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We study the problem of estimating a functional θ(P) of an unknown
probability distribution P ∈ P in which the original iid sample X1, . . . ,Xn

is kept private even from the statistician via an α-local differential privacy
constraint. Let ωTV denote the modulus of continuity of the functional θ

over P with respect to total variation distance. For a large class of loss func-
tions l and a fixed privacy level α, we prove that the privatized minimax risk
is equivalent to l(ωTV(n−1/2)) to within constants, under regularity condi-
tions that are satisfied, in particular, if θ is linear and P is convex. Our re-
sults complement the theory developed by Donoho and Liu (1991) with the
nowadays highly relevant case of privatized data. Somewhat surprisingly, the
difficulty of the estimation problem in the private case is characterized by
ωTV, whereas, it is characterized by the Hellinger modulus of continuity if
the original data X1, . . . ,Xn are available. We also find that for locally private
estimation of linear functionals over a convex model a simple sample mean
estimator, based on independently and binary privatized observations, always
achieves the minimax rate. We further provide a general recipe for choosing
the functional parameter in the optimal binary privatization mechanisms and
illustrate the general theory in numerous examples. Our theory allows us to
quantify the price to be paid for local differential privacy in a large class of
estimation problems. This price appears to be highly problem specific.

1. Introduction. One of the many new challenges for statistical inference in the infor-
mation age is the increasing concern of data privacy protection. Nowadays, massive amounts
of data, such as medical records, smart phone user behavior or social media activity, are rou-
tinely being collected and stored. On the other side of this trend is an increasing reluctance
and discomfort of individuals to share this sometimes sensitive information with companies
or state officials. Over the last few decades, the problem of constructing privacy preserving
data release mechanisms has produced a vast literature, predominantly in computer science.
One particularly fruitful approach to data protection that is insusceptible to privacy breaches
is the concept of differential privacy (see Dinur and Nissim (2003), Dwork (2008), Dwork
and Nissim (2004), Dwork et al. (2006), Evfimievski, Gehrke and Srikant (2003)). In a nut-
shell, differential privacy is a form of randomization, where, instead of the original data, a
perturbed version of the data is released, offering plausible deniability to the data providers
who can always argue that their true answer was different from the one that was actually
provided. Aside from the academic discussion, (local) differential privacy has also found its
way into real world applications. For instance, the Apple Inc. privacy statement explains the
notion quite succinctly as follows:

It is a technique that enables Apple to learn about the user community without learning about indi-
viduals in the community. Differential privacy transforms the information shared with Apple before
it ever leaves the user’s device such that Apple can never reproduce the true data.1
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The qualification of “local” differential privacy refers to a procedure which randomizes
the original data already on the user’s “local” machine and the original data is never released,
whereas (central) differential privacy may also be employed to privatize and release an entire
database that was previously compiled by a trusted curator. Here, we focus only on the local
version of differential privacy.

More recently, differential privacy has also received some attention from a statistical in-
ference perspective (see, e.g., Awan and Slavković (2018), Duchi, Jordan and Wainwright
(2013a, 2013b, 2014, 2018), Dwork and Smith (2010), Smith (2008, 2011), Wasserman and
Zhou (2010), Ye and Barg (2019)). In this line of research, the focus is more on the inherent
trade-off between privacy protection and efficient statistical inference and on the question
what optimal privacy preserving mechanisms may look like. Duchi, Jordan and Wainwright
(2013a, 2013b, 2014, 2018) introduced new variants of the Le Cam, Fano and Assouad tech-
niques to derive lower bounds on the privatized minimax risk. In this way, they were the
first to provide minimax rates of convergence for specific estimation problems under privacy
constraints in a very insightful case by case study. Here, we develop a general theory, in the
spirit of Donoho and Liu (1991), to characterize the differentially private minimax rate of
convergence. Characterizing the minimax rate of convergence under differential privacy, and
comparing it to the minimax risk in the nonprivate case, is one way to quantify the price, in
terms of statistical accuracy that has to be paid for privacy protection. The theory also allows
us to develop (asymptotically) minimax optimal privatization schemes for a large class of
estimation problems.

To be more precise, consider n individuals who possess data X1, . . . ,Xn, assumed to be
i.i.d. from some probability distribution P ∈ P . However, the statistician does not get to see
the original data X1, . . . ,Xn but only a privatized version of observations Z. The conditional
distribution of Z given X = (X1, . . . ,Xn) is denoted by Q and referred to as a channel dis-
tribution or a privatization scheme, that is, Pr(Z ∈A|X = x)=Q(A|x). For α ∈ (0,∞), the
channel Q is said to provide α-differential privacy if

(1.1) sup
A

sup
x,x′:d0(x,x′)=1

Pr(Z ∈A|X = x)

Pr(Z ∈A|X = x′)
≤ eα,

where the first supremum runs over all measurable sets and d0(x, x′) := |{i : xi �= x′i}| denotes
the number of distinct entries of x and x′. This definition is due to Dwork et al. (2006) (see
also Evfimievski, Gehrke and Srikant (2003)). It captures the idea that the distribution of the
observation Z does not change too much if the data of any single individual in the database
is changed, thereby protecting its privacy. The smaller α ∈ (0,∞), the stronger is the privacy
constraint (1.1). More formally, (if we consider the original data X as fixed) Wasserman and
Zhou (2010), Theorem 2.4, show that under α-differential privacy, any level-γ test using Z

to test H0 : X = x vs. H1 : X = x′ has power bounded by γ eα . As mentioned above, in this
paper we focus on a special case of differential privacy, namely, local differential privacy.
Somewhat informally, a channel satisfying (1.1) is said to provide local differential privacy,
if Z = (Z1, . . . ,Zn) is a random n-vector and if the ith individual can generate its privatized
data Zi using only its original data Xi and possibly other information, but without sharing
Xi with anyone else. The point of this definition is that for such a protocol to be realized,
we do not need a trusted third party to collect or process data. It is reminiscent of the idea of
randomized response (Warner (1965)). We will see more concrete instances of such protocols
below.

Suppose now that we want to estimate a real parameter θ(P), based on the priva-
tized observation vector Z, whose unconditional distribution is equal to QP⊗n(dz) :=∫

Q(dz|x)P⊗n(dx), where P
⊗n is the n-fold product measure of P. The Q-privatized mini-

max risk of estimation under a loss function l :R→R is therefore given by

(1.2) Mn(Q,P, θ) := inf
θ̂n

sup
P∈P

EQP⊗n

[
l
(∣∣θ̂n − θ(P)

∣∣)],
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where the infimum runs over all estimators θ̂n taking Z as input data. Note that if the channel
Q is given by Q(A|x) = Pr(Z ∈ A|X = x) = 1A(x), then there is no privatization at all
and the Q-privatized minimax risk reduces to the conventional minimax risk of estimating
θ(P). If we want to guarantee α-differential privacy, then we may choose any channel Q that
satisfies (1.1) and we will try to make (1.2) as small as possible. This leads us to the α-private
minimax risk

Mn,α(P, θ) := inf
Q∈Qα

Mn(Q,P, θ),

where Qα is some set of α-differentially private channels. It is this additional infimum over
Qα that makes the theory of private minimax estimation deviate fundamentally from the
conventional minimax estimation approach. In particular, this situation is different from the
statistical inverse problem setting, because the Markov kernel Q can be chosen in an optimal
way and is not given a priori. A sequence of channels Q(n) ∈Qα , for which Mn(Q

(n),P, θ)

is of the order of Mn,α(P, θ), is referred to as a minimax rate optimal channel and may
depend on the specific estimation problem under consideration, that is, on θ and P . We write
Mn,∞(P, θ) for the classical (nonprivate) minimax risk.

The novel contribution of this article is to characterize the rate at which Mn,α(P, θ) con-
verges to zero as n→∞, in high generality, and to provide concrete minimax rate opti-
mal α-locally differentially private estimation procedures. To this end, we utilize the mod-
ulus of continuity of the functional θ : P → R with respect to the total variation distance
dTV(P0,P1), that is,

ωTV(ε) := sup
{∣∣θ(P0)− θ(P1)

∣∣ : dTV(P0,P1)≤ ε,P0,P1 ∈P
}
,

and we show that for any fixed α ∈ (0,∞),

(1.3) Mn,α(P, θ)	 l
(
ωTV

(
n−1/2))

.

Here, an 	 bn means that there exist constants 0 < c0 < c1 <∞ and n0 ∈ N, not depending
on n, so that c0bn ≤ an ≤ c1bn, for all n ≥ n0. The lower bound on Mn,α(P, θ) that we
establish holds in full generality, whereas, in order to obtain a matching upper bound, it
is necessary to impose some regularity conditions on P and θ . These will be satisfied, in
particular, if P is convex and dominated and θ is linear and bounded but also hold in some
cases of nonconvex and potentially nondominated P . It is important to compare (1.3) to the
analogous result for the nonprivate minimax risk. This was established in the seminal paper
by Donoho and Liu (1991), who, under regularity conditions similar to those imposed here,
showed that

(1.4) Mn,∞(P, θ)	 l
(
ωH

(
n−1/2))

,

where ωH(ε) = sup{|θ(P0) − θ(P1)| : dH(P0,P1) ≤ ε,P0,P1 ∈ P} and dH is the Hellinger
distance. Comparing (1.4) to (1.3), we notice that the Hellinger modulus ωH of θ is replaced
by the total variation modulus ωTV. This may, and typically will, lead to different rates of
convergence in private and nonprivate problems. Note that even in cases where we do or can
not compute the moduli ωTV and ωH explicitly, we always have the a priori information that

ωH(ε)≤ ωTV(ε)≤ ωH(
√

2ε),

because dTV ≤ dH ≤√2dTV (see, for instance, Tsybakov (2009)). This means that the private
rate of estimation is never faster than the nonprivate rate and is never slower than the square
root of the nonprivate rate. We shall see that both extremal cases can occur (see Section 6).
We shall also see that the fastest possible private rate of convergence over a convex model P
is l(n−1/2) (see Lemma H.2 in Section H of the Supplementary Material Rohde and Stein-
berger (2020)). Also note that in (1.3) we have suppressed constants that depend on α. Our
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results reveal that if α is small, the effective sample size reduces from n to n(eα − 1)2 when
α-differential privacy is required. That differential privacy leads to slower minimax rates of
convergence was already observed by Duchi, Jordan and Wainwright (2013a, 2013b, 2018),
for specific estimation problems. Here, we develop a unifying general theory to quantify the
privatized minimax rates of convergence in a large class of different estimation problems, in-
cluding (even irregular) parametric and nonparametric cases. This is also the first step towards
a fundamental theory of adaptive estimation under differential privacy that will be pursued
elsewhere.

We also provide a general construction of α-locally differentially private estimation proce-
dures that is minimax rate optimal if P is convex and dominated and θ is linear and bounded.
The construction relies on a functional parameter � ∈ L∞. Each individual generates Zi in-
dependently and binary distributed on {−z0, z0}, with

Pr(Zi = z0|Xi = xi)= 1

2

(
1+ �(xi)

z0

)

and z0 = ‖�‖∞ eα+1
eα−1 . The final estimator is then simply given by the sample mean Z̄n =

1
n

∑n
i=1 Zi . For appropriate � = �n, this yields an α-locally differentially private procedure

that attains the minimax rate in (1.3). The choice of functional parameter � is problem spe-
cific but can often be guided by considering optimality of the estimator E[Z̄n|X1, . . . ,Xn] =
1
n

∑n
i=1 �(Xi) in the problem with direct observations. We exemplify this choice in many

classical moment or density estimation problems (cf. Section 6). We point out, however, that
there are cases where a certain � leads to rate optimal locally private estimation even though
the estimator 1

n

∑n
i=1 �(Xi) is not rate optimal in the direct problem.

The paper is organized as follows. In the next section (Section 2) we formally introduce the
private estimation problem, several classes of locally private channel distributions and a few
tools required for the analysis of the α-private minimax risk Mn,α(P, θ). Section 3 presents a
general lower bound on Mn,α(P, θ). That this lower bound is attainable, in surprisingly high
generality and by the simple linear estimation procedure described above, is then established
in Section 4. The results of that section, however, do not offer an explicit construction of the
functional parameter �. In Section 5 we then provide some guidance on choosing �, as well
as a high-level condition for optimality of � that we verify in all our examples. We illustrate
the general theory by a number of concrete examples that are presented in Section 6. Most of
the technical arguments are deferred to the Supplementary Material.

2. Preliminaries and notation. Let P be a set of probability measures on the mea-
surable space (X ,F). Let θ : P → R be a functional of interest. In case P is convex,
we say that the functional θ : P → R is linear if for P0,P1 ∈ P and λ ∈ [0,1], we have
θ(λP0 + (1− λ)P1)= λθ(P0)+ (1− λ)θ(P1). We are given the privatized data Z1, . . . ,Zn

on the measurable space (Z,B(Z)), Z = R
q , where B(Z) denotes the Borel sets with re-

spect to the usual topology. The conditional distribution of the observations Z = (Z1, . . . ,Zn)

given the original sample X = (X1, . . . ,Xn) is described by the channel distribution Q. That
is, Q is a Markov probability kernel from (X n,F⊗n) to (Zn,B(Zn)). For ease of nota-
tion we suppress its dependence on n. Hence, if the Xi are distributed i.i.d., according to
P ∈ P , and P

⊗n denotes the corresponding product measure, then the joint distribution of
the observation vector Z = (Z1, . . . ,Zn) on Zn is given by QP

⊗n, that is, the measure
A 
→ ∫

X n Q(A|x)dP⊗n(x).

2.1. Locally differentially private minimax risk. Recall that for α ∈ (0,∞), a channel
distribution Q is called α-differentially private, if

(2.1) sup
A∈B(Zn)

sup
x,x′∈X n

d0(x,x′)=1

Q(A|x)

Q(A|x′) ≤ eα,
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where d0(x, x′) := |{i : xi �= x′i}| is the number of distinct components of x and x′. Note that
for this definition to make sense, the probability measures Q(·|x), for different x ∈X n, have
to be equivalent, and we interpret 0

0 as equal to 1.
Next, we introduce two specific classes of locally differentially private channels. A channel

distribution Q : B(Zn) × X n → [0,1] is said to be α-sequentially interactive (or provides
α-sequentially interactive differential privacy) if the following two conditions are satisfied.
First, we have for all A ∈ B(Zn) and x1, . . . , xn ∈X ,

Q(A|x1, . . . , xn)

=
∫
Z
· · ·

∫
Z

Qn(Az1:n−1 |xn, z1:n−1)

×Qn−1(dzn−1|xn−1, z1:n−2) · · ·Q1(dz1|x1),

(2.2)

where, for each i = 1, . . . , n, Qi is a channel from X ×Z i−1 to Z . Here, z1:n = (z1, . . . , zn)
T

and Az1:n−1 = {z ∈Z : (z1, . . . , zn−1, z)
T ∈A} is the z1:n−1-section of A. Second, we require

that the conditional distributions Qi satisfy

(2.3) sup
A∈B(Z)

sup
xi ,x

′
i ,z1,...,zi−1

Qi(A|xi, z1, . . . , zi−1)

Qi(A|x′i , z1, . . . , zi−1)
≤ eα ∀i = 1, . . . , n.

By the usual approximation of integrands by simple functions, it is easy to see that (2.2) and
(2.3) imply (2.1). This notion coincides with the definition of sequentially interactive chan-
nels in Duchi, Jordan and Wainwright (2018), Definition 1. We note that (2.3) only makes
sense if for all xi, x

′
i , z1, . . . , zi−1, the probability measure Qi(·|xi, z1:i−1) is absolutely con-

tinuous with respect to Qi(·|x′i , z1:i−1). Here, the idea is that individual i can only use Xi and
previous Zj , j < i in its local privacy mechanism, thus leading to the sequential structure
in the above definition. In the rest of the paper, we only consider α-sequentially interactive
channels, to which we also refer simply as α-private channels.

An important subclass of sequentially interactive channels are the so-called noninteractive
channels Q that are of product form

(2.4) Q(A1 × · · · ×An|x1, . . . , xn)=
n∏

i=1

Qi(Ai |xi) ∀Ai ∈ B(Z), xi ∈X .

Clearly, a noninteractive channel Q satisfies (2.1) if and only if,

sup
A∈B(Z)

sup
x,x′∈X

Qi(A|x)

Qi(A|x′) ≤ eα ∀i = 1, . . . , n.

In that case it is also called α-noninteractive. Both, α-noninteractive and α-sequentially in-
teractive channels satisfy the α-local differential privacy constraint, as defined in the Intro-
duction. Of course, every α-noninteractive channel is also α-sequentially interactive.

If we measure the error of estimation by the measurable loss function l :R+→R+, where
R+ := [0,∞), the minimax risk of the above estimation problem is given by

Mn(Q,P, θ)= inf
θ̂n

sup
P∈P

EQP⊗n

[
l
(∣∣θ̂n − θ(P)

∣∣)],(2.5)

where the infimum runs over all estimators θ̂n : Zn → R. Finally, define the set of α-private
channels:

(2.6) Qα :=
⋃
q∈N
{Q :Q is α-sequentially interactive from X n to Zn =R

n×q}.

Therefore, the α-private minimax risk is given by

Mn,α(P, θ)= inf
Q∈Qα

Mn(Q,P, θ).(2.7)

Note that the above infimum includes all possible dimensions q of Z =R
q .
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2.2. Testing affinities and minimax identities. Let P , P0 and P1 be sets of probability
measures on a measurable space (	,A) and for P0 ∈ P0, P1 ∈P1, define the testing affinity

π(P0,P1)= inf
tests φ

EP0[φ] +EP1[1− φ],(2.8)

where the infimum runs over all (randomized) tests φ :	→[0,1]. Moreover, we write

π(P0,P1)= sup
Pj∈Pj ,j=0,1

π(P0,P1).(2.9)

Throughout, we follow the usual conventions that sup∅=−∞ and inf∅=+∞. If θ : P→
R is a functional of interest, then for t ∈ R and � > 0, denote P≤t := {P ∈ P : θ(P) ≤ t}
and P≥t+� := {P ∈ P : θ(P)≥ t +�} and let P(n)

≤t and P(n)
≥t+� be the sets of n-fold product

measures with identical marginals from P≤t and P≥t+�, respectively. If Q is a Markov prob-
ability kernel, then we write QP(n) for the set of all probability measures of the form QP

⊗n,
where P ∈ P . Recall that a family of measures on a common probability space is dominated
if there exists a σ -finite measure μ such that every element of that family is absolutely con-
tinuous with respect to μ. We define the convex hull conv(P) in the usual way to be the set
of all finite convex combinations

∑m
i=1 λiPi , for m ∈N, λi ≥ 0,

∑m
i=1 λi = 1 and Pi ∈ P . For

P0,P1 ∈ P , we consider the Hellinger distance

dH(P0,P1) :=
√∫

	

(√
p0(x)−

√
p1(x)

)2
dμ(x),

where p0 and p1 are densities of P0 and P1 with respect to some dominating measure μ (e.g.,
μ= P0 + P1) and the total variation distance is defined as dTV(P0,P1) := supA∈A |P0(A)−
P1(A)|. Furthermore, for a monotone function g : R→ R, we write g(x−) = limy↑x g(y)

and g(x+) = limy↓x g(y), for the left and right limits of g at x ∈ R, respectively, and we
write g(∞−) = limx→∞ g(x) and g([−∞]+) = limx→−∞ g(x). We also make use of the
abbreviations a ∨ b=max(a, b) and a ∧ b=min(a, b).

Next, we define the upper affinity

(2.10) η
(n)
A (Q,�)= sup

t∈R
π

(
conv

(
QP(n)

≤t

)
, conv

(
QP(n)

≥t+�

))
and its generalized inverse for η ∈ [0,1),

(2.11) �
(n)
A (Q,η)= sup

{
�≥ 0 : η(n)

A (Q,�) > η
}
.

Note that for η < 1 the set in the previous display is never empty, since η
(n)
A (Q,0)= 1, and

thus �
(n)
A (Q,η)≥ 0. Also note that � 
→ η

(n)
A (Q,�) is nonincreasing.

In order to show that our subsequent lower bounds on Mn,α(P, θ) are attained for convex
and dominated models P and linear and bounded functionals θ : P → R, we will need the
following consequence of a fundamental minimax theorem of Sion (1958), Corollary 3.3; see
Section H.1 of the Supplementary Material for the proof.

PROPOSITION 2.1. Fix constants −∞ < a ≤ b < ∞. Let S be a convex set of finite
signed measures on a measurable space (	,A), so that S is dominated by a σ -finite mea-
sure μ. Furthermore, let T = {φ ∈ L∞(	,A,μ) : a ≤ ∫

	 φf dμ ≤ b,∀f ∈ L1(	,A,μ) :
‖f ‖L1 ≤ 1}. Then,

sup
φ∈T

inf
σ∈S

∫
	

φ dσ = inf
σ∈S sup

φ∈T

∫
	

φ dσ.
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Proposition 2.1 implies that for arbitrary subsets P0 and P1 of P , and if the class QP(n) is
dominated by some σ -finite measure (note that this is always the case if Q is α-private), we
have the identity

inf
tests φ

sup
P0∈QP(n)

0

P1∈QP(n)
1

EP0[φ] +EP1[1− φ]

= sup
P0∈conv(QP(n)

0 )

P1∈conv(QP(n)
1 )

inf
tests φ

EP0[φ] +EP1[1− φ]

= π
(
conv

(
QP(n)

0

)
, conv

(
QP(n)

1

))
.

(2.12)

To see this, note that the left-hand side of (2.12) does not change if we replace QP(n)
r by its

convex hull, for r = 0,1, because for Pr,i ∈QP(n)
r ,

E∑k
i=1 αiP0,i

[φ] +E∑l
j=1 βjP1,j

[1− φ] =∑
i,j

αiβj

(
EP0,i

[φ] +EP1,j
[1− φ])

≤ sup
P0∈QP(n)

0

P1∈QP(n)
1

EP0[φ] +EP1[1− φ].

Now, apply Proposition 2.1 with S = {P0 − P1 : Pr ∈ conv(QP(n)
r ), r = 0,1} and a = 0,

b= 1.
The identity (2.12) was prominently used by Donoho and Liu (1991)—in the nonprivate

case where Q(A|x)= 1A(x)—in order to derive their lower bounds on the minimax risk. It
is due to C. Kraft and L. Le Cam (Theorem 5 of Kraft (1955), see also page 40 of LeCam
(1973)), who derived it more directly. We will also make use of (2.12) to derive lower bounds
(see the proof of Theorem A.1 in the Supplementary Material). However, in order to show
that there exist channel distributions Q(n) so that Mn(Q

(n),P, θ) attains the rate of the lower
bound, we need the generality of Proposition 2.1 (see Section 4.2 below).

3. A general lower bound on the α-private minimax risk. In this section we establish
a lower bound on Mn,α(P, θ) = infQ∈Qα Mn(Q,P, θ), α ∈ (0,∞), in terms of the total
variation and Hellinger moduli of continuity ωTV and ωH of the functional θ : P → R. We
also bridge the gap to the nonprivate case α =∞ in which the rate is characterized by ωH
only, and therefore, we extend results of Donoho and Liu (1991) to the case of privatized data.
These extensions, however, do not constitute our main contribution. Therefore, we defer the
technical details to Section A of the Supplementary Material. Our main conceptual innovation
is to show that the lower bounds are rate optimal for a large class of possible estimation
problems.

COROLLARY 3.1. Fix η0, ε0 ∈ (0,1), α ∈ (0,∞), and let l :R+→R+ be a nondecreas-
ing loss function. Then, there exists a positive finite constant c = c(η0, ε0), such that for all
η ∈ (0, η0) and for all n > | logη|/ε0,

Mn,α(P, θ)= inf
Q∈Qα

Mn(Q,P, θ)

≥ l

(
1

2

[
ωTV

([
1− η√

2n(eα − 1)2

]−)
∨ωH

([
c

√
| logη|

n

]−)]−)
η

2
,

where Qα is the set of α-sequentially interactive channels Q as in (2.6).
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Corollary 3.1 extends the lower bound of Donoho and Liu (1991) to privatized data. We
point out that a similar lower bound with slightly worse constants can be easily derived from
Proposition 1 of Duchi, Jordan and Wainwright (2018). In general, we have ωH(ε)≤ ωTV(ε),
because dTV(P0,P1) ≤ dH(P0,P1). Therefore, privatization leads to a larger lower bound
compared to the direct case. This is hardly any surprise. Moreover, if α is sufficiently large,
that is, the privatization constraint is weak, then the lower bound of Corollary 3.1 reduces to
the classical lower bound in the case of direct estimation derived by Donoho and Liu (1991).

In our theory we consider the class Qα of α-sequentially interactive channels, because
those admit a reasonably simple (cf. Duchi, Jordan and Wainwright (2018)) and attainable
lower bound and they comprise a relevant class of local differential privatization mechanisms.
In the next section we show that for estimation of linear functionals θ over convex parameter
spaces P (and also for more general, but sufficiently regular θ and P), the rate of our lower
bound is attained even within the much smaller class of noninteractive channels. So within
the class of sequentially interactive channels, the noninteractive channels already lead to rate
optimal private estimation of linear functionals over convex parameter spaces.

REMARK 3.2. Corollary 3.1 does not restrict the values of α ∈ (0,∞) and is formulated
for any sample size n. In particular, it continues to hold if α is replaced by an arbitrary se-
quence αn ∈ (0,∞). The choice of this sequence has a fundamental impact on the private
minimax rate of convergence. For example, if we consider the highly privatized case where
αn 	 n−1/2, then n(eαn − 1)2 is bounded and the αn-privatized minimax risk no longer con-
verges to zero as n→∞.

4. Attainability of lower bounds. To establish upper bounds on the private minimax
risk that match the rate of our lower bounds, some regularity conditions are needed. In the
case where the channel Q is noninteractive and fixed, the main ingredients for a characteriza-
tion of Mn(Q,P, θ) are a certain minimax identity and a type of second degree homogeneity
of the privatized Hellinger modulus

ω
(Q1)
H (ε)= sup

{∣∣θ(P0)− θ(P1)
∣∣ : dH(Q1P0,Q1P1)≤ ε,P0,P1 ∈ P

}
,

where here Q1 : B(Z) × X → [0,1] is a one-dimensional marginal channel (see the dis-
cussion in Section B of the Supplementary Material for details). However, for the sake of
readability, in the main article we only operate under the sufficient conditions that P is con-
vex and dominated and that θ :P→R is linear. Throughout this section we repeatedly make
use of the following additional assumptions:

(A) The functional θ : P→R of interest is bounded, that is, supP∈P |θ(P)|<∞.
(B) The nondecreasing loss function l :R+→R+ is such that l(0)= 0 and l(3

2 t)≤ al(t),
for some a ∈ (1,∞) and for every t ∈R+.

The boundedness Assumption A is also maintained in Donoho and Liu (1991). However,
in their context, it is actually not necessary in some special cases such as the location model.
On the other hand, the boundedness of θ appears to be much more fundamental in the case
of private estimation. See, for example, Section G in Duchi, Jordan and Wainwright (2014),
who show that in the privatized location model under squared error loss, Assumption A is
necessary in order to obtain finite α-private minimax risk Mn,α(P, θ). Assumption B is also
taken from Donoho and Liu (1991). It is satisfied for many common loss functions, such as
lγ (t)= tγ , with γ > 0, or the Huber loss lγ (t)= 1[0,γ )(t)t

2/2+1[γ,∞)(t)γ (t − γ /2), which
satisfies B with a = 9/2.

The following theorem (Theorem 4.1) provides sufficient conditions on the sequence of
noninteractive channels Q(n) : B(Zn)×X n→[0,1]with identical marginals Q

(n)
1 , the model
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P and the functional θ , so that the privatized minimax risk Mn(Q
(n),P, θ) is upper bounded

by a constant multiple of

l ◦ω
(Q

(n)
1 )

H
(
n−1/2)

.

A more general result is discussed and proved in Section B of the Supplementary Material.
This even extends, and improves, the attainability result of Donoho and Liu (1991) in the
nonprivate case. For the purpose of attainability under local differential privacy, the crucial
point is the next one (cf. Theorem 4.2 below). Namely, to establish the existence of sequences
of noninteractive α-private channels Q(n) that satisfy the imposed assumptions and are such
that

ω
(Q

(n)
1 )

H
(
n−1/2)

� ωTV
(
n−1/2)

.

At this point our theory deviates conceptually from the one developed by Donoho and Liu
(1991). We propose a class of α-private channels Q

(α,�)
1 indexed by a functional parameter

� ∈ L∞ and minimize the resulting Hellinger modulus of continuity

ω
(Q

(α,�)
1 )

H
(
n−1/2)

with respect to �. For this minimization to be successful we require another minimax identity
to hold which is given by the conclusion of Proposition 2.1. Combining Theorem 4.1 and
Theorem 4.2, which are stated below, then shows that the rate of the lower bound of the
previous section can be attained.

4.1. Upper bounds for given channel sequences. An extended version of the following
theorem (not assuming convexity, dominatedness and linearity), its proof and some further
discussions are deferred to Section B of the Supplementary Material:

THEOREM 4.1. Fix n ∈ N; suppose that Conditions A and B hold and that Q is a
noninteractive channel with identical marginals Q1. Moreover, assume that P is dominated
and convex and that θ : P→ R is linear. Fix C ≥√2 log 2a + 1, �= C2ω

(Q1)
H (n−1/2) and

C1 = [1+ 8a2

2a−1 ]a�2 log(C)/ log(3/2)�, where a > 1 is the constant from Condition B. Then, there

exists a binary search estimator θ̂
(�)
n :Zn→R with tuning parameter � (cf. Proposition 7.1

for details), such that

sup
P∈P

EQP⊗n

[
l
(∣∣θ̂ (�)

n − θ(P)
∣∣)]≤ C1 · l(ω(Q1)

H
(
n−1/2))

.

The general version of this theorem (see Section B of the Supplementary Material) is a
strict generalization of results of Donoho and Liu (1991) to cover also the case where Q(A|x)

is an arbitrary noninteractive channel with identical marginals and not necessarily equal to
1A(x). Concerning its proof, we introduce a binary search estimator different from the one
used by Donoho and Liu (1991) which, in particular, takes the privatized data as input data.
Our new construction also has the advantage that it facilitates a detailed but highly nontrivial
analysis in the case of the specific binary privatization scheme introduced in Section 4.2
below. The crucial point is that in conjunction with this privatization scheme, our minimax
optimal binary search estimator can even be shown to be nearly linear (see Section 4.3).
The details of our construction and an in-depth analysis of the estimator when based on this
specific privatization scheme is presented in Section 7.
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4.2. A general attainability result. The challenge in deriving rate optimal upper bounds
on the α-private minimax risk Mn,α(P, θ) is now to find α-sequentially interactive channel
distributions Q, such that the upper bound of the form l ◦ ω

(Q1)
H (n−1/2) on Mn(Q,P, θ),

obtained in Theorem 4.1, matches the rate of the lower bound

l

(
1

2
ωTV

([
1− η√

2n(eα − 1)2

]−))

of Corollary 3.1. It turns out that noninteractive channels with identical binary marginals
lead to rate optimal procedures for α-private estimation of a large class of functionals. More
precisely, we suggest to use a channel with binary marginals

Q
(α,�)
1

({±z0}|x)= 1

2

(
1± �(x)

z0

)
,(4.1)

where z0 := ‖�‖∞ eα+1
eα−1 and where � : X → R is an appropriate measurable and bounded

function. Note that

sup
S∈B(R)

Q
(α,�)
1 (S|x1)

Q
(α,�)
1 (S|x2)

=max
(1+ �(x1)‖�‖∞

eα−1
eα+1

1+ �(x2)‖�‖∞
eα−1
eα+1

,
1− �(x1)‖�‖∞

eα−1
eα+1

1− �(x2)‖�‖∞
eα−1
eα+1

)
≤ 1+ eα−1

eα+1

1− eα−1
eα+1

= eα,

so that a noninteractive channel distribution with identical marginals (4.1) is α-private. Ac-
tually, the support Z = {−z0, z0} of Q

(α,�)
1 has no effect on its privacy provisions. How-

ever, with this specific choice of its support, the channel Q
(α,�)
1 has the property that

the conditional expectation of Zi given Xi = x under Q
(α,�)
1 equals

∫
Z zQ

(α,�)
1 (dz|x) =

−z0Q
(α,�)
1 ({−z0}|x)+ z0Q

(α,�)
1 ({z0}|x)= �(x).

To motivate the choice in (4.1), we make the following observation. The channel (4.1) has
the nice feature that for P0,P1 ∈ P with densities p0 and p1 with respect to μ= P0+P1, we
have

dTV
(
Q

(α,�)
1 P0,Q

(α,�)
1 P1

)
= sup

A∈B(R)

∣∣∣∣
∫
X

Q
(α,�)
1 (A|x)p0(x) dμ(x)−

∫
X

Q
(α,�)
1 (A|x)p1(x) dμ(x)

∣∣∣∣
=max

{∣∣∣∣
∫
X

1

2

(
1+ �(x)

z0

)[
p0(x)− p1(x)

]
dμ(x)

∣∣∣∣,∣∣∣∣
∫
X

1

2

(
1− �(x)

z0

)[
p0(x)− p1(x)

]
dμ(x)

∣∣∣∣
}

=
∣∣∣∣
∫
X

�(x)

2z0

[
p0(x)− p1(x)

]
dμ(x)

∣∣∣∣= 1

2z0

∣∣EP0[�] −EP1[�]
∣∣.

(4.2)

If the functional of interest is actually of the form θ(P)= EP[�], then we can use the fact that
dTV ≤ dH to see that

ω
(Q

(α,�)
1 )

H (ε)= sup
{∣∣θ(P0)− θ(P1)

∣∣ : dH
(
Q

(α,�)
1 P0,Q

(α,�)
1 P1

)≤ ε,P0,P1 ∈ P
}

≤ sup
{∣∣θ(P0)− θ(P1)

∣∣ : ∣∣θ(P0)− θ(P1)
∣∣≤ 2z0ε,P0,P1 ∈ P

}
≤ 2‖�‖∞ eα + 1

eα − 1
ε.

But at least for convex P and nonconstant and linear θ , Lemma H.2 in Section H of the
Supplementary Material shows that ωTV(ε) ≥ c0ε, for some positive constant c0 and every
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small ε > 0. Thus,

ω
(Q

(α,�)
1 )

H
(
n−1/2)≤ 2‖�‖∞(

eα + 1
)
c−1

0 ·ωTV

(√
1

n(eα − 1)2

)
,

for all large n. In general, if the functional θ : P → R is of a more complicated form, then
we have to find a sequence (�n) in L∞ for which

ω
(Q

(α,�n)
1 )

H
(
n−1/2)

� ωTV

(√
1

n(eα − 1)2

)
.(4.3)

The following result realizes the claim of the previous display using Proposition 2.1. An
extended version of it is stated and proved in Section C of the Supplementary Material.

THEOREM 4.2. For α ∈ (0,∞) and � ∈ L∞(X ), let Q(α,�) be the noninteractive α-
private channel with identical marginals Q

(α,�)
1 as in (4.1). If P is convex and dominated and

θ : P→R is linear, then

inf
�:‖�‖∞≤1

ω
(Q

(α,�)
1 )

H (ε)≤ ωTV

([
ε
eα + 1

eα − 1

]+)
∀ε > 0.

PROOF. For s ≥ 0, define

��(s) := sup
{
θ(P0)− θ(P1) : P0,P1 ∈ P,

∣∣EP0[�] −EP1[�]
∣∣≤ s

}
,

and note that dTV ≤ dH, ‖�‖∞ ≤ 1 and (4.2), imply

ω
(Q(α,�))
H (ε)≤��

(
2ε

eα + 1

eα − 1

)
.

Clearly, the function �� is nondecreasing. For t ≥ 0, define ��(t) := inf{s ≥ 0 :��(s) > t}.
We claim that the functions �� and �� have the following properties:

��(t) > s ⇒ ��(s)≤ t,

sup
�:‖�‖∞≤1

��(t) > s ⇒ inf
�:‖�‖∞≤1

��(s)≤ t,
(4.4)

��(t)≥ inf
{∣∣EP0[�] −EP1[�]

∣∣ : θ(P0)− θ(P1)≥ t,P0,P1 ∈ P
}
.(4.5)

The first two are obvious. To establish (4.5), set A�∗(t) := {s ≥ 0 :��(s) > t} and B�(t) :=
{|EP0[�] − EP1[�]| : θ(P0)− θ(P1) ≥ t,P0,P1 ∈ P}, and note that for A�(t) = ∅ the claim
is trivial. So, take s ∈ A�(t). Then, ��(s) > t , which implies that there are P0,P1 ∈ P with
|EP0[�]−EP1[�]| ≤ s and θ(P0)−θ(P1) > t . Thus, ν := |EP0[�]−EP1[�]| ≤ s and ν ∈ B�(t).
We have just shown that for every s ∈ A�(t) there exists a ν ∈ B�(t) with ν ≤ s. But this
clearly means that ��(t)= infA�(t)≥ infB�(t), as required.

Now, abbreviate η := ε eα+1
eα−1 , δ := ωTV(η+ ξ0)+ ξ1, for ξ0, ξ1 > 0, and note that T := {φ ∈

L∞(X ,F,μ) : −1≤ ∫
X φf dμ≤ 1,∀f ∈ L1(X ,F,μ) : ‖f ‖L1 ≤ 1} = {φ ∈ L∞(X ,F,μ) :

‖φ‖∞ ≤ 1}. Using convexity and dominatedness of P together with linearity of θ , we see that
Sδ := {P0 − P1 : θ(P0)− θ(P1) ≥ δ,P0,P1 ∈ P} is a dominated convex set of finite signed
measures. Hence,

sup
�:‖�‖∞≤1

inf
σ∈Sδ

∫
X

�dσ = inf
σ∈Sδ

sup
�:‖�‖∞≤1

∫
X

�dσ,
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follows from Proposition 2.1 with a =−1 and b= 1. Therefore, (4.5) yields

sup
�:‖�‖∞≤1

��(δ)≥ sup
�:‖�‖∞≤1

inf
σ∈Sδ

∣∣∣∣
∫
X

�dσ

∣∣∣∣≥ sup
�:‖�‖∞≤1

inf
σ∈Sδ

∫
X

�dσ

= inf
σ∈Sδ

sup
�:‖�‖∞≤1

∫
X

�dσ

= 2 inf
σ∈Sδ

‖σ‖TV

= 2 inf
{
dTV(P0,P1) : θ(P0)− θ(P1)≥ ωTV(η+ ξ0)+ ξ1

}
≥ 2 inf

{
dTV(P0,P1) : θ(P0)− θ(P1) > ωTV(η+ ξ0)

}
≥ 2(η+ ξ0) > 2η= 2ε

eα + 1

eα − 1
.

An application of (4.4) and letting ξ0 → 0 now finishes the proof. �

The next corollary now puts together Theorem 4.1 and Theorem 4.2. Its proof is deferred
to Section D of the Supplementary Material. A somewhat more general version of this result
that relaxes convexity of the model P and linearity of the functional θ is stated and proved
in Section E of the Supplementary Material. We want to emphasize here that the assump-
tions of the more general result of Section E in the Supplementary Material can be verified,
for instance, in the nonconvex case of estimating the endpoint of a uniform distribution (cf.
Section G.4 in the Supplementary Material).

COROLLARY 4.3. Fix α ∈ (0,∞), n ∈N; suppose that Assumptions A and B hold, that
P is convex and dominated and that θ : P→R is linear. Then,

Mn,α(P, θ) := inf
Q∈Qα

Mn(Q,P, θ)≤ C1 · l
(
ωTV

(
4√
n

eα + 1

eα − 1

))
,

where Qα is the collection of α-sequentially interactive channels as in (2.6). The constant C1
is given by

C1 =
[
1+ 8a2

2a − 1

]
a�2 log(C)/ log(3/2)�+1,

where C =√2 log(2a)+ 1 and a > 1 is the constant from Condition B.

Summarizing, under the conditions of Corollary 4.3 and invoking our results of Section 3
(see also Section A in the Supplementary Material), we obtain the characterization (1.3)
announced in the Introduction, that is, for any fixed α ∈ (0,∞),

Mn,α(P, θ)	 l ◦ωTV
(
n−1/2)

.

More precisely, we even find that for all n ∈N and α ∈ (0,∞),

1

4
l

(
1

2
ωTV

(√
1

8n(eα − 1)2

))
≤Mn,α(P, θ)

≤ C1l

(
ωTV

(√
16

n

(eα + 1)2

(eα − 1)2

))
.

This also shows that, in the private case, the effective sample size reduces from n to nα2 for
α small.
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REMARK 4.4. Although our analysis was tailored to α ≤ 1 and the bounds in the previ-
ous display are tight (up to universal constants) in that regime, they are not tight for large α,
in the sense that 1

eα−1 and eα+1
eα−1 are vastly different for α large. An anonymous referee has

pointed out the plausible conjecture that the correct scaling should actually be

ωTV

(
1√

n(eα − 1)2

)
∨ωTV

(
1√

ne2α/3

)
∨ωH

(
1√
n

)
,

for all α > 0. This is motivated by the fact that the additive staircase mechanism Zi =Xi +
Gi , Gi ∼ fγ ∗ of Geng and Viswanath (2016) has variance Var(Zi) � T 2e−2α/3, provided that
|Xi | ≤ T , thus leading to mean squared error for mean estimation of E[(Z̄n − E[X1])2] �

T 2

ne2α/3 . Inspired by this conjecture, we improved the α-dependence of our lower bounds for
noninteractive channels to

ωTV

(
1√

n(eα − 1)2

)
∨ωTV

(
1√
neα

)
∨ωH

(
1√
n

)

(see Section I of the Supplementary Material). The interesting question of whether one of
these scalings is the correct one, or whether there exist even many more different regimes
which describe the α-dependence in large generality, is left for future research. The fact that
there is a regime change in the α-dependence of the private mean squared error was also
observed by Duchi and Rogers (2019), and there is certainly more to say about the α > 1
regime.

4.3. Optimality of affine estimators. In the previous subsection we have seen that a sim-
ple noninteractive channel with binary marginals Q

(α,�)
1 supported on Z = {−z0, z0} with

z0 = ‖�‖∞ eα+1
eα−1 and such that Q

(α,�)
1 ({z0}|x)= 1

2(1+ �(x)
z0

) leads to rate optimal locally pri-
vate estimation, if � ∈ L∞(X ) is chosen appropriately. This means that the actual observa-
tions Z1, . . . ,Zn that are available for estimation of θ(P) are i.i.d., according to a binary
distribution on Z with probability of outcome z0 equal to [Q(α,�)

1 P]({z0}) = 1
2(1 + EP[�]

z0
).

But therefore, clearly, Z̄n = 1
n

∑n
i=1 Zi is sufficient for P. It is important to note that this only

works because the chosen channel Q
(α,�)
1 is binary. By Rao–Blackwellization,

E[Q(α,�)
1 P](n)

[
l
(∣∣θ̂n(Z)− θ(P)

∣∣)]≥ E[Q(α,�)
1 P](n)

[
l
(∣∣E[

θ̂n(Z)|Z̄n

]− θ(P)
∣∣)],

we conclude that, at least for convex loss functions l, there must be a minimax optimal esti-
mator that is a function of Z̄n only. In fact, we will show more than that. Under the additional
assumptions that P is convex and dominated and θ is linear, there is a choice of � and a con-
stant b ∈R such that Z̄n+b is minimax rate optimal (possibly after projection onto the range
of θ ). The proof of the following result is deferred to Section D in the Supplementary Mate-
rial. It crucially relies on Proposition 7.1(ii) where we show that our binary search estimator
in conjunction with the binary channel Q

(α,�)
1 is approximately affine.

COROLLARY 4.5. Fix α ∈ (0,∞), n ∈N; suppose that Assumptions A and B hold, that
P is dominated and convex and that θ : P→ R is linear. Then, there exists a function �∗ ∈
L∞(X ) and a constant b ∈R, such that

sup
P∈P

E[Q(α,�∗)
1 P](n)

[
l
(∣∣�[Z̄n + b] − θ(P)

∣∣)]≤ C2 · l
(
ωTV

(
4√
n

eα + 1

eα − 1

))
,

where � : R→ [M−,M+] := cl [θ(P)] is the projection onto the closure of the range of θ ,
which must be an interval, and Q

(α,�∗)
1 is the binary channel of (4.1). The constant C2 is
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given by

C2 =
[
2+ a2 + 8a2

2a − 1

]
a�2 log(C)/ log(3/2)�+3,

where C =
√

3
2 [max{8(eα + 1),

√
2 log 2a + 1} + 1] and a > 1 is the constant from Condi-

tion B.

It is remarkable, and perhaps somewhat surprising, that a private estimation procedure as
simple as the one described above, can be rate optimal in such a broad class of different esti-
mation problems. In particular, the sample mean Z̄n = 1

n

∑n
i=1 Zi can never achieve a faster

rate than l(n−1/2). Correspondingly, Lemma H.2 in Section H of the Supplementary Mate-
rial, in conjunction with the lower bound of Corollary 3.1, reveals (at least for convex P) that
l(n−1/2) is the best possible rate of convergence in locally differentially private estimation
problems.

A prominent example of a (nonprivate) estimation problem with faster optimal conver-
gence rate than l(n−1/2) is estimation of the endpoint of a uniform distribution. In that case,
the nonprivate optimal rate is l(n−1), which can not be attained by a sample mean estimator.
Even though the set of uniform distributions is not convex, we show in Section G.4 of the
Supplementary Material that Z̄n = 1

n

∑n
i=1 Zi with �(x) = 2x is rate optimal in the corre-

sponding private estimation problem.
Detailed inspection of the proof of Corollary 4.5 reveals that the function �∗ ∈ L∞(X ) is

a solution of a certain saddle-point problem. Solving this explicitly is not always straight-
forward, even though the assumptions of the corollary guarantee existence. Therefore, in the
next section we explore another direction for finding an appropriate candidate �∗ in the con-
struction of the locally private estimation procedure of Corollary 4.5.

5. Constructing rate optimal privatization mechanisms and estimators. We have
seen so far (Corollary 4.5) that the noninteractive mechanism generating α-private obser-
vations as

Zi |Xi =

⎧⎪⎪⎨
⎪⎪⎩

z0 with probability
1

2

(
1+ �(Xi)

z0

)
,

−z0 with probability
1

2

(
1− �(Xi)

z0

)
,

with z0 = ‖�‖∞ eα+1
eα−1 and an appropriate choice of the function � : X → R leads to minimax

rate optimality of the sample mean Z̄n = 1
n

∑n
i=1 Zi for estimating θ(P) (possibly after an

appropriate shift and projection). Since this result of the previous Section 4.3 was noncon-
structive, it remains to determine � for practical use. By construction of the above privacy
mechanism, we have

E[Z̄n|X1, . . . ,Xn] = 1

n

n∑
i=1

E[Zi |Xi] = 1

n

n∑
i=1

�(Xi)=: θ̃ (�)
n .

This means, in particular, that the bias of Z̄n is the same as that of the linear estimator θ̃
(�)
n

in the estimation problem with direct observations X1, . . . ,Xn, with worst case absolute bias
denoted by

BP,θ (�) := sup
P∈P

∣∣EP[�] − θ(P)
∣∣.

We are thus lead to ask, “What is the optimal choice of � in the direct estimation problem
using θ̃

(�)
n ?”
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Clearly, there is no universal answer, but the solution must depend on the estimand θ . For
instance, if θ(P)= p(x0), where p = dP/dλ is a Lebesgue density of P, then one might take
�(x)= 1

h
K(

x−x0
h

) for some kernel function K and an appropriate bandwidth h= hn > 0. Or,
if θ(P)= EP[f ], for some measurable f :X →R, then �= f is natural. Note however, that
� has to be bounded in order for the privacy mechanism to be well defined. Thus, if f is
unbounded, � has to be taken as a truncated version of f , for example, �(x)= f (x)1|f (x)|≤ 1

h
.

Now classically, we would trade off the bias BP,θ (�) of the estimator θ̃
(�)
n against its vari-

ance (or standard deviation)

Var
[
θ̃ (�)
n

]= 1

n

(
EP

[
�2]−EP[�]2)

.

Instead, we must now trade off the bias BP,θ (�) of the private estimator Z̄n against its vari-
ance which is easily seen to equal

Var[Z̄n] = 1

n

(
z2

0 −EP[�]2)= 1

n

(
‖�‖2∞

(
eα + 1

eα − 1

)2
−EP[�]2

)
.

This trade-off is still hard to do over general � ∈ L∞(X ). Therefore, guided by our examples
above, we here restrict to parametric classes {�h : h ∈R

k}. As mentioned before, the choice of
the class is problem specific, but in what follows we isolate a high-level sufficient condition
(Condition C below) for the class {�h : h ∈R

k} that allows for solving the bias-variance trade-
off such that the solution �h∗ leads to rate optimal private estimation. Furthermore, we then
show that Condition C can be checked in many classical examples. In particular, Condition C
also holds in cases where the model P is not convex (cf. Section G.4 in the Supplementary
Material).

In the case k = 1, h ∈ R, the mentioned regularity condition C below states that the col-
lection of measurable functions, �h : X → R, h > 0, satisfies ‖�h‖∞ � h−s , for some s ≥ 0,
and is such that the worst case absolute bias

BP,θ (�h) := sup
P∈P

∣∣EP[�h] − θ(P)
∣∣

of the private estimator Z̄n is bounded by an expression of the order ht , as h→ 0, for some
t > 0. We then show that for the choice of tuning parameter

h= hn =
(

1√
n

eα + 1

eα − 1

) 1
s+t

,

the above privatization and estimation protocol based on �hn is α-private minimax rate op-
timal if εr � ωTV(ε) for r = t/(s + t). This consideration misleadingly suggests that the
estimator 1

n

∑n
i=1 �h(Xi) is minimax optimal in the nonprivate case for a possibly different

choice of h = h̃n. Although this appears to be correct in Examples G.1, G.2 and G.3 (see
Section 6 below and the Supplementary Material for details), it is not true in general (see
Example G.4 where the minimax rate optimal estimator in the direct problem is not even of
linear form).

For some estimation problems, such as estimating a multivariate anisotropic density at a
point (cf. Section G.3), the case k = 1 is not sufficient, and we need the full flexibility of
Condition C:

(C) Suppose that P and θ are such that there exists k ∈ N, t ∈ (0,∞)k , s ∈ [0,∞)k ,
D0 ∈ (0,∞) and h0 ∈ (0,1] and a class of measurable functions �h : X → R indexed by
h ∈R

k , such that for all h ∈ (0, h0]k ,

‖�h‖∞ ≤D0

k∏
j=1

h
−sj
j and BP,θ (�h)≤D0

1

k

k∑
j=1

h
tj
j .(5.1)
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REMARK 5.1. Note that Condition C implies Condition A, because the converse of A
implies that BP,θ (�) is infinite whenever � is bounded.

The proof of the following theorem is deferred to Section F in the Supplementary Material.

THEOREM 5.2. Suppose that Conditions B and C hold, and set r̄ = ∑k
j=1

sj
tj

. For

α ∈ (0,∞), let Q(α,�) be the α-private channel with identical marginals (4.1), and set
hn = (hn,1, . . . , hn,k)

T and

hn,j =
(

1√
n

eα + 1

eα − 1

) 1
tj (1+r̄)

.

Then, the arithmetic mean Z̄n(z) := 1
n

∑n
i=1 zi , z= (z1, . . . , zn)

′ ∈R
n, satisfies

sup
P∈P

E
Q

(α,�hn
)
P⊗n

[
l
(∣∣Z̄n − θ(P)

∣∣)]≤C0 · l
((

1√
n

eα + 1

eα − 1

) 1
1+r̄

)
,(5.2)

for all n ∈N and a positive finite constant C0 that depends only on a and D0.

The private estimator Z̄n of Theorem 5.2 is α-private minimax rate optimal if the de-
rived upper bound (5.2) on the worst case risk is of the same order as the lower bound of

Corollary 3.1. The latter is true if ε
1

1+r̄ � ωTV(ε), for all small ε > 0. That this is often sat-
isfied simultaneously with the conditions of Theorem 5.2 is demonstrated in the examples
of Section 6. Lemma H.7 in the Supplementary Material shows that under Condition C the

corresponding upper bound ωTV(ε) � ε
1

1+r̄ holds.

6. Examples. In this section we discuss several concrete estimation problems for which
we derive bounds on the total variation modulus

ωTV(ε)= sup
{∣∣θ(P0)− θ(P1)

∣∣ : dTV(P0,P1)≤ ε,Pj ∈ P
}
,

which characterizes the rate of local differentially private estimation, and compare them to the
Hellinger modulus ωH(ε) that determines the estimation rate under direct observations (see
Table 1). Furthermore, we exhibit families of functions �h which, in conjunction with the

TABLE 1
Comparison of Hellinger (nonprivate) and total variation (private) moduli of continuity for several estimation

problems. The minimax rate of convergence (for fixed α) in each problem is given by l ◦ω(n−1/2), where l is the
loss function

P θ :P→R ωH(ε) ωTV(ε)

{P : EP[|f |κ ] ≤ L}
P 
→ EP [f ] ‖f ‖∞ <∞ ε ε

L > 0, κ > 1 |f |(X )⊇ (0,∞) ε(2 κ−1
κ

)∧1 ε
κ−1
κ

H�λ
β,L(R)

P 
→ p(m)(x0) ε
β−m

β+1/2 ε
β−m
β+1

L > 0, β > 0

H�λ
β,L(Rd)

P 
→ p(x0) r̄ =∑d
j=1

1
βj ε

1
1+r̄/2 ε

1
1+r̄

L ∈R
d+, β ∈ (0,1]d

Unif[0, ϑ]
P 
→ ϑ ε2 ε

ϑ ∈ (0,M]
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TABLE 2
Examples for the choice of class {�h : h ∈R

k} leading to rate optimal estimation in all the problems of Table 1

P θ :P→R �h(x)

{P : EP[|f |κ ] ≤ L}
P 
→ EP[f ] ‖f ‖∞ <∞ f (x)

L > 0, κ > 1 |f |(X )⊇ (0,∞) f (x)1|f (x)|≤ 1
h

H�λ
β,L(R)

P 
→ p(m)(x0) 1[−1,1]( x−x0
h

) · dm

dxm
1
h
K(

x−x0
h

)
L > 0, β > 0

H�λ
β,L(Rd)

P 
→ p(x0) r̄ =∑d
j=1

1
βj

∏d
j=1

1
hj

K(
xj−x0,j

hj
)

L ∈R
d+, β ∈ (0,1]d

Unif[0, ϑ]
P 
→ ϑ 2x

ϑ ∈ (0,M]

binary construction in (4.1) and an appropriate choice of tuning parameters, lead to minimax
rate optimal locally private estimation procedures (see Table 2).

Even in cases where the moduli of continuity are hard to evaluate explicitly, the following
relationship is always true:

ωH(ε)≤ ωTV(ε)≤ ωH(
√

2ε) ∀ε > 0,

because dTV ≤ dH ≤√2dTV (cf. for instance Tsybakov (2009), Lemma 2.3). This shows that,
in the worst case, the private minimax rate of estimation is the square root of the nonprivate
minimax rate, whereas, the private rate can never be better than the nonprivate one. Both
extremal cases can occur; see examples below.

The details and proofs of all claims made in Tables 1 and 2 are deferred to Section G of the
Supplementary Material, except for the well-known facts about the Hellinger modulus. Our
list of examples is far from being exhaustive, but due to space constraints we present only a
few classical cases for which the nonprivate rates are well known. The first column in each
of the two following tables describes the statistical model P , that is, the set of (marginal)
data generating distributions, and the second column displays the functional θ : P→ R that
is to be estimated. In the first row we consider moment estimation. Here, |f |(X ) := {y ∈
R : ∃x ∈ X : |f (x)| = y} denotes the range of x 
→ |f (x)|. In the second row we consider
estimation of the mth derivative of a density at a fixed point x0 ∈ X = R over the class
H�λ

β,L(R) of Lebesgue densities on R that are Hölder continuous with exponent β > m. That

is, p ∈H�λ
β,L(R) is b := �β� times differentiable with bth derivative p(b) satisfying∣∣p(b)(x)− p(b)(y)

∣∣≤L|x − y|β−b ∀x, y ∈R.

In the third row of our tables, we consider density estimation at a point x0 ∈X =R
d over the

anisotropic class H�λ
β,L(Rd) of Lebesgue densities on R

d such that for every j ∈ {1, . . . , d}
and every x, x′ ∈R

d ,∣∣p(
x1, . . . , xj−1, x

′
j , xj+1, . . . , xd

)− p(x)
∣∣≤ Lj

∣∣x′j − xj

∣∣βj .

Finally, in the last row we consider estimating the endpoint of a uniform distribution. The
representations of the moduli of continuity in the last two columns of Table 1 are to be
understood as upper and lower bounds up to constants and for small values of ε > 0.

We see that already for moment estimation, both extreme cases mentioned above can occur.
If f is bounded, then θ(P)= EP[f ] can be estimated at n−1/2 rate in both the locally private
as well as in the direct case. If, however, the range of |f | contains the whole positive real line,
and we have no more than a second moment being bounded (i.e., κ ∈ (1,2]), then the locally
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private rate is the square root of the rate under direct observations.2 The density estimation
problems are intermediate cases. There is some price to be paid for local differential privacy
in terms of convergence rate, but it is not as bad as the square root of the direct rate. Finally,
estimating the endpoint of a uniform distribution is another instance of a worst case situation
under local differential privacy.

7. Studying the binary search estimator. Within this section, let M− := infP∈P θ(P),
M+ := supP∈P θ(P), M :=M+−M− and S� := {P0−P1 : θ(P0)−θ(P1)≥�,P0,P1 ∈ P},
for �≥ 0. Furthermore, recall the upper affinity

η
(n)
A (Q,�)= sup

t∈R
π

(
conv

(
QP(n)

≤t

)
, conv

(
QP(n)

≥t+�

))
from equation (2.10).

PROPOSITION 7.1. Fix a finite constant � > 0, and suppose that −∞< M− < M+ <

∞. Let Q : B(Zn) × X n → [0,1] be a noninteractive channel distribution with identical
marginals Q1. Moreover, let N =N(M,�) be the smallest integer such that N� > M > 0.
For l ∈N0, set ηl = (l + 1)�:

(i) If Q1P is dominated (by a σ -finite measure), then there exists an estimator θ̂
(�)
n :

Zn→R with tuning parameter �, such that for every l ∈N0,

sup
P∈P

QP
⊗n(

z ∈Zn : ∣∣θ̂ (�)
n (z)− θ(P)

∣∣ > ηl

)≤ 4
N−2∑

k=l+1

[
η

(n)
A (Q,k�)∨ 0

]
,

and an empty sum is interpreted as equal to zero. Moreover, θ̂
(�)
n takes values in the set

{M− + j� : j ∈ {1, . . . ,N − 1}} if N ≥ 3, and θ̂
(�)
n ≡ (M− +M+)/2 else. We set θ̂

(0)
n (z)=

(M− +M+)/2.
(ii) Fix α ∈ (0,∞). Suppose that P is convex and θ : P → R is linear and there exists

�∗ ∈L∞(X ) such that ‖�∗‖∞ ≤ 1 and

inf
σ∈S�

∫
X

�∗ dσ > 0.

If Q1 =Q
(α,�∗)
1 is the binary channel of (4.1) with Z = {−z0, z0}, then there exists an affine

function g(aff) :R→R such that∣∣�M−,M+
[
g(aff)(z̄n)

]− θ̂ (�)
n (z)

∣∣≤ 2� ∀z ∈Zn,

for θ̂
(�)
n as in part (i) and where �M−,M+ :R→[M−,M+] is the projection onto [M−,M+].

REMARK 7.2. Part (ii) of Proposition 7.1 is used in the proof of Corollary 4.5 on opti-
mality of sample mean estimators (see Section D of the Supplementary Material). There, the
existence of �∗ with ‖�∗‖∞ ≤ 1 and infσ∈S�

∫
X �∗ dσ > 0, for an appropriate choice of

�= C2ω
(Q

(α,�∗)
1 )

H
(
n−1/2)

(depending also on �∗) is established using Proposition 2.1 and Lemma H.6 (see also Theo-
rem C.1 in Section C of the Supplementary Material).

2Note that this private minimax rate of convergence was already discovered by Duchi, Jordan and Wainwright
(2018) but with a rate optimal channel sequence and estimator different from ours.
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FIG. 1. An example of the interval construction for the binary search estimator.

PROOF OF PROPOSITION 7.1. Without loss of generality, we may assume that 0 =
infP∈P θ(P) < supP∈P θ(P) = M , by estimating θ(P) − M− instead of θ(P) and, in case
of part (ii), by noting that �M−,M+[x] −M− =�0,M [x −M−].

To rigorously introduce the binary search estimator, consider first the case where � > 0
is such that N =N(�,M)≤ 2. In that case, we set θ̂

(�)
n ≡M/2, which satisfies the desired

inequality trivially, because in this case � > M/2 which implies |θ̂ (�)
n (z)− θ(P)| = |M/2−

θ(P)| ≤M/2 < � = η0 ≤ ηl . If N ≥ 3, we shall construct the estimator θ̂
(�)
n such that it

takes values in the set {j� : j = 1, . . . ,N − 1}.
The construction is as follows: To select one of the values in the set {j� : j = 1, . . . ,N−1}

we first introduce a scheme to partition [0,M) (cf. Figure 1). Start with the interval
[l1,1, u1,1)= [0,N�), which contains [0,M) by definition of N , and remove either the left-
most or the rightmost subinterval of length �, that is, [0,�) or [(N − 1)�,N�), to produce
two new intervals [l2,1, u2,1) = [0, (N − 1)�) and [l2,2, u2,2) = [�,N�), each of length
(N − 1)�. Then, proceed in the same way again to produce three (note that removing the
leftmost subinterval of length � in the first step and then removing the rightmost in the sec-
ond step results in the same interval as if we had removed them in the opposite order) new
intervals [l3,1, u3,1), [l3,2, u3,2), [l3,3, u3,3), each of length (N − 2)�. Continue this process
for N − 2 steps to arrive at the intervals [lN−1,j , uN−1,j ), j = 1, . . . ,N − 1, of length 2�

whose midpoints are exactly the values j�.
Formally, for k ∈ {1, . . . ,N − 1} and j ∈ {1, . . . , k}, we set lk,j = (j − 1)�, uk,j = lk,j +

(N − k + 1)�, and we also define ak,j = lk,j + � and bk,j = uk,j − �, so that bk,j −
ak,j = (N − k − 1)� =: dk . With each pair (k, j) as before, we associate a (randomized)
minimax test ξk,j :Zn→[0,1] for H0 :Q1P≤ak,j

= {Q1P : θ(P)≤ ak,j ,P ∈ P} against H1 :
Q1P≥bk,j

= {Q1P : θ(P) ≥ bk,j ,P ∈ P}. Recall that such a minimax test has the property
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that

sup
P0∈[Q1P≤ak,j

](n)

P1∈[Q1P≥bk,j
](n)

EP0(ξk,j )+EP1(1− ξk,j )

= inf
tests φ

sup
P0∈[Q1P≤ak,j

](n)

P1∈[Q1P≥bk,j
](n)

EP0(φ)+EP1(1− φ).

Existence is well known (see Lemma H.4 in Section H of the Supplementary Material which
is a minor modification of a result by Krafft and Witting (1967); see also Lehmann and
Romano (2005), Problem 8.1 and Theorem A.5.1). To obtain a nonrandomized test from ξk,j ,
we set ξ∗k,j = 1(1/2,1](ξk,j ). Since EP[ξ∗k,j ] = P(ξk,j > 1/2)≤ 2EP[ξk,j ] and EP[1− ξ∗k,j ] =
P(ξk,j ≤ 1/2)= P(1− ξk,j ≥ 1/2)≤ 2EP[1− ξk,j ], we get in view of (2.12), that

sup
P0∈[Q1P≤ak,j

](n)

P1∈[Q1P≥bk,j
](n)

EP0

(
ξ∗k,j

)+EP1

(
1− ξ∗k,j

)

≤ 2π
(
conv

(
QP(n)

≤ak,j

)
, conv

(
QP(n)

≥bk,j

))
≤ 2η

(n)
A (Q,bk,j − ak,j )

= 2η
(n)
A (Q,dk).

(7.1)

By definition of M− and M+, all the sets P≤ak,j
and P≥bk,j

are nonempty, with the only
exception of P≥b1,1 , which is empty if and only if, (N − 1)�=M and θ does not attain its
supremum M = supP∈P θ(P ). In that case, we take ξ1,1 ≡ 0.

To define the value of the binary search estimator θ̂
(�)
n (z) for a given observation z ∈Zn,

we perform a stepwise testing procedure (cf. Figure 2). Starting at the full interval [0,N�)

(k = 1), we remove the outermost subinterval of length � that was rejected by the test ξ∗1,1.
Depending on the outcome of ξ∗1,1 and the corresponding subinterval of length (N − 1)�, we
are left with (k = 2); we either perform the test ξ∗2,1 or ξ∗2,2 and, again, remove the rejected

interval of length �. We proceed in this way until k =N − 2. Finally, we set θ̂
(�)
n (z) equal to

the midpoint of the remaining interval of length 2� that was selected by the test performed
at level k = N − 2. This procedure leads to the formal definition: Set j1(z) = 1, and for
k ∈ {2, . . . ,N − 1}, set jk(z) = jk−1(z) + ξ∗k−1,jk−1(z)

(z) ∈ {1, . . . , k}, that is, jk(z) is the

FIG. 2. A graphical representation of the binary search estimator.
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index of the test to be performed on level k ≤ N − 2 and jN−1(z)� is the value of the
estimator θ̂

(�)
n (z)= (uN−1,jN−1(z) + lN−1,jN−1(z))/2= jN−1(z)�.

We now analyze the estimation error of θ̂
(�)
n . Fix P ∈ P and z ∈ Zn. We say that

the test ξ∗k,jk(z)
(z) decided incorrectly, if its decision lead to the removal of a length-

� subinterval that actually contained θ(P). Formally, ξ∗k,jk(z)
(z) decided incorrectly if

ξ∗k,jk(z)
(z) = 0 and θ(P) ∈ [bk,jk(z), uk,jk(z)), or ξ∗k,jk(z)

(z) = 1 and θ(P) ∈ [lk,jk(z), ak,jk(z)).
Note that the test ξ∗k,jk(z)

(z) can not decide incorrectly if θ(P) /∈ [lk,jk(z), uk,jk(z)). If, for
some l ∈ {0, . . . ,N − 3}, all the tests ξ∗k,jk(z)

(z), for k = 1, . . . ,N − 2 − l, decide cor-
rectly, then θ(P) ∈ [lN−1−l,jN−1−l (z), uN−1−l,jN−1−l (z))]. Since, by construction, we have
θ̂n(z) ∈ [aN−1−l,jN−1−l (z), bN−1−l,jN−1−l (z))] and the latter interval has length dN−1−l = l�,

this means that |θ̂ (�)
n (z)− θ(P)| ≤ (l + 1)� = ηl . Therefore, if |θ̂ (�)

n (z)− θ(P)| > ηl , then
there exists k ∈ {1, . . . ,N − 2 − l}, so that ξ∗k,jk(z)

(z) decided incorrectly. If ξ∗k,jk(z)
(z)

incorrectly decided for H0, then θ(P) ∈ [bk,jk(z), uk,jk(z)). By disjointness of [bk,j , uk,j ),
j = 1, . . . , k, there is at most one index j∗k = j∗k (P) ∈ {1, . . . , k}, so that θ(P) ∈ [bk,j∗k , uk,j∗k ).
Thus, jk(z) = j∗k , ξ∗

k,j∗k
(z) = 0 and θ(P) ∈ [bk,j∗k , uk,j∗k ). If, on the other hand, ξ∗k,jk(z)

(z)

incorrectly decided for H1, then θ(P) ∈ [lk,jk(z), ak,jk(z)). But analogously there is at most
one index j∗∗k = j∗∗k (P) ∈ {1, . . . , k}, such that θ(P) ∈ [lk,j∗∗k

, ak,j∗∗k
). Thus, ξ∗

k,j∗∗k
(z)= 1 and

θ(P) ∈ [lk,j∗∗k
, ak,j∗∗k

). This fact, that at any level k there are at most two tests that can decide
incorrectly, is the crucial point of our construction. Consequently, for l = 0, . . . ,N − 3,

QP
⊗n(

z ∈Zn : ∣∣θ̂ (�)
n (z)− θ(P)

∣∣ > ηl

)

≤
N−2−l∑

k=1

QP
⊗n(

ξ∗k,jk(z)
(z) decides incorrectly

)

≤
N−2−l∑

k=1

[
QP

⊗n(
ξ∗k,j∗k

(z)= 0, θ(P) ∈ [bk,j∗k , uk,j∗k )
)

+QP
⊗n(

ξ∗k,j∗∗k
(z)= 1, θ(P) ∈ [lk,j∗∗k

, ak,j∗∗k
)
)]

.

But both

QP
⊗n(

ξ∗k,j∗k
(z)= 0, θ(P) ∈ [bk,j∗k , uk,j∗k )

)
and

QP
⊗n(

ξ∗k,j∗∗k
(z)= 1, θ(P) ∈ [lk,j∗∗k

, ak,j∗∗k
)
)

are bounded by the worst case risk of the respective test and thus, in view of (7.1), they are
both bounded by 2η

(n)
A (Q,dk)∨ 0. We conclude that

QP
⊗n(|θ̂ (�)

n − θ(P)|> ηl

) ≤ 4
N−2−l∑

k=1

[
η

(n)
A (Q,dk)∨ 0

]

= 4
N−2∑

k=l+1

[
η

(n)
A (Q,k�)∨ 0

]
.

If l > N − 3, then the event |θ̂ (�)
n − θ(P)| > ηl is impossible, because the range of θ̂

(�)
n is

{j� : j = 1, . . . ,N − 1}.
For part (ii), we further investigate the binary search estimator in the case Q1 =Q

(α,�∗)
1 ,

as in (4.1). In particular, we have Z = {−z0, z0}. If N ≤ 3, then any estimator taking values
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in [0,M] is at most 2� away from θ̂
(�)
n . We continue with N ≥ 4. The marginal data gen-

erating distribution Q
(α,�∗)
1 P is actually a binary distribution on {−z0, z0}, taking the value

z0 = ‖�∗‖∞ eα+1
eα−1 with probability p(P) := 1

2(1+ EP[�∗]
z0

) ∈ [1
2(1− eα−1

eα+1), 1
2(1+ eα−1

eα+1)]. The
corresponding likelihood is given by

q(z1, . . . , zn;p) :=
n∏

i=1

p
1
2 (1+ zi

z0
)
(1− p)

1
2 (1− zi

z0
) = pnT (z)(1− p)n(1−T (z),

where T (z) = 1
2(1 + z̄n

z0
) with z̄n = 1

n

∑n
i=1 zi . For 0 < a ≤ b < M , define P̄≤a := {p(P) :

θ(P) ≤ a}, P̄≥b := {p(P) : θ(P) ≥ b}, ā := sup P̄≤a and b̄ := inf P̄≥b. Clearly, p− :=
infP∈P p(P) ≤ ā and b̄ ≤ supP∈P p(P) =: p+. Note that for any P0,P1 ∈ P , with θ(P0) −
θ(P1)≥�, we have

(7.2) p(P0)− p(P1)= (
EP0

[
�∗

]−EP1

[
�∗

])
/(2z0)≥ inf

σ∈S�

∫
X

�∗ dσ/(2z0) > 0

by assumption. In particular, if b − a ≥�, then ā < b̄. Hence, a minimax test ξ for testing
H0 : [Q1P≤a](n) ∼= P̄(n)

≤a against H1 : Q1P≥b
∼= P̄≥b based on an i.i.d. sample of size n is

given by

ξa,b(z1, . . . , zn)=
⎧⎪⎨
⎪⎩

1 if
q(z1, . . . , zn; b̄)

q(z1, . . . , zn; ā)
≥ 1,

0 else.

The test ξa,b(z) decides for H1 (i.e., ξa,b(z)= 1) iff T (z)≥G(ā, b̄), where

G(s, t) := log(1−s
1−t

)

log( t
s

1−s
1−t

)
, if 0 < s < t < 1

and G(s, s) := s. In the following, we make repeated use of the facts that G is strictly in-
creasing in both arguments and that s < G(s, t) < t for 0 < s < t < 1 (see Lemma H.5).

Abbreviate aj := aN−2,j and bj := bN−2,j , and set aN−1 = (N − 1)� and b0 =�. Next,
define the critical values for the tests ξk,j := ξak,j ,bk,j

by ck,j :=G(āk,j , b̄k,j ), and abbreviate
cj := cN−2,j . Since āk,j ≤ āk,j+1 and b̄k,j ≤ b̄k,j+1, this defines a partition of [0,1] (note
that range(T ) ⊆ [0,1]), that is, C1 := [0, c1), CN−1 := [cN−2,1] and Cj := [cj−1, cj ), for
j = 2, . . . ,N − 2, where we interpret [c, c)=∅. We now show that T (z) ∈ Cj implies that

θ̂
(�)
n (z)= j�. If T (z) ∈C1, then all the tests along the binary search path must have decided

for H0, because c1 = G(ā1, b̄1) is the smallest critical value among all critical values ck,j .

Thus, θ̂
(�)
n (z)=�. For j ∈ {2, . . . ,N − 2}, suppose that T (z) ∈ Cj . At some level k0 along

the binary search path, either ak0,jk0 (z) = j�= aj or bk0,jk0 (z) = j�= bj−1 occurs first. In
the former case all tests at levels k ≥ k0 must decide for H0, because T (z) < cj and cj is
the smallest critical value of all tests with k ≥ k0 and ak,j = j�. In the latter case all tests at
levels k ≥ k0 must decide for H1, because T (z)≥ cj−1 and cj−1 is the largest critical value

among all tests for which k ≥ k0 and bk,l = j�. Thus, in either case, θ̂
(�)
n (z)= j�. Finally,

if T (z) ∈ CN−1, all tests must decide for H1 and θ̂
(�)
n (z)= (N − 1)�.

Next, by convexity of P and linearity of p : P → [0,1], we see that the range p(P) ⊆
[p−,p+] ⊆ [0,1] of p is an interval. Moreover, we have p− < c1 ≤ cN−2 < p+, be-
cause ā1 < b̄1, āN−2 < b̄N−2 and the properties of G. In this paragraph we investigate the
correspondence between the two functionals θ : P → [0,M] and p : P → [p−,p+]. For
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t ∈ (p−,p+), define ϕ(t) := sup{θ(P) : p(P) = t,P ∈ P}. If t ≤ p−, set ϕ(t) := 0, and if
t ≥ p+, set ϕ(t) :=M . For p− < t < c1, we see that 0≤ ϕ(t)≤ 2� because

ϕ(t)≤ sup
{
θ(P) : p(P)≤ c1,P ∈P

}≤ sup
{
θ(P) : p(P) < b̄1,P ∈ P

}
≤ b1 = 2�.

If t ∈ Cj , for some j ∈ {2, . . . ,N − 2}, then

ϕ(t)≤ sup
{
θ(P) : p(P)≤ cj ,P ∈P

}≤ sup
{
θ(P) : p(P) < b̄j ,P ∈P

}
≤ bj = (j + 1)�,

and

ϕ(t)≥ inf
{
θ(P) : p(P)≥ cj−1,P ∈P

}≥ inf
{
θ(P) : p(P) > āj−1,P ∈ P

}
≥ aj−1 = (j − 1)�.

Finally, for cN−1 ≤ t < p+, one obtains (N − 2)�≤ ϕ(t)≤M . Thus, we have defined ϕ on
all of [0,1] in such a way that |ϕ(T (z))− θ̂

(�)
n (z)| ≤�.

Next, we show that ϕ can be approximated on (p−,p+) by an affine function. First, note
that for t ∈ (p−,p+),

E(t) := sup
{
θ(P) : p(P)= t,P ∈ P

}− inf
{
θ(P) : p(P)= t,P ∈ P

}
≤ sup

{
θ(P0)− θ(P1) : p(P0)− p(P1)= 0,P0,P1 ∈ P

}
.

But if θ(P0) − θ(P1) ≥ �, then p(P0) − p(P1) > 0 (cf. (7.2)). Thus, E(t) ≤ �. Now, for
λ ∈ [0,1] and s, t ∈ (p−,p+), choose P0,P1 ∈ P such that p(P0) = s and p(P1) = t , set
P̄= λP0 + (1− λ)P1 ∈P , by convexity, and note that

ϕ
(
λs + (1− λ)t

)≤ inf
{
θ(P) : p(P)= λs + (1− λ)t,P ∈ P

}+�

≤ θ(P̄)+�= λθ(P0)+ (1− λ)θ(P1)+�

≤ λϕ(s)+ (1− λ)ϕ(t)+�,

where we have used linearity of θ and the previously derived bound on E. Similarly, we
obtain

ϕ
(
λs + (1− λ)t

)≥ θ(P̄)= λθ(P0)+ (1− λ)θ(P1)

≥ λϕ(s)+ (1− λ)ϕ(t)−�.

We conclude that |ϕ(λs + (1− λ)t)− [λϕ(s)+ (1− λ)ϕ(t)]| ≤ �. Now, fix s0 ∈ (p−, c1)

and t0 ∈ (cN−1,p+) and, for t ∈R, define

ψ(t) := t0 − t

t0 − s0
ϕ(s0)+ t − s0

t0 − s0
ϕ(t0).

Thus, for t ∈ [s0, t0] and λt := (t0 − t)/(t0 − s0) ∈ [0,1], we have∣∣ψ(t)− ϕ(t)
∣∣= ∣∣ψ(

λts0 + (1− λt )t0
)− ϕ

(
λts0 + (1− λt )t0

)∣∣
≤ ∣∣λtψ(s0)+ (1− λt )ψ(t0)− [

λtϕ(s0)+ (1− λt )ϕ(t0)
]∣∣+�

=�.

We have therefore found an affine function ψ , such that for T (z) ∈ [c1, cN−1], we have
|ψ(T (z)) − θ̂

(�)
n (z)| ≤ 2�. Recall that by construction of ϕ, we have ϕ(s0) ≤ 2� ≤ (N −

2)�≤ ϕ(t0), because N ≥ 4. Thus, ψ is nondecreasing. If T (z) < c1, then θ̂
(�)
n (z)=� and

0 ≤�[ψ(T (z))] ≤�[ϕ(T (z))+�] ≤�[3�] = 3�, where � : R→ [0,M] is the projec-
tion onto [0,M]. Thus, |�[ψ(T (z))] − θ̂

(�)
n (z)| ≤ 2�. An analogous argument shows that

the same bound holds if T (z) > cN−1. Since T (z) is affine in z̄n, the claim follows. �
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