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Abstract

Bi-log-concavity of probability measures is a univariate extension of the notion of
log-concavity that has been recently proposed in a statistical literature. Among other
things, it has the nice property from a modelisation perspective to admit some multi-
modal distributions, while preserving some nice features of log-concave measures. We
compute the isoperimetric constant for a bi-log-concave measure, extending a prop-
erty available for log-concave measures. This implies that bi-log-concave measures
have exponentially decreasing tails. Then we show that the convolution of a bi-log-
concave measure with a log-concave one is bi-log-concave. Consequently, infinitely
differentiable, positive densities are dense in the set of bi-log-concave densities for
Lp-norms, p ∈ [1,+∞]. We also derive a necessary and sufficient condition for the
convolution of two bi-log-concave measures to be bi-log-concave. We conclude this
note by discussing a way of defining a multi-dimensional extension of the notion of
bi-log-concavity.
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1 Introduction

Bi-log-concavity (of a probability measure on the real line) is a property recently
introduced by Dümbgen, Kolesnyk and Wilke ([5]), that aims at bypassing some restrictive
aspects of log-concavity while preserving some of its nice features. More precisely, bi-
log-concavity amounts to log-concavity of both F and 1 − F , where F is a cumulative
distribution function, and a simple application of Prékopa’s theorem on stability of
log-concavity through marginalization ([10], see also [13] for a discussion on the various
proofs of this fundamental theorem) shows that log-concave measures are also bi-log-
concave (see [1] for a more direct, elementary proof of this latter fact).

From a modelisation perspective, bi-log-concavity and log-concavity may be seen as
shape constraints. In statistics, when they are available, shape constraints represent an
interesting alternative to more classical parametric, semi-parametric or non-parametric
approaches and constitute an active contemporary line of research ([14, 12]). Bi-log-
concavity was indeed proposed in the aim to contribute to this research area ([5]). It
was used in [5] to construct efficient confidence bands for the cumulative distribution
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function and some functionals of it. The authors highlight that bi-log-concave measures
admit multi-modal measures while it is well-known that log-concave measures are
unimodal. Furthermore, Dümbgen et al. [5] establish the following characterization of
bi-log-concave distributions. For a (cumulative) distribution function F , denote

J (F ) ≡ {x ∈ R : 0 < F (x) < 1}

and call “non-degenerate”, the functions F such that J (F ) 6= ∅.
Theorem 1.1 (Characterization of bi-log-concavity, [5]). Let F be a non-degenerate
distribution function. The following four statements are equivalent:

(i) F is bi-log-concave, i.e. F and 1 − F are log-concave functions in the sense that
their logarithm is concave.

(ii) F is continuous on R and differentiable on J (F ) with derivative f = F ′ such that,
for all x ∈ J(F ) and t ∈ R,

1− (1− F (x)) exp

(
− f(x)

1− F (x)
t

)
≤ F (x+ t) ≤ F (x) exp

(
f(x)

F (x)
t

)
.

(iii) F is continuous on R and differentiable on J (F ) with derivative f = F ′ such that
the hazard function f/(1− F ) is non-decreasing and reverse hazard function f/F
is non-increasing on J(F ).

(iv) F is continuous on R and differentiable on J (F ) with bounded and strictly positive
derivative f = F ′. Furthermore, f is locally Lipschitz continuous on J (F ) with
L1-derivative f ′ = F ′′ satisfying

−f2

1− F
≤ f ′ ≤ f2

F
.

Note that if one includes degenerate measures – that is Dirac masses – it is easily
seen that the set of bi-log-concave measures is closed under weak limits.

Just as s-concave measures generalize log-concave ones, Laha and Wellner [8] pro-
posed the concept of bi-s∗-concavity, that generalizes bi-log-concavity and that includes
s-concave densities. Some characterizations of bi-s∗-concavity, that extend the previous
theorem, are derived in [8].

On the probabilistic side, even if some characterizations are available, many im-
portant questions remain about the properties of bi-log-concave measures. Indeed,
log-concave measures satisfy many nice properties (see for instance [7, 13, 4] and
references therein) and it is natural to ask whether some of those are extended to
bi-log-concave measures. Answering this question is the primary object of this note.

We show in Section 2 that the isoperimetric constant of a bi-log-concave measure is
simply equal to two times the value of its density with respect to the Lebesgue measure –
that indeed exists – at its median, thus extending a property available for log-concave
measures. We deduce that a bi-log-concave measure has exponential tails, also extending
a property valid in the log-concave case.

In Section 3, we show that the convolution of a log-concave measure and a bi-log-
concave measure is bi-log-concave. As a consequence, we get that any bi-log-concave
measure can be approximated by a sequence of bi-log-concave measures having regular
densities. Furthermore, we give a necessary and sufficient condition for the convolution
of two bi-log-concave measures to be bi-log-concave.

Finally, we discuss in Section 3.1 a possible way to obtain a multivariate notion of
bi-log-concavity, extending the univariate notion. In particular, log-concave vectors are
bi-log-concave and the proposed definition ensures stability through convolution by any
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log-concave measure. The question of providing a nice definition of bi-log-concavity
in higher dimension, that would also impose existence of some exponential moments,
remains open.

2 Isoperimetry and concentration for bi-log-concave measures

Let F (x) = µ ((−∞, x]) be the distribution function of a probability measure µ on the
real line. Assume that µ is non-degenerate (in the sense of its distribution function being
non-degenerate) and let f be the density of its absolutely continuous part.

Recall the following formula for the isoperimetric constant Is (µ) of µ, due to Bobkov
and Houdré [3],

Is (µ) = ess inf
x∈J(F )

f (x)

min {F (x) , 1− F (x)}
.

The following theorem extends a well-known fact related to the isoperimetric constant
of a log-concave measure to the case of a bi-log-concave measure.

Theorem 2.1. Let µ be a probability measure with non-degenerate distribution function
F being bi-log-concave. Then µ admits a density f = F ′ on J (F ) and it holds

Is (µ) = 2f (m) ,

where m is the median of µ.

In general, the isoperimetric constant is hard to compute, but in the bi-log-concave
case Theorem 2.1 provides a straightforward formula, that extends a formula valid for
log-concave measures (see for instance [13]).

In the following, we will also use the notation J (F ) = (a, b).

Proof. Note that the median m is indeed unique by Theorem 1.1 above. For x ∈ (a,m],

IF (x) :=
f (x)

min {F (x) , 1− F (x)}
=
f (x)

F (x)
.

As µ is bi-log-concave, IF is thus non-increasing on (a,m]. For x ∈ [m, b),

IF (x) =
f (x)

1− F (x)
.

Thus, IF is non-decreasing on [m, b). Consequently, the minimum of IF (x) is attained on
m and its value is Is (µ) = 2f (m).

Corollary 2.2. Let µ as above be a bi-log-concave measure with median m. Then
f (m) > 0 and µ satisfies the following Poincaré inequality: for any square integrable
function g ∈ L2 (µ) with derivative g′ ∈ L2 (µ),

f2 (m) Varµ (g) ≤
∫

(g′)
2
dµ , (2.1)

where Varµ (g) =
∫
g2dµ−

(∫
gdµ

)2
is the variance of g with respect to µ. Consequently,

µ has bounded Ψ1 Orlicz norm and achieves the following exponential concentration
inequality,

αµ (r) ≤ exp (−rf (m) /3) , (2.2)

where αµ is the concentration function of µ, defined by αµ (r) =

sup {1− µ (Ar) : A ⊂ R, µ (A) ≥ 1/2}, where r > 0 and Ar = {x ∈ R : ∃y ∈ A, |x− y| < r}
is the (open) r-neighborhood of A.

ECP 24 (2019), paper 61.
Page 3/8

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP266
http://www.imstat.org/ecp/


Bi-log-concavity

As it is well-known (see [9] for instance), inequality (2.2) implies that for any 1-
Lipschitz function g,

µ (g ≥ mg + r) ≤ exp (−rf (m) /3) ,

where mg is a median of g, that is µ (g ≥ mg) ≥ 1/2 and µ (g ≤ mg) ≥ 1/2.

Proof. The fact that f (m) > 0 is given by point (iii) of Theorem 1.1 above. Then
Inequality (2.1) is a consequence of Theorem 2.1 via Cheeger’s inequality for the first
eigenvalue of the Laplacian (see for instance Inequality 3.1 in [9]). Inequality (2.2) is a
classical consequence of Inequality (2.1) as well (see Theorem 3.1 in [9]).

We shortly describe now another proof of the fact that log-concave measures
are bi-log-concave. Indeed, by Theorem 1.1 above, bi-log-concavity of µ reduces to
non-increasingness of the functions f/F and −f/ (1− F ), which is equivalent to non-
increasingness of I (p) /p and −I (p) / (1− p), with I (p) = f

(
F−1 (p)

)
. Furthermore,

following Bobkov [2], for a log-concave probability measure µ on R having a positive
density f on J (F ), the function I is concave. As I (0) = I (1) = 0, concavity of I im-
plies non-increasingness of the ratios I (p) /p and −I (p) / (1− p). Hence, the conclusion
follows.

Example 2.3. The function I (p) = f
(
F−1 (p)

)
is in general hard to compute. But a few

easy examples exist. For instance, for the logistic distribution, F (x) = 1/ (1 + exp (−x)),
we have I (p) = p (1− p). For the Laplace distribution, f (x) = exp (− |x|) /2, I (p) =

min {p, 1− p}.

3 Stability through convolution

Take X and Y two independent random variables with respective distribution func-
tions FX and FY that are bi-log-concave. Hence X and Y have densities, denoted by fX
and fY . Then

FX+Y (x) = P (X + Y ≤ x) = E [P (X ≤ x− Y |Y )] =

∫
FX (x− y) fY (y) dy . (3.1)

In addition,

1− FX+Y (x) =

∫
(1− FX (x− y)) fY (y) dy . (3.2)

Proposition 3.1. If X is bi-log-concave, Y is log-concave and X is independent of Y ,
then X + Y is bi-log-concave.

Proof. By using formulas (3.1) and (3.2), this is a direct application of the stability
through convolution of the log-concavity property (also known as Prékopa’s theorem,
[10]).

Corollary 3.2. Take a (non-degenerate) bi-log-concave measure on R, with density f .
Then there exists a sequence of infinitely differentiable bi-log-concave densities, positive
on R, that converge to f in Lp (Leb), for any p ∈ [1,+∞].

Corollary 3.2 is also an extension of an approximation result available in the set of
log-concave distributions, see [13, Section 5.2].

Proof. Note first that the density f is uniformly bounded on R. Indeed, by point (iii) of
Theorem 1.1 above, the ratio f/F is non-increasing, so that for any x ∈ J(F ), x ≥ m,
f(x) ≤ f(x)/F (x) ≤ 2f(m). Symmetrically, as the ratio f/(1 − F ) is non-decreasing,
we deduce that f(x) ≤ 2f(m) for every x ∈ (−∞,m) ∩ J(F ). This gives that ‖f‖∞ =

supx∈R |f(x)| ≤ 2f(m). Hence, the density f belongs to L1 (Leb)
⋂
L∞ (Leb), so it belongs
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to any Lp (Leb), p ∈ [1,+∞]. It suffices now to consider the convolution of f with a
sequence of centered Gaussian densities with variances converging to zero. Indeed,
a simple application of classical theorems about convolution in Lp (see for instance
[11, p. 148]) allows to check that the approximations converge to f in any Lp (Leb),
p ∈ [1,+∞].

More generally, the following theorem gives a necessary and sufficient condition for
the convolution of two bi-log-concave measures to be bi-log-concave.

Theorem 3.3. Take X and Y two independent bi-log-concave random variables with
respective densities fX and fY and cumulative distribution functions FX and FY . Denote
w (x, y) = fY (y)FX (x− y) and w̄ (x, y) = fY (y) (1− FX) (x− y) and consider for any
x ∈ J (FX+Y ), the following measures on R,

dmx (y) =
w (x, y) dy∫
w (x, y) dy

=
w (x, y) dy

FX+Y (x)

and

dm̄x (y) =
w̄ (x, y) dy∫
w̄ (x, y) dy

=
w̄ (x, y) dy

1− FX+Y (x)
.

Then X + Y is bi-log-concave if and only if for any x ∈ J (FX+Y ),

Covmx

(
(− log fY )

′
, (− logFX)

′
(x− ·)

)
≥ 0 (3.3)

and

Covm̄x

(
(− log fY )

′
, (− log (1− FX))

′
(x− ·)

)
≥ 0 . (3.4)

Theorem 3.3 allows to formulate the question of stability through convolution of
two bi-log-concave measures as a problem of covariance inequalities. For instance, as
the functions (− logFX)

′
(x− ·) and (− log (1− FX))

′
(x− ·) are non-decreasing for any

x ∈ J (FX+Y ), an application of the FKG inequality ([6]) shows that conditions (3.3) and
(3.4) are satisfied if (− log fY )

′ is non-decreasing, which means that fY is log-concave, in
which case we recover Proposition 3.1 above. But Theorem 3.3 is more general. Indeed,
it is easily checked by direct computations that the convolution of the Gaussian mixture
2−1N (−1.34, 1) + 2−1N (1.34, 1) – which is bi-log-concave but not log-concave, see [5,
Section 2] – with itself is bi-log-concave.

To prove Theorem 3.3, we will use the following lemma.

Lemma 3.4. Take p, q ∈ [1,+∞] such that p−1 + q−1 = 1 and a measure ν on R with
absolutely continuous density f = exp (−φ) and f ′ ∈ Lp (ν). Take g ∈ Lq (ν) Lipschitz
continuous such that g′ ∈ L1 (ν) and

lim
x→+∞

f (x) (g (x)− Eν [g]) = lim
x→−∞

f (x) (g (x)− Eν [g]) = 0,

then

Eν [g′] = Covν (g, φ′) .

In the case where ν is a Gaussian measure, Lemma 3.4 is known as Stein’s lemma.

Proof of Lemma 3.4. This is a simple integration by parts: from the assumptions, we
have

Eν [g′] =

∫
g′fdx = −

∫
(g − Eν [g]) f ′dx =

∫
(g − Eν [g])φ′fdx.

ECP 24 (2019), paper 61.
Page 5/8

http://www.imstat.org/ecp/

https://doi.org/10.1214/19-ECP266
http://www.imstat.org/ecp/


Bi-log-concavity

Proof of Theorem 3.3. Recall that we have

FX+Y (x) =

∫
fY (y)FX (x− y) dy =

∫
w (x, y) dy .

Our first goal is to find some conditions such that FX+Y is log-concave. It is sufficient to
prove that, for any x ∈ J (FX+Y ),(

F ′X+Y (x)
)2

FX+Y (x)
− F ′′X+Y (x) ≥ 0 ,

or equivalently, (
F ′X+Y (x)

FX+Y (x)

)2

−
F ′′X+Y (x)

FX+Y (x)
≥ 0 .

Denote ρX = (logFX)
′. We have

FX+Y (x) =

∫
w (x, y) dy

fX+Y (x) = F ′X+Y (x) =

∫
ρX (x− y)w (x, y) dy

F ′′X+Y (x) =

∫ (
ρ′X (x− y) + ρ2

X (x− y)
)
w (x, y) dy

Furthermore, we get(
F ′X+Y (x)

FX+Y (x)

)2

−
∫
wρ2

X (x− y) dy

FX+Y (x)
= −Varmx (ρX (x− ·)) .

Now, by Lemma 3.4, it holds,∫
ρ′X (x− y)w (x, y) dy

FX+Y (x)
= Emx

[ρ′X (x− ·)]

= Covmx

(
−ρX (x− ·) , (− log fY )

′
+ ρX (x− ·)

)
.

Gathering the equations, we get(
F ′X+Y (x)

FX+Y (x)

)2

−
F ′′X+Y (x)

FX+Y (x)
= Covmx

(
−ρX (x− ·) , (− log fY )

′)
= Covmx

(
− logFX (x− ·) , (− log fY )

′)
,

which gives condition (3.3). Likewise condition (3.4) arises from the same type of
computations when studying log-concavity of (1− FX+Y ).

3.1 Towards a multivariate notion of bi-log-concavity

We consider the following multidimensional extension of the univariate notion of
bi-log-concavity defined in [5] and studied above.

Definition 3.5. Let µ be a probability measure on Rd, d ≥ 1. Then µ is said to be bi-log-
concave if for every line ` ⊂ Rd, the (Euclidean) projection measure µ` of µ onto the line
` is a (one-dimensional) bi-log-concave measure on ` (that can be possibly degenerate).
More explicitly, for any x ∈ ` and any Borel set B ⊂ R,

µ` (x+Bu) = µ
{
y ∈ Rd : (y − x) · u ∈ B

}
where u is a unit directional vector of the line `.
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Note that log-concave measures on Rd are also bi-log-concave in the sense of Defi-
nition 3.5. The following result states that our mutivariate notion of bi-log-concavity is
stable through convolution by log-concave measures.

Proposition 3.6. The convolution of a log-concave measure on Rd with a bi-log-concave
one is bi-log-concave.

Proof. The formula (X + Y ) ·u = X ·u+Y ·u shows that the projection of the convolution
of two measures on a line is the convolution of the projections of measures on this line.
This allows to reduce the stability through convolution by a log-concave measure to
dimension one and concludes the proof.

It is moreover directly seen that the proposed multivariate notion of bi-log-concavity
is stable by affine transformations of the space.

Actually, in addition to containing log-concave measures and being stable through
convolution by a log-concave measure, there are at least two other properties that one
would naturally require for a convenient multidimensional concept of bi-log-concavity:
existence of a density with respect to the Lebesgue measure on the convex hull of its
support and existence of a finite exponential moment for the (Euclidean) norm. We can
express this latter remark through the following open problem, that concludes this note.

Open Problem: Find a nice characterization of probability measures on Rd that are
bi-log-concave in the sense of Definition 3.5, that admit a density with respect to the
Lebesgue measure on the convex hull of their support and whose associated random
vector has an Euclidean norm with exponentially decreasing tails.
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