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Monitoring computer network traffic for anomalous behaviour presents
an important security challenge. Arrivals of new edges in a network graph
represent connections between a client and server pair not previously ob-
served, and in rare cases these might suggest the presence of intruders or mali-
cious implants. We propose a Bayesian model and anomaly detection method
for simultaneously characterising existing network structure and modelling
likely new edge formation. The method is demonstrated on real computer
network authentication data and successfully identifies some machines which
are known to be compromised.

1. Introduction. Statistical anomaly detection can complement existing, typ-
ically “signature-based” enterprise network defence systems which monitor for
known security violations. In contrast, anomaly-based methods use probability
models for the normal evolution of a network and look for any significant de-
viations (Neil et al. (2013), Turcotte, Heard and Neil (2014)). Signature-based
methods rely on databases of known compromises (Cahill et al. (2002)), and are
therefore less well suited to detecting rare or new infections; anomaly detection
methods face a more difficult task, but allow possible identification of new, un-
known attack vectors (Patcha and Park (2007)).

Computer network traffic data can be collected from network routers as an on-
line stream of connection events, which will be summarised here as a continuous-
time stochastic process of time-varying directed graphs {Gt }: Assuming poten-
tially very large but fixed candidate sets of client nodes X and server nodes Y ,
{Gt } will be a time-increasing set of directed edges in X × Y , such that an edge
(x, y) exists from x ∈ X to y ∈ Y in Gt if and only if client x has connected to
server y by time t .

An intruder gaining a foothold in a computer network at time t may initially
have very limited or no information about the previous communication patterns
summarised by Gt . Therefore the intruder, despite not wishing to stand out in
the network traffic, may be more likely to initiate new connections between hosts
which have never communicated before. Such activity can provide a valuable sig-
nal for detecting the presence of the intruder. However, performing meaningful
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anomaly detection on the arrivals of new edges is nontrivial since new connections
occur at a relatively high frequency for legitimate reasons, and with considerable
heterogeneity between different network hosts.

A robust statistical model of edge formation for anomaly detection requires
two distinct components: First, we require an understanding of the rate at which
individual client hosts form new edges. Second and more challenging, we must
predict the identity of new edges formed by each client; what could be an unsur-
prising connection for some hosts could be a very unusual connection for others.
In the absence of further information about the structure of the network, the sec-
ond consideration requires development of a notion of similarity of network hosts,
such that similar clients may connect to similar servers; here, similarity will be
considered under hard-thresholding with a clustering model, or soft-thresholding
in a latent feature space.

We propose a point process modelling framework for directed (client, server)
edges in the computer network. Specifically, we propose a Bayesian semi-
parametric Cox model for the conditional intensity function of each potential
(client, server) edge being made across the entire network, which addresses both
the rates at which the client forms new edges and any underlying latent structural
relationship between the clients and servers in the network. For the latter, the co-
variates in the Cox model will include unobserved structural features inferred from
historic connections, encoding first cluster memberships and subsequently more
flexible dot-products of respective latent feature positions. Both models allow us
to examine whether shared connectivity is predictive of similar future interactions.

Expressing the arrivals of connections as a point process is a natural choice
for modelling network interactions which has been used before in the analysis of
evolving networks. In particular, Perry and Wolfe (2013) employ a Cox hazard
model to predict interactions in communication networks, based on both the his-
tory of interactions and the node attributes. Similarly, we use a Cox proportional
hazards model, but we focus on the stochastic intensity of each new (client, server)
connection in the network, and we propose a different formulation of the baseline
intensity, which will be common to all network hosts. In addition, we construct tai-
lored covariates, which are better-suited for capturing both the heavy-tailed com-
ponent and the underlying structure of complex computer networks. Such a model
will allow to detect specific clients responsible for causing anomalous behaviour,
potentially offering a stronger detection power. Following a similar perspective,
autoregressive and Cox processes have been employed as potential point process
models (Taddy (2010), Zammit-Mangion et al. (2012)) of dynamic network. In
particular, multivariate self-exiting Hawkes processes have been recently used for
modelling arrivals of events in the fields of social networks (Linderman and Adams
(2014), Hall and Willett (2016), Li et al. (2017)) and crime data (Zhou, Zha and
Song (2013)). In the present work, the self-exiting nature of computer network
data, where specific events can be seen to occur in bursts and at particular times
of day, will be captured by the time-dependent covariates included in the model.
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Actor-based models have also been frequently used for modelling changes in net-
work behaviour over time (Snijders, van de Bunt and Steglich (2010)).

The remainder of this article is organised as follows: Section 2 describes a mo-
tivating computer network data stream that will be used to demonstrate our new
edge anomaly detection method. Section 3 introduces a mathematical formulation
for the aspects of computer network data which we will need, utilising counting
processes and marked point processes. Section 4 proposes a framework for mod-
elling the intensity of arrival of new edges, with the two specific latent feature
formulations outlined in Sections 5 and 6. Section 7 validates the methodology
proposed using synthetic data and then compares the performance of the two pro-
posed formulations on real computer authentication data, and Section 8 uses the
superior model to perform anomaly detection. Finally, Section 9 offers some con-
clusions.

2. LANL computer network authentication. The network traffic data used
for analysis consist of authentication events (Kent (2015a, 2015b)) collected over
58 days from the enterprise computer network at Los Alamos National Labora-
tory (LANL). Those 58 days yielded 336,806,387 time-stamped client-to-server
authentication events between 16,230 clients and 15,417 servers. Figure 1 shows
the respective outdegree and indegree distributions of clients and servers, where
the outdegree of a client is defined to be the number of unique server computers
receiving authentication requests from that client, while the indegree for a server
is the number of unique clients making authentication connections. Both degree
distributions follow an approximate power law, although the modal outdegree is
higher than the modal indegree, since the majority of servers have a very small
population of connecting clients.

FIG. 1. Log-log plot of the degree distributions for clients (left) and servers (right) in the LANL
computer network authentication data.
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TABLE 1
Numbers of events and unique server computers connected to by four client computers in the LANL
authentication data identified as compromised (number of red team labelled events/total number of

events)

Event frequency Unique authenticated servers

Compromised client Red team Total Red team Total

C17693 701 1717 296 534
C18025 3 101 1 29
C19932 19 10,008 8 30
C22409 26 36,253 3 31

These authentication data provide an ideal benchmark for testing anomaly-
detection methods as they contain a “red team” penetration testing operation dur-
ing the period of data collection; a subset of 749 authentication connections have
been labelled as known compromise events. Table 1 shows how those events were
distributed across four compromised client machines.

As we will be restricting our interest to the formation of new edges over time,
Figure 2 shows a bar plot for the daily rate of occurrence of new edges, both for
the full “bulk” data and just for red team events. There are 134,688 new edges
created during the first day, corresponding to almost 35% of the total new edges
in the data. This is to be expected, as formation of new edges is a nonstationary
process; initially each client will establish a high number of new connections that
will later correspond to its regular traffic, while in the longer term the rate of new
edge formation will necessarily reduce, but will typically still be far from zero.
The compromised clients in the red team data do not conform to this model of

FIG. 2. Bar plots of the number of new edges formed during each day of traffic in the bulk data
(blue bars) and just in the red team data (red bars).
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normal new edge formation: from the 29 days of traffic, the largest number of
compromised new edges is formed during days 8 and 12.

3. Computer network traffic as a marked point process. We encode the
traffic observed on a computer network as a directed graph of connections from
a set of clients X to a set of servers Y , which can be naturally represented as a
time-varying bipartite graph; note that X and Y may refer to the same collection
of computers or IP addresses, but for these purposes they can be considered as
separate entities.

For the reminder of the article, the central quantity of interest for modelling the
formation of new edges in the bipartite graph will be the intensity at time t for
observing a new connection between a client computer x ∈ X and a server y ∈ Y ,
which will be denoted λxy(t). Its formal specification will be discussed in more
details in the next section, while here we provide a mathematical description of
some aspects of the computer network that will be necessary for our specification
of λxy(t).

Specifically, the arrivals of connections between computers can be expressed
as a marked point process (T ,E) = ((Tn)n≥1, (En)n≥1) where each random vari-
able Tn is an R

+-valued event time and En is a corresponding (X × Y)-valued
(client,server) mark. Let 0 ≤ t1 ≤ t2 ≤ · · · be the realised sequence of event times
and let en = (xn, yn) ∈ X × Y be the corresponding mark for the nth event.

From (T ,E) we define a continuous-time, left-continuous stochastic process of
random graphs {Gt |t ≥ 0} from the set of network graph edges observed. Formally,

Gt = {
(x, y)|(x, y) ∈ X × Y,Nx,y(t) > 0

}
,

where

(3.1) Nx,y(t) = ∑
n≥1

1[0,t)(tn)1(x,y)(en)

is the left-continuous counting process of connections from client x to server y

prior to time t . Note that edges first observed at time t are not included in Gt

in this formulation. Summing (3.1) over X or Y yields corresponding counting
processes of connections prior to time t from client x or to server y respectively,

Nx,·(t) = ∑
y∈Y

Nx,y(t), N·,y(t) = ∑
x∈X

Nx,y(t).

For client x, let (T x,Yx) = ((T x
n )n≥1, (Y

x
n )n≥1) be the subprocess for which

the client mark is x, corresponding to those indices n for which 1x(xn) = 1. We
will be interested in bursts of formation of new edges, so first define the binary
variables

ux
n = 1(X×Y )\Gtxn

{(
x, yx

n

)}
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such that ux
n = 1 if and only if the nth connection from client x is a new edge.

Then define

(3.2) Ix,1(t) =
{

1, Nx,·(t) = 0,

ux
Nx,·(t), Nx,·(t) ≥ 1;

and then recursively, for m ≥ 2,

(3.3) Ix,m(t) =
{
Ix,m−1(t), Nx,·(t) < m,

ux
Nx,·(t)−1Ix,m(t), Nx,·(t) ≥ m.

The binary variable Ix,m(t) will take value 1 if the last m connections made by
client x were each new, and therefore represent a burst of new edge formation of
length m.

Finally, from (T ,E) we define the subprocess (T ′,E ′) = ((T ′
n)n≥1, (E

′
n)n≥1)

of unique new edges observed in (T ,E), corresponding to those indices n for
which 1Gtn

{(xn, yn)} = 0. From the realised sequence of unique edges (e′
n)n≥1 =

((x′
n, y

′
n))n≥1, it is simple to define the time-varying outdegrees of clients and in-

degrees of servers: respectively,

(3.4) N+
x (t) = ∑

n≥1

1[0,t)

(
t ′n

)
1x

(
x′
n

)
, N−

y (t) = ∑
n≥1

1[0,t)

(
t ′n

)
1y

(
y′
n

)
.

4. New edge intensity model. We model the conditional intensity of a new
directed connection being formed for every possible (client, server) pair through a
Cox proportional hazards model (Cox (1972)) incorporating both static and time-
dependent covariates and a baseline hazard rate, whose shape will be determined
by a function r(t) ≥ 0. More specifically, the intensity at time t for observing a
new connection between a client computer x ∈ X and a server y ∈ Y is modelled
as the product of the baseline hazard and the exponential of a linear combination
of covariates,

(4.1) λxy(t) = r(t) exp
{
α · Dxy(t) + βxy · Zxy(t)

}
1(X×Y )\Gt

{
(x, y)

}
,

where Dxy(t) = (N+
x (t),N−

y (t), Ix,1(t), Ix,2(t)) and the corresponding coeffi-
cients α = (α1, . . . , α4) ∈ R

4; for each (x, y) ∈ X × Y , Zxy(t) ∈ R
k is a vector

of length k > 0 quantifying the relative attraction of client x to server y at time t ,
and βxy ∈ R

k . Note that the intensity (4.1) becomes zero once the pair (x, y) have
been observed. Furthermore, note that the model implies that the baseline inten-
sity r(t) is considered to be common to all network hosts and therefore a nuisance
parameter whose functional form does not affect the model inference. Despite this
assumption provides a vital inferential simplification, it will not always fully hold
in practice. Here, the assumption can be consider valid if no client-specific sea-
sonal, periodic patterns can be detected. The validity of this assumption will be
assessed in Section 7 for the real computer network data introduced in Section 2.
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The formulation of the conditional intensity (4.1) will be used throughout the
remainder of the article, and the quantity Zxy(t) will be of central interest. Its
specification, together with the other chosen covariates, will be discussed in the
next section.

The conditional intensity function for the counting process T ′ of new connec-
tions being made across the entire network is the double sum of (4.1) over X and
Y ,

(4.2) λ(t) = r(t)
∑
x∈X

∑
y∈Y

exp
{
α · Dxy(t) + βxy · Zxy(t)

}
1(X×Y )\Gt

{
(x, y)

}
.

4.1. Discussion of chosen regression covariates, Dxy(t). The population of
servers in an enterprise computer network typically has a heavily right-skewed
degree distribution, with a small number of servers having a very high indegree,
meaning they are connected to by most clients. Similarly, the outdegree distribu-
tion of clients can also follow a power law for large degree values, although very
small outdegrees are less common. These observations are illustrated for real data
in Figure 1. To incorporate this highly variable popularity of different client and
server machines into the model, we use the time-varying outdegree of each client
computer x and indegree of each server computer y defined in (3.4).

Furthermore, while compromised clients tend to form a large number of new
edges within a small period of time, study of computer traffic data suggests new
edges are also commonly formed in bursts by benign nodes. In Heard and Metelli
(2014) the indicator variables Ix,1 (3.2) and Ix,2 (3.3) were found to be strongly
significant predictors of the rate of occurrence of new edges in a computer net-
work. These two variables, which indicate whether the last connection was new, or
whether the last two connections were new, are therefore included in the model.

Finally, we propose a family of covariates {Zxy(t)|(x, y) ∈ X × Y, t ≥ 0} repre-
senting a general notion of attraction between clients and servers. Two alternative
formulations will be considered in the next two sections: a hard-threshold cluster-
ing model and a soft-threshold latent feature model.

The coefficients α in (4.1) could be viewed as nuisance parameters; the corre-
sponding covariates N+

x (t), N−
y (t), Ix,1(t), Ix,2(t) (which respectively measure

the relative connectivity of the client and server, and whether the client is currently
making a burst of new edges) have already shown in previous research (Heard and
Metelli (2016)) to be informative about the hazard of new edges. The question here
is whether, having accounted for these simple, intuitive covariates, we can find any
underlying latent structure in the network which can provide further information
about which (client, server) pairs might be particularly suited and therefore more
likely to connect; this will be measured by the inferred magnitude of the coeffi-
cients β = {βxy} in (4.1).
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4.2. Conditional likelihood-based Bayesian inference. Following Cox (1972),
we condition on the event times of T ′ of (T ′,E ′) and work with the conditional
likelihood of the event marks E ′|T ′. The conditional likelihood can be calculated
sequentially, as a product of predictive probabilities for the identities of each new
edge, given the corresponding event time and the previous edges formed so far.

Given time-ordered edges (t ′1, e′
1), . . . , (t

′
n−1, e

′
n−1), the predictive distribution

for the nth new edge is simply

(4.3)

PE′
n

{
(x, y)|(t ′1, e′

1
)
, . . . ,

(
t ′n−1, e

′
n−1

)
, t ′n

} = λxy(t
′
n)

λ(t ′n)

= exp{α · (N+
x (t ′n),N−

y (t ′n), Ix,1(t
′
n), Ix,2(t

′
n)) + βxy · Zxy(t

′
n)}∑

(x′,y′)/∈Gt ′n
exp{α · (N+

x′ (t ′n),N−
y′ (t ′n), Ix′,1(t ′n), Ix′,2(t ′n)) + βx′y′ · Zx′y′(t ′n)}

.

After observing n time-ordered edges (t ′1, e′
1), . . . , (t

′
n, e

′
n), the conditional like-

lihood is simply the product of these predictive probabilities,

(4.4)

P
(E ′|T ′, α,β, {Zxy}) =

n∏
i=1

PE′
i

{(
x′
i , y

′
i

)|(t ′1, e′
1
)
, . . . ,

(
t ′i−1, e

′
i−1

)
, t ′i

}

=
n∏

i=1

exp{α · (N+
x′
i
(t ′i ),N

−
y′
i
(t ′i ), Ix′

i ,1
(t ′i ), Ix′

i ,2
(t ′i )) + βx′

iy
′
i
· Zx′

iy
′
i
(t ′i )}∑

(x,y)/∈Gt ′
i

exp{α · (N+
x (t ′i ),N

−
y (t ′i ), Ix,1(t

′
i ), Ix,2(t

′
i )) + βxy · Zxy(t

′
i )}

.

For a Bayesian approach, we choose standard normal prior distributions for
components of α and the free parameters of β = {βxy |(x, y) ∈ X × Y }. Different
choices of prior distributions are discussed and analysed in the Supplementary
Material (Metelli and Heard (2019)), while the two proposed constructions for
{Zxy |(x, y) ∈ X × Y } and their respective prior distributions are now described in
Sections 5 and 6.

5. Clustering formulation. The first proposal for constructing Zxy(t) is to
build “peer group” clusters within both X and Y , based on similarity in connectiv-
ity patterns. The idea is that if many of the clients with similar connection patterns
to x also connect to server y, then perhaps it is more likely that x will form a
connection with y.

We first define a generalisation of the outdegrees and indegrees, respectively, of
clients and servers (3.4) by considering the degree of a node in the bipartite graph
restricted to subsets of clients or servers: For C ⊆ X and S ⊆ Y , let

N+
x|S(t) = ∑

n≥1

1[0,t)

(
t ′n

)
1x

(
x′
n

)
1S

(
y′
n

)
, N−

y|C(t) = ∑
n≥1

1[0,t)

(
t ′n

)
1y

(
y′
n

)
1C

(
x′
n

)
.

In words, N+
x|S(t), for example, is the number of servers in S connected to by client

x, prior to time t .
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Let C = {C1, . . . ,CL} be a partition of X, and S = {S1, . . . , SM} a partition
of Y . Then, in a slight abuse of notation, let C(x) ∈ C be the unique cluster con-
taining client x, and S(y) ∈ S be the cluster containing server y. Then based on
these clustering configurations, define the attraction covariate for the pair (x, y) as

(5.1) Zxy(t) = (
N+

x|S(y)(t),N
−
y|C(x)(t)

)
.

For L ≥ 1 client clusters and M ≥ 1 server clusters, the specification (5.1) for
Zxy(t) implies LM free parameters for β = {βxy}, which are assigned indepen-
dent standard normal priors. To complete a Bayesian model specification, the prior
distributions for the clustering configurations C and S are assumed uniform over
the space of all possible configurations. As most clustering models, the model pre-
sented here takes a class-oriented representation similar to stochastic blockmodels
(Holland, Laskey and Leinhardt (1983), Rohe, Chatterjee and Yu (2011), Sussman
et al. (2012)) where each entity can only be assigned to a single row or column
cluster. This assumption will be relaxed in the next section, where each client and
each server will be associated with a vector of latent features, and the two perfor-
mance will be then compared in Section 7.

Under the conditional likelihood (4.4), posterior inference is required for the
joint distribution of all unknown parameters,

P
(
α,β,C,S|T ′,E ′) ∝ P

(
E ′|T ′, α,β, {Zxy})P(α)P(β|C,S)P(C)P(S).

As for most Bayesian models, exact inference is not analytically tractable and so
Markov chain Monte Carlo (MCMC) simulation is required to perform posterior
inference. Details of the MCMC simulation employed can be found in the Supple-
mentary Material, while below we describe a spectral clustering approach used to
provide initial cluster configurations to seed the MCMC sampling algorithm.

5.1. Spectral biclustering. For notational convenience, suppose here that the
clients and servers have been numbered such that X = {1, . . . , |X|} and Y =
{1, . . . , |Y |}. After observing n edges (x′

1, y
′
1), . . . , (x

′
n, y

′
n), let A ∈ {0,1}|X|×|Y | be

the |X| × |Y | adjacency matrix with entries Ax,y = ∑n
i=1 1(x,y){(x′

i , y
′
i)} indicat-

ing which of the possible edges have been observed. Let DX and DY be diagonal
matrices of the row and column sums of A, respectively, equal to the outdegrees
of clients and indegrees of servers.

The commonly used spectral biclustering algorithm of Dhillon (2001) and Cho
et al. (2004) calculates a truncated-singular value decomposition of

(5.2) D
−1/2
X AD

−1/2
Y .

In this context, the left singular-vectors of (5.2) correspond to the clients pro-
jected into a K-dimensional latent space, and similarly the right singular vectors
correspond to latent-space positions for the servers. Performing k-means cluster-
ing on these latent representations yields cluster configurations of the clients and
the servers.
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6. Latent feature formulation. In Section 5.1, latent-space representations
were used as data locations within a clustering algorithm, for grouping together
similar clients or servers. Latent features increase the flexibility of the generative
process of class-oriented models by letting each entity be associated with a vector
of latent features. In this representation, the latent-space vectors for each client
and each server of the network graph have a common but potentially unbounded
dimension K < ∞. The latent positions are then combined by a simple dot-product
(Rubin-Delanchy et al. (2017)) to provide a score of attraction between clients and
servers.

Let U = (u1, . . . , u|X|) ∈ R
|X|×K,V = (v1, . . . , v|Y |) ∈ R

|Y |×K be matrices
containing the K-dimensional, real-valued latent feature vectors for the client and
server computers respectively. Then the latent feature model score of attraction
between client x and server y is simply given by

(6.1) Zxy = ux · vy
T .

Note that (6.1) is fixed and not time-varying. The time-varying nature of the socia-
bility among clients and servers is here captured by the baseline intensity, which is
assumed to incorporate the seasonal diurnal behaviour of the network, with traffic
network more dense at specific times of the day.

Furthermore, since the magnitude of the vectors ux and vy provide a sociability
effect for each client x or server y respectively, we restrict the {βxy} regression
coefficients to a single constant

βxy = β,

implying just one free parameter β which is assigned a standard normal prior dis-
tribution. Again, different choices of normal prior distributions are evaluated in the
Supplementary Material.

To specify a prior distribution on the triple (K,U,V ), we look to introduce
some cluster structure in the features by encouraging sparsity in the matrices U

and V , so that each client/server only possesses a subset of the possible latent
feature measurements. The cluster feature matrix U is therefore decomposed into
two components: a binary matrix �U ∈ {0,1}|X|×K with entry �xk = 1 if and
only if client x possesses feature k, and a second matrix Ũ ∈ R

|X|×K comprising
the continuous feature values of each feature for each client. The feature matrix U

can then be expressed as the elementwise Hadamard product of these two matrices,

U = �U 
 Ũ .

Similarly, the server feature matrix V = (v1, . . . , v|Y |) ∈ R
|Y |×K is expressed as

the Hadamard product of matrices �V ∈ {0,1}|Y |×K and Ṽ ∈ R
|Y |×K ,

V = �V 
 Ṽ .

For determining K and the subset of features selected for each client and server,
independent Indian buffet process (IBP) priors (Ghahramani, Griffiths and Sollich
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FIG. 3. An illustration of the Indian Buffet Process for the client binary matrix �U . (a) The first
client samples Poisson(θ) features, which is recorded by changing the corresponding entries of �U

to one. (b) and (c) For the xth client, the first step is activating the previously sampled features with
probability proportional to the number of clients who already have these features active, while the
next step is to activate Poisson(θ/x) new features.

(2007)) with Poisson parameter θ > 0 are assigned to �U and �V . The IBP de-
fines a distribution over the rows of an infinite binary matrix, which is most easily
described sequentially with an illustration; the construction is described for the ex-
ample of the client matrix �U in Figure 3. The IBP assumes exchangeability of
the rows of �U and �V , so each client and server has an expected number of fea-
tures equal to the Poisson parameter θ . If KU (KV ) is the total number of features
activated within �U (�V ), then the resulting dimension for the model is taken to
be the maximum, K = max{KU,KV }. Conditional on K , the continuous-valued
entries of Ũ and Ṽ are assigned independent standard normal priors.

Note that there is a slight identifiability issue between the free matrix entries of
U , V and the single coefficient β . However, the relative dimensionality of the large
matrices against a single scalar means that if the event data support a strong latent
feature effect, under the chosen priors this will be reflected through the parameter
β which incurs just a single penalty.

Given the conditional likelihood (4.4), the joint posterior distribution is given
up to proportionality by

P
(
α,β,U,V |T ′,E ′) ∝ P

(
E ′|T ′, α,β,U,V

)
P(α)P(β)P(U)P(V ).

Full details on posterior inference for α, β , U and V can be found in the Sup-
plementary Material. Following Section 5, we use a truncated-singular value de-
composition with imposed sparsity to provide initial low-rank latent positions for
clients and servers, which is then used to seed MCMC sampling.
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6.1. Sparse truncated SVD. In Section 5, truncated-singular value decompo-
sition was applied to a normalised transformation (5.2) of the binary adjacency
matrix A. Under the latent feature formulation, we have obtained best results from
using a weighted adjacency matrix whose (x, y) entry is an empirical estimate of
the intensity of connections between client x and server y. From observing the
arrivals of new connections over a time interval [0, T ], we construct a |X| × |Y |
matrix, denoted �̂, where the (x, y) component �̂xy is an estimate of the intensity
in (4.1) obtained from a simplistic conjugate Bayesian model. For the stochastic
process of directed graphs {Gt |t ≥ 0}, define the random variable

(6.2) Txy = inf
t

{
t |(x, y) ∈ Gt

}
,

as the waiting time until the edge (x, y) is first observed. For a simple Bayesian
model, we suppose Txy ∼ Exp(�xy), with conjugate prior for the unknown inten-
sity �xy ∼ �(γ,υ). Correspondingly, let

(6.3) t̃xy =
{
Txy, Txy ≤ T ,

T , Txy > T ,

be the observed value, or else a right-censoring time, for (6.2) after observing the
evolution of Gt on [0, T ]. Then conditioning on this observed value (6.3), the
posterior distribution for the intensity is straightforward,

�xy |t̃xy ∼ �
(
γ + 1[0,T ](txy), υ + txy

)
.

This yields the posterior mean estimate for the (x, y) entry of �,

�̂xy = γ + 1[0,T ](t̃xy)

υ + t̃xy

.

Note that �̂xy is decreasing as a function of t̃xy , meaning that a first observa-
tion of (x,y) early on in [0, T ] gives a higher adjacency value. From taking the
truncated-singular value decomposition of �̂, the left singular vectors correspond
to the client computers projected into a K-dimensional latent space, and the right
singular vectors corresponding to the servers.

Inducing sparsity penalties. Under the IBP prior, the implied assumption for
�U and �V is to retain only a sparse subset of an unbounded number of features.
Thus, to obtain initial matrices resembling draws from an IBP we need to enforce
sparsity on both the left and the right singular vectors obtained above from the
truncated-SVD of �̂. This can be achieved by interpreting these singular vectors as
the regression coefficients of a linear regression and then imposing adaptive lasso
penalties to the least square regression (Lee et al. (2010)). For a triplet (s, u, v)

of u, v singular vectors and scalar singular value s, we minimise the following
penalised sum-of-squares criterion with respect to (s, u, v),∥∥�̂ − suvT

∥∥2
F + ρuP1(s, u) + ρvP2(s, v),
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where P1(s, u) and P2(s, v) are sparsity-inducing penalty terms and ρu and ρv

tuning parameters that determine the amount of regularisation. Furthermore, the
sparseness of U and V can strongly depend on the choice of the penalisa-
tion parameters; hence, following Sill et al. (2011), we use stability selection
(Meinshausen and Bühlmann (2010)) to obtain stable penalisation parameters and
to control the degree of sparsity.

7. Results. Before proceeding with anomaly detection, in this section we
evaluate the plausibility of the two proposed model formulations on simulated data
and then we apply the methodology on real computer network data, assessing the
strength of the effects of each included covariate as well as the goodness-of-fit,
for both the cluster and latent feature model. In both cases, we use 5000 MCMC
iterations with a burn-in period of size 1000.

7.1. Synthetic data. In this section we validate the proposed methodology on
synthetic data generated from both model formulations, respectively introduced
in Section 5 and Section 6. For each model, we simulate 100,000 events and we
set the nuisance parameters to α1 = α2 = α3 = α4 = 1.5. For the sociability pa-
rameters, we set β1,l = 2 for l = 1, . . . ,L and β2,m = 2 for m = 1, . . . ,M for the
clustering formulation, while for the latent formulation we set the single latent
features coefficient to β = 2. We can confirm the accuracy of the methodology by
plotting the estimated intensity function for a specific (x, y) pair against the true
intensity for the simulated model in Figure 4. The intensity can be modulated up
or down according to the pair’s covariates: here the most significant peak in in-
tensity occurs after observing a bursts of new edges in the previous times, where

FIG. 4. True model intensity along with estimated model intensity (with 95% HPD range in grey)
for the clustering formulation (left) and latent formulation (right) for the first 56 time units before
the new edge event occurred.
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FIG. 5. Trace plots of sociability parameter posterior distributions under both model formulations.

most of the server computers observed in the bursts belong to the same cluster
as server y, thus increasing the hazard of observing that particular server in the
next following times. The shaded region indicates the 95% highest posterior den-
sity (HDP) credible intervals for the posterior intensity. We note that the estimates
and credible intervals appear more precise when the flexible, latent feature model
formulation is used. Then, Figure 5 shows the trace plots of the posterior distribu-
tions of the parameters of interest. For the cluster formulation, to allow coherent
posterior model averaging across the variable dimensions L and M (cf. Section 5),
we report the mean coefficients β̄1 = ∑L

l=1 β1,l/L and β̄2 = ∑M
m=1 β2,m/M re-

spectively, summarising the coefficients over the fitted client and server clusters.
For both models, convergence to the stationary distribution is reached in less than
5000 MCMC iterations. Finally, in Figure 6 we plot the posterior distribution of
the model parameters of main interest along with the true parameters (indicated by
a red vertical line) used in the simulation.

7.2. Application to real authentication data. In this section, we apply the
methodology proposed in Section 5 and Section 6 to the real computer network

FIG. 6. Histograms for the sampled posterior parameter distributions for the parameters of main
interest, with true values (solid lines).
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data described in Section 2. For computational tractability, we have tested our
method on a sample of event data from a random selection of 1000 clients. These
events were combined with the red team event data for analysis; to demonstrate
robustness 15 repetitions of this sampling procedure were performed, to cover the
entire population of client computers. The Supplementary Material contains de-
tails on the MCMC iteration procedure used and posterior checking to inspect
convergence.

7.2.1. Proportional hazards assumption. As stated in Section 4.2, a key fea-
ture of model (4.1) is to consider the baseline intensity λ(t) as a nuisance
parameter—common to all network hosts—whose functional form does not affect
model inference. To ensure both model formulations proposed can be considered
valid, we need to test this assumption in the context of computer network data
before focusing on covariate effects and goodness-of-fit. In particular, we are in-
terested in analysing whether the empirical distributions of the event times of each
client in the network can be considered homogeneous: if no significant difference
can be found, then it is plausible to assume that the baseline intensity function
reflects the sinusoidal diurnal behaviour of the network, with traffic more dense
at specific times of the day, thus being a common nuisance to all network hosts.
To this end, we employ a k-sample Anderson–Darling test (Scholz and Stephens
(1987)), which is a nonparametric test for the hypothesis that k samples belong
to the same population. Here we have k = |X|. Let F̂1, . . . , F̂|X| be the empirical
distributions of event times t for each client x and ĜN that of the pooled sample
of all N = n1 + · · · + n|X| event times. The test statistic is then given by

A2|X|,N =
|X|∑
x=1

nx

∫
S

{F̂x,nx (t) − ĜN(t)}2

ĜN(t){1 − ĜN(t)} dĜN(t),

where S = {t : ĜN(t) < 1}. Under the null hypothesis, it can be shown that the
test statistic has asymptotically the same distribution as

∑∞
x=1

1
x(x+1)

Z2
x , with Z2

x

i.i.d. χ2 random variables with |X| − 1 degrees of freedom. The percentiles of
this limiting null distribution can be approximated by means of Pearson curves
(Solomon and Stephens (1978)). Here, this test yields a nonsignificant estimated
p-value of 0.432, validating the reasonability of the model in the proposed context.

7.2.2. Covariate effects. The posterior means of model coefficients and box-
plots of their 95% HPD credible intervals, under both the cluster formulation and
the latent-feature formulation, are shown in Figures 7 and 8 respectively. The pos-
terior estimates of the parameters are all significantly positive, with an acceptably
small level of variation across samples. For the nuisance parameters α, this con-
firms the popularity effect for both client and servers, where computers that have
many connecting neighbours are more likely to make further connections, and also
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FIG. 7. Posterior estimates coefficients under the cluster formulation, with credible intervals.

the presence of bursts of new edge formation by clients. More interestingly, the
significant β parameters confirm that strong additional information is provided by
the identity of the links already formed and the latent communities they suggest,
whether this is characterised by hard clustering of clients and servers, or softer
partitioning through a dot-product model using latent positions.

Figure 8 shows four sets of estimates for the latent-feature model. The bullet
points correspond to the full inference procedure proposed in Section 6 and the
Supplementary Material, where sparse truncated SVD is used to seed an MCMC
exploration of the variable dimension latent feature space, while the diamond
points correspond to a simpler finite latent feature beta-Bernoulli (BeP) process
with K known number of features, used for the purpose of comparison. As shown
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FIG. 8. Four sets of posterior estimates coefficients under the latent feature formulation, with cred-
ible intervals, obtained from full MCMC under the IBP ( ), finite BP MCMC ( ), sparse truncated
SVD with stability selection ( ), and standard truncated SVD ( ).

in Ghahramani, Griffiths and Sollich (2007), the generative BeP process taking the
limit as K → ∞ corresponds to the IBP detailed in Section 6. The other two sets
of points represent the resulting estimates from not performing MCMC and just
using the truncated SVD to propose latent features, either with sparsity imposed
(square points) or with no sparsity (triangle points). When using sparsity penal-
ties, we have tested the matrix �̂ against normality, as stability selection has been
introduced for standard regression models with gaussian errors: Shapiro–Wilks
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FIG. 9. Scree plot of SVD eigenvalues for the first sample analysed, in the range [0,30], with the
characteristic elbow occurring at K = 5.

normality tests, which can be found in the Supplementary Material, confirm that
�̂ is approximately normally distributed.

To ensure a meaningful comparison of these coefficients, after MCMC the latent
positions U and V from the IBP processes are rescaled so that the mean absolute
value of the features {Zxy} is the same as that from the initial values from sparse
truncated SVD. This is necessary as both U and V are allowed to change dimen-
sion during each MCMC step. In each case the coefficients are all significantly
positive. In particular, all the coefficient estimates in Figure 8 are higher in magni-
tude when using the full inference procedure, suggesting that there is considerably
more structure in the data and the MCMC exploration of the feature space un-
der the IBP is worthwhile for identifying more significant latent feature covariates
compared to both updating the latent positions under a simpler, finite model and to
not performing any update move on the initial latent positions.

Figure 9 shows the scree plot of the SVD eigenvalues in the simplest case when
no sparsity is imposed. Here K = 5 appears to be a suitable choice. When per-
forming sparse truncated-SVD incorporating stability selection, a dimensionality
of K = 6 is automatically chosen. Figure 10 shows the trace plot of the number

FIG. 10. Number of active latent features during the MCMC run (IBP).
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of active features from MCMC in the full inference procedure; there is some mix-
ing, and the resulting posterior distribution has a strong mode at K = 8, and some
small probability associated with K = 9.

7.2.3. Goodness-of-fit. For assessing fit, we focus on the posterior predic-
tive distribution (4.3) of each new edge observed in (T ′,E ′), calculating a cor-
responding p-value. After observing time-ordered edges (t ′1, e′

1), . . . , (t
′
n−1, e

′
n−1),

let e′
n = (x′

n, y
′
n) be the nth edge in (T ′,E ′), observed at time t ′n. The model partial

likelihood for observing a new edge at time t ′n is given by

(7.1) n(x, y) = λxy(t
′
n)∑

(x,y)/∈Gt ′n
λxy(t ′n)

,

where 0 ≤ n(x, y) ≤ 1 and
∑

(x,y)/∈Gt ′n
n(x, y) = 1. Then, a discrete p-value for

e′
n, denoted pn, can be most simply obtained by summing (7.1) over all edges no

more probable than the observed edge e′
n:

(7.2) pn = ∑
(x,y)/∈Gt ′n

n(x, y)1(0,n(x′
n,y′

n)]
{
n(x, y)

}
.

To test for model fit, we perform a Kolmogorov–Smirnov (KS) test for the se-
quence of observed p-values from (7.2). As these p-values are generated from dis-
crete random variables and so are stochastically larger than uniform, randomised
p-values (Pearson (1933))—which will be marginally uniform on the unit interval
if the model is correct—were used to perform the test. As shown in Figure 11,
the distributions of the observed p-values under both model formulations are ap-
proximately uniform, and the KS tests yielded p-values of 0.364 and 0.678 for the
cluster and latent feature models respectively.

FIG. 11. Empirical cumulative distribution of the observed p-values under the cluster model (left)
and the latent feature model (right), against the Uniform(0,1) cumulative distribution function.
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TABLE 2
Likelihood ratios for the three different model settings

Comparison Likelihood ratio

MCMC (IBP) vs MCMC (BeP) 2.93
MCMC (IBP) vs Sparse SVD with stability selection 3.07
MCMC (IBP) vs SVD 2.32

The predictive performance of the latent feature model using the different in-
ference methods used in Figure 8 was assessed on 100,000 out-of-training sample
authentication events. Table 2 reports the averaged likelihood ratios, showing that
performing full MCMC under the IBP leads to a distinct improvement in model fit.
In particular, the additional layer of flexibility introduced by the IBP yields better
predictive performance than the simpler, finite BeP model. In addition, when no
MCMC moves are performed on the latent matrices, the plain SVD leads to better
results than the sparse decomposition, which in this case may just remove useful
information; clearly the extra effort of MCMC is required to find a useful sparse
solution.

Finally, the predictive performance and computational efficiency of the cluster-
ing and latent feature models are compared in Table 3. We also report the AUC
score, the area under the ROC curve, for the held-out data. These results confirm
that the latent feature model, under the IBP prior, outperforms the cluster model
in terms of likelihood. Unfortunately, this comes at a cost of a substantially longer
running time for the MCMC sampler. Most of the MCMC computing time is spent
recalculating the likelihood function: even if only one element of the latent posi-
tion vectors is changed, the likelihood can still only be updated in O(K2) time.

8. Anomaly detection. For anomaly detection in cyber-security, we are con-
cerned with determining if the new authentication connections observed over some
time period can be regarded as relatively normal with respect to the learned inten-
sity model (4.2) or whether they should be flagged as anomalous. For this objec-
tive, we can utilise the sequence of predictive p-values (pn)n≥1 (7.2) derived from

TABLE 3
Log-likelihoods, AUC score and average MCMC computation time for
10,000 out-of-training authentication events under the clustering and

later feature models

Model formulation Log-likelihood AUC Iteration time

Cluster −18802.34 0.9352 81.4 s
Latent-feature (IBP) −18389.93 0.9745 131.7 s
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the sequence of new edges (T ′,E ′) = ((T ′
n)n≥1, (E

′
n)n≥1) arriving in the dynamic

graph Gt .

8.1. Combining p-values. To identify local deviations in the network, we are
interested in finding anomalous behaviour over time for specific client comput-
ers (alternatively, interest could equally be focused on servers). For client x, let
(T ′x,Y ′x) = ((T ′x

n )n≥1, (Y
′x
n )n≥1) be the subprocess of the new edge process

(T ′,E ′) for which the client mark is x, corresponding to those indices n for which
1x(xn) = 1. Let (px

n)n≥1 be the corresponding subsequence of p-values from (7.2)
relating to client x. Under the null hypothesis of no attack and the model of nor-
mality holding, the p-values are approximately uniformly distributed on the unit
interval. To find anomalous clients in the network we need to combine the p-
values for each client x to provide a single, time-varying score of surprise. This is
a canonical p-value combination problem often performed with Fisher’s method
(Fisher (1925)), which we here used to define a control chart

(8.1) sx(t) = χ̄2
2{1+N+

x (t)}
(
−2

∑
n≥1

1[0,t)

(
t ′xn

)
logpx

n

)
,

where N+
x (t) is the outdegree of client x approaching time t and χ̄2

ν (·) is the sur-
vivor function of the chi-squared distribution with ν degrees of freedom. Note
that by extension from (px

n)n≥1, the quantity sx(t) for any t ≥ 0, is also approxi-
mately uniform on the unit interval. Extreme, small values of (8.1) correspond to
anomalous behaviour with surprising new edge formation, and so we are typically
interested in anomaly scores such as

(8.2) inf
t≥0

sx(t).

Note that the distribution of (8.2) will vary for different clients x, since some
clients make many more new connections than others (see Figure 1). For this
reason, tailored rejection regions for each client, based on their number of con-
nections, must be calculated by simple Monte Carlo estimation.

8.2. Results. We restrict attention to the latent-feature model, which was
shown in Section 7 to have the highest predictive accuracy. Figure 12 shows the
p-values (7.2) and control chart scores (8.1) on the log-scale for two of the known
compromised clients (C17693, C19932), and two randomly selected uninfected
clients (C349, C586). In both infected cases we can see some extreme values in
the p-values and the control charts, leading to clear detection at the indicated 1%
and 0.1% significance thresholds; in contrast, the control charts of the uninfected
clients are seen to be relatively well behaved, staying well above the thresholds for
all t .

Figure 13 shows the receiver operating characteristic (ROC) curves, for each
of the 15 random sample repetitions, for the sequence of p-values (7.2) and the
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FIG. 12. Observed p-values ( ) over time and the corresponding control chart ( ) for two
compromised clients in the red team exercise (top left: C17693; top right: C19932) and two uninfected
clients in the bulk data (bottom left: C349; bottom right: C586). Control chart thresholds at the 1%
( ) and 0.1% ( ) significance levels are shown for each client.

FIG. 13. ROC curves for each client, for each sample repetition, shown on both linear (left) and
log scales (right).
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scores obtained using (8.2). In the right panel of the figure, focusing on low false
positive thresholds, we still see an encouraging number of true positives which we
would like to detect.

9. Discussion. This paper has proposed a Bayesian approach for simultane-
ously characterising latent network structure and predicting likely new edge for-
mation based on learning similarities between network hosts. Similarity has been
considered under hard-thresholding with a clustering model, or soft-thresholding
in a latent feature space.

The methodology has been shown to be well suited for modelling new edges in a
large network: results from both formulations showed considerable significance at-
tached to the time-varying covariates characterising evolving latent network struc-
ture, and strongly indicate the positive impact of introducing notions of client and
server similarities into the model. In particular, the most flexible, nonparametric
latent feature approach, utilising the Indian Buffet Process as a prior distribution,
has led to the highest performance in terms of predictive accuracy.

The method has shown to drive encouraging, although not conclusive, anomaly
detection performance in detecting compromised clients at low false positive rates.
Efficiently combining p-values, where most will be from the null distribution, is an
important problem often encountered in cyber-security applications, where only a
tiny proportion of activity will correspond to cyber threat. Thus, the choice of the
construction of the control chart could and should be adapted according to the
precise target of the anomaly detection scheme.

SUPPLEMENTARY MATERIAL

Supplement: Simulation study and posterior inference (DOI: 10.1214/19-
AOAS1286SUPP; .pdf). Details of the simulation study and Bayesian posterior
inference considered in this paper.
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