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PREDICTION OF SMALL AREA QUANTILES FOR THE
CONSERVATION EFFECTS ASSESSMENT PROJECT USING A

MIXED EFFECTS QUANTILE REGRESSION MODEL1

BY EMILY BERG AND DANHYANG LEE

Iowa State University and University of Alabama

Quantiles of the distributions of several measures of erosion are impor-
tant parameters in the Conservation Effects Assessment Project, a survey
intended to quantify soil and nutrient loss on crop fields. Because sample
sizes for domains of interest are too small to support reliable direct estima-
tors, model based methods are needed. Quantile regression is appealing for
CEAP because finding a single family of parametric models that adequately
describes the distributions of all variables is difficult and small area quan-
tiles are parameters of interest. We construct empirical Bayes predictors and
bootstrap mean squared error estimators based on the linearly interpolated
generalized Pareto distribution (LIGPD). We apply the procedures to predict
county-level quantiles for four types of erosion in Wisconsin and validate the
procedures through simulation.

1. Introduction. Agricultural production is associated with water and wind
erosion. The Natural Resources Conservation Service (NRCS) of the United States
Department of Agriculture (USDA) assists farmers with implementation of conser-
vation practices intended to mitigate erosion. With the partial aim of assessing the
impact of provisions in the 2002 farm bill that increased funding for conserva-
tion programs, the USDA initiated the Conservation Effects Assessment Project
(CEAP). The first national CEAP survey, conducted from 2003–2006, was fol-
lowed by four regional surveys in 2011–2014, and data processing for the 2015–
2016 national CEAP survey is ongoing.

The estimation domains for the 2003–2006 CEAP survey are 12 major water-
sheds (USDA/NRCS (2012)), regions of land in which water flows into relatively
large water bodies. For instance, the Upper Mississippi River Basin, which has
a CEAP sample size of approximately 3703 units, covers much of Wisconsin,
Minnesota and Iowa. Estimates for geographic regions, such as counties, that are
smaller than the twelve major watersheds can help direct conservation policies,
inform farmers’ decisions and provide a more detailed understanding of erosion.
Because sample sizes for counties intersecting the Upper Mississippi River Basin
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FIG. 1. Direct estimates of quantiles of sediment loss for Wisconsin with 95% confidence intervals.

typically range from 2 to 40, and some are less than 2, model based small area
estimation methods (Rao and Molina (2015)) are needed.

CEAP publications have estimates of the quantiles of the distributions of sev-
eral measures of erosion, including surface water runoff, sheet and rill erosion,
sediment, and the annual change in soil organic carbon. Figure 1, modeled after
similar plots in USDA/NRCS (2012), shows direct estimates of quantiles of sed-
iment loss for Wisconsin, along with upper and lower 95% confidence interval
limits calculated using the Woodruff (1952) method. For CEAP variables, such as
sediment, with skewed distributions, the median is a more interpretable estimator
of a typical value than the mean. Estimates of quartiles and extreme quantiles give
information on the distribution of erosion in the study domain. Estimates of mul-
tiple quantile levels are useful for assessing the efficacy of different conservation
strategies and for evaluating interactions between agriculture and the environment
more generally. As explained in Goebel and Kellogg (2002), “The most unusual
situations are often the most harmful relative to environmental factors; these are
in the tails of the statistical distributions of...variates and will be lost or averaged
out if only aggregate or representative values are used. This is an important con-
sideration when analyzing agri-environmental issues with any type of modeling.”
Our objective is to construct estimates of quantiles of the distributions of several
measures of erosion for Wisconsin counties and provide appropriate measures of
uncertainty.

Use of quantile regression to construct small area predictors of quantiles for
CEAP is appealing because quantile regression ties the estimation procedure to the
parameters of interest. To construct small area predictors of quantiles for CEAP,
we apply the mixed effects version of the linearly interpolated generalized Pareto
distribution (LIGPD) defined in Jang and Wang (2015). To introduce the LIGPD,
let yij denote the variable of interest for unit j in area i, where i = 1, . . . ,D,
and j = 1, . . . ,Ni . Let bi ∈ R

p1 be an area random effect with density function
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fb(bi | �b) such that E[(bi ,bib
′
i )] = (0,�b). The centerpiece of the LIGPD is the

mixed effects quantile regression model defined by

qij (τ ) = x′
ijβ(τ ) + z′

ijbi , i = 1, . . . ,D, j = 1, . . . ,Ni,(1)

where P(yij ≤ qij (τ ) | bi ,xij ,zij ) = τ , yij ⊥ yik | bi for j �= k, yij has an abso-
lutely continuous distribution, xij ∈ R

p2 and zij ∈R
p1 are vectors of fixed covari-

ates, and

x′
ijβ(τ ) ≤ x′

ijβ(τ + δ)(2)

for δ ≥ 0. Because bi does not depend on τ , qij (τ ) is nondecreasing in τ for
every (i, j). The LIGPD uses a generalized Pareto distribution to approximate the
distribution of yij for quantiles below or above specified lower and upper bounds,
as we explain precisely in Section 2. The objective is to predict functions of the
distribution of {yij : j = 1, . . . ,Ni}, principally finite population quantiles.

An alternative to quantile regression, the empirical Bayes prediction (EBP)
method of Molina and Rao (2010) provides a fully parametric approach to pre-
diction of nonlinear small area parameters, such as quantiles. A seminal paramet-
ric model for small area estimation is the linear mixed effects model with nor-
mally distributed random components (Battese, Harter and Fuller (1988)). Exten-
sions to more complex parametric forms, such as generalized linear mixed mod-
els or models with spatial or temporal dependence structures, are reviewed in
Pfeffermann (2013), Rao and Molina (2015), and Jiang and Lahiri (2006). Diallo
and Rao (2018) apply the EBP approach for a situation in which the random terms
have skew normal distributions. Molina, Nandram and Rao (2014) use hierarchi-
cal Bayes instead of empirical Bayes to predict nonlinear small area parameters,
assuming a satisfactory parametric form is specified. In CEAP, quantile estimates
are desired for several measures of water and wind erosion for subdivisions of the
United States. As we demonstrate in Section 3, finding a single family of paramet-
ric models that adequately describes all distributions of interest is difficult.

Quantile regression (Koenker (2005)) offers a unified framework that can ac-
commodate diverse distributional forms. Chambers and Tzavidis (2006) use M-
quantile regression for small area estimation, focusing on means and medians.
Chen and Liu (2017, 2012) use empirical likelihood to estimate a quantile regres-
sion model for small area prediction, where each small area has a different tilting
parameter in the density ratio model. Estimation of a different tilting parameter for
each small area is undesirable for CEAP because the county sample size can be less
than two. Weidenhammer et al. (2016) develop small area predictors based on the
mixed effects version of the asymmetric Laplace distribution introduced by Geraci
and Bottai (2007, 2014). Similar to the hierarchical models traditionally used for
small area estimation, the Geraci and Bottai (2007, 2014) model, described in Ap-
pendix A.5, has a set of fixed parameters that relates the quantile of the distribution
of interest to a set of covariates, and random parameters describe variation in this
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relationship across the areas. Because the asymmetric Laplace distribution spec-
ifies a separate model for each quantile level, the estimates of the quantiles can
decrease as τ increases and can be unstable in the tails of the distribution. The
limitations of the asymmetric Laplace distribution are important for small area
prediction because an estimate of the full distribution is required, rather than an
estimate for an individual quantile level.

The LIGPD approximation for the model (1) supports a computationally feasi-
ble small area prediction procedure such that the estimated quantile function for
any population element is nondecreasing, estimates for the tails are stable, and em-
pirical Bayes prediction and bootstrap mean squared error (MSE) estimation are
possible. A further benefit of the LIGPD is that the model makes fewer distribu-
tional assumptions than the asymmetric Laplace distribution and is therefore more
broadly applicable. Jang and Wang (2015) use Bayesian methods for inference
and focus on estimation of the quantile regression coefficients. We emphasize pre-
diction, rather than parameter estimation, and develop a computationally simple
frequentist procedure.

An alternative to the Jang and Wang (2015) procedure is the approach of Reich,
Fuentes and Dunson (2011). We pursue the Jang and Wang (2015) procedure for
small area estimation instead of Reich, Fuentes and Dunson (2011) because the es-
timation procedure of Reich, Fuentes and Dunson (2011) uses asymptotic distribu-
tions that may be inappropriate if the number of sampled units in an area is small.
Further, the quantile function in Reich, Fuentes and Dunson (2011) is a nonlinear
transformation of the random effect. In contrast, the random effect in the model
(1) enters in a linear fashion and therefore has a straightforward interpretation.

We develop a small area estimation procedure based on the LIGPD of Jang and
Wang (2015) with the aim of obtaining county level estimators of the quantiles of
erosion measurements for CEAP that are more reliable than direct estimators. In
Section 2, we present the estimation procedure. In Section 3, we apply the LIGPD
estimation procedure to data from CEAP. In Section 4, we validate the estimation
procedure through simulations. In Section 5, we summarize and discuss areas for
future work.

2. LIGPD model and estimation procedures. Assume that the population
satisfies the model (1) and yij is observed for a sample of ni elements for each
area i. As is common in small area estimation, assume that (x′

ij ,z
′
ij )

′ is known for
all Ni elements in the population for area i.

2.1. LIGPD approximation and Bayes predictor. Define a sequence of quan-
tile levels by τk = k(K + 1)−1 for k = 1, . . . ,K , where K → ∞ as D → ∞. The
LIGPD approximation for the density function of yij given bi corresponding to
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model (1) is defined by

(3)

fY (y | xij ,zij ,bi , θ)

= I
[
y < qij (τ1)

]
τ1f�(y | ρ�, ξ�)

+ I
[
y ≥ qij (τK)

]
(1 − τK)fu(y | ρu, ξu)

+
K−1∑
k=1

I
[
qij (τk) ≤ y < qij (τk+1)

] τk+1 − τk

qij (τk+1) − qij (τk)
,

where θ = (β ′
K,vech(�b)

′, ρ�, ξ�, ρu, ξu)
′ is the vector of fixed parameters to be

estimated, βK = (β(τ1)
′, . . . ,β(τK)′)′, vech(·) denotes vector half, I [·] is the in-

dicator function that is equal to 1 if the argument is true and zero otherwise, and
fs(y | ρs, ξs) for s = �,u are densities of generalized Pareto distributions defined
as follows. Letting uij = 0.5(x ′

ijβ(τK) + x′
ijβ(τK−1)) and �ij = 0.5(x ′

ijβ(τ1) +
x′

ijβ(τ2)), fu(y | ρu, ξu) = (1 − τK)−1{1 − 0.5(τK−1 + τK)}g(y − uij | ρu, ξu),

and f�(y | ρ�, ξ�) = τ−1
1 0.5(τ1 + τ2)g(−y + �ij | ρ�, ξ�), where

g(y | ρs, ξs) =
{
ρ−1

s (1 + ξsy/ρs)
−(1+1/ξs) ξs �= 0,

ρ−1
s exp(−y/ρs) ξs = 0,

(4)

for s = �,u with y > 0 for ξs ≥ 0, and 0 ≤ y < −ρs/ξs for ξs < 0. In the interest
of brevity, we refer the reader to Jang and Wang (2015) for further discussion and
motivation of the form (3).

The Bayes predictor of qij (τ ) for squared error loss corresponding to the ap-
proximate density function (3) and the model (1) is

qB
ij (τ ) = x′

ijβ(τ ) + z′
ijE[bi | yi; θ],(5)

where

E[bi | yi; θ ] =
∫
R

p1

∏ni

j=1 bifY (yij | xij ,zij ,bi , θ)fb(bi | �b) dbi∫
R

p1

∏ni

j=1 fY (yij | xij ,zij ,bi , θ)fb(bi | �b) dbi

,(6)

and yi = (yi1, . . . , yini
)′. If the area has no sampled units, then the conditional

density of bi is fb(bi;�b), and the conditional mean is 0. The predictor (6) is a
function of θ ; in Section 2.2, we define an estimator of θ .

2.2. Parameter estimation for the LIGPD. We define an iterative procedure
that we call the simplified EM algorithm to estimate βK and �b. The iteration
alternates between calculation of conditional moments and optimization but is not
a full EM algorithm. The optimization step minimizes Koenker’s check function
(Koenker (2005)) defined by ρτ (u) = u(τ − I [u < 0]), a standard optimization
criterion for quantiles because for Z with absolutely continuous distribution func-

tion FZ(z), argmina E[ρτ (Z − a)] = F−1
Z (τ). Let θ̂

(0)
denote the vector of ini-

tial estimators of θ , where the procedure to obtain the initial values, defined in
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Appendix A.1, uses moment type methods to estimate �b. For m = 1,2, . . . ,M ,
alternate between the following steps.

1. Define the updated estimator of �b by

�̂
(m)

b = (D − p2)
−1

D∑
i=1

E
[
bib

′
i | yi; θ̂

(m−1)]
.(7)

Define a predictor of bi in the mth step by

b̂
(m)

i = E
[
bi | yi; θ̂

(m−1)]
.

Appendix A.2 defines the numerical approximations to the integrals defining the
expectations for univariate bi .

2. We use the method of Koenker and Ng (2005) to update the estimator of βK

to maintain the monotonicity restriction (2). First, define

β̂
(m)

(τ
0.5(K+1)�) = argmin
β

D∑
i=1

ni∑
j=1

ρτ
0.5(K+1)�
(
yij − z′

ij b̂
(m)

i − x′
ijβ

)
,(8)

where 
0.5(K + 1)� is the integer part of 0.5(K + 1). For k = 
0.5(K + 1)� +
1, . . . ,K , define

β̂
(m)

(τk) = argmin
β

D∑
i=1

ni∑
j=1

ρτk

(
yij − z′

ij b̂
(m)

i − x′
ijβ

)
(9)

subject to the restriction that x′
ij β̂

(m)
(τk) ≥ x′

ij β̂
(m)

(τk−1) for j = 1, . . . ,Ni and

i = 1, . . . ,D. Then, for k = 
0.5(K + 1)� − 1, . . . ,1, define β̂
(m)

(τk) as in (9)

subject to the restriction that −x′
ij β̂

(m)
(τk) ≥ −x′

ij β̂
(m)

(τk+1) for j = 1, . . . ,Ni

and i = 1, . . . ,D. We implement the constrained optimization method of Koenker
and Ng (2005) using the method fn in the R function rq.

3. We use the method of Jang and Wang (2015) to estimate ρs and ξs for s =
�,u. Specifically,

(10)

ρ̂
(m)
� = 0.5(τ1 + τ2)

D∑
i=1

ni∑
j=1

q̂
(m)
ij (τ2) − q̂

(m)
ij (τ1)

n(τ2 − τ1)
,

ρ̂(m)
u = [

1 − 0.5(τK + τK−1)
] D∑
i=1

ni∑
j=1

q̂
(m)
ij (τK) − q̂

(m)
ij (τK−1)

n(τK − τK−1)
,

q̂
(m)
ij (τk) = x′

ij β̂
(m)

(τk) + z′
ij b̂

(m)

i , and n = ∑D
i=1 ni . Holding ρ̂

(m)
� and ρ̂

(m)
u fixed,

the estimator of ξs is the maximum likelihood estimator using only {yij < �̂
(m)
ij }
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for s = � and {yij > û
(m)
ij } for s = u, where �̂

(m)
ij = 0.5(x ′

ij β̂
(m)

(τ1)+x′
ij β̂

(m)
(τ2))

and û
(m)
ij = 0.5(x ′

ij β̂
(m)

(τK) + x′
ij β̂

(m)
(τK−1)). Precisely,

ξ̂
(m)
� = argmax

ξ

∏
{(ij):yij<�̂

(m)
ij }

g
(−(

yij − �̂
(m)
ij

)) | ρ̂(m)
� , ξ)(11)

and

ξ̂ (m)
u = argmax

ξ

∏
{(ij):yij>û

(m)
ij }

g
(
yij − û

(m)
ij | ρ̂(m)

u , ξ
)
.(12)

Let θ̂ = ((β̂K)′,vech(�̂b)
′, ρ̂�, ξ̂�, ρ̂u, ξ̂u)

′ denote the estimator of θ obtained in
the final step of the iteration.

REMARK 1. An algorithm more similar to a full EM algorithm would replace
the optimization in (8–9) with

β̂
(m)

(τk) = argmin
β

D∑
i=1

E

[
ni∑

j=1

ρτk

(
yij − z′

ijbi − x′
ijβ

) ∣∣∣ yi , θ̂
(m−1)

]
.(13)

In simulations discussed in Berg and Lee (2019), we find that the increase in com-
putational time to implement (13) is not justified by an important decrease in pre-
diction MSE. In the interest of computational speed, we prefer the simplified EM
algorithm outlined in steps 1–3 above.

REMARK 2. In the data analysis and the simulations of Sections 3 and 4,
respectively, we use τk = k(K + 1)−1 with K = 99. Alternatively, one can use the
number of unique quantile levels as determined by Portnoy (1991) in the model
with bi as fixed effects. (Operationally, specify tau= −1 in the R function rq.)
We prefer τk = k(K + 1)−1 because using evenly spaced quantile levels simplifies
predictors of small area parameters, as we explain in Section 2.3 below. The choice
τk = k(K + 1)−1 also satisfies the condition of Feng, Chen and He (2015) that
τk − τk−1 = O(K−1).

2.3. Small area parameters, predictors and mean squared error estimators.
The primary objective is to use the LIGPD approximation (3) for the model (1)
to predict functions of the distribution of {yij : j = 1, . . . ,Ni}. To predict small
area parameters, we create an approximation for the estimated distribution of
{yij : j = 1, . . . ,Ni} for area i. We define an estimate of the predictor (5) for each
element of the population by

q̂ij (τ ) = x′
ij β̂(τ ) + z′

ij b̂i ,(14)
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where b̂i = E[bi | yi; θ̂ ]. We evaluate (14) at the grid defined by {τ1, . . . , τK}. The
{q̂ij (τk) : k = 1, . . . ,K; j = 1, . . . ,Ni} is an approximation for the distribution of
{yij : j = 1, . . . ,Ni}. We use this approximation for the distribution to define small
area parameters.

Define the τ th population quantile for area i by

qi(τ ) = inf
{
t : Fyi

(t) ≥ τ
}
,(15)

where Fyi
(t) = ∫

�(xi ,zi )
P (y ≤ t | x,z,bi ) dF(xi ,zi )(x,z), F(xi ,zi )(x,z) is the cu-

mulative distribution function of (x′
ij ,z

′
ij )

′ for the population of (x′
ij ,z

′
ij )

′ in area
i, and �(xi ,zi ) is the sample space for (x′

ij ,z
′
ij )

′. The (x′
ij ,z

′
ij )

′ are known for
j = 1, . . . ,Ni . Thus, F(xi ,zi )(x,z) is the step function with steps at {(x′

ij ,z
′
ij )

′ :
j = 1, . . . ,Ni}. Then,

(16)

Fyi
(t) = 1

Ni

Ni∑
j=1

P(yij ≤ t | xij ,zij ,bi ) = 1

Ni

Ni∑
j=1

∫ 1

0
I
[
qij (τ ) ≤ t

]
dτ

≈ 1

Ni

Ni∑
j=1

K−1∑
k=1

I
[
qij (τk) ≤ t

]
(τk+1 − τk)

≈ 1

NiK

Ni∑
j=1

K∑
k=1

I
[
qij (τk) ≤ t

]
,

where the first approximation is a Riemann approximation to the integral, and the
second approximation holds for τk = (K + 1)−1k with large K . The definition
of the parameter in (15) and the approximation for the CDF in (16) motivate a
predictor, q̂

(0)
i (τ ) = min{q̂ij (τk) : F̂yi

(q̂ij (τk)) ≥ τ ; j = 1, . . . ,Ni;k = 1, . . . ,K},
where F̂yi

(t) = (NiK)−1 ∑Ni

j=1
∑K

k=1 I [q̂ij (τk) ≤ t]. Rather than use q̂
(0)
i (τ ), we

use the default sample quantile in the R function quantile defined as

q̂i(τ ) = [
1 − (

τ(NiK) + m − h
)]

q̂i(h) + (
τ(NiK) + m − h

)
q̂i(h+1),(17)

with m = 1 − τ and h = 
τNiK + m� (Hyndman and Fan (1996)). The predictor
q̂i(τ ) is nearly identical to q̂

(0)
i (τ ) for large enough Ni and K .

While estimation of quantiles is our focus, one can use {q̂ij (τk) : k = 1, . . . ,K;
j = 1, . . . ,Ni} to estimate other population parameters, such as the area mean
defined by

μi = N−1
i

Ni∑
j=1

∫ 1

0
qij (τ ) dτ ≈ 1

NiK

Ni∑
j=1

K∑
k=1

qij (τk),(18)
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where the justification for the approximation (18) is similar to (16). Define a pre-
dictor of μi by

μ̂i = 1

NiK

Ni∑
j=1

K∑
k=1

q̂ij (τk).(19)

To define a bootstrap MSE estimator, repeat the following for t = 1, . . . , T .

1. Generate b
∗(t)
i ∼ fb(bi , �̂b), and define q

∗(t)
ij (τk) = x′

ij β̂(τk) + z′
ijb

∗(t)
i for

k = 1, . . . ,K .

2. To generate a bootstrap population, generate u
∗(t)
ij

iid∼ Unif(0,1) for i =
1, . . . ,D, and j = 1, . . . ,Ni . Define y

∗(t)
ij = y∗

ij (θ̂ ,b
∗(t)
i , u

∗(t)
ij ) by

(20) y
∗(t)
ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
q

∗(t)
ij (τ

k
∗(t)
ij

)

+ (
u

∗(t)
ij − τ

k
∗(t)
ij

)(q
∗(t)
ij (τ

k
∗(t)
ij +1

) − q
∗(t)
ij (τ

k
∗(t)
ij

)

τ
k
∗(t)
ij +1

− τ
k
∗(t)
ij

)]
δ
∗(t)
1ij ,

[−G−1
�

(
ũ

∗(t)
�,ij ; ρ̂�, ξ̂�

) + 0.5
(
q

∗(t)
ij (τ1) + q

∗(t)
ij (τ2)

)]
δ
∗(t)
2ij ,[

G−1
u

(
ũ

∗(t)
u,ij ; ρ̂u, ξ̂u

) + 0.5
(
q

∗(t)
ij (τK−1) + q

∗(t)
ij (τK)

)]
δ
∗(t)
3ij ,

where k
∗(t)
ij = max{k : τk ≤ u

∗(t)
ij }, δ

∗(t)
gij = I [u∗(t)

ij ∈ Ag], A1 = (0.5(τ1 + τ2),

0.5(τK−1 + τK)), A2 = (0,0.5(τ1 + τ2)], A3 = [0.5(τK−1 + τK),1), ũ
∗(t)
�,ij =

u
∗(t)
ij /(0.5(τ1 + τ2)), ũ

∗(t)
u,ij = u

∗(t)
ij − 0.5(τK−1 + τK)/(1 − 0.5(τK−1 + τK)), and

Gs(y;ρs, ξs) = ∫ y
−∞ g(a;ρs, ξs) da for s = �,u. The procedure (20) simulates

from the model (1) using linear interpolation for the step function with steps at
τk for k = 1, . . . ,K and using the inverse of the estimate of the generalized Pareto
cumulative distribution function for extreme quantiles. Use {y∗(t)

ij : j = 1, . . . ,Ni}
to construct the bootstrap version of the population parameters. Specifically,
q

∗(t)
i (τ ) = [1 − (τ (Ni) + m − h)]q∗(t)

i(h) + (τ (Ni) + m − h)q
∗(t)
i(h+1), where q

∗(t)
i(h) is

the hth order statistic of {y∗(t)
ij : j = 1, . . . ,Ni}, m = 1 − τ , and h = 
τNi + m�.

3. Define a bootstrap sample by y
∗(t)
s = {y∗(t)

ij : (i, j) ∈ S}, where S denotes

the original sample. Use y
∗(t)
s to obtain a parameter estimator θ̂

∗(t)
and predictors

of the quantiles {q̂∗(t)
ij (τk) : i = 1, . . . ,D; j = 1, . . . ,Ni;k = 1, . . . ,K}. Define

(21) q̂
∗(t)
i (τ ) = [

1 − (
τ(NiK) + m − h

)]
q̂

∗(t)
(h) + (

τ(NiK) + m − h
)
q̂

∗(t)
(h+1),

where q̂
∗(t)
(h) is the hth order statistic of {q̂∗(t)

ij (τk) : k = 1, . . . ,K; j = 1, . . . ,Ni}
with h and m defined as for (17). Likewise, define μ̂

∗(t)
i = (NiK)−1 ×
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∑Ni

j=1
∑K

k=1 q̂
∗(t)
ij (τk). We simplify the estimation procedure of Section 2.2 to ob-

tain q̂
∗(t)
ij (τk). Rather than estimate the quantile regression coefficients sequentially

to enforce the monotonicity constraint, as in (8)–(9), we simultaneously minimize
Koenker’s check function for all quantile levels and then sort the estimates of the
quantiles to obtain a nondecreasing quantile function (Chernozhukov, Fernández-
Val and Galichon (2009)) for element (i, j). We describe the sorting operation in
Appendix A.1.

Define the bootstrap MSE estimator for q̂i(τ ) and μ̂i , respectively, by

ˆMSEi (τ ) = 1

T

T∑
t=1

(
q̂

∗(t)
i (τ ) − q

∗(t)
i (τ )

)2
,(22)

and ˆMSEi (μ) = T −1 ∑T
t=1(μ̂

∗(t)
i − μ

∗(t)
i )2. We define a prediction interval with

nominal coverage (1 − α)100% by

(23)
[
Li(τ,α),Ui(τ,α)

] = [
q̂i (τ ) + 	−1

α/2

√
ˆMSEi (τ ), q̂i(τ ) − 	−1

α/2

√
ˆMSEi (τ )

]
,

where 	−1
α/2 is the α/2 quantile of the standard normal distribution. We estimate

the covariance matrix of β̂(τ ) by

V̂
(
β̂(τ )

) = 1

T

T∑
t=1

(
β̂(τ )∗(t) − β̄

(·))(
β̂(τ )∗(t) − β̄

(·))′
,(24)

where β̄
(·) = T −1 ∑T

t=1 β̂(τ )∗(t), and β̂(τ )∗(t) is the estimate of β(τ ) based on

bootstrap sample y
∗(t)
s .

2.4. Transformations. Because an estimate based on the linear quantile re-
gression model can be negative, one may choose to transform the observations if
the support of the variable of interest is positive. For the CEAP application, we
consider the class of transformations in Geraci and Jones (2015) and conclude
that the log transformation is adequate. Let ỹij be the original observation, and let
yij = log(ỹij + 
), where 
 is specified. Assume yij satisfies the model (1). Let
q̃ij (τ ) satisfy P(ỹij ≤ q̃ij (τ ) | bi ,xij ,zij ) = τ . By monotonicity of the log trans-
formation, the population quantile of interest is q̃i (τ ) = exp(qi(τ )), where qi(τ )

is the population quantile for the transformed yij define in (15). We define a pre-
dictor of q̃i(τ ) and corresponding confidence interval that exploit the invariance
of the quantile to monotone transformations. We define the predictor of q̃i(τ ) by
ˆ̃qi(τ ) = exp(q̂i(τ )) − 
, where q̂i(τ ) is defined for yij as in (17). We define a
prediction interval with nominal coverage 100(1 − α)% by[

exp
(
Li(τ,α)

) − 
, exp
(
Ui(τ,α)

) − 

]
,(25)



2168 E. BERG AND D. LEE

TABLE 1
CEAP response variables used for analysis. All variables are annual averages for the field

Variable Definition Units

Runoff Annual surface runoff based on daily rainfall Inches
RUSLE2 Sheet and rill erosion for the cropped area of the field Tons
Sediment Edge of field sediment loss Tons
CDiff Annual change in soil organic carbon (January–December) Tons

where Li(τ,α) and Ui(τ,α) are defined in (23). We also define a bootstrap MSE
estimator of ˆ̃qi(τ ) by

ˆ̃MSEi (τ ) = 1

T

T∑
t=1

(
exp

(
q̂

∗(t)
i (τ )

) − exp
(
q

∗(t)
i (τ )

))2
.(26)

3. Application to CEAP data. Measures of erosion in the 2003–2006 CEAP
survey result from processing administrative and survey data through a computer
model called the Agricultural Policy Environmental Extender (APEX). The APEX
model produces measures of total erosion as well as losses for specific nutrients,
nitrogen and phosphorus. We consider APEX output variables (y) that are not
nutrient specific, as summarized in Table 1.

3.1. Transformations of response variables for CEAP modeling. With the ex-
ception of CDiff, the response variables have nonnegative support. We use the log
transformation, a member of the class defined in Geraci and Jones (2015). The
log transformation has substantive support because equations defining erosion in
the APEX model involve multiplication of input variables related to the model
covariates defined in Section 3.3. We obtain data driven support for the log trans-
formation using the procedure described in Appendix A.4. For Runoff, RUSLE2,
and Sediment, we let ỹij be the CEAP response variable for crop field j in county
i, and we let yij = log(ỹij + 0.0005). We select 
 = 0.0005 because 0.001 is the
smallest possible positive value for an APEX model output. Three RUSLE2 values
that equal zero are judged to be errors because of inconsistencies with NRI data
and are therefore removed from the analysis. For CDiff, the support is the real line,
and ỹij = yij .

3.2. Population and samples for CEAP models. The population of interest
consists of area in cropland between 2003 and 2006 in Wisconsin. The CEAP
sample is a subset of a larger survey called the National Resources Inventory (NRI)
(Nusser and Goebel (1997)). For this analysis, we define the target population to be
the collection of NRI locations that are classified as cropland for at least one year
between 2003 and 2006. Because the covariates are known for the full population,
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an extension to prediction for the full population is possible. The CEAP sample
is approximately an 11% sample of the NRI. We exclude CEAP data collected
in 2006 because of complications associated with the 2006 CEAP survey docu-
mented in Goebel (2009). The CEAP sample sizes for Wisconsin counties range
from 0 to 27, the 25th percentile of the sample sizes is 5, the 75th percentile is
14, and the median county sample size is 9. We obtain predictors for 69 out of the
72 counties in Wisconsin, where we omit three counties that have no NRI points
classified as cropland in the time frame of interest. Out of the 69 eligible counties,
61 have collected data for CEAP.

3.3. Auxiliary variables for CEAP models. Ideal auxiliary variables are inputs
to the APEX model that are known for the full population of cropland in Wiscon-
sin. The inputs to the APEX model relate to weather, soil properties, crop manage-
ments and conservation practices (Williams and Izaurralde (2006)). In CEAP, the
data for weather and soil properties are from administrative sources that contain
information for the full population of cropland of interest, while the information
on crop managements and conservation practices is from survey data, unknown
for the full population. Because our model assumes that the auxiliary variables are
known for the full population, we consider covariates related to weather and soils.
Table 2 describes the auxiliary variables.

We consider weather variables related to precipitation and temperature. The
auxiliary variable related to temperature (TEMP) is the average of the maximum
and minimum temperature for a county recorded for July 2004 by the Centers for
Disease Control and Prevention in the United States (CDC (undated)). The rainfall
factor, RFACT, is the sum of rainfall erosion index units and an additional factor
to account for runoff due to snow melt and irrigation (USDA (2015)).

The auxiliary variables related to soils are obtained from the NRCS Soil Survey,
a census of soils in the United States. We determined which soils variables to
include as potential auxiliary variables through consultation with a soil scientist

TABLE 2
Auxiliary variables for CEAP models

Variable Description

TEMP Average of min. and max. county level 2004 July temperatures
RFACT log(RFACT + 0.001), where RFACT is the USLE rainfall factor
KFACT log(KWFACT + 0.001), where KWFACT is a soil erodibility index
SLOPE-R Difference in elevation divided by distance between two locations
SLOPELENUSLE Slope length
LSLOG log(SLOPE-R + 0.001) + log(SLOPELENUSLE + 0.001)

HYDGRP Values 1, 2, 3, 4 from low (1) to high (4) runoff potential
OM Percent of organic matter in the soil
SAND Percent sand in the soil
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and research into the equations defining the response variables in the APEX model
(Williams and Izaurralde (2006)). The variable KFACT quantifies the vulnerability
of the soil to erosion. The variable LSLOG combines slope steepness (SLOPE-R)
with slope length, the distance from the top of a hill to location where the gradient
is judged flat. Hydrologic group categories are used to form an ordered categorical
variable HYDGRP, which is treated as continuous in the model. The percent of
organic matter (OM) and percent sand (SAND) in the soil are included specifically
for CDiff.

The covariates included in the model for each response variable are presented in
Table 3 in Section 3.5, where a blank space indicates that a covariate is not included
in the model for that response variable. The loglinear form for positive response
variables is motivated by the Universal Soil Loss Equation (Wischmeier and Smith
(1978)), a model for sheet and rill erosion as a product of KFACT, RFACT, a
slope length/steepness factor, and factors representing crop managements and con-
servation practices. We exclude RFACT from the model for RUSLE2 because
|β̂(τk)|[SE(β̂(τk))]−1 < 1 for τk = 0.25,0.5,0.75, where β̂(τk) and SE(β̂(τk)) are
the estimates and bootstrap standard errors, respectively, for the regression co-
efficient for log(RFACT) in a model for RUSLE2 that contains log(RFACT) in
addition to the covariates in Table 3. Before fitting any models, we standardize the
covariates to have mean 0 and standard deviation 1 for the full NRI. In the model,
xij = (1,x′

1,ij )
′, where x1,ij is the vector of standardized covariates for unit j in

county i.

3.4. Parametric models. As an exploratory step, we consider a lognormal
model for Runoff, RUSLE2, and Sediment, and a linear mixed effects model for
CDiff. The model is defined by

(27) yij = γ0 + x′
1,ijγ 1 + αi + wij ,

where wij ∼ N(0, σ 2
w) and αi ∼ N(0, σ 2

a ). For RUSLE2 and Sediment, the model
(27) is a lognormal model (Berg and Chandra (2014)) because yij = log(ỹij +
0.0005). For CDiff, no transformation is used, and the model (27) is a linear mixed
effects model (Battese, Harter and Fuller (1988)). The EBP of Molina and Rao
(2010) provides a mechanism for small area prediction based on (27). To diagnose
the fit of the model (27), we define a conditional residual by

rij,lm = yij − (γ̂0 + x′
1,ij γ̂ 1 + α̂i)

σ̂e

,(28)

where α̂i is an EBLUP of αi for the linear model with REML estimators of regres-
sion coefficients and variances. Ignoring parameter estimation, the residuals rij,lm
would have a standard normal distribution if the linear mixed effects model holds.

The normal probability plots of the residuals rij,lm in Figure 2 show heavier left
tails than a normal distribution for the logarithms of RUSLE2 and Sediment and
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FIG. 2. Normal quantile-quantile plots of residuals. Lognormal models are fit for Runoff, RUSLE2
and Sediment. The linear mixed effects model with normally distributed errors is used for CDiff.

show both heavy lower and upper tails for CDiff and the logarithm of Runoff. The
p-values of Shapiro–Wilk tests for normality of the residuals are less than 10−6.
Berg and Chandra (2014) show that the lognormal model provides an adequate fit
to the RUSLE2 data for Iowa, a state that is relatively homogeneous with respect
to agricultural production. While the lognormal is adequate for certain variables
in homogeneous regions, Figure 2 and the corresponding Shapiro–Wilk p-values
indicate that the lognormal model is not flexible enough to describe the distribu-
tions for the full range of variables and geographic domains of interest in CEAP.
An analysis of a generalized linear mixed model based on a gamma distribution,
described in Berg and Lee (2019), leads to a similar conclusion. While the gamma
model appears adequate for RUSLE2 (Shapiro–Wilk p-value 0.1), the gamma
model is inconsistent with the data for Runoff and Sediment (Shapiro–Wilk p-
values < 0.01). These exploratory analyses illustrate the difficulty in obtaining an
adequate parametric form for the distributions of all CEAP response variables of
interest.

3.5. Quantile regression models for CEAP data. In an effort to obtain a unified
approach that will adequately describe the distributions of multiple CEAP vari-
ables, we apply the LIGPD of Section 2. We define the model by P(yij ≤ qij (τ ) |
bi,xij ) = τ , where qij (τ ) = x′

ijβ(τ ) + bi , bi ∼ N(0, σ 2
b ), and the covariates for

each response variable are presented in Table 3. We use K = 99, terminate the

iterative estimation procedure with θ̂ = θ̂
(2)

, and use T = 100 bootstrap samples.
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TABLE 3
Estimates of β(τ ) and bootstrap standard errors (24) for τ = 0.25,0.50 and 0.75 for Runoff,

RUSLE2, Sediment and CDiff. *SLOPE is LSLOG for Runoff, RUSLE2 and Sediment, and SLOPE is
SLOPE-R for CDiff. Covariates defined in Table 2

Est. (SE)

xij τ Runoff RUSLE2 Sediment CDiff

Intercept 0.25 1.323 (0.009) −1.892 (0.048) −1.467 (0.070) −0.038 (0.006)

Intercept 0.50 1.401 (0.007) −1.352 (0.043) −0.712 (0.053) 0.010 (0.004)

Intercept 0.75 1.481 (0.007) −0.808 (0.045) 0.014 (0.065) 0.058 (0.005)

TEMP 0.25 0.008 (0.016) −0.034 (0.048) −0.277 (0.100) −0.013 (0.004)

TEMP 0.50 −0.001 (0.012) −0.090 (0.048) −0.218 (0.087) −0.014 (0.004)

TEMP 0.75 −0.015 (0.015) −0.042 (0.044) −0.182 (0.124) −0.013 (0.005)

HYDGRP 0.25 0.126 (0.010) 0.254 (0.066) 0.312 (0.067) 0.003 (0.005)

HYDGRP 0.50 0.132 (0.007) 0.242 (0.046) 0.274 (0.064) 0.003 (0.004)

HYDGRP 0.75 0.136 (0.007) 0.157 (0.049) 0.234 (0.061) 0.008 (0.005)

RFACT 0.25 0.024 (0.015) 0.292 (0.120)

RFACT 0.50 0.037 (0.011) 0.270 (0.094)

RFACT 0.75 0.046 (0.013) 0.341 (0.104)

SLOPE* 0.25 0.615 (0.057) 0.524 (0.071) 0.022 (0.005)

SLOPE 0.50 0.636 (0.055) 0.513 (0.067) 0.029 (0.005)

SLOPE 0.75 0.489 (0.044) 0.626 (0.074) 0.037 (0.006)

KWFACT 0.25 0.159 (0.083) 0.336 (0.080)

KWFACT 0.50 0.100 (0.046) 0.286 (0.067)

KWFACT 0.75 0.131 (0.047) 0.276 (0.054)

OM 0.25 0.099 (0.034)

OM 0.50 0.132 (0.017)

OM 0.75 0.147 (0.015)

SAND 0.25 0.028 (0.004)

SAND 0.50 0.026 (0.004)

SAND 0.75 0.020 (0.004)

Recall that yij is the logarithm of RUSLE2, Runoff and Sediment, as explained in
Section 3.1.

Table 3 contains estimates of the quantile regression coefficients and corre-
sponding standard errors for τ = 0.25,0.5 and 0.75, where the standard errors
are the square roots of the diagonal elements of (24). The positive signs of the
estimated coefficients for rainfall and soils variables in the models for Runoff,
RUSLE2 and Sediment are consistent with the definitions of these APEX output
variables. The positive signs of the estimated coefficients for OM and SAND in the
model for CDiff are also consistent with the theory that soils with more organic
matter have more potential for carbon loss and that carbon stores in sandier soils
are more susceptible to the effects of agricultural production.

To check for spatial structure in the model random effects, we apply Moran’s
I statistic (using the R function Moran.I) to the {b̂i : i = 1, . . . ,D}, where the



SAE QUANTILES 2173

FIG. 3. Normal probability plots of residuals rij based on the LIGPD quantile regression model.

weights for Moran’s I statistic are based on an adjacency matrix in which two
counties are considered neighbors if they share a border. After incorporating the
average temperature (TEMP) as a covariate in the model, Moran I p-values for for
CDiff and Sediment are 0.08 and 0.85, respectively. In analyses not presented here,
we find that incorporating agricultural statistics districts (groups of counties) in the
model, removes spatial dependence for Runoff and RUSLE2. Here, we present the
more parsimonious models for Runoff and RUSLE2 for consistency across the
four variables.

To assess the plausibility of the LIGPD model assumptions, we define a condi-
tional residual by rij = 	−1(F̂yij (yij )), where 	−1 is the quantile function of a
standard normal distribution, and F̂yij , defined in Appendix A.3, estimates the ap-
proximate cumulative distribution function corresponding to the LIGPD. Ignoring
parameter estimation, the residuals rij would have a standard normal distribution.
The normal probability plots of rij in Figure 3 and Shapiro–Wilk p-values (0.98
0.95 0.86 and 0.99 for Runoff, RUSLE2, Sediment and CDiff, respectively) sup-
port the LIGPD.

3.6. Small area predictors for CEAP data. In this section, we demonstrate
how the LIGPD enables us to attain the benefits of estimating quantiles at the
county level using the CEAP data discussed below Figure 1 of the Introduction.
We first consider all counties in Wisconsin and then focus on a single county of
historical importance. We conclude this section with a comparison of the efficiency
of the estimates based on the LIGPD to the efficiency of the direct estimates for
Wisconsin counties.
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FIG. 4. Estimates of quantiles for 61 counties in Wisconsin with at least one sampled NRI point.

Figure 4 shows the estimates of the quantiles for all counties in Wisconsin that
contain at least one sampled NRI point. The extent of the variation across counties
largely reflects the size of the estimate of σ 2

b (0.016, 0.426, 0.379 and 0.00018
for Runoff, RUSLE2, Sediment and CDiff, respectively). The darkness of the line
relates to the latitude of a centroid of the county. For CDiff, northern counties tend
to have higher values of CDiff than southern counties, which is consistent with the
negative slope of the estimated coefficient for TEMP in the model for CDiff.

As noted in Goebel and Kellogg (2002), areas of extremely high erosion are of
substantive interest. For CDiff, the jagged line with the highest estimated quan-
tiles for τk > 0.9 corresponds to Marquette County. The sample size for Marquette
County is relatively small (only 5), and Marquette County has the fourth largest
variance of the sample mean for CDiff in the state. Because of the small sample
size and high variance for CDiff, the small area predictors of the upper quantiles
for Marquette County are driven largely by the auxiliary variables, namely the
percent organic matter (OM). The mean of OM for the NRI is larger for Mar-
quette County than for any of the other counties in Wisconsin. Simultaneously, the
estimate of the regression coefficient associated with OM tends to increase with
the quantile level, as β̂(τk) for OM is 0.058, 0.0716, 0.0962, 0.1195 and 0.1491,
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FIG. 5. Left panel: County level predictors and confidence intervals for median sediment loss, with
corresponding estimates of the mean. Right panel: County level predictors and confidence intervals
for the 25 percentile and the 75 percentile of sediment loss.

respectively, for τk = 0.75,0.80,0.85,0.90 and 0.95. The two counties with the
highest RUSLE2 erosion estimates (Sheboygan County and Manitowac County)
have relatively large sample sizes (16 for Manitowac County and 15 for Sheboy-
gan County) and have the second and third largest sample medians for RUSLE2.
(The county with the largest median has a sample size of one.) While the covari-
ates are responsible for the extreme predictors of quantiles for CDiff, the observed
RUSLE2 explains the extreme predictors of quantiles for RUSLE2. This contrast
illustrates the value of small area estimation in using both auxiliary information
and collected response variables to gain a more complete picture of the concept
under study.

Figure 4 illuminates the skewed nature of the estimated distributions, which
suggests that the median might be preferable to the mean as a measure of central
tendency. Figure 5 contains predictions and confidence intervals for quartiles and
the median as well as estimates of the means for sediment erosion. To conserve
space, analogous plots for Runoff, RUSLE2 and CDiff are deferred to Berg and
Lee (2019). As shown in the left panel of Figure 5, the estimated means exceed the
upper endpoints of the corresponding 95% prediction intervals for the medians.
The estimates of the quartiles in the right panel of Figure 5 provide information
on the variation of erosion in Wisconsin counties. The confidence intervals for the
25 percentiles and the 75 percentiles are typically disjoint. The confidence interval
width and the estimated interquartile range increases with the estimated median
erosion, a reflection of the mean-variance relationship in the original data. The
confidence interval widths for the 75 percentiles are undesirably wide because the
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FIG. 6. Dashed line: predicted quantiles for Vernon County based on the LIGPD. Solid line:
state-level direct estimates of quantiles.

derivative of the curve defined by the quantile estimates for sediment in Figure 4
is close to zero at the 75 percentile and because the sample sizes for the counties
are small.

The first watershed conservation project in the history of NRCS took place
in Coon Creek watershed, located in Vernon County, in the early 1930s. We ex-
amine the predicted quantiles for CEAP variables for Vernon County, where the
sample size is 6. Figure 6 contains model based predictors of quantiles for 99
quantile levels for Vernon County and corresponding direct estimates for Wis-
consin. The direct estimator is q̂i,D(τ ) = min{y : F̂i,D(y) ≥ τ }, where F̂i,D(y) =
n−1

i

∑ni

j=1 I [yij ≤ y], and the Woodruff (1952) method provides a correspond-
ing confidence interval (method = "constant" and interval.type =
"Wald" in the R svyquantile function).

Table 4 contains nominal 95% confidence intervals for qi(τ ) for τ = 0.25,0.5,

0.75 for Vernon County calculated as in (23) for CDiff and as in (25) for Runoff,
RUSLE2 and Sediment. For the 75 percentile of Runoff and for the 75 percentile
and median of RUSLE2, the confidence intervals for Vernon County are disjoint
from the state-level intervals, with Vernon County estimates below the correspond-
ing state level esitmates. For Sediment and CDiff, the estimates for Vernon County
are close to the state-level estimates.

We compare the average widths of 95% confidence intervals and average esti-
mated root mean squared errors (RMSE) for the LIGPD predictors and the county
level direct estimators in Table 5 for counties with at least two sampled units. The
standard error for a direct estimator is calculated using the bootstrap implemented
in the boot method in the R function summary.rq. For the LIGPD predictors,
the confidence intervals and estimated RMSEs are defined in (25) and (26) for
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TABLE 4
Estimates and limits of 95% confidence intervals for qi(τ ) (τ = 0.25,0.5,0.75) for four response
variables (y). The direct estimator is used for Wisconsin. The LIGPD is used for Vernon County

Vernon County Wisconsin

y τ Lower Estimate Upper Lower Estimate Upper

Runoff 0.25 3.239 3.577 3.951 3.421 3.493 3.584
Runoff 0.50 3.489 3.848 4.244 3.985 4.061 4.183
Runoff 0.75 3.813 4.196 4.619 4.630 4.718 4.841
RUSLE2 0.25 0.060 0.099 0.164 0.118 0.135 0.157
RUSLE2 0.50 0.110 0.172 0.269 0.291 0.321 0.351
RUSLE2 0.75 0.184 0.301 0.495 0.672 0.743 0.819
Sediment 0.25 0.090 0.212 0.496 0.200 0.228 0.282
Sediment 0.5 0.201 0.465 1.080 0.557 0.636 0.723
Sediment 0.75 0.454 1.138 2.856 1.349 1.543 1.827
CDiff 0.25 −0.123 −0.085 −0.047 −0.056 −0.046 −0.038
CDiff 0.50 −0.067 −0.032 0.004 −0.009 −0.002 0.005
CDiff 0.75 −0.016 0.030 0.077 0.047 0.054 0.063

Runoff, RUSLE2 and Sediment, and the confidence intervals and RMSEs are de-
fined in (23) and (22) for CDiff. On average, the RMSE and confidence interval
widths are smaller for the LIGPD predictors than for the direct estimators. Al-
though we focus on counties with collected data for CEAP, a further benefit of the
LIGPD is the ability to obtain estimates for counties where the sample size is zero.

4. Simulations. We compare the LIGPD predictor to alternatives through
simulation and evaluate the properties of the MSE estimator. One alternative is
based on the asymmetric Laplace distribution (ALD), developed in Geraci and

TABLE 5
Average widths of nominal 95% confidence intervals and average RMSE for LIGPD predictors and

direct county level estimators

LIGPD Predictors Direct Estimators

Variable Criterion τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.25 τ = 0.50 τ = 0.75

Runoff Width 0.697 0.751 0.900 0.866 1.279 1.486
RUSLE2 Width 0.220 0.397 0.722 0.281 0.674 1.032
Sediment Width 0.446 0.913 2.208 0.694 2.059 3.809
CDiff Width 0.064 0.062 0.075 0.100 0.148 0.218

Runoff RMSE 0.180 0.194 0.232 0.283 0.334 0.407
RUSLE2 RMSE 0.064 0.113 0.200 0.102 0.179 0.271
Sediment RMSE 0.117 0.246 0.591 0.257 0.548 1.021
CDiff RMSE 0.016 0.016 0.019 0.248 0.530 0.987
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Bottai (2007, 2014) and used for small area estimation in Weidenhammer et al.
(2016). The ALD predictor that we consider is similar to that of Weidenhammer
et al. (2016) and is defined in Appendix A.5. A procedure based on a fully paramet-
ric model may have optimality properties under the assumptions of the specified
parametric form. For example, Diallo and Rao (2018) consider a model in which
both the area random effects and the unit level errors have skew-normal distribu-
tions. As a representative of a fully parametric approach, we consider the EBP of
Molina and Rao (2010) for a linear mixed effects model with normally distributed
random components and constant variances. Specifically, the model underlying the
normal empirical Bayes predictor (NEB) is

(29) yij = β0 + β1xij + vi + ηij ,

where (vi, ηij )
′ ∼ N[0,diag(σ 2

v , σ 2
η )]. To compute the NEB predictor, we generate

for r = 1, . . . ,100,

(30) y
(r)
ij ∼ N

(
β̂0 + β̂1xij + v̂i , γ̂i σ̂

2
e n−1

i + σ̂ 2
η

)
,

where v̂i = γ̂i(ȳni
− x̄′

ni
β̂), x̄ni

= (1, n−1
i

∑ni

j=1 xij )
′, β̂ = (β̂0, β̂1)

′, γ̂i = σ̂ 2
v (σ̂ 2

v +
σ̂ 2

η n−1
i )−1, and REML is used to estimate the model parameters. The distribution

(30) is an estimate of the conditional distribution of yij given the observed data,
evaluated at the REML estimates. We then define the NEB predictors of the small
area parameters as in (17), with {y(r)

ij : r = 1, . . . ,100; j = 1, . . . ,Ni} in place of
{q̂ij (τk) : k = 1, . . . ,K; j = 1, . . . ,Ni}. The third predictor is the sample quantile
for an area (obtained with the default type = 7 in the R quantile function).
For the LIGPD procedure, we use K = 99 to partition (0,1) into 100 evenly spaced

intervals, terminate the iterative estimation procedure with θ̂ = θ̂
(2)

and use T =
100 bootstrap samples.

4.1. Comparison of distributions. We first consider a simulation model,

(31) yij = β0 + β1xij + bi + eij ,

where β0 = −1.5, β1 = 0.5, and we consider two distributions for each of eij and
bi defined as follows. We simulate bi from normal and Laplace distributions with
mean zero and variance equal to 0.5. To represent the left skew in the residuals
based on the linear mixed effects model applied to the log of RUSLE2 and Sedi-
ment, we consider eij ∼ SN(ξ,ω,α), where ξ = 1.26, ω = 1.61 and α = −5. The
notation X ∼ SN(ξ,ω,α) means that X has skew-normal density function defined
by

fX(x; ξ,ω,α) = 2

ω
√

2π
exp

(−(x − ξ)2/
(
2ω2)) ∫ α(x−ξ)/ω

−∞
1√
2π

exp
(−t2/2

)
dt.

We also consider a skewed and heteroskedastic distribution for eij , where eij =
(1 + 0.1xij )(e

∗
ij − 2)/2 and e∗

ij ∼ χ2
(2). In each Monte Carlo (MC) sample, xij ∼
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N(0,1). The simulation parameters are based on a linear mixed effects model with
the logarithm of the CEAP variable RUSLE2 as the response, standardized natural
log of the slope as the covariate and normally distributed county effects. To roughly
represent the sample sizes for the CEAP data, we generate D = 60 areas with
(Ni, ni) = (143,5) for 20 areas, (Ni, ni) = (286,10) for 20 areas and (Ni, ni) =
(571,20) for 20 areas. The MC sample size for each simulation is 200. The τ

population quantile is defined as the τ sample quantile of {yij : j = 1, . . . ,Ni}
obtained using the default in the R function quantile.

Table 6 contains the average MC MSE and MC bias of the alternative predic-
tors, where the average is across areas of the same sample size. The comparison
of the MSEs of the direct estimator to the MSEs of the model based predictors
demonstrates the improvement in efficiency due to the use of models and auxiliary
information. The MC MSE of the LIGPD is less than or equal to the MC MSE
of the other predictors. With the exception of the estimator of qi(0.9) under the
χ2

(2) error distribution, the squared MC bias of the LIGPD is less than 10% of the
MC MSE. For a given distribution and parameter, the MC MSE of the LIGPD
decreases as the area sample size increases.

Table 7 contains average MC relative biases of the bootstrap MSE estima-
tors and empirical coverage of normal theory 95% prediction intervals. The
MSE estimator ˆMSEi (τ ) is defined in (22), and the prediction interval is de-
fined in (23). The bootstrap sample size is T = 100 for these simulations. The
MC relative bias of the bootstrap MSE estimator for area i is defined as RBi =
[MSEMC{q̂i (τ )}]−1(EMC[ ˆMSEi (τ )] − MSEMC{q̂i (τ )}), where EMC[ ˆMSEi (τ )] is
the MC mean of the MSE estimator (22), and MSEMC{q̂i (τ )} is the MC MSE of a
predictor q̂i (τ ). In Table 7, the MC relative biases and empirical coverages are av-
erages across areas of the same sample size. We conjecture that a substantial part
of the bias of the bootstrap MSE estimator for the χ2

(2) error distribution occurs
because the estimation procedure used in step 3 of the bootstrap does not use con-
strained optimization to estimate the quantile regression coefficients. For the χ2

(2)

error distribution with normally distributed bi , the average ratio of the MC MSE
of predictors of quantiles based on constrained optimization to the MC MSE of
the corresponding predictors based on the sorting algorithm is approximately 0.9.
Regardless of the approximations, the empirical coverages of normal theory 95%
confidence intervals are between 92% and 96%.

4.2. Analysis of transformed data. We consider a simulation to represent the
transformation used for Runoff, RUSLE2 and Sediment. Let ỹij denote the original
observations, and let yij = log(ỹij ) satisfy the model (31) with normally distribu-
tion bi and skew-normal eij . The skew-normal distribution for eij is used to repre-
sent the skewness in the residuals for RUSLE2 and Sediment from the lognormal
model. For the NEB predictor, we use (17) with {exp(y

(r)
ij ) : r = 1, . . . ,100; j =

1, . . . ,Ni} in place of {q̂ij (τk) : k = 1, . . . ,K; j = 1, . . . ,Ni}. We define an ALD
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TABLE 6
Average MC MSE and MC bias, where the average is across areas with the same sample size, and the data are generated as in (29)

Normal bi Laplace bi

ni = 5 ni = 10 ni = 20 ni = 5 ni = 10 ni = 20

eij Method τ MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias

χ2
(2)

LIGPD 0.1 0.046 0.004 0.017 −0.004 0.008 −0.002 0.044 −0.005 0.017 −0.001 0.009 0.002

χ2
(2)

ALD 0.1 0.150 0.045 0.091 0.072 0.050 0.069 0.164 0.045 0.095 0.065 0.059 0.074

χ2
(2)

NEB 0.1 0.290 −0.379 0.204 −0.346 0.162 −0.341 0.283 −0.381 0.204 −0.351 0.155 −0.330

χ2
(2)

Dir. 0.1 0.187 0.250 0.091 0.137 0.042 0.069 0.192 0.252 0.093 0.139 0.043 0.073

χ2
(2)

LIGPD 0.25 0.045 0.005 0.017 −0.006 0.008 −0.005 0.044 −0.003 0.016 −0.001 0.009 0.000

χ2
(2)

ALD 0.25 0.163 0.126 0.107 0.147 0.064 0.140 0.177 0.126 0.111 0.143 0.071 0.149

χ2
(2)

NEB 0.25 0.142 −0.038 0.080 −0.017 0.043 −0.022 0.135 −0.041 0.077 −0.024 0.043 −0.013

χ2
(2)

Dir. 0.25 0.190 0.154 0.078 0.078 0.037 0.033 0.195 0.158 0.082 0.081 0.039 0.040

χ2
(2)

LIGPD 0.5 0.049 −0.007 0.019 −0.018 0.009 −0.019 0.046 −0.013 0.018 −0.014 0.010 −0.012

χ2
(2)

ALD 0.5 0.200 0.223 0.151 0.256 0.111 0.256 0.215 0.245 0.159 0.265 0.126 0.277

χ2
(2)

NEB 0.5 0.207 0.243 0.148 0.251 0.100 0.235 0.194 0.239 0.139 0.241 0.106 0.244

χ2
(2)

Dir. 0.5 0.261 0.061 0.116 0.049 0.058 0.013 0.255 0.063 0.118 0.037 0.059 0.019

χ2
(2)

LIGPD 0.75 0.063 −0.024 0.029 −0.037 0.016 −0.039 0.062 −0.032 0.029 −0.035 0.016 −0.034

χ2
(2)

ALD 0.75 0.257 0.298 0.220 0.354 0.194 0.380 0.302 0.375 0.260 0.408 0.236 0.428

χ2
(2)

NEB 0.75 0.257 0.307 0.184 0.302 0.127 0.277 0.244 0.300 0.174 0.290 0.133 0.284

χ2
(2)

Dir. 0.75 0.529 −0.123 0.275 −0.022 0.141 −0.032 0.502 −0.123 0.281 −0.041 0.145 −0.022

χ2
(2)

LIGPD 0.9 0.112 −0.034 0.058 −0.054 0.036 −0.067 0.115 −0.040 0.060 −0.057 0.036 −0.061

χ2
(2)

ALD 0.9 0.290 0.262 0.226 0.315 0.187 0.340 0.366 0.395 0.297 0.417 0.261 0.433
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TABLE 6

(Continued)

Normal bi Laplace bi

ni = 5 ni = 10 ni = 20 ni = 5 ni = 10 ni = 20

eij Method τ MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE Bias

χ2
(2)

NEB 0.9 0.207 0.078 0.119 0.060 0.064 0.018 0.201 0.073 0.115 0.043 0.067 0.026

χ2
(2)

Dir. 0.9 1.076 −0.435 0.668 −0.244 0.392 −0.171 1.051 −0.429 0.682 −0.275 0.408 −0.154

SN LIGPD 0.1 0.145 0.033 0.091 0.062 0.055 0.058 0.149 0.048 0.088 0.061 0.054 0.067
SN ALD 0.1 0.209 −0.140 0.134 −0.148 0.095 −0.181 0.231 −0.199 0.152 −0.215 0.108 −0.219
SN NEB 0.1 0.167 −0.016 0.100 0.029 0.058 0.039 0.178 0.012 0.101 0.034 0.058 0.053
SN Dir. 0.1 0.756 0.442 0.471 0.288 0.268 0.142 0.817 0.479 0.462 0.275 0.254 0.166

SN LIGPD 0.25 0.124 0.026 0.076 0.043 0.044 0.040 0.128 0.030 0.073 0.039 0.042 0.039
SN ALD 0.25 0.190 −0.175 0.132 −0.193 0.102 −0.224 0.218 −0.218 0.150 −0.238 0.111 −0.247
SN NEB 0.25 0.165 −0.123 0.099 −0.097 0.058 −0.092 0.170 −0.104 0.098 −0.093 0.055 −0.085
SN Dir. 0.25 0.504 0.175 0.258 0.090 0.143 0.037 0.521 0.191 0.256 0.089 0.140 0.042

SN LIGPD 0.5 0.114 0.007 0.069 0.018 0.041 0.015 0.115 0.009 0.067 0.020 0.037 0.017
SN ALD 0.5 0.160 −0.125 0.104 −0.132 0.070 −0.147 0.181 −0.138 0.112 −0.147 0.070 −0.154
SN NEB 0.5 0.159 −0.133 0.100 −0.125 0.064 −0.128 0.163 −0.126 0.100 −0.123 0.061 −0.127
SN Dir. 0.5 0.340 −0.046 0.166 −0.020 0.092 −0.015 0.344 −0.042 0.170 −0.017 0.088 −0.012

SN LIGPD 0.75 0.113 −0.016 0.068 −0.006 0.039 −0.009 0.112 −0.014 0.066 −0.007 0.036 −0.011
SN ALD 0.75 0.148 −0.056 0.089 −0.052 0.051 −0.058 0.170 −0.046 0.094 −0.053 0.050 −0.057
SN NEB 0.75 0.139 −0.017 0.084 −0.022 0.047 −0.033 0.146 −0.010 0.084 −0.024 0.045 −0.037
SN Dir. 0.75 0.326 −0.196 0.151 −0.095 0.075 −0.053 0.331 −0.203 0.144 −0.092 0.073 −0.053

SN LIGPD 0.9 0.116 −0.027 0.069 −0.023 0.041 −0.027 0.116 −0.029 0.067 −0.025 0.038 −0.030
SN ALD 0.9 0.151 −0.004 0.089 −0.008 0.050 −0.015 0.171 0.011 0.092 −0.001 0.048 −0.006
SN NEB 0.9 0.171 0.173 0.107 0.153 0.066 0.134 0.179 0.174 0.106 0.148 0.061 0.128
SN Dir. 0.9 0.363 −0.343 0.186 −0.194 0.092 −0.109 0.364 −0.354 0.188 −0.199 0.089 −0.103
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TABLE 7
Relative bias (%) of bootstrap MSE estimator (22) and empirical coverage of normal theory 95%

prediction intervals

Relative Bias (%) Coverage

Parameter eij bi ni = 5 ni = 10 ni = 20 ni = 5 ni = 10 ni = 20

0.25 χ2
(2)

Normal 27.190 17.502 10.313 0.962 0.958 0.955

0.50 χ2
(2)

Normal 22.006 14.210 6.868 0.961 0.960 0.951

0.75 χ2
(2)

Normal 14.093 8.108 4.162 0.959 0.952 0.950

0.25 χ2
(2)

Laplace 23.226 11.436 16.026 0.962 0.953 0.955

0.50 χ2
(2)

Laplace 19.905 9.783 8.909 0.959 0.955 0.952

0.75 χ2
(2)

Laplace 12.464 3.440 6.216 0.957 0.953 0.951

0.25 SN Normal −3.140 −5.168 −14.502 0.944 0.946 0.926
0.50 SN Normal −0.884 −7.227 −15.615 0.943 0.940 0.928
0.75 SN Normal −0.938 −5.090 −13.824 0.942 0.939 0.928

0.25 SN Laplace −2.935 −5.943 −13.983 0.945 0.943 0.926
0.50 SN Laplace −2.789 −8.426 −15.790 0.942 0.942 0.927
0.75 SN Laplace −1.823 −7.425 −13.749 0.939 0.935 0.926

predictor for the transformed model in Appendix A.5. For the LIGPD, we define
the MSE estimator and confidence interval as in (26) and (25), respectively. Table 8
summarizes the properties of the MSE estimator for the LIGPD and alternative
predictors of the quantiles of ỹij for an MC sample size of 400. The LIGPD has
smaller MC MSE than the alternative predictors. The confidence interval coverages
are omitted because they are identical to the coverages in Table 7 by construction.

5. Discussion. The LIGPD approximation for the mixed effects quantile re-
gression model (1) with area random effects provides a viable approach to small
area prediction. Because the model makes few assumptions about the distribution
of the error terms, use of the LIGPD has potential to unify the analysis of multiple
response variables with diverse distributional properties. In simulations designed
to represent the CEAP data, predictors of small area quantiles based on the LIGPD
have smaller MSEs than predictors of corresponding quantiles based on parametric
models. The efficiency gain of the LIGPD relative to the NEB and ALD predic-
tors is greatest when the error distribution is far from normal, the number of areas
is large, and the area sample size is small. The bootstrap MSE estimator leads to
confidence intervals with average coverage within 2–3% of the nominal level. In
the application to the Conservation Effects Assessment Project, the LIGPD-based
small area predictors have smaller estimated RMSEs than the direct estimators,
on average. An analysis of residuals indicates that the LIGPD is appropriate for
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a wider range of CEAP variables than the lognormal distribution or the gamma
distribution.

The benefits of estimating quantiles of the distribution discussed in the Intro-
duction are realized in the CEAP data analysis. Because the distributions of CEAP
response variables are skewed and have outliers, the median is preferable to the
mean as a measure of center. Estimates of quartiles and extreme quantile levels,
which are important in practice (Goebel and Kellogg (2002)), reflect both collected
survey data and auxiliary information.

This study suggests future work related to the application and the methodol-
ogy. In this application, we treat the NRI survey as a population. Constructing
predictors for the full population is an area for future work. We consider a compu-
tationally simple frequentist procedure; however, a Bayesian analysis is a possible
alternative direction. Extensions of the LIGPD approach to incorporate multivari-
ate response variables or spatio-temporal dependence structures are other areas for
methodological development. Ongoing research involves refinements in the con-
text of an informative sample design.

APPENDIX

A.1. Initial estimators. We define an initial estimator of β(0.5) and b =
(b′

1, . . . ,b
′
D)′ by

(
β̂

(0)
(0.5), b̂

(0)) = argmin
β,b

D∑
i=1

ni∑
j=1

ρ0.5
(
yij − x′

ijβ − z′
ijbi

)
,(32)

where −∑D−1
i=1 b̂

(0)

i = b̂
(0)

D for identifiability because we assume xij contains an
intercept. If xij contains any covariates (other than the intercept) that are in the

TABLE 8
Summary of simulation results with ỹij = exp(yij ), where yij is generated as in (31). 100 × ˆMSE is

MC mean of MSE estimator (26)

MC MSE × 100 MC Bias × 100

τ ni 100 × ˆMSE LIGPD NEB ALD Dir. LIGPD NEB ALD Dir.

0.25 5 0.462 0.418 0.556 0.767 4.032 0.187 2.276 3.59 −6.849
0.25 10 0.255 0.246 0.349 0.552 1.37 −0.232 1.869 3.59 −3.446
0.25 20 0.15 0.182 0.203 0.406 0.679 −0.518 1.455 3.444 −1.804
0.50 5 2.017 1.887 2.652 2.989 6.819 1.023 5.365 6.09 −4.16
0.50 10 1.113 1.104 1.729 1.969 3.189 0.283 4.975 5.852 −2.186
0.50 20 0.64 0.806 1.101 1.335 1.593 −0.201 4.425 5.4 −1.158
0.75 5 7.299 7.008 8.249 9.958 15.09 3.356 3.779 8.38 4.261
0.75 10 4.065 4.091 5.268 6.193 8.663 2.127 3.785 7.23 1.379
0.75 20 2.353 3.019 3.063 3.721 4.353 1.346 3.216 5.79 0.815
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column space of zij , then one option is to replace xij in (32) with x̃ij , where x̃ij

contains the intercept and the set of covariates that are not in the column space of

zij . Let V̂ 1(b̂
(0)

1 ), . . . , V̂ D−1(b̂
(0)

D−1) be estimates of the variance of the asymptotic

distribution of (b̂
(0)

1 , . . . , b̂
(0)

D−1). The asymptotic covariance matrix of the initial
estimators is defined in Berg and Lee (2019) and estimated with the option se
= "ker" in the R function summary.rq. To define an initial estimator of �b,
define the area-level Fay–Herriot model,

b̂
(0)

i = bi + ai ,(33)

where ai has a distribution with mean 0 and variance V̂ i{b̂(0)

i }, and bi has a dis-
tribution with mean 0 and variance �b for i = 1, . . . ,D − 1. For univariate bi ,

the initial estimate of �b, denoted by �̂
(0)

b , is obtained by applying the estima-
tion procedure of Wang, Fuller and Qu (2008) to the area level model (33). The
preliminary estimate of β(τk) for k = 1, . . . ,K is defined by

β̂
(0)

(τk) = argmin
β

D∑
i=1

ni∑
j=1

ρτk

(
yij − x′

ijβ − z′
ij b̂

(0)

i

)
.(34)

We sort {x′
ij β̂

(0)
(τk) : k = 1, . . . ,K} for every (i, j) to obtain a nondecreasing

quantile function (Chernozhukov, Fernández-Val and Galichon (2009)). The es-

timate q̂
(0)
ij (τk) is the k order statistic of {x′

ij β̂
(0)

(τk) + z′
ij b̂

(0)

i : k = 1, . . . ,K}.
Given the initial estimates of the quantile function, we use the procedure in Step 3
of Section 2.2 to obtain estimates ρ̂

(0)
s and ξ̂

(0)
s for s = �,u.

A.2. Details of numerical integration procedure. Let bi be univariate and
bi ∼ fb(bi;σ 2

b ). For m = 0, . . . ,M − 1, let tr = F−1
b (r/(R + 1) | σ̂

2(m)
b ) for r =

1, . . . ,R, where Fb(· | σ̂ 2(m)
b ) is the estimate of the cumulative distribution function

of bi evaluated at the parameter estimate obtained in step m. Let hi(b) denote the
function to integrate. Let � and u denote the lower and upper limits of the integral,
and let r� = min{r : tr ≥ �} and ru = max{r : tr ≤ u}. The approximation for the
integral that we use is

∫ u

�
hi(b) db ≈

ru−1∑
r=r�

(tr+1 − tr )

(
hi(tr ) + hi(tr+1)

2

)
.

In this work, we take R + 1 = 1000.

A.3. Calculation of residuals for quantile regression model. For yij <

0.5(τ1 + τ2), define

F̂yij (yij ) = −G�(−yij + �̂ij )0.5(τ1 + τ2) + 0.5(τ1 + τ2).
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For yij > 0.5(τK + τK−1), define

F̂yij (yij ) = Gu(yij − ûij )
[
1 − 0.5(τK + τK−1)

] + 0.5(τK + τK−1).

For yij ∈ (0.5(τ1 + τ2),0.5(τK + τK−1)), define

F̂yij (yij ) = τkij−1 + (
yij − q̂ij (τkij−1)

)( τkij
− τkij−1

q̂ij (τkij
) − q̂ij (τkij−1)

)
,

where τkij
= min{τk : q̂ij (τk) ≥ yij , k = 1, . . . ,K}.

A.4. Selection of the transformation. For nonnegative ỹij , we consider a
subset of the class of transformations defined in Geraci and Jones (2015) by

h(y,λ) =
⎧⎪⎨
⎪⎩

1

2λ

(
(y + 
)λ − 1

(y + 
)λ

)
if λ �= 0,

log(y + 
) λ = 0,

where 
 is specified. We use a procedure to estimate λ that differs from the proce-
dure of Geraci and Jones (2015) because we require a single λ for all quantile lev-
els. We define a preliminary estimator of λ by λ̃ = argminλ

∑D
i=1

∑ni

j=1 ρ0.5(h(ỹij ,

λ)−x ′
ij β̃(0.5)), where β̃(0.5) is the minimizer of

∑D
i=1

∑ni

j=1 ρ0.5(ỹij −x′
ijβ). We

obtain an initial estimator of θ using the procedure defined in Appendix A.1 with
h(ỹij , λ̃) = yij as the observations. We define λ̂ such that Lp(λ̂) = max{Lp(k/10) :
k = 0, . . . ,9}, where Lp(λ) = ∑D

i=1 log(
∫
R

p1

∏ni

j=1 fY (h(ỹij , λ) | xij ,zij ,bi ,

θ̂
(0)

)fb(bi | �̂
(0)

b ) dbi ), and fY (· | x,z,b, θ) is defined in (3). For the CEAP data,
λ̂ = 0 for Runoff, RUSLE2 and Sediment with 
 = 0.0005. Limited simulations
using the log transformation indicate that the profile likelihood procedure is capa-
ble of correctly selecting λ = 0. Further study of the profile likelihood procedure
for estimating the transformation parameter is a potential area for future investiga-
tion. Because the log transformation is also justified on the basis of the loglinear
form of the Universal Soil Loss Equation, we treat λ = 0 as fixed for the analysis.

A.5. Asymmetric Laplace distribution. For specified τ ∈ (0,1), a variable
z ∼ ALD(μτ , στ ) if z has density function

fZ(z | μτ ,στ ) = σ−1
τ exp

{
−ρτ

[
z − μτ

στ

]}
.(35)

The value of μτ that maximizes the likelihood based on (35) minimizes Koenker’s
check function. Geraci and Bottai (2007, 2014) define a model by

yij | αi(τ ) ∼ ALD
(
qij (τ ), σ 2(τ )

)
,

qij (τ ) = x′
ijβ(τ ) + αi(τ )

(36)
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and αi(τ ) ∼ N(0, σ 2
α(τ )). Because we consider multiple quantile levels, we index

the model (36) by τ . In the model (36), αi(τ1) ⊥ αi(τ2) for τ1 �= τ2. The R function
lqmm (Geraci and Bottai, 2007, 2014) uses maximum likelihood to obtain estima-
tors β̂(τ ) and σ̂ 2

α (τ ) and uses a predictor of α̂i(τ ) with the form of a best estimated
linear predictor. When using lqmm, we specify nK = 30 quadrature points and
use “normal” and “robust” types for normal and Laplace bi , respectively. A pre-
dictor of qij (τk) is q̌ij (τk) = x′

ij β̂(τk) + α̂i(τk).
Weidenhammer et al. (2016) use the Geraci and Bottai (2007, 2014) model for

small area prediction. In the simulations of Section 4, we define small area pre-
dictors based on {q̌ij (τk) : j = 1, . . . ,Ni;k = 1, . . . ,K} as in (17) and (19) with
τk = k(K +1)−1 with K = 99. For the transformed model, we replace q̌ij (τk) with
exp(q̌ij (τk))−
. Weidenhammer et al. (2016) use a Monte Carlo procedure to de-
fine the small area predictors, and in simulations presented Berg and Lee (2019),
the prediction MSE using simulation is essentially the same as the prediction MSE
from (17).

SUPPLEMENTARY MATERIAL

Supplement to “Small area estimation for the conservation effects as-
sessment project using a mixed effects quantile regression model” (DOI:
10.1214/19-AOAS1276SUPP; .pdf). We provide the link to the Github repository
with code, the covariance matrix used for the initial estimators, a comparison to
an iterative procedure similar to a full EM algorithm, a description of the mixed
effects gamma model applied to the data, and versions of Figure 5 for Runoff,
RUSLE2 and CDiff.
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