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CONVERGENCE RATES OF VARIATIONAL POSTERIOR DISTRIBUTIONS
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We study convergence rates of variational posterior distributions for non-
parametric and high-dimensional inference. We formulate general conditions
on prior, likelihood and variational class that characterize the convergence
rates. Under similar “prior mass and testing” conditions considered in the lit-
erature, the rate is found to be the sum of two terms. The first term stands for
the convergence rate of the true posterior distribution, and the second term is
contributed by the variational approximation error. For a class of priors that
admit the structure of a mixture of product measures, we propose a novel
prior mass condition, under which the variational approximation error of the
mean-field class is dominated by convergence rate of the true posterior. We
demonstrate the applicability of our general results for various models, prior
distributions and variational classes by deriving convergence rates of the cor-
responding variational posteriors.

1. Introduction. Variational Bayes inference is a popular technique to approximate
difficult-to-compute probability posterior distributions. Given a posterior distribution
�(·|X(n)), and a variational family S , variational Bayes inference seeks a Q̂ ∈ S that best ap-
proximates �(·|X(n)) under the Kullback–Leibler divergence. Though it is not exact Bayes
inference, the variational class S often gives computational advantage and leads to algo-
rithms such as coordinate ascent that can be efficiently implemented on large-scale data sets.
Researchers in many fields have used variational Bayes inference to solve real problems.
Successful examples include statistical genetics [8, 26], natural language processing [7, 22],
computer vision [31] and network analysis [4, 38] to name a few. We refer the readers to an
excellent recent review [6] on this topic.

The goal of this paper is to study the variational posterior distribution Q̂ from a theoretic
perspective. We propose general conditions on the prior, the likelihood and the variational
class to characterize the convergence rate of the variational posterior to the true data generat-
ing process.

Before discussing our results, we give a brief review on the theory of convergence rates of
the posterior distributions in the literature. In order that the posterior distribution concentrates
around the true parameter with some rate, the “prior mass and testing” framework requires
three conditions on the prior and the likelihood: (a) The prior is required to put a minimal
amount of mass in a neighborhood of the true parameter; (b) Restricted to a subset of the
parameter space, there exists a testing function that can distinguish the truth from the com-
plement of its neighborhood; (c) The prior is essentially supported on the subset described
above. Rigorous statements of these three conditions can be found in seminal papers [17,
18, 30]. Earlier versions of these conditions go back to [2, 3, 23, 29]. We also mention an-
other line of work [10, 19, 35, 40] that established posterior rates of convergence using other
approaches.
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In this paper, we show that under almost the same three conditions, the variational posterior
Q̂ also converges to the true parameter, and the rate of convergence is given by

(1) ε2
n + 1

n
inf

Q∈S P
(n)
0 D

(
Q‖�(·|X(n))).

The first term ε2
n is the rate of convergence of the posterior distribution �(·|X(n)). The second

term is the variational approximation error with respect to the class S under the data gener-
ating process P

(n)
0 . Since we are able to generalize the “prior mass and testing” theory with

the same old conditions, many well-studied problems in the literature can now be revisited
under our framework of variational Bayes inference with very similar proof techniques. This
will be illustrated with several examples considered in the paper.

Remarkably, for a special class of prior distributions and a corresponding variational class,
the second term of (1) will be automatically dominated by ε2

n under a modified “prior mass”
condition. We illustrate this result by a prior distribution of product measure

d�(θ) = ∏
j

d�j (θj ),

and a mean-field variational class

SMF =
{
Q : dQ(θ) = ∏

j

dQj (θj )

}
.

As long as there exists a subset
⊗

j �̃j ⊂ {θ : Dρ(P
(n)
0 ‖P (n)

θ ) ≤ C1nε2
n}, such that the prior

mass condition

(2) �

(⊗
j

�̃j

)
≥ exp

(−C2nε2
n

)
holds together with the testing conditions, then the variational posterior distribution Q̂ con-
verges to the true parameter with the rate ε2

n . In other words, the variational approximation
error term in (1) is dominated under this stronger prior mass condition (2). This is the result
of Theorem 2.4. Here, Dρ(·‖·) stands for a Rényi divergence with some ρ > 1. The implica-
tion of the condition (2) is important. It says that as long as the prior satisfies a “prior mass”
condition that is coherent with the structure of the variational class, the resulted variational
approximation error will always be small compared with the statistical error from the true
posterior. Therefore, the condition (2) offers a practical guidance on how to choose a good
prior for variational Bayes inference. In addition, as a condition only on the prior mass, (2)
is usually very easy to check. This mathematical simplicity is not just for independent priors
and the mean-field class. In Section 4, a more general condition is proposed that includes the
setting of (2) as a special case.

Besides the general formulation of conditions to ensure convergence of the variational
posteriors, several interesting aspects of variational Bayes inference are also discussed in the
paper. We show that for a general likelihood with a sieve prior, its mean-field variational
approximation of the posterior distribution has an interesting relation to an empirical Bayes
procedure. We also show that the empirical Bayes procedure is exactly a variational Bayes
procedure using a specially designed variational class. This connection between empirical
Bayes and variational Bayes is interesting, and may suggest similar theoretical properties of
the two.

Finally, we would like to remark that the general rate (1) for variational posteriors is only
an upper bound. It is not always true that the variational posterior has a slower convergence
rate than the true posterior. Sometimes the variational posterior may not be a good approxi-
mation to the true posterior, but it can still contract faster to the true parameter if additional
regularity is imposed by the variational class S . We construct examples in Section 5.2 to
illustrate this point.
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Related work. Statistical properties of variational posterior distributions have also been
studied in the literature. A recent work by [36] established Bernstein–von Mises type of
results for parametric models. We refer the readers to [6, 36] for other related references on
theories for parametric variational Bayes inference. For nonparametric and high-dimensional
models, recent work by [1, 37] studied variational approximation to tempered posteriors,
where the likelihood dP

(n)
θ /dP

(n)
0 is replaced by (dP

(n)
θ /dP

(n)
0 )α for some α ∈ (0,1). Just

as the convergence of tempered posteriors [34], the convergence of the variational approxi-
mation can also be established under generalizations of the prior mass condition. In addition,
the paper [1] also studied convergence rates under model misspecification, and the paper [37]
considered a more general setting that can handle latent variables, which is quite useful to an-
alyze mixture models. We would like to point out that these results do not apply to the usual
posterior distributions with α = 1. After the first version of our paper was posted, similar
results on α = 1 have also been obtained independently by [25].1 An early related work on
this topic is by [40], where the results cover both posterior distributions and their variational
approximations. However, the conditions in [40] are rather abstract and are not easy to check
in applications.

Organization. The rest of the paper is organized as follows. In Section 2, we formulate the
problem and introduce the general conditions that characterize convergence rates of varia-
tional posteriors. This section also includes results for the mean-field variational class, where
the variational approximation error can be explicitly analyzed. In Section 3, we apply our
general theory to three examples that use three different variational classes. Then, in Sec-
tion 4, for a general class of prior distributions and a mean-field class under a model selec-
tion setting, we propose a new prior mass condition that leads to an automatic control of
the variational approximation error. In Section 5, we discuss the relation between variational
Bayes and empirical Bayes. We also discuss possible situations where the variational pos-
terior outperforms the true posterior in this section. An extension of the main results under
model misspecification is also discussed in Section 5. All the proofs will be given in the
Supplementary Materials [39].

Notation. We close this section by introducing notation that will be used later. For a, b ∈ R,
let a ∨ b = max(a, b) and a ∧ b = min(a, b). For a positive real number x, 	x
 is the small-
est integer no smaller than x and �x� is the largest integer no larger than x. For two posi-
tive sequences {an} and {bn}, we write an � bn or an = O(bn) if an ≤ Cbn for all n with
some constant C > 0 that does not depend on n. The relation an 
 bn holds if both an � bn

and bn � an hold. For an integer m, [m] denotes the set {1,2, . . . ,m}. Given a set S, |S|
denotes its cardinality, and 1S is the associated indicator function. The �p norm of a vec-
tor v ∈ R

m with 1 ≤ m ≤ ∞ is defined as ‖v‖p = (
∑m

j=1 |vj |p)1/p for 1 ≤ p < ∞ and
‖v‖∞ = sup1≤k≤m |vk|. Moreover, we use ‖v‖ to denote the �2 norm ‖v‖2 by convention.
For any function f , the �p norm is defined in a similar way, that is, ‖f ‖p = (

∫
f (x)p dx)1/p .

Specifically, ‖f ‖∞ = supx |f (x)|. We use P and E to denote generic probability and ex-
pectation whose distribution is determined from the context. The notation Pf also means
expectation of f under P so that Pf = ∫

f dP. Throughout the paper, C, c and their vari-
ants denote generic constants that do not depend on n. Their values may change from line to
line.

1Some extensions of the results of [25] were later added in the revised version of [37] by the same authors.
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2. Main results.

2.1. Definitions and settings. We start this section by introducing a class of divergence
functions.

DEFINITION 2.1 (Rényi divergence). Let ρ > 0 and ρ �= 1. The ρ-Rényi divergence
between two probability measures P1 and P2 is defined as

Dρ(P1‖P2) =
⎧⎪⎨⎪⎩

1

ρ − 1
log

∫ (
dP1

dP2

)ρ−1
dP1 if P1 � P2,

+∞ otherwise.

The relations between the Rényi divergence and other divergence functions are summa-
rized below:

1. When ρ → 1, the Rényi divergence converges to the Kullback–Leibler divergence, de-
fined as

D1(P1‖P2) =
⎧⎪⎨⎪⎩
∫

log
(

dP1

dP2

)
dP1 if P1 � P2,

+∞ otherwise.

From now on, we use D(P1‖P2) without the subscript to denote D1(P1‖P2).
2. When ρ = 1/2, the Rényi divergence is related to the Hellinger distance by

D1/2(P1‖P2) = −2 log
(
1 − H(P1,P2)

2),
and the Hellinger distance is defined as

H(P1,P2) =
√

1

2

∫
(
√

dP1 − √
dP2)2.

3. When ρ = 2, the Rényi divergence is related to the χ2-divergence by

D2(P1‖P2) = log
(
1 + χ2(P1‖P2)

)
,

and the χ2-divergence is defined as

χ2(P1‖P2) =
∫

(dP1)
2

dP2
− 1.

DEFINITION 2.2 (total variation). The total variation distance between two probability
measures P1 and P2 is defined as

T V (P1,P2) = 1

2

∫
|dP1 − dP2|.

The relation among the divergence functions defined above is given by the following
proposition (see [32]).

PROPOSITION 2.1. With the above definitions, the following inequalities hold:

T V (P1,P2)
2 ≤ 2H(P1,P2)

2 ≤ D1/2(P1‖P2)

≤ D(P1‖P2) ≤ D2(P1‖P2) ≤ χ2(P1‖P2).

Moreover, the Rényi divergence Dρ(P1‖P2) is a nondecreasing function of ρ.
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Now we are ready to introduce the variational posterior distribution. Given a statistical
model P

(n)
θ parametrized by θ , and a prior distribution θ ∼ �, the posterior distribution is

defined by

d�
(
θ |X(n)) = dP

(n)
θ (X(n)) d�(θ)∫

dP
(n)
θ (X(n)) d�(θ)

.

To address possible computational difficulty of the posterior distribution, variational ap-
proximation is a way to find the closest object in a class S of probability measures to
�(·|X(n)). The class S is usually required to be computationally or analytically tractable.
The most popular mathematical definition of variational approximation is given through the
KL-divergence.

DEFINITION 2.3 (Variational posterior). Let S be a family of distributions. The varia-
tional approximation of the posterior is defined as

(3) Q̂ = argmin
Q∈S

D
(
Q‖�(·|X(n))).

Just like the posterior distribution �(·|X(n)), the variational posterior Q̂ is a data-
dependent measure that summarizes information from both the prior and the data. For a
variational set S , the corresponding variational posterior can be regarded as the projection
of the true posterior onto S under KL-divergence. When S is the set of all distributions, Q̂

turns out to be the true posterior �(·|X(n)). The choice of the class S usually determines
the difficulty of the optimization (3). In this paper, our main goal is to study the statistical
property of the data-dependent measure Q̂ for a general S .

2.2. Results for general variational posteriors. Assume the observation X(n) is gener-
ated from a probability measure P

(n)
0 , and Q̂ is the variational posterior distribution driven

by X(n). The goal of this paper is to analyze Q̂ from a frequentist perspective. In other words,
we study statistical properties of Q̂ under P

(n)
0 . The first theorem gives conditions that guar-

antee convergence of the variational posterior Q̂.

THEOREM 2.1. Suppose εn is a sequence that satisfies nε2
n ≥ 1. Consider a loss func-

tion L(·, ·), such that for any two probability measures P1 and P2, L(P1,P2) ≥ 0. Let
C,C1,C2,C3 > 0 be constants such that C > C2 + C3 + 2. We assume:

• For any ε > εn, there exists a set �n(ε) and a testing function φn, such that

(C1) P
(n)
0 φn + sup

θ∈�n(ε)

L(P
(n)
θ ,P

(n)
0 )≥C1nε2

P
(n)
θ (1 − φn) ≤ exp

(−Cnε2).
• For any ε > εn, the set �n(ε) above satisfies

(C2) �
(
�n(ε)

c) ≤ exp
(−Cnε2).

• For some constant ρ > 1,

(C3) �
(
Dρ

(
P

(n)
0 ‖P (n)

θ

) ≤ C3nε2
n

) ≥ exp
(−C2nε2

n

)
.

Then for the variational posterior Q̂ defined in (3), we have

(4) P
(n)
0 Q̂L

(
P

(n)
θ ,P

(n)
0

) ≤ Mn
(
ε2
n + γ 2

n

)
,
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for some constant M only depending on C1,C and ρ, where the quantity γ 2
n is defined as

γ 2
n = 1

n
inf

Q∈S P
(n)
0 D

(
Q‖�(·|X(n))).

Conditions (C1)–(C3) resemble the three conditions of “prior mass and testing” in [17].
Interestingly, Theorem 2.1 shows that with a slight modification, these three conditions also
lead to the convergence of the variational posterior. The testing conditions (C1) and (C2) are
required to hold for all ε > εn. In the prior mass condition (C3), the neighborhood of P

(n)
0 is

defined through a Rényi divergence with a ρ > 1, compared with the KL-divergence used in
[17]. According to Proposition 2.1, Dρ(P1‖P2) ≥ D(P1‖P2) for ρ > 1, so the condition (C3)
in our paper is slightly stronger than that in [17]. This stronger “prior mass” condition ensures
that the loss L(P

(n)
θ ,P

(n)
0 ) is exponentially integrable under the true posterior �(·|X(n)),

which is a key step in the proof of Theorem 2.1. In all the examples considered in this paper,
we will check (C3) with D2(P

(n)
0 ‖P (n)

θ ), which turns out to be a very convenient choice.
The convergence rate is the sum of two terms, ε2

n and γ 2
n . The first term ε2

n is the conver-
gence rate of the true posterior �(·|X(n)). The second term γ 2

n characterizes the approxima-
tion error given by the variational set S . A larger S means more expressive power given by
the variational approximation, and thus the rate of γ 2

n is smaller.
It is worth mentioning that we characterize the convergence of the variational posterior

Q̂ through the expected loss P
(n)
0 Q̂L(P

(n)
θ ,P

(n)
0 ). Bounds for this quantity are also obtained

by [25] independently with a stronger testing condition on the entire space. We remark that
convergence in P

(n)
0 Q̂L(P

(n)
θ ,P

(n)
0 ) automatically implies that the entire variational posterior

distribution concentrates in a neighborhood of the true distribution P
(n)
0 with a radius of the

same rate. When the loss function is convex, it also implies the existence of a point estimator
that enjoys the same convergence rate. We summarize these results in the next corollary.

COROLLARY 2.1. Under the same setting of Theorem 2.1, for any diverging sequence
Mn → ∞, we have

P
(n)
0 Q̂

(
L
(
P

(n)
θ ,P

(n)
0

)
> Mnn

(
ε2
n + γ 2

n

)) → 0.

Furthermore, if the loss L(P
(n)
θ ,P

(n)
0 ) is convex respect to θ , then the variational posterior

mean θ̂ = Q̂θ satisfies

P
(n)
0 L

(
P

(n)

θ̂
, P

(n)
0

) ≤ Mn
(
ε2
n + γ 2

n

)
,

where M is the same constant in (4).

PROOF. The first result is an application of Markov’s inequality

P
(n)
0 Q̂

(
L
(
P

(n)
θ ,P

(n)
0

)
> Mnn

(
ε2
n + γ 2

n

)) ≤ P
(n)
0 Q̂L(P

(n)
θ ,P

(n)
0 )

Mnn(ε2
n + γ 2

n )
≤ M

Mn

→ 0.

The second result is directly implied by Jensen’s inequality that

P
(n)
0 L

(
P

(n)

Q̂θ
,P

(n)
0

) ≤ P
(n)
0 Q̂L

(
P

(n)
θ ,P

(n)
0

) ≤ Mn
(
ε2
n + γ 2

n

)
. �

To apply Theorem 2.1 to specific problems, we need to analyze the variational approxi-
mation error γ 2

n = 1
n

infQ∈S P
(n)
0 D(Q||�(·|X(n))) in each individual setting. However, this
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task may not be trivial for many problems. Now we borrow a technique in [40] to get a useful
upper bound for γ 2

n . For any Q ∈ S , we have

nγ 2
n ≤ P

(n)
0 D

(
Q‖�(·|X(n))) = D(Q‖�) + Q

[∫
log

(
dP

(n)
�

dPθ

)
dP

(n)
0

]
= D(Q‖�) + Q

[
D
(
P

(n)
0 ‖P (n)

θ

) − D
(
P

(n)
0 ‖P (n)

�

)]
≤ D(Q‖�) + Q

[
D
(
P

(n)
0 ‖P (n)

θ

)]
,

where P
(n)
� = ∫

P
(n)
θ d�(θ). Then we obtain the upper bound

γ 2
n ≤ inf

Q∈S R(Q),

where

(5) R(Q) = 1

n

(
D(Q‖�) + Q

[
D
(
P

(n)
0 ‖P (n)

θ

)])
.

Now, it is easy to see that a sufficient condition for the variational posterior to converge at the
same rate as the true posterior is

(C4) inf
Q∈S R(Q) � ε2

n.

We incorporate this condition into the next theorem.

THEOREM 2.2. Suppose εn is a sequence that satisfies nε2
n ≥ 1, for which the conditions

(C1), (C2), (C3), (C4) hold. Then, for the variational posterior Q̂ that is defined in (3), we
have

(6) P
(n)
0 Q̂L

(
P

(n)
θ ,P

(n)
0

)
� nε2

n.

We would like to remark that the quantity infQ∈S R(Q) is easier to analyze compared with
the original definition of γ 2

n . According to its definition given by (5), it is sufficient to find a
distribution Q ∈ S , such that

(7) D(Q‖�) � nε2
n and Q

[
D
(
P

(n)
0 ‖P (n)

θ

)]
� nε2

n.

These are exactly the two conditions formulated by [1] as a natural extension of the prior mass
condition. The relation between the prior mass condition and (7) has also been discussed in
[37].

One way to construct such a distribution Q that satisfies the above two inequalities is to
focus on those whose supports are within the set C = {θ : D(P

(n)
0 ‖P (n)

θ ) ≤ Cnε2
n} for some

constant C > 0. We summarize this method into the following theorem.

THEOREM 2.3. Suppose there exist constants C1,C2 > 0, such that

(C4*) inf
Q∈S∩E D(Q‖�) ≤ C1nε2

n,

where E = {Q : supp(Q) ⊂ C} with C = {θ : D(P
(n)
0 ‖P (n)

θ ) ≤ C2nε2
n}. Then we have

inf
Q∈S R(Q) ≤ (C1 + C2)ε

2
n.
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2.3. Results for mean-field variational posteriors. A special choice of S is the mean-field
class of distributions. Not only does this class lead to computationally efficient algorithms
such as coordinate ascent, but in this section, we will also show that the structure of this class
leads to a convenient convergence analysis. We begin with its definition.

DEFINITION 2.4 (Mean-field class). For parameters in a product space that can be writ-
ten as θ = (θ1, θ2, . . . , θm) with some 1 ≤ m ≤ ∞, the mean-field variational family is defined
as

SMF =
{
Q : dQ(θ) =

m∏
j=1

dQj(θj )

}
.

The following theorem can be viewed as an application of Theorem 2.3 to the mean-field
class.

THEOREM 2.4. Suppose there exists a Q̃ ∈ SMF and a subset
⊗m

j=1 �̃j , such that

(8)
m⊗

j=1

�̃j ⊂
{
θ : D(

P
(n)
0 ‖P (n)

θ

) ≤ C1nε2
n, log

dQ̃(θ)

d�(θ)
≤ C2nε2

n

}
and

(9) −
m∑

j=1

log Q̃j (�̃j ) ≤ C3nε2
n,

for some constants C1,C2,C3 > 0. Then we have

inf
Q∈SMF

R(Q) ≤ (C1 + C2 + C3)ε
2
n.

Note that the condition (9) can also be written as

Q̃

(
m⊗

j=1

�̃j

)
≥ exp

(−C3nε2
n

)
.

In other words, Theorem 2.4 gives an interesting “distribution mass” type of characterization
for infQ∈S R(Q). Checking (9) is very similar to checking the “prior mass” condition (C3),
and is usually not hard in many examples. We only need to make sure that Q̃ is not too
far away from the prior � in the sense of (8). In fact, if the prior � belongs to the class
SMF, then one can take Q̃ = �, and the conditions of Theorem 2.4 simply become a “prior
mass” condition �(

⊗m
j=1 �̃j ) ≥ exp(−C3nε2

n), with the choice of
⊗m

j=1 �̃j being a subset

of the KL-neighborhood {θ : D(P
(n)
0 ‖P (n)

θ ) ≤ C1nε2
n}. A more general characterization of the

variational approximation error under model selection setting through a prior mass condition
will be studied in Section 4.

3. Applications. In this section, we consider several examples to illustrate the theory
developed in Section 2.

3.1. Gaussian sequence model. Consider observations generated by a Gaussian se-
quence model,

(10) Yj = θj + 1√
n
Zj , Zj

i.i.d∼ N(0,1), j ≥ 1.
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We use the notation P
(n)
θ = ⊗

j N(θj , n
−1) for the distribution above. Our goal is to use

variational Bayes methods to estimate the true parameter θ∗ that belongs to the following
Sobolev ball:

(11) �α(B) =
{
θ = (θj )

∞
j=1 :

∞∑
j=1

j2αθ2
j ≤ B2

}
.

Here, the smoothness α > 0 and the radius B > 0 are considered as constants throughout the
paper. The loss function for this problem is L(P

(n)
θ ,P

(n)
θ∗ ) = n‖θ − θ∗‖2, which is a natural

choice for the Gaussian sequence model.
The prior distribution θ ∼ � is described through the following sampling process:

1. Sample k ∼ π ;
2. Conditioning on k, sample θj ∼ fj for all j ∈ [k], and set θj = 0 for all j > k.

In other words, the prior on θ is a mixture of product measures,

(12) d�(θ) =
∞∑

k=1

π(k)

k∏
j=1

fj (θj )
∏
j>k

δ0(θj ) dθ.

Priors of similar forms are also considered in [15, 16, 27, 28]. Direct calculation implies that
the posterior is also in the form of a mixture of product measures.

Consider the variational posterior Q̂ defined by (3) with S = SMF. That is, we seek a
data-dependent measure in a more tractable form of a product measure. In most cases, the
variational posterior does not have a closed form and needs to be solved by coordinate ascent
algorithms [6]. However, for the Gaussian sequence model (10) with the prior distribution
(12), one can write down the exact form of the mean-field variational posterior distribution.

THEOREM 3.1. Consider the variational posterior Q̂ induced by the likelihood (10), the
prior (12) and the mean-field variational set SMF. The distribution Q̂ is a product measure
with the density of each coordinate specified by

(13) qj =

⎧⎪⎪⎨⎪⎪⎩
f̃j j < k̃,

p̃δ0 + (1 − p̃)f̃k̃ j = k̃,

δ0 j > k̃.

where

f̃j (θj ) ∝ fj (θj ) exp
(
−n

2
(θj − Yj )

2
)
,

p̃ = π(k − 1|Y)

π(k − 1|Y) + π(k|Y)

and

(14) k̃ = argmax
k

(
π(k − 1|Y) + π(k|Y)

)
.

The number π(k|Y) is the posterior probability of the model dimension, and according to
Bayes formula, it is

π(k|Y) ∝ π(k)
∏
j≤k

∫
fj (θj ) exp

(
−n(θj − Yj )

2

2

)
dθj

∏
j>k

exp
(
−nY 2

j

2

)
.
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In other words, the mean-field variational posterior Q̂ is nearly equivalent to a thresholding
rule. It estimates all θ∗

j by 0 after k̃ and applies the usual posterior distribution for each

coordinate before k̃. A mixed strategy is applied to the k̃th coordinate. The effective model
dimension k̃ is found in a data-driven way through (14).

Next, we will show that even though the posterior itself is not a product measure, using Q̂

from the mean-field class still gives us a rate-optimal contraction result. The conditions on
the prior distributions are summarized below.

• There exist some constants C1,C2 > 0 such that

(15)
∞∑

j=k

π(j) ≤ C1 exp(−C2k) for all k.

• There exist some constants C3,C4 > 0 such that for k0 = 	( n
logn

)
1

2α+1 
,

(16) π(k0) ≥ C3 exp(−C4k0 log k0).

• For the k0 defined above, there exist some constants c0 ∈ R and c1 > 0 such that

(17) − logfj (x) ≤ c0 + c1j
2α+1x2 for all j ≤ k0 and x ∈ R.

These three conditions on � include a large class of prior distributions. We remark that even
though (17) involves α, it does not mean that one needs to know α when defining the prior
�. For example, the choice that π(k) ∝ e−τk and fj being N(0, σ 2) for some constants
τ, σ 2 > 0 easily satisfies all the three conditions (15)–(17).

Conditions (15)–(17) will be used to derive the four conditions in Theorem 2.2. To be
specific, (C1) and (C2) are consequences of (15) (see Lemma B.7 in the Supplementary
Materials [39]), and (C3) and (C4) can be derived from (16) and (17) (see Lemma B.8 in the
Supplementary Materials [39]). Then, by Theorem 2.2, we obtain the following result.

THEOREM 3.2. Consider the prior � that satisfies (15)–(17). Then, for any θ∗ ∈ �α(B),
we have

P
(n)
θ∗ Q̂

∥∥θ − θ∗∥∥2 � n− 2α
2α+1 (logn)

2α
2α+1 ,

where Q̂ is the variational posterior defined by (3) with S = SMF.

It is well known that the minimax rate of estimating θ∗ in �α(B) is n− 2α
2α+1 [20]. Using

a mean-field variational posterior, we achieve the minimax rate up to a logarithmic factor.
In fact, the following proposition demonstrates that this rate cannot be improved for a very
general class of priors.

PROPOSITION 3.1. Consider the prior � specified in (12). Assume that maxj ‖fj‖∞ ≤
a and π(k) is nonincreasing over k. Then we have

sup
θ∗∈�α(B)

P
(n)
θ∗ Q̂

∥∥θ − θ∗∥∥2 � n− 2α
2α+1 (logn)

2α
2α+1 ,

where Q̂ is the variational posterior defined by (3) with S = SMF.

On the other hand, the extra logarithmic factor can actually be removed by a rescaling
of the prior. Details of this improvement are given in Appendix A.1 of the Supplementary
Materials [39].
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3.2. Infinite dimensional exponential families. In this section, we study another interest-
ing variational family. The Gaussian mean-field family is defined as

(18) SG =
{
Q = ⊗

j

N
(
μj ,σ

2
j

) : μj ∈ R, σ 2
j ≥ 0

}
.

This class offers better interpretability of the results because every distribution in SG is fully
determined by a sequence of mean and variance parameters. Note that we allow σ 2

j to be zero
and N(μj ,0) is understood as the delta measure δμj

on μj .
The application of SG is illustrated by an infinite dimensional exponential family model.

We define the probability measure Pθ by

(19)
dPθ

d�
= exp

( ∞∑
j=0

θjφj − c(θ)

)
,

where � denotes the Lebesgue measure on [0,1], φj is the j th Fourier basis function of
L2[0,1], and c(θ) is given by

c(θ) = log
∫ 1

0
exp

( ∞∑
j=0

θjφj (x)

)
dx.

Since φ0(x) = 1 and θ0 can take arbitrary values without changing Pθ , we simply set θ0 =
0. In other words, Pθ is fully parameterized by θ = (θ1, θ2, . . .). Given i.i.d. observations
from P n

θ∗ , our goal is to estimate Pθ∗ , where θ∗ is assumed to belong to the Sobolev ball
�α(B) defined in (11). The loss function is chosen as n times the squared Hellinger distance
L(P n

θ ,P n
θ∗) = nH 2(Pθ ,Pθ∗).

We consider a prior distribution � that is similar to the one used in Section 3.1. Its sam-
pling process is described as follows:

1. Sample k ∼ π ;
2. Conditioning on k, sample θj ∼ fj for all j ∈ [k], and set θj = 0 for all j > k.

We impose the following conditions on the prior �:

• There exist some constants C1,C2 > 0 such that

(20)
∞∑

j=k

π(j) ≤ C1 exp(−C2k logk) for all k.

• There exist some constants C3,C4 > 0 such that for k0 = 	( n
logn

)
1

2α+1 

(21) π(k0) ≥ C3 exp(−C4k0 log k0).

• There exist some constants c0 ∈ R and c1, β > 0 such that

(22) − logfj (x) ≥ c0 + c1|x|β,

for all x ∈ R and j ∈ [k0] with k0 defined above.
• For the k0 defined above, there exist some constants c′

0 ∈ R and c′
1 > 0 such that

(23) − logfj (x) ≤ c′
0 + c′

1j
2α+1x2 for all j ≤ k0 and x ∈R.

The conditions (20)–(23) are satisfied by a large class of prior distributions. For example,
one can choose k ∼ Poisson(τ ) and fj being the density of N(0, σ 2) for some constants
τ, σ 2 > 0, and then the four conditions are easily satisfied.
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THEOREM 3.3. Consider the prior � that satisfies (20)–(23). Then, for any θ∗ ∈ �α(B)

with some α > 1/2, we have

P n
θ∗Q̂H 2(Pθ ,Pθ∗) � n− 2α

2α+1 (logn)
2α

2α+1 ,

where Q̂ is the variational posterior defined by (3) with S = SG.

The theorem shows that the Gaussian mean-field variational posterior is able to achieve the

minimax rate n− 2α
2α+1 up to a logarithmic factor. We remark that the same result also holds for

the mean-field variational posterior defined with SMF. This is because SG ⊂ SMF, and thus
infQ∈SMF R(Q) ≤ infQ∈SG R(Q). Compared with the class SMF, the objective function using
the parametric family SG can be optimized by algorithms such as stochastic gradient descent
over the parameters (μj , σ

2
j ). The objective function can be greatly simplified according to

the general mean-field solution given in Theorem 5.1.

3.3. Piecewise constant model. The previous two sections consider examples of the
mean-field variational set and its variant. In this section, we use another example to illus-
trate a situation where the mean-field variational set only gives a trivial rate. On the other
hand, we show that alternative variational classes with appropriate dependence structures are
able to achieve the optimal rate.

We consider the following piecewise constant model:

(24) Xi = θi + σZi, i ∈ [n],
where Zi ∼ N(0,1) independently for all i ∈ [n]. We assume n ≥ 2 throughout the section.
The true parameter θ∗ is assumed to belong to the class �k∗(B) = {θ ∈ �k∗ : ‖θ‖∞ ≤ B},
where for a general k ∈ [n],

�k = {
θ ∈ R

n : there exist {aj }kj=0 and {μj }kj=1 such that
(25)

0 = a0 ≤ a1 ≤ · · · ≤ ak = n, and θi = μj for all i ∈ (aj−1 : aj ]}.
Here, for any two integers a < b, we use (a : b] to denote all integers from a + 1 to b. We
assume both B > 0 and σ 2 > 0 are constants throughout this section. A vector θ∗ ∈ �k∗(B)

is a piecewise constant signal with at most k∗ pieces. We use P
(n)
θ to denote the probability

distribution of N(θ,σ 2In) in this section.
The piecewise constant model is widely studied in the literature of change-point analysis.

Recently, the minimax rate of the class �k∗ is derived by [14]. When 2 < k∗ ≤ n1−δ for
some constant δ ∈ (0,1), the minimax rate is infθ̂ supθ∗∈�k∗ E

(n)
θ∗ ‖θ̂ − θ∗‖2 
 k∗ logn. With

an extra constraint on the infinity norm, the minimax rate for �k∗(B) is still k∗ logn, with a
slight modification of the proof in [14]. Since Dρ(P

(n)
θ ,P

(n)
θ ′ ) = ρ

2σ 2 ‖θ − θ ′‖2 in this case, it

is natural to choose the loss function as L(P
(n)
θ ,P

(n)
θ∗ ) = ‖θ − θ∗‖2.

We put a prior distribution � on the parameter θ . Consider � that has the following sam-
pling process:

1. Sample w ∼ Beta(α0, β0);
2. Conditioning on w, sample zi ∼ Bernoulli(w) for i = 2,3, . . . , n;
3. Conditioning on (z2, . . . , zn), sample θ1 ∼ g, and then for i = 2,3, . . . , n, sample θi

according to θi ∼ g if zi = 1 and θi = θi−1 if zi = 0.

We first consider variational inference via the mean-field class, defined as

SMF =
{
Q : dQ(θ) =

n∏
i=1

dQi(θi)

}
.
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We also define S = S joint
MF on the joint distribution of (w, z, θ) by

S joint
MF =

{
Q : dQ(w, z, θ) = dQ(w)(w)dQ(z)(z) dQ(θ)(θ),

dQ(z)(z) =
n∏

i=2

dQ
(z)
i (zi),Q

(θ) ∈ SMF

}
.

The variational posteriors Q̂MF and Q̂
joint
MF are given by (3) with variational classes defined

above, respectively.2 Interestingly, for the piecewise constant model, both Q̂MF and Q̂
joint
MF

give a trivial rate.

THEOREM 3.4. For the prior � specified above with any g absolutely continuous with
respect to the Lebesgue measure, we have

sup
θ∗∈�k∗ (B)

P
(n)
θ∗ Q̂MF

∥∥θ − θ∗∥∥2 = sup
θ∗∈�k∗ (B)

P
(n)
θ∗ Q̂

joint
MF

∥∥θ − θ∗∥∥2 � n,

for any k∗ ∈ [n], where Q̂MF and Q̂
joint
MF are the variational posteriors defined by (3) with

S = SMF and S = S joint
MF , respectively.

The result of Theorem 3.4 shows that the mean-field variational posteriors Q̂MF and Q̂
joint
MF

are unable to achieve a better rate than simply estimating θ∗ by the naive estimator θ̂ = X.
The proof, given in Appendix B.5 in the Supplementary Materials [39], reveals the reason
of this phenomenon. Since the independence structure of the two classes fails to capture the
underlying dependence structure of the parameter space �k∗(B), the variational posterior
distributions are equivalent to the posterior distribution induced by the prior � = ⊗n

i=1 g

and, therefore, the condition (C4) is violated. Note that this is the first negative result in the
literature on the statistical convergence of the mean-field approximation.

In order to achieve the minimax rate of the space �k∗(B), it is necessary to introduce
some dependence structure in the variational class. One of the simplest classes of dependent
distributions is the class of first-order Markov chains, defined by

SMC =
{
Q : dQ(θ) = dQ1(θ1)

n∏
i=2

dQi(θi |θi−1)

}
.

The class SMC introduces a natural dependence structure for the piecewise constant model,
and it is compatible with the prior distribution �, because conditioning on the change point
pattern z, the prior distribution of θ |z belongs to the class SMC. We also introduce a similar
variational class on the joint distribution of (w, z, θ), defined by

S joint
MC =

{
Q : dQ(w, z, θ) = dQ(w)(w)dQ(z)(z) dQ(θ)(θ),

dQ(z)(z) =
n∏

i=2

dQ
(z)
i (zi),Q

(θ) ∈ SMC

}
.

Besides the distribution of θ restricted to SMC, the distributions of w and z are both in the
mean-field classes.

In order to derive the rates for the variational posterior distributions induced by SMC and
S joint

MC , we impose the following conditions on the prior distribution �:

2To be rigorous, the posterior distribution �(·|X(n)) used in D(Q‖�(·|X(n))) are the marginal posterior of θ

and the joint posterior of (w, z, θ), respectively.
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• There exist some constants C2 > C1 > 1 such that

(26) (n + α0)n
C1 ≤ β0 ≤ α0n

C2 − n.

• There exists a constant c > 0 such that

(27) g(x) ≥ c for all |x| ≤ B + 1.

According to Theorem 2.2, we get the following result.

THEOREM 3.5. Consider a prior distribution � that satisfies (26) and (27). Then, for
any θ∗ ∈ �k∗(B), we have

P
(n)
θ∗ Q̂MC

∥∥θ − θ∗∥∥2 � k∗ logn,

P
(n)
θ∗ Q̂

joint
MC

∥∥θ − θ∗∥∥2 � k∗ logn,

where Q̂MC and Q̂
joint
MC are the variational posterior distributions defined by (3) with S = SMC

and S = S joint
MC , respectively.

Theorem 3.5 shows that both Q̂MC and Q̂
joint
MC are able to achieve the minimax rate of

the problem. This example illustrates the importance of the choice of the variational class.
According to Theorem 2.1, the rate of a variational posterior is upper bounded by ε2

n , the rate
of the true posterior, plus γ 2

n , the variational approximation error. The choice of SMF for the
piecewise constant model leads to a very large γ 2

n , and thus a trivial rate in Theorem 3.4. On

the other hand, the variational approximation errors given by the classes SMC and S joint
MC are

small, which are dominated by the minimax rate.
Though the statistical properties of the two classes SMC and S joint

MC are both satisfactory,

the class S joint
MC enjoys a computational advantage, and the solution Q̂

joint
MC can be computed

exactly via dynamic programming. In order to characterize the solution Q̂
joint
MC , we consider

the following discrete optimization problem:

max
1≤k≤n

{
max

0=a0<a1<···<ak=n

k∑
j=1

log
∫

g(θ) exp
(
−1

2

∑
i∈(aj−1:aj ]

(Xi − θ)2
)

dθ

(28)

+ log
(
�(k − 1 + α0)�(n − k + β0)

)}
.

The solution of (28) is denoted as the sequence 0 = â0 < â1 < · · · < âk̂ = n. We remark that
under the condition (26), the penalty term of (28) comes from the fact that

− log
�(k − 1 + α0)�(n − k + β0)�(α0 + β0)

�(n − 1 + α0 + β0)�(α0)�(β0)

 k logn,

which coincides with the minimax rate.

THEOREM 3.6. Let the maximizer of (28) be (â0, â1, . . . , âk̂). For dQ̂
joint
MC (w, z, θ) =

dQ̂(w)(w)dQ̂(z)(z) dQ̂(θ)(θ), the distributions Q̂(w), Q̂(z) and Q̂(θ) are specified as follows:

1. Under Q̂(z), zâj+1 = 1 for j = 1, . . . , k̂ − 1, and zi = 0 elsewhere with probability 1.
2. We have Q̂(w) = Beta(k̂ + α0 − 1, n − k̂ + β0).
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Algorithm 1: Computation of (28)
Input : The data X1, . . . ,Xn.
Output: The set of knots Ak̂,n = {â1, · · · , âk̂−1}.

1 For j in 1 : n, set A1,j = ∅, and compute
B1,j = S(0:j ].

2 For k in 2 : n
For j in k : n, compute

Bk,j = maxk−1≤m≤j−1{Bk−1,m + S(m:j ]},
ak,j = argmaxk−1≤m≤j−1{Bk−1,m + S(m:j ]},
Ak,j = Ak−1,ak,j

∪ {ak,j }.
3 Compute

k̂ = argmax1≤k≤n{Bk,n + log(�(k − 1 + α0)�(n − k + β0))}.

3. We have dQ̂(θ)(θ) = dQ̂
(θ)
1 (θ1)

∏n
i=2 dQ̂

(θ)
i (θi |θi−1), where⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dQ̂
(θ)
1 (θ1) ∝ g(θ1) exp

(
−1

2

∑
i∈(â0 :̂a1]

(Xi − θ1)
2
)

dθ1,

dQ̂
(θ)
i (θi |θi−1) ∝ g(θi) exp

(
−1

2

∑
l∈(âj−1 :̂aj ]

(Xl − θi)
2
)

dθi, i = âj−1 + 1, j > 1,

dQ̂
(θ)
i (θi |θi−1) = δθi−1(θi) dθi otherwise.

By Theorem 3.6, in order to get Q̂
joint
MC , it is sufficient to solve (28). This can be done

through a dynamic programming given in Algorithm 1. To simplify the notation, we define

(29) S(a:b] = log
∫

g(θ) exp
(
−1

2

∑
i∈(a:b]

(Xi − θ)2
)

dθ,

for any integers 0 ≤ a < b ≤ n.
We note that the computational cost of the dynamic programming above is O(n3) (see

[13]), and for any integers 0 ≤ a < b ≤ n, (29) has a closed form as long as we use a conjugate
g(·).

4. Variational Bayes with model selection.

4.1. General settings. In this section, we consider a general form of probability models

M = {
P

(n)

k,θ(k) : k ∈ K, θ (k) ∈ �(k)}.
Here, the probability P

(n)

k,θ(k) is determined by an index k and a parameter θ(k). We assume

that the set K is either countable or finite. For a given k, the probability P
(n)

k,θ(k) is parametrized

by a θ(k) in a parameter space �(k) that is indexed by this k. Without loss of generality, we
assume that the parameter θ(k) can be written in a blockwise structure

θ(k) = (
θ

(k)
1 , . . . , θ (k)

mk

)
.

Note that the dimension of θ(k) may vary with k.
The model M is very natural for many applications. One can think of k as a model dimen-

sion index, which determines the complexity of the parameter space �(k). A leading example
is the mixture density model, where k stands for the number of components.
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To model the hierarchical structure of (k, θ(k)), one naturally uses a hierarchical prior
distribution, which is specified through the following sampling process:

1. First, sample k ∼ π from K;
2. Conditioning on k, sample θ(k) from the probability measure �(k), and �(k) has a

product structure

(30) d�(k)(θ(k)) =
mk∏
j=1

d�
(k)
j

(
θ

(k)
j

)
.

For variational inference, we consider a mean-field class that naturally takes advantage of
the structure of the prior distribution. For a given k ∈ K, the corresponding mean-field class
is defined as

(31) S(k)
MF =

{
Q(k) : dQ(k)(θ(k)) =

mk∏
j=1

dQ
(k)
j

(
θ

(k)
j

)}
.

In order to select the best model from the data, we consider optimizing the evidence lower
bound (ELBO). With the notation p(X(n)|θ(k)) standing for the joint likelihood function, the
marginal likelihood given a model k ∈ K is defined by

(32) p
(
X(n)|k) =

∫
p
(
X(n)|θ(k))d�(k)(θ(k)).

Then a straightforward model selection procedure is to maximize log(p(X(n)|k)π(k)) over
k ∈K. In order to overcome the intractability of the integral (32), we instead optimize a lower
bound, which is given by

log
(
p
(
X(n)|k)π(k)

)
(33)

≥
∫

logp
(
X(n)|θ(k))dQ(k)(θ(k)) − D

(
Q(k)‖�(k)) + logπ(k),

which can be derived by a direct application of Jensen’s inequality. Denote the right-hand
side of (33) by F(Q(k), k), and we will solve the following optimization problem:

(34) max
k∈K max

Q(k)∈S(k)
MF

F
(
Q(k), k

)
.

Finally, the solution to (34) leads to the variational posterior distribution Q̂ = Q̂(k̂) that we use
in a model selection context. A similar variational approximation to the tempered posterior
in the model selection setting was studied by [12].

4.2. Convergence rates. Assume the observation X(n) is generated from a probability
measure P

(n)
0 , and Q̂ = Q̂(k̂) is the variational posterior that is a solution to (34). For the

general settings described above, we show that the variational approximation error can be
automatically controlled by a prior mass condition. Let � be the prior distribution on Pk,θ(k)

induced by the sampling process of (k, θ(k)).

THEOREM 4.1. Suppose εn is a sequence that satisfies nε2
n ≥ 1. Let ρ > 1 be a constant

and C2,C3 > 0 be constants. We assume that there exists a k0 ∈ K and a subset �(k0) =⊗mk0
j=1 �

(k0)
j ⊂ {θ(k0) : Dρ(P

(n)
0 ‖P (n)

k0,θ
(k0) ) ≤ C3nε2

n}, such that

(C3*) − logπ(k0) −
mk0∑
j=1

log�
(k0)
j

(
�

(k0)
j

) ≤ C2nε2
n,
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where π(k0) and �
(k0)
j are defined in the prior sampling procedure. Moreover, assume that

the conditions (C1) and (C2) hold for all ε > εn with respect to prior procedure � and some
constant C > C2 + C3 + 2. Then for the variational posterior Q̂(k̂) defined as the solution of
(34), we have

(35) P
(n)
0 Q̂(k̂)L

(
P

(n)

k̂,θ(k̂)
, P

(n)
0

)
� nε2

n.

Theorem 4.1 characterizes the convergence rate of mean-field variational posterior with
model selection using the conditions (C1), (C2) and (C3*). Given the structure of the prior
distribution, an equivalent way of writing (C3*) is

�
({

Pk,θ(k) : k = k0, θ
(k0) ∈ �(k0)

}) ≥ exp
(−C2nε2

n

)
,

for the factorized structure of �(k0). Therefore, our three conditions (C1), (C2) and (C3*)
still fall into the “prior mass and testing” framework, and directly correspond to the three
conditions in [17] for convergence rates of the true posterior.

An interesting special case is when the set K is a singleton. Then, for a product prior
measure and the mean-field variational class, the condition (C3*) is reduced to (2) discussed
in Section 1.

4.3. Density estimation via location-scale mixtures. In this section, we consider the
location-scale mixture model as an application of the theory. The location-scale mixture den-
sity is defined as

(36) p
(
x|k, θ(k)) =

k∑
j=1

wjψσ (x − μj),

where k ∈ N+, θ(k) = (μ,w,σ) with σ > 0, μ = (μ1, . . . ,μk) ∈ R
k , w = (w1, . . . ,wk) ∈

�k = {w ∈ R
k : wj ≥ 0 for 1 ≤ j ≤ k and

∑k
j=1 wj = 1} and

(37) ψσ (x) = 1

2σ�(1 + 1
p
)

exp
(−(|x|/σ )p)

,

for some positive even integer p. The kernel ψσ (·) has a prespecified form, for example,
Gaussian density when p = 2, while the parameters k and θ(k) = (w,μ,σ) are to be learned
from the data.

The location-scale mixture model (36) can be written as a special example of the general
probability models introduced in Section 4.1. In this case, the countable set K is the positive
integer set N+. The parameter space indexed by k is defined as

�(k) = {
θ(k) = (μ,w,σ) : μ = (μ1, . . . ,μk) ∈R

k,
(38)

w = (w1, . . . ,wk) ∈ �k,σ ∈R+
}
.

Given i.i.d. observations X1, . . . ,Xn sampled from some density function f0, our goal is
to estimate the density f0 through the location-scale mixture model (36). We denote the prob-
ability distribution of the mixture density p(x|k, θ(k)) as Pk,θ(k) and a probability distribution
with a general density f as Pf . In the paper [21], a Bayesian procedure is proposed and a
nearly minimax optimal convergence rate is derived for the true posterior distribution. We
will follow the same setting in [21], but analyze the variational posterior.

We first specify the prior distribution � through the following sampling process:

1. Sample the number of mixtures k ∼ π ;
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2. Conditioning on k, sample the location parameters μ1, . . . ,μk independently from pμ,

sample the weights w = (w1, . . . ,wk) from p
(k)
w , and then sample the precision parameter

τ = σ−2 from pτ .

In order to optimize (34) in the variational Bayes framework, we specify the blockwise
structure (31) in this case as

(39) S(k)
MF =

{
Q(k) : dQ(k)(θ(k)) = dQσ (σ)dQ(k)

w (w)

k∏
j=1

dQμj
(μj )

}
.

Note that we do not factorize dQ
(k)
w (w) because of the constraint

∑k
j=1 wj = 1. The vari-

ational posterior distribution is defined as Q̂ = Q̂(k̂) that solves (34). The loss function here
is chosen as n times squared Hellinger distance, that is, L(P n

f ,P n
f0

) = nH 2(Pf ,Pf0).

In order that Q̂ enjoys a good convergence rate, we need conditions on the prior distribu-
tion and the true density function f0. We first list the conditions on the prior:

1. There exist constants C1,C2 > 0, such that

(40)
∞∑

m=k

π(m) ≤ C1 exp(−C2k logk),

for all m > 0. There exist constants t,C3,C4 > 0, such that

(41) π(k0) ≥ C3 exp(−C4k0 logk0),

for all n
1

2α+1 ≤ k0 ≤ n
1

2α+1 +t .
2. There exist constants c1, c2, c3 > 0, such that

(42)
∫ −x0

−∞
pμ(x) dx +

∫ ∞
x0

pμ(x) dx ≤ c1 exp
(−c2x

c3
0

)
,

for all x0 > 0 and constants c4, c5, c6, such that

(43) pμ(x) ≥ c4 exp
(−c5|x|c6

)
,

for all x.
3. There exist constants t, d1, d2, d3 > 0, such that

(44)
∫
w∈�k0 (w0,ε)

p(k0)
w (x) dx ≥ d1 exp

(
−d2k0(log k0)

d3 log
(

1

ε

))
,

for all w0 ∈ �k0 and n
1

2α+1 ≤ k0 ≤ n
1

2α+1 +t , where �k0(w0, ε) = {w ∈ �k0 : ‖w − w0‖1 ≤ ε}.
4. There exist constants b0, b1, b2, b3 > 0, such that

(45) ‖pτ‖∞ < b0,

∫ ∞
τ0

pτ (x) dx ≤ b1 exp
(−b2|τ0|b3

)
,

for all τ0 > 0. There exist constants b4, b5 > 0 and a constant b6 ∈ (0,1] that satisfy

(46) pτ (x) ≥ b4 exp
(−b5|x|b6

)
,

for all x > 0.

The conditions on the prior distribution are quite general. For example, one can choose k ∼
Poisson(ξ0), μj ∼ N(0, σ 2

0 ), w ∼ Dir(α0, α0, . . . , α0) and τ ∼ �(a0, b0) for some positive
constants ξ0, σ0, α0, a0, b0. Then the conditions above are all satisfied.

Next, we list the conditions on the true density function f0:
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B1 (Smoothness) The logarithmic density function logf0 is assumed to be locally α-Hölder
smooth. In other words, for the derivative lj (x) = dj

dxj logf0(x), there exists a polynomial
L(·) and a constant γ > 0 such that

(47)
∣∣l�α�(x) − l�α�(y)

∣∣ ≤ L(x)|x − y|α−�α�,
for all x, y that satisfies |x − y| ≤ γ . Here, the degree and the coefficients of the
polynomial L(·) are all assumed to be constants. Moreover, the derivative lj (x) satis-

fies the bound
∫ |lj (x)| 2α+ε

j f0(x) dx < smax for all j = 1, . . . , �α� with some constants
ε, smax > 0.

B2 (Tail) There exist positive constants T , ξ1, ξ2, ξ3 such that

(48) f0(x) ≤ ξ1e
−ξ2|x|ξ3

,

for all |x| ≥ T .
B3 (Monotonicity) There exist constants xm < xM such that f0 is nondecreasing on

(−∞, xm) and is nonincreasing on (xM,∞). Without loss of generality, we assume
f0(xm) = f0(xM) = c and f0(x) ≥ c for all xm < x < xM with some constant c > 0.

These conditions are exactly the same as in [21] and similar conditions are also considered
in [24]. The conditions allow a well-behaved approximation to the true density by a location-
scale mixture. There are many density functions that satisfy the conditions (B1)–(B3), for
which we refer to [21].

The convergence rate of the variational posterior is given by the following theorem.

THEOREM 4.2. Consider i.i.d. observations generated by P n
f0

, and the density function
f0 satisfies conditions (B1)–(B3). For the prior that satisfies (40)–(46), we have

P n
f0

Q̂H 2(P
k̂,θ(k̂) , Pf0) � n− 2α

2α+1 (logn)
2αr

2α+1 ,

where Q̂ = Q̂(k̂) is the solution of (34), and r = p
min{p,ξ3} + max{d3 + 1,

c6
min{p,ξ3} }, with

p, ξ3, c6, d3 defined in (37), (48), (43) and (44), respectively.

The proof of Theorem 4.2 largely follows the arguments in [21] that are used to establish
the corresponding result for the true posterior distribution, thanks to the fact that Theorem
4.1 requires three very similar “prior mass and testing” conditions to that of [17]. The only
difference is that function approximations via location-scale mixtures need to be analyzed
under a stronger divergence Dρ(·‖·) for some ρ > 1. For this reason, the proof of Theorem 4.2
relies on the construction of a surrogate density function f̃0. We first apply Theorem 4.1 and
establish a convergence rate under f̃0. Then the conclusion is transferred to f0 with a change-
of-measure argument. Details of the proof are given in Appendix B.6 in the Supplementary
Materials [39].

4.4. Dealing with latent variables. For the mixture model considered in Section 4.3, we
discuss a variation of the variational Bayes approach (34) by including latent variables. This
facilitates computation and leads to a simple coordinate ascent algorithm that has closed-form
updates. In the setting of mixture model, our approach is adaptive to the unknown number of
components, and can be regarded as an extension of [25, 37] for variational inference with
latent variables.

Since p(X(n)|k, θ(k)) = ∏n
i=1

∑k
j=1 wjψσ (Xi − μj) with θ(k) = (μ,w,σ), we can write

p
(
X(n)|θ(k)) = ∑

z(k)∈[k]n
p
(
X(n)|z(k), θ (k))w(k)(z(k)),
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where p(X(n)|z(k), θ (k)) = ∏n
i=1

∏k
j=1 ψσ (Xi − μj)

1{z(k)
i =j}, and the probability of z

(k)
i = j

is wj under w(k)(·). We use the notation �̄(k) for the joint distribution of (z(k), θ (k)), and then
the marginal likelihood (32) can be written as

p
(
X(n)|k) =

∫
p
(
X(n)|z(k), θ (k))d�̄(k)(z(k), θ (k)).

Similar to (33), the evidence lower bound with the latent variables is given by

log
(
p
(
X(n)|k)π(k)

)
(49)

≥
∫

logp
(
X(n)|z(k), θ (k))dQ̄(k)(z(k), θ (k)) − D

(
Q̄(k)‖�̄(k)) + logπ(k).

The right-hand side of (49) is shorthanded by F̄ (Q̄(k), k). Define

S̄(k)
MF =

{
Q̄(k) : dQ̄(k)(z(k), θ (k)) =

n∏
i=1

dQ(k)
z (zi) dQσ (σ ) dQ(k)

w (w)

k∏
j=1

dQμj
(μj )

}
.

Then we solve the following optimization problem:

(50) max
k

max
Q̄(k)∈S̄(k)

MF

F̄
(
Q̄(k), k

)
.

The solution to (50) leads to the variational posterior distribution Q̂ = Q̂
(k̂)
latent. It is worth

noting that even though Q̂ is a joint distribution of (z,μ,w,σ), the posterior inference only
relies on the marginal of (μ,w,σ), since the parametrization of the density f (·) in (36)
does not depend on the latent variables. The existence of the latent variables only facilitates
computation.

THEOREM 4.3. Consider i.i.d. observations generated by P n
f0

, and the density function
f0 satisfies conditions (B1)–(B3). For the prior that satisfies (40)–(46), we have

P n
f0

Q̂H 2(P
k̂,θ(k̂) , Pf0) � n− 2α

2α+1 (logn)
2αr

2α+1 ,

where Q̂ = Q̂
(k̂)
latent is the solution to (50), and r = p

min{p,ξ3} + max{d3 + 1,
c6

min{p,ξ3} }, with
p, ξ3, c6, d3 defined in (37), (48), (43) and (44), respectively.

Theorem 4.3 shows that the variational posterior with latent variables achieves the same
contraction rate as in Theorem 4.2. In fact, the two variational lower bounds (33) and (49)
satisfy the following relation:

log
(
p
(
X(n)|k)π(k)

) ≥ max
Q(k)∈S(k)

MF

F
(
Q(k), k

) ≥ max
Q̄(k)∈S̄(k)

MF

F̄
(
Q̄(k), k

)
,

which implies that the introduction of latent variables makes the variational approxima-
tion looser. On the other hand, Theorem 4.3 shows that the worse variational approxima-
tion does not compromise the statistical convergence rate. Moreover, with the help of la-

tent variables, Q̂
(k̂)
latent can be computed via standard variational inference algorithms. De-

tails of the computational issues are given in Appendix A.2 of the Supplementary Materials
[39].
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5. Discussion.

5.1. Variational Bayes and empirical Bayes. In this section, we discuss an intriguing
relation between variational Bayes and empirical Bayes in the context of sieve priors. We
consider a nonparametric model P

(n)
θ with an infinite dimensional parameter θ = (θj ) ∈⊗∞

j=1 �j ⊂ R
∞. This includes the Gaussian sequence model and the infinite dimensional

exponential family discussed in Section 3, as well as nonparametric regression and spectral
density estimation. For each dimension, we assume �j = �j1 ∪ �j2 and �j1 ∩ �j2 = ∅.
Then a sieve prior θ ∼ � is specified by the following sampling process:

1. Sample k ∼ π ;
2. Conditioning on k, sample θj ∼ fj1 for all j ∈ [k], and sample θj ∼ fj2 for all j > k.

We assume that the densities fj1 and fj2 satisfy
∫
�j1

fj1 = 1 and
∫
�j2

fj2 = 1. A leading
example of the sieve prior is case of �j1 = R\{0} and �j2 = {0}, as is used in Section 3.1
and Section 3.2.

An empirical Bayes procedure maximizes emk(X
(n))π(k),3 where

mk

(
X(n)) = log

∫
p
(
X(n)|θ) ∏

j≤k

fj1(θj )
∏
j>k

fj2(θj ) dθ

is the logarithm of marginal likelihood. With the maximizer k̂, the empirical Bayes posterior
is defined as

(51) dQ̂EB(θ) ∝ p
(
X(n)|θ) ∏

j≤k̂

fj1(θj )
∏
j>k̂

fj2(θj ) dθ.

Compared with a hierarchical Bayes approach, the empirical Bayes procedure does not need
to evaluate the posterior distribution of k, and thus in many cases is easier to implement.

We also study mean-field approximation of the posterior distribution. In order to charac-
terize its form, we need a few definitions. For any g = (gj )

∞
j=1, define

mk

(
X(n);g) =

∫ ∞∏
j=1

gj (θj ) logp
(
X(n)|θ)dθ − ∑

j≤k

D(gj‖fj1) − ∑
j>k

D(gj‖fj2).

By Jensen’s inequality, we observe that

(52) mk

(
X(n)) ≥ mk

(
X(n), g

)
,

for any g. We also define the density classes Gj1 = {g ≥ 0 : ∫ g = ∫
�j1

g = 1} and Gj2 = {g ≥
0 : ∫ g = ∫

�j2
g = 1}. The next theorem gives the exact form of the mean-field variational

posterior.

THEOREM 5.1. Consider the variational posterior Q̂VB induced by the sieve prior and
the mean-field variational set SMF. The distribution Q̂VB is a product measure with the den-
sity of each coordinate specified by

qj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g̃

(k̃)
j1 , j < k̃,

(1 − p̃)g̃
(k̃)
j1 + p̃g̃

(k̃)
j2 , j = k̃,

g̃
(k̃)
j2 , j > k̃,

3The canonical form of empirical Bayes has a flat prior on k.
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where for each given k, (g̃
(k)
j1 )kj=1 and (g̃

(k)
j2 )∞j=k maximize the following objective function:

(53) π(k − 1)e
mk−1(X

(n),(gj1)
k−1
j=1∪(gj2)

∞
j=k) + π(k)e

mk(X
(n),(gj1)

k
j=1∪(gj2)

∞
j=k+1),

under the constraints that gj1 ∈ Gj1 and gj2 ∈ Gj2 for all j , k̃ maximizes

(54) π(k − 1)e
mk−1(X

(n),(g̃
(k)
j1 )k−1

j=1∪(g̃
(k)
j2 )∞j=k) + π(k)e

mk(X
(n),(g̃

(k)
j1 )kj=1∪(g̃

(k)
j2 )∞j=k+1),

and finally,

p̃ = π(k̃ − 1)e
mk̃−1(X

(n),(g̃
(k̃)
j1 )k̃−1

j=1∪(g̃
(k̃)
j2 )∞

j=k̃
)

π(k̃ − 1)e
mk̃−1(X

(n),(g̃
(k̃)
j1 )k̃−1

j=1∪(g̃
(k̃)
j2 )∞

j=k̃
) + π(k̃)e

mk̃(X
(n),(g̃

(k̃)
j1 )k̃j=1∪(g̃

(k̃)
j2 )∞

j=k̃+1
)
.

The result of Theorem 5.1 also applies to the class SG discussed in Section 3.2 with Gj1
replaced by the Gaussian class. We note that Theorem 5.1 can be viewed as an extension of
Theorem 3.1. In fact, if the likelihood function can be factorized over each coordinate of θ ,
the form of Q̂VB can be greatly simplified.

COROLLARY 5.1. Under the same setting of Theorem 5.1, if we further assume that
p(X(n)|θ) = ∏∞

j=1 p(X
(n)
j |θj ), then we will have

g̃
(k̃)
j1 (θj ) ∝ fj1(θj )p

(
X

(n)
j |θj

)
1{θj∈�j1},

g̃
(k̃)
j2 (θj ) ∝ fj2(θj )p

(
X

(n)
j |θj

)
1{θj∈�j2},(55)

k̃ = argmax
k

(
π
(
k − 1|X(n)) + π

(
k|X(n))),

and

p̃ = π(k − 1|X(n))

π(k − 1|X(n)) + π(k|X(n))
,

where

π
(
k|X(n)) ∝ π(k)

k∏
j=1

∫
�j1

fj1(θj )p
(
X(n))dθj

∞∏
j=k+1

∫
�j2

fj2(θj )p
(
X(n)|θj

)
dθj .

In light of Theorem 5.1, we can compare the variational Bayes approach and the empirical
Bayes approach, especially the definitions of k̃ and k̂. The empirical Bayes chooses the best
model by maximizing emk(X

(n))π(k), or equivalently π(k|X(n)), while the variational Bayes
maximizes (54). There are two major differences. The first difference is that empirical Bayes
uses the exact marginal likelihood function mk(X

(n)) and variational Bayes uses a mean-field
approximation of mk(X

(n)). We remark that in the case of likelihood that can be factorized,
the mean-field approximation is exact, which leads to (55). The second difference is that
empirical Bayes maximizes the posterior probability of the kth model, but the variational
Bayes maximizes the sum of the posterior probabilities (or their mean-field approximations)
of the (k − 1)th and the kth models.

Despite the two differences, the empirical Bayes approach and the variational Bayes ap-
proach have a lot in common. Both are random probability distributions that summarize the
information in data and prior. Both select a submodel according to very similar criteria. To
close this section, we show that with a special variational class, the induced variational pos-
terior is exactly the empirical Bayes posterior.
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THEOREM 5.2. Define the following set:

SEB =
{
Q : Q

((⊗
j≤k

�j1

)
⊗

(⊗
j>k

�j2

))
= 1 for some integer k

}
.

Then the empirical Bayes posterior Q̂EB defined by (51) is the variational posterior induced
by the sieve prior and the variational class SEB.

The result of Theorem 5.2 shows that for sieve priors, one can view the empirical Bayes
approach as a variational Bayes approach, which suggests that it may be possible to unify the
theoretical analysis in this paper and the analysis of empirical Bayes procedures in [28].

5.2. Variational approximation as regularization. According to Theorem 2.1, the con-
vergence rate of the posterior is determined by the sum of ε2

n , the rate of the true posterior,
and γ 2

n , the variational approximation error. Since ε2
n + γ 2

n ≥ ε2
n , it seems that the conver-

gence rate of variational posterior is always no faster than that of the true posterior. However,
Theorem 2.1 just gives an upper bound. In this section, we give two examples, and we show
that it is possible for a variational posterior to have a faster convergence rate than that of the
true posterior.

Example 1. We consider the setting of Gaussian sequence model (10). The true signal θ∗
that generates the data is assumed to belong to the Sobolev ball �α(B). The prior distribution
is specified as

θ ∼ d� = ∏
j≤n

dN
(
0, j−2β−1) ∏

j>n

δ0.

Note that a similar Gaussian process prior is well studied in the literature [9, 33]. We force
all the coordinates after n to be zero, so that the variational approximation through Kullback–
Leibler divergence will not explode. For the specified prior, the posterior contraction rate is

n
− 2(α∧β)

2β+1 , and when β = α, the optimal minimax rate n− 2α
2α+1 is achieved.

Consider the following variational class:

S[k] =
{
Q : dQ = ∏

j≤k

dQj

n∏
j=k+1

dN
(
0, e−jn) ∏

j>n

δ0

}
,

for a given integer k. It is easy to see that the variational posterior Q̂[k] defined by (3) with
S = S[k] can be written as

dQ̂[k] = ∏
j≤k

dN

(
n

n + j2β+1 Yj ,
1

n + j2β+1

) n∏
j=k+1

dN
(
0, e−jn) ∏

j>n

δ0.

In other words, the class S[k] does not put any constraint on the first k coordinates and shrink
all the coordinates after k to zero. Ideally, one would like to use δ0 for the coordinates after
k. However, that would lead to D(Q‖�(·|Y)) = ∞ for all Q ∈ S[k] given that the support of
δ0 is a singleton. That is why we use N(0, e−jn) instead. The rate of Q̂[k] for each k is given
by the following theorem.

THEOREM 5.3. For the variational posterior Q̂[k], we have

sup
θ∗∈�α(B)

P
(n)
θ∗ Q̂[k]

∥∥θ − θ∗∥∥2 

⎧⎪⎨⎪⎩

k

n
+ k−2α, k ≤ n

1
2β+1 ,

n
− 2(α∧β)

2β+1 , k > n
1

2β+1 ,

where Q̂[k] is the variational posterior defined by (3) with S = S[k].
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Note that Theorem 5.3 gives both upper and lower bounds for Q̂[k]. This makes the com-
parison between variational posterior and true posterior possible. Observe that when k = ∞,

we have Q̂[∞] = �(·|Y), and the result is reduced to the posterior contraction rate n
− 2(α∧β)

2β+1

in [9].
Depending on the values of α,β and k, the rate for Q̂[k] can be better than that of the

true posterior. For example, when β < α, the choice k = n
1

2α+1 leads to the minimax rate

n− 2α
2α+1 , which is always faster than n

− 2(α∧β)
2β+1 . This is because for a β < α, the true posterior

distribution undersmooths the data, but the variational class S[k] with k = n
1

2α+1 helps to
reduce the extra variance resulted from undersmoothing by thresholding all the coordinates
after k. On the other hand, when β ≥ α, an improvement through the variational class S[k]
is not possible. In this case, the true posterior has already overly smoothed the data, and the
information loss cannot be recovered by the variational class.

Example 2. Consider the problem of sparse linear regression y ∼ N(Xβ∗, In), where X is a
design matrix of size n×p and β∗ belongs to the sparse set B(s) = {β ∈ R

p : ∑p
j=1 1{βj �=0} ≤

s} for some s ∈ [p]. The prior distribution on β is specified by the Laplace density

d�(β)

dβ
=

p∏
j=1

(
λ

2
e−λ|βj |

)
.

Though the posterior distribution has a close connection to LASSO, it is proved in [11] that
the posterior distribution cannot adapt to the sparsity of β∗. In particular, the common choice
of λ in the theoretical analysis of LASSO only leads to a dense posterior.

In fact, it is known in the literature (e.g., [5]) that the LASSO, which is the posterior mode,
achieves a nearly optimal rate over the class B(s). We show that the posterior mode can be
well approximated by applying a simple variational class. Consider the variational class

Sτ 2 = {
N
(
β, τ 2Ip

) : β ∈ R
p}.

Define Q̂τ 2 to be the minimizer of minQ∈S
τ2 D(Q‖�(·|y)).

THEOREM 5.4. For any λ > 0 and τ > 0, we have Q̂τ 2 = N(β̂, τ 2Ip), where

(56) β̂ = argmin
β

{
1

2
‖y − Xβ‖2 + λ

p∑
j=1

τh(βj/τ)

}
.

The function h is defined by h(x) = 2φ(x)+ x(�(x)−�(−x)) with �(x) = P(N(0,1) ≤ x)

and φ(x) = �′(x).

Theorem 5.4 shows that the variational approximation is characterized by the penal-
ized least-squares estimator (56). Observe that h is a convex function, and it satisfies

supx∈R |τh(x/τ) − |x|| = τ
√

2
π

(see Figure 1), and thus β̂ will get arbitrarily close to the
LASSO estimator as τ → 0. Therefore, even though the posterior does not have a good fre-
quentist property, its variational approximation can recover a sparse signal.

By the fact that Q̂τ 2 = N(β̂, τ 2Ip), we have

(57) Q̂τ 2
∥∥β − β∗∥∥2 = ∥∥β̂ − β∗∥∥2 + pτ 2.

Hence, a risk bound for the penalized least-squares estimator (56) directly leads to the con-
vergence of the variational posterior. To present a bound for ‖β̂ −β∗‖2, we need to introduce
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FIG. 1. The functions h(x) (orange) and |x| (blue).

some new notation. Let S = {j ∈ [p] : β∗
j �= 0} be the support of β∗. Define the restricted

eigenvalue by

(58) κ = inf{��=0:‖�Sc‖1≤3‖�S‖1}

1√
n
‖X�‖
‖�‖ ,

where ‖�S‖1 = ∑
j∈S |�j | and ‖�Sc‖1 is defined similarly. The same quantity (58) also

appears in the risk bound of LASSO [5].

THEOREM 5.5. Assume ‖X∗j‖/√n ≤ L for all j ∈ [p] and κ ≤ L with some constant
L > 0. Choose λ = C

√
n logp and τ = O( 1

np
) for some sufficiently large constant C > 0.

The solution to (56) satisfies ∥∥β̂ − β∗∥∥2 � s logp

nκ4 ,

with probability at least 1 − p−C′
uniformly over ‖β∗‖0 ≤ s for some constant C′ > 0. As a

consequence of (57), we also have

Q̂τ 2
∥∥β − β∗∥∥2 � s logp

nκ4 ,

with probability at least 1 − p−C′
.

We note that s logp

nκ4 is the same rate of convergence of LASSO [5]. With τ chosen as small

as O( 1
np

), the statistical property of the variational posterior is very similar to that of the
LASSO, and thus improves the original dense posterior distribution that is not suitable for
sparse recovery.

5.3. Model misspecification. In this section, we present an extension of Theorem 2.1 in
the context of model misspecification. We consider a data generating process X(n) ∼ P

(n)∗
that may not satisfies the conditions (C1)–(C3). The following theorem shows that the con-
vergence rate of the variational posterior will then have an extra term that characterizes the
deviation of P

(n)∗ to the model specified by the likelihood.

THEOREM 5.6. Suppose εn is a sequence that satisfies nε2
n ≥ 1. Assume that the condi-

tions (C1)–(C3) hold with P
(n)
0 replaced by P

(n)
θ0

. Then for the variational posterior Q̂ defined
in (3), we have

(59) P (n)∗ Q̂L
(
P

(n)
θ ,P

(n)
θ0

) ≤ M
(
n
(
ε2
n + γ 2

n

) + D2
(
P (n)∗ ‖P (n)

θ0

))
,
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for some constant M only depending on C1,C and ρ in (C1)–(C3), where the quantity γ 2
n is

defined as

γ 2
n = 1

n
inf

Q∈S P (n)∗ D
(
Q‖�(·|X(n))).

We note that here γ 2
n is defined with respect to P

(n)∗ instead of P
(n)
0 in Theorem 2.1.

Theorem 2.1 can be viewed as a special case of Theorem 5.6 with P
(n)
0 = P

(n)∗ = P
(n)
θ0

.
The extra term in the convergence rate that characterizes model misspecification is given
by D2(P

(n)∗ ‖P (n)
θ0

). In fact, it can be replaced by any ρ-Rényi divergence with ρ > 1.
Convergence rates of variational approximation to tempered posterior distributions under

model misspecification have been studied by [1] (See their Theorem 2.7). Our results com-
plement theirs by considering variational approximation to the ordinary posterior.

The next theorem gives sufficient conditions so that the variational approximation error γ 2
n

is dominated by the sum of the other two terms in (59). It can be viewed as an extension of
Theorem 2.3.

THEOREM 5.7. Suppose there are constants C1,C2 > 0, such that

(C4**) inf
Q∈S∩E D(Q‖�) ≤ C1

(
nε2

n + D2
(
P (n)∗ ‖P (n)

θ0

))
,

where E = {Q : supp(Q) ⊂ C} with

C = {
θ : D(

P (n)∗ ‖P (n)
θ

) ≤ C2
(
nε2

n + D2
(
P (n)∗ ‖P (n)

θ0

))}
.

Then we have

nγ 2
n ≤ (C1 + C2)

(
nε2

n + D2
(
P (n)∗ ‖P (n)

θ0

))
.

To end this section, we apply Theorem 5.6 and Theorem 5.7 to the piecewise constant
model discussed in Section 3.3 and derive oracle inequalities for the variational posterior
distributions.

THEOREM 5.8. Consider a prior distribution � that satisfies (26) and (27). Then, for
any θ∗ ∈ R

n, we have

P
(n)
θ∗ Q̂MC

∥∥θ − θ∗∥∥2 � min
1≤k≤n

{
inf

θ0∈�k(B)

∥∥θ∗ − θ0
∥∥2 + k logn

}
,

P
(n)
θ∗ Q̂

joint
MC

∥∥θ − θ∗∥∥2 � min
1≤k≤n

{
inf

θ0∈�k(B)

∥∥θ∗ − θ0
∥∥2 + k logn

}
,

where the definitions of Q̂MC and Q̂
joint
MC are given in Theorem 3.5.
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SUPPLEMENTARY MATERIAL
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