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We consider the zero-range process with arbitrary bounded monotone
rates on the complete graph, in the regime where the number of sites di-
verges while the density of particles per site converges. We determine the
asymptotics of the mixing time from any initial configuration, and establish
the cutoff phenomenon. The intuitive picture is that the system separates into
a slowly evolving solid phase and a quickly relaxing liquid phase: as time
passes, the solid phase dissolves into the liquid phase, and the mixing time
is essentially the time at which the system becomes completely liquid. Our
proof uses the path coupling technique of Bubley and Dyer, and the analysis
of a suitable hydrodynamic limit. To the best of our knowledge, even the or-
der of magnitude of the mixing time was unknown, except in the special case
of constant rates.

1. Introduction.

1.1. Model. Introduced by Spitzer in 1970 [27], the zero-range process is a widely stud-
ied model of interacting random walks; see, for example, [12, 21, 22] and the references
therein. It describes the evolution of m > 1 indistinguishable particles randomly hopping
across n > 1 sites. The interaction is specified by a function r: {1, 2, ...} — (0, 00), where
r (k) indicates the rate at which particles are expelled from a site with k particles on it. We will
here focus on the mean-field version of the model, where all jump destinations are uniformly
distributed. More formally, we consider a continuous-time Markov chain X := (X (¢): t > 0)
taking values in the state space

n
(1) Qi=ix=(x1,....x) €Z: Y xi=my,

i=1

and whose Markov generator £ acts on observables ¢ : 2 — R as follows:

1
2) (L)) == D r)(pk+38;—8)—p)).

1<i,j<n

Here, (6;)1<i<n denotes the canonical basis of Z" , and we adopt the convention that 7 (0) = 0
(no jumps from empty sites). The generator L is irreducible and reversible with respect to the
following probability measure:
n Xi 1
3 T X T
3) o[ 5

i=1k=1

with the standard convention that an empty product is 1. The present paper is concerned
with the problem of estimating the speed at which the convergence to equilibrium occurs, as
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quantified by the so-called mixing times:
4) tix(x; &) :=min{r > 0: |[Py(X (1) €-) — 7|,y <€}

In this definition, [|© — v||rv = maxacq |[t(A) — v(A)| denotes the total-variation distance,
and the parameters x € Q2 and ¢ € (0, 1) specify the initial state and the desired precision,
respectively. Of particular interest is the worst-case mixing time, obtained by maximizing
over all initial states:

®) tvirx (€) := max{fnx (x; €): x € Q}.

Understanding this fundamental parameter—and in particular, its dependency in the preci-
sion ¢ € (0, 1)—is in general a challenging task; see the books [20, 24] for a comprehensive
account. Our current knowledge on the total-variation mixing time of the zero-range process
is embarrassingly limited in comparison with the numerous functional-analytic estimates that
have been established over the past decades [4, 68, 13—16, 19, 25]. In fact, to the best of our
knowledge, the exact order of magnitude of the mixing time of the zero-range process has
only been determined in the very special case where the rate function r is constant [15, 17,
18, 23].

1.2. Main result. The rate function » will remain fixed throughout the paper, and will
only be assumed to be nondecreasing and bounded. Upon rescaling time by a constant factor
if necessary, we may take

(6) lim 4 rk)=1.
k— 00
Our results will depend on r through the log-derivative of a certain series:
ZR'(2) e Z*
@) V(z):= where R(z) := _
R(z) kzz(:)r(l)---r(k)

It is easy to see that W : [0, 1) — [0, c0) is a bijection, and we write W1 for its inverse. All
asymptotic statements will refer to the regime where the number of sites diverges while the
density of particles per site stabilizes:

(8) n— oo, ﬂ—>,o€[0,oo).
n

To lighten the notation, we will keep the dependency upon n implicit as often as possible.
Our main result is as follows.

THEOREM 1 (Worst-case mixing time). For any fixed € € (0, 1),

) tvix (&) Y= L ds

n n—oo DT Jo 1—wl(s)

Although it seems intuitively clear that the worst-case mixing time should be achieved
by initially placing all particles on the same site, there does not appear to be any direct
justification of this fact. We will thus determine the asymptotics of the mixing time from
every possible configuration x € Q2; see Corollary 1 below for the detailed result. The notable
disappearance of ¢ on the right-hand side of (9) reveals a sharp transition in the convergence
to equilibrium of the process, known as a cutoff [1, 10]. To the best of our knowledge, the
occurrence of this phenomenon for the mean-field zero-range process was only known in the
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special rate-one case, where the function r is constant equal to 1 [23]. This choice trivially
fits our setting (6), with

Z —1 S 102
o Vs ety
Beyond the obvious complications raised by the nonexplicit nature of the rates, Theorem 1
requires new ideas for at least two reasons. First, the crucial spectral gap estimate of Morris
[25], on which the whole argument of [23] ultimately relies, is only available in the rate-
one case. Second, the stationary distribution (3) is no longer uniform, making the entropy
computations from [14, 23] unapplicable. As a result, even the order of magnitude tyx () =
®(n) appears to be new. We circumvent these obstacles by resorting to the powerful path
coupling method of Bubley and Dyer [5]. This alternative route turns out to be so efficient
that the proof of our generalization ends up being significantly shorter than that of the original
result [23], without using anything from it.

1
(10)  R(z)= =7 Y(z) =

1.3. Proof outline. Intuitively, the system may be viewed as consisting of two regions
evolving on different time-scales:

e aslow solid phase, consisting of sites occupied by ® (n) particles,
e a quick liquid phase, consisting of sites occupied by o(n) particles.

The presence of a solid phase is a clear indication that the system is out of equilibrium (under

the stationary law 7, the maximum occupancy is easily seen to be @ (logn); see, for example,

(31) below). What is less obvious, but true, is that conversely, any completely liquid system

reaches equilibrium in negligible time. To prove this, we use the path coupling method of

Bubley and Dyer [5]. Note that in the regime (8), there is p < 0o, independent of n, such that
m

(11) — =p.
n

By a dimension-free constant, we will always mean a real number that depends only on o
and r.

THEOREM 2 (Fast mixing). There is a dimension-free constant k so that

(12) tix (x5 8) < klx [0 + (Inn)¥,
for every x € Q and every ¢ € (0, 1), provided n > k /¢.

When combined with the worst-case bound ||x| s < m, this already yields the correct
order of magnitude tyx(¢) = O(n), for any fixed ¢ € (0, 1). However, the real interest of
Theorem 2 lies in the linear dependency in ||x||s0, Which implies that the equilibrium is
attained in negligible time when the initial configuration x = x(n) is completely liquid: for

fixed e € (0, 1),
(13) IXlloc =0(n) = tuix(x;e) =0(n).

By the Markov property, this reduces our task to that of understanding the time it takes for an
arbitrary initial condition x € 2 to become completely liquid. By symmetry, we may assume
without loss of generality that the coordinates of x are arranged in decreasing order:

(14) X1 == Xy
In the regime (8), we may also assume (upon passing to a subsequence) that

(15) — —— uy,
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for each k > 1. Note that the limiting profile (ux)x>; must then satisfy u; > up >--- >0
and ) P2, ux < p. In this setting, our second step will consist in establishing a deterministic
approximation of the form

Xk (nt)

(16) ~fuk — f©)],.

where f: R; — R, is a smooth increasing function describing the dissolution of the solid
phase, and where we have used the notation [a]4+ = max(a, 0). This is the content of the
following theorem.

THEOREM 3 (Hydrodynamic limit). For any initial condition x = x(n) satisfying (14)—
(15), and for any fixed time horizon T > 0, we have

Xy (nt)

n

(17 Ex[ sup —[ux — FO)],

keln],te[0,T]

Ji=o
n—oQ
where the function f: Ry — Ry is characterized by the differential equation
o0
(18) fl=1 —w—‘(p— Z[uk—fmh), f(0) =
k=1

Moreover, for each i > 1, we have the explicit expression

Pk—1
19 -1 i) =
(19) £ ) kz /p 1(5)

where p = pg > p1 > -+ > 0 are given by py ‘= p + kug4+1 — Zf'{zl Uj.

The proof relies on a separation of timescales argument: the liquid phase relaxes so quickly
that, on the relevant time-scale, the solid phase can be considered as inert. Consequently, the
liquid phase is permanently maintained in a metastable state resembling the true equilibrium,
except that the density is lower because a macroscopic number of particles are “stuck” in the
solid phase. This imposes a simple asymptotic relation between the number of particles in the
solid phase and the dissolution rate, from which the autonomous equation (18) arises. Note
that this limiting description gives access to the dissolution time of the system: for any ¢ > 0,
we have

(20) |X(nt)|, =0(n) = 1> f ).

Combining this with (13), we readily obtain the following full description of the mixing time,
of which (13) is only the special case where u; = 0.

COROLLARY 1 (Mixing time from an arbitrary initial condition). For any fixed € € (0, 1),
we have in the regime (14)—(15),

Pk—1

hvix (X5 €) -1
21 =
@1) ) = Z /,, 1<s)

n

From this detailed description, the worst-case mixing time can finally be extracted by
maximizing the right-hand side of (21) over all possible profiles (u)x>1: we trivially always
have

o0

Pr—1 ds p ds
@ R e
k:lk Ok 1—w=1(s) 0o 1—W—(s)
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and the equality is moreover attained when u; = p and u = u3 = --- = 0. The maximizer
corresponds to placing all particles on the same site, as anticipated. This clearly establishes
Theorem 1, and the remainder of the paper is devoted to the proofs of Theorems 2 and 3, in
Sections 2 and 3.

2. Fast mixing in the absence of a solid phase.

2.1. Preliminaries. We start with a few standard facts that will be used repeatedly in the
sequel. We use the classical notation [n] :={1, ..., n}.

Graphical construction. Let E be a Poisson point process of intensity %dt ® du ® Card ®
Card on [0, 00) X [0, 1] x [1] x [n] (where Card denotes the counting measure), and consider
the piecewise constant process X = (X (¢): t > 0) defined by the initial condition X (0) = x
and the following jumps: for each point (¢, u, i, j) € E,

X(t—) —{—(Sj — & ifF(X,'(l‘—)) >u,

23) X(0) = X(t—) otherwise.

Then X is a Markov process with generator £ and initial state x. We always use this particular
construction.

Monotony. Since r is nondecreasing, the above construction provides a monotone coupling
of trajectories: if we start from two configurations x, y € Z/} satisfying x <y (coordinate-
wise), then this property is preserved by the jumps (23), so the resulting processes X, Y
satisfy

(24) V>0, X(@)<Y(@®).
This classical fact will play an important role in our proof.
Stochastic regularity. For any i € [n], 0 <s <t, we have by construction

(25) Xi(t) — Xi(s) < E([s, 1] x [0, 1] x [n] x {i}),
(26) Xi(s) = Xi(t) < E([s, ] x [0, 1] x {i} x [n])

I

and the random variables on the right-hand sides are Poisson (¢ — s).

Temperature. For any ¢: Q — R, the process M = (M(t): t > 0) given by

t

@7) M) = p(X0) = o) = [ (Lo (X ) ds
is a zero-mean martingale (see, e.g., [11]). In particular, taking ¢(y) = y; (i € [n]), we obtain

t t
(28) Mo =X —xi+ [ r(xi)ds— [ s

0 0
where the temperature ¢ (t) measures the average jump rate of the system:
1 n

(29) c(t) = - > or(X;m).

j=1

Understanding the evolution of (¢(¢): ¢ > 0) will constitute an important step in the proof.
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2.2. Uniform downward drift. Our first task consists in showing that the number of par-
ticles on a site cannot stay large for long.

PROPOSITION 1 (Uniform downward drift). There are dimension-free constants 6,8 > 0
such that
(30) Ey[e"Xi 0] < 2(1 4 £/ Ci700),
forall x € Q,i € [n] and t € Ry. In particular, for any a > 0,
(31) P, (X;(t) > [x; — 8t]4 +a) < e 9.

The intuition behind this result is as follows: if X;(¢) is large, then by (6) and (28), the drift
of X;(¢) is essentially ¢(¢) — 1, which is uniformly negative thanks to the following lemma.

LEMMA 1 (Temperature). There is a dimension-free ¢ > 0 so that

Pe(¢) =1 —¢) <e™™,

forall x € Qandall t € [1, 00), provided n > 2.

PROOF. Since r is [0, 1]-valued with r(0) = 0, we clearly have
l n
(32) (0 =1=— 1oxj0=0
j=1

Now, because of (11), we can find aregion Z C [n] of size |Z| = [n/2] such that max;c7 x; <
2p. Note that |Z¢| = |n/2] > n/3, since n > 2. For each site i € Z, let G; denotes the follow-
ing event:

{E2([0, 11 x [0, 1] x [n] x {i}) =0} N{E([0, 11 x [0, r(1)] x {i} x Z°) > 2p}.

The first part forbids any new arrival at i during the time-interval [0, 1], while the second
ensures that the x; < 2)p particles will depart (recall that (k) > r(1) for k > 1). Thus, G; C
{X;(1) = 0}. Writing P(A; k) for the probability that a Poisson variable with mean A is at
least k, we have

i (r(Dln/2)
(33) P(G;)=e p(in

; Lzm) > e‘@('éi; L2ﬁJ> =:q.

Since the events (G;); ez are moreover independent, we conclude that the sum Y7 1¢x; (1)=0)
stochastically dominates a Binomial variable with parameters [n/2] and g. Thus, Hoeffding’s
inequality (see, e.g., [3]) implies

. 2
ng ng
P(Z 1ix;(n=0) < 1 ) < exP(_T)
i=1

so that & = g2/4 satisfies the claim for 7 = 1. Since the result is uniform in the choice of
the initial state x € €2, the claim automatically propagates to any time ¢ > 1 by the Markov
property. [

PROOF OF PROPOSITION 1. Forany ¢: Q — R, (27) implies that

d
(34) qp [0(X ()] =Ex[(Lo) (X (1)].
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Taking ¢(y) = €%, our plan will consist in bounding L in terms of ¢ to obtain a differential
inequality. For any y € 2, we easily compute

Lo)(y) 4 1 -6
—=(e —1) - Z (r(y')_e r(yi)) :
() {” jeln\(i) ! }

The term {-} is always less than 1, and is even less than A :=1 — ¢ — e rk) if yeANB,
where

1 n
(35) A.=[;Zr(y_,-)<l—8}, B:={y; > k}.

j=1
The parameters ¢ € (0, 1) and k € N are arbitrary for now and will be adjusted later. Thus,
Lo < (e’ —1)(rp + (1 = Vplanp))
< (" = 1)(hp + 201 4c + 15¢))
< (89 - 1)+ 2671 ge + 2e9k),
where we have used A € (—1, 1), [|¢]loo = €?™ and @1 < €%, By (34),

d
3B [7%i 0] < (¢ — 1){AE,[e?XiI D] 427" P, (2 (1) = 1 — &) + 2%},

We now choose the dimension-free constants 6, ¢, k as follows. We take ¢ as in Lemma 1.
Since . — —¢ as (k, 8) — (o0, 0), we may then choose k € N and 6 > 0 so that A < 0. Upon
further reducing 6 if necessary, we may assume that 6 < ¢/pp, so that 6m < en. Fort > 1, we
then have

d
(36) SB[ O] <o — OB [0,
where «, § > 0 are dimension-free constants. It is classical that this differential inequality

implies

(37) E[e?X10] < % + (Ex[eQXi(l)] _ %)e—a(z—n,

for + > 1. On the other hand, for ¢ € [0, 1], the domination (25) implies E, [/XiD] <
fxte’ =1 Combining these two facts, we conclude that there is a dimension-free « € (0, 00)

such that
(38) ]Ex[eQX,'(t)] SK(I +e@x,~—8t),

for all # > 0. By Jensen’s inequality and (1 + u#)” <1 + u”, the conclusion still holds if we
replace (x, 6, 6) with («”,60p, §p) for any p € (0, 1). Choosing p sufficiently small so that
kP <2 and Op < 1 completes the proof of (30). The claim (31) is then a consequence of
Chernov’s bound. [

2.3. Path coupling via tagged particles. Our proof of Theorem 2 will rely on the intro-
duction of tagged particles. For k € Z ., define
(39) Ak):=rk+1)—r(k)=0.

Let ® be a Poisson process of intensity %Leb ®Leb® Card on Ry x [0, 1] x [r], independent
of the Poisson process E used in the graphical construction of X, and construct an [n]-valued
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process I = (I(¢): t > 0) by setting /(0) =i and imposing the following jumps: for each
(t,u,k)in ®,
k if A(X7q—)(t—)) > u,

(40) 1®):= I(t—) else.

In other words, conditionally on the background process X, the tagged particle 1 performs a
time-inhomogeneous random walk starting from i and jumping from a site £ to a uniformly
chosen site at the time-varying rate A(X¢(¢)). The elementary but crucial observation is that
the process

41) (X(@#)+81¢): t>0)

is then distributed as a zero-range process starting from x + §;. Now, if j is another site, we
may introduce a second tagged particle J = (J(¢): t > 0) by setting J(0) = j and for each
(t,u,k)in ©,

k if A(X](t_)(l—)) >u,

(“42) )= J(@—) else.

We emphasize that we use the same processes X, ® to generate I and J. This produces two
coupled zero-range processes (X (¢) +8;(): t > 0) and (X (¢) + 8¢ : t > 0) starting from
x +6; and x + J;, respectively. We define their coalescence time as

(43) T:=inf{t > 0: 1(r) = J(1)}.

Note that on the event {t > ¢}, we have X () +3;() = Y (t) +8,(;) by construction. Therefore,
writing P/ for the law of the zero-range process starting from z, we have

(44) dTV(P;_HSi, P;+5j) <P(r >1).

Our goal will now consist in estimating the right-hand side.

PROPOSITION 2 (Coalescence). There is a dimension-free k such that

P(t > k([lxlloo V (Inn)*)) < 3

Let us first quickly see how this leads to Theorem 2.

PROOF OF THEOREM 2. By stationarity of 7 and convexity of drv (-, -),

(45) dTv(P;JT)S Zﬂ(y)dTv(P;,P;)-

yeQ
Call x, y € Q adjacent if they differ by a single jump, that is, y = x + §; — §; for some
1 <i # j <n.When this is the case, (44) and Proposition 2 (with m — 1 background particles)
yield

K

(46) t>k(llxlloo VIIylloo V (In1)<) = drv(Py, Py) < o
Now if x,y € Q are arbitrary, one can always connect them by a path, that is, a sequence
(wo, wi, ..., w) where wo = x, wx =y and wy_ is adjacent to w, for 1 < ¢ < k. By the
triangle inequality, we have

k
(47) dry(P{, P})) < dw(P,, . P}).
=1
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Choosing a shortest path further ensures that k < m and max;<¢< [welloo < X lloo V 1Y loos
so that

(48) t=k(Ixlloe VIIVlleo V(INR)*) = drv(Py, Py) < —5

In particular, if t > k(]| x]|co V (Inn)*), then the restriction of the sum in (45) to the index
set A:={y e Q: ||[¥loo < (nn)“}isat most . On the other hand, the remaining part is at

most 77(A€) < 4ne~?IM" a5 can be seen by takmg the + — oo limit in (31). In conclusion,
forall x € Q,

(49) = k(lxlloo v (Ann)) = dry(Pl,7) < T +dne 00",
n
Upon replacing « by a larger constant if necessary, we obtain the claim. [J

The remainder of the section is devoted to the proof of Proposition 2. It is clear from (40),
(42) that if the two tagged particles manage to jump at the same time, then they immediately
coalesce. Note, however, that their jumps may be severely hindered by the background pro-
cess: in the rate-one case, for example, we have A(k) = 1(x—0), so that the tagged particles
cannot jump unless they are alone. Our first step will consist in controlling the number of co-
occupants of the tagged particles. We will then complement this by showing that, when the
tagged particles do not have too many co-occupants, they have a decent chance to coalesce
within a short time-interval.

LEMMA 2 (Co-occupants of the tagged particles). There are dimension-free constants
K1, ko < 00 so that for t = k1||x|leo and a = ko In(1 + || x| 00),

1
(50) P(X1() (D) VY0 (1) <a) > 5

PROOF. Since I(t), J(t) can only move by jumps of the form (40), (42), we necessarily
have
(51) (), J(t) €{i, j}U{k € [n]: ©([0,1] x [0, 1] x {k}) > 1}.

Note that the random set on the right-hand side contains at most 2 4 ¢ elements on average.
Taking a union bound over all these possibilities, and using the independence of ®, X, we
obtain

P(X1n@)VYi(@)>a)<2+1) 11(22[1;(] P(Xk(r) > a).

To make this less than a half, we may choose ¢ = %le lloo With § as in (31), and a = é In(16 +
8r). U

LEMMA 3 (Quick coalescence). Set h := 3(x’;/();f)) 1 Afn >3, then
e—Sh
(52) P(t <h) > —
PROOF.  Write h =1+ with =37 and s = 15, and note that {r <h} 2 G;NG,; N
F, where
G, :={E([0,1 + 5] x [0, 1] x [n] x {i}) = 0}
N{E([0, 11 x [0, ()] x {i} x [n]\ {7, j}) = xi},
:={E([0, ¢ + 5] x [0, 1] x [n] x {j}) =0}
N{E(0, 71 x [0, r(D] x {j} x 11\ {i, j}) = x;},
F:={0([0,1] x [0,1] x [n]) =0} N {O([t,t + 51 x [0, 7(1)] x [n]) > 1}.
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Indeed, the events G;, G; guarantee that X;, X ; are zero over the time-interval [z, 7 + 5],
while F ensures that the tagged particles will remain in positions #, j until time ¢, and then
make an attempt to jump over [z,  + s]. The first such attempt will be successful for both par-
ticles, because the conditions in (40), (42) are met (note that A(0) =r(1)). Now, F,G;, G|
are independent, with
—2r()t
P(Gy) = e_f_sP<w; xk) and P(F)=e¢ "P(r(l)s; 1),
n

where we recall that P(X; k) is the probability that a Poisson variable with mean A is at
least k. The claim now easily follows from the classical estimate P (A; k) > %, valid for any
A>k>0. O

COROLLARY 2. There is a dimension-free constant B < oo such that
(53) P(z < Bllxlloo) = (1 + lIxlloo) .

PROOF. Set t = «1||x|loo, @ = 21In(1 + ||X|loc), 2 = (Ba + 1)/r(1) with k1,7 as in
Lemma 2. Then P(t <t + h) is at least

P(X;() VX0 (0) <a)P(t <t 4+h|X1n@) V Xj0(@) < a).

The first term is at least % and the second at least %e‘y’, by Lemma 3 and the Markov
property. [

PROOF OF PROPOSITION 2. Let 8 be as in the above corollary, and let ¢,a > 0 be pa-
rameters to be adjusted later. Consider the decreasing sequence of events (Ax)x>o defined
by

k—1
(54) Ap:={t >t +kap} 0 ({| X+ taB)| o, <al.
=0

By the above corollary and the Markov property, we have P(Ax41|Ax) <1 — (1 +a)~P.
Thus,

(55) P(Ar) < (1= (1 +a) P)f < k0t

On the other hand, it is clear from the definition of A that

(56) P(t > 1 +kaB) < P(Ap) +ksupP(| X (5)] o, > a).
s>t

Recalling (31), we conclude that for t = %llx loo>

(57) P(t > t + kaB) < e K1T0™" | gppe=0a,

Choosing a = % Inn and k = | (Inn)2*# | ensures that the right-hand side is O(niz), as desired.
O

3. Dissolution of the solid phase.

3.1. Identification of the hydrodynamic limit. With the setting of Theorem 3 in mind, we
fix a sequence of numbers u| > up > --- > 0 such that

o8}
(58) Y uk=p.
k=1
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PROPOSITION 3. There is a unique measurable f: Ry — Ry satisfying

(59) f(z>=/0til —‘1’_1<P_Z[”k—f(s)]+)}ds
k=1

forallt = 0. Moreover, f is an increasing bijection and for eachi > 1,

Pk—1

60) f (u»—kz /p et

where the numbers pg > p1 > --- > 0 are given by py := p + kg1 — Zf:] u;.
PROOF OF UNIQUENESS. Fix ¢ > 0. Since ¥~!: R, — [0, 1) is increasing, any solution
to (59) must satisfy

t(1=v () < f) =<t
Since k(¢) :=max{k >1: ur >t(1 — \Il_l(,o))} is finite, we deduce that

o0 k(1)
(61) Dluk— fO] = [ux— O],
k=1 k=1

In particular, if g is another solution to (59), we have

>olue = FO] = Y [u—g],
k=1

k=1

(62) <k®|f@®) —g®)|.

Now, W1 is continuously differentiable and hence «-Lipschitz on [0, p] for some « < oo.
Therefore,

‘\l"l (p - i[”k - f(t)]+> —w! (p - i[”k - g(t)]+>

k=1 k=1

<ak(®)|f(1) —g@).
Integrating this and recalling (59), we obtain the differential inequality

t
63) 1£(0) — ()] < “/o ()| £(5) — g(s)] ds.

In order to apply Gronwall’s lemma and conclude that f = g, we now only need to check
that « € L' (R, ). But

(64) /o k(t)dr = 1( )Z s

by Fubini’s theorem, and the right-hand side is indeed finite. [

EXPLICIT RESOLUTION. Let ®: Ry — R, be the function defined by

! 1

® increases continuously from 0 to 400, so ®~!: Ry — R, is well defined. Now, let p =
po>p1>--->0and t; >t >--- >0 be defined by

(66) Pr = p +kuksr — Y _uj,

i ®(pi-1) = Do)

(67) ty = ;

i=k
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Finally, define a function f separately on each [tx41, tx), k > O (with the convention 7y =
+00) by

NP (o) + k(t — trg1)) — px
. .
Note that f(#;) = uy for k > 1. Moreover, the left limit of f at # is

DN (@ (pr) + k(tx — tes1)) — pr
k

Vit eltirr, i), f@) i =upyr +

fte—) =upq1 +

Pk—1 — Pk
=Ujy1 + T
= uy.

This shows that f is continuous at each #;, k > 1. Since f is clearly continuously increas-
ing on each [f, tx—1), we deduce that f is continuously increasing on the whole of (0, c0).
Moreover,

fO+) = lim | f@) = lim | u; =0,

so setting f(0) := 0 extends f into a continuously increasing function on R, . The strict
monotony together with the fact that f(#x) = ux shows that for all r € Ry and k > 1,

(68) f@)<uy <+— t<t.

Finally, f is continuously differentiable on each (fx4+1, fx) and for ¢ € (fx+1, tx), we easily
compute

k
fl=1- lIf_l<,0+kf(t) - ZW)

i=1

—1-v <p Z f(t)>

where the second equality follows from (68). Thus, f is a solution to (59), and (60) is clear.
O

3.2. Proxy for the empirical distribution. The purpose of this section is to obtain a good
approximation for the empirical measure %Z?ZI 3x; (1), out of which we will then extract
a good approximation for the mean-field jump rate ¢(¢). For each z € (0, 1), we define a
probability distribution q(z) = (q(z; k))k>0 on Z4 by the formula

Zk

R@)r(1)---r(k)

We extend this definition to z = 0 by setting q(0) = §p. Note that the mean of q(z) is
precisely W(z). It will be convenient to reparameterize q in terms of its mean by setting
q(s) := q(\Il_1 (s)) for s € (0, 00). We start by showing that q(p) is the limiting empirical
distribution at equilibrium.

(69) q(z; k) :=

LEMMA 4 (Empirical distribution at equilibrium). [In the regime (8), we have for any
fixed ¢ > 0,

. 1 1 & _
(70) hmsup—logn({x e Q: dTV<_Z(Sx,-, q(,o)) ze}) <O0.
i

n—oo N
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PROOF. In the degenerate case p = 0, the claim is trivial since any law on Z_ is at
total-variation distance at most its mean from the Dirac mass §y. We henceforth assume that

p >0, and we set z =W ~!(p) € (0, 1). Consider a random vector X := (X1,..., X,) whose
coordinates are i.i.d. with law q(z). Then for any x = (x1, ..., x,) € 2, we have

Zm n X 1
(71) P(X =x)= I[HT]——

R@" A @y

Thus, x + P(X = x) is proportional to = on €2, and hence for any A C 2, we have the
representation

_P(XeA)

We now fix ¢ > 0 and take

(73) A= {XGQ:dTv<’%Z§x,‘sq(Z)>ZS}.
i=l

Since the coordinates of X are i.i.d. with law q(z), Sanov’s theorem (see, e.g., [9]) implies

1
(74) limsup —logP(X € A) < 0;
n—oo N
1
(75) lim —logP(S, € [0,m]) =0;
n— oo n
1
(76) lim —logP(S, € [m,2m]) =0,
n—-oon

where S, = X1 + --- + X,,. On the other hand, since q(z) is log-concave, and since this
property is preserved under convolutions (see, e.g., [26]), the law of S, is log-concave, and
hence unimodal, so for any a € N,

(77) (a+ DHP(S, =m) >P(S, € [m —a,m]) AP(S, € [m,m +al).

Taking a = m and using (75)—(76), we get %log P(X € Q) — 0; (72)—(74) completes the
proof. [

REMARK 1 (Monotony and regularity of p — q(p)). The monotonicity (24) shows that
the stationary law m is stochastically increasing in the number m of particles. In view of
Lemma 4, we deduce that q(p) is stochastically increasing in p: if p < p’, then there is
a coupling (Z, Z") of q(p),q(p’) such that Z < Z’ almost surely. Since Z, Z’ are integer-
valued, we may then write

(78) drv(@(p). 4(0')) <E[|Z' — Z|] = E[Z'] ~E[Z] = 0 — p.

In conclusion, p — q(p) is increasing and 1-Lipschitz.

We will show that the approximation % Y"1 8x; ~q(p) remains valid out of equilibrium,
provided p is replaced by an effective density, obtained by ignoring the particles in the solid
phase. To formalize this, we assume that the solid phase is initially restricted to some fixed
region {1, ..., L}:

(79) Lmax x;i =o(n).
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Note that by (31), this property is preserved by the dynamics in the sense that for any fixed
t>0,

(80) Lmax X;(nt) =0(n),

almost surely (as long as all processes live on the same probability space).

PROPOSITION 4 (Proxy for the empirical measure). If x = x(n) satisfies (79), then for
fixed t > 0,

1 I ¢
81) Ex |:dTV(; Z‘SXi(nt)»q<; Z Xi(nt)))i| n—00 0.
i=1

i=L+1

Since the rate function r has mean z under the law q(z), we have in particular

L
(82) Ex[ c(nt) —w! (ﬂ — lZX,-(m)) H ——0
n n [:] n— oo

Our proof will consist in comparing the system with one where the solid phase is removed,
so that Theorem 2 becomes applicable. We will rely on the following lemma.

LEMMA 5 (Truncation). Fix x € Z}, and let X be obtained by zeroing the first L co-
ordinates. Then the processes X, X obtained by applying the graphical construction to x, X

satisfy
L(l+1t
[dw< Z5x,<z>, Z5x mﬂ ( ).

PROOF. By (24), we have X\(t) < X (¢t) for all t > 0. In particular,

Yo xin-Xin|= Y. Xi— Y. Xi@.

i=L+1 i=L+1 i=L+1

Now, observe that the right-hand side equals zero when ¢ = 0, and that the only jumps of
the form (23) that may increment it (by 1 unit each time) are those whose source i is in [L].
Consequently,

n
(83) E[ > X0 — X"”'} <E[E([0,1] x [0, 1] x [L] x [n])] = Lt.
i=L+1
On the other hand, by definition of the total-variation distance, we have
( Z‘SX (L2 ZaX (l)> ZI(X O#Xi (1)
1_1

To conclude, we simply bound I(Xi(t)sé)?i(t)) by 1 fori < L,andby | X;(¢) — )A(l- ()| fori > L.
O

PROOF OF PROPOSITION 4. If L =0, then ||x|| = o(n), so Theorem 2 ensures that for
fixed t > 0,

(84) IrL‘nCaé]]P’x(X(nt) € A)—n(A)| — 0.
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Since the event A in Lemma 4 satisfies 7(A) — 0, we must have P, (X (nt) € A) — 0. Thus,

1 & _
E, |:dTV (; ; 3X;(nt)> CI(P)>:| m 0.

On the other hand, we have dpv (ﬁ(%), q(p)) — 0, so the case L =0 is proved. Now, assume
that x satisfies (79) for some L > 1, and let X be as in Lemma 5. Then ||X||oc = 0(n) by
construction, so the case L = 0 with 71 :=m — (x| + - - - + x) particles instead of m implies

E|d Ly d% a(™ 0
v ;; Xi(nr)’q<;> oo
On the other hand, under the coupling of Lemma 5, we have
1 & 1 & 1
E| dov( Y85,y Yobxom ) [<L(r+ )
i i n
Finally, Remark 1 implies that

BE)( 5, 1)1

L L
2 Xi(n) = xi
i=L+1 i=1 i=1

and the right-hand side has mean at most 2L¢ by (25). By the triangle inequality, we conclude
that

’

, 1 (1 &
hmsupEx[dTV<;;8Xi(m),q(; > Xi(nt))>] <3Lt.

This may seem rather weak compared to what we want to establish. However, by (80), we
may apply this result with x replaced by X (ns) and then invoke the Markov property to obtain

1 & 1 &
limsupEx[dTv(;Zaxi(ns—i-nt)’a(; Z Xi(ns+nt)))i|§3Lt,

oo i=1 i=L+1
for any s > 0 and 7 > 0. Replacing ¢ with ¢ and s with ¢t — ¢, we see that for any 0 < ¢ <7,

. 1 {1 &
llmsupEx|:dTv<;§8Xi(n,)—q( Z X,-(nt))>:| <3Le.

n—oo n i=L+1

Since & can be made arbitrarily small, the first claim (81) follows. Finally, the second claim
(82) is an immediate consequence of the first claim and the general fact that

(85) ‘fhdu—fhdv

for any probability measures w, v and any (measurable) observable & on a measurable space.
OJ

< |lhllccdrv(pt, v),

3.3. Tightness and convergence. We are now ready to prove Theorem 3, using the clas-
sical tightness-uniqueness strategy (see, e.g., [11]). Define

Xi(nt)

(86) Ul (t) == and V(1) := /Ot(l—g“(ns))ds.

The fact that U}'(¢) € [0, 0] and the domination (25) suffice to guarantee the tightness of
(U/")n=>1 in the Skorokhod space D(R,R), and the continuity of any weak sub-sequential
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limit U}. The same conclusion applies to (V"),>1, because ¢ is [0, 1]-valued. Our objective
is to show that necessarily

(87) U =[u; — fl+.

By diagonal extraction, we may find a sub-sequence along which we have the joint conver-
gence

(88) (V" UM UL, ..)— (V* UL US...),

with respect to the product topology. By Skorokhod’s theorem (see, e.g., [2]), we may even
assume for convenience that the convergence (88) is almost sure. Our plan is to pass to the
limit in the martingale

t

(89) M (t):=U"(t) - U (0)+ V"(t) — /0 (1 =r(nU(s)))ds,

which is just a rescaled version of (28). Since U;' has jumps of size at most % occurring at
rate at most 2n, a classical concentration estimate for martingales (see, e.g., [28], Lemma 2.1)
ensures that

(90) M} (t) — 0,

n—oo
almost surely. On the other hand, (31) easily imply that for fixed ¢, & > 0,
1) lim supmfl)i{Ul?’ (t+h)—[U(t) = 8h], } <0,

n—oo IL€[n
which shows in particular that U (t +h) < [U}(t) —8h] . Thus, U} is nonincreasing. Conse-
quently, on the event {U(¢) > 0}, we have U*(s) > Oforall s <t,and hence r (nU/" (s)) — 1,
by our assumption (6). Passing to the limit in (89), we conclude that the equality

92) U () =ui = V*(1),

holds as long as U} (¢) > 0. But both sides of (92) are continuous and nonincreasing, so they
must reach zero at the same time. Since the left-hand side is nonnegative, we conclude that
forallt > 0.

(93) U () = [ui — V*(0)],.

Comparing this with (87), we now only have to show that V* solves (59), that is,

(94) V*(t):/ot{l—\I/_1<,0—2Ui*(s)>}ds.
i=1

Fix a nonnegative integer L. Taking t =0 in (91), we deduce that
(95) limsup max U/'(h) <[up+1 — Shl+.
n—oo L<i<n

Choosing h = ”La“ ensures that the right-hand side is zero. Consequently, we may apply

(82) with the initial state being X (nh) and use Markov’s property to obtain that for any fixed
t>h,

(96) Ex [

L
t(nt) —w-! (% - U,.”(t))” ——0.
i=1

On the other hand, by continuity of W1 we have almost surely,

L L
(97) g (% - Uf(r)) —— ! (p -y U,-*(t)).
i=1

i=1
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Moreover, we can safely replace L by oo on the right-hand side, because (95) ensures that
U7 (t) =0 forall i > L. Combining this with (96), we arrive at

o0
—1 *
(98) Ex[ C(nt) — W <p—;U,. (t))H ——0.
1=
This is true for any ¢ > h, but h = % can be made arbitrarily small by choosing L large,

s0 (98) holds for any ¢ > 0. Integrating over ¢, we easily deduce (94). Finally, note that the
convergence

(99) Ul ——= lui — f1+

1

is automatically uniform on compact subsets of R, because the limit is continuous. It is also
uniform in 7, because (95) ensures that maxy <;<, U;' (h) can be made arbitrarily small by
choosing L large enough, uniformly in #n. This concludes the proof of Theorem 3.
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