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Capture-recapture studies often involve collecting data on numerous cap-
ture occasions over a relatively short period of time. For many study species
this process is repeated, for example, annually, resulting in capture informa-
tion spanning multiple sampling periods. To account for the different tempo-
ral scales, the robust design class of models have traditionally been applied
providing a framework in which to analyse all of the available capture data
in a single likelihood expression. However, these models typically require
strong constraints, either the assumption of closure within a sampling period
(the closed robust design) or conditioning on the number of individuals cap-
tured within a sampling period (the open robust design). For real datasets
these assumptions may not be appropriate. We develop a general modelling
structure that requires neither assumption by explicitly modelling the move-
ment of individuals into the population both within and between the sampling
periods, which in turn permits the estimation of abundance within a single
consistent framework. The flexibility of the novel model structure is further
demonstrated by including the computationally challenging case of multi-
state data where there is individual time-varying discrete covariate infor-
mation. We derive an efficient likelihood expression for the new multi-state
multi-period stopover model using the hidden Markov model framework. We
demonstrate the significant improvement in parameter estimation using our
new modelling approach in terms of both the multi-period and multi-state
components through both a simulation study and a real dataset relating to the
protected species of great crested newts, Triturus cristatus.

1. Introduction. In this paper we develop a model capable of analysing
capture-recapture data from multiple sampling periods within a single likelihood
expression. In comparison to existing models we retain the ability to estimate total
population size through the likelihood. Hidden Markov model (HMM) methods
are used to estimate state- and time-dependent abundance. Following the structure
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of existing models used to analyse multiple periods of capture-recapture data we
allow parameters to be dependent both on time and time spent in the population.

Standard capture-recapture studies consist of several capture occasions where
attempts are made to capture individuals from the population of interest. When
an individual is captured for the first time it is marked, or unique physical marks
recorded, to permit unique identification of each individual. At subsequent capture
occasions it is then possible, using these unique marks, to identify new individuals
(which are subsequently marked) or recaptured individuals (those that have been
previously captured). In this paper, we assume that all sampled individuals are
returned to the population after capture, that is, that there are no removals upon
capture from the population. By repeating this process at each capture occasion it
is possible to identify on which occasions each unique individual was recorded.
This information is stored in the form of individual capture histories. Typically
these capture histories are of binary form, for example,

011 001O0O0

where 0, and 1, indicate an individual was not captured, or captured, at each capture
occasion, respectively. During some capture-recapture studies it may be possible
to collect additional individual covariate information. We consider the case where
an individual time-varying discrete covariate is recorded corresponding to the state
of the individual upon capture. This additional information is recorded in the cap-
ture history where nonzero entries now indicate the observed state. This discrete
state information may refer, for example, to behavioural states such as breeding or
foraging, or alternatively it may refer to a discrete location such as which pond in
a study site.

The Schwarz—Arnason (SA) model (Schwarz and Arnason (1996)) estimates
the size of the super-population which includes both individuals that are captured
at least once as well as those that are never captured (but are available for capture
on at least one occasion). The inclusion of the super-population in the SA model,
denoted N, allows for births to be modelled within the likelihood expression. The
stopover model presented by Pledger et al. (2009) is an extension of the SA model
in which the capture and retention probabilities are dependent both on time and
time since arrival. In the stopover model the term ‘“age” is used to refer to the
time since joining the population (not necessarily physical age) and is generally
unknown due to the unknown arrival time (an individual may have joined the pop-
ulation on an occasion before their first capture). We note that when collecting
data to which we wish to fit a stopover model it is advisable to sample both before
the first arrivals and after the final departures (this results in capture histories with
leading and trailing zeros). Whilst the easiest approach is to analyse only the subset
of data corresponding to when the site is occupied, the extended sampling before
and after occupation can verify the implicit assumptions that those present on the
first occasion a capture occurs have only recently arrived and those present on the
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final occasion where captures occur are imminently about to depart. This second
assumption can be partially relaxed and sampling need not necessarily continue
until all individuals have departed; if this is the case the probability an individual
is present at the site for the whole period the site is occupied (e.g., present for the
entire breeding season) must be negligible (Kendall et al. (2018)).

Multi-state capture-recapture models allow the inclusion of individual time-
varying discrete covariates. Dupuis and Schwarz (2007) consider a multi-state
extension of the SA model for estimating abundance in open populations fitted
within a Bayesian (data augmentation) framework. This model allows for time-
and state-dependence in the capture probabilities but not the age-dependence of
the stopover model. Typically these models assume a first-order Markov model for
the transition of individuals among the different discrete states. King and Langrock
(2016) relax this assumption through a semi-Markov model where the dwell-time
distribution (the time spent in the state) has some parametric form. Brownie et al.
(1993) use a second-order Markov approach and suggest analysis be based on the
conditional likelihood.

The SA and stopover models consider only a single group of capture occasions.
However, for many studies, capture occasions are spaced closely in time, for in-
stance during the breeding season, and the sampling process is repeated many
times, for example, every year. The robust design class of models consider the
data at these two sampling levels; primary and secondary sampling periods. In
general the robust design models assume that the capture-recapture data of the
secondary periods are collected over a relatively short period of time, while the
duration between the primary sampling periods is much larger. The closed ro-
bust design model (Pollock (1982), Kendall, Pollock and Brownie (1995)), uses
closed-population capture-recapture models to estimate abundance within each
primary occasion. The more generally applicable (since animal populations are
rarely closed) open robust design model (Schwarz and Stobo (1997), Kendall and
Bjorkland (2001)) retains the open primary occasions, but also permits the sec-
ondary occasions to be open to arrivals and departures. Kendall et al. (2018) extend
this class of models to include a multi-state open robust design (MSORD) model
which includes state information on the primary level and includes the estimation
of abundance for each primary period.

We develop a general multi-state multi-period stopover model and formulate
the explicit likelihood expression as an HMM. Similar to the MSORD model, this
model permits time dependence in the survival (probability of remaining in the
population on the primary level) and capture probabilities and dependence on time
and time since arrival (within each sampling period) in the retention probabilities
(probability of remaining at the site between capture occasions in the secondary
level). In contrast to the MSORD model, our model also includes dependence on
time since recruitment (time since arrival in the primary level) in the survival prob-
abilities, time since arrival dependence in the capture probabilities, and permits
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transitions between states within the primary periods. The model retains the flex-
ibility of movement into and out of the population, assuming an open population
both between and within each sampling period. In particular, by allowing survival
to depend on the time since recruitment, transient individuals who spend very little
time in the population may be accounted for differently to those more permanent
(longer staying) individuals. We apply a similar argument to the stopover and SA
models, assuming a total population across all the periods consisting of both those
individuals that are observed and those that are not observed but available for cap-
ture. This approach allows the size of the total population to be estimated as a
parameter in the model. Subsequently, algorithms for HMMs can be implemented
to estimate the size of the population in each primary period along with state-
dependent abundance on occasions within each primary period. Doing so allows
the investigation of trends over time and comparisons of population size in the
different states. This is demonstrated in the simulation study and newt application
below. The multi-state aspect of the model is included so that additional infor-
mation can be incorporated such as different mark types, location information or
breeding status. We focus in particular on allowing the capture probabilities to be
state-dependent thus allowing for heterogeneity in the population. This new multi-
state multi-period stopover model can be considered a general model for capture-
recapture data from which many of the existing models can be obtained by placing
appropriate restrictions on the model parameters.

The motivation for developing this new multi-period stopover model is a long-
term study on great crested newts, a protected species in Europe. Although up to
£43 million is spent on mitigating the impacts of development on this species in
England alone (Lewis, Griffiths and Wilkinson (2017)), current population assess-
ment protocols for this species are inadequate (Griffiths et al. (2015)). There is
consequently a need for more reliable statistical models that take account of the
seasonal dynamics of this species. The study population considered here is unique
in that it is based on replicated ponds that have been intensively monitored for
nearly two decades. Individuals in this population visit the study site for the breed-
ing season. Arrivals and departures occur over a number of weeks with the traps
being set once per week during the breeding season with the process repeated an-
nually. The additional state information for this population is the pond in which
each individual newt is captured. Geographically, the area of the field study site
has remained consistent. Originally the site contained four constructed ponds, a
further four ponds were constructed in 2009 and first colonised in the 2010 breed-
ing season. Given that pond creation is regarded as a fundamental component of
amphibian conservation, of particular biological interest is how these new ponds
have been colonised, whether capture probabilities differ between the old well-
established ponds and the new ponds and the trap effectiveness at capturing the
newts. The old and new ponds may exhibit differences due to differing amounts of
vegetation, with these differences perhaps disappearing as the new ponds become
established. The ponds are located in close proximity to one another and so newts
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can freely move between them throughout each breeding season. For this popula-
tion of newts there is particular interest in the total number of newts visiting the
site and the number of newts using, and moving between, the old and new ponds.

We express the multi-state multi-period stopover model using an HMM. HMMs
provide a flexible way of modelling series of observations collected through time
that depend on underlying and often unobserved correlated states. After the initial
capture and marking of an individual, the capture history can be considered as
a combination of two processes: the observation process which depends on the
availability of an individual for capture; and an underlying availability process.
The HMM separates the underlying state process (i.e., availability for capture)
from the observation process (i.e., capture process, conditional on availability).
For further discussion see, for example, Gimenez et al. (2007), King (2012, 2014),
King et al. (2009), Langrock and King (2013), Royle (2008), Schofield and Barker
(2008), Zucchini, MacDonald and Langrock (2016).

In Section 2 we derive the multi-state multi-period stopover model. In Section 3
we perform a simulation study before applying the new model to a data set on great
crested newts in Section 4. We conclude with a discussion in Section 5.

2. Model derivation. In this section we derive the multi-state multi-period
stopover model. Within each primary period we assign an individual with time
since arrival value 1 on the first occasion they attend the site to indicate that they
have spent one capture occasion in the population. On the primary level we as-
sign an individual with time since recruitment value 1 on the first primary period
they join the population. We use the general terms “arrival” and “recruitment”
to indicate an individual becoming available for capture in the different levels of
the model. These will in practice have different interpretations and could refer to
births, recruitment to the breeding population, or arrival at a specific colony for mi-
gratory species. Likewise departures may refer to different ways of leaving a site,
including deaths or permanent emigration from the study area. In this derivation we
incorporate the state-dependence in the capture probabilities. We allow for move-
ment between the states within the primary periods to be first-order Markov with
initial choice of state in the next primary period independent of the states used in
the current primary period; generalisation of the initial choice of state is discussed
further in Section 5. We also assume that the state of an individual is recorded with-
out misclassification when an individual is observed, though this assumption can
be relaxed (King and McCrea (2014)) in a multi-state capture-recapture setting.

2.1. Notation. In defining the notation of the multi-state multi-period stopover
model we extend, where possible, the notation of Pledger et al. (2009). Let N de-
note the total population (to be estimated) consisting of all individuals who visit
the study site for at least one capture occasion during the study period (all cap-
ture occasions and periods). Further, let n denote the number of observed indi-
viduals (those captured on at least one capture occasion) and n, the number of
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individuals that are missed (those that are never captured). Thus N =n + n,,. Let
the entire study period consist of 7" primary periods, labelled t =1, ..., T, with
K () secondary capture occasions in primary period t. We let the capture his-
tory for individual i be denoted by x; = {x; (¢, k) :k=1,...,K(@);t=1,...,T}
and let the set of capture histories for all observed individuals be denoted by
x ={x;:i=1,...,n}. Note that from the histories we can easily extract in which
primary periods each observed individual was captured at least once.

We now define the set of model parameters (in addition to N above). We de-
fine the recruitment probabilities to be the set r = {r(¢) :t =1, ..., T} where r(¢)
is the probability of being recruited into the population and first becoming avail-
able for capture in primary period ¢. Since an individual belonging to the total
population must visit the site during at least one primary period, Zszl r) =1.
For the HMM formulation of the model we define r*(z) = r(¢)/ Z/T:t r(j) for
t =2, ..., T which denotes the conditional recruitment probability (probability of
being recruited in primary period ¢ given the individual has not been recruited
in any primary periods 1,...,7f — 1). We define the set of arrival probabilities
tobe B={B(t,k):k=1,...,K(t);t=1,...,T} where B(¢,k) is the proba-
bility of arriving at the study site and first being available for capture from oc-
casion k within primary period ¢, given the individual is in the population and
available for capture in primary period ¢. By definition, within each primary pe-
riodt=1,...,T, Zf:(tl) B(t, k) = 1. Similarly to the recruitment probabilities, the
HMM formulation requires conditional arrival probabilities which we define as
Br(t.k)=B(t.k)/ X ) Bt j) fork=2,....K(t)and 1 =1,.... T (probabil-
ity of arriving on occasion k in primary period ¢ given the individual has not arrived
onoccasions 1, ..., k—1inprimary period ¢). Welets = {sa (1) : A=1,...,t;t =
1,..., T — 1} denote the set of survival probabilities, where s4 (¢) is the probabil-
ity an individual is available for capture in primary period ¢ 4+ 1 given in primary
period ¢ they are available for capture and have been present in the population for
A primary periods. We let ¢ = {¢p,(t,k) :a=1,....k;k=1,..., K@) — 1;t =
1,..., T} denote the set of retention probabilities where ¢, (, k) is the probabil-
ity that an individual is available for capture on occasion k + 1 in primary period
¢t given on occasion k in primary period ¢ the individual is available for capture
and has been present in the population for a secondary capture occasions within
primary period 7.

In order to model the movement of individuals between the different observ-
able discrete states we first need to consider the discrete state that an individual
enters when they first arrive at the site within each primary period. In this deriva-
tion we assume initial choice of state within a primary is independent of previous
state occupation, see Section 5 for a discussion of alternative structures. We denote
these initial discrete state probabilities by o = {atg (1) : 1 =1,..., T;¢=1,...,G}
where ag (7) is the probability of being in state g =1, ..., G (where G is the total
number of observable states) on the first occasion an individual is available for
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capture in primary period ¢. In this derivation we assume these initial discrete state
probabilities are constant over time and so regardless of when an individual arrives
at the site the probability they enter each of the observable states remains the same.

The set of transition probability matrices between the discrete states is denoted
by W ={W():¢t=1,...,T}. The transition probabilities in primary period ¢ are
given by,

Y@ Y@ ... Yic@)

Yo1(t) Y@ ... Yoc(t)
V(1) = : ) . i

Yo1() Yert) ... Voo

such that v;;(r) denotes the probability of moving from state i to state j between
consecutive secondary occasions in primary period ¢, conditional on the individual
remaining available for capture in primary period ¢. For simplicity we have defined
the transition probabilities to be constant across all occasions within a primary pe-
riod. In general, this need not be the case, however, there are likely to be issues
with parameter redundancy and identifiability in the fully time-dependent case. Fi-
nally, we define the capture probabilities to be p = {pg,(t,k) :a=1,..., k;k =
L,...,K();t=1,...,T; g =1,..., G} where pg,(t, k) is the probability an in-
dividual is captured given they are in state g and have been present at the site for
a secondary occasions on occasion k in primary period . We include a diagram
in the Supplementary Material (Worthington et al. (2019), Appendix A) of the or-
dering of events to aid the understanding of the model parameters. The full set
of model parameters for the multi-state multi-period stopover model is given by
0={(N,r,s,a,V, B, ¢, p}.

The choice of model structure developed here is motivated by the underlying
ecology and biological understanding of the behaviour of great crested newts. For
further discussion on how the model could be further generalised see Section 5.

2.2. HMM formulation. Following the convention of the robust design mod-
els we consider nested (or hierarchical) Markov chains, the first operating on the
primary level and the second nested chain operating on the secondary capture oc-
casions. Let h = {h(¢) :t = 1,..., T} be the hidden states in the primary level
where

1 not yet recruited into the attending population;
2 time since recruitment = 1 (recruited in this period);
h(t) =

A"+ 1 time since recruitment = A" (A periods spent in population);

A’ +2 departed from the attending population;
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where A’ is the maximum observable time since recruitment of individuals in the
population on the primary level (A’ < T) implying individuals move to the ab-
sorbing state of having departed from the population (a combination of death and
permanant migration) after spending A’ primary occasions in the population. Sim-
ilarly, let h(t) = {h(¢t,k) :k=1,...,K(t);t =1,..., T} be the hidden states in
the secondary level where
1 not yet available for capture;
2 available for capture in primary occasion f,

time since arrival = 1 and in state 1;
3 available for capture in primary occasion ¢,

time since arrival = 1 and in state 2;

G+1 available for capture in primary occasion ¢,
time since arrival = 1 and in state G;

hit,k)y=3G+2 available for capture in primary occasion ¢,

time since arrival = 2 and in state 1;

2G +1 available for capture in primary occasion ¢,
time since arrival = 2 and in state G;

a'(t)G +1 available for capture in primary occasion ¢,
time since arrival = a’(¢) and in state G;

a'(t)G +2 departed from the site in primary occasion t;

where a’(¢) is the maximum observable time since arrival of individuals in the sec-
ondary level (a/(r) < K(t)) again implying that once an individual has spent a’(z)
secondary occasions at the site in primary period ¢, they move to the absorbing
state of having departed the site for that period. We note that it is possible that
a’(t) and G could be different in each primary period. This would change the size
of the matrices used within the secondary level of the model but no other changes
are necessary. We also note that the age need not increment deterministically by
one on each occasion but could more generally refer to age classes, for example,
immature, adult and senior, we discuss this further below.
Let the initial hidden state distribution of the primary level HMM,

r(h)=Ph1)=1) Phl)=2) ... Ph(l)=A4"+2),)

be the probabilities of entering each primary hidden state for primary period 1.
Similarly, for the secondary level HMM,

it )= (Pht,)=1) Pt 1)=2) ... PhE1)=d )G +2))).
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for t =1,...,T, describes the probabilities of entering each secondary hidden
state on occasion 1 in each primary period t =1, ..., T. Then, by definition of the
model parameters above,

a(H)=(1-r1) r(1) 0 ... 0),
@t )=(1-8@¢ 1) B@ Da@) 0 ... 0),

where a(¢) = (oq(t) ar(t) ... oag (t)) is the set of initial discrete state prob-
abilities for primary period ¢. Next, we consider the transition matrices which
describe the movement between the states of the Markov chains. In the primary
level this concerns the survival between the primary periods whilst in the sec-
ondary level it is the retention within the given primary period. Let I'(z) be an
(A" +2) x (A’ + 2) matrix where

T (t)[a,b] =P(h(t + 1) = blh(t) = a)

forr=1,...,T—1l,a=1,...,A’+2andb=1,..., A’ +2. Similarly, let ['(z, k)
be an (¢’ ()G + 2) x (a’(t)G + 2) matrix where

T (¢, k)[a, bl =P(h(t, k + 1) = blh(t, k) = a)

fork=1,....K@t)—1,t=1,....T,a=1,...,d@)G+2and b=1,...,
a'(t)G + 2. By definition,

1—r*@¢+1) r*¢+1) 0 0 0 0
0 0 si(t)y 0 0 1—s1(0)
0 0 0 sp(t) ... 0 1 —s2(2)

L= : : : S : :

0 0 0 0 cooosa_1 () 1—=sa1(0)
0 0 0 0 0 1
0 0 0 0 0 1

1 =Bt k+1) B @, k+ Da(r) 0 0 0
0 0 o1 (t, )W) ... 0 (1-¢1(1.0)g

Tt k) = : : : : ,

0 0 0 e Pay—1EROV®) (1= dary-1(2.0) g
0 0 0 . 0 1g
0 0 0 0 1

where (1 — ¢,(t,k))g is a column vector of length G with each entry equal to
(1 — ¢4(t,k)) and 15 is a column vector of ones of length G.

Here we assume a fully deterministic progression in time since recruitment (it
increases by 1 on each primary period) and time since arrival (it increases by 1
on each secondary occasion). This implies that once an individual has attained a
time since recruitment of A’ they necessarily move to the absorbing state of hav-
ing departed from the population (a combination of death, migration, or if A’ =T
the end of study so the probability of further sighting is 0). If time since recruit-
ment were instead grouped into classes (e.g., first time attenders and then repeat
attenders), but progression was still deterministic, then the above transition matrix
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would stay of the same form but parameters within a class would be shared (e.g.,
s1(t), s2(t) = s3(t) = - - - ). Alternatively, transitions between classes, for example,
young, adult and senior, may be stochastic in nature to include, for example, indi-
vidual variability in maturation rates. In this case a semi-Markov approach could
be used in which a distribution is specified for the time spent in each age-class with
the transition probabilities being determined from the chosen distribution.

Finally we consider the observation process which connects the observed data
to the hidden states. The primary level relates to the probability of observing the
capture histories within each primary period and the secondary level relates to
the probability of capture on each occasion. We first consider the secondary level
and work with unique capture histories y =1, ..., Y rather than considering each
individual in turn (Y <n). Let P(z, k, x,(t, k)) be an (a'(t)G +2) x (a'(1)G +
2) diagonal matrix fork=1,...,K(t) and r =1, ..., T where P(¢, k,a)[b, b] =
P(x,(t, k) =alh(t,k) =b) fora=0,1,...,G,b=1,...,a' (t)G + 2 and all off-
diagonal entries are zero. Then,

P(t, k, xy(t, k))

diag(1, I — pui(t, k), 1 = p21(t,k), ..., 1 = pG1(t, k),

v L= pray @, k), ... 1 = poa(t, k), 1) xy(t,k) =0,
diag(O, p11(t,k), 0,...,0, p12(l,k),0,
...,0,p1a/([)(l‘,k),0,...,O) xy(t,k)zl,
— Ldiag(0,0, p21(1,k).0,...,0, pn(t. k), 0,

20, prary (2, k),0, ..., 0) xy(t, k) =2,

dlag(o’ .. '505 pGl(tv k)a 09 .. 70’ sz(tv k)707
...,0,pGaf(t)(l,k),0) xy(t,k):G.

Let Lo(¢) and Ly(t) denote the likelihood contribution for a single-period
stopover model (i.e., considering the secondary occasions within one primary oc-
casion only) for an all zero capture history (i.e., an individual that is not captured)
and a nonzero capture history in primary period ¢ respectively. Then for each pri-
mary periodt=1,..., T,

K (1)

Lo(t) = (t, P, 1, 0)<]"[ Tt k— P, k, 0)) 10/ (5G42-
k=2
K(t)
Ly(t) =@, )P, 1, x,(, 1))(]‘[ T(t,k— DP(1, k, x, (z, k)))la/(,)cﬂ,
k=2

where 1,/(1)G+2 is a column of ones of length a’()G + 2 (the number of states in
the secondary level of the HMM). We can now consider the observation process in



ABUNDANCE VIA MULTI-STATE MULTI-PERIOD STOPOVER 2053

the primary level. Let z, (¢) indicate whether capture history y =1, ..., Y contains
a capture in primary period 7. Then z,,(f) = 0if x, (z,k) =0forallk =1, ..., K(?)
and conversely z,(¢) = 1 if x,(z, k) # O for at least one occasion k =1, ..., K(1).

Let P(t, z,(¢)) be an (A’ 4 2) x (A’ + 2) diagonal matrix fort = 1,..., T where
P(t,a)[b,b] =P(zy(t) = alh(t) =b) fora=0,1,b=1,..., A’ + 2 and all off-
diagonal entries are zero. Then,

diag(1, Lo(1), ..., Lo(t), 1) z,(t) =0,

P(t, 2y (1) = {diag(O, Ly(t),....Ly(),0) zy(®)=1.

Let L denote the probability an individual is never captured and L, the proba-
bility of observing the unique (nonzero) capture history y, then the primary level
expressions for the HMM are

T
Lo=r()P(1, 0)(]‘[ I — DP@, 0)>1A/+2,

=2

T

Ly =n(D)P(1,zy(1)) <1_[ I —DP(z, zy(t))> 14740,
=2

where 14/, is a column of ones of length A’ 4+ 2 (the number of states in the

primary level of the HMM).

The expression for the full likelihood is of multi-nomial form where individuals
with the same capture history are grouped together. We let n,, denote the frequency
of each unique capture history y =1, ..., Y where Y is the total number of unique
nonzero capture histories. The likelihood expression is given by:

N! New 11 o1y
Ly " TILy-
y=1

(N —m)! Ty ny!

Thus we have an explicit likelihood expression.

LO|x)=

3. Simulation study. To demonstrate the ability to estimate the parameters
of the multi-state multi-period stopover model we perform a simulation study. To
explore the advantages of the new approach we compare the results of fitting a
multi-state multi-period stopover model against the results of fitting separate multi-
state stopover models independently to each primary period of data.

We consider two different total population sizes, N = 100 and N = 1000, to
determine the effect of population size on the ability to estimate the model param-
eters. We expect that for small total population sizes (where the number of individ-
uals captured in any one primary period will be relatively small) the multi-period
model will perform better than the single-period models by taking strength from
sharing parameters across the different primary periods. As the population size
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increases we expect the variation of parameter estimates to decrease and the per-
formance of the single-period models to improve. Alternatively, a joint likelihood
over the primary periods could be formed which could also share parameters but
such an approach would not include the between primary modelling, thus would
be unable to estimate survival or recruitment probabilities.

We generate three primary periods of data (7" = 3) with each primary period
having five capture occasions (K (t) =5 forall t =1, ..., T). We let the number
of individuals joining the population at each primary period follow a multi-nomial
distribution with probabilities r(1) = 0.4, r(2) = 0.2 and r(3) = 0.4. The prob-
ability of survival between each primary period is assumed to be constant with
value s = 0.7. We define a logistic regression for the cumulative arrival probabil-
ities within each primary period, B(¢, k) = ZIJ‘-ZI B(t, j), from which the arrival
probabilities for each occasion, B(t, k), can be obtained. We include a primary-
dependent intercept, such that

logit(B(t, k)) = nk + (1),

where n =1, §(1) = —1, §(2) =0 and §(3) = —2. The arrival probabilities are
then

B(t,k) — B(t,k—1)
B, k) = :
B(t, K (1))
where B(t,0) =0 and division by B(¢, K (¢)) ensures the arrival probabilities sum
to one. For the retention probabilities we include time effects and a linear age term
but no primary period effects,

logit(¢a (. k)) = (k) + y (@ — 1),

where (1) =2.5,7(2)=1.8,7(3) =2.1, t(4) = 1.4, y = —1 and q is the time
since arrival within primary .

For the state-dependent parameters we assume them to be constant across
all primary periods. The initial discrete state probabilities are o; = 0.35 and so
ap = 0.65. The capture probabilities we assume to be dependent on state only with
p1 = 0.6 and pp = 0.8. Finally we let the transition probability matrix between the
observable discrete states be

0.4 0.6
v= (0.3 0.7) )

For each population size we generate 1000 data sets. For each data set we fit
the multi-state single-period stopover model to each period of data and then the
multi-state multi-period stopover model to the full data set using the n1m function
in R to maximise the likelihoods. The results for population size N (¢) (estimated
using a forward-backward-type algorithm for the multi-period model; details in the
Supplementary Material, Worthington et al. (2019), Appendix B), initial discrete
state probabilities ¢, transition probabilities ¥ and the arrival probabilities 8 are
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FI1G. 1. Results from the simulation study where N = 100: (top, left) percentage bias of the pop-
ulation size estimates in each primary period for the single-period model (white) and multi-period
model (grey); (top, right) bias of the initial discrete state and transition probabilities in each primary
period for the single-period and multi-period model; (bottom, left) bias of the arrival probabilities for
each primary period for the single-period model and; (bottom, right) bias of the arrival probabilities
for each primary period for the multi-period model.

displayed in Figures 1 and 2 for N = 100 and N = 1000 respectively (output for
the remaining parameters and state-dependent abundance within each primary is
available in the Supplementary Material, Worthington et al. (2019), Appendix D).

From the simulation study we can clearly see the improved performance through
using the multi-period approach. All of the parameters are estimated well and ap-
pear to be unbiased (or close to unbiased). We particularly note the improvement in
the bias of the estimates for the population size in each primary period and the de-
crease in variability of the transition and arrival probabilities. Of particular interest
is the ability of the models to correctly estimate the state-dependent parameters.
For these, when N = 100, the multi-period model does provide lower variability in
the MLEs than the single-period approach though uncertainty in these parameters
is quite large compared to the other parameters in the model. Similar improvements
to the precision of transition parameters were found by McCrea et al. (2010) where
a multi-state integrated population modelling approach is used to jointly analyse
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FIG. 2. Results from the simulation study where N = 1000: (top, left) percentage bias of the pop-
ulation size estimates in each primary period for the single-period model (white) and multi-period
model (grey); (top, right) bias of the initial discrete state and transition probabilities in each primary
period for the single-period and multi-period model; (bottom, left) bias of the arrival probabilities for
each primary period for the single-period model and; (bottom, right) bias of the arrival probabilities
for each primary period for the multi-period model.

capture-recapture and census data. We also note the strong improvement in the
estimation of the retention probabilities (¢p) using the multi-period approach.

When the total population size is increased to N = 1000 the variation in esti-
mates for all parameters in both models is reduced. The multi-period model still
performs better than the single-period model with the most obvious improvement
now in the capture, initial discrete state and transition probabilities. The variation
in parameter pj in the multi-period model remains greater than the other param-
eters, this is most likely due to the low capture probability and the probability of
remaining in the state being 0.4. This results in only a small number of captures
in this state and so larger uncertainty than the equivalent parameter in the other
state. However, we do note that the estimates are unbiased and so in general the
parameters appear to be estimated well.

4. Application. Data on a population of great crested newts are collected
from a field study site on the University of Kent campus. The data have been
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collected since 2002 on a weekly basis throughout the breeding season following
a standard and repeatable sampling routine. Whilst all captured newts are recorded
we analyse only the adult newt data since the natural markings used to uniquely
identify individuals may still be developing in juvenile newts. We consider the data
collected between 2002-2013 inclusive, a total of 12 years of data (available in the
Supplementary Material). In total there are 241 capture occasions across the 12
years. The number of capture occasions each year varies; traps are set from the
final week in February, which is typically before any newts arrive, and continue
to be set until no further newts are captured or the water level in the ponds falls
making trapping problematic. We format the data such that the first capture occa-
sion occurs within the same week every year (this may require truncating leading
zeros from the capture histories within some years). Originally consisting of four
ponds the site was extended in 2009 to a total of eight ponds which were then first
colonised during the 2010 breeding season. We define the observable capture states
to be the type of pond (old or new) the individual is captured in; the “old” ponds
were available in all years 2002-2013 whilst the second state, “new” ponds, were
available in years 2010-2013. The ponds are all located close together at the field
study site (1-12 m apart) and so movement between all eight ponds is possible and
it is the environmental differences (e.g., the amount of vegetation) between the
old and the new ponds that is likely to affect the choice of pond. In total n = 106
unique individuals were captured with a total of 1536 recaptures (ranging from
0 to 68 recaptures per individual, median 6.5 recaptures) during the 12 years of
sampling.

To consider the choice of model we first model the capture-recapture data, with-
out considering the additional state information, using the HMM formulation of
the multi-period stopover model. We perform a systematic search through a se-
ries of models of varying complexity in terms of the parameter dependencies. We
start with the most basic model where all the parameters are considered to be
constant and shared across all years. Improvement in the model fit is determined
through the AIC statistic using a “step-up” approach in order to avoid choosing
an overly complex model (McCrea and Morgan (2011)). Due to the large number
of capture occasions, we use a logistic regression over the secondary occasions
for both the arrivals and retentions within each primary period (rather than esti-
mating probabilities for each secondary occasion separately, this approach would
require a very large number of parameters and the sample size here is compara-
tively small). The model chosen by AIC (where the state information is ignored)
includes year-dependent recruitment probabilities, a constant survival probability
between each breeding season, and capture probabilities that are both year- and
occasion-dependent, that is, a different capture probability on every capture occa-
sion. For the logistic regressions on arrival and retention, the intercepts are constant
and shared across all years whilst the gradients are year-dependent, with the gradi-
ent estimated separately for each year. Assessing goodness-of-fit is challenging for
complex capture-recapture models and appreciable pooling is generally required
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to be able to classically compare observed and expected values. Due to the very
sparse histories in this application cell numbers are very small, the majority smaller
than 5. Pooling would make the identification of areas of poor model fit difficult to
diagnose. For this reason we rely on the stepwise search and prior understanding
of the species to support our model selection.

We now consider the additional observable states (old or new ponds). This ad-
ditional information is available for the 2010-2013 breeding seasons (all ponds
in 2002-2009 are old ponds and so the multi-state parameters are not required
for these years). Due to the large number of capture occasions, and very small
population size, we remove the occasion-dependence from the capture probabili-
ties and instead allow them to be dependent on both year and state. We also es-
timate the initial discrete state probabilities and transition probabilities between
the different observable states for each year where the multi-state data is avail-
able (2010-2013). The results from fitting the multi-state multi-period stopover
model are given in Figures 3 and Table 1. Figure 4 shows the estimated abun-
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FI1G. 3.  Maximum likelihood estimates and 95% bootstrap confidence intervals from the multi-state
multi-period stopover model for: (top, left) recruitment probabilities for years 2002-2013; (top, right)
logistic regression on arrival probabilities for years 2002-2013; (bottom, left) capture probabilities
for years 2002-2013 for the old ponds (black) and years 2010-2013 for the new ponds (grey) and,
(bottom, right) logistic regression on retention probabilities for years 2002-2013 of the great crested
newt study.



ABUNDANCE VIA MULTI-STATE MULTI-PERIOD STOPOVER 2059

TABLE 1
Maximum likelihood estimates and bootstrap standard errors from the multi-state multi-period
stopover model for the initial discrete state and transition probabilities for the old (state 1) and new
(state 2) ponds for years 2010-2013 of the great crested newt study

Year (1)
Parameter 2010 2011 2012 2013
a(t, 1) 0.69 (0.12) 0.28 (0.08) 0.48 (0.23) 0.33 (0.11)
Y12(t) 0.11 (0.03) 0.17 (0.06) 0.26 (0.08) 0.14 (0.05)
Yo1(t) 0.06 (0.02) 0.10 (0.03) 0.17 (0.08) 0.10 (0.06)

dance (through a forward-backward-type algorithm; see the Supplementary Mate-
rial, Worthington et al. (2019), Appendix C) for each occasion and observable state
in years 2010-2013. Estimated abundance for each year 2002-2013 and estimated
abundance on each occasion for years 2002-2009 are given in the Supplementary
Material (Worthington et al. (2019), Appendix E). Standard errors and 95% confi-
dence intervals are estimated through a nonparametric bootstrap (resampling indi-
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FI1G. 4. Estimated abundances for old ponds (black) and new ponds (grey) with 95% bootstrap
confidence intervals for years 2010-2013 of the great crested newt study.
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vidual capture histories) to ensure intervals remain within permissible ranges and
to avoid issues with boundary estimates (e.g., recruitment and arrival probabilities
very close to 0).

The results indicate the data collection process is close to a complete census of
individuals present at the site. The total population of newts that visited the site
at least once during the 12 years of sampling is estimated to be N = 107.2 (SE
0.47) of which n = 106 were captured. The parameter estimates and estimated
state-abundance in Figure 4 also indicate some possible differences between the
old and the new ponds. When the new ponds were initially colonised in 2010 there
appears to have been a preference for the old ponds as an initial choice when newts
arrived at the site. This is likely due to the amount of vegetation and invertebrates
in the ponds; the older ponds had longer to mature than the new ponds and there-
fore contained significantly more food, predators and plant cover. It appears that
upon arrival at the site the newts have moved towards the new ponds as their initial
choice as the new ponds have become more established. The capture probabilities
indicate clear temporal variation and with the exception of 2012 the capture prob-
abilities in both old and new ponds are very similar. The movement between the
ponds is quite low, newts appear to show high fidelity to the type of pond they are
in (old or new) with a consistently higher fidelity for the new ponds. The survival
probability for this population of newts between breeding seasons, assumed to be
constant between years, is estimated to be 0.82 (SE 0.027).

5. Discussion. In this paper we have developed a generalised multi-state
multi-period stopover model. This global model for capture-recapture data of-
fers extensions to many of the commonly applied capture-recapture models. In
particular the multi-state single-period stopover model combines the AS model
and stopover models to allow the capture probabilities to be time-, age- and state-
dependent. The new model is a fully open population model able to estimate to-
tal abundance and therefore likely to resolve long-standing issues concerning the
assumption of closure when sampling animal populations repeatedly over short
time frames. The multi-state multi-period stopover model is a further extension
of this multi-state stopover model considering multiple periods of capture occa-
sions within a single tractable likelihood. Forming the model as an HMM offers
the estimation of abundance for each primary period along with each occasion and
state within primary periods using standard techniques. Models that allow for the
combining of information, either across several years of data collection or differ-
ent sources of information, for example, count data, are widely used in ecological
applications (Besbeas et al. (2002)).

The model could be further generalised in a number of ways. As stated above
the transition probabilities between states need not be constant within each primary
period, additionally the transition, arrival and retention probabilities could have
further dependence on the time since recruitment. For example, older individuals
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in the population may demonstrate different time of arrival and state transition be-
haviour compared to newly recruited individuals. Similarly, retention probabilities
may be different for more experienced breeders compared to first time breeders.
Further consideration could also be given to the initial discrete state distribution.
Currently this is modelled independently for each primary period with no informa-
tion on state-preference brought forward from preceding primary periods. Possible
extensions would be to allow choice of initial state to be related to the final state
of the previous primary period, or as a function of the time spent in each state up
to that point. A fully general model incorporating the above is likely to require a
large volume of data to estimate the model parameters regardless of whether they
are identifiable. Whilst it would be preferable to use model selection techniques
to determine an appropriate model structure, it is reasonable that choice of model
structure for such a complex model be motivated by the underlying ecology of the
species under study. The model structure we have chosen to develop is motivated
by the application on great crested newts.

This likelihood is constructed using an HMM form leading to an efficient like-
lihood expression that can be maximised using standard optimisation algorithms
and software. This structure also permits the extension to include additional com-
plexities in a straightforward manner. For example, in this paper we assume that
the state information is recorded with certainty. In practice this may not be the
case but the model can be extended further to incorporate such state-uncertainty
by introducing additional state assignment probabilities (King and McCrea (2014),
King and Langrock (2016)).

In these derivations we assume the states are discrete. In the case of continuous
state information the approach of the HMMs above could still be applied by using a
fine discretization of the continuous states into a discrete form (Langrock and King
(2013)). Care would need to be adopted in this instance to avoid the dimensions of
the matrices involved becoming too large leading to computational issues.

Further extensions to these models could include the addition of a state-
dependence to the retention probabilities. This would allow the departure of indi-
viduals to be modelled differently depending on their final state in a given year. To
reduce the number of parameters estimated from the capture-recapture data alone,
covariates could also be considered. As with the multi-period stopover model, con-
sideration could also be given to temporary migration and the idea of individuals
skipping attendance in some years. For instance the success or failure to breed in
a given year may lead an individual to skip the following year to improve their
body condition before returning in later years to reattempt breeding. In the case of
the newts this behaviour is more likely in females as they have to invest more en-
ergy to produce eggs each year. This information would need to be incorporated in
the primary level of the model where the behaviour in a given year is summarised
into a state on the primary level. Again such extensions can be considered and the
efficient HMM likelihood exploited.



2062 WORTHINGTON, MCCREA, KING AND GRIFFITHS

Acknowledgements. The authors gratefully acknowledge all of the volunteers
and students who collected the data from the newts at the University of Kent,
particularly Sue Young, Amy Wright and Brett Lewis.

SUPPLEMENTARY MATERIAL

Supplement A: Supplementary appendices (DOI: 10.1214/19-A0AS1264
SUPPA; .pdf). Model diagram. Details on the forward-backward-type algorithms
used to estimate primary abundance and abundance for each occasion and state
within primaries. Additional output from the simulation study conducted in Sec-
tion 3. Abundance estimates for each year of the great crested newt study in Sec-
tion 4.

Supplement B: Data (DOI: 10.1214/19-A0AS1264SUPPB; .zip). Data set on
great crested newts used to illustrate the multi-state multi-period stopover model
in Section 4.

Supplement C: Code (DOI: 10.1214/19-A0AS1264SUPPC; .zip). R code to
perform the simulation study in Section 3 and the analysis on great crested newts
in Section 4.
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