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We consider the problem of estimating stochastic volatility for a class of
second-order parabolic stochastic PDEs. Assuming that the solution is ob-
served at high temporal frequency, we use limit theorems for multipower
variations and related functionals to construct consistent nonparametric es-
timators and asymptotic confidence bounds for the integrated volatility pro-
cess. As a byproduct of our analysis, we also obtain feasible estimators for
the regularity of the spatial covariance function of the noise.

1. Introduction. A central objective of stochastic modeling is to capture the fluctuations
of a system evolving under the influence of random noise. Being able to quantify the degree
of variability and uncertainty in such a system is inevitable for the control and prediction of
its future behavior.

In the financial and econometrics literature, a key concept designed to measure and de-
scribe the amount of randomness present in the evolution of asset prices, interest rates or
other financial indices is that of stochastic volatility. Over the past decades, a huge amount
of work has been devoted to building stochastic volatility models that are able to reproduce
stylized features found in empirical financial data. We only refer to [11] for a comprehensive
overview.

Of course, the notion of stochastic volatility is not only limited to mathematical finance.
For example, in the literature of turbulence, it is commonly referred to as intermittency; see [8,
44, 49] for various models of stochastic intermittency. In a related context, the phenomenon of
intermittency has also been intensively studied in the theory of stochastic partial differential
equations (stochastic PDEs). To be more precise, let us consider a parabolic stochastic PDE
of the form

(1.1) ∂tY (t, x) = κ

2
�Y(t, x) − λY (t, x) + σ(t, x)Ẇ (t, x),

where κ > 0 is a diffusion or viscosity constant, λ > 0 is a damping rate, σ is a predictable
random field and Ẇ is a Gaussian noise. When we consider (1.1) for t ≥ 0 and x ∈ R with
an initial condition at t = 0 that is bounded away from 0, it is known from [26] that if σ is
a linear function of the solution with sufficient growth, then the solution exhibits a strong
mass concentration at large times by forming exponentially large peaks on exponentially
small areas. On the other hand, when σ is a bounded function of the solution, this kind of
intermittent behavior does not occur. Hence, the knowledge of the form of σ is essential for
determining the behavior of the solution Y to (1.1).

Furthermore, in many applications of (1.1), or stochastic PDEs of a similar form, the ran-
dom field σ models the level of noise that acts on a process described by an otherwise deter-
ministic PDE. Examples include [17] on term structure models, [24, 25] on plankton distri-
bution, [34] on the motion of particles in gravitational fields, [50, 51] on precipitation models
and [53, 54] on neuron spikes. In these applications, the knowledge of σ is essential for as-
sessing to which degree the solution to (1.1) deviates from the solution to the deterministic
PDE.
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1.1. Objective and related literature. Motivated from the applications mentioned above,
the purpose of the present article is to establish consistent estimators and asymptotic con-
fidence bounds for the random field σ in (1.1), which we henceforth call the (stochastic)
volatility process (even outside the financial context). To this end, we assume that we are
given observations of a single path of the solution Y(t, x) at a finite number of spatial points
x1, . . . , xN ∈ R

d and at a high number of time points t = �n,2�n, . . . , [T/�n]�n within a fi-
nite interval [0, T ] with T < ∞ ([·] stands for the integer part). Here, �n is a small time step,
and we seek estimators of σ with the properties mentioned above when �n → 0. Hence, our
observation scheme has high frequency in time and low resolution in space. This is a realistic
framework for many of the applications mentioned above, where high-frequency recordings
are only available at a small number of measuring sites.

The high-frequency analysis of Itô semimartingales has been fully accomplished in the past
10 years; see the treatises [3, 32] for a complete account. For example, given a continuous
semimartingale X(t) = ∫ t

0 σ(s)dB(s) where B is a Brownian motion and σ a predictable
process, the basic idea to estimate σ is to consider (normalized) power variations of X, that
is,

(1.2) V n
p (X, t) = �n

[t/�n]∑
i=1

∣∣∣∣�n
i X√
�n

∣∣∣∣p, t ∈ [0, T ],p > 0,

where �n
i X = X(i�n) − X((i − 1)�n) is an increment of X from (i − 1)�n to i�n. Under

minimal assumptions on σ , one can show that

(1.3) V n
p (X, t)

u.c.p.=⇒ Vp(X, t) = E
[|Z|p] ∫ t

0

∣∣σ(s)
∣∣p ds,

where Z ∼ N(0,1) and
u.c.p.=⇒ denotes uniform convergence in probability on compacts; see

Theorem 3.4.1 in [32]. Under further regularity assumptions on σ , we have an associated
central limit theorem of the form

(1.4) �
− 1

2
n

(
V n

p (X, t) − Vp(X, t)
) st=⇒Z,

where Z is a Gaussian process with independent increments and explicitly known variance,
conditionally on σ ; see Theorem 5.3.6 in [32]. In (1.4), st=⇒ denotes functional stable conver-
gence in law with respect to the uniform topology; see Section 3.2 in [3], Section 2.2 in [32]
or [46]. The two results (1.3) and (1.4) can then be used to construct asymptotic confidence
bounds for the integrated volatility process

∫ t
0 |σ(s)|p ds, which is what we understand by

“estimating σ ” throughout this article.
When we leave the class of semimartingales and consider a moving average process of the

form Xt = ∫ t
−∞ g(t − s)σ (s)dBs , where g is a kernel that is smooth except at the origin, then

the functionals

(1.5) V n
p (X, t) = �n

[t/�n]∑
i=1

∣∣∣∣�n
i X

τn

∣∣∣∣p, t ∈ [0, T ],p > 0,

with a normalizing factor τn depending on the singularity of g at the origin, still satisfy (1.3)
and (1.4) (with a slightly larger variance for Z) if g and σ are sufficiently regular; see [4, 5,
18]. In particular, this applies to fractional Brownian motion with Hurst parameter H < 3

4 ;
see [20, 29].

In the context of stochastic PDEs, estimation problems have been considered by many
authors; see [15] for a recent survey. The majority of literature in this respect focuses on the
estimation of κ , assuming that σ is constant and known, and that the solution to (1.1), or
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certain transformations thereof, is observed continuously in time and/or space; see [15, 36]
and the references therein. In practice, of course, measurements are discrete, and the amount
of literature is much smaller when it comes to estimating σ based on discrete observation
schemes.

When σ is a deterministic function of t only, and (1.1) is considered in one spatial dimen-
sion on an interval, [48] constructs an estimator for σ based on high-frequency observations
in time of a fixed number of Fourier coefficients of Y . But these are solutions to certain
stochastic differential equations, and hence semimartingales, so the estimation problem can
be fully solved by the techniques of [3, 32]. By contrast, the solution Y itself at fixed spatial
positions is not a semimartingale (if Ẇ is a Gaussian space–time white noise and d = 1, it has
a nontrivial finite quartic variation in time; see [52, 54]). Assuming high-frequency observa-
tions of Y in time (as we do in this work), but still with deterministic σ that only depends on
t (but not on x), the papers [9, 16] use power variations as in (1.5) with p = 4 and p = 2, re-
spectively, to establish asymptotic confidence bounds for σ . We also refer to [35] for related
results from a probabilistic point of view and to [10] for some extensions of [9].

With stochastic σ , [47] shows a variant of (1.3) with p = 4 for the solution Y to (1.1) if
d = 1 and Ẇ is a space–time white noise; see also [16, 27]. The papers [6, 43] contain certain
limit theorems for space–time moving averages when σ is independent of the noise W (so by
conditioning on σ , this reduces to the case of deterministic σ ). Apart from these particular
cases, to our best knowledge, no further results are available for (1.1), and in particular, no
central limit theorems as in (1.4) exist in the case of stochastic σ , and not even a law of large
numbers as in (1.3) if Ẇ is a spatially colored noise.

It is therefore the main objective of this paper to fill this gap and to derive consistent
estimators and confidence bounds for the integrated volatility process (with respect to time
and for fixed values of x) if σ is a random field. In fact, we consider much more general
functionals than (1.5). Given a sufficiently regular evaluation function f : RN×L → R

M

with L,M ∈ N, we consider (normalized) variation functionals of the form V n
f (Yx, t) =

(V n
f (Yx, t)1, . . . , V

n
f (Yx, t)M)′ where

(1.6) V n
f (Yx, t)m = �n

[t/�n]−L+1∑
i=1

fm

(
�n

i Yx

τn

, . . . ,
�n

i+L−1Yx

τn

)
for t ∈ [0, T ] and m = 1, . . . ,M . Here, Yx is the N -dimensional process whose j th compo-
nent is Y(·, xj ), �n

i Yx = Yx(i�n) − Yx((i − 1)�n) = (�n
i Y (·, x1), . . . ,�

n
i Y (·, xN))′, and τn

is a normalizing factor to be introduced in Section 2. The main examples for f are multipow-
ers, which we will study in detail in Section 2.2. The reader may consult [3, 32] and [4, 5,
18] for multipower variations of semimartingales and moving averages, respectively.

1.2. Results and methodology. After a short introduction to stochastic PDEs, the two
main limit theorems are formulated in Section 2.1. Theorem 2.1 gives a law of large numbers
for the functionals in (1.6), while Theorem 2.3 gives the associated central limit theorem at
a rate of

√
�n. Section 2.2 shows how these limit theorems apply to the important example

of multipower variations (see Corollary 2.9), which will then be used in Section 2.3 to con-
struct feasible estimators for σ . It turns out that we can even estimate the spatial correlation
structure of the noise Ẇ in (1.1), which we assume to be parametrized by an exponent α.
Theorem 2.12 addresses the case of estimating σ when α is known, while Theorems 2.13
and 2.14 propose two estimation procedures for α and Theorem 2.16 one for σ when α is
unknown. Our results indicate that this spatial correlation index α plays a very similar role to
the kernel smoothness parameter in [4, 5, 18].
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The proofs will be given in Section 3. As we already know from the semimartingale case
considered in [3, 32], having a stochastic instead of a deterministic volatility process com-
plicates the proofs considerably, in particular for the central limit theorem. For instance, the
proofs of [9, 16] do not apply in our context as they make heavy use of the Gaussian dis-
tribution of the solution Y to (1.1) when σ is nonrandom. Conceptually, Y can be viewed
as a moving average process in space and time; see formula (2.2) below, so it seems natural
to transfer techniques from [4, 5, 18] to the stochastic PDE setting. A crucial step in their
proofs is to factorize the volatility process out of the stochastic integral by discretizing σ

along a subgrid of �n,2�n, . . . , [T/�n]�n before showing the actual central limit theorem,
and then to prove, using fractional calculus methods from [19], that this discretization only
induces an asymptotically negligible error. If one wishes to apply this method to stochastic
PDEs, one would have to discretize the volatility process σ both in time and space. Although
the heat kernel in (2.2) is concentrated around the origin, in general, this localization is sim-
ply not strong enough in space on a

√
�n rate, which would be needed for the central limit

theorem. Thus, we see no way to apply the methods of [4, 5, 18] to (1.1); cf. part (4) of
Remark 2.4.

Instead, we will show that a combination of the martingale methods of [3, 32] (for the
discretization part and the identification of the limit law) with analysis on the Wiener space as
in [4, 5, 18] (for tightness) will give the desired central limit theorem for (1.6). The advantage
of this strategy is that we only need to make spatial approximations of σ after the actual
central limit theorem, where we can use symmetry properties of certain measures related to
the heat kernel to compensate for its bad spatial concentration properties. Since Y is not a
semimartingale, for this method to work, we have to use a complex procedure to approximate
V n

f (Yx, t) by martingale-type sums in a first step.
Our “martingale proof” also provides an interesting alternative to proving limit theorems

for moving average processes in the purely temporal case. For instance, with the new method,
the results of [4, 5, 18] can be extended to allow for volatility processes that are semimartin-
gales, which include the majority of stochastic volatility models available in the literature.
Moreover, we believe that the martingale techniques we develop in this paper will pave the
way for further statistical procedures to estimate spot volatility, to handle measurement er-
rors, or to detect and estimate the density of jumps for stochastic PDEs (and moving average
processes). We refer to Chapter III.8 in [3], [31] and [1, 2, 33], respectively, for the cor-
responding results in the semimartingale framework, which are all proved with martingale
techniques.

This paper is accompanied by some Supplementary Material in [14]. All references and
numberings starting with a letter, like (A.1) or Lemma B.1; refer to [14], except for Assump-
tions A and B, which are stated in Section 2.

In what follows, we often write
∫∫ b

a = ∫ b
a

∫
Rd ,

∫∫ = ∫∫∞
−∞,

∫∫∫ b
a = ∫ b

a

∫
Rd

∫
Rd , and

∫∫∫ =∫∫∫∞
−∞. Moreover, N= {1,2, . . .} and N0 = {0,1,2, . . .}.
2. Model and main results. On a given filtered probability space (	,F, (Ft )t∈R,P)

satisfying the usual conditions, we consider the stochastic PDE (1.1) for t ∈ R and x ∈ R
d

driven by a zero-mean (Ft )t∈R-Gaussian noise Ẇ which is white in time but possibly colored
in space. More precisely, we have an L2-valued centered Gaussian measure W(A), indexed
by bounded Borel sets A ∈ Bb(R

d+1), such that W(A) is independent of Ft if A∩((−∞, t]×
R

d) = ∅, and such that for any A1,A2 ∈ Bb(R
d+1),

E
[
W(A1)W(A2)

]= ∫∫∫
1A1(s, y)1A2(s, z)
(dy,dz)ds.

In this paper, we assume that 
(dy,dz) = F(z − y)dy dz where F is the Riesz kernel
F(x) = cα|x|−α for some α ∈ (0, d ∧ 2) and the normalizing constant is given by cα =
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πd/2−α�(α
2 )/�(d−α

2 ). Here and throughout the paper, |x| denotes the Euclidean norm. In
dimension 1, we also allow for the case where Ẇ is a Gaussian space–time white noise,
which corresponds to 
(dy,dz) = δz(dy)dz and F(x) = δ0(x). We set α = 1 and cα = 1
in this case. In dimensions d ≥ 2, it is well known that no function-valued solution to (1.1)
exists if Ẇ is a space–time white noise, or if 2 ≤ α < d ; see [22].

By the classical integration theory of [55] (see also [22, 42] for extensions), an Itô integral
against W can be constructed for integrands from the space L(W) of predictable random
fields φ : 	 ×R×R

d →R satisfying

E

[∫∫∫ ∣∣φ(s, y)φ(s, z)
∣∣
(dy,dz)ds

]
< ∞.

In particular, as soon as the predictable random field σ satisfies

(2.1) sup
(t,x)∈R×Rd

E
[
σ 2(t, x)

]
< ∞,

the stochastic PDE (1.1) for (t, x) ∈ R×R
d admits a mild solution given by

(2.2) Y(t, x) =
∫∫ t

−∞
G(t − s, x − y)σ (s, y)W(ds,dy), (t, x) ∈R×R

d,

where

(2.3) G(t, x) = Gx(t) = (2πκt)−
d
2 e−|x|2

2κt
−λt1t>0, (t, x) ∈ R×R

d,

is the heat kernel for (1.1). We remark that although the integration theory in [22, 42, 55] is
developed for t ≥ 0, their results extend without any change to the case t ∈ R. Also, while
all our results are formulated for (1.1) with t ∈ R, they remain valid if (1.1) is considered for
t ≥ 0 as soon as the initial condition at t = 0 is sufficiently regular; see Remark 2.7 below.

As soon as σ is jointly stationary with the increments of W , the mild solution in (2.2) is
stationary in space and time. In particular, if σ ≡ 1, all components of �n

i Yx are normally
distributed with mean 0 and variance

τ 2
n = E

[∣∣∣∣∫∫ i�n

−∞
(
Gxj−y(i�n − s) − Gxj−y

(
(i − 1)�n − s

))
W(ds,dy)

∣∣∣∣2]
=
∫∫∫ ∞

0

(
Gy(s) − Gy(s − �n)

)(
Gz(s) − Gz(s − �n)

)

(dy,dz)ds,

(2.4)

which depends neither on i nor on j . This will be the normalizing factor we choose in (1.6)
so that V n

f (Yx, t) is typically “of order 1” and we may hope for convergence as n → ∞. An
explicit formula for τn can be found in Lemma B.1 in the Supplementary Material [14].

2.1. Limit theorems for normalized variation functionals. A first-order limit theorem for
the normalized variation functionals (1.6) can be shown under mild assumptions on f and σ .
In what follows, the Euclidean norm |z| for some matrix z ∈ R

N×L is defined by viewing z

as an element of RNL.

ASSUMPTION A. There exists p ≥ 2 with the following properties:

A1. The function f : RN×L →R
M is continuous and satisfies f (z) = o(|z|p) as |z| → ∞.

A2. For some ε > 0, we have

sup
(t,x)∈R×Rd

E
[∣∣σ(t, x)

∣∣p+ε]
< ∞.
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A3. The random field σ is uniformly L2-continuous on R×R
d : as ε → 0,

w(ε) = sup
{
E
[∣∣σ(t, x) − σ(s, y)

∣∣2] : |t − s| + |x − y| < ε
}→ 0.

The next theorem is our first main result. If (Xn(t))t≥0 and (X(t))t≥0 are stochas-

tic processes, we write Xn L1=⇒ X or Xn(t)
L1=⇒ X(t) if for every T > 0, we have

E[supt∈[0,T ] |Xn(t) − X(t)|] → 0 as n → ∞.

THEOREM 2.1 (Law of large numbers). Under Assumption A, we have

(2.5) V n
f (Yx, t)

L1=⇒ Vf (Yx, t) =
∫ t

0
μf

(
σ 2(s, x1), . . . , σ

2(s, xN)
)

ds.

Here, μf : RN → R
M is the function given by μf (v1, . . . , vN) = E[f (Z)], where Z =

(Zjk)
N,L
j,k=1 is multivariate normal with mean 0 and

(2.6) Cov(Zj1k1,Zj2k2) = �|k1−k2|vj1j1=j2=j

and

(2.7) �0 = 1,�r = 1

2

(
(r + 1)1− α

2 − 2r1− α
2 + (r − 1)1− α

2
)
, r ≥ 1.

REMARK 2.2. Fix some m = 1, . . . ,M . If fm only depends on the variables (zjk : j ∈
J, k = 1, . . . ,L), where J ⊆ {1, . . . ,N}, that is, if V n

f (Yx, t)m only uses the increments
observed at the points (xj : j ∈ J ), then its limit in (2.5) will only depend on (σ (·, xj ) : j ∈
J ). In other words, by taking measurements at xj , one can obtain isolated information about
σ(·, xj ), independently from the values of σ at all other positions.

In order to obtain a central limit theorem for (2.5), we need to put stronger regularity
assumptions on f and σ , which is already necessary for semimartingales (cf. [3, 32]) and
moving averages (cf. [4, 5, 18]). In the first two references, σ itself has to be a semimartingale,
while in the next three references, σ has to be (essentially) Hölder continuous with exponent
> 1

2 . We will assume that σ has one of these two properties plus additional regularity in
space.

ASSUMPTION B.

B1. The function f : RN×L →R
M is even [i.e., we have f (z) = f (−z) for all z ∈ R

N×L]
and four times continuously differentiable. Moreover, there are p ≥ 2 and C > 0 such that∣∣fm(z)

∣∣≤ C
(
1 + |z|p), ∣∣∣∣ ∂

∂zα

fm(z)

∣∣∣∣≤ C
(
1 + |z|p−1),

∣∣∣∣ ∂2

∂zα∂zβ

fm(z)

∣∣∣∣+ ∣∣∣∣ ∂3

∂zα∂zβ∂zγ

fm(z)

∣∣∣∣+ ∣∣∣∣ ∂4

∂zα∂zβ∂zγ ∂zδ

fm(z)

∣∣∣∣≤ C
(
1 + |z|p−2)

for all m ∈ {1, . . . ,M} and α,β, γ, δ ∈ {1, . . . ,N} × {1, . . . ,L}.
B2. If F is the Riesz kernel with 0 < α < 1, or α = 1 and Ẇ is not a space–time white

noise, we assume for each m = 1, . . . ,M that fm(z) only depends on zj1, . . . , zjL for some
j = j (m) ∈ {1, . . . ,N}.

B3. The volatility process σ takes the form

(2.8) σ(t, x) = σ (0)(t, x) +
∫∫ t

−∞
K(t − s, x − y)ρ(s, y)W ′(ds,dy)

for (t, x) ∈R×R
d , with the following specifications:
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• σ (0) is a predictable process satisfying

(2.9) sup
(t,x)∈R×Rd

E
[∣∣σ (0)(t, x)

∣∣2p+ε]
< ∞

for some ε > 0, and

(2.10) sup
x∈Rd

E
[∣∣σ (0)(t, x) − σ (0)(s, x)

∣∣2p] 1
2p ≤ C′|t − s|γ

for some γ ∈ (1
2 ,1] and C′ > 0. In addition, for every t ∈ R, the mapping x �→ σ (0)(t, x)

is almost surely twice differentiable such that for j, k = 1, . . . , d ,

(2.11) sup
(t,x)∈R×Rd

E

[∣∣∣∣ ∂

∂xj

σ (0)(t, x)

∣∣∣∣p +
∣∣∣∣ ∂2

∂xj ∂xk

σ (0)(t, x)

∣∣∣∣p]< ∞.

• W ′ is an (Ft )t∈R-Gaussian noise that is white in time and possibly colored in space [such
that (W,W ′) is bivariate Gaussian] with spatial covariance 
′(dy,dz) = F ′(z − y)dy dz,
where F ′ is the Riesz kernel with some α′ ∈ (0,2) ∩ (0, d] (including the possibility that
F ′ = δ0 when d = 1).

• K : [0,∞) × R
d → R is a kernel such that the partial derivatives ∂

∂t
K , ∂

∂xj
K , ∂2

∂xj ∂xk
K ,

and ∂3

∂xj ∂xk∂xl
K exist and belong to L(W ′) for all j, k, l = 1, . . . , d .

• ρ is a predictable process satisfying the same moment condition (2.9) as σ (0), and further-
more, for some ε′ > 0 and C′′ > 0,

(2.12) sup
x∈Rd

E
[∣∣ρ(t, x) − ρ(s, x)

∣∣2p+ε] 1
2p+ε ≤ C′′|t − s|ε′

.

For our second main result, we use st=⇒ to denote functional stable convergence in law in
the space of càdlàg functions [0,∞) →R

M , equipped with the local uniform topology, while
stable convergence in law between finite-dimensional random variables will be denoted by

st−→. We refer the reader to [3, 32] for a definition of this mode of convergence and also for
the definition of a very good filtered extension of (	,F, (Ft )t≥0,P). The only property of
stable convergence in law we need is the following (see, e.g., Proposition 2(i) in [46]):

(2.13) Xn
st−→ X, Yn

P−→ Y =⇒ (Xn,Yn)
st−→ (X,Y ).

Since the limiting objects in (2.5) are random, this will allow us to studentize (2.14) below
and obtain feasible confidence bounds for σ . Just convergence in law, of course, will not
suffice for this purpose.

THEOREM 2.3. Under Assumption B, we have as n → ∞,

(2.14) �
− 1

2
n

(
V n

f (Yx, t) − Vf (Y, t)
) st=⇒Z,

where (Z(t) = (Z1(t), . . . ,ZM(t))′)t≥0 is a continuous process defined on a very good
filtered extension (	,F, (F t )t≥0,P) of the original probability space (	,F, (Ft )t≥0,P),
which, conditionally on the σ -field F , is a centered Gaussian process with independent in-
crements such that the covariance function Cm1m2(t) = E[Zm1(t)Zm2(t)|F], for m1,m2 =
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1, . . . ,M , is given by

Cm1m2(t) =
∫ t

0
ρfm1 ,fm2

(
0;σ 2(s, x1), . . . , σ

2(s, xN)
)

ds

+
∞∑

r=1

∫ t

0
ρfm1 ,fm2

(
r;σ 2(s, x1), . . . , σ

2(s, xN)
)

ds

+
∞∑

r=1

∫ t

0
ρfm2 ,fm1

(
r;σ 2(s, x1), . . . , σ

2(s, xN)
)

ds.

(2.15)

In the last line, for r ∈N0, we define

(2.16) ρfm1 ,fm2
(r;v1, . . . , vN) = Cov

(
fm1

(
Z(1)), fm2

(
Z(2))),

where Z(1) = (Z
(1)
jk )

N,L
j,k=1 and Z(2) = (Z

(2)
jk )

N,L
j,k=1 are jointly Gaussian, both with the same

law as the matrix Z in Theorem 2.1 and cross-covariances

(2.17) Cov
(
Z

(1)
j1k1

,Z
(2)
j2k2

)= �|k1−k2+r|vj1j1=j2=j .

Part of the statement is that the series in (2.15) converge in the L1-sense.

REMARK 2.4. Let us comment on the assumptions of Theorem 2.3.

(1) Assumption B1 can be relaxed by allowing, for example, f to be continuous but not
differentiable at z = 0, very similar to [4] or Chapter 11.2 in [32]. Due to the technical proofs
already needed under the stronger assumptions, we refrain from doing so in this paper.

(2) Increments at different measurements sites xj �= xj ′ contribute in the limit n → ∞
independently to the right-hand side of (2.5); see Remark 2.2. However, in the cases specified
in Assumption B2, the correlation between two such increments at different locations decays
in general at a slower rate than

√
�n. So for Theorem 2.3 to hold, we must assume in these

cases that each coordinate of f uses increments at no more than one measurement site. The
symmetry assumption on f is standard and already needed in the semimartingale context in
order to avoid an asymptotic bias; see Theorem 5.3.6 in [32].

(3) Assumption B3 on the temporal regularity of σ is the “union” of two typical cases
considered in the literature. The part σ (0) is (essentially) Hölder continuous of order strictly
larger than 1

2 , as considered, for instance, in [4, 5, 18]. If one wants to include volatility
processes that are of the roughness of Brownian motion, one has to make further structural
assumptions as in [3, 32], namely, that σ (1) = σ − σ (0) is a semimartingale. As we will show
in Lemma A.1, (2.8) is one possibility to obtain such a semimartingale structure, jointly in x.

(4) The volatility process must also have nice regularity in space. In fact, we assume that
σ is pathwise twice differentiable in space. By Theorem 2.1, the limit of variation functionals
taken at one measurement site only depends on the volatility at this site. However, this spatial
concentration at the origin, which is due to the properties of the heat kernel, is very weak,
so we must use the differentiability assumption and the symmetry of the heat kernel (notice,
however, Remark 2.6) to obtain a localization at a faster rate than

√
�n. For more details,

we refer the reader to Remark D.2 in the Supplementary Material. Examples of volatility
models for σ (1) include Ornstein–Uhlenbeck processes in space and time (see [8, 38]) and
their generalizations (see [12, 45]). If σ does not depend on x as in [9], then (2.11) is clearly
satisfied.

REMARK 2.5. In principle, the results and techniques developed in this paper apply
to more general equations than (1.1), or more general kernels G in (2.2) and spatial co-
variance functions F of the noise (for the existence of a Gaussian noise with 
(dy,dz) =
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F(z − y)dy dz, it is necessary and sufficient that the function F be the Fourier transform of
a nonnegative tempered measure on R

d ; see Section 2 of [22] for more details).
As the proof shows, the law of large numbers (Theorem 2.1) continues to hold as long

as G ∈ L(W) has a dominating singularity at the origin such that, for some �r ∈ R, the
measures defined in (3.1) with the new G and F satisfy �n

r,0
w−→ �rδ0 and |�n

r,h| w−→ 0 for
all r = 0,1, . . . and h �= 0.

For the central limit theorem (Theorem 2.3), we additionally need the following assump-
tions [expressed in terms of �n

r,h and |�n
r,h| from (3.1)]:

(1) G is symmetric in the sense that G(t, x) = G(t,−x) for any t > 0 and x ∈ R
d . In

addition, for every r ∈ N0, one has, as n → ∞,∫∫∫ ∞
0

(|y|2 + |z|2)∣∣�n
r,0

∣∣(ds,dy,dz) = o(
√

�n).

(2) For every r ∈ N0, we have, as n → ∞,∣∣�n
r,0
([0,∞) ×R

d ×R
d)− �r

∣∣= o(
√

�n).

Moreover, either f satisfies Assumption B2, or for all r ∈ N0 and h �= 0,∣∣�n
r,h

∣∣([0,∞) ×R
d ×R

d)= o(
√

�n).

(3) There is some decreasing square-summable sequence (�r : r ∈ N0) such that for all
n ∈N, r ∈ N0, and h ∈ R

d , ∣∣�n
r,h

∣∣([0,∞) ×R
d ×R

d)≤ �r.

(4) There is ν > 1 such that for all θ ∈ (0,1),∣∣�n
0,0

∣∣((�1−θ
n ,∞)×R

d ×R
d)= O

(
�νθ

n

)
.

Condition (1) is needed for the reasons explained in part (4) of Remark 2.4 but can be re-
laxed; see Remark 2.6. Condition (2) is used for the terms K

n,i
3 , K

n,i
5 and K

n,i
6 in the proof of

Lemma 3.17. Condition (3) is crucial for the actual central limit theorem in Proposition 3.11
(if the asymptotic covariances of the increments fail to be square-summable, there is no hope
to see a central limit theorem; cf. [39]). Finally, condition (4) is needed for nearly all approx-
imations in the proof.

If the kernel has singularity fronts as, for example, in the case of the wave equation, the
limits in (1.6) will have a different shape, which we shall discuss in a separate work.

REMARK 2.6. In the setting of Remark 2.5, the symmetry assumption on G can be weak-
ened. Suppose that G(t, x) = G̃(t, x)H(x) where G̃ satisfies condition (1) in Remark 2.5, and
H : Rd →R is differentiable such that

(2.18) sup
i=1,...,d

sup
u∈[0,1]

∣∣∣∣ ∂

∂xi

H(ux)

∣∣∣∣+ sup
u∈[0,1]

∣∣H(ux)
∣∣≤ H0(x)

for some function H0 : Rd → [0,∞).
In the proof of Theorem 2.3, the symmetry of G is only used to show the identity (D.54).

In the asymmetric case, we observe from (3.1) that �n
r,0(ds,dy,dz) = H(y)H(z)�̃n

r,0(ds,

dy,dz) for all r ∈ N0, where �̃n
r,h is the measure that arises from the first equation in (3.1)

when we replace G by G̃. By the mean value theorem, applied to (y, z) �→ H(y)H(z), and
property (2.18), the left-hand side of (D.54) is bounded by a constant times

H(0)2
∣∣∣∣∫∫∫ (λn+(k∨k′))�n

0
(yl + zl)�̃

n
|k′−k|,0(ds,dy,dz)

∣∣∣∣
+
∫∫∫ ∞

0
|yl + zl|H0(y)H0(z)

(|y| + |z|)∣∣�̃n
|k′−k|,0

∣∣(ds,dy,dz).
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The first term is zero by symmetry. Thus, if we impose the condition

(2.19)
∫∫∫ ∞

0

(|y|2 + |z|2)H0(y)H0(z)
∣∣�̃n

r,0

∣∣(ds,dy,dz) = o(
√

�n)

as n → ∞ for all r ∈ N0, we no longer need G to be symmetric in Remark 2.5.
Let us apply the previous discussion to the important example where G̃ is the heat kernel

(2.3), and H(x) = eθ ·x for some θ ∈ R
d , which corresponds to (1.1) with an additional gradi-

ent term (considered, in similar forms, by [9] and many of the applications mentioned in the
Introduction). It is easily verified that the resulting kernel G belongs to L(W) (and hence, a
stationary mild solution exists in the case of constant σ ) if and only if λ > κ

2 |θ |2. Under this
additional constraint, one can then show that (2.19) holds with H0(x) = (1 + |θ |)(eθ ·x ∨ 1)

in (2.18). Indeed, by symmetry considerations, the left-hand side of (2.19) is bounded by a
constant times ∫∫∫ ∞

0

(|y|2 + |z|2)eθ ·yeθ ·z∣∣�̃n
r,0

∣∣(ds,dy,dz),

which equals the left-hand side of (B.19). Using the identities G(t, x) = G̃(t, x)eθ ·x and
G(t, x) = G̃(t, x − κθt)eκ|θ |t/2, it is not difficult to see that (B.10) and (B.21) remain valid,
as well as (B.12), (B.17) and (B.18) if we replace λ by λ0 = λ − κ

2 |θ |. One can now follow
the arguments given in the proof of Lemma B.3 in order to show that (B.19), and hence (2.19)
holds true.

REMARK 2.7. All results in this section remain valid if we consider (1.1) for t > 0 and
x ∈ R

d , subject to some bounded and sufficiently regular initial condition y0 at time t = 0.
Indeed, the mild solution is then given by

(2.20) Y(t, x) =
∫
Rd

G(t, x − y)y0(y)dy +
∫∫ t

0
G(t − s, x − y)σ (s, y)W(ds,dy)

for (t, x) ∈ (0,∞)×R
d . Let us denote the first and the second term by Y (0) and Y (1), respec-

tively, and fix T > 0. Under the hypothesis that y0 is Hölder continuous with some exponent
> 1 − α

2 (resp., differentiable with a derivative that is Hölder continuous with some expo-
nent > 1 − α

2 ), we know from classical PDE theory (see Theorem 5.1.2(ii) in [37]) that t �→
Y (0)(t, x) is Hölder continuous on [0, T ] with some exponent η > 1

2 − α
4 (resp., η > 1 − α

4 ),

uniformly for x ∈ R
d . In particular, by (B.3), we have |�n

i Y
(0)
x /τn| � �

η
n/τn � �

η−1/2+α/4
n ,

where the last exponent is strictly positive (resp., larger than 1
2 ). From this, it is straightfor-

ward to deduce that the contribution of Y (0) to (1.6) is asymptotically negligible in Theo-
rem 2.1 (resp., Theorem 2.3).

We are left to show that Y (1) has the same asymptotic behavior as the expression in (2.2).
For the law of large numbers, this is straightforward, while for the central limit theorem, it
can be proved analogously to Step 1 in Section 3.2. The details are omitted at this point. We
further remark that the assumption λ > 0 is superfluous when (1.1) is considered for t ≥ 0,
and it is sufficient to formulate Assumptions A2 and A3 as well as Assumption B3 with
t ∈ [0, T ] for any T > 0 instead of t ∈R, and we may replace −∞ in (2.8) by 0.

REMARK 2.8. In the literature of stochastic PDEs, one often considers equations where
the random field σ is an explicit functional of the solution Y , that is, equation (2.20) where
σ = B(Y ) and B is an operator satisfying certain regularity and growth conditions such that
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(2.20) admits a mild solution; see [21]. While Assumption A is relatively weak in this situa-
tion (e.g., it is satisfied if

B(Y )(t, x) = b
(
Y(t, x)

)
,

B(Y )(t, x) =
∫∫ t

0
H(t − s, x − y)Y (s, y)dy ds or

B(Y )(t, x) =
∫∫ t

0
K(t − s, x − y)Y (s, y)W(ds,dy),

(2.21)

and b is Lipschitz continuous, H ∈ L1([0, T ] × R
d), and K1[0,T ] ∈ L(W) for all T > 0),

Assumption B is more restrictive. In fact, for the functionals in (2.21), it is only satisfied if
b is constant, or if B(Y ) is the second or third expression with functions H and K that are
sufficiently smooth.

2.2. Multipower variations. We apply Theorems 2.1 and 2.3 to an important class of
functionals, namely to so-called multipower variations V n

�(Yx, t) or signed multipower vari-
ations V n

�(Yx, t), where �,� : RN×L →R
N (note that N = M) are given by

�m(z) = �m

(
(zjk)

N,L
j,k=1

)=
L∏

k=1

|zmk|wmk ,(2.22)

�m(z) = �m

(
(zjk)

N,L
j,k=1

)= L∏
k=1

(zmk)
wmk , m = 1, . . . ,N,(2.23)

with wmk ≥ 0 in (2.22) and wmk ∈ N0 in (2.23). We shall write w = (wmk)
N,L
m,k=1, wm =

wm1 + · · · + wmL and w = max{w1, . . . ,wN }. If we want to emphasize the dependence on
w, we write �(z) = �(w; z) and �(z) = �(w; z). If wmk = pk for all m and k, we write

(2.24) �(p1, . . . , pL; z) = �(w; z) and �(p1, . . . , pL;x) = �(w; z).
For multipowers, Theorems 2.1 and 2.3 take the following form.

COROLLARY 2.9. Assume that α ∈ (0,2) ∩ (0, d].
(1) If Assumptions A2 and A3 hold with p = w ∨ 2, then we have

V n
�m|�m

(Yx, t)
L1=⇒ μ�m|�m

∫ t

0

∣∣σ(s, xm)
∣∣wm ds(2.25)

for all m = 1, . . . ,N , where μf = μf (1, . . . ,1) (as defined in Theorem 2.1) and �m|�m

means that we can either take �m or �m in (2.25). Note that μ�m = 0 if wm is odd.
(2) Suppose that wmk ∈ {0,2} or wmk ≥ 4 in the case of (2.22), and that all wm are even

in the case of (2.23). Further assume that Assumption B3 holds with p = w. Then (2.14)
holds for f = �|� , and the F -conditional covariance processes in (2.15) are given by

(2.26) Cm1m2(t) =
⎧⎨⎩ρ�m|�m

∫ t

0

∣∣σ(s, xm)
∣∣2wm ds, m1 = m2 = m,

0, m1 �= m2,

where ρf = ρf,f (0;1, . . . ,1) + 2
∑∞

r=1 ρf,f (r;1, . . . ,1) (as defined in Theorem 2.3).

Because of their particular importance in high-frequency statistics, we further specialize
Corollary 2.9 to the normalized power variations

(2.27) V n
p (Yx, t) = (

V n
p (Yx, t)m

)N
m=1 =

(
�n

[t/�n]∑
i=1

∣∣∣∣�n
i Y (·, xm)

τn

∣∣∣∣p
)N

m=1

,
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where p > 0 and which corresponds to the special case L = 1 and the function �(p, ·) in
(2.24).

COROLLARY 2.10. Assume that α ∈ (0,2) ∩ (0, d].
(1) Let p > 0 and σ be a predictable random field satisfying Assumptions A2 (with p ∨ 2

instead of p) and A3. Then for every m = 1, . . . ,N ,

(2.28) V n
p (Yx, t)m

L1=⇒ μp

∫ t

0

∣∣σ(s, xm)
∣∣p ds,

where μp = E[|Z|p] with Z ∼ N(0,1).
(2) Let p = 2 or p ≥ 4 and suppose that Assumption B3 holds. Then

(2.29)
(
�

− 1
2

n

(
V n

p (Yx, t)m − μp

∫ t

0

∣∣σ(s, xm)
∣∣p ds

))N

m=1

st=⇒ Z,

where Z is a process as described after (2.14) and

(2.30) Cm1m2(t) =
⎧⎨⎩Rp

∫ t

0

∣∣σ(s, xm)
∣∣2p ds, m1 = m2 = m,

0, m1 �= m2.

In the previous line, Rp = ρp(1) + 2
∑∞

r=1 ρp(�r), where �r is defined in (2.7), and ρp(r) =
Cov(|X|p, |Y |p) for (X,Y ) ∼ N

(
0,
( 1 r

r 1

))
.

EXAMPLE 2.11. If Ẇ is a space–time white noise and p = 2 or p = 4, by expressing x2

and x4 in terms of Hermite polynomials and then using Lemma 1.1.1 in [40], we obtain

R2 = 2 + 4
∞∑

r=1

(
1

2

√
r + 1 − √

r + 1

2

√
r − 1

)2
= 2.357487 . . . ,

R4 = 96 + 144
∞∑

r=1

(
1

2

√
r + 1 − √

r + 1

2

√
r − 1

)2

+ 48
∞∑

r=1

(
1

2

√
r + 1 − √

r + 1

2

√
r − 1

)4
= 109.223069 . . . ,

(2.31)

which are larger than the corresponding constants 2 and 96 in the semimartingale framework
(cf. Theorem 6.1 and Example 6.5 in [3]) and are the same as in the setting of moving average
processes (cf. Theorem 4 in [4]). The reason for larger constants compared to the semimartin-
gale case is the nonvanishing asymptotic correlation between increments of Y(·, xm). Let us
also remark that R2 = π� for the constant � in Theorem 4.2 of [9], and that R4 = σ̌ 2 for the
constant σ̌ 2 in equation (A.2) of [16].

2.3. Estimation of volatility and spatial noise correlation index. In this section, we will
explain how Theorems 2.1 and 2.3 can be applied to estimate the volatility process σ and the
spatial correlation index α of the noise.

For both problems, the knowledge of the parameter λ is irrelevant as we shall see. This is
important because there is no way to estimate λ consistently under our observation scheme.
Indeed, a Girsanov argument (see Proposition 1.6 in [41]) shows that for constant σ , the laws
of the solution Y on a compact space–time set are equivalent for different values of λ.

Furthermore, for the estimation of σ , we will assume that the parameter κ is known. In fact,
if N = 1 and σ is a constant, then Y(·, x1) is a stationary Gaussian process whose distribution
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is completely determined by its covariance function. By (B.6) and the scaling properties
of the normal distribution, this only depends on the ratio σ 2/κα/2, so there is no way to
identify the pair (σ, κ) based on observations of Y(·, x1). If measurements are recorded at
N ≥ 2 spatial positions, then by the second statement of Lemma B.2(1), the normalized
increments at different locations are asymptotically uncorrelated, and hence independent.
Thus, it is impossible to consistently estimate both κ and σ based on observations at finitely
many space points.

Despite this restriction, even if κ is unknown, the subsequent results can be easily modi-
fied to yield consistent and asymptotically mixed normal estimators for the viscosity-adjusted
volatility κ−αwm/4 ∫ t

0 |σ(s, xm)|wm ds or the relative volatility
∫ t

0 |σ(s, xm)|wm ds/
∫ T

0 |σ(s,

xm)|wm ds with m = 1, . . . ,N , wm as below and t ∈ [0, T ]. Both quantities are constant mul-
tiples of the integrated volatility, and thus completely describe the shape of the temporal
fluctuations of σ , which is sufficient for many applications; see, for example, [7], where the
concept of relative volatility was introduced and further applied to turbulence data.

We first consider the situation when the spatial correlation index α is known. Then Corol-
lary 2.9 immediately yields consistent estimators and asymptotic confidence bounds for the
integrated volatility process at the measurement sites x1, . . . , xN . In the theorems of this
section, we will often divide by asymptotic F -conditional variances during studentization
procedures which may be zero in some degenerate situations. In these cases, convergence in
probability and stable convergence in law should be understood in restriction to the set where
all involved realized variation functionals are strictly positive. For the theoretical background
of this concept for stable convergence in law, we refer the reader to Chapter 3.2 in [3] and to
[46].

THEOREM 2.12. Assume that α ∈ (0,2) ∩ (0, d] and κ > 0 are known. Define
Ṽ n

�|�(Yx, t) in the same way as V n
�|�(Yx, t) but with τn replaced by

(2.32) τ̃ 2
n = π

d
2 −α�(α

2 )

(2κ)
α
2 (1 − α

2 )�(d
2 )

�
1− α

2
n .

Then, under the hypotheses of Corollary 2.9 (1) and (2), we have

Ṽ n
�m|�m

(Yx, t)
L1=⇒ μ�m|�m

∫ t

0

∣∣σ(s, xm)
∣∣wm ds, m = 1, . . . ,N,(2.33)

and, for every T > 0,{
�

− 1
2

n
μ�m|�m√
ρ�m|�m

√
μ�m|�m(2w;·)

Ṽ n
�m|�m(2w;·)(Yx, T )

×
( Ṽ n

�m|�m
(Yx, T )

μ�m|�m

−
∫ T

0

∣∣σ(s, xm)
∣∣wm ds

)}N

m=1

st−→ N(0, IdN)

(2.34)

as n → ∞. The left-hand sides of (2.33) and (2.34) are independent of λ.

If α is unknown, we first have to find a consistent estimator for α, for which we propose
two solutions. The first estimator is a regression-type estimator similar to the change-of-
frequency estimator in [5, 18] for the kernel singularity of a moving average process and
similar to the estimator for the Hölder index of a Gaussian process proposed in [29]. Define
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the function �(2)(p; ·) : RN×2 →R
N by

�(2)
m (p;x) = �(2)

m

(
p; (xj1, xj2)

N
j=1

)= |xm1 + xm2|p, m = 1, . . . ,N.

Furthermore, recalling ρp(r) from Corollary 2.10, define

(2.35) C0(α) =
(

4

p log 2

)2(
C11 − 2

C12

(2 + 2�1)
p
2

+ C22

(2 + 2�1)p

)
,

where

C11 = ρp(1) + 2
∞∑

r=1

ρp(�r),

C22 = (2 + 2�1)
p

(
ρp(1) + 2

∞∑
r=1

ρp

(
2�r + �r−1 + �r+1

2 + 2�1

))
,

C12 = (2 + 2�1)
p
2

(
ρp

(√
1 + �1

2

)
+

∞∑
r=1

ρp

(
�r + �r−1√

2 + 2�1

)

+
∞∑

r=1

ρp

(
�r + �r+1√

2 + 2�1

))
.

(2.36)

Note that C0 depends on α via �r ; see (2.7).

THEOREM 2.13. Let α ∈ (0,2) ∩ (0, d].
(1) If p > 0 and Assumptions A2 and A3 hold with exponent p ∨ 2, then

α̂(p)
n = 1

N

N∑
m=1

α̂(p),m
n = 1

N

N∑
m=1

(
2 − 4

p
log2

(V n

�
(2)
m (p;·)(Yx, T )

V n
�m(p;·)(Yx, T )

))

= 2 − 4

pN

N∑
m=1

log2

(∑[T/�n]−1
i=1 |�n

i Yxm + �n
i+1Yxm |p∑[T/�n]

i=1 |�n
i Yxm |p

)
P−→ α.

(2.37)

(2) If p = 2 or p ≥ 4 and Assumption B3 holds for this value of p, then

N

�
1
2
n

√√√√ 2p�(
2p+1

2 )

π
1
2C0(α̂

(p)
n )

(
N∑

m=1

V n
�m(2p;·)(Yx, T )

(V n
�m(p;·)(Yx, T ))2

)− 1
2 (

α̂(p)
n − α

) st−→ N(0,1).(2.38)

The left-hand sides of (2.37) and (2.38) do not depend on the parameters κ and λ.

The second estimator is a correlation estimator (compare with the modified realized vari-
ation ratio of [5]). To this end, we define

(2.39) C̃0(α) =
(

2

log 2

)2(
C̃11 − 2C̃12�1 + C̃22�

2
1
)
,

where

C̃11 = 1 + �2
1 + 2

∞∑
r=1

(
�2

r + �r+1�r−1
)
, C̃22 = 2 + 4

∞∑
r=1

�2
r ,

C̃12 = 2�1 + 2
∞∑

r=1

�r(�r+1 + �r−1).
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THEOREM 2.14. Let α ∈ (0,2) ∩ (0, d] and F(x) = −2 log2(1 + x).

(1) Under Assumptions A2 and A3 with p = 2, we have as n → ∞,

(2.40) α̃n = 1

N

N∑
m=1

α̃m
n = 1

N

N∑
m=1

F

(V n
�m(1,1;·)(Yx, T )

V n
�m(2;·)(Yx, T )

)
P−→ α.

(2) Under Assumption B3 with p = 2, we have as n → ∞,

N

�
1
2
n

√
3

C̃0(α̃n)

(
N∑

m=1

V n
�m(4;·)(Yx, T )

(V n
�m(1,1;·)+�m(2;·)(Yx, T ))2

)− 1
2

(α̃n − α)

st−→ N(0,1).

(2.41)

Both quantities on the left-hand side of (2.40) and (2.41) do not depend on κ and λ.

REMARK 2.15. Let us compare the asymptotic variances of the two estimators α̂
(p)
n

and α̃n in the case where σ(t, x) ≡ σ is constant (but nonzero). If p = 2, then under the
assumptions of Theorems 2.13 and 2.14,

lim
n→∞�

− 1
2

n Var
[
α̂(2)

n − α
]= 1

NT
C0(α),

lim
n→∞�

− 1
2

n Var[α̃n − α] = 1

NT

C̃0(α)

(1 + �1)2 .

(2.42)

A straightforward calculation shows that C0(α) = C̃0(α)/(1 + �1)
2 for all α ∈ (0,2). In other

words, from the viewpoint of asymptotic variance, the two estimators α̂
(2)
n and α̃n are equiv-

alent. By varying the value of p for the estimator α̂
(p)
n , we can further check how reliable the

estimates for α are.

With (either of) the two estimators for α at hand, we can now proceed to the estimation of
σ . The rate of convergence is slower by a logarithmic factor compared to the case where α

is known; see Theorem 2.12. This is the same phenomenon that occurs when the smoothness
and the variance of a Gaussian process are to be estimated at the same time; see [13, 28, 29].

THEOREM 2.16. Assume that α ∈ (0,2) ∩ (0, d] and that κ is known. Let αn = α̂
(p0)
n for

some p0 > 0 or αn = α̃n, in which case we set p0 = 2. Define

(2.43) τ̂ 2
n = π

d
2 −αn�(αn

2 )

(2κ)
αn
2 (1 − αn

2 )�(d
2 )

�
1− αn

2
n , n ∈ N,

and the functionals V̂ n
�|�(Yx, t) in the same way as V n

�|�(Yx, t) but with τ̂n instead of τn.

(1) If Assumptions A2 and A3 hold with p0 ∨ w ∨ 2, then for every T ≥ 0 and m =
1, . . . ,N ,

V̂ n
�m|�m

(Yx, T )
P−→ μ�m|�m

∫ T

0

∣∣σ(s, xm)
∣∣wm ds as n → ∞.

(2) Assume that all wmk ∈ {0,2} ∪ [4,∞) in the case of �, and that all wm are even in
the case of � . Also assume that p0 = 2 or ≥ 4, and that Assumption B3 holds with exponent
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p0 ∨ w. Then, if Z ∼ N(0,1), we have in the case αn = α̂
(p0)
n ,{

�
− 1

2
n

| log�n|
4N

wmV̂ n
�m|�m

(Yx, T )

√√√√2p0�(
2p0+1

2 )

π
1
2C0(α̂

(p0)
n )

(
N∑

j=1

V n
�j (2p0;·)(Yx, T )

(V n
�j (p0;·)(Yx, T ))2

)− 1
2

×
(
V̂ n

�m|�m
(Yx, T ) − μ�m|�m

∫ T

0

∣∣σ(s, xm)
∣∣wm ds

)}N

m=1

st−→
⎛⎜⎝Z

...

Z

⎞⎟⎠ ,

while in the case αn = α̃n,{
�

− 1
2

n

| log�n|
4N

wmV̂ n
�m|�m

(Yx, T )

√
3

C̃0(α̃n)

(
N∑

j=1

V n
�j (4;·)(Yx, T )

(V n
�j (1,1;·)+�j (2,·)(Yx, T ))2

)− 1
2

×
(
V̂ n

�m|�m
(Yx, T ) − μ�m|�m

∫ T

0

∣∣σ(s, xm)
∣∣wm ds

)}N

m=1

st−→
⎛⎜⎝Z

...

Z

⎞⎟⎠ .

REMARK 2.17. Whereas different coordinates are asymptotically independent in (2.34),
they are identical in the limit in Theorem 2.16 (2). The former is a consequence of (2.26),
while the latter is due the fact that the dominating term in the case of unknown α comes from
the difference αn − α (which is independent of m); see the proof of Theorem 2.16.

3. Overview of proofs. The main ideas for the proof of Theorems 2.1 and 2.3 are
sketched in this section, while the details will be given in Sections C and D. The results
of Sections 2.2 and 2.3 are shown in Section E.

Without risk of confusion, we shall use the notation x = (x1, . . . , xN)′ ∈ (Rd)N , �n
i Yx =

(�n
i Yx, . . . ,�

n
i+L−1Yx) ∈ R

N×L, and

�n
i Gy(s) = G(i�n − s, y) − G

(
(i − 1)�n − s, y

) ∈ R,

�n
i Gx,y(s) = (

�n
i Gx1−y(s), . . . ,�

n
i GxN−y(s)

)′ ∈ R
N,

�n
i Gx,y(s) = (

�n
i Gx,y(s), . . . ,�

n
i+L−1Gx,y(s)

) ∈ R
N×L

for s ∈ R and y ∈ R
d . Similarly, we let σ(s, x) = (σ (s, x1), . . . , σ (s, xN))′ and σ 2(s, x) =

(σ 2(s, x1), . . . , σ
2(s, xN))′. Moreover, we write t∗n = [t/�n] − L + 1 for t ∈ [0,∞) and A �

B if A ≤ CB for some finite constant C > 0 that does not depend on any important parameter.
The following measures will play an important role in identifying the limit behavior of

(1.6):

�n
r,h(A) =

∫∫∫
A

Gy(s) − Gy(s − �n)

τn

× Gz+h(s + r�n) − Gz+h(s + (r − 1)�n)

τn

ds
(dy,dz),

∣∣�n
r,h

∣∣(A) =
∫∫∫

A

|Gy(s) − Gy(s − �n)|
τn

× |Gz+h(s + r�n) − Gz+h(s + (r − 1)�n)|
τn

ds
(dy,dz),

(3.1)

where r ∈N0, h ∈ R
d , and A ∈ B([0,∞)×R

d ×R
d). By (2.4), we have �n

0,0([0,∞)×R
d ×

R
d) = 1, so �n

0,0 is a probability measure. In fact, if we consider an arbitrary, say, the first
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component of the increment �n
i Yx with σ ≡ 1, then for A1 ∈ B([0,∞)) and A2 ∈ B(Rd),

�n
0,0(A1 × A2 × A2) is the proportion of the variance of Y(i�n, x1) − Y ((i − 1)�n, x1) that

is explained by the integral in (3.2) on the set {(s, y) : (i�n − s, x1 − y) ∈ A1 × A2}.
In general, �n

r,h([0,∞) × R
d × R

d) ∈ [0,1] is the correlation between two increments
�n

i Y (·, x1) and �n
i+rY (·, x1 +h), taken at a temporal distance of r�n and a spatial distance of

h. The value �n
r,h(A1 ×A2 ×A3), with A1 and A2 as above and A3 ∈ B(Rd), then quantifies

how much this correlation is caused by the restrictions of the corresponding integrals in (3.2)
to {(s, y) : (i�n − s, x1 −y) ∈ A1 ×A2} and {(s, z) : ((i + r)�n − s, x1 +h− z) ∈ A1 ×A3},
respectively. Some important properties of these measures are proved in Section B.

3.1. Overview of the proof of Theorem 2.1. By arguing componentwise, we may assume
without loss of generality that M = 1. As a first step, we show that we may further assume
that σ is a bounded random field.

LEMMA 3.1. In order to prove Theorem 2.1, one may additionally assume that σ is
uniformly bounded in (ω, t, x) ∈ 	 ×R×R

d .

For the remaining analysis, by writing f as the difference of its positive and negative
part, which still satisfy Assumption A1, we may assume that f is nonnegative. Then both
V n

f (Yx, t) and Vf (Yx, t) are increasing processes in t , so it suffices to prove E[|V n
f (Yx, t) −

Vf (Yx, t)|] → 0 for every t ≥ 0. By definition, we have

(3.2) �n
i Yx =

∫∫
�n

i Gx,y(s)σ (s, y)W(ds,dy).

As we shall see, asymptotically as �n → 0, only the portion of the integral where s is close
to i�n contributes to the size of �n

i Yx . More precisely, we have the following result.

LEMMA 3.2. For ε > 0, if we define

(3.3) αn,i,ε
x =

∫∫
�n

i Gx,y(s)σ (s, y)1s>i�n−εW(ds,dy),

then, as n → ∞,

V n
f (Yx, t) − �n

t∗n∑
i=1

f

(
αn,i,ε

x

τn

)
L1=⇒ 0.

As a next step, we discretize the volatility process in (3.3) along the points i�n − ε. By
the following lemma, this only introduces an asymptotically negligible error.

LEMMA 3.3. If

α̂n,i,ε
x =

∫∫
�n

i Gx,y(s)σ (i�n − ε, y)1s>i�n−εW(ds,dy),

then

lim
ε→0

lim sup
n→∞

E

[
sup

t∈[0,T ]

∣∣∣∣∣�n

t∗n∑
i=1

{
f

(
αn,i,ε

x

τn

)
− f

(
α̂n,i,ε

x

τn

)}∣∣∣∣∣
]

= 0.

For small ε, many of the integrals in (3.3) are taken over disjoint intervals. By exploiting
this kind of conditional independence, we shall prove the following result.
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LEMMA 3.4. If σ is bounded, we have for every t ≥ 0, as ε → 0,

(3.4) sup
n∈N

E

[∣∣∣∣∣�n

t∗n∑
i=1

{
f

(
α̂n,i,ε

x

τn

)
−E

[
f

(
α̂n,i,ε

x

τn

)∣∣∣Fi�n−ε

]}∣∣∣∣∣
2]

→ 0.

Finally, we show that the conditional expectations in (3.4) converge to the correct limit.

LEMMA 3.5. If σ is bounded, we have for every t ≥ 0, as ε → 0,

(3.5) lim sup
n→∞

E

[∣∣∣∣∣�n

t∗n∑
i=1

E

[
f

(
α̂n,i,ε

x

τn

)∣∣∣Fi�n−ε

]
−
∫ t

0
μf

(
σ 2(r, x)

)
dr

∣∣∣∣∣
]

→ 0.

3.2. Overview of the proof of Theorem 2.3. At the heart of our proof, we use a martingale
central limit theorem for triangular arrays (see Theorem 2.2.15 in [32]) to obtain the stable
convergence in law in (2.14). However, since the solution process (2.2) to (1.1) at fixed spa-
tial points lacks the semimartingale property, many approximations are needed—before and
after—to turn the left-hand side of (2.14) into a term with a martingale structure.

Step 1: Martingalization. We want to truncate the increments �n
i Yx in a similar way as in

(3.3) to make sure that a large portion of the truncated increments are stochastic integrals over
disjoint intervals (and hence have some sort of conditional independence) for different values
of i. However, if we take a fixed level of ε as in (3.3), the number of overlapping increments
will still be of order ε/�n. Consequently, the total approximation error for V n

f (Yx, t) will be

of order �n(ε/�n) = ε, which is not sufficient due to the 1/
√

�n prefactor. Of course, the
best truncation that one can hope for is to only keep the integral in (3.3) on the set {s > (i −
1)�n}, so that a given increment will only overlap with a finite number of other increments.
But since |�n

0,0|((�n,∞) × R
d × R

d) �→ 0, this approximation is simply not valid (even
without dividing by

√
�n). The idea is therefore to consider a truncation in between, that

is, to take the integral in (3.3) only on the set {s > i�n − λn�n} where λn is a sequence
increasing to ∞ with λn�n → 0. As it turns out, the best (i.e., smallest) choice for λn is
achieved when we carry out the truncation iteratively. Hence, in a first step, we consider
truncations of the form

(3.6) γ n,i,0
x =

∫∫
�n

i Gx,y(s)σ (s, y)1s>i�n−λ0
n�n

W(ds,dy),

for which we have the following result.

LEMMA 3.6. If λ0
n = [�−a0

n ] for some a0 > 1
ν

, where ν = 1 + α
2 as in Lemma B.4, then

(3.7) �
1
2
n

t∗n∑
i=1

{
f

(
�n

i Yx

τn

)
− f

(
γ n,i,0
x

τn

)}
L1=⇒ 0.

Since two truncated increments γ n,i,0
x and γ

n,j,0
x are defined on disjoint intervals as soon

as |i − j | > λ0
n + L − 1, we can employ martingale techniques to improve (i.e., decrease)

the order of λ0
n. As mentioned above, we use an iterative truncation procedure and consider

numbers a1 > · · · > aR > 1
2ν

satisfying ar >
ar−1

ν
for all r = 1, . . . ,R. We define λr

n = [�−ar
n ]

and γ n,i,r
x as in (3.6) but with λ0

n replaced by λr
n. Furthermore, with the notation

(3.8) Fn
i = Fi�n,
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we introduce the variables

δ
n,r
i = �

1
2
n

(
f

(
γ n,i,r−1
x

τn

)
− f

(
γ n,i,r
x

τn

))
,

δ
n,r
i = δ

n,r
i −E

[
δ
n,r
i |Fn

i−λr−1
n

](3.9)

for r = 1, . . . ,R. As n → ∞, we can now shrink the domain of integration to the set {s >

i�n − λR
n �n} as the following two lemmas show.

LEMMA 3.7. For every r = 1, . . . ,R,
∑t∗n

i=1 δ
n,r
i

L1=⇒ 0.

LEMMA 3.8. For every r = 1, . . . ,R,
∑t∗n

i=1 E[δn,r
i |Fn

i−λr−1
n

] L1=⇒ 0.

In what follows, we define a = aR , λn = λR
n , and γ n,i

x = γ n,i,R
x . Since ν > 1, after possibly

increasing R, we may assume that a is larger but arbitrarily close to 1
2ν

. Although the iterative
truncation procedure above has greatly reduced the number of overlapping increments (one
increment now overlaps with roughly λn instead of �−1

n increments), this number λn is still
increasing in n, and hence, the increments are still far from having a martingale structure. A
classical block splitting technique, similar to [31] (see also Chapter 12.2.4 in [32]), will now
help us to finally obtain a martingale array. To this end, define

V n(t) =
t∗n∑

i=1

ψn
i , ψn

i = �
1
2
n

(
f

(
γ n,i
x

τn

)
−E

[
f

(
γ n,i
x

τn

)∣∣∣Fn
i−λn

])
.

We now arrange the summands ψn
i into blocks of length mλn (where m ∈ N), leaving out

λn +L−1 terms between two consecutive blocks. More precisely, we decompose V n(t) into
V n(t) = V n,m,1(t) + V n,m,2(t) + V n,m,3(t) with

V n,m,1(t) =
Jn,m(t)∑
j=1

V
n,m
j ,

V n,m,2(t) =
Jn,m(t)∑
j=1

λn+L−1∑
k=1

ψn
(j−1)((m+1)λn+L−1)+mλn+k,

and

V n,m,3(t) =
t∗n∑

i=Jn,m(t)((m+1)λn+L−1)+1

ψn
i .

Here,

V
n,m
j =

mλn∑
k=1

ψn
(j−1)((m+1)λn+L−1)+k, j = 1, . . . , J n,m(t),

are the blocks that we have up to time t . There are Jn,m(t) = [ t∗n
(m+1)λn+L−1 ] complete blocks

and possibly a boundary term V n,m,3(t), while V n,m,2(t) contains all summands that have
been left out between blocks.
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LEMMA 3.9. If a > 1
2ν

is sufficiently small, we have for i = 2,3,

lim
m→∞ lim sup

n→∞
E

[
sup

t∈[0,T ]
∣∣V n,m,i(t)

∣∣]= 0.

For different values of j , the terms V
n,m
j in the definition of V n,m,1 comprise stochastic

integrals over disjoint time domains. But the volatility process is evaluated continuously in
time, so in order to finally obtain a martingale structure, we fix σ at the beginning of each
block V

n,m
j . To this end, we define

ξ̂ n
i,k =

∫∫
�n

i Gx,y(s)

τn

σ
(
(i − λn − k)�n, y

)
1s>(i−λn)�nW(ds,dy),

ψ̂n
i,k = �

1
2
n

(
f
(̂
ξn
i,k

)−E
[
f
(̂
ξn
i,k

)|Fn
i−λn−k

])
,

(3.10)

and

V̂ n,m,1(t) =
Jn,m(t)∑
j=1

V̂
n,m
j ,

V̂
n,m
j =

mλn∑
k=1

ψ̂n
(j−1)((m+1)λn+L−1)+k,k, j = 1, . . . , J n,m(t).

(3.11)

LEMMA 3.10. If a > 1
2ν

is sufficiently small, we have for every m ∈ N that V n,m,1(t) −
V̂ n,m,1(t)

L1=⇒ 0 as n → ∞.

Step 2: The martingale central limit theorem. From (3.10) and (3.11), it is easy
to see that for every m ∈ N, the variables ((V̂

n,m
j )j=1,...,J n,m(t) : n ∈ N) form a tri-

angular array, in the sense of Chapter 2.2.4 in [32], with respect to the filtrations
((Fn

j ((m+1)λn+L−1)−λn
)j=0,...,J n,m(t) : n ∈ N). We use Proposition 2.2.4 and Theorem 2.2.15

in [32] to establish the asymptotic distribution of V̂ n,m,1(t).

PROPOSITION 3.11. For small a > 1
2ν

, we have V̂ n,m,1 st=⇒ Z(m), where Z(m) is a pro-
cess characterized by the same properties as Z in Theorem 2.3 but with C(t) replaced by
Cm(t) = m

m+1C(t).

We need two approximation results, whose proofs are given after that of Proposition 3.11.

LEMMA 3.12. In order to prove Proposition 3.11, we may assume that σ is bounded.

LEMMA 3.13. In order to prove Proposition 3.11, we may assume that f is an even
polynomial.

Because E[V̂ n,m
j |Fn

(j−1)((m+1)λn+L−1)−λn
] = 0 by construction, it remains to prove the

following properties. In point (3) below, we consider a sequence ((Wι(t))t∈R : ι ∈ N) of
independent two-sided standard Brownian motions such that the stochastic integral of any
H ∈ L(W) against W can be expressed as an L2-series of stochastic integrals against Wι. The
existence of such a sequence follows as in Section 2.3 of [23]; see their Proposition 2.6(b) in
particular.
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(1) For all t > 0 and m1,m2 = 1, . . . ,M , we have, as n → ∞,

Cn,m
m1m2

(t) =
Jn,m(t)∑
j=1

E
[(

V̂
n,m
j

)
m1

(
V̂

n,m
j

)
m2

|Fn
(j−1)((m+1)λn+L−1)−λn

]
P−→ Cm

m1m2
(t).

(3.12)

(2) There is q > 2 such that for all t > 0 and m ∈ N, we have as n → ∞,

(3.13)
Jn,m(t)∑
j=1

E
[∣∣V̂ n,m

j

∣∣q |Fn
(j−1)((m+1)λn+L−1)−λn

] P−→ 0.

(3) Let (M(t))t≥0 be either the restriction to [0,∞) of Wι for some ι ∈ N or a bounded
(Ft )t≥0-martingale that is orthogonal (in the martingale sense) to Wι for all ι ∈ N. Then,
given m ∈N and t > 0, we have, as n → ∞,

(3.14)
Jn,m(t)∑
j=1

E
[
V̂

n,m
j

(
M
(
τn
j

)− M
(
τn
j−1

))|Fn
(j−1)((m+1)λn+L−1)−λn

] P−→ 0,

where τn
j = inf{t ≥ 0 : Jn,m(t) ≥ j} = (j ((m + 1)λn + L − 1) + L − 1)�n.

Let us remark that in contrast to Theorem 2.2.15 in [32], we fix a countable, and not just
a finite number of Brownian motions and then consider martingales orthogonal to all these
Brownian motions. The proof of the mentioned theorem, which is based on [30], extends to
this situation with no change.

Step 3: Computing the conditional expectation. Since Cm L1=⇒ C, the results up to now
and Proposition 2.2.4 in [32] imply that in the limit n → ∞,

(3.15) �
− 1

2
n

(
V n

f (Yx, t) − �n

t∗n∑
i=1

E

[
f

(
γ n,i
x

τn

)∣∣∣Fn
i−λn

])
st=⇒Z.

The conditional expectation cannot be computed explicitly as it involves the volatility process
sampled continuously. The purpose of the next lemma is therefore to discretize σ at a fixed
number of intermediate points (in the same spirit as Lemma 3 in [4]), where we use the
following notation:

(3.16) t
n,i
k = i�n − k�n, I

n,i
k,l = (

t
n,i
k , t

n,i
l

)
, 1n,i

k,l (s) = 1
I

n,i
k,l

(s).

LEMMA 3.14. If a > 1
2ν

is small enough, there exist numbers a > a(1) > · · · > a(Q−1)

such that

(3.17) �
1
2
n

t∗n∑
i=1

{
E

[
f

(
γ n,i
x

τn

)∣∣∣Fn
i−λn

]
−E

[
f
(
θn
i

)|Fn
i−λn

]} L1=⇒ 0,

where

(3.18) θn
i =

∫∫
�n

i Gx,y(s)

τn

Q∑
q=1

σ
(
t
n,i

λ
(q−1)
n

, y
)
1n,i

λ
(q−1)
n ,λ

(q)
n

(s)W(ds,dy),

and λ
(0)
n = λn = [�−a

n ], λ
(q)
n = [�−a(q)

n ] for q = 1, . . . ,Q − 1, and λ
(Q)
n = 0.
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Notice the difference between λr
n and ar as defined before Lemma 3.7 and λ

(q)
n and a(q)

as defined in the previous lemma. In fact, we have

0 = λ(Q)
n < λ(Q−1)

n < · · · < λ(0)
n = λn = λR

n < · · · < λ0
n,

a(Q−1) < · · · < a(0) = a = aR < · · · < a0.

After suitable approximations, the conditional expectation of f (θn
i ) can now be evaluated

along these intermediate time points. To this end, define mn,i
r ∈ R

N×L and vn,i
r ∈ (RN×L)2

by

(
mn,i

r

)
jk =

∫∫
�n

i+k−1Gxj−y(s)

τn

×
r∑

q=1

σ
(
t
n,i

λ
(q−1)
n

, y
)
1n,i

λ
(q−1)
n ,λ

(q)
n

(s)W(ds,dy),

(
vn,i
r

)
jk,j ′k′ =

∫∫∫ �n
i+k−1Gxj−y(s)�

n
i+k′−1Gxj ′−z(s)

τ 2
n

×
Q∑

q=r+1

σ
(
t
n,i

λ
(q−1)
n

, y
)
σ
(
t
n,i

λ
(q−1)
n

, z
)
1n,i

λ
(q−1)
n ,λ

(q)
n

(s)ds
(dy,dz)

(3.19)

for r = 0, . . . ,Q and j, j ′ = 1, . . . ,N and k, k′ = 1, . . . ,L. In particular, we have m
n,i
0 = 0,

m
n,i
Q = θn

i , and v
n,i
Q = 0. Then, recalling the definition of μ

f
after (C.8), the following results

hold if a is sufficiently close to 1
2ν

.

LEMMA 3.15. �
1
2
n
∑t∗n

i=1{E[f (θn
i )|Fn

i−λn
] − μ

f
(E[vn,i

0 |Fn
i−λn

])} L1=⇒ 0.

LEMMA 3.16. �
1
2
n
∑t∗n

i=1{μf
(E[vn,i

0 |Fn
i−λn

]) − μ
f
(v

n,i
0 )} L1=⇒ 0.

Step 4: Approximation of the Lebesgue integral. We complete the proof of Theorem 2.3
by showing in two steps that �n

∑[t/�n]
i=1 μ

f
(v

n,i
0 ) approximates the integral Vf (Yx, t) =∫ t

0 μf (σ 2(s, x))ds at a rate faster than
√

�n.

LEMMA 3.17. �
1
2
n
∑t∗n

i=1{μf
(v

n,i
0 ) − μf (σ 2((i − 1)�n, x))} L1=⇒ 0.

LEMMA 3.18. �
− 1

2
n (�n

∑t∗n
i=1 μf (σ 2((i − 1)�n, x)) − Vf (Yx, t))

L1=⇒ 0.

As expected from the semimartingale literature (cf. [32]), the two previous lemmas only
hold true under strong regularity assumptions on σ . In fact, Assumption B2 and the spatial
differentiability assumptions on σ in Assumption B3 are only needed for this step.
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SUPPLEMENTARY MATERIAL

Supplement to “High-frequency analysis of parabolic stochastic PDEs”
(DOI: 10.1214/19-AOS1841SUPP; .pdf). This paper is accompanied by supplementary mate-
rial in [14]. Section A in [14] gives some auxiliary results needed for the proofs in this paper.
In Section B, some important estimates related to the heat kernel are derived. Sections C and
D provide the details for the proof of Theorems 2.1 and 2.3, respectively. Finally, Section E
contains the proofs for Sections 2.2 and 2.3.
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