≤ C
(
o
( 1

log n

)
+

1

log n

)
≤ C

log n
,

which is the result.

3.3 Coulomb gazes

This section exposes another application of our main results in another mathematical
area. We want to highlight that, in this section, the factors µi, i = 1, . . . , n (from the
product measure µ1 ⊗ . . . µn) will not be assumed identical. This difference justifies the
separation of this section from the others.

Now, let us introduce a few notions about Coulomb gazes and the results obtained
by Chafaï and Péché in [9]. Let us consider a gas of charged particles {z1, . . . , zn} on
the complex plane C, confined individually by the external field Q and experiencing a
Coulomb pair repulsive interaction. This corresponds to the probability distribution Cn

with density proportional to

(z1, . . . , zn) ∈ Cn 7→
n∏
j=1

e−nQ(zj)
∏

1≤j<l≤n

|zj − zk|β (3.11)

with β > 0 a fixed parameter and Q a fixed smooth function.
We will focus on the particular case where β = 2 and Q(z) = V (|z|) with V (t) =

tα, t ≥ 0, α ≥ 1. We are interested in the study of

|z|(1) ≥ . . . ≥ |z|(n), (3.12)

the order statistics of the moduli of the Coulomb gas. Notice that |z|(1) = max1≤k≤n |zk|.
In their article, the authors proved the following representation formula
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Theorem 3.15 (Chafaï-Péché). For β = 2 and under the preceding assumptions, we have
the following equality in distribution(

|z|(1), . . . , |z|(n)
)

=
(
R(1), . . . , R(n)

)
with R(1) ≥ . . . ≥ R(n) the order statistics associated to independent random variables
R1, . . . , Rn where Rk, for k = 1, . . . , n, has a density proportional to

t 7→ t2k−1e−nV (t)1t≥0.

Remark 3.16. More precisely, the case β = 2 and V (r) = r2 has been proved by Rider
in [18]. Chafaï and Péche extended Rider’s results when β = 2 and V satisfies some
convexity assumption together with some decay conditions at infinity.

In [9], based on the representation formula, the authors also proved an asymptotic
result for |z|(1). This is the content of next Theorem

Theorem 3.17 (Chafaï-Péché). Let |z|(1) = max1≤k≤n |zk| be as in (3.12), with β = 2.
Suppose that V (t) = tα, for t ≥ 0 and for some α ≥ 1. Set cn = log n− 2 log log n− log 2π

and

an = 2
(α

2

)1/α+1/2√
ncn bn =

( 2

α

)1/α(
1 +

1

2

√
2cn
αn

)
.

Then
(
an(|z|(1) − bn)

)
n≥1 converges in distribution, as n→∞, toward the standard

Gumbel law.

We will see that it is not difficult to get a non-asymptotic upper bound on the variance
of |z(1)|, together with a deviation inequality for our main results. A crucial step is the
representation formula (3.12) of |z(1)| :

|z(1)| = max
i=1,...,n

Ri in law

where R1, . . . , Rn are independent random variables and Rk, for any k = 1, . . . , n, has a
density proportional to

t 7→ t2k−1e−nt
α

1[0,∞)(t), α ≥ 1.

Then, it is possible to transport the standard Exponential measure on Rn+ toward the
measure µ1 ⊗ · · · ⊗ µn with µk = L(Rk) for any k = 1, . . . , n. Notice then, for every
k = 1, . . . , n, that µk is log-concave on R+ with potential

Vk(x) = ntα − (2k − 1) log t.

So it is not difficult to prove (thanks to the estimates from [1]) that

1

κµk(x)
≤ Cα
nxα−1 + 1

, x > 0

with Cα > 0 a numerical constant. Thus, Proposition 3.1 yields

Var(|z(1)|) ≤
Cα
n2
E

[
1

|z(1)|2(α−1)

]
≤ Cα

n log n
+ CαP

(
|z(1)| ≤

(
log n

n

)1/2(α−1))
≤ Cα

n log n
+

n∏
i=1

[
1− P

(
Ri ≥

log n

n

)1/2(α−1))]
≤ Cα

n log n
+ o

(
1

n log n

)
≤ Cα

n log n
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Also, Theorem 1.3 immediately gives the following deviation inequality

P

(√
n log n

(
|z(1)| − E[|z(1)|

)
≥ t
)
≤ 6e−Cαt, t ≥ 0

where Cα > 0 is a numerical constant that does not depend on n. In other words, we
have obtained a non asymptotic deviation inequality together with a variance bound
which are in accordance with Theorem 3.17. That is to say, we have proven the following
result.

Proposition 3.18. Let {z1, . . . , zn} be a Coulomb gaze with density proportional to

(z1, . . . , zn) 7→
n∏
j=1

e−nQ(zj)
∏

1≤j<k≤n

|zj − zk|2,

with Q = V (|z|) and V (t) = tα, α ≥ 1. Then, for any n > 1, the following holds

Var(|z(1)|) ≤
Cα

n log n
,

with Cα > 0 a numerical constant, independent of n, and

P

(√
n log n

(
|z(1)| − E[|z(1)|]

)
≥ t
)
≤ 3e−Cαt, t ≥ 0,

with Cα > 0 a numerical constant independent of n.

4 Remarks and comparison with existing literature

In this section, we will briefly explain how stronger functional inequalities can be
used to reach the right asymptotic of the left tail in the Gumbel’s domain of attraction.
Then, we will compare our main results with the existing literature.

4.1 A few words on isoperimetric inequalities

As we have already seen, the transport of the Exponential measure (toward a mea-
sure µn) permits to improve some concentration’s properties of the measure µn. This
phenomenon has already been observed by Talagrand in [21]. He used the isoperimetric
inequality (involving a mixture of l1 and l2 balls) satisfied by the (symmetric) Expo-
nential measure µn to improve the isoperimetric inequality satisfied by the standard
Gaussian measure. More precisely, such an improvement can be seen on the following
concentration inequality

P

(∣∣∣∣ max
i=1,...,n

|Xi| −
√

log n

∣∣∣∣ ≥ C t√
log n

)
≤ Ce−ct, t ≥ 0 (4.1)

Remark 4.1. 1. This type of inequality recently appeared in [22] for more general
Gaussian measures.

2. This gives the correct asymptotic behavior (with respect to Extreme Theory) of
the right tail of the maximum. However, the asymptotic behavior of the left tail, in
(4.1), is still sub-obtimal.

The symmetry of the (two sided) Exponential measure on R, through Talagrand’s
isoperimetric inequality, seems to not make any distinctions between the left tail and the
right and only gives a exponential decay. In [4], Bobkov studied a different isoperimetric
problem (with the standard Exponential measure and uniform enlargements B∞ instead).
The lack of symmetry of the (standard) Exponential measure can be used to achieve the
correct decay of the left tail on the maximum (in the Gumbel’s domain of attraction).

More precisely, Bobkov proved the following Theorem.

EJP 24 (2019), paper 13.
Page 14/18

http://www.imstat.org/ejp/

http://dx.doi.org/10.1214/19-EJP265
http://www.imstat.org/ejp/


Non asymptotic variance bounds and deviation inequalities

Theorem 4.2 (Bobkov). Let νn stand for the (standard) Exponential measure on R+.
Then, for every non empty ideal A ⊂ Rn+ such that νn(A) = νn(B∞) and every r ≥ 0, the
following inequality holds :

νn(A+ rB∞) ≥ νn(B + rB∞).

In other words,

νn(A+ rB∞) ≥
[
e−r
[
νn(A)

]1/n
+ (1− e−r)

]n
.

Remark 4.3. 1. Recall that A is an ideal of Rn+ if it satisfies the following condition

if x = (x1, . . . , xn) ∈ A, y = (y1, . . . , yn) ∈ Rn+, yi ≤ xi for i = 1, . . . , n, then y ∈ A.

2. If n→∞ and νn(A) = p is constant (with respect to n), the right hand side of the
preceding inequality decreases and converges toward a double exponential. That
is to say

νn(A+ rB∞) ≥ exp(−e−r log(1/p)).

As presented in [4], it possible to achieve the following deviations inequalities for a
measure µn by transporting the Exponential measure νn.

Theorem 4.4. (Bobkov) Let X1, . . . , Xn be i.i.d. random variables with L(X1) = µ ∈ F0

and set Mn = maxi=1,...,nXi. Then, for every p, 0 < p < 1, every t ≥ 0,

P(Mn −mp ≥ t) ≥ C log(1/p) exp(−ct), (4.2)

P(Mn −mp < −t) ≤ C exp
(
− etc log(1/p)

)
, (4.3)

where mp stands for the quantile of order p of Mn and C, c > 0 are numerical constants.

Remark 4.5. In [4], there are some workable conditions which describe the set of
measures F0. For instance Gamma measures or absolute value of standard Gaussian
measures belong to F0.

In particular, if we choose p such that p1/n = F−1(1 − 1/n), mp corresponds to the
renormalizing term used in Extreme theory. For instance, for the the Gamma measure,
Bobkov’s Theorem yields

Proposition 4.6. Let X1, . . . , Xn be i.i.d Gamma random variables. Set Mn =

maxi=1,...,nXi, then for every t ≥ 0 and every n ≥ 1

P(Mn − log n ≥ t) ≤ Ce−ct

and

P(Mn − log n ≤ −t) ≤ Ce−e
ct

where C, c > 0 are numerical constants.

These non-asymptotic deviations inequalities express the correct tail behavior of
the maximum of Gamma random variables (which belongs to the Gumbel’s domain of
attraction). Furthermore, such inequalities imply that P(|Mn − log n| ≥ t) ≤ Ce−ct,
which can be integrated to recover the fact (that can be easily obtained from Poincaré
inequality) that Var(Mn) ≤ C.

All of this should be obtained for the maximum of absolutes values of independent
and identically distributed standard Gaussian random variables. The details are left to
the reader. Recall that this kind of inequality has already been obtained by Schechtman
in [19].
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4.2 Comparison with existing literature

In this section we compare our main results with recent articles which produce
Superconcentration for i.i.d. random variables by other means.

4.2.1 Renyi’s representation and order statistics

The authors of [7] combined three different arguments to bound the variance (or to
obtain deviation inequalities) of order statistics from a sample of i.i.d. random variables.
More precisely, let X1, . . . Xn be real i.i.d. random variables. Denote the associated order
statistics by

X(1) > . . . > X(n).

In their article [7], the authors obtained the following result

Var(X(k)) ≤
2

k
E

[
1

κµ(X(k+1))2

]
, k = 1, . . . , n.

Their scheme of proof is based on Renyi’s representation formula (cf. [13]), which
allows one to express order statistics in terms of renormalized sums of i.i.d Exponential
random variables. They combined this representation with Efron-Stein’s inequality (cf.
[8]) and Harris’s negative association (to do so they must assume that the function κµ is
non-increasing) in order to bound from above the variance of X(k), k = 1, . . . , n.

They also obtained right deviation inequalities (around the mean) in a Gaussian
setting. That is to say, if Xi = |Yi| with L(Yi) = N (0, 1) for every i = 1, . . . n and
U(s) = Φ−1(1− 1/(2s)), with Φ the distribution function of a standard Gaussian random
variable, they obtained

P

(
X(1) − E[X(1)] ≤ t/(3U(n) +

√
t/U(n) + δn

)
≤ e−t, t ≥ 0

with δn > 0 and [U(n)]3δn → π2

12 as n→∞.
The major drawback of this approach is that it can only be performed on order

statistics. Our method seems to be more flexible and allows one to recover (from the
measure ν) Poincaré inequality (for the measure of interest µ) when the transport map
is Lipschitz. It is also clear that the non-increasing hypothesis on the function κµ is not
necessary to obtain an upper bound on the variance. We have shown that this argument
can only be used to reach exponential deviation inequalities. On this matter, Berstein’s
type of deviation inequality from [7] is more precise than ours, but it does not give back
a relevant bound on the variance after integration. It is also surprising that the authors
[7] did not deal with the more classical standard Gaussian case (without the absolute
value).

4.2.2 Hypercontractive approach and semigroup interpolations

The comparison with the hypercontractive approach is straightforward. On one hand
the hypercontractive approach can be used to deal with correlated Gaussian vectors (cf.
[10, 22, 23]). On the other hand, the hypercontractive method can not reach any decay
faster than 1/ log n and can only provide an exponential decay at the level of concentration
inequalities. For instance, it does not seem possible to show, with hypercontractive
arguments, that neither the variance of the Median of a standard Gaussian sample is
of order 1/n nor to obtain the right order of the fluctuations of log-concave measure
with potential V (x) = |x|α when α > 2 (notice also that hypercontractivity is not satisfied
when 0 < α < 1).
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4.2.3 Comparison with Talagrand’s inequality

This section’s purpose is to compare Proposition 3.6 with the following result.

Proposition 4.7 (Talagrand). Let f : Rn → R be smooth enough, then:

Varγn(f) ≤ C
n∑
i=1

‖∂if‖22

1 + log

(
‖∂if‖2
‖∂if‖1

) . (4.4)

Remark 4.8. This inequality was originally proved in [20] and has been a major tool in
Superconcentration theory (cf. [10, 22, 23]).

To this task, it is enough to deal with the one dimensional case. Such inequalities
are not comparable, as it can be seen on the following functions fM and fε. Indeed, for
M > 0 define the function fM by

fM (x) =

(∫ x

0

et
2/41[−M,M ](t)dt

)
/‖f ′M‖1, x ∈ R.

And, for every 0 < ε < 1, consider the function fε, defined by

fε(x) =

{ |x|
ε + 1, |x| ≤ ε

0, |x| > ε,

Then, it is enough to choose ε = 1/2n, n ≥ 1.
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