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Abstract. This paper introduces two classes of binomial integer-valued
ARCH models with dynamic survival probabilities, each of which is con-
trolled by a stochastic recurrence equation. Stationarity and ergodicity of the
process are established, and stochastic properties are given. Conditional least
squares and conditional maximum likelihood estimators for the parameters
of interest are considered, and their large-sample properties are established.
The performances of these estimators are compared via simulation studies.
Finally, we demonstrate the usefulness of the proposed models by analyzing
real datasets.

1 Introduction

The analysis and modeling of integer-valued time series with a finite range have become a
popular research area during the last decades. One of the earliest models for time series of
bounded counts, the binomial AR(1) model, was proposed by McKenzie (1985). Its definition
is based on the probabilistic operation of binomial thinning introduced by Steutel and van
Harn (1979): α◦X = ∑X

i=1 Yi , where X is a non-negative integer-valued random variable and
Yi is independent and identically distributed (i.i.d.) Bernoulli random variables with success
probability α ∈ (0,1), that is, P(Yi = 1) = 1 − P(Yi = 0) = α. Using the thinning operator
“◦” with α,β ∈ (0,1), McKenzie (1985) defined the binomial AR(1) process {Xt } by the
difference equation

Xt = α ◦ Xt−1 + β ◦ (n − Xt−1), t = 1,2, . . . ,

where X0 follows the binomial distribution with P(X0 = k) = (n
k

)
pk(1 − p)n−k , α = β + γ

and β = (1 − γ )p with γ ∈ (max (−p/(1 − p),−(1 − p)/p),1). All the counting series
in “α◦” and “β◦” are mutually independent sequences of independent Bernoulli distributed
random variables with parameters α and β , respectively, and the counting series at time t

are independent of the random variables Xs,∀s < t . This model was further investigated by
Weiß (2009a, 2009b), Cui and Lund (2010), Weiß and Pollett (2012) and it was general-
ized to the higher-order case by Weiß (2009c), Kim and Park (2010a, 2010b), see Möller
et al. (2016) and Yang, Wang and Li (2018) for threshold binomial autoregressive pro-
cesses.

One important limitation of the above models is that they assume the thinning probabilities
are not to be affected by various environmental factors. Based on this point, Zhang, Wang
and Zhu (2011a, 2011b, 2012) proposed the random coefficient integer-valued autoregres-
sive processes. Weiß and Kim (2014) proposed the beta-binomial AR(1) model to describe
time-dependent counts with extra-binomial variation. Weiß and Pollett (2014) proposed a
binomial AR(1) model with density dependent thinning, that is, Xt |Ft−1 : Bin(n,αt ), t ∈
{. . . ,−1,0,1, . . .}, where Ft−1 is the σ -field generated by {Xt−k}k≥1 and αt is given by
αt = a0 + a1

Xt−1
n

with a0 > 0 and a1 ≥ 0. This model is referred to as the BARCH(1) model
and it was generalized to the pth-order case by a linear link function in Ristić, Weiß and
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Janjić (2016). Lee and Lee (2019) discussed a binomial integer-valued GARCH(1,1) model
by a similar linear link function, see Scotto et al. (2014) and Ristić and Popović (2019) for
bivariate binomial time series models.

However, smooth change in thinning probability can not be described by above models.
Zheng and Basawa (2008) provided a dynamic structure INAR(1) model whose thinning
probability is a sequence of dependent (on past observations) random variables and updated
by using past information. Creal, Koopman and Lucas (2013) proposed generalized autore-
gressive score models to describe the smooth change by using the score of the log-likelihood
function, see Harvey (2013), Blasques, Koopman and Lucas (2014), Blasques et al. (2018a),
Blasques, Lucas and Silde (2018b) and Bazzi et al. (2017) for recent developments. Based on
this point, Gorgi (2018) proposed a dynamic structure INAR model whose thinning proba-
bility is driven by a stochastic recurrence equation to describe the smooth change in thinning
probability. A common characteristic of above models is that they are all dedicated to the
infinite time series, but there exist few literatures on the time series with bounded support.
To fill this gap, we provide two classes of random coefficient binomial integer-valued ARCH
models with dynamic structures. The first one is a random coefficient binomial integer-valued
ARCH(p) model with hysteric property, which makes the survival probability updated by the
past information, and the model will be referred to as the binomial logit-ARCH(p) model.
The second one is a binomial ARCH model with a time-varying survival probability, which
is controlled through a stochastic recurrence equation driven by the score of the predictive
log-likelihood. The new model not only updates the survival probability at each time period
by using past information, but also describes the smooth change, and it will be referred to as
the binomial score-ARCH(1) model.

The paper is organized as follows. The two classes of random coefficient binomial integer-
valued ARCH models with dynamic structures are discussed in Section 2. Conditional least
squares (CLS) and conditional maximum likelihood (CML) estimates and their asymptotic
properties are established in Section 3. A simulation study and two real datasets which show
the effectiveness of the new models are given in Sections 4 and 5, respectively. Conclusions
are made in Section 6. All proofs of theorems are given in Appendix A and some auxiliary
results are given in Appendix B.

Throughout this paper, we use the following notations. | · | denotes the absolute value of
a random variable; ‖ · ‖ denotes the Euclidean norm of a matrix or vector; ‖ · ‖� denotes
the uniform norm, that is, ‖u‖� = supη∈� |u(η)| for all function u(η) mapping from � into

R;
e.a.s.−→ denotes exponential almost sure uniform convergence, that is, a sequence of non-

negative random variables {αt } converges e.a.s. to zero if there exists a constant r > 1 such
that rtαt

a.s.−→ 0 as t diverges.

2 Dynamic binomial integer-valued ARCH models

In this section, we will introduce two classes of binomial integer-valued ARCH models with
dynamic structures.

2.1 Binomial logit-ARCH model

Let Ft−1 be the σ -field generated by the random variables {Xt−1, . . . ,Xt−p}, p = 1,2, . . . ,

n ∈ N be the predetermined upper limit of the range and logit(x) = log (x/(1 − x)), ∀x ∈
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Figure 1 Examples of autocorrelation function of logit-BARCH(p) model for different values of upper limit n:
(a) n = 10, (b) n = 20, (c) n = 30.

(0,1). Then the binomial logit-ARCH(p) model is defined as:⎧⎪⎪⎨⎪⎪⎩
Xt |Ft−1 : Bin(n,αt ),

logit(αt ) = r0 +
p∑

k=1

rkXt−k, t = 1,2, . . . ,
(2.1)

where rj ∈ R, j = 0,1, . . . , p.
The time series {Xt } given by (2.1) will be denoted as logit-BARCH(p) model. Specially,

for k = 1,2, . . . , p, if rk = 0 and r0 �= 0, {Xt } follows a binomial distribution with the con-
stant probability exp(r0)/(1 + exp(r0)); if rk �= 0, {Xt } follows the binomial distribution
with a time-varying survival probability which allows for flexible dynamics of the number
of counts in terms of past counts, which are captured by

∑p
k=1 rkXt−k .

For model (2.1), the conditional probability mass function of Xt has the form

Pn(Xt = xt |Ft−1) =
(

n

xt

)
α

xt
t (1 − αt)

n−xt . (2.2)

with αt = exp (r0+∑p
k=1 rkXt−k)

1+exp (r0+∑p
k=1 rkXt−k)

.

In what follows, we first discuss the stationarity and ergodicity of processes {Xt }, then we
will illustrate the stochastic properties of {Xt } by examples.

Theorem 1. The binomial logit-ARCH(p) process {Xt } is an ergodic and strictly stationary
process.

Note that Cov(Xt−k,Xt) = nCov(αt ,Xt−k) by assumption (2.1). Thus, the second-order
correlation structure of the logit-BARCH(p) process is not similar to that of the BARCH(p)

process in Ristić, Weiß and Janjić (2016). In Figure 1, we present some examples of the
autocorrelation function of the logit-BARCH(p) model with different upper limit of the range
n and p ∈ {1,2,3}, when fixing r0 = −1, r1 = 0.1, r2 = 0.1, r3 = 0.1 and sample size T =
200.

2.2 Binomial score-ARCH(1) model

Let {Xt, t ∈ Z} and {αt } be time series of counts with fixed α0 and X0, n ∈ Z
+ be the pre-

determined upper limit of the range, Dt−1 denote the information available on Xt up to time
t − 1, that is, Dt−1 = σ(Xs,∀s < t). Then the binomial score-ARCH(1) process {Xt, t ∈ Z}
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satisfies {
Xt |Dt−1 : Bin(n,αt ),

logit(αt ) = w + β logit(αt−1) + τst
(2.3)

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
st = ∂logPn(Xt−1 = x|αt−1,Xt−2)

∂ logit(αt−1)
,

Pn(Xt−1 = x|αt−1,Xt−2) =
(
n

x

)
αx

t−1(1 − αt−1)
n−x,

(2.4)

where w,τ ∈ R, |β| ∈ (0,1) and log (max (|β − 1
4τn|, |β + 1

4τn|, |β|)) < 0.
The time series {Xt } will be denoted as score-BARCH(1) model. According to (2.4), we

have st = Xt−1 − nαt−1. Hence, the success probability αt satisfies the following stochastic
recurrence equation:

logit(αt ) = w + β logit(αt−1) + τ(Xt−1 − nαt−1). (2.5)

Note that E(st |αt−1,Xt−2) = 0 and E(s2
t |αt−1,Xt−2) = Var(Xt) < ∞. Hence, the score st

can be regarded as the innovation of the dynamic system and (2.3) looks like a GARCH(1,1)

model. Furthermore, if we let ut = logit(αt ) and β ∈ (0,1), then

ut = w + βut−1 + τst .

Thus, ut = ∑t−1
j=0 βjw +βtu0 + τ

∑t−1
j=0 βj st−j . Hence, E(ut ) = ∑t−1

j=0 βjw +βtu0 → w
1−β

,
as t → ∞.

The score used to update logit(αt ) defines a steepest ascent direction for improving the
local fit of the score-BARCH(1) model in terms of the likelihood at time t − 1 given the
previous position of the parameter αt . If |β| ∈ (0,1) and τ �= 0, logit(αt ) allows for flexible
dynamics of the number of counts in terms of past counts, which are captured by st and ut−1.

A fundamental problem in the analysis of the score-BARCH(1) model is to prove the
stability and the ergodicity of the time-varying parameter {αt }. Similar to the method in Gorgi
(2018), we assume that the observed data is generated by an unknown stationary and ergodic
data generating process with a finite range and Assumption 1 holds.

Assumption 1. The parametric space 	 is compact with 	 = {η : η = (w,β, τ )
}, |β| ∈
(0,1), and log (max (|β − 1

4τn|, |β + 1
4τn|, |β|)) < 0.

Theorem 2. Let {Xt, t ∈ Z} be a stationary and ergodic sequence of random variable se-
quence with a finite range. If Assumption 1 holds, then the time-varying parameter {αt(η), t ∈
Z} defined by (2.3) converges e.a.s. and uniformly to a unique stationary and ergodic se-
quence {α̃t }, that is, ∥∥logit(αt ) − logit(α̃t )

∥∥
	

e.a.s.−→ 0, as t → ∞,

for any initialization α0.

Note that we discuss the stability of {αt } under the unknown data generating process in
Theorem 2. Blasques, Koopman and Lucas (2015), Blasques, Lucas and Silde (2018b) and
Bazzi et al. (2017) also considered similar assumptions about the data generating process. For
illustrative purposes, we let P o

n (x|Dt−1) = P o
n (Xt = x|Dt−1) be the true conditional proba-

bility of the unknown data generating process {Xt }, where the true conditional probability of



Two classes of dynamic binomial integer-valued ARCH models 689

Figure 2 Examples of autocorrelation function of score-BARCH model for different values of upper limit n: (a)
n = 10, (b) n = 20, (c) n = 30.

{Xt } is conditional on the past observations Dt−1 = σ(Xt−1,Xt−2, . . .) and n is the predeter-
mined upper limit of {Xt }. Denote Pn(x|α̃t (η),Dt−1) = Pn(Xt = x|α̃t (η),Dt−1) is the pos-
tulated conditional probability under the time-varying parameter α̃t (η). Then the conditional
Kullback–Leibler (KL) divergence between the true conditional probability P o

n (x|Dt−1) and
the postulated conditional probability Pn(Xt = x|α̃t (η),Dt−1) is

KLt (η) =
n∑

x=0

log
(

P o
n (x|Dt−1)

Pn(x|α̃t (η),Dt−1)

)
P o

n (x|Dt−1),

and the average KL divergence is KL(η) = E(KLt (η)) under the condition
E(| logP o

n (x|Dt−1)|) < ∞.

Corollary 1. Let {Xt, t ∈ Z} be a stationary and ergodic sequence of random variable se-
quence with a finite range. If Assumption 1 holds, then we have the following results:

(1) ‖αt − α̃t‖	
e.a.s.−→ 0, as t → ∞, for any initialization α0.

(2) Let η0 be the minimizer of the average KL divergence KL(η), then we immediately obtain

that ‖ logit(αt (η0)) − logit(α̃t (η0))‖	
e.a.s.−→ 0, t → ∞.

(3) In addition, if there exists a sequence η̂l such that η̂l
a.s.−→ η0, l → ∞, then we have{∣∣logit

(
αt(η̂l)

) − logit
(
α̃t (η0)

)∣∣ a.s.−→ 0,∣∣Pn

(
x|αt(η̂l),Dt−1

) − Pn

(
x|α̃t (η0),Dt−1

)∣∣ a.s.−→ 0,

as l → ∞, t → ∞, where Pn(x|αt(η̂l),Dt−1) = Pn(Xt = x|αt(η̂l),Dt−1) is the condi-
tional probability under the time-varying parameter αt(η̂l) and the parameter η̂l .

Note that Cov(Xt−k,Xt) = nCov(αt ,Xt−k) by assumption (2.5). Thus, the second-order
correlation structure of the score-BARCH process is not similar to that of BARCH(1) process
in Ristić, Weiß and Janjić (2016). In Figure 2, we present some examples of the autocorre-
lation function of the model for different upper limit of the range n, when fixing w = −1,
β = 0.2, τ = 0.1 and sample size T = 200.

3 Parameter estimation

In this section, we use the conditional least squares (CLS) and conditional maximum likeli-
hood (CML) methods to estimate the parameters in the binomial logit-ARCH(p) model and
the binomial score-ARCH(1) model.
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3.1 Binomial logit-ARCH(p) model

Let θ = (r0, r1, . . . , rp)
 and X0,X1, . . . ,XT be generated by the logit-BARCH(p) model
with the true parameter value θ0, where T ∈ N represents the size of the sample. Here, the
parameter n (upper limit of the range) is considered as a known quantity. To estimate θ0,
we will first briefly discuss the CLS estimation and then develop the CML estimation. To
study the asymptotic behaviour of the estimator, we make the following assumptions about
the underlying process and the parameter space.

Assumption 2. The parametric space � is compact with � = {θ : θ = (r0, r1, r2, . . . , rp)
}
and θ0 is an interior point in �.

Assumption 3. If there exists a t ≥ 1, such that Xt(θ0) = Xt(θ), Pn(x|Ft−1)θ0 a.s., then
θ = θ0, where Pn(x|Ft−1)θ0 = Pn(Xt = x|Ft−1)θ0 is the probability measure under the true
parameter θ0 and Ft−1, n is the upper limit of Xt .

3.1.1 Conditional least squares estimation. Let Y t = (1,Xt−1, . . . ,Xt−p)
 and gt (θ) =
E(Xt |Ft−1) = n exp (Y


t θ)

1+exp (Y

t θ)

, then the CLS estimate θ̂
cls
T is obtained by minimizing the function

Q(θ) =
T∑

t=p+1

(
Xt − E(Xt |Ft−1)

)2 =
T∑

t=p+1

(
Xt − gt (θ)

)2
, (3.1)

that is, θ̂
cls

is a solution of ∂Q(θ)
∂θ = 0, where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂Q(θ)

∂r0
=

T∑
t=p+1

(
Xt − ngt (θ)

)
gt (θ)

(
1 − gt (θ)

) = 0,

∂Q(θ)

∂rj
=

T∑
t=p+1

(
Xt − ngt (θ)

)
gt (θ)

(
1 − gt (θ)

)
Xt−j = 0, j = 1,2, . . . , p.

The following theorem gives the asymptotic properties of the CLS estimator.

Theorem 3. Let {Xt } be the logit-BARCH(p) process and assumptions 2 and 3 hold. Then

the CLS estimator θ̂
cls

is consistent and has the following asymptotic distribution:
√

T
(
θ̂

cls
T − θ0

) d−→ N
(
0,V −1WV −1), T → ∞,

where W = E
(
u2

t
∂gt (θ)

∂θ
∂gt (θ)

∂θ

)
θ0

, V = E
(

∂gt (θ)
∂θ

∂gt (θ)

∂θ
 − ut
∂2gt (θ)

∂θ∂θ

)
θ0

with ut = Xt − gt (θ).

3.1.2 Conditional maximum likelihood estimation. Using (2.2), the conditional log-
likelihood function can be written as:


(θ) =
T∑

t=p+1

logPn(Xt |Ft−1) with αt = exp (Y

t θ)

1 + exp (Y

t θ)

= f
(
Y


t θ
)
. (3.2)

Then the CML estimate θ̂
cml
T is obtained by minimizing (3.2), that is, θ̂

cml
T is a solution of the

score equation ∂
(θ0)
∂θ = 0, where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂
(θ)

∂r0
=

T∑
t=p+1

f (Y

t θ)(1 − f (Y


t θ))

Pn(Xt |Ft−1)

dPn(Xt |Ft−1)

dαt

= 0,

∂
(θ)

∂rj
=

T∑
t=p+1

f (Y

t θ)(1 − f (Y


t θ))Xt−j

Pn(Xt |Ft−1)

dPn(Xt |Ft−1)

dαt

= 0
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with dPn(Xt |Ft−1)
dαt

= n
1−αt

[Pn−1(Xt − 1|Ft−1) − Pn(Xt |Ft−1)] by Lemma 1, for j =
1,2, . . . , p.

Let Pθ0 be the probability measure under the true parameter θ0 and, unless otherwise
indicated, E(·)k is taken under θ0, ∀k ≥ 1. Lemma 2 in the Appendix B establishes the
identification of model (2.1). The following theorem gives the asymptotic properties of the
CML estimator.

Theorem 4. Let {Xt } be the logit-BARCH(p) process and assumptions 2 and 3 hold. Then,
as T → ∞,

(1) there exists an estimator θ̂
cml
T such that θ̂

cml
T

a.s.→ θ0;

(2)
√

T (θ̂
cml
T − θ0)

d−→ N (0, I−1(θ0)),

where I (θ0) = E
[

∂logPn(Xt |Ft−1)
∂θ

∂logPn(Xt |Ft−1)

∂θ

]
θ0

.

3.2 Binomial score-ARCH(1) model

Let η0 be the minimizer of the average KL divergence KL(η), the observed sequence
X1, . . . ,XT be a realized path of an unknown data generating process {Xt } and the true
conditional probability of {Xt } be denoted as P o

n (x|Dt−1), where Dt−1 = σ(Xs)s<t , n is
considered as a known quantity and T ∈ N represents the size of the sample.

Note that Theorem 2 implies that the initialization logit(α0) is irrelevant asymptotically.
Without loss of generality, we choose logit(α0) = w/(1 − β). For given X0, we have

logit(αt ) = w + β logit(αt−1) + τ(Xt−1 − nαt−1), t = 1,2,3, . . .

by (2.5). Before discussing the CLS and the CML estimation, we make the following as-
sumptions.

Assumption 4. The moment condition E| logP o
n (Xt |Dt−1)| < ∞ holds.

Assumption 5. If there exists a t ≥ 1 such that Xt(η0) = Xt(η), Pn(x|α̃t (η0), Dt−1) a.s.,
then η = η0, where Pn(x|α̃t (η),Dt−1) = Pn(Xt = x|α̃t (η),Dt−1) is the conditional proba-
bility under the time-varying parameter α̃t (η) and n is the predetermined upper limit of Xt .

The item E| logP o
n (Xt |Dt−1)| < ∞ in Assumption 4 ensures the existence of the average

KL divergence. Lemma 3 in Appendix B establishes the identification of the model Xt ∼
Bin(n, α̃t ) with α̃t satisfying the stochastic recurrence equation (2.5) under Assumption 5.

3.2.1 Conditional least squares estimation. Let h(ut ) = αt = exp (ut )
1+exp (ut )

with ut = w +
βut−1 +τst , then gη(ut ) = E(Xt |αt ,Dt−1) = nh(ut ). Then the CLS estimate η̂cls

T is obtained
by minimizing the function

Q(η) =
T∑

t=2

(
Xt − gη(ut )

)2 =
T∑

t=2

(
Xt − nh(ut )

)2
, (3.3)
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that is, η̂cls
T is a solution of ∂Q(η)

∂η = 0, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q(η)

∂w
= n

T∑
t=2

(
Xt − nh(ut )

)
h(ut )

(
1 − h(ut )

) = 0,

∂Q(η)

∂β
= n

T∑
t=2

(
Xt − nh(ut )

)
h(ut )

(
1 − h(ut )

)
ut−1 = 0,

∂Q(η)

∂τ
= n

T∑
t=2

(
Xt − nh(ut )

)
h(ut )

(
1 − h(ut )

)
st = 0.

Note that if {αt } is stationary and ergodic under the assumption of the data generating pro-
cess {Xt }, then the asymptotic theory of the CLS estimator η̂cls

T can be developed directly.
A fundamental problem is that we do not know precisely what conditions guarantee the er-
godicity of {αt }. However, the assumptions of Theorem 2 guarantee that {αt } converges e.a.s.
and uniformly to a unique stationary and ergodic sequence {α̃t }. Hence, we use the ergodic
properties of {α̃t } to study the asymptotic properties of the CLS estimators.

Denote

Q̃(η) =
T∑

t=2

(
Xt − gη(ũt )

)2 and Q̃(η) = E
(
Xt − gη(ũt )

)2

with ũt = logit(α̃t ) and gη(ũt ) = E(Xt |α̃t ,Dt−1). Let η̃cls
T be a solution of the score equa-

tions ∂Q̃(η)
∂η = 0. Similar to Theorem 3, the CLS estimator η̃cls

T is consistent and asymptotic

normal. Then the consistency and asymptotic normality of η̂cls
T is constructed via the relation

between η̂cls
T and η̃cls

T . The following theorem gives the strong consistency and the asymptotic
properties of η̂cls

T .

Theorem 5. Let {Xt, t ∈ Z} be a stationary and ergodic sequence and Assumptions 1, 4 and 5
hold. Then the CLS estimator η̂cls

T is consistent and has the following asymptotic distribution:
√

T
(
η̂cls

T − η0
) d−→ N

(
0,V −1WV −1), T → ∞,

where V = E
(

∂gη(ut )

∂η
∂gη(ut )

∂η
 − Ut(η)
∂2gη(ut )

∂η∂η

)
η0

, Ut(η) = Xt − gη(ut ) and W =
E

(
Ut(η)2 ∂gη(ut )

∂η
∂gη(ut )

∂η

)
η0

.

3.2.2 Conditional maximum likelihood estimation. Using (2.4), the conditional log-
likelihood function can be written as:


(η) :=
T∑

t=2

lt (η) =
T∑

t=2

logPn(Xt |αt ,Dt−1) with αt = exp (ut )

1 + exp (ut )
. (3.4)

Then the CML estimate η̂cml
T is obtained by minimizing (3.4), that is, η̂cml

T is a solution of the
score equation ∂
(η)

∂η = 0, where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂
(η)

∂w
=

T∑
t=2

h(ut )(1 − h(ut ))

Pn(Xt |αt ,Dt−1)

dPn(Xt |Ft−1)

dαt

= 0,

∂
(η)

∂β
=

T∑
t=2

h(ut )(1 − h(ut ))ut−1

Pn(Xt |αt ,Dt−1)

dPn(Xt |Ft−1)

dαt

= 0,

∂
(η)

∂τ
=

T∑
t=2

h(ut )(1 − h(ut ))st

Pn(Xt |αt ,Dt−1)

dPn(Xt |Ft−1)

dαt

= 0
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with dPn(Xt |Ft−1)
dαt

= n
1−αt

[Pn−1(Xt − 1|Ft−1) − Pn(Xt |Ft−1)] by Lemmas 1 and 4.
To study the asymptotic properties of the CML estimator, we denote


̃(η) = El̃t (η) and 
̃(η) =
T∑

t=2

l̃t (η) with l̃t (η) = logP
(
Xt |α̃t (η),Dt−1

)
,

where {α̃t } is the time-varying parameter. Let η̃cml
T be a solution of the corresponding score

equations ∂
̃(η)
∂η = 0. Similar to Theorem 4, η̃cml

T is consistent and asymptotic normal. Then

the consistency and asymptotic normality of η̂cml
T is constructed via the relation between η̂cml

T

and η̃cml
T . The following theorem gives the strong consistency and the asymptotic properties

of the CML estimator.

Theorem 6. Let {Xt, t ∈ Z} be a stationary and ergodic sequence and assumptions 1, 4, 5
hold. Then, as T → ∞,

(1) there exists an estimator η̂cml
T such that η̂cml

T

a.s.→ η0;

(2)
√

T (η̂cml
T − η0)

d−→ N (0, I−1(η0)), where I (η0) = E
[

∂lt (η)
∂η

∂lt (η)

∂η

]
η0

.

4 Simulation studies

A simulation study is conducted to check the finite-sample performance of the two estima-
tion methods for the logit-BARCH(p) model and the score-BARCH(1) model considered in
the previous section. To estimate the parameter vector (r0, r1, . . . , rp) for logit-BARCH(p)

model and (w,β, τ ) for score-BARCH(1) model, we first choose some values of r0 ∈ [−2,2]
for logit-BARCH(p) model and w ∈ [−2,2] for score-BARCH(1) model to guarantee thin-
ning probability αt changes over (0.1,0.9). Considering that αt is updated by past obser-
vations, then, we choose some values of r1, . . . , rp for logit-BARCH(p) model and β for
score-BARCH(1) model in [−0.3,0.3] to guarantee the slow change of the gradient of αt .
Last, we choose some values of τ for score-BARCH(1) model under Assumption 1. Among
these, some representative parameter combinations are listed as follows:

• logit-BARCH(1) model with (r0, r1)

 = (A1): (−1,0.1), (A2): (−1,0.2), (A3): (−1,

−0.1), (A4): (−1,−0.2), (A5): (1,0.1), (A6): (1,−0.1), (A7): (1,−0.2)

• logit-BARCH(2) model with (r0, r1, r2)

 = (B1): (−1,−0.1,−0.1), (B2): (−1,−0.1,

0.1), (B3): (−1,0.1,−0.1), (B4): (−2,0.1,0.1), (B5): (1,−0.1,−0.1), (B6): (1,−0.1,

0.1), (B7): (1,0.1,0.1)

• score-BARCH(1) model with (w,β, τ )
 = (C1): (−1,−0.1,−0.1), (C2): (−1,−0.1,0.1),
(C3): (−1,0.1,−0.1), (C4): (−1,0.1,0.1), (C5): (0.5,0.3,0.1), (C6): (1,0.3,−0.1),
(C7): (1,−0.3,0.1)

Here, we fix n = 20 and use the optim function in R for the optimization of the functions
(3.1) and (3.2), and (3.3) and (3.4). The size of sample is 100, 200, 500 and 1000 and we use
10,000 replications. For the simulated sample, performances of mean and standard deviation

(sd) are given. For a scale parameter ϕ, sd =
√

1
m−1

∑m
i=1(ϕ̂i − ϕ)2, where ϕ̂i is the estimator

of ϕ in the ith replication and m denotes repetition times.
A summary of the simulation results are given in Tables 1 to 3, which represent the logit-

BARCH(1), logit-BARCH(2) and score-BARCH(1) models, respectively.
These studies indicate that both of the estimation methods seem to perform reasonably

well, but the CML gives smaller standard deviations than those of the CLS, and the means
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Table 1 Mean and sd in parentheses of estimates for logit-BARCH(1) model

Method: CML CLS

T : 100 200 500 1000 100 200 500 1000

(A1)

r0 −0.9529 −0.9764 −0.9896 −0.9961 −0.9535 −0.9768 −0.9898 −0.9962
(0.1863) (0.1328) (0.0835) (0.0582) (0.1866) (0.1330) (0.0836) (0.0583)

r1 0.0952 0.0976 0.0990 0.0996 0.0953 0.0976 0.0990 0.0996
(0.0181) (0.0129) (0.0081) (0.0056) (0.0181) (0.0129) (0.0081) (0.0056)

(A2)

r0 −0.9242 −0.9427 −0.9688 −0.9782 −0.9139 −0.9311 −0.9590 −0.9727
(0.4454) (0.4270) (0.3891) (0.3446) (0.4438) (0.4279) (0.3928) (0.3498)

r1 0.1962 0.1971 0.1984 0.1989 0.1957 0.1965 0.1979 0.1986
(0.0245) (0.0232) (0.0210) (0.0186) (0.0239) (0.0230) (0.0210) (0.0188)

(A3)

r0 −0.9973 −0.9992 −0.9987 −1.0008 −0.9966 −0.9988 −0.9985 −0.1008
(0.1276) (0.0911) (0.0580) (0.0408) (0.1288) (0.0920) (0.0585) (0.0412)

r1 −0.1012 −0.1005 −0.1003 −0.0998 −0.1014 −0.1006 −0.1004 −0.0998
(0.0304) (0.0216) (0.0138) (0.0097) (0.0308) (0.0218) (0.0140) (0.0098)

(A4)

r0 −1.0044 −1.0018 −1.0002 −1.0009 −1.0030 −1.0012 −1.0000 −1.0007
(0.1176) (0.0818) (0.0519) (0.0371) (0.1214) (0.0849) (0.0536) (0.0381)

r1 −0.1994 −0.1998 −0.2002 −0.1997 −0.2001 −0.2000 −0.2003 −0.1998
(0.0352) (0.0245) (0.0154) (0.0109) (0.0373) (0.0259) (0.0162) (0.0115)

(A5)

r0 1.0475 1.0405 1.0296 1.0142 1.0502 1.0434 1.0314 1.0150
(0.4573) (0.4443) (0.4106) (0.3767) (0.4573) (0.4448) (0.4120) (0.3789)

r1 0.0977 0.0980 0.0985 0.0993 0.0975 0.0978 0.0984 0.0992
(0.0248) (0.0238) (0.0218) (0.0200) (0.0245) (0.0236) (0.0218) (0.0201)

(A6)

r0 0.9949 0.9977 0.9976 0.9990 0.9957 0.9980 0.9977 0.9990
(0.1817) (0.1311) (0.0819) (0.0585) (0.1820) (0.1312) (0.0819) (0.0586)

r1 −0.0996 −0.0998 −0.0998 −0.0999 −0.0996 −0.0998 −0.0998 −0.0999
(0.0176) (0.0128) (0.0079) (0.0057) (0.0177) (0.0128) (0.0079) (0.0057)

(A7)

r0 0.9885 0.9921 0.9987 0.9983 0.9909 0.9934 0.9991 0.9985
(0.1132) (0.0782) (0.0481) (0.0348) (0.1151) (0.0793) (0.0486) (0.0353)

r1 −0.1985 −0.1990 −0.1998 −0.1998 −0.1989 −0.1992 −0.1999 −0.1998
(0.0145) (0.0101) (0.0062) (0.0044) (0.0149) (0.0104) (0.0063) (0.0045)

of CML are closer to the true parameter values than those of the CLS in most cases. As the
sample size increases, the estimates seem to converge to the true parameter values.

To illustrate the location and dispersion of the estimates, we present the boxplots of the
estimates for the parameter combinations (A1), (B1) and (C1) in Figures 3 to 5, others are
similar. Figures 3–5 illustrate the large-sample properties of the estimators on a limited sam-
ple size.

In general, the estimated medians are apparently closer to the real parameter values with
the sample size increase. Regarding dispersion issues, both the interquartile ranges and the
overall range of the produced values become narrower with the sample size increase, which
indicates the consistency of the CML and CLS estimators.

5 Real data examples

In this section, we consider the possible applications of the dynamic binomial integer-
valued ARCH models in the field of biostatistics and meteorology. We use the binomial
logit-ARCH(p) and score-ARCH(1) models, BARCH(p) model (Ristić, Weiß and Janjić,
2016) and binomial GARCH(1,1) model (BGARCH(1,1)) (Lee and Lee, 2019) to fit the
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Table 2 Mean and sd in parentheses of estimates for logit-BARCH(2) model

Method: CML CLS

T : 100 200 500 1000 100 200 500 1000

(B1)

r0 −0.9827 −0.9923 −0.9969 −0.9986 −0.9820 −0.9913 −0.9965 −0.9986
(0.1740) (0.1275) (0.0819) (0.0581) (0.1786) (0.1308) (0.0836) (0.0593)

r1 −0.1020 −0.1010 −0.1006 −0.1002 −0.1021 −0.1011 −0.1007 −0.1002
(0.0366) (0.0259) (0.0163) (0.0116) (0.0374) (0.0263) (0.0166) (0.0117)

r2 −0.1045 −0.1021 −0.1008 −0.1004 −0.1048 −0.1023 −0.1009 −0.1004
(0.0317) (0.0240) (0.0157) (0.0113) (0.0335) (0.0251) (0.0162) (0.0116)

(B2)

r0 −0.9404 −0.9706 −0.9887 −0.9929 −0.9403 −0.9697 −0.9884 −0.9926
(0.2350) (0.1717) (0.1067) (0.0755) (0.2385) (0.1746) (0.1083) (0.0766)

r1 −0.1034 −0.1016 −0.1007 −0.1004 −0.1038 −0.1018 −0.1008 −0.1004
(0.0248) (0.0176) (0.0110) (0.0078) (0.0255) (0.0181) (0.0112) (0.0080)

r2 0.0925 0.0963 0.0985 0.0991 0.0927 0.0963 0.0985 0.0991
(0.0214) (0.0160) (0.0101) (0.0072) (0.0217) (0.0162) (0.0103) (0.0073)

(B3)

r0 −0.9823 −0.9879 −0.9972 −0.9980 −0.9796 −0.9866 −0.9966 −0.9976
(0.1536) (0.1125) (0.0711) (0.0505) (0.1544) (0.1128) (0.0716) (0.0508)

r1 0.0971 0.0982 0.0993 0.0996 0.0973 0.0983 0.0994 0.0996
(0.0236) (0.0168) (0.0106) (0.0074) (0.0238) (0.0169) (0.0107) (0.0075)

r2 −0.1005 −0.1004 −0.1000 −0.1000 −0.1014 −0.1008 −0.1002 −0.1001
(0.0227) (0.0164) (0.0107) (0.0076) (0.0232) (0.0167) (0.0108) (0.0077)

(B4)

r0 −1.8816 −1.9433 −1.9807 −1.9912 −1.8834 −1.9448 −1.9814 −1.9915
(0.1722) (0.1147) (0.0662) (0.0454) (0.1730) (0.1155) (0.0666) (0.0458)

r1 0.0957 0.0982 0.0995 0.0998 0.0960 0.0984 0.0995 0.0998
(0.0219) (0.0148) (0.0092) (0.0065) (0.0222) (0.0144) (0.0092) (0.0065)

r2 0.0912 0.0959 0.0985 0.0993 0.0912 0.0959 0.0985 0.0993
(0.0211) (0.0143) (0.0092) (0.0065) (0.0213) (0.0144) (0.0092) (0.0065)

(B5)

r0 0.9984 1.0015 0.9985 1.0000 1.0010 1.0032 0.9992 1.0005
(0.2286) (0.1695) (0.1079) (0.0772) (0.2301) (0.1705) (0.1084) (0.0775)

r1 −0.0997 −0.1001 −0.0999 −0.1000 −0.0999 −0.1002 −0.0999 −0.1001
(0.0192) (0.0140) (0.0088) (0.0063) (0.0193) (0.0141) (0.0088) (0.0063)

r2 −0.1002 −0.1001 −0.1000 −0.1000 −0.1004 −0.1002 −0.1000 −0.1001
(0.0181) (0.0134) (0.0086) (0.0062) (0.0182) (0.0135) (0.0087) (0.0062)

(B6)

r0 1.0641 1.0500 1.0272 1.0153 1.0646 1.0529 1.0289 1.0163
(0.3695) (0.3264) (0.2533) (0.1911) (0.3736) (0.3306) (0.2579) (0.1946)

r1 −0.0994 −0.1002 −0.1003 −0.1002 −0.0994 −0.1003 −0.1004 −0.1003
(0.0181) (0.0145) (0.0104) (0.0077) (0.0183) (0.0147) (0.0106) (0.0079)

r2 0.0949 0.0967 0.0985 0.0992 0.0949 0.0967 0.0984 0.0992
(0.0168) (0.0133) (0.0098) (0.0072) (0.0173) (0.0136) (0.0099) (0.0073)

(B7)

r0 1.1302 1.1089 1.0792 1.0675 1.1422 1.1269 1.0897 1.0770
(0.4549) (0.4540) (0.4460) (0.4423) (0.4497) (0.4470) (0.4434) (0.4370)

r1 0.1115 0.1114 0.1108 0.1096 0.1249 0.1132 0.1120 0.1117
(0.0679) (0.0678) (0.0666) (0.0652) (0.1008) (0.0704) (0.0630) (0.0620)

r2 0.0845 0.0843 0.0858 0.0874 0.1044 0.0860 0.0841 0.0848
(0.0701) (0.0679) (0.0654) (0.0631) (0.1072) (0.0748) (0.0670) (0.0659)

data by the CML method. We compare their approximated standard error (SE), Bayesian in-
formation criterion (BIC), where the approximated standard error is computed by using the
matrix I−1(θ0) (or I−1(η0)), see Theorem 4 (or Theorem 6) for detail.

Note that the number of summation terms in the log-likelihood decreases with the increas-
ing of order p, which affects the values of the information criteria BIC. To correct for this
issue, we follow the suggestion in Weiß (2018) to compute the values of BIC (denoted as
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Table 3 Mean and sd in parentheses of estimates for score-BARCH(1) model

Method: CML CLS

T : 100 200 500 1000 100 200 500 1000

(C1)

ω −0.9611 −0.9801 −1.0038 −0.9968 −0.9614 −0.9804 −1.0040 −0.9969
(0.2231) (0.1614) (0.0855) (0.0715) (0.2242) (0.1620) (0.0857) (0.0717)

β −0.0547 −0.0772 −0.1038 −0.0964 −0.0550 −0.0775 −0.1040 −0.0965
(0.2380) (0.1725) (0.0906) (0.0769) (0.2392) (0.1731) (0.0909) (0.0771)

τ −0.1029 −0.1014 −0.1006 −0.1003 −0.1030 −0.1014 −0.1006 −0.1003
(0.0254) (0.0176) (0.0112) (0.0078) (0.0257) (0.0178) (0.0113) (0.0079)

(C2)

ω −1.0405 −1.0192 −1.0182 −1.0044 −1.0408 −1.0194 −1.0183 −1.0045
(0.2224) (0.1618) (0.0893) (0.0718) (0.2230) (0.1624) (0.0896) (0.0719)

β −0.1433 −0.1204 −0.1196 −0.1045 −0.1437 −0.1205 −0.1198 −0.1046
(0.2388) (0.1727) (0.0950) (0.0768) (0.2395) (0.1732) (0.0952) (0.0769)

τ 0.0984 0.0990 0.0996 0.0998 0.0984 0.0990 0.0996 0.0998
(0.0248) (0.0175) (0.0110) (0.0079) (0.0250) (0.0177) (0.0111) (0.0079)

(C3)

ω −0.9389 −0.9649 −0.9746 −0.9951 −0.9388 −0.9650 −0.9746 −0.9951
(0.2893) (0.2150) (0.1161) (0.0953) (0.2903) (0.2161) (0.1164) (0.0956)

β 0.1570 0.1326 0.1231 0.1049 0.1572 0.1326 0.1232 0.1049
(0.2566) (0.1911) (0.1024) (0.0845) (0.2575) (0.1922) (0.1027) (0.0848)

τ −0.1035 −0.1015 −0.1007 −0.1003 −0.1037 −0.1016 −0.1007 −0.1003
(0.0279) (0.0197) (0.0125) (0.0087) (0.0282) (0.0198) (0.0126) (0.0087)

(C4)

ω −1.0549 −1.0338 −0.9947 −1.0077 −1.0555 −1.0344 −0.9947 −1.0079
(0.2788) (0.2133) (0.1096) (0.0946) (0.2795) (0.2140) (0.1098) (0.0949)

β 0.0521 0.0706 0.1051 0.0933 0.0515 0.0701 0.1050 0.0931
(0.2476) (0.1892) (0.0968) (0.0837) (0.2484) (0.1898) (0.0970) (0.0840)

τ 0.0976 0.0991 0.0995 0.0997 0.0977 0.0991 0.0995 0.0997
(0.0273) (0.0188) (0.0119) (0.0084) (0.0275) (0.0190) (0.0120) (0.0085)

(C5)

ω 0.5423 0.5203 0.5074 0.5041 0.5424 0.5204 0.5074 0.5042
(0.1607) (0.1142) (0.0725) (0.0515) (0.1610) (0.1144) (0.0726) (0.0516)

β 0.2421 0.2723 0.2894 0.2944 0.2420 0.2723 0.2894 0.2944
(0.2137) (0.1532) (0.0974) (0.0693) (0.2141) (0.1535) (0.0976) (0.0694)

τ 0.0978 0.0987 0.0995 0.0997 0.0979 0.0987 0.0995 0.0997
(0.0233) (0.0166) (0.0104) (0.0072) (0.0234) (0.0166) (0.0104) (0.0072)

(C6)

ω 0.9089 0.9446 0.9763 0.9882 0.9065 0.9430 0.9757 0.9878
(0.3544) (0.2903) (0.1929) (0.1398) (0.3563) (0.2918) (0.1945) (0.1407)

β 0.3659 0.3395 0.3169 0.3085 0.3675 0.3406 0.3174 0.3088
(0.2466) (0.2025) (0.1347) (0.0973) (0.2477) (0.2035) (0.1359) (0.0979)

τ −0.1046 −0.1023 −0.1010 −0.1004 −0.1050 −0.1025 −0.1011 −0.1004
(0.0335) (0.0232) (0.0148) (0.0102) (0.0340) (0.0235) (0.0149) (0.0104)

(C7)

ω 1.0315 1.0187 1.0065 1.0037 1.0312 1.0186 1.0066 1.0037
(0.1730) (0.1260) (0.0800) (0.0572) (0.1732) (0.1264) (0.0803) (0.0574)

β −0.3393 −0.3234 −0.3084 −0.3051 −0.3390 −0.3233 −0.3084 −0.3051
(0.2118) (0.1563) (0.0990) (0.0711) (0.2122) (0.1568) (0.0994) (0.0713)

τ 0.0985 0.0994 0.0997 0.0997 0.0986 0.0994 0.0997 0.0997
(0.0234) (0.0167) (0.0104) (0.0074) (0.0235) (0.0168) (0.0105) (0.0074)

BIC∗) by multiplying the maximized log-likelihood by the factor T/(T − p), see Weiß and
Feld (2019) for more detail. In addition, we also evaluate the performance by comparing the
root mean square error (RMSE) of above models, where

RMSE =
√√√√√ 1

(T − p)

T∑
t=p+1

(Xt − nα̂t )2,
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Figure 3 (a)–(b): Boxplots of CML estimates for (A1), (d)–(e): boxplots of CLS estimates for (A1).

Figure 4 (a)–(c): Boxplots of CML estimates for (B1), (d)–(f): boxplots of CLS estimates for (B1).

Figure 5 (a)–(c): Boxplots of CML estimates for (C1), (d)–(f): boxplots of CLS estimates for (C1).

with

• α̂t = â0 + ∑T
t=p+1 âkXt−k/n for BARCH(p) model (Ristić, Weiß and Janjić, 2016),

• α̂t = ŵ + ŵ1α̂t−1 + ŵ2Xt−1/n for BGARCH(1,1) (Lee and Lee, 2019),

• α̂t = exp (r̂0+∑T
t=p+1 r̂kXt−k)

1+exp (r̂0+∑T
t=p+1 r̂kXt−k)

for logit-BARCH(p) model,

• α̂t = exp (
∑T

t=2 ω̂+β̂ logit(α̂t−1)+τ̂ st )

1+exp (
∑T

t=2 ω̂+β̂ logit(α̂t−1)+τ̂ st )
for score-BARCH(1) model.
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Figure 6 Path of the infection counts.

Figure 7 Infection counts: (a) the ACF (b) the PACF.

5.1 Infection counts

In this section, we consider the number of districts with new cases of cryptosporidiosis in-
fections per week of the year 2013 reported in n = 38 Germany’s districts. The dataset is
taken from the “SurvStat” data (https://survstat.rki.de/Content/Query/Main.aspx), which has
been reported to the Robert-Koch-Institut via local and state health departments. The length
of the data is 52 and the sample mean and variance are 14.0577 and 35.8986, respectively.
The sample path and the ACF, PACF plots of the observations are given in Figures 6 and 7,
respectively.

Figure 7 shows that an autoregressive model of order p ≤ 2 appears to be reasonable. The
CML estimates and approximated standard errors of parameters, including the fitted values
of BIC∗ and RMSE, are summarized in Table 4.

From Table 4, we have the following observations. For p = 1, the logit-BARCH(1) model
takes the smallest BIC∗ and RMSE. For p = 2, the logit-BARCH(p) model takes the smaller
BIC∗ and RMSE than those of the corresponding BARCH(p) model. For all the consid-
ered models, the logit-BARCH(2) model takes the smallest BIC∗ and RMSE. Hence, the
logit-BARCH(2) model is more suitable for the analysed dataset.

To further check the adequacy of this model, we first use the parametric bootstrap based
on the fitted model (Tsay, 1992), which was also considered in Weiß (2015), Ristić, Weiß
and Janjić (2016) and Ristić and Popović (2019). For parameter values r0 = −2.0215,
r1 = 0.0747 and r2 = 0.0275, we simulate 10,000 samples of size T = 52 from the
logit-BARCH(2) model. For each simulated sample, we compute the sample ACF, and for
each fixed lag, we derive the 2.5% and 97.5% quantiles and draw the bootstrap confidence
intervals in Figure 8.

From this figure, we can conclude that the logit-BARCH(2) model adequately describes
the autocorrelation structure of the infection counts. Second, we analyze the Pearson residuals

https://survstat.rki.de/Content/Query/Main.aspx
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Table 4 Estimates for the cryptosporidiosis infection counts, SE are shown in parentheses

Model estimates BIC∗ RMSE

BGARCH(1,1)

ŵ ŵ1 ŵ2
275.0295 3.53360.0718 0.0299 0.7743

(0.0293) (0.1281) (0.1008)

score-BARCH(1)
ŵ β̂ τ̂

273.8296 3.4462−0.0826 0.8610 0.0865
(0.0656) (0.0823) (0.0149)

BARCH(1)
â0 â1

277.1845 3.51370.0759 0.7929
(0.0232) (0.0608)

BARCH(2)

â0 â1 â2
266.9672 3.42580.0497 0.6092 0.2485

(0.0263) (0.1065) (0.1101)

logit-BARCH(1)
r̂0 r̂1

273.0364 3.4322−1.9417 0.0970
(0.1361) (0.0086)

logit-BARCH(2)

r̂0 r̂1 r̂2
264.1300 3.3701−2.0215 0.0747 0.0275

(0.1421) (0.0148) (0.0147)

Figure 8 ACF for cryptosporidiosis infection counts with 95% bootstrap confidence intervals.

of the logit-BARCH(2) model, which is defined by

et = Xt − nα̂t√
nα̂t (1 − α̂t )

with α̂t = exp (r̂0 + ∑T
t=p+1 r̂kXt−k)

1 + exp (r̂0 + ∑T
t=p+1 r̂kXt−k)

. (5.1)

The mean and variance of Pearson residuals of the fitted logit-BARCH(2) model are 0.0029
and 1.3886, respectively. The residual analysis in Figure 9 shows that this model does rather
well.

Thus, we conclude that our logit-BARCH(2) model is an adequate model for cryptosporid-
iosis counts.

Remark 1. Note that the bootstrap confidence intervals are rather wide in Figure 8, but this
was not surprising because the sample size is small in the analyzed data. An intuitive idea is
to analyze the number of districts with new cases of cryptosporidiosis infection per week in
two or more years, but cryptosporidiosis is known to be a seasonal infection, see Current and
Garcia (1991). To model the seasonal data, one can consider the seasonal log-linear model
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Figure 9 Pearson residual analysis of cryptosporidiosis infection counts (a) ACF of the residuals (b) PACF of
the residuals.

Figure 10 Path of the rainy days in Hamburg-Neuwiedenthal.

Figure 11 Rainy days in Hamburg-Neuwiedenthal: (a) the ACF (b) the PACF.

in Höhle and Paul (2008), see Weiß (2018) and Weiß and Feld (2019) for more discussion.
A relevant future study will be considered to model data with seasonal and non-stationary
characteristics.

5.2 Rainy days time series

In this section, we consider the number of rainy days per week at Hamburg-Neuwiedenthal
in Germany. The data was collected from January 1st 2005 till December 31th 2010 by the
German Weather Service (DWD = “Deutscher WetterDienst”, http://www.dwd.de/), where
weeks are defined from Saturday to Friday and n = 7. The length of the data is 313 and the
sample mean and variance are 3.8371 and 3.6753, respectively. The sample path and the ACF,
PACF plots of the observations are given in Figures 10 and 11, respectively.

Figure 11 shows that an autoregressive model of order p ≤ 2 appears to be reasonable. The
CML estimates and approximated standard errors of parameters, including the fitted values
of BIC∗ and RMSE, are summarized in Table 5.

http://www.dwd.de/
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Table 5 Estimates for the rainy days in Hamburg-Neuwiedenthal, SE are shown in parentheses

Model estimates BIC∗ RMSE

BGARCH(1,1)

ŵ ŵ1 ŵ2
1376.8676 1.88200.2308 0.4064 0.1724

(0.1136) (0.2099) (0.0391)

score-BARCH(1)
ŵ β̂ τ̂

1376.9969 1.88140.0837 0.5721 0.1002
(0.0585) (0.2090) (0.0230)

BARCH(1)
â0 â1

1379.2257 1.88240.4460 0.1853
(0.0238) (0.0384)

BARCH(2)

â0 â1 â2
1374.1191 1.88010.4132 0.1736 0.0726

(0.0296) (0.0392) (0.0392)

logit-BARCH(1)
r̂0 r̂1

1379.1103 1.8823−0.2210 0.1080
(0.0962) (0.0226)

logit-BARCH(2)

r̂0 r̂1 r̂2
1374.0993 1.8801−0.3524 0.1010 0.0419

(0.1203) (0.0230) (0.0230)

Figure 12 ACF for rainy days counts with 95% bootstrap confidence intervals.

From Table 5, we have the following observations. For p = 1, the score-BARCH(1) model
takes the smallest RMSE, while its BIC∗ is slightly greater than that of BGARCH(1,1)

model. For p = 2, the logit-BARCH(2) and BARCH(2) models take the same value of the
RMSE, but the logit-BARCH(2) model takes the smaller BIC∗ than that of the correspond-
ing BARCH(2) model. For all the considered models, the logit-BARCH(2) and BARCH(2)
models take the same minimum value of the RMSE, but the logit-BARCH(2) model takes the
smallest BIC∗. Hence, the logit-BARCH(2) model is more suitable for the analyzed dataset.

To further check the adequacy of this model, we first use the parametric bootstrap based
on the fitted logit-BARCH(2) model. For parameter values r0 = −0.3524, r1 = 0.1010 and
r2 = 0.0419, we simulate 10,000 samples of size T = 313 from the logit-BARCH(2) model.
For each simulated sample, we compute the sample ACF, and for each fixed lag, we derive
the 2.5% and 97.5% quantiles and draw the bootstrap confidence intervals in Figure 12.

From this graph, we can conclude that the logit-BARCH(2) model adequately describes
the autocorrelation structure of the rainy days counts. Second, we analyze the Pearson resid-
ual (defined by (5.1)) of the logit-BARCH(2) model. Its mean and variance are −0.0020 and
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Figure 13 Pearson residual analysis of rainy days counts in Hamburg-Neuwiedenthal (a) ACF of the residuals
(b) PACF of the residuals.

2.0609, respectively. The residual analysis in Figure 13 shows that this model does rather
well.

Thus, we conclude that our logit-BARCH(2) model is an adequate model for the analyzed
rainy days counts.

Remark 2. Note that the bootstrap confidence intervals are narrower in Figure 12 than that
in Figure 8, which implies that increasing the sample size is a method to reduce the width of
the bootstrap confidence interval.

Remark 3. For the two real datasets, our logit-BARCH(2) model performs best. But there
exists a common drawback that this model can not fully capture the actual dispersion since
the variances of the model’s Pearson residuals are a little greater than one (1.3886 for the
infection counts and 2.0609 for the rainy days counts). One possible solution to this problem
is that we replace the binomial distribution to the beta-binomial distribution, see Weiß and
Kim (2014) for the beta-binomial AR(1) model, which deserves a further study.

6 Concluding remarks

This paper considers two alternative approaches to construct dynamic binomial ARCH
model, where time-varying coefficient αt is updated at each time period by using past in-
formation. We discuss some properties of the models, the estimate of the parameters and
its large-sample properties. Simulations are conducted to examine the finite sample perfor-
mance of estimators. Real data examples are provided to illustrate the applicability of the new
models.

After having defining the dynamic binomial ARCH models, there are a number of impor-
tant issues for future research. As already discussed in Section 2, the autocorrelation function
of the models should be treated in more detail. In Section 2.1, the higher order score-BARCH
model would deserve a detailed analysis in a future project. Finally, one may also try to
find alternative approaches for modeling bounded count time series to capture the additional
dispersion besides the suggestion in Remark 3.

Appendix A: Proof of theorems

Proof of Theorem 1. The proof of Theorem 1 is similar to that of Theorem 1 in Ristić, Weiß
and Janjić (2016) and we omit it. �
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Proof of Theorem 2. Because the range of Xt is finite, any moments exist. According to
(2.4), we have

∂st (αt−1)

∂logit(αt−1)
= −nαt−1(1 − αt−1).

Hence,

E log
(

sup
η∈�

∣∣∣∣β + τ
∂st (αt−1)

∂logit(αt−1)

∣∣∣∣) ≤ log
(

max
(∣∣∣∣β − 1

4
τn

∣∣∣∣, ∣∣∣∣β + 1

4
τn

∣∣∣∣, |β|
))

< 0

holds by Assumption 1 and Lemma 5. Similar to the proof of Proposition 3.1 in Gorgi (2018),
we obtain that the conditions in Theorem 2 of Wintenberger (2013) hold, hence, there exists
a unique stationary and ergodic sequence {α̃t } such that the time-varying parameter {αt }
converges e.a.s. and uniformly to {α̃t }, t → ∞. Thus, the result of Theorem 2 hold. �

Proof of Corollary 1.

(1) ‖αt − α̃t‖	 =
∥∥∥∥ exp (logit(αt ))

1 + exp (logit(αt ))
− exp (logit(α̃t ))

1 + exp (logit(α̃t ))

∥∥∥∥
	

≤ 1

4

∥∥logit(αt ) − logit(α̃t )
∥∥
	

by the second assertion of Lemma 4. Hence, result (1) holds by Theorem 2.
The second result is directly obtained by Theorem 2. Then we prove the third assertion.
(3) In the following, we first prove (I) := |logit(αt (η̂l)) − logit(α̃t (η0))| a.s.−→ 0, if η̂l

a.s.−→
η0, l → ∞. Note that

(I) ≤ ∣∣logit
(
αt(η̂l)

) − logit
(
α̃t (η̂l)

)∣∣︸ ︷︷ ︸
(II)

+ ∣∣logit
(
α̃t (η̂l)

) − logit
(
α̃t (η0)

)∣∣︸ ︷︷ ︸
(III)

. (A.1)

According to Theorem 2, part (II)
a.s−→ 0. In the following, we prove part (III)

a.s−→ 0. Note
that {

logit
(
α̃t (η̂l)

) = ŵl + β̂l logit
(
α̃t−1(η̂l)

) + τ̂l

(
Xt−1 − nα̃t−1(η̂l)

)
,

logit
(
α̃t (η0)

) = w0 + β0 logit
(
α̃t−1(η0)

) + τ0
(
Xt−1 − nα̃t−1(η0)

)
,

then, we have

(III) ≤ |ŵl − w0| + |Xt−1||τ̂l − τ0|
+ ∣∣β̂l logit

(
α̃t−1(η̂l)

) − β0 logit
(
α̃t−1(η0)

)∣∣ + n
∣∣τ̂l α̃t−1(η̂l) − τ0α̃t−1(η0)

∣∣
≤ |ŵl − w0| + |Xt−1||τ̂l − τ0| +

∣∣logit
(
α̃t−1(η0)

)∣∣|β̂l − β0|

+ n
∣∣α̃t−1(η0)

∣∣|τ̂l − τ0| +
(
|β̂l| + n|τ̂l|

4

)∣∣logit
(
α̃t−1(η̂l)

) − logit
(
α̃t−1(η0)

)∣∣
≤ c|η̂l − η0| +

(
|β̂l| + n|τ̂l|

4

)∣∣logit
(
α̃t−1(η̂l)

) − logit
(
α̃t−1(η0)

)∣∣
≤ · · · ≤ tc|η̂l − η0| +

(
|β̂l| + n|τ̂l|

4

)t ∣∣logit
(
α̃0(η̂l)

) − logit
(
α̃0(η0)

)∣∣ a.s−→ 0,

as l → ∞, t → ∞. Hence, (A.1)
a.s−→ 0, as l → ∞, t → ∞. Then we prove the result:∣∣Pn

(
x|αt(η̂l),Dt−1

) − Pn

(
x|α̃t (η0),Dt−1

)∣∣ a.s.−→ 0, as l → ∞, t → ∞.
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Using the mean value theorem, there exists at least one αt(η) lying in between αt(η̂l) and
α̃t (η0) such that, as l → ∞, t → ∞,∣∣Pn

(
x|αt(η̂l),Dt−1

) − Pn

(
x|α̃t (η0),Dt−1

)∣∣
≤ ∣∣Xt − nαt(η)

∣∣∣∣logit
(
αt(η̂l)

) − logit
(
α̃t (η0)

)∣∣ a.s−→0,

by the first result of (3) in Corollary 1 and Lemma 4. �

Proof of Theorem 3. According to Klimko and Nelson (1978), we split the proof into several
intermediate results:

(i) Let f (x) = exp (x)
1+exp (x)

. Using Lemma 4, we have gt (θ0) = E(Xt |Ft−1) = nf (Y

t θ).

Note that f ′(x) = f (x)(1 − f (x)) < f (x) ≤ 1, f ′′(x) = f ′(x)(1 − 2f (x)) < f (x) ≤ 1 and
f ′′′(x) = f ′(x)[(1 − 2f (x))2 − 2f ′(x)] = f ′(x)[1 + 6f (x)(1 − f (x))] < 7f (x) ≤ 7. Then

we have ∂gt (θ0)
∂ri

, ∂2gt (θ0)
∂ri∂rj

and ∂3gt (θ0)
∂ri∂rj ∂rk

exist and are continuous, i, j, k = 0,1,2, . . . , p;

(ii) Let ut(θ0) = Xt − gt (θ0), ∀i, j = 0,1,2, . . . , p, E|ut (θ0)
∂gt (θ0)

∂ri
| < ∞,

E|ut (θ0)
∂2gt (θ0)
∂ri∂rj

| < ∞ and E|( ∂gt (θ0)
∂ri

∂gt (θ0)
∂rj

)| < ∞;

(iii) ∀i, j, k = 0,1,2, . . . , p, there exist functions H(0)(X0,X1, . . . ,Xt−p), H
(1)
i (X0,X1,

. . . ,Xt−p), H(2)
ij (X0,X1, . . . ,Xt−p), and H

(3)
ijk (X0,X1, . . . ,Xt−p) such that |gt (θ0)| ≤ H(0),

| ∂gt (θ0)
∂ri

| ≤ H
(1)
i , | ∂2gt (θ0)

∂ri∂rj
| ≤ H

(2)
ij , | ∂3gt (θ0)

∂ri∂rj ∂rk
| ≤ H

(3)
ijk and E|XtH

(3)
ijk | < ∞, E|H(0)H

(3)
ijk | <

∞, E|H(1)
i H

(2)
ij | < ∞;

(iv) E(u2
t | ∂gt (θ0)

∂ri

∂gt (θ0)
∂rj

|) < ∞ and E(Xt |X0,X1, . . . ,Xt−p, . . . ,Xt−1)
a.s.= E(Xt |Ft−1).

Theorem 3 holds if the above conditions are satisfied.
Obviously, ∂E(Xt |Ft−1)

∂ri
, ∂2E(Xt |Ft−1)

∂ri∂rj
and ∂3E(Xt |Ft−1)

∂ri∂rj ∂rk
, i, j, k = 0,1,2, . . . , p, exist and are

continuous, that is, (i) holds. We also have∣∣∣∣∂E(Xt |Ft−1)

∂r0

∣∣∣∣ = nf
(
Y


t θ
)(

1 − f
(
Y


t θ
))

< n,∣∣∣∣∂E(Xt |Ft−1)

∂rj

∣∣∣∣ = nXt−jf
(
Y


t θ
)(

1 − f
(
Y


t θ
))

< nXt−j ,

∣∣∣∣∂2E(Xt |Ft−1)

∂r2
0

∣∣∣∣ = ∣∣nf ′(Y

t θ

)(
1 − 2f

(
Y


t θ
))∣∣ < 3n,

∣∣∣∣∂2E(Xt |Ft−1)

∂r0∂rk

∣∣∣∣ = ∣∣nXt−kf
′(Y


t θ
)(

1 − 2f
(
Y


t θ
))∣∣ ≤ 3nXt−k,∣∣∣∣∂2E(Xt |Ft−1)

∂rj ∂rk

∣∣∣∣ = ∣∣nXt−jXt−kf
′(Y


t θ
)(

1 − 2f
(
Y


t θ
))∣∣ ≤ 3nXt−jXt−k,

∣∣∣∣∂3E(Xt |Ft−1)

∂r3
0

∣∣∣∣ = ∣∣nf ′(Y

t θ

)[
1 + 6f

(
Y


t θ
)(

1 − f
(
Y


t θ
))]∣∣ < 7n,

∣∣∣∣∂3E(Xt |Ft−1)

∂r2
0∂rk

∣∣∣∣ = ∣∣nXt−kf
′(Y


t θ
)[

1 + 6f
(
Y


t θ
)(

1 − f
(
Y


t θ
))]∣∣ < 7nXt−k,

∣∣∣∣∂3E(Xt |Ft−1)

∂r0∂rj ∂rk

∣∣∣∣ = ∣∣nXt−jXt−kf
′(Y


t θ
)[

1 + 6f
(
Y


t θ
)(

1 − f
(
Y


t θ
))]∣∣

< 7nXt−jXt−k,
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∂ri∂rj ∂rk

∣∣∣∣ = ∣∣nXt−iXt−jXt−kf
′(Y


t θ
)[

1 + 6f
(
Y


t θ
)(

1 − f
(
Y


t θ
))]∣∣

< 7nXt−iXt−jXt−k.

Since the range of Xt is finite, any moments exist. Thus, conditions (ii)–(iv) are satisfied.
Hence, Theorem 3 holds. �

Proof of Theorem 4. For convenience, we denote lt (θ) = logPn(Xt |Ft−1).
(1) We observe that lt (θ) is a measurable function of Xt for all θ ∈ �, and is continuous in

an open and convex neighbourhood N(θ0) of θ0, then there at least exists a point θ ∈ N(θ0)

such that lt (θ) attains the maximum value at θ . Thus,

E
(

sup
θ∈N(θ0)

lt (θ)
)

= E
(
logPn(Xt |Ft−1)

)
θ ≤ logE

(
Pn(Xt |Ft−1)

)
θ < ∞.

Note that {Xt } is stationary and ergodic and in terms of Theorem 4.2.1 in Amemiya (1985),
1
T

∑T
t=1 lt (θ) → Elt (θ) in probability as T → ∞. By Jensen’s inequality, we have

E
(
lt (θ)

) − E
(
lt (θ0)

) = E log
Pn(Xt |Ft−1)θ

Pn(Xt |Ft−1)θ0

≤ 0. (A.2)

Thus, Elt (θ) attains a strict local maximum at θ0 and Proposition 2.
Hence, the conditions of Theorem 4.1.2 of Amemiya (1985) are fulfilled, thus part (1)

holds.
(2) The proof of part 2 rests on the Taylor series expansion of the score vector around θ0.

We have

0 = T −1/2 ∂
(θ̂
cml
T )

∂θ

= T −1/2 ∂
(θ0)

∂θ
+

(
1

T

∂2
(θ∗)
∂θ∂θ


)√
T

(
θ̂

cml
T − θ0

)
,

where θ lies in between θ̂
cml
T and θ0. According to Theorem 4.1.3 of Amemiya (1985), we

need to show that

T −1/2 ∂
(θ0)

∂θ

d→ N
(
0, I (θ0)

)
, (A.3)

1

T

∂2
(θ)

∂θ∂θ
 → −I (θ0) in probability, (A.4)

where I (θ0) = E[ ∂lt (θ0)
∂θ

∂lt (θ0)

∂θ
 ]. The theorem will straightforwardly follow. Again, we will
split the proof into several intermediate results:

(i) It is easy to see E
∂lt (θ0)

∂θ = 0, Cov(
∂lt (θ0)

∂θ ) = E(
∂lt (θ0)

∂θ )(
∂lt (θ0)

∂θ )
.

Using the ergodic theorem, 1
T

∂
(θ0)
∂θ → E( 1

Pn(Xt |Ft−1)
∂Pn(Xt |Ft−1)

∂θ )θ0 in probability one.
Using the martingale central limit theorem and the Cramér–Wold device, it is direct to

obtain (A.3), i.e., 1√
T

∂
(θ0)
∂θ

d−→ N(0, I (θ0)).
(ii) According to Lemma 1 and Lemma 4 in Appendix B, we obtain that all the partial

derivatives ∂lt (θ)
∂ri

exist and three times continuous differentiable in �, thus ∂2lt (θ)
∂ri∂rj

exists and
is continuous in N(θ0), ∀i, j = 0,1,2, . . . , p. Thus, there at least exists a point θ ∈ N(θ0)

such that ∂2lt (θ)
∂ri∂rj

attains the maximum value at θ . Hence, E supθ∈N(θ0)
∂2lt (θ)
∂ri∂rj

= E ∂2lt (θ)
∂ri∂rj

< ∞.



706 H. Chen, Q. Li and F. Zhu

For convenience, we denote ∂2
(θ)

∂θ∂θ
 = G(Xt , θ) = (gij (Xt , θ)) and E ∂2
(θ)

∂θ∂θ
 = G(θ) =
(gij (Xt , θ)). We only need to prove gij (Xt , θ) converges to a finite and non-stochastic func-
tion gij (θ) = E(gij (Xt , θ)). Let h(Xt , θ) = gij (Xt , θ)−E[gij (Xt , θ)], then Eh(Xt , θ) = 0,
i.e.,

sup
θ∈�

∥∥∥∥∥ 1

T

T∑
t=1

∂2lt (θ0)

∂θ∂θ
 − E
∂2lt (θ0)

∂θ∂θ


∥∥∥∥∥ = op(1).

Note that E( 1
Pn(Xt |Ft−1)

∂2Pn(Xt |Ft−1)
∂ri∂rj

) = 0, ∀i, j = 0,1,2, . . . , p, thus E(
∂2lt (θ0)

∂θ∂θ
 ) =
−E(lt (θ0)

∂θ
lt (θ0)

∂θ
 ) = −I (θ0), i.e. (A.4) holds. The proof is completed. �

Proof of Theorem 5. Similar to Theorem 3, we obtain the consistency and asymptotic nor-
mality of η̃cls

T . To illustrate the consistency and asymptotic normality of η̂cls
T , we define

QT (η) = 1

T

T∑
t=2

(
Xt − gη(ut )

)2 := 1

T

T∑
t=2

qt (η),

Q̃T (η) = 1

T

T∑
t=2

(
Xt − gη(ũt )

)2 := 1

T

T∑
t=2

q̃t (η),

and Q̃(η) = E(Xt − gη(ũt ))
2.

If the assumptions in Theorem 5 hold, then the following results are satisfied. As T → ∞,

(i) ‖QT (η) − Q̃(η)‖	
a.s.→ 0.

(ii) ‖W (η)−W̃ (η)‖	
a.s.→ 0, where W̃ = E(Ũt (η)2 ∂gη(ũt )

∂η
∂gη(ũt )

∂η
 ) with Ũt (η) = Xt −gη(ũt ).

(iii) ‖V (η) − Ṽ (η)‖	
a.s.→ 0, where Ṽ = E(

∂gη(ũt )

∂η
∂gη(ũt )

∂η
 − Ũt (η)
∂2gη(ũt )

∂η∂η
 ).

Note that ∥∥QT (η) − Q̃(η)
∥∥
	 ≤ ∥∥QT (η) − Q̃T (η)

∥∥
	︸ ︷︷ ︸

(I)

+∥∥Q̃T (η) − Q̃(η)
∥∥
	︸ ︷︷ ︸

(II)

. (A.5)

Therefore, the uniform convergence in (i) follows if both terms, that is, (I) and (II), on the
right-hand side of the inequality in equation (A.5) converge almost surely to zero. Note that

(I) = ∥∥QT (η) − Q̃T (η)
∥∥
	 ≤ 1

T

∥∥∥∥∥
T∑

t=2

(
Xt − gη(ut )

)2 −
T∑

t=2

(
Xt − gη(ũt )

)2

∥∥∥∥∥
	

≤ 1

T

T∑
t=2

∥∥Ut(η)2 − Ũt (η)2∥∥
	 = 1

T

T∑
t=2

sup
η∈	

∥∥Ut(η)2 − Ũt (η)2∥∥
	.

Using the mean value theorem, there exists an αt(η
∗) lies between in αt(η̂

cls
T ) and αt(η̂

cls
T )

such that |Ut(η)2 − Ũt (η)2| ≤ 2n|Xt −nαt(η
∗)||αt(η̂

cls
T )−αt (̃η

cls
T )| ≤ 2n(Xt +n)|αt(η̂

cls
T )−

αt (̃η
cls
T )| a.s.−→ 0 by Theorem 2. Hence, (I)

a.s.−→ 0, T → ∞.

The item (II)
a.s.−→ 0, T → ∞ follows by E(Ũt (η)2) = Var(Xt |α̃t ,Dt−1) < ∞ and the

ergodic theorem. Therefore, (i) holds.
According to Theorem 2, we have ‖st (αt−1) − s̃t (α̃t−1)‖	 = n‖αt(η) − α̃t (η)‖	

a.s.−→ 0,
T → ∞, Using the Proposition 6.1.3 in Brockwell and Davis (1991), we have, T → ∞,∥∥∥∥∂qt (η)

∂w
− ∂q̃t (η)

∂w

∥∥∥∥
	

≤ 2n2(‖αt − α̃t‖	 + 2
∥∥α2

t − α̃2
t

∥∥
	 + ∥∥α3

t − α̃3
t

∥∥
	

) a.s.→ 0,
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∂β
− ∂q̃t (η)

∂β

∥∥∥∥
	

≤ 2n2(‖ut−1αt − ũt−1α̃t‖	 + 2
∥∥ut−1α

2
t − ũt−1α̃

2
t

∥∥
	

+ ∥∥ut−1α
3
t − ũt−1α̃

3
t

∥∥
	

)
a.s.→ 0,∥∥∥∥∂qt (η)

∂τ
− ∂q̃t (η)

∂τ

∥∥∥∥
	

≤ 2n2(‖stαt − s̃t α̃t‖	 + 2
∥∥stα2

t − s̃t α̃
2
t

∥∥
	

+ ∥∥stα3
t − s̃t α̃

3
t

∥∥
	

)
a.s.→ 0,

Hence, we obtain ‖ 1
T

∑T
t=2

∂qt (η)
∂η − E

∂q̃t (η)
∂η ‖	

a.s.→ 0 and qt (η)→q̃t (η) in probability one.
Thus the results of (ii) hold. Similarly, the item (iii) holds. Then the proof of Theorem 5 is
end. �

Proof of Theorem 6. Similar to Theorem 4, we obtain the consistency and asymptotic nor-
mality of η̃cml

T . To illustrate the consistency and asymptotic normality of η̂cml
T , we define


T (η) = 1

T

T∑
t=2

lt (η) = 1

T

T∑
t=2

logPn

(
Xt |αt(η),Dt−1

)
,


̃T (η) = 1

T

T∑
t=2

l̃t (η) = 1

T

T∑
t=2

logPn

(
Xt |α̃t (η),Dt−1

)
and 
̃(η) = El̃t (η).

If the assumptions in Theorem 6 hold, we have

T −1/2 ∂
̃(η0)

∂η

d−→ N
(
0, Ĩ (η0)

)
and

√
T

(̃
ηcml

T − η0
) d−→N

(
0, Ĩ

−1
(η0)

)
with Ĩ (η0) = E(

∂l̃t (η0)

∂η
∂l̃t (η0)

∂η
 ).
To prove Theorem 6, we also need illustrate the following results:
(i) Similar to Theorem 3.1 in Gorgi (2018), we have ‖
T (η) − 
̃(η)‖	

a.s.−→ 0, T → ∞.
Hence, the CML estimator defined in equation (3.4) is strongly consistent with respect to η0.

(ii) According to the third item of Corollary 1, we have | logit(αt (η̂T ))− logit(α̃t (η0))| a.s.−→
0 and |Pn(x|αt(η̂T ),Dt−1) − Pn(x|α̃t (η0),Dt−1)| p−→ 0, if η̂T

a.s.−→ η0, T → ∞. Hence, we
obtain, as T → ∞,∥∥∥∥∂
t (η̂

cml
T )

∂η
− E

∂l̃t (̃η
cml
T )

∂η

∥∥∥∥
	

≤
∥∥∥∥∂
t (η̂

cml
T )

∂η
− ∂
̃t (η̂

cml
T )

∂η

∥∥∥∥
	

+
∥∥∥∥∂
̃t (η̂

cml
T )

∂η
− ∂
̃t (̃η

cml
T )

∂η

∥∥∥∥
	

+
∥∥∥∥∂
̃t (̃η

cml
T )

∂η
− E

∂l̃t (̃η
cml
T )

∂η

∥∥∥∥
	

a.s.→ 0.

Similarly, ‖ 1
T

∑T
t=1

∂lt (η̂
cml
T )

∂η
∂lt (η̂

cml
T )

∂η
 − E
∂l̃t (̃η

cml
T )

∂η

∂l̃t (̃η
cml
T )

∂η
 ‖	
a.s.→ 0, T → ∞. Therefore,

‖I (η0) − Ĩ (η0)‖ a.s.−→ 0 and T −1/2 ∂
(η0)

∂η

d−→ N(0, Ĩ (η0)), where I (η0) = E[ ∂lt (η)
∂η

∂lt (η)

∂η
 ]η0 .
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(iii) For convenience, we denote η = (w,β, τ )
 = (η1, η2, η3)

.

Similar to (ii), ∀i, j, k = 1,2,3, we obtain ‖ 1
T

∑T
t=1

∂2lt (η)

∂η∂η
 − E
∂2 l̃t (η)

∂η∂η
 ‖	
a.s.→ 0,

‖E( 1
Pn(x|αt ,Dt−1)

∂2Pn(x|αt ,Dt−1)
∂ηi∂ηj

) − E( 1
Pn(x|α̃t ,Dt−1)

∂2Pn(x|α̃t ,Dt−1)
∂ηi∂ηj

)‖	
a.s.−→ 0 and

‖E| ∂3lt (η)
∂ηi∂ηj ∂ηk

| − E| ∂3 l̃t (η)
∂ηi∂ηj ∂ηk

|‖	
a.s.−→ 0, as T → ∞. Thus, the asymptotic normality of η̂cml

T

holds. �

Appendix B: Auxiliary results

Lemma 1. Let X follow a binomial distribution with parameter α, i.e., Pn(X = x) =(n
x

)
αx(1 − α)n−x . Then we have dPn(X=x)

dα
= n

1−α
[Pn−1(x − 1) − Pn(x)].

The proof of Lemma 1 can be seen from that of the Proposition 1 in Freeland and McCabe
(2004).

Lemma 2. If {Xt } is the strictly stationary and ergodic solution of model (2.1) and Assump-
tion 3 holds, then model (2.1) is identifiable.

Proof. According to (2.1), we have αt(θ) = αt(θ0), that is, logit(αt (θ)) = logit(αt (θ0)) by
Lemma 4, if Pn(Xt |Ft−1)θ = Pn(Xt |Ft−1)θ0 . Thus, we have E(logitαt(θ)) =
E(logitαt(θ0)), i.e., r0 + μ

∑p
j=1 rk = r0

0 + μ
∑p

j=1 r0
k . Hence, r0 = r0

0 and rj = r0
j ,

j = 1,2, . . . , p. �

Lemma 3. If {Xt } is the strictly stationary and ergodic process and Assumption 5 hold, then
model (2.5) is identifiable.

Proof. According to (2.5), we have α̃t (η) = α̃t (η0), if Pn(Xt |α̃t ,Dt−1)η = Pn(Xt |α̃t ,

Dt−1)η0 . Because logit(x) is a strictly monotone increasing function, then logit(α̃t (η)) =
logit(α̃t (η0)), if Pn(Xt |α̃t ,Dt−1)η = Pn(Xt |α̃t ,Dt−1)η0 . Thus, E(logit(α̃t (η))) =
E(logit(α̃t (η0))), i.e., w

1−β
= w0

1−β0
, then we obtain w = w0 and β = β0. Hence, τ = τ0 by

logit(α̃t (η)) = logit(α̃t (η0)). �

Lemma 4. Let f (x) = exp (x)
1+exp (x)

, x ∈ (−∞,+∞), then

(1) f ′(x) = f (x)(1−f (x)), f ′′(x) = f ′(x)(1−2f (x)) and f ′′′(x) = f ′(x)[1+6f (x)(1−
f (x))].

(2) |f (x1) − f (x2)| ≤ 1
4 |x1 − x2|, ∀x1 < x2.

Proof. The proof of (i) is easy to deduce and we omit it. By the assumption, we have

f ′(x) = ex

(1 + ex)2 = ex

1 + 2ex + e2x
= 1

e−x + ex + 2
≤ 1/4, ∀x ∈R,

thus, 0 < f ′(x) ≤ 1/4. Let F1(x) = x/4 + f (x) and F2(x) = x/4 − f (x). Then F ′
1(x) =

1/4 + f ′(x) > 1
4 and F ′

2(x) = 1/4 − f ′(x) ≥ 1/4 + 1/4 = 1/2, hence, F1(x) and F2(x) are
strictly monotone increasing functions. If x1 > x2, we have F1(x2) > F1(x1) and F2(x2) >
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F2(x1), i.e.,⎧⎪⎪⎨⎪⎪⎩
1

4
x2 + f (x2) >

1

4
x1 + f (x1),

1

4
x2 − f (x2) >

1

4
x1 − f (x1),

⇒

⎧⎪⎪⎨⎪⎪⎩
1

4
(x2 − x1) > f (x1) − f (x2),

1

4
(x2 − x1) > −(

f (x1) − f (x2)
)
.

Hence, |f (x1) − f (x2)| < 1
4 |x1 − x2|. �

Lemma 5. Let {Xt, t ∈ Z} is a stationary and ergodic random variable sequence and
st (αt−1) = Xt−1 − nαt−1. Then the following inequalities are satisfied with probability 1:

(1) |st (αt−1)| ≤ max (Xt−1, n − Xt−1).
(2) −n

4 ≤ ∂st (αt−1)
∂logit(αt−1)

≤ 0.

Proof. According to (2.4), we have that st (αt−1) = Xt−1−nαt−1 = Xt−1−n
exp (logit(αt−1))

1+exp (logit(αt−1))

and ∂st (αt−1)
∂logit(αt−1)

= −nαt−1(1 − αt−1). Hence, |st (αt−1)| ≤ max (Xt−1, n − Xt−1) and −n
4 ≤

∂st (αt−1)
∂ logit(αt−1)

≤ 0. �
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Ristić, M. M., Weiß, C. H. and Janjić, A. D. (2016). A binomial integer-valued ARCH model. The International
Journal of Biostatistics 12, 20150051. MR3581286

Scotto, M. G., Weiß, C. H., Silva, M. E. and Pereira, I. (2014). Bivariate binomial autoregressive models. Journal
of Multivariate Analysis 125, 233–251. MR3163841

Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Annals of Prob-
ability 7, 893–899. MR0542141

Tsay, R. S. (1992). Model checking via parametric bootstraps in time series analysis. Journal of the Royal Statis-
tical Society Series C Applied Statistics 41, 1–15. https://doi.org/10.2307/2347612.

Weiß, C. H. (2009a). Monitoring correlated processes with binomial marginals. Journal of Applied Statistics 36,
399–414. MR2668770

Weiß, C. H. (2009b). Jumps in binomial AR(1) processes. Statistics & Probability Letters 79, 2012–2019.
MR2750180

Weiß, C. H. (2009c). A new class of autoregressive models for time series of binomial counts. Communications
in Statistics Theory and Methods 38, 447–460. MR2510797

Weiß, C. H. (2015). A Poisson INAR(1) model with serially dependent innovations. Metrika 78, 829–851.
MR3383933

Weiß, C. H. (2018). An Introduction to Discrete-Valued Time Series. Chichester: John Wiley & Sons.
Weiß, C. H. and Feld, M. H. J. M. (2019). On the performance of information criteria for model identification

of count time series. Studies in Nonlinear Dynamics and Econometrics. To appear. https://doi.org/10.1515/
snde-2018-0012.

Weiß, C. H. and Kim, H. Y. (2014). Diagnosing and modeling extra-binomial variation for time-dependent counts.
Applied Stochastic Models in Business and Industry 30, 588–608. MR3271077

Weiß, C. H. and Pollett, P. K. (2012). Chain binomial models and binomial autoregressive processes. Biometrics
68, 815–824. MR3055186

Weiß, C. H. and Pollett, P. K. (2014). Binomial autoregressive processes with density-dependent thinning. Journal
of Time Series Analysis 35, 115–132. MR3166349

Wintenberger, O. (2013). Continuous invertibility and stable QML estimation of the EGARCH(1,1) model. Scan-
dinavian Journal of Statistics 40, 846–867. MR3145121

Yang, K., Wang, D. and Li, H. (2018). Threshold autoregression analysis for finite-range time series of counts with
an application on measles data. Journal of Statistical Computation and Simulation 88, 597–614. MR3764838

Zhang, H., Wang, D. and Zhu, F. (2011a). Empirical likelihood for first-order random coefficient integer-valued
autoregressive processes. Communications in Statistics Theory and Methods 40, 492–509. MR2765843

Zhang, H., Wang, D. and Zhu, F. (2011b). Empirical likelihood inference for random coefficient INAR(p) process.
Journal of Time Series Analysis 32, 195–203. MR2808249

Zhang, H., Wang, D. and Zhu, F. (2012). Generalized RCINAR(1) process with signed thinning operator. Com-
munications in Statistics Theory and Methods 41, 1750–1770. MR2913009

Zheng, H. and Basawa, I. V. (2008). First-order observation-driven integer-valued autoregressive processes. Statis-
tics & Probability Letters 78, 1–9. MR2381267

http://www.ams.org/mathscinet-getitem?mr=3767058
http://www.ams.org/mathscinet-getitem?mr=3135260
http://www.ams.org/mathscinet-getitem?mr=2432467
https://doi.org/10.5351/CKSS.2010.17.1.027
https://doi.org/10.5351/CKSS.2010.17.3.441
http://www.ams.org/mathscinet-getitem?mr=0494770
http://www.ams.org/mathscinet-getitem?mr=3993524
https://doi.org/10.1007/s10463-018-0676-7
https://doi.org/10.1111/j.1752-1688.1985.tb05379.x
http://www.ams.org/mathscinet-getitem?mr=3551305
http://www.ams.org/mathscinet-getitem?mr=3581286
http://www.ams.org/mathscinet-getitem?mr=3163841
http://www.ams.org/mathscinet-getitem?mr=0542141
https://doi.org/10.2307/2347612
http://www.ams.org/mathscinet-getitem?mr=2668770
http://www.ams.org/mathscinet-getitem?mr=2750180
http://www.ams.org/mathscinet-getitem?mr=2510797
http://www.ams.org/mathscinet-getitem?mr=3383933
https://doi.org/10.1515/snde-2018-0012
http://www.ams.org/mathscinet-getitem?mr=3271077
http://www.ams.org/mathscinet-getitem?mr=3055186
http://www.ams.org/mathscinet-getitem?mr=3166349
http://www.ams.org/mathscinet-getitem?mr=3145121
http://www.ams.org/mathscinet-getitem?mr=3764838
http://www.ams.org/mathscinet-getitem?mr=2765843
http://www.ams.org/mathscinet-getitem?mr=2808249
http://www.ams.org/mathscinet-getitem?mr=2913009
http://www.ams.org/mathscinet-getitem?mr=2381267
https://doi.org/10.1007/s10463-018-0676-7
https://doi.org/10.1515/snde-2018-0012


Two classes of dynamic binomial integer-valued ARCH models 711

H. Chen
F. Zhu
School of Mathematics
Jilin University
Changchun 130012
China
E-mail: chenhp0107@163.com

zfk8010@163.com

Q. Li
College of Mathematics
Changchun Normal University
Changchun 130032
China
E-mail: 46968158@qq.com

mailto:chenhp0107@163.com
mailto:zfk8010@163.com
mailto:46968158@qq.com

	Introduction
	Dynamic binomial integer-valued ARCH models
	Binomial logit-ARCH model
	Binomial score-ARCH(1) model

	Parameter estimation
	Binomial logit-ARCH(p) model
	Conditional least squares estimation
	Conditional maximum likelihood estimation

	Binomial score-ARCH(1) model
	Conditional least squares estimation
	Conditional maximum likelihood estimation


	Simulation studies
	Real data examples
	Infection counts
	Rainy days time series

	Concluding remarks
	Appendix A: Proof of theorems
	Appendix B: Auxiliary results
	Acknowledgments
	References
	Author's Addresses

