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AFFINE PROCESSES BEYOND STOCHASTIC CONTINUITY
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In this paper, we study time-inhomogeneous affine processes beyond the
common assumption of stochastic continuity. In this setting, times of jumps
can be both inaccessible and predictable. To this end, we develop a general
theory of finite dimensional affine semimartingales under very weak assump-
tions. We show that the corresponding semimartingale characteristics have
affine form and that the conditional characteristic function can be represented
with solutions to measure differential equations of Riccati type. We prove
existence of affine Markov processes and affine semimartingales under mild
conditions and elaborate on examples and applications including affine pro-
cesses in discrete time.
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1. Introduction. The importance of jumps at predictable or predetermined
times is widely acknowledged in the financial literature; see, for example, [1, 11,
13, 18, 26, 29, 31–33]. This is due to the fact that a surprisingly large amount
of jumps or, more generally, rapid changes in stock prices or other financial time
series occur in correspondence with announcements released at scheduled, and
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FIG. 1. Chart of the stock price of Deutsche Bank. The vertical lines represent dates which have
been announced in the previous annual reports of 2013 and 2014, for example, annual and quarterly
reports and shareholder meetings. We marked the 10 largest one-day movements by circles; three
(the largest, and the 4th and 6th largest) of them occurred at pre-announced dates.

hence predictable times (see, e.g., [27]). A prominent example is the jump of the
EUR/GBP exchange rate on the 23rd of June in 2016 when it became clear that
the British referendum on membership in the EU will come out in favor of Brexit.
In addition, large jumps in stock prices frequently coincide with the release of
quarterly reports or earnings announcements. (See Figure 1 for an example and
[12] for further empirical support). Econometric models incorporating such jumps
at predetermined times were studied and tested on market data in [32]; see also
[34] and [16, 17].

While affine processes are a prominent model class for interest rates or stochas-
tic volatility, they have only been considered under the assumption of stochastic
continuity, which precludes jumps at predictable times. This assumption is dropped
in this paper, and we study affine processes only under very mild assumptions,
which allow for jumps to occur at both predictable and totally inaccessible times.

The defining property of affine processes is the exponential affine form of the
conditional characteristic function which allows for rich structural properties while
retaining tractability due to the representation of the conditional characteristic
function in terms of ordinary differential equations, the so-called ‘generalized Ric-
cati equations’. In subsequent research, further applications have been explored
(e.g., [9, 24, 25]) as well as extensions of the state space (e.g., [5, 6]) and most
notably an extension to time-inhomogeneous affine processes in [14].

In Remark 2.11 of [14], the author conjectures that his results can also be ob-
tained on the level of semimartingales omitting the assumption of stochastic con-
tinuity. Here we confirm this conjecture by generalizing the result in [14] to affine
semimartingales with singular continuous and discontinuous characteristics and
only locally integrable parameters. This result is complemented by existence re-
sults for affine Markov processes and affine semimartingales under certain mild
assumptions. Furthermore, we provide a variety of examples and applications. In
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particular, we propose an affine term-structure framework that allows for disconti-
nuities at previously fixed time points.

The paper at hand is structured as follows. The next section revisits some facts
about semimartingales before stating the definition of affine semimartingales and
introducing certain technical assumption. After proving first results, we define the
concept of a good parameter set in Section 3 which is a key ingredient of our
first main result, the characterization Theorem 3.2. Section 4 discusses the relation
between affine Markov processes and affine semimartingales as well as the impor-
tant case of infinitely divisible processes. Section 5 is devoted to the existence of
affine Markov processes and affine semimartingales under certain conditions on
their good parameter set. Examples and applications are explained in Section 6
which concludes the paper with the introduction of a new affine term-structure
framework. Details about measure differential equations that appear in the charac-
terization and existence results instead of the ODEs appearing in [10] and [14], are
postponed to the Appendix.

2. Preliminaries.

2.1. Affine semimartingales. Consider a filtered probability space (�,F ,

F,P ) with filtration F= (Ft )t≥0 satisfying the usual conditions. A stochastic pro-
cess X taking values in R

d is called càdlàg if all its paths are right continuous with
left limits. For a càdlàg process X, we define X− and �X by⎧⎨⎩X0− =X0, Xt− = lim

s↑t Xs for t > 0,

�Xt =Xt −Xt−.

In particular, note that �X0 = 0 and that X can be recovered from X− by taking
right limits.

A semimartingale is a process X with decomposition X =X0 +N +M where
X0 is F0-measurable, N is càdlàg, adapted, has paths of finite variation over each
finite interval with N0 = 0 and M is a local martingale starting in 0. We will always
consider a càdlàg version of the semimartingale X.

To the jumps of X, we associate an integer-valued random measure μX by

μX(dt, dx)=∑
s≥0

1{�Xs �=0}δ(s,�Xs)(dt, dx);(1)

here δa is the Dirac measure at point a. We denote the compensator, or the dual pre-
dictable projection, of the random measure μX by ν. This is the unique predictable
random measure which renders stochastic integrals with respect to μX − ν local
martingales.

We briefly recall the well-known concept of characteristics of a semimartingale,
cf. [21], Chapter II: a semimartingale X with decomposition X = X0 + N +M

is called special if N is predictable. In this case, the decomposition is unique,
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and we call it the canonical decomposition. The local martingale part M can be
decomposed in a continuous local martingale part, which we denote by Xc, and a
purely discontinuous local martingale part, X −Xc. We fix a truncation function
h : Rd → R

d which is a bounded function satisfying h(x)= x in a neighborhood
of 0. Then X̌(h)=∑

s≤·(�Xs − h(�Xs)) and X(h)= X − X̌(h) both define d-
dimensional stochastic processes. Note that �X(h)= h(�X), such that X(h) has
bounded jumps. The resulting process is a special semimartingale and we denote
its canonical decomposition by

X(h)=X0 +B(h)+M(h),

with a predictable process of finite variation B(h) and a local martingale M(h).
The characteristics of the semimartingale X is the triplet (B,C, ν) where B =
B(h), C = (Cij ) with Cij = 〈Xi,c,Xj,c〉 and ν = νX is the compensator of μX

defined in equation (1). For additional facts on semimartingales and stochastic
analysis, we refer to [21].

Let D ⊂ R
d be a closed convex cone of full dimension, that is, a convex set,

closed under multiplication with positive scalars, and with linear hull equal to R
d .

An important example is the set Rm≥0 × R
n with m + n = d , which was used as

the ‘canonical state-space’ for affine processes in [10, 14]. For u, w in C
d , we set

〈u,w〉 =∑d
i=1 uiwi and denote the real part of u by Reu. Moreover, we define the

complex dual cone of the state space D by

(2) U := {
u ∈Cd : 〈Reu,x〉 ≤ 0 for all x ∈D

}
.

For the canonical state space, U equals Cm≤0 × iRn, where C≤0 = {u ∈ C : Reu≤
0}, which coincides with the definition used in [10].1 We are now prepared to state
the central definition of this paper.

DEFINITION 2.1. Let X be a càdlàg semimartingale, taking values in D. The
process X is called an affine semimartingale, if there exist C and C

d -valued deter-
ministic functions φs(t, u) and ψs(t, u), continuous in u ∈ U and with φs(t,0)= 0
and ψs(t,0)= 0, such that

E
[
e〈u,Xt 〉|Fs

]= exp
(
φs(t, u)+ 〈

ψs(t, u),Xs

〉)
(3)

for all 0≤ s ≤ t and u ∈ U . Moreover, X is called time homogeneous, if φs(t, u)=
φ0(t − s, u) and ψs(t, u)=ψ0(t − s, u), again for all 0≤ s ≤ t and u ∈ U .

Note that the left-hand side of (3) is always well defined and bounded in absolute
value by 1, due to the definition of U .

1We use this notation in analogous fashion for >, < or ≥ instead of ≤ and with R instead of C.
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REMARK 2.2. Comparing Definition 2.1 with the definition of an affine pro-
cess in [10] (which treats the time-homogeneous case) and [14] (which treats the
time-inhomogeneous case), we have replaced the Markov assumption of [10, 14]
with a semimartingale assumption. In view of [10], Theorem 2.12, this seems to
slightly restrict the scope of the definition, since it excludes nonconservative pro-
cesses. On the other hand, and this is the central point of our paper, we do not
impose a stochastic continuity assumption on X, as has been done in [10, 14].
It turns out that omitting this assumption leads to a significantly larger class of
stochastic processes and to a substantial extension of the results in [10, 14]. Sec-
tion 4 contains further results on the relation between affine semimartingales and
affine Markov processes; in particular, we show in Lemma 4.3 that affine semi-
martingales are Markovian under mild conditions.

To continue, we introduce an important condition on the support of the pro-
cess X. Recall that the support of a generic random variable X is the smallest
closed set C such that P(X ∈ C)= 1; we denote this set by supp(X). For a set A,
we write conv(A) for its convex hull, that is, the smallest convex set containing A.

CONDITION 2.3. We say that an affine semimartingale X has support of full
convex span, if conv(supp(Xt))=D for all t > 0.

Under Condition 2.3, φ and ψ are uniquely specified.

LEMMA 2.4. Let X be an affine semimartingale satisfying the support Condi-
tion 2.3. Then φs(t, u) and ψs(t, u) are uniquely specified by (3) for all 0 < s ≤ t

and u ∈ U .

PROOF. Fix 0 < s ≤ t and suppose that φ̃s(t, u) and ψ̃s(t, u) are also contin-
uous in u ∈ U and satisfy (3). Write ps(t, u) := φ̃s(t, u)− φs(t, u) and qs(t, u) :=
φ̃s(t, u)− φs(t, u). Due to (3), it must hold that

ps(t, u)+ 〈
qs(t, u),Xs

〉
takes values in {2πik : k ∈N} a.s. ∀u ∈ U .

However, the set U is simply connected, and hence its image under a contin-
uous function must also be simply connected. It follows that u 
→ ps(t, u) +
〈qs(t, u),Xs〉 is constant on U and, therefore, equal to ps(t,0)+〈qs(t,0),Xs〉 = 0.
Hence,

ps(t, u)+ 〈
qs(t, u), x

〉= 0,

for all x ∈ supp(Xs) and u ∈ U . Taking convex combinations, the equality can be
extended to x ∈D. Since D has full linear span, we conclude that ps(t, u)= 0 and
qs(t, u)= 0 for all u ∈ U , completing the proof. �
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DEFINITION 2.5. An affine semimartingale is called quasiregular, if the fol-
lowing hold:

(i) The functions φ and ψ are of finite variation in s and càdlàg in both s

and t . More precisely, we assume that for all (t, u) ∈R≥0 × U ,

s 
→ φs(t, u) and s 
→ψs(t, u)

are càdlàg functions of finite variation on [0, t], and for all (s, u) ∈R≥0 × U
t 
→ φs(t, u) and t 
→ψs(t, u)

are càdlàg functions on [s,∞).
(ii) For all 0 < s ≤ t , the functions

u 
→ φs−(t, u) and u 
→ψs−(t, u)

are continuous on U .

REMARK 2.6. Definition 2.5 should be compared to the assumptions imposed
in [10] and [14]. In both papers, technical ‘regularity conditions’ are defined. In
[10, 14], φ and ψ are automatically continuous in their first argument, due to the
stochastic continuity of X. In addition, they are assumed continuously differen-
tiable from the right, with a derivative that is continuous in u. Thus, (i) and (ii) are
clearly milder than the regularity assumptions in [10] or [14].

2.2. First results on φ and ψ . We proceed to show first analytic results on the
functions φ and ψ from (3).

LEMMA 2.7. Let X be an affine semimartingale satisfying the support Con-
dition 2.3. Then:

(i) the function u 
→ φs(t, u) maps U to C≤0 and u 
→ ψ(t, u) maps U to U ,
for all 0 < s ≤ t ,

(ii) φ and ψ satisfy the semi-flow property, that is, for all 0 < s ≤ r ≤ t and
u ∈ U ,

φs(t, u)= φr(t, u)+ φs

(
r,ψr(t, u)

)
, φt (t, u)= 0,

ψs(t, u)=ψs

(
r,ψr(t, u)

)
, ψt (t, u)= u.

(4)

PROOF. To show the first property, recall that by equation (3) we have

(5) E
[
e〈u,Xt 〉|Fs

]= exp
(
φs(t, u)+ 〈

ψs(t, u),Xs

〉)
for all u ∈ U and 0≤ s ≤ t . Since 〈Reu,Xt 〉 ≤ 0, a.s., the left-hand side is bounded
by one in absolute value. Thus, also

Reφs(t, u)+ 〈
Reψs(t, u),Xs

〉≤ 0, a.s.
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and consequently

Reφs(t, u)+ 〈
Reψs(t, u), x

〉≤ 0, for all x ∈ supp(Xs).

Taking arbitrary convex combinations of these inequalities and using that, by Con-
dition 2.3, conv(supp(Xs))=D we obtain that the inequality must in fact hold for
all x ∈ D. Since D is a cone this implies that Reφs(t, u) ≤ 0 and ψs(t, u) ∈ U ,
proving (i).

To show the semi-flow equations we apply iterated expectations to the left-hand
side of (5), yielding

E
[
E
[
e〈u,Xt 〉|Fr

]|Fs

]=E
[
exp

(
φr(t, u)+ 〈

ψr(t, u),Xr

〉)|Fs

]
= exp

(
φs(r, u)+ φs

(
r,ψr(t, u)

)+ 〈
ψs

(
r,ψr(t, u)

)
,Xs

〉)
.

Note that the exponent on the right-hand side is continuous in u and that the same
holds true for (5). By the same argument as in the proof of Lemma 2.4, we conclude
that

φs(t, u)+ 〈
ψs(t, u), x

〉= φs(r, u)+ φs

(
r,ψr(t, u)

)+ 〈
ψs

(
r,ψr(t, u)

)
, x

〉
,

for all x ∈D. Since the linear hull of D is Rd the semi-flow equations (4) follow.
Note that the terminal conditions ψt(t, u)= u and φt (t, u)= 0 are a simple con-
sequence of E[exp(〈u,Xt 〉)|Ft ] = exp(〈u,Xt 〉) and the uniqueness property from
Lemma 2.4. �

REMARK 2.8. Note that s = 0 is excluded from the semi-flow equations, since
Condition 2.3 does not apply to the initial value X0 of X. However, as soon as
quasiregularity is imposed, the càdlàg property of φ and ψ immediately allows to
extend the semi-flow equations also to s = 0.

REMARK 2.9. To express the semi-flow equations in a more succinct matter,
it is sometimes convenient to introduce the following ‘big-flow’ notation. Define
the set Û :=C≤0 × U and denote its elements by û= (u0, u). Define

	s(t, û) :=
(
φs(t, u)+ u0

ψs(t, u)

)
.

Part (i) of Lemma 2.7 is equivalent to the claim that u 
→ 	s(t, u) maps Û to Û
and part (ii) is equivalent to

	s(t, û)=	s

(
r,	r(t, û)

)
, 	t (t, û)= û,

for all 0 < s ≤ r ≤ t and û ∈ Û .
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LEMMA 2.10. Let X be a quasiregular affine semimartingale. Then, for all
u ∈ U ,

E
[
e〈u,Xt−〉|Fs

]= exp
(
φs(t−, u)+ 〈

ψs(t−, u),Xs

〉)
, ∀0≤ s < t,(6)

E
[
e〈u,Xt 〉|Fs−

]= exp
(
φs−(t, u)+ 〈

ψs−(t, u),Xs−
〉)
, ∀0 < s ≤ t.(7)

If in addition X satisfies the support Condition 2.3, it also holds that

(8) E
[
e〈u,�Xt 〉|Ft−

]= exp
(−�φt(t, u)− 〈

�ψt(t, u),Xt−
〉)
,

for all (t, u) ∈R≥0 × U .

PROOF. The first expression, (6), follows by taking left limits in t on both
sides of (3). On the right-hand side, the limit is well defined by the càdlàg prop-
erty of φ and ψ in t . On the left-hand side, dominated convergence and the
càdlàg property of X yield (6). Equation (7) follows from a similar argument,
now taking left limits in s. Indeed, note that for any integrable random variable
Y , martingale convergence yields that that limε↓0 E[Y |Fs−ε] =E[Y |Fs−]. Equa-
tion (8) follows by evaluating (7) at s = t and noting that �φt(t, u) = φt (t, u)−
φt−(t, u)=−φt−(t, u), and �ψt(t, u)=ψt(t, u)−ψt−(t, u)= u−ψt−(t, u), due
to Lemma 2.7. �

LEMMA 2.11. Let X be a quasiregular affine semimartingale satisfying the
support Condition 2.3. Then:

(i) for all (s, u) ∈R≥0 × U the functions

t 
→ φs−(t, u), t 
→ψs−(t, u)

are càdlàg on [s,∞).
(ii) The ‘double limits’ φs−(t−, u) and ψs−(t−, u) are well defined and inde-

pendent of the order of limits, that is,

lim
ε↓0

ψs−(t − ε, u)= lim
δ↓0

ψs−δ(t−, u),

and similarly for φ.
(iii) The semi-flow equations (4) still hold when s is replaced by s− or t is

replaced by t− (or both).
(iv) It holds that

E
[
e〈u,Xt−〉|Fs−

]= exp
(
φs−(t−, u)+ 〈

ψs−(t−, u),Xs−
〉)
,

for all 0 < s ≤ t and u ∈ U .
(v) For all u ∈ U and 0≤ s < t , it holds that

�φs(t, u)=�φs

(
s,ψs(t, u)

)
,

�ψs(t, u)=�ψs

(
s,ψs(t, u)

)
.

(9)
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PROOF. We show claims (i), (ii) and (iii) for ψ only. The proof can easily be
extended to φ, for example, by using the ‘Big flow’ argument of Remark 2.9. To
show right continuity in (i), we write

lim
ε↓0

ψs−(t + ε, u)= lim
ε↓0

ψs−
(
t,ψt (t + ε, u)

)=ψs−
(
t, lim

ε↓0
ψt(t + ε, u)

)
=ψs−

(
t,ψt (t, u)

)=ψs−(t, u).

Here we have used the flow property, the continuity of ψs−(t, u) in u and finally
the right continuity of ψs(t, u) in t . As for the left limit, the equality

lim
ε↓0

ψs−(t − ε, u)= lim
ε↓0

ψs−
(
s,ψs(t − ε, u)

)=ψs−
(
s, lim

ε↓0
ψt(t − ε, u)

)
=ψs−

(
s,ψs(t−, u)

)
shows that the left limit exists. Moreover,

ψs−
(
s,ψs(t−, u)

)= lim
δ↓0

ψs−δ

(
s,ψs(t−, u)

)= lim
δ↓0

ψs−δ(t−, u))

shows exchangeability of the limits in (ii). Claim (iii) follows from the semi-flow
equations (4) by taking left limits in s, left limits in t , or both. Similarly, claim (iv)
follows from (6) by taking left limits in s, or from (7) by taking left limits in t .

For (v), we apply the semi-flow property (4) for r = s and obtain that

�φs(t, u)= φs(t, u)− φs−(t, u)= φs

(
s,ψs(t, u)

)− φs−
(
s,ψs(t, u)

)
and the first part of (9) follows. The second part follows analogously. �

3. The characterization of affine semimartingales. In this section, we de-
rive the representation of affine semimartingales via their semimartingale charac-
teristics as well as generalized measure Riccati equations for the coefficients φ and
ψ . It turns out that the class of affine semimartingales substantially generalizes the
class of stochastically continuous affine processes: first, jumps at fixed time points
are allowed and second, the jump height may depend on the state of the process.

Throughout, we will use the shorthand notation α = (α0, ᾱ) for a generic
(d + 1)-dimensional vector α = (α0, . . . , αd). Moreover, we denote by Sd+ the
convex cone of symmetric positive semidefinite d × d matrices. Given charac-
teristics (B,C, ν) of a semimartingale X, recall from [21], equation (II.1.23),
Proposition II.2.6, that C is always continuous and B can be decomposed as
B = Bc +∑

�B . Furthermore, also a ‘continuous part’ νc of ν can be defined
by

J := {
(ω, t) : ν(ω, {t},D)

> 0
}
,

νc(ω, dt, dx) := ν(ω,dt, dx)1J �(ω, t).
(10)
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Finally, if one chooses a ‘good version’ (as we always do) of the characteristics,
then

(11) �Bt =
∫
D

h(x)ν
({t}, dx

)
,

where h is the truncation function for the jumps; cf. [21], Proposition II.2.9. We
introduce the following definition, which will be needed to formulate our main
results.

DEFINITION 3.1. Let A be a nondecreasing càdlàg function with contin-
uous part Ac and jump points JA := {t ≥ 0|�At > 0}. Let (γ,β,α,μ) =
(γi, βi, αi,μi)i∈{0,...,d} be functions such that γ0 : R≥0 × U→C, γ̄ : R≥0 × U→
C

d , βi : R≥0 → R
d , αi : R≥0 → Sd and (μi(t, ·))t≥0 are families of (possibly

signed) Borel measures on D \ {0}. We call (A,γ,β,α,μ) a good parameter set
if for all i ∈ {0, . . . , d}:

(i) αi and βi are locally integrable w.r.t. Ac,
(ii) for all compact sets K ⊂D \ {0}, μ(·,K) is locally Ac-integrable,

(iii) γ (t, u)= 0 for all (t, u) ∈ (R≥0 \ JA)× U .

THEOREM 3.2. Let X be a quasiregular affine semimartingale satisfying the
support Condition 2.3. Then there exists a good parameter set (A,γ,β,α,μ) such
that the semimartingale characteristics (B,C, ν) of X w.r.t. the truncation function
h satisfy, P-a.s. for any t > 0,

Bc
t (ω)=

∫ t

0

(
β0(s)+

d∑
i=1

Xi
s−(ω)βi(s)

)
dAc

s,(12a)

Ct(ω)=
∫ t

0

(
α0(s)+

d∑
i=1

Xi
s−(ω)αi(s)

)
dAc

s,(12b)

νc(ω, ds, dx)=
(
μ0(s, dx)+

d∑
i=1

Xi
s−(ω)μi(s, dx)

)
dAc

s,(12c)

∫
D

(
e〈u,ξ〉 − 1

)
ν
(
ω, {t}, dξ

)= (
exp

(
γ0(t, u)+ 〈

Xt−(ω), γ̄ (t, u)
〉)− 1

)
.(12d)

Moreover, for all (T ,u) ∈ (0,∞)× U , the functions φ and ψ are absolutely con-
tinuous w.r.t. A and solve the following generalized measure Riccati equations:
their continuous parts satisfy

dφc
t (T ,u)

dAc
t

=−F
(
t,ψt (T ,u)

)
,(13)

dψc
t (T ,u)

dAc
t

=−R
(
t,ψt (T ,u)

)
,(14)
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dAc-a.e., where

F(s,u)= 〈
β0(s), u

〉+ 1

2

〈
u,α0(s)u

〉+ ∫
D

(
e〈x,u〉 − 1− 〈

h(x), u
〉)
μ0(s, dx),

Ri(s, u)= 〈
βi(s), u

〉+ 1

2

〈
u,αi(s)u

〉+ ∫
D

(
e〈x,u〉 − 1− 〈

h(x), u
〉)
μi(s, dx),

(15)

while their jumps are given by

�φt(T ,u)=−γ0
(
t,ψt (T ,u)

)
,

�ψt(T ,u)=−γ̄
(
t,ψt (T ,u)

)
,

(16)

and their terminal conditions are

(17) φT (T ,u)= 0 and ψT (T ,u)= u.

REMARK 3.3. Note that the parameter set (A,γ,β,α,μ) is not uniquely de-
termined: indeed, consider some increasing function A′ such that A� A′ and
write g = dA

dA′ for the Radon–Nikodym density of A with respect to A′. It is easy
to see that all statements of the theorem remain true for the alternative parameter
set (A′, γ, gβ,gα,gμ).

REMARK 3.4. We expect that Theorem 3.2 can be extended to affine semi-
martingales with explosion or killing, by adding a ‘fourth characteristic’ (cf. [38]
and also [3]), which possesses an affine decomposition similar to (12). The rigor-
ous formulation of the corresponding results will not be pursued here, and is left
for future research.

The distribution of the jumps of the affine semimartingale occurring at fixed
times t can directly be characterized as follows.

LEMMA 3.5. Let X be a quasiregular affine semimartingale satisfying the
support Condition 2.3 and with characteristics (B,C, ν).

(i) For any (t, u) ∈ (0,∞)× U ,

(18)
∫
D

(
e〈u,ξ〉 − 1

)
ν
(
ω; {t}, dξ

)= exp
(−�φt(t, u)− 〈

�ψt(t, u),Xt−
〉)− 1.

(ii) Set

J ν := {
t > 0 : P(ν(ω, {t},D)

> 0
)
> 0

}
,

J φ,ψ := {
t > 0 : ∃u ∈ U such that �φt(t, u) �= 0 or �ψt(t, u) �= 0

}
.

(19)

Then J ν = Jφ,ψ .
(iii) Set γ0(t, u)=−�φt(t, u) and γ̄ (t, u)=−�ψt(t, u). Then (12d) and (16)

hold true and γ = (γ0, γ̄ ) is a good parameter in the sense of Definition 3.1 when-
ever J ν ⊂ JA.
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PROOF. By definition, ν({t}, dξ) is the dual predictable projection of
δ�Xt (dξ) such that (by Proposition II 1.17 in [21])∫

D

(
e〈u,ξ〉 − 1

)
ν
(
ω; {t}, dξ

)=E
[(

e〈u,�Xt 〉 − 1
)|Ft−

]
.

Combining with (8), claim (i) follows. For (ii), let t ∈ J ν . Then there exists an
u ∈ U , such that the left-hand side of (18) is nonzero. Thus also the right-hand side
is nonzero and we conclude that either �φt(t, u) �= 0 or �ψt(t, u) �= 0. It follows
that t ∈ Jφ,ψ , and hence that J ν ⊆ Jφ,ψ . For the other direction let t ∈ Jφ,ψ

and choose an u ∈ U such that �φt(t, u) �= 0 or �ψt(t, u) �= 0. Together with
Condition 2.3 on X, we conclude that the right-hand side of (18) is nonzero with
strictly positive probability. The same must hold for the left-hand side and we
conclude that t ∈ J ν , and hence that J ν = Jφ,ψ . For (iii), note that γ has been
defined in such a way that (18) becomes (12d). The jump equations (16) are a
direct consequence of (9). If J ν ⊂ JA, then γ (t, u) = 0 whenever t /∈ JA and it
follows that γ is a good parameter. �

We now focus on the continuous parts of the semimartingale characteristics,
and make the following definition: For any affine semimartingale X with charac-
teristics (B,C, ν) and for (T ,u) ∈ R≥0 × U , we define a complex-valued random
measure on [0, T ] by

G(dt,ω,T ,u) := 〈
ψt, dBc

t (ω)
〉+ 1

2

〈
ψt, dCt(ω)ψt

〉
+

∫
D

(
e〈ψt ,ξ 〉 − 1− 〈

ψt,h(ξ)
〉)
νc(ω, dt, dξ),

(20)

where we write ψt :=ψt(T ,u) for short.

LEMMA 3.6. Let X be a quasiregular affine semimartingale with a good ver-
sion of its characteristics (B,C, ν), let (T ,u) ∈ (0,∞)×U and let G(dt,ω,T ,u)

be the complex-valued random measure defined in (20). It holds that

(21) G(dt;ω,T ,u)+ dφc
t (T ,u)+ 〈

Xt(ω), dψc
t (T ,u)

〉= 0, P-a.s.,

as identity between measures on [0, T ].

PROOF. For (T ,u) ∈ (0,∞)× U consider the process

M
u,T
t := E

[
e〈u,XT 〉|Ft

]= exp
(
φt(T ,u)+ 〈

ψt(T ,u),Xt

〉)
, t ∈ [0, T ),

which is a càdlàg martingale with the terminal value M
u,T
T = exp(〈u,XT 〉). To

alleviate notation, we consider (T ,u) fixed and write

Mt =M
u,T
t = exp

(
φt + 〈ψt,Xt 〉),
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with φt := φt(T ,u) and ψ(t) := ψt(T ,u). Applying the Itô formula for semi-
martingales (cf. [21], Proposition II.2.42) to M , we obtain a decomposition

Mt =Lt + Ft ,

where L is a local martingale and F is the predictable finite variation process

Ft :=
∫ t

0
Ms−

{
dφc

s +
〈
Xs−, dψc

s

〉+ 〈ψs−, dBs〉 + 1

2
〈ψs−, dCsψs−〉

(22)

+
∫
D

(
e�φs+〈ψs,Xs−+ξ〉−〈ψs−,Xs−〉 − 1− 〈

ψs−, h(ξ)
〉)
ν(ω,ds, dξ)

}
.

The jump part �F vanishes due to Lemma 3.5 and (11), and we are left with the
continuous part

Ft = Fc
t =

∫ t

0
Ms−

{
dφc

s +
〈
Xs−, dψc

s

〉+ 〈
ψs−, dBc

s

〉+ 1

2
〈ψs−, dCsψs−〉

+
∫
D

(
e〈ψs−,ξ 〉 − 1− 〈

ψs−, h(ξ)
〉)
νc(ω, ds, dξ)

}
.

Recall that M is a martingale, and hence M ≡ L and F ≡ 0 on [0, T ], P-a.s. With
(20), F can be rewritten as

Ft =
∫ t

0
Ms−

{
dφc

s +
〈
Xs−, dψc

s

〉+G(ds;ω,T ,u)
}
.

Since none of the measures appearing above charges points, the left limits Xs−,
ψs− can be substituted by right limits Xs , ψs . Moreover, Ms− is nonzero every-
where and (21) follows. �

In order to make efficient use of the support Condition 2.3, we introduce the fol-
lowing convention: Given an affine semimartingale X, a tuple X= (X0, . . . ,Xd)

represents d + 1 stochastically independent copies of X. Formally, the tuple X
can be realized on the product space (�(d+1),F⊗(d+1), (F⊗(d+1)

t )t≥0) equipped
with the associated product measure. Moreover, for any points ξ0, . . . , ξd in R

d ,
we define the (d + 1)× (d + 1)-matrix

(23) H(ξ0, . . . , ξn) :=

⎛⎜⎜⎝
1 ξ�0
...

...

1 ξ�n

⎞⎟⎟⎠ .

The matrix-valued process �t is formed by inserting X = (X0, . . . ,Xd) into H ,
that is, we set

(24) �t(ω)=H
(
X0, . . . ,Xd)=

⎛⎜⎜⎝
1 X0

t (ω)�
...

...

1 Xd
t (ω)�

⎞⎟⎟⎠ .
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LEMMA 3.7. Let s > 0 and let X be an affine semimartingale satisfying
the support Condition 2.3. Then there exists ε > 0 and a set E ∈ Fs with
P(E) > 0, such that the matrices �t(ω) and �t−(ω); are regular for all (t,ω) ∈
(s, s + ε)×E.

PROOF. Define the first hitting time

τ := inf{t > s :�t singular, or �t− singular}.
Since the set of singular matrices is a closed subset of the vector space of
R

(d+1)×(d+1)-matrices, τ is a stopping time; cf. [35], Theorem 1.4. Moreover, by
monotone convergence, we have

lim
n→∞P

(
�t and �t− regular for all t ∈ (s, s + 1/n)

)= lim
n→∞P(τ ≥ s + 1/n)

= P(τ > s).

If we can show that P(τ > s) > 0, then the claim follows by choosing N large
enough and setting ε = 1/N and E = {τ ≥ s + 1/N}. But by right continuity of
X, the set {ω : τ(ω) > s} is equal to {ω :�s(ω) is regular} and it remains to show
that �s is regular with strictly positive probability. By Condition 2.3, it holds that
conv(supp(Xs))=D and we can find d+1 convex independent points2 ξ0, . . . , ξd

in supp(Xs). Recalling the definition of H in (23), it follows that H(ξ0, . . . , ξd)

is regular. Since the set of regular matrices is open, we find δ > 0 such that even
H(y0, . . . , yd) is regular for all yi ∈ Uδ(ξi), i ∈ {0, . . . , d}, where Uδ(ξi) is the
open ball of radius δ centered at ξi . Now, by independence of X0, . . . ,Xd , it fol-
lows that

P(�s is regular)≥ P
(
Xi

s ∈Uδ(ξi) ∀i ∈ {0, . . . , d})
=

d∏
i=0

P
(
Xs ∈Uδ(ξi)

)
.

Since for each i ∈ {0, . . . , d} the intersection of Uδ(ξi) with the support of Xs is
nonempty, all probabilities are strictly positive, and the proof is complete. �

Similar to the R
(d+1)×(d+1)-valued process process (�t)t≥0 defined in (24),

we define d + 1 independent copies of the complex-valued random measure
G(dt,ω,T ,u) from equation (20) and denote them by G0, . . . ,Gd , respectively.
With this notation and for any (T ,u) ∈R≥0×U , the d+1 corresponding equations

2A set of points is called convex independent if none of them can be expressed as a convex combi-
nation of the remaining points.
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(21) can be written in matrix-vector form as

(25) �t(ω) ·

⎛⎜⎜⎜⎜⎝
dφc

t (T ,u)

dψ
c,1
t (T , u)

...

dψ
c,d
t (T , u)

⎞⎟⎟⎟⎟⎠=−
⎛⎜⎝G0(dt;ω,T ,u)

...

Gd(dt;ω,T ,u)

⎞⎟⎠
which holds P-a.s. as an identity between complex-valued measures on [0, T ]. The
next lemma gives a ‘local’ version of the continuous part of Theorem 3.2.

LEMMA 3.8. Let X be a quasiregular affine semimartingale satisfying the
support Condition 2.3 and let τ ∈ (0,∞) be a deterministic time point. Then there
exists an interval Iτ := (τ, τ + ε), where ε = ε(τ ) > 0, and good parameters
(Ac,β,α,μ) on Iτ . With respect to these parameters, and with F and R as in (15),
the measure Riccati equations (13) and (14) hold true for each (T ,u) ∈ R≥0 × U
and t ∈ Iτ ∩ [0, T ].

REMARK 3.9. We emphasize that in this lemma the parameters (Ac,β,α,μ)

as well as the functions F and R may depend on τ .

For a semimartingale X, there exists a càdlàg, increasing, predictable, R≥0-
valued process A starting in 0 and with continuous part Ac, such that the semi-
martingale characteristics of X can be ‘disintegrated’ with respect to A. For the
continuous parts (Bc,C, νc) of the characteristics, this implies the representation

Bc
t =

∫ t

0
bs dAc

s ,

Ct =
∫ t

0
cs dAc

s ,(26)

νc(ω, dt, dx)=Kω,t (dx) dAc
t (ω),

where b and c are predictable processes and Kω,t (dx) a transition kernel from
� × R≥0, endowed with the predictable σ -algebra, to (Rd,B(Rd)); see [21],
Proposition II.2.9, for further details.

PROOF. Let X0, . . . ,Xd be d + 1 stochastically independent copies of X.
Denote the semimartingale characteristics of Xi by (Bi,Ci, νi) and define
Gi(ω; t, T , u) as in (20), i = 0, . . . , d . The semimartingale characteristics (Bi,Ci,

νi) can be disintegrated as in (26). Since we consider only a finite collection of
semimartingales, we may assume that the process Ac

s(ω) is the same for each Xi .
By Lemma 3.7, there exists an interval Iτ = (τ, τ + ε), ε > 0, and a set E ∈F

with P(E) > 0 and such that �t(ω) is invertible for all (t,ω) ∈ Iτ×E. Multiplying
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(25) from the left with the inverse of this matrix yields

(27)

⎛⎜⎜⎜⎜⎝
dφc

t (T ,u)

dψ
c,1
t (T , u)

...

dψ
c,d
t (T , u)

⎞⎟⎟⎟⎟⎠=−�t(ω)−1 ·
⎛⎜⎝G0(dt;ω,T ,u)

...

Gd(dt;ω,T ,u)

⎞⎟⎠ ,

as an identity between complex-valued measures on Iτ for all ω ∈ E. Since
P(E) > 0, we can choose some particular ω∗ ∈E where (27) holds. Setting

Ac
t :=Ac

t (ω∗), t ∈ Iτ

we observe that Gi(dt;ω∗, T ,u)� dAc
t for each i ∈ {0, . . . , d} and conclude

that also the left-hand side of (27) is absolutely continuous with respect to Ac

on Iτ . Denote by (bi, ci,Ki) the disintegrated semimartingale characteristics of
Xi , as in (26). Note that the random measures Gi(dt;ω,T ,u) depend linearly
on (bi, ci,Ki), which in light of (27) suggests to apply the linear transformation
�t(ω)−1 directly to the disintegrated semimartingale characteristics. Evaluating
at ω∗, we hence define the deterministic functions (βi, αi,μi)i∈{0,...,d} on Iτ by
setting(

β0, β1, . . . , βd)�
t :=�t−(ω∗)−1 · (b0, b1, . . . , bd)�

t (ω∗),(
α0

kl, α
1
kl, . . . , α

d
kl

)�
t :=�t−(ω∗)−1 · (c0

kl, c
1
kl, . . . , c

d
kl

)�
t (ω∗), k, l ∈ {1, . . . , d},(

μ0,μ1, . . . ,μd)�
t :=�t−(ω∗)−1 · (K0,K1, . . . ,Kd)�

t (ω∗).

Using these parameters, the functions F , R can be defined on Iτ as in (15). In
combination with (27), it follows that

(28)

⎛⎜⎜⎜⎜⎝
dφc

t (T ,u)

dψ
c,1
t (T , u)

...

dψ
c,d
t (T , u)

⎞⎟⎟⎟⎟⎠=−�t(ω∗)−1 ·
⎛⎜⎝G0(dt;ω∗, T ,u)

...

Gd(dt;ω∗, T ,u)

⎞⎟⎠

=−

⎛⎜⎜⎜⎜⎝
F
(
t,ψt (T ,u)

)
R1(t,ψt (T ,u)

)
...

Rd(t,ψt (T ,u)
)

⎞⎟⎟⎟⎟⎠ dAc
t

for t ∈ Iτ ∩ [0, T ], which yields validity of the Riccati equations (13) and (14)
on Iτ . �

PROOF OF THEOREM 3.2. We consider first the continuous parts of the Ric-
cati equations, and thereafter treat their jumps. Applying Lemma 3.8 to each
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τ ∈ (0,∞), we obtain a family of intervals Iτ , each with nonempty interior I ◦τ ,
such that (I ◦τ )τ∈(0,∞) is an open cover of the positive half-line (0,∞). Since R≥0
can be exhausted by compact sets, such a cover has a countable subcover S . To
each interval I ∈ S , Lemma 3.8 associates good parameters (Ac,I , βI , αI , νI ).
By countability of S , there exists a continuous common dominating function
Ac : R≥0→ R≥0 such that Ac,I � Ac for all I ∈ S . As discussed in Remark 3.3,
passing from Ac,I to Ac has merely the effect of multiplying all parameters with
the Radon–Nikodym derivative dAc,I

dAc . Hence, we may assume without loss of gen-
erality that Ac,I =Ac for each I ∈ S .

Let now I and Ĩ be two intervals with a nonempty intersection, taken from the
countable subcover S . Denote by (Ac,β,α,μ) and (Ac, β̃, α̃, μ̃) the respective
parameter sets obtained for these intervals by application of Lemma 3.8 and by
(F,R) and (F̃ , R̃) the corresponding functions defined by (15). We say that these
two parameter sets are compatible if they agree (up to a dAc

t -null set) on the inter-
section I ∩ Ĩ . Once we have shown compatibility for arbitrary intervals I and Ĩ ,
it is clear that we can find a single good parameter set (A,β,α,μ), defined on the
whole real half-line R≥0, such that the Riccati equations (13) and (14) hold true.
To condense notation, we introduce the vectors

d	c
t (T ,u) :=

⎛⎜⎜⎜⎜⎝
dφc

t (T ,u)

dψ
c,1
t (T , u)

...

dψ
c,d
t (T , u)

⎞⎟⎟⎟⎟⎠ , R(t, u) :=

⎛⎜⎜⎜⎜⎝
F(t, u)

R1(t, u)
...

Rd(t, u)

⎞⎟⎟⎟⎟⎠ ,

R̃(t, u) :=

⎛⎜⎜⎜⎜⎝
F̃ (t, u)

R̃1(t, u)
...

R̃d(t, u)

⎞⎟⎟⎟⎟⎠ .

Applying equation (28) once on the interval I and once on Ĩ yields

(29)
R

(
t,ψt (T ,u)

)
dAc

t = d	c
t (T ,u)

= R̃
(
t,ψt (T ,u)

)
dAc

t , t ∈ I ∩ Ĩ ∩ [0, T ].
Let now T × E be a countable dense subset of R≥0×U . Taking the union over the
countable set T × E , we obtain from (29) that

(30)
R

(
t,ψt (T ,u)

)= R̃
(
t,ψt (T ,u)

)
for all (T ,u) ∈ T × E and t ∈ (

I ∩ Ĩ ∩ [0, T ]) \N,

where N is a dAc
t -null set, independent of (T ,u).

The next step is to ‘evaluate’ (30) at T = t and to use that ψt(t, u)= u by taking
limits in the countable set T . Observe that as functions of Lévy–Khintchine form



3404 M. KELLER-RESSEL, T. SCHMIDT AND R. WARDENGA

(cf. (15)) both F and R are continuous in u. By denseness of T in R≥0, we can
find a sequence (Tn)⊆ T such that Tn ↓ t as n→∞.

Together with the right continuity of ψt(T ,u) in T this yields

(31) R(t, u)= lim
n→∞R

(
t,ψt (Tn, u)

)= lim
n→∞ R̃

(
t,ψt (Tn, u)

)= R̃(t, u),

for all u ∈ E . Using continuity of F and R in u, equation (31) can be extended from
the dense subset E to all of U . It is well known that a function of Lévy–Khintchine
form determines its parameter triplet uniquely; cf. [37], Theorem 8.1. Hence, we
may conclude that

βi
t = β̃i

t , αi
t = α̃i

t , μi
t = μ̃i

t ,

for each i ∈ {0, . . . , d} and t ∈ I ∩ Ĩ with exception of the dAc
t -null set N . This

is the desired compatibility property and shows the existence of good parameters
(Ac,β,α, ν).

We now turn to the continuous parts of the semimartingale characteristics
(B,C, ν) and show (12a), (12b) and (12c). To this end, fix (T ,u) ∈R≥0×U and let
(b, c,K) be the continuous semimartingale characteristics of X, disintegrated with
respect to the increasing predictable process Ac

t (ω), as in (26). For each ω ∈ �,
write

Ac
t (ω)=

∫ t

0
as(ω)dAc

t + St (ω)

for the Lebesgue decomposition of Ac
t (ω) with respect to Ac

t .3 Furthermore, define

g(ω, t, T ,u) := 〈
ψt, bt (ω)

〉+ 1

2

〈
ψt, ct (ω)ψt

〉
+

∫
D

(
e〈ψt ,ξ 〉 − 1− 〈

ψt,h(ξ)
〉)
Kt(ω, dξ),

(32)

which can be considered as the disintegrated analogue of (20). Combining (25)
with the Riccati equations, we obtain that

�t(ω;x) ·R(
t,ψt (T ,u)

)
dAc

t = g(ω, t, u, T )at (ω)dAc
t

(33)
+ g(ω, t, u, t) dSt (ω)

for all (T ,u) ∈ R≥0 × U and t ∈ [0, T ]. By the uniqueness of the Lebesgue de-
composition, we conclude that

(34)

{
at (ω)g(ω, t, T ,u)=�t(ω) ·R(

t,ψt (T ,u)
)
, dAc

t -a.e.,

g(ω, t, T ,u)= 0, dSt (ω)-a.e.

3Note that our argument does not require measurability of ω 
→ as(ω) or ω 
→ St (ω).
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As in the first part of the proof, we consider a countable dense subset T × E of
R≥0 × U . Taking the union over all (T ,u) in T × E and repeating the density
arguments of (31), we find an dAc

t -null set N1 and a dSt (ω)-null set N2, such that

(35)

{
at (ω)g(ω, t, t, u)=�t(ω) ·R(t, u), for all t ∈R≥0 \N1, u ∈ E,

g(ω, t, t, u)= 0, for all t ∈R≥0 \N2, u ∈ E .

As functions of u, both sides are of Lévy–Khintchine form. In addition, E is dense
in U , which allows us to conclude from the first equation that

at (ω)bt (ω)=�t(ω) · (β0
t , . . . , βd

t

)
,

at (ω)ct (ω)=�t(ω) · (α0
t , . . . , α

d
t

)
,

at (ω)Kt(ω)=�t(ω) · (μc,0
t , . . . ,μ

c,d
t

)
for all t ∈R≥0 \N1 and from the second equation that

bt (ω)= 0, ct (ω)= 0, Kt (ω)= 0, dSt (ω)-a.e.

Integrating with respect to Ac
t (ω) and adding up yields (12).

To conclude the proof, we finally turn to the discontinuous part. Note that
Lemma 3.5 already provides us with parameters γ , a set J ν and the validity of
(12c) and (16). Taking the continuous increasing function Ac from the first part
of the proof and inserting jumps of strictly positive hight at each time t ∈ J ν , we
obtain an increasing function A with continuous part Ac and jump set JA = J ν .
Note that the heights of the jumps are arbitrary; for example, the values of the
summable series (2−n)n∈N can be taken. Together, (A,γ,α,β,μ) is now a good
parameter set in the sense of Definition 3.1 and all parts of Theorem 3.2 have been
shown. �

4. Affine Markov processes and infinite divisibility. Let X be a Markov
process in D (possibly nonconservative) with transition kernels ps,t (x,B), defined
for all 0 ≤ s ≤ t , x ∈D and B ∈ B(D). The following definition is analogous to
[10], Definition 2.1.

DEFINITION 4.1. A Markov process X in D is called affine Markov process,
if there exist C- and C

d -valued functions φ, ψ , such that the transition kernels of
X satisfy

(36)
∫
D

e〈u,ξ〉ps,t (x, dξ)= eφs(t,u)+〈ψs(t,u),x〉,

for all 0≤ s ≤ t , (x, u) ∈D× U .

An affine Markov process need not be a semimartingale, as we show in Exam-
ple 6.4. However, under mild conditions, affine semimartingales are affine Markov
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processes. First, note that to every affine semimartingale we can associate transi-
tion kernels ps,t (x,B), defined for all 0≤ s ≤ t , B ∈ B(D) and x ∈ supp(Xs), by
considering the regular conditional distributions

(37) P(Xt ∈ B|Xs)= ps,t (Xs,B).

By (3), the kernels will satisfy (36) for all x ∈ supp(Xs) and the semi-flow equa-
tions (4) provide the Chapman–Kolmogorov equations for the kernels ps,t (x, ·). It
remains to show that the family of transition kernels and the validity of (36) can
be extended from supp(Xs) to D. Apart from the trivial condition supp(Xs)=D

for all s > 0, we can give the following sufficient condition:

DEFINITION 4.2. An affine semimartingale X is called infinitely divisible, if
the regular conditional distributions ps,t (Xs, ·) are infinitely divisible probability
measures on D, P-a.s. for any 0≤ s ≤ t .

LEMMA 4.3. Let X be a quasiregular affine semimartingale satisfying the
support Condition 2.3. Suppose that:

(i) supp(Xt)=D for all t > 0, or
(ii) X is infinitely divisible.

Then X can be realized as a conservative affine Markov process with state space D.

PROOF. It suffices to show that the right-hand side of (36) is the Fourier trans-
form of a probability measure on D for all x ∈ D and 0 < s ≤ t . Indeed, if the
family (ps,t )0≤s≤t satisfies (36), the semi-flow equations (4) ensure that it satisfies
the Chapman–Kolmogorov equations. By the Kolmogorov existence theorem (see,
e.g., [23], Theorem 8.4), this guarantees the existence of a unique Markov process
with transition kernels (ps,t )0≤s≤t . Let ps,t (x, ·) be the transition kernels of the
semimartingale X, defined by (37). Note that by the affine property (3), these ker-
nels satisfy (36) for all x ∈ supp(Xs), and it remains to extend the identity to all
x ∈ D. In case (i), this is trivial for s > 0, since supp(Xs) = D. In case (ii), by
infinite divisibility, there exists, for any λ ∈ (0,1), a probability kernel p

(λ)
s,t (x, ·),

such that

(38)
∫
D

e〈u,ξ〉p(λ)
s,t (x, dξ)= eλφs(t,u)+〈ψs(t,u),λx〉.

Fix x, y ∈ supp(Xs), λ ∈ (0,1) and let z = λx + (1− λ)y be a convex midpoint
of x and y. At z we define ps,t (z, ·) := pλ

s,t (x, ·) � p
(1−λ)
s,t (y, ·), where � denotes

convolution of measures, and obtain

(39)
∫
D

e〈u,ξ〉ps,t (z, dξ)= eφs(t,u)+〈ψs(t,u),λx+(1−λ)y〉 = eφs(t,u)+〈ψs(t,u),z〉

that is, (36) has been extended to the convex midpoint z = λx + (1 − λ)y of x

and y. By Condition 2.3, we have conv(supp(Xs))=D for all s > 0, which shows
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(36), except at the time point s = 0. In both cases (i) and (ii), we can finally use
the quasiregularity property of φ, ψ to immediately extend (36) to s = 0 by taking
limits from the right. �

It turns out that infinite divisibility has even stronger implications on the struc-
ture of affine semimartingales, in particular, at the deterministic jump times JA.

LEMMA 4.4. Let X be an infinitely divisible, quasiregular affine semimartin-
gale satisfying the support Condition 2.3. Then the conditional distribution of �Xt

given Xt− is P-a.s infinitely divisible, for any t ≥ 0. Moreover, the parameters
γ = (γ0, γ1, . . . , γd) in Theorem 3.2 are of the following form: For any t ∈ JA and
i ∈ {0, . . . , d}, there exist β̃i(t) ∈ R

d , α̃i(t) ∈ Sd and a (possibly signed) Borel
measure μ̃i(t, ·) on D \ {0}, such that

(40) γi(t, u)= 〈
β̃i(t), u

〉+ 1

2

〈
u, α̃i(t)u

〉+ ∫
D

(
e〈x,u〉 − 1− 〈

h(x), u
〉)
μ̃i(t, dx),

for all u ∈ U .

PROOF. Using Lemma 3.5 and the quasiregularity property from Defini-
tion 2.5, we can write

E
[
e〈u,Xt 〉|Ft−

]= exp
(−�φt(t, u)− 〈

�ψt(t, u),Xt−
〉)

= lim
s↑t exp

(
φs(t, u)+ 〈

ψs(t, u),Xs

〉)
= lim

s↑t

∫
D

e〈u,ξ〉ps,t (Xs, dξ).

Note that the right-hand side is the limit of Fourier–Laplace transforms of infinitely
divisible measures on D. The left-hand side is the Fourier–Laplace transform of
the distribution of Xt , conditionally on Ft−, and we conclude that also this dis-
tribution must be infinitely divisible. By Lemma 3.5, γ0(t, u) = −�φt(t, u) and
γi(t, u)=−�ψi

t (t, u) for all i ∈ {1, . . . , d}. The decomposition (40) then follows
from the Lévy–Khintchine formula for infinitely divisible distributions. �

Recall the definition of a good parameter set (A,γ,β,α,μ) from Definition 3.1,
and note that the functions β(t), α(t) and μ(t, ·) are only defined up to Ac-null
sets. In particular, we can modify β , α, μ at any jump point t ∈ JA without af-
fecting the validity of Theorem 3.2. In light of the decomposition (40) of γ , this
suggests the following definition.

DEFINITION 4.5. Let (A,γ,β,α,μ) be the good parameter set of a quasireg-
ular infinitely divisible affine semimartingale X satisfying the support Condi-
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tion 2.3. We enhance the functions β , α, μ by setting

(41)

αi(t)= 1

�At

α̃i(t), βi(t)= 1

�At

β̃i(t),

μi(t, dξ)= 1

�At

μ̃i(t, dξ), for all t ∈ JA, i ∈ {0, . . . , d},

with α̃, β̃ , μ̃ as in Lemma 4.4 and refer to (A,β,α,μ) as enhanced parameter set
of X.

Note that γ does no longer appear in the enhanced parameter set, since it was
absorbed into the values of α, β , μ at the time points t ∈ JA. The enhanced pa-
rameters also allow us to combine F with γ and R with γ̄ by setting

F(t, u) := F(t, u)1{t /∈JA} +
1

�At

γ0(t, u)1{t∈JA},

R(t, u) :=R(t, u)1{t /∈JA} +
1

�At

γ̄ (t, u)1{t∈JA}.

Both F and R are of Lévy–Khintchine form and the continuous part (13)–(14) and
discontinuous part (16) of the measure Riccati equations can be unified into the
measure differential equations

dφt (T ,u)

dAt

=−F(t,ψt (T ,u)
)
,

dψt (T ,u)

dAt

=−R(
t,ψt (T ,u)

)
,

which, together with the terminal conditions (17), are equivalent to the integral
equations

φt(T ,u)=
∫
(t,T ]

F
(
s,ψs(T ,u)

)
dAs,(42a)

ψt(T ,u)= u+
∫
(t,T ]

R
(
s,ψs(T ,u)

)
dAs.(42b)

5. Existence of affine Markov processes and affine semimartingales. In
this section, we show, under mild assumptions, the existence of affine semimartin-
gales, using affine Markov processes as an intermediate step. While we have made
no restriction on the state space D before, we consider throughout this section only
the ‘canonical state space’ (cf. [10, 14])

D =R
m≥0 ×R

n, m+ n= d.

Note that for this state space, U takes the form U = C
m≤0 × iRn. In addition, we

have

∂U = iRd, Uo =C
m
<0 × iRn,
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as in [10]. For notational simplicity, we denote I = {1, . . . ,m}, J = {m +
1, . . . , d}, and I \ i := I \ {i}, J ∪ i := J ∪ {i} for any i. Finally, we introduce the
following shorthand notation:

• For two subsets I, J ⊂ {1, . . . , d}, we denote by aIJ the submatrix of a with
indices in I × J , that is, aIJ := (aij )i∈I,j∈I .
• β denotes the matrix with columns β0, β1, . . . , βd . We write β̄ for β with the

first column dropped.
• For any i, k ∈ {1, . . . , d}, we set H̄ik(t) := ∫

D\{0} hi(ξ)μk(t, dξ) whenever the
integral is finite. The other values can be chosen arbitrarily, and the resulting
matrix is denoted by H̄ (t) = (H̄ik(t)). Moreover, we define the column vector
H0(t) := ∫

D\{0} h(ξ)μ0(t, dξ).

Recall from Theorem 3.2 that an affine semimartingale X has a good parameter
set (A,γ,α,β,μ). To show existence of an affine semimartingale given a good
parameter set, we also need to take into account the geometry of our state space.
In [10], this was done by introducing admissibility conditions on the parameters.
In the following definition, we extend this notion to our setting.

DEFINITION 5.1. A good parameter set (A,γ,α,β,μ) is called admissible,
if:

(i) for Ac-almost all t ∈R≥0,

• αi(t) ∈ Sd+ for all i ∈ {0, . . . , d}, α0;II(t) = 0, αi;I\i,I\i (t) = 0 for i ∈ I ,
and αj (t)= 0 for j ∈ J ,
• β(t) ∈ Rd×(d+1) such that β0(t)−H0(t) ∈D, β̄IJ (t)= 0 and β̄i(I\i)(t)−

H̄i(I\i)(t) ∈Rm−1
≥0 for all i ∈ I ,

• μ(t) is a vector of Lévy measures with support on D such that μj(t) = 0
for j ∈ J and Mi(t) <∞ for i ∈ I ∪ 0, where

(43) Mi (t) :=
∫
D\{0}

(〈
hI\i (ξ),1

〉+ ∥∥hJ∪i (ξ)
∥∥2)

μi(t, dξ);

(ii) for all t ∈ JA and all x ∈D, the function u 
→ exp(γ0(t, u)+〈γ̄ (t, u)+ u,x〉)
is the Fourier–Laplace transform of a D-valued random variable.

If X is infinitely divisible and (A,α,β,μ) its enhanced parameter set (see Defini-
tion 4.5), then (ii) can be replaced by:

(ii′) for all t ∈ JA and i ∈ {0, . . . , d},
• αi(t) ∈ Sd+, αi;II(t)= 0 for i ∈ I ∪ 0 and αj (t)= 0 for j ∈ J ,
• β0(t)−H0(t) ∈D, β̄IJ (t)= 0 and β̄II(t)− H̄II(t)+ idm ∈Rm≥0,
• μi(t) is a Lévy measure on D with

∫
D\0(〈hI(ξ),1〉 + ‖hJ (ξ)‖2) ×

μi(t, dξ) <∞ for i ∈ I ∪ 0 and μj = 0 for j ∈ J .
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Note that a zero element on the diagonal of a positive semidefinite matrix im-
plies that the whole corresponding row and column is zero; therefore further re-
strictions on the elements of αi can be derived from the above conditions. In ad-
dition, we remark that the parameters β(t) are unique only up to the choice of the
truncation functions hi , which in turn determine the compensator matrix H ; see
also [10], Remark 2.13.

PROPOSITION 5.2. Let X be a quasiregular affine semimartingale satisfying
the support Condition 2.3 with good parameter set (A,γ,α,β,μ). Suppose that:

(i) supp(Xt)=D for all t > 0, or
(ii) X is infinitely divisible.

Then the parameters (A,γ,α,β,μ) are admissible.

PROOF. By Lemma 4.3, X can be realized as a (time-inhomogeneous) Markov
process with transition kernels ps,t (x, dξ), defined for all 0≤ s ≤ t and x ∈D. Set
fu(x)= e〈u,x〉 for u ∈ U . Similar to the proofs of admissibility in [10], we consider
the following limit:

Gtfu(x) := lim
h↓0

E[fu(Xt)|Xt−h = x] − e〈u,x〉

At −At−h

= lim
h↓0

exp(φt−h(t, u)+ 〈ψt−h(t, u), x〉)− e〈u,x〉

At −At−h

.

(44)

For Ac-almost all t ∈R≥0, there exists a sequence (hn)n∈N, decreasing to 0, along
which the limit exists (cf. the main Theorem in [7] or [2], Theorem 5.8.8). From
(7), together with (13) and (14), we can identify the limit to be

(45) Gtfu(x)= (
F(t, u)+ 〈

R(t, u), x
〉)
fu(x).

For t ∈ JA, we obtain instead from (8) that

(46) Gsfu(x)= (
e−�φs(s,u)−〈�ψs(s,u),x〉 − 1

) · 1

�As

fu(x).

On the other hand, we can write the limit in terms of the transition kernels of X as

Gtfu(x)

fu(x)
= lim

n→∞
1

At −At−hn

(∫
D

(
fu(ξ − x)− 1

)
pt−hn,t (x, dξ)

)
.

By (45) and (46), the above limit exists and is continuous at u= 0. If t is a continu-
ity point of A, we interpret the integral term in the last line as the log-characteristic
function of a compound Poisson distribution with intensity 1/(At −At−hn), which
is infinitely divisible. This implies that also their weak limit is infinitely divisible.
We conclude that the right-hand side of (45) is the log-characteristic functions of
an infinitely divisible distributions and, therefore, of Lévy–Khintchine form. From
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here, the admissibility of (α,β,μ) at points of continuity of A follows on the same
lines as in [10]. For discontinuity points t ∈ JA of A, we obtain from (46) that

exp
(
γ0(t, u)+ 〈

γ̄ (t, u)+ u,x
〉)= ∫

D
fu(ξ)pt−,t (x, dξ),

where we have written pt−,t (x, ·) for the weak limit of pt−h,t (x, ·) as h ↓ 0. Part
(ii) of the admissibility conditions follows form the fact that pt−,t (x, ·) must be
supported on D for all x ∈ D and 0 ≤ s ≤ t . If X is infinitely divisible, then the
decomposition of γ as (40), together with standard support theorems for infinitely
divisibly distributions (cf. [37], Theorem 24.10) yield (ii′). �

REMARK 5.3. We illustrate the geometric intuition behind the admissibility
conditions (ii′) at deterministic jump times: Consider the state space D = [0,∞), a
deterministic jump time t ∈ JA and the simplifying conditions α0(t)= α1(t)= 0,
μ0(t)= μ1(t), β0(t)= 0 and β1(t)=−1. In this case, the jump at t is given by

�Xt = β1(t)Xt− =−Xt−,

such that Xt = Xt− + �Xt = 0. Thus, the process X takes a jump of negative
height from Xt− to 0; a phenomenon that can not take place for stochastically
continuous affine processes on the state space D. Moreover, the jump is guaranteed
to land at 0, that is, at the boundary of D. Values of β1(t) ∈ (−1,0) also lead
to jumps of negative height, but landing within the interior (0,∞) of D. Values
of β1(t) < −1 would lead to jumps landing outside of D and are therefore not
admissible. The condition on β in (ii′) can be compared to the tenability conditions
of Pólya urns; cf. [22], equation (1.2).

In the remaining part of the section, we show the following: Given an admissible
enhanced parameter set, we can construct a Markov process that is an infinitely
divisible affine semimartingale for every starting point in D. In this regard, we
require a further integrability assumption.

ASSUMPTION 5.4. Given an enhanced parameter set (A,β,α,μ), assume
that α, β and M defined by (43) are locally integrable with respect to A.

PROPOSITION 5.5. Let (A,α,β,μ) be an admissible enhanced parameter set
satisfying Assumption 5.4. Then, for all (T ,u) ∈ (0,∞)×U◦ there exists a unique
solution (φ.(T ,u),ψ.(T ,u)) on [0, T ] to the generalized measure Riccati equa-
tions (12)–(17) (or equivalently to (42)).

In the following, let u = (v,w) ∈ U with v ∈ Cm≤0 and w ∈ iRn. We will also

use the convention
∫
(a,b] =

∫ b
a to shorten notation in some places.
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PROOF. Since an enhanced parameter set is given, the generalized measure
Riccati equations (12)–(17) can be combined into (42). It suffices to show exis-
tence of a unique global solution to equation (42b), since existence and unique-
ness for (42a) then follows by simple integration (note that φ does not appear on
the right-hand side of (42a)). Due to the admissibility conditions, the equation for
ψ can be split into an equation for the components ψI = (ψi), i ∈ I and a de-
coupled linear equation for the components with j ∈ J (see also [10], Section 6),
which can be written as

ψJ
t (T , u)=w+

∫ T

t
β̄JJ (s)ψJ

s (T , u) dAs.

This linear equation can be solved according to Example A.4 in the Appendix
which yields a function with linear dependency on the starting value w, that is,

(47) ψJ
t (T , u)=wψJ

t (T ), ψJ (T ) : [0, T ]→R
n×n.

The existence and uniqueness of a local solution to the generalized measure
Riccati equation (42b) is a consequence of Theorem A.3 in the Appendix. Indeed,
R(t, (v,w)) is of Lévy–Khintchine form, hence analytical in v by Lemma 5.3(i)
in [10], and thus locally Lipschitz continuous in u with a Lipschitz constant that
can be chosen A-integrable, due to the integrability of the enhanced parameters
(α,β,μ).

To extend the local solution to the entire time horizon, we adopt the proof in
[10] to our setting. Let g(·, T ,u) be a local solution to the Riccati equations with
terminal condition u ∈ U◦ at time T . We have to show that g extends—backwards
in time—to a global solution on [0, T ]. Consider the lifetime of g in U◦

τT ,u := lim sup
n→∞

{
t ∈R+|

∥∥g(t, T ,u)
∥∥≥ n or g(t, T ,u) ∈ (

U◦
)�}

.

For the existence on the entire time horizon τT ,u has to be zero, for all u ∈ U◦.
Similar to [10], equation (6.8), we obtain from the Lévy–Khintchine form of R
for dA-almost-all t that

(48) Re Ri (t, u)≤ C(t)
(
(Re ui)

2 −Re ui

)
,

where C(t) is a constant independent of u, for all t . The integrability of the param-
eters of R allows to choose C as also being A-integrable. Hence the local solution
g satisfies the following integral inequality:

Re gi
t (T , u)≤ v+

∫
(t,T ]

C(s)
((

Re gi
s(T ,u)

)2 −Re gi
s(T ,u)

)
dAs.

By the comparison result Proposition A.5 for measure differential equations, stated
in the Appendix, we get

Re gi
t (T , u)≤ ft (T ,u),
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where f satisfies

ft (T ,u)= Rev+
∫
(t,T ]

C(s)
(
fs(T ,u)2 − fs(T ,u)

)
dAs.

Note that for all K > 0 there exists c > 0 such that (x2 − x) < −cx as long as
x ∈ (−K,0). Hence, f·(T ,u) < 0 for all u ∈ U◦.

For the upper bound, we consider the squared norm of ψI . With the chain rule
formula for functions of bounded variation in [4], Theorem 4.1, we can write∥∥ψI

t (T , u)
∥∥2 = ‖v‖2 +

∫
(t,T ]

2 Re
〈
ψI

s (T ,u),RI(s,ψI
s (T , u),ψJ

s (T , u)
)〉

dAc
s

+ ∑
s∈(t,T ]

∥∥ψI
s (T , u)

∥∥2 − ∥∥ψI
s−(T ,u)

∥∥2

= ‖v‖2 +
∫
(t,T ]

2 Re
〈
ψI

s (T ,u),RI(s,ψI
s (T , u),ψJ

s (T , u)
)〉

dAs(49)

− ∑
s∈(t,T ]

〈
�ψI

s (T ,u),�ψI
s (T , u)

〉
≤ ‖v‖2 +

∫
(t,T ]

2 Re
〈
ψI

s (T ,u),RI(s,ψI
s (T , u),ψJ

s (T , u)
)〉

dAs,

where we have used ψI
s−(T ,u)=ψI

s (T , u)−�ψI
s (T , u) in the second line. With

K(t, u) := Revi

〈
αi
JJ (t)w,w

〉+Re v̄i

〈
βi(t)−Hi(t), u

〉
,

we can write

Re
(
v̄iRi (t, u)

)= αi
ii(t)|vi |2 Revi +K(t, u)

+Re
(
v̄i

∫
D\{0}

(
e〈u,ξ〉 − 1− 〈

uJ∪i , hJ∪i(ξ)
〉)
μi(t, dξ)

)
.

Using the same calculations as Proposition 6.1 in [10], we obtain the following
estimate:

Re
(
v̄iRi (t, u)

)≤ Ct

(
1+ ‖w‖2)(1+ ‖v‖2), ∀u= (v,w) ∈ U .

From the A-integrability of M, it follows that C, which is independent of u, can
be chosen A-integrable. Inserting the above equation into (49), we obtain∥∥ψI

t (T , u)
∥∥2 ≤ ‖v‖2 +

∫
(t,T ]

Cs

(
1+ ∥∥ψJ

s (T , u)
∥∥2)(1+ ∥∥ψI

s (T , u)
∥∥2)

dAs.

Gronwalls inequality for measure differential equations (cf. [19], Corollary 19.3.3)
yields

(50)
∥∥ψI

t (T , u)
∥∥2 ≤ ‖v‖2 exp

(∫
(t,T ]

Cs

(
1+ ∥∥ψJ

s (T , u)
∥∥2)

dAs

)
.

With (47), this shows that the solution can not explode, and thus τT ,u = 0, that is,
we have a solution on [0, T ]. �
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PROPOSITION 5.6. Let (φ,ψ) be a solution to the generalized measure Ric-
cati equations (13)–(17). Then it holds that:

(i) for each u ∈ U and s < t the left limits

φs(t−, u)= lim
ε↓0

φs(t − ε), and ψs(t−, u)= lim
ε↓0

ψs(t − ε,u)

exist.
(ii) For all u= (v,w) ∈ U and s ≤ t , ψJ

s (t, (v,0))= 0.
(iii) (φ,ψ) satisfy the semi-flow property, that is, let r ≤ s ≤ t then for all

u ∈ U◦
φr(t, u)= φs(t, u)+ φr

(
s,ψs(t, u)

)
and φt (t, u)= 0,

ψr(t, u)=ψr

(
s,ψs(t, u)

)
and ψt(t, u)= u.

(iv) For all t ∈ [0, T ] and K ⊂ U compact,

sup
u∈K,s≤t

∥∥ψs(t, u)
∥∥ <∞.

PROOF. The first assertion follows from the integral representation of φ

and ψ . The second assertion can be derived directly from the admissibility condi-
tions. Regarding (iii), let s ≤ t , u ∈ U◦ and define

f (r) :=ψr

(
s,ψs(t, u)

)
, for 0≤ r ≤ s.

Plugging equation (42b) into the above definition, we see that—on [0, s]—f sat-
isfies the same measure Riccati equation as ψr(t, u):

f (r)=ψs(t, u)+
∫
(r,s]

R
(
w,f (w)

)
dAs.

By uniqueness of the Riccati equation, we infer f (r)=ψ(r, t, u). A simple calcu-
lation exploiting the above and equation (42b) shows the equation for φ. Assertion
(iv) follows readily from equations (47) and (50). �

We are now prepared to state our main result on existence of affine Markov
processes and affine semimartingales.

THEOREM 5.7. Let (A,α,β,μ) be an admissible enhanced parameter set sat-
isfying Assumption 5.4. Then there exists an infinitely divisible affine Markov pro-
cess X (cf. Definition 4.1) with φ, ψ solutions of the associated measure Riccati
equations. If X is conservative, then it is an affine semimartingale with character-
istics given by (12), for any initial point X0 = x ∈D.

The next result provides a sufficient condition for the conservativeness of X;
further conditions can be developed along the lines of [10], Lemma 9.2.
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COROLLARY 5.8. Let X be an affine Markov process as in Theorem 5.7. If,
for any T > 0, g ≡ 0 is the only R

m≤0-valued solution to

(51)
dgt

dAt

=−ReRI(t, gt ), gT = 0,

then X is conservative.

Theorem 5.7 follows almost entirely from the next two propositions.

PROPOSITION 5.9. Let the assumptions of Theorem 5.7 hold true and let
(φ,ψ) be solutions to (13)–(17) with admissible parameters. Then there exists an
affine Markov process X, unique in law, with state space D and whose transition
kernels satisfy the affine property (36) with exponents φ and ψ .

For the proof of this proposition, we introduce the following notation (see [10],
Section 7). Let C denote the convex cone of functions φ : U→C≤0 of the form

(52) φ(u)= 〈Aw,w〉 + 〈B,u〉 −C +
∫
D\{0}

(
e〈u,ξ〉 − 1− 〈

w,hJ (ξ)
〉)
M(dξ)

for u := (v,w) ∈ U , where A ∈ Sd+, B ∈D, C ∈R≥0 and M(dξ) is a nonnegative
Borel measure on D \ {0} integrating 〈1, hI(ξ)〉 + ‖hJ (ξ)‖2. We denote by Cm

the m-fold Cartesian product of C. Recall from [10], Lemma 7.1, that φ ∈ C if and
only if there exists a sub-stochastic measure η on D such that

(53)
∫
D

e〈ξ,u〉η(dξ)= eφ(u), ∀u ∈ U .

PROOF. The proof splits into four steps. First, we show, under some restric-
tions on the form of F, and R, that the solutions (φ,ψ) of the generalized measure
Riccati equations are in C × Cd , which follows similar to Proposition 7.4(ii) in
[10]. In concrete terms, suppose that, for all i ∈ I ,∫

D\{0}
hi(ξ)μi(dξ) <∞,

αi,ik = αi,ki = 0, for all k ∈ J .

(54)

In this case, RI can be written in the form

RI
i (t, u)= R̃I

i (t, u)− ci(t)vi, i ∈ I
with R̃i ∈ C, ci ≥ 0 dA-a.e. and ci(t)�At ≤ 1. Therefore, the generalized measure
Riccati equation (42b) is equivalent to the following equation:

ψi
s (t, u)= viE t

s (−ci dA)+
∫ t

s
E s

r (−ci dA)R̃
(
r,ψr(t, u)

)
dAr, i ∈ I,
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where

E t
s (−ci dA)= exp

(
−

∫ t

s
ci(r) dAc

r

) ∏
r∈(s,t]

(
1− ci(r)�Ar

)
is the solution to the linear measure differential equation dgt

dAt
= ci(t)gt ; see Exam-

ple A.4. Define the iterative sequence

(0)ψi
s (t, u)= vi,

(k+1)ψi
s (t, u)= viE t

s (−ci dA)

+
∫ t

s
E s

r (−ci dA)R̃i

(
r, (k)ψI

r (t, u),ψJ
s (t, u)

)
dAr.

By Banachs fixed-point theorem and Helly’s selection principle, there is a sub-
sequence of (kψI)k∈N that converges pointwise to the solution ψI of (42b). By
Proposition 7.2 in [10], Cm is stable under composition and pointwise limits and
we conclude that ψI

s (t, ·) ∈ Cm. The assertion ψJ
s (t, ·) ∈ Cn follows directly from

(47). Since F is in C also, φs(t, ·) is in C; cf. [10], Proposition 7.2.
Second, we prepare for the approximation argument of part three and establish

continuous dependence of a solution to the generalized measure Riccati equations
on the right-hand side, that is, convergence in L1(dA)× (uoc. on U) of the right-
hand side implies convergence of the solution in (dA− a.e.)× (uoc. on U). Here
and in the following, ‘uoc. on U ’ means uniformly on compact subsets of U . In-
deed, let K ⊆ U compact and R, R̃ with good, admissible and A-integrable pa-
rameters, such that

(55)
∥∥∥sup
u∈K

(
R(·, u)− R̃(·, u)

)∥∥∥
L1(dA)

≤ δ.

Denote the solution corresponding to R̃ by ψ̃ and examine the difference with ψ :

∣∣ψt(T ,u)− ψ̃t (T , u)
∣∣≤ ∫ T

t

∣∣R(
s,ψs(T ,u)

)− R̃
(
s, ψ̃s(T ,u)

)∣∣dAs

≤
∫ T

t

∣∣R(
s,ψs(T ,u)

)−R
(
s, ψ̃s(T ,u)

)∣∣dAs

+
∫ T

t

∣∣R(
s, ψ̃s(T ,u)

)− R̃
(
s, ψ̃s(T ,u)

)∣∣dAs.

If ψ̃ stays in K , we can estimate the second summand by δ and obtain with
Proposition 5.6(iv) in conjunction with the local Lipschitz-continuity of R (with
A-integrable Lipschitz constant) that

(56)
∣∣ψt(T ,u)− ψ̃t (T , u)

∣∣≤ δ +
∫ T

t
Ls

∣∣ψs(T ,u)− ψ̃s(T ,u)
∣∣dAs.
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By Gronwalls lemma for Stieltjes differential equation (cf. [19], Corollary 19.3.3),
the difference satisfies

(57)
∣∣ψt(T ,u)− ψ̃t (T , u)

∣∣≤ δ exp
(∫ T

t
Ls dAs

)
.

Now suppose

(58) τ = sup
{
t ∈ [0, T ] : ∣∣ψt(T ,u)− ψ̃t (T , u)

∣∣ > α
}
> 0.

This implies that the difference of ψ and ψ̃ is less than α for all t ∈ [τ, T ] due to
the common terminal value of ψ and ψ̃ and the continuity from the right. By (57),
we can choose δ small enough, such that |ψt(T ,u)− ψ̃t (T , u)| ≤ α

Lτ �Aτ+1 ≤ α.

Therefore, ψ̃ cannot leave the α-neighborhood continuously, but only by a jump.
However, ψ satisfies

�ψt(T ,u)=R
(
t,ψt (T ,u)

)
�At

at points of discontinuity (similarly for ψ̃) from which it follows that∣∣ψτ−(T ,u)− ψ̃τ−(T ,u)
∣∣ < α

—a contradiction. This proves the continuous dependence on the right-hand side.
Third, we show an analogue of [14], Lemma 5.7, that is, there exists a se-

quence (Rk)k∈N of functions of Lévy–Khintchine form with admissible parame-
ters satisfying Assumption 5.4 and conditions (54), converging to R in (L1(dA))×
(uoc. on U).

The construction of the sequence (Rk)k∈N of functions satisfying (54) is the
same as in the proof of [14], Lemma 5.7, or [10], page 33. Only the mode of
convergence has been strengthened to convergence in L1(dA)×(uoc. on U). From
[10], page 33, we obtain, for any i ∈ I , the identity

(59) R̃i
k(t, u)−Ri (t, u)= 2

p∗i (t)

(
hu

(
ξ∗(t)

k

)
− 1

2

〈
Q(t)uJ∪i , uJ∪i

〉)
,

where

p∗(t)= αi
ii(t)

‖αi
iJ∪i(t)‖2

, ξ∗(t)I\i = 0,

ξ(t)∗J∪i =
αi

iJ∪i(t)
‖αi

iJ∪i(t)‖
, Q(t)kl := p∗

αi
kiα

i
il

αi
ii

,

hu(ξ)= (
e〈u,ξ〉 − 1− 〈

uJ∪i , hJ∪i(ξ)
〉)
/
(〈

1, hI\i (ξ)
〉+ ∥∥hJ∪i(ξ)

∥∥).
We can simplify the expressions in (59) to

1

2

〈
Q(t)uJ∪i , uJ∪i

〉= 2
∑

l,m∈J∪i
ul

αi
li(t)α

i
im(t)

αi
ii(t)

um.
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Using the properties of the truncation functions and ‖ξ∗‖ = 1, we obtain for large
enough k that

2

p∗(t)
hu

(
ξ∗(t)

k

)
≤ C

1

p∗(t)
(
1+ ‖uJ∪i‖2

∥∥ξ∗∥∥2)
≤ C

(
1+ ‖uJ∪i‖2)‖αi

iJ∪i(t)‖2
αi

ii(t)
,

where C does not depend on u or ξ∗. Integrability of the above quantities w.r.t.
A follows from the positive semidefiniteness of α(t) and the Cauchy–Schwarz
inequality. This implies convergence of R̃k to R in (L1(dA))× (uoc.on U) due to
the construction of R̃.

Finally, we come to the last step. From (53), it now follows that for every (t, x) ∈
[0, T ] ×D and s ∈ [0, t], there exists a unique, sub-stochastic measure ps,t (s, ·)
on D with

(60)
∫
D

e〈u,ξ〉ps,t (x, dξ)= eφ(s,t,u)+〈ψ(s,t,u),x〉, ∀u ∈ U .

The semi-flow property of (φ,ψ) ensures that the family of measures (ps,t )s≤t∈[0,T ]
satisfies the Chapman–Kolmogorov equations. By the Kolmogorov existence theo-
rem (see [23], Theorem 8.4), there exists a D-valued Markov process X on [0, T ],
unique in law, with transition kernels (ps,t )s≤t∈[0,T ]. By definition, X satisfies the
affine property (36) for all u ∈ U . �

PROPOSITION 5.10. Let X be the affine Markov process from Proposition 5.9
started at some X0 = x ∈D. If X is conservative, then there is a modification of X
which is a càdlàg affine semimartingale.

PROOF. Let X be the affine Markov process and (Ft )t≥0 its natural filtration.
From (36), we have that

(61) M
T,u
t := E

[
e〈u,XT 〉|Ft

]= eφt (T ,u)+〈ψt (T ,u),Xt 〉,

which must be a martingale for all u ∈ U . Since φ and ψ are right continuous in T

and càdlàg in t , applying this identity with t = 0 shows that X (and, therefore, also
every MT,u) is right continuous in probability. It follows that the martingale MT,u

has a càdlàg modification. Let u = (v,w). By equation (47) ψJ
t (T , (v,0)) = 0

for all t < T , and hence 〈ψI
t (T , (v,0)),XI

t 〉 are càdlàg semimartingales for v ∈
R

m− on [0, T ]. For some linearly independent vectors e1, . . . , em in Rm≤0, we can
find s ≤ T such that ψI

t (T , e1), . . . ,ψ
I
t (T , em) are linearly independent for all

t ∈ (s, T ]. Thus XI is a semimartingale on (s, T ]. This can be done for arbitrary
T which allows to infer with a covering argument (and right continuity at t = 0)
that XI is a semimartingale on R≥0.
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For the real-valued part XJ of the process, we use that, for all u= (v,w) ∈ U◦,
the equation for ψJ reduces to a linear equation with solution ψJ

t (T , u) =
wψJ

t (T ) (see equation (47)). By the same argument as in [10], Proof of Theo-
rem 2.12, it follows that also XJ , is a càdlàg semimartingale. �

We complete the proof of Theorem 5.7 and Corollary 5.8.

PROOF. In light of Propositions 5.9 and 5.10, it only remains to show that the
semimartingale triplet of X is given by (12) with the same parameters that were
used for the construction of X. To this end, we apply Lemma 3.6 to X, and get
similar to equation (25),

�t(ω) ·

⎛⎜⎜⎜⎜⎝
F
(
t,ψt (T ,u)

)
R1(t,ψt (T ,u)

)
...

Rd(t,ψt (T ,u)
)

⎞⎟⎟⎟⎟⎠ dAc
t =

⎛⎜⎝ G0(dt;ω,T ,u)
...

Gd(dt;ω,T ,u),

⎞⎟⎠ ,

where F , R on the left-hand side contain the parameters (A,β,α,μ) and G the
semimartingale characteristics of X (cf. (20)). We proceed as in the proof of Theo-
rem 3.2 by taking the union over a countable, dense subset T × E of R≥0×U and
considering the right limits T ↓ t in the countable set T . Using ψt(t, u)= u and
the fact that functions of Lévy–Khintchine form determine their parameter triplets
uniquely, we derive the continuous part of (12). The equation for ν at jump points
follows from Lemmata 3.5 and 4.4, completing the proof of Theorem 5.7.

For the proof of Corollary 5.8, evaluating (36) at u= 0 yields

(62) pt,T (x,D)= exp
(
φt (T ,0)+ 〈

ψt(T ,0), x
〉)

for all 0 ≤ t ≤ T and x ∈ D. Taking into account that pt,T (x,D) ≤ 1 and that
D =R

m≥0×Rn, we see that φt (T ,0)≤ 0, ψI
t (T ,0)≤ 0 and ψJ

t (T ,0)= 0. Writing
g(t) :=ψI

t (T ,0) the measure Riccati equation (42b) becomes (51). This equation
has the constant solution g ≡ 0; if it is the only solution, then ψI

t (T ,0)= 0 for all
0 ≤ t ≤ T . Inserting into (42a), also φt(T ,0)= 0. Together with (62), this shows
that pt,T (x,D)= 1, that is, X is conservative. �

REMARK 5.11. The proof of Theorem 5.7 can easily be adapted to the case
where γ0 is not of the Lévy–Khintchine form (40) at t ∈ JA, but a general log-
characteristic function of a D-valued random variable. This is due to the fact that
γ0 enters only into part (42a), but not into part (42b) of the measure Riccati equa-
tion.
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6. Examples and applications. We begin this section with some examples
that illustrate several aspects of stochastic discontinuities within affine semimartin-
gales. After that, we study affine semimartingales in discrete time in Section 6.1.
In Section 6.2, we take a look at the application of affine semimartingales to stock
prices with dividends and in Section 6.3 we consider a new class of affine term
structure models allowing for stochastic discontinuities.

EXAMPLE 6.1. Consider the following discrete-time variant of the (time-
inhomogeneous) Poisson process: let X0 = x ∈ N. Furthermore, assume that X is
constant except for t ∈ {1,2, . . . } and assume that �Xn ∈ {0,1}, n ∈ {1,2, . . . } are
independent with P(�Xn = 1)= pn ∈ (0,1). Then X is an affine semimartingale
because for 0≤ s ≤ t ,

E
[
euXt |Fs

]= exp
(
uXs +

∑
s<n≤t,n∈N

φn(u)

)
,

where

φn(u)= E
[
eu�Xn

]= eu(pn + e−u(1− pn)
)

= exp
(
u+ log

(
pn + e−u(1− pn)

))
.

Clearly, it may happen that �Xn = 0 while φ(u,n, t)− φ(u,n−, t)= φn(u) �= 0.
Stochastic discontinuity is reflected by having jumps at t ∈ {1,2, . . . } with positive
probability. The considered process falls in the class of point processes whose asso-
ciated jump measure is an extended Poisson measure; see II.1c in [21]. In contrast
to Poisson processes, X is not quasi-left-continuous. In summary, X is a process
with independent increments, but not a time-inhomogeneous Lévy process.

The following example illustrates how one can construct stochastically discon-
tinuous affine semimartingales from stochastically continuous ones, even from
affine semimartingales without jumps, through a suitable (discontinuous) time
change.

EXAMPLE 6.2. This example is inspired by [17]: consider an affine semi-
martingale X which is stochastically continuous (as treated in [10] and [14]). We
assume that D denotes the state space of the affine semimartingale and that φ and
ψ are the characteristics of X as in (3).

Let {t1 < · · · < tN } ⊂ R≥0 be some time points and ai ∈ Rd , bi ∈ Rd×d such
that ai + bi · x ∈D for all x ∈D, i = 1, . . . ,N . Then

X̃t :=
N∑

i=1

1{t≥ti}(ai + bi ·Xt), t ≥ 0(63)
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is an affine semimartingale in the sense of Definition 2.1. Note that X̃ is in gen-
eral not stochastically continuous, as it jumps with positive probability at the time
points ti , i = 1, . . . ,N .

Indeed, by the affine property of X and using iterated conditional expectations,
we obtain for tk ≤ t < tk+1,

E
[
e〈u,X̃t 〉|Ftk

]=E

[
exp

(〈
u,

k∑
i=1

(ai + bi ·Xt)

〉) ∣∣∣ Ftk

]

= e
∑k

i=1〈u,ai〉E
[

exp

(〈
k∑

i=1

ub�i ,Xt

〉) ∣∣∣ Ftk

]
(64)

= exp

(
k∑

i=1

〈u,ai〉 + φtk

(
t, u′

)+ 〈
ψtk

(
t, u′

)
,Xtk

〉)
,

since X is affine; here we set u′ :=∑k
i=1 ub�i . The affine characteristics of X̃ are

directly obtained from equation (64).

The above example suggests that even more complex variants of the transfor-
mation considered in (63) stay in the affine class. The following example shows
that this need not always be the case.

EXAMPLE 6.3. Consider an affine process X and let

Yt =Xt + 1{t≥1}X1, t ≥ 0.

Then Y is in general not affine because for 1≤ s < t ,

E
[
euYt |Fs

]= euX1 · eφs(t,u)+ψs(t,u)Xs �= eφ̃s(t,u)+ψ̃s(t,u)Xs

as in general ψs(t, u) �= u. However, (X,Y )� is affine, a property prominently
used in bond option pricing.

The next example illustrates the possibility of Markov processes with affine
Fourier transform, which are not semimartingales.

EXAMPLE 6.4. Given a starting point x ∈R and a function f :R≥0→R with
f (0)= 0, consider the deterministic process Xt(ω)= f (t)+ x, t ≥ 0. Then X is
affine in the sense that its Fourier transform has exponential affine form, as

E
[
euXt |Fs

]= eu(f (t)−f (s)+Xs).

Hence X satisfies equation (2.1) with φs(t, u)= u(f (t)− f (s)) and ψs(t, u)= u.
Moreover, X is a Markov process with transition kernel ps,t (x, dξ) =
δx+f (t)−f (s)(dξ). Choosing f of finite variation, the process X is an affine semi-
martingale and falls into the scope of Definition 2.1—although it does not satisfy
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the support condition 2.3. However, when f is of infinite variation (e.g., a path
of Brownian motion), X is no longer a semimartingale, φ does not satisfy the
quasiregularity condition 2.5, but X is still an affine Markov process in the sense
of Definition 4.1.

In the case of processes with independent increments, the gap to those processes
which are also semimartingales can be completely classified; see Section II.4.c
in [21]. A complete study of the gap between affine semimartingales and affine
Markov processes is beyond the scope of this article.

Other than affine transitions at the discontinuity points t1, . . . , tN are also pos-
sible, as the following example illustrates.

EXAMPLE 6.5. Let N be a Poisson process with intensity λ. This is also an
affine process with affine characteristics ψs(t, u)= u and φs(t, u)= λ(t − s)(eu−
1). Let α be a Bernoulli distributed random V variable with P(α =−1)= 1

2 and β

a standard normal random variable. Further let α, β and N be mutually indepen-
dent. Consider a (deterministic) time τ > 0 and the process given by

Xt =Nt + 1{t≥τ }(α + β
√

Nτ), t ≥ 0

together with the (augmented) filtration generated by σ(Ns,α1{τ≤s}, β1{τ≤s} :
s ≤ t). We compute the conditional characteristic function of X. At first, let
s < τ ≤ t :

E
[
e〈u,Xt 〉|Fs

]= E
[
E
[
e〈u,Nt+1{t≥τ }(α+β

√
Nτ )〉|Fτ

]|Fs

]
= eφτ (t,u)E

[
euα] ·E[

eψτ (t,u)Nτ+uβ
√

Nτ |Fs

]
= eφτ (t,u) 1

2

(
eu + e−u)E[

e(ψτ (t,u)+ 1
2 u2)Nτ |Fs

]
= eφτ (t,u) 1

2

(
eu + e−u)eψs(τ,ψτ (t,u)+ 1

2 u2)Ns .

In the second case where τ ≤ s ≤ t , we have

E
[
euXt |Fs

]= exp
(
φ(s, t, u)+ψ(s, t, u)Ns + u(α+ β

√
Nτ )

)
= exp

(
φ(s, t, u)+ uXs

)
.

Hence X is an affine process with affine characteristics φ̃ and ψ̃ given by

φ̃s(t, u)= φs(t, u)+ 1{s<τ≤t}
(
log(coshu)

)
,

ψ̃s(t, u)= ψs

(
τ,ψτ (t, u)+ 1{s<τ≤t}

1

2
u2

)
= u+ 1{s<τ≤t}

1

2
u2.

Note that the process X does not satisfy the support Condition 2.3, since it is sup-
ported on the positive real whole numbers before the jump but might take negative
values after τ .
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6.1. Affine processes in discrete time. In the considered semimartingale ap-
proach, affine processes in discrete time can also be embedded into continuous
time. This allows us to obtain a full treatment of affine processes in discrete time
as special case of our general results. Note that any discrete time process is of finite
variation, and hence a semimartingale such that as a matter of fact, Definition 2.1
covers all discrete-time affine processes in finite dimension.

We use the time series notation for a process in discrete time and consider with-
out loss of generality the time points 0,1,2, . . . . Consider a complete probability
space (�,F ,P ) and a filtration in discrete time F̂= (F̂n)n≥0.

DEFINITION 6.6. The time series (X̂n)n≥0 is called affine if it is F̂-adapted
and there exist C and C

d -valued càdlàg functions φn(m,u) and ψn(m,u), respec-
tively, such that

E
[
e〈u,X̂m〉|F̂n

]= exp
(
φn(m,u)+ 〈

ψn(m,u), X̂n

〉)
(65)

holds for all u ∈ iRd and 0≤ n≤m, n,m ∈ N0. It is called time homogeneous, if
φn(m,u)= φ0(n−m,u)=: φm−n(u) and ψn(m,u)=ψ0(m− n,u)=:ψm−n(u),
again for all u ∈ iRd and 0≤ s ≤ t .

To emphasize the filtration, we are working with, we will sometimes call X̂ F̂-
affine. We associate to the time series (X̂n)n≥0 the piecewise-constant embedding
into continuous time

Xt = X̂[t], t ≥ 0(66)

with [t] = n if n ≤ t < n + 1. Then X̂ is càdlàg, of finite variation, and hence
a semimartingale. In a similar way, we let Ft = F̂[t] and obtain the associated
filtration in continuous time. Usual conditions are not needed here.

Note that even if the affine time series is time homogeneous, the associated
continuous-time affine process X will not be time homogeneous in general: for
0 < ε < 1,

E
[
e〈u,Xm+ε〉|Fn

]= exp
(
φn(m+ ε, u)+ 〈

ψn(m+ ε, u),Xn

〉)
= exp

(
φn(m,u)+ 〈

ψn(m,u),Xn

〉)
which would give φm+ε−n(u)= φm−n(u), while on the other hand,

E
[
e〈u,Xm+ε/2〉|Fn−ε/2

]= exp
(
φn− ε

2

(
m+ ε

2
, u

)
+

〈
ψn− ε

2

(
m+ ε

2
, u

)
,Xn−ε/2

〉)
= exp

(
φn−1(m,u)+ 〈

ψn−1(m,u),Xn−1
〉)

which would give φm−n(u)= φm−(n−1)(u) thus rendering X to be constant. Time
inhomogeneity in discrete time is therefore a strictly weaker concept than in con-
tinuous time. However, in the reverse direction we have a positive result.
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REMARK 6.7. If X is a time-homogeneous continuous-time F-affine process,
it follows immediately that the time-series X̂ is F̂-affine and X̂ is time homoge-
neous.

PROPOSITION 6.8. Let (X̂) be an affine time series satisfying the support
Condition 2.3. Then φ and ψ satisfy the semi-flow property

φn(m,u)= φn

(
n′,ψn′(m,u)

)+ φn′(m,u),

ψn(m,u)=ψn

(
n′,ψn′(m,u)

)(67)

for all 0≤ n < n′ ≤m, u ∈ iRd .

PROOF. We apply Theorem 3.2. First, note that

zn(u)=
∫
D

e〈u,x〉ν
({n}, dx

)=E
[
1{�Xn �=0}e〈u,�Xn〉|Fn−1

]
.

Hence,

E
[
e〈u,�Xn〉|Fn−1

]= zn(u)+ P(�Xn = 0|Fn−1)= zn(u)+ 1− zn(0).

This yields by definition that

E
[
e〈u,�Xn〉|Fn−1

]=E
[
e〈u,Xn〉|Fn−1

]
e−〈u,Xn−1〉

= eφn−1(n,u)+〈ψn−1(n,u)−u,Xn−1〉
(68)

and from equation (16) we recover that γ0(n,u) = −φn−1(n,u) and γi(n,u) =
−ψn−1(n,u)+ u. First, Theorem 3.2 yields that

�φn+1(m,u)=−φn

(
n+ 1,ψn(m,u)

)
,

that is,

φn(m,u)= φn

(
n+ 1,ψn+1(m,u)

)+ φn+1(m,u)(69)

for 0 ≤ n < m and all u ∈ iRd . By induction, we obtain that φ satisfies the semi-
flow property

φn(m,u)= φn

(
n′,ψn′(m,u)

)+ φn′(m,u)

for all 0≤ n < n′ < m and u ∈ iRd . In similar spirit, Theorem 3.2 yields that

�ψn+1(m,u)=−ψn

(
n+ 1,ψn+1(m,u)

)+ψn+1(m,u)

which is equivalent to

ψn(m,u)=ψn

(
n+ 1,ψn+1(m,u)

)
,(70)

and hence the semi-flow property

ψn(m,u)=ψn

(
n′,ψn′(m,u)

)
for all 0≤ n < n′ < m and u ∈ iRd and the claim follows. �



AFFINE PROCESSES BEYOND STOCHASTIC CONTINUITY 3425

REMARK 6.9. Despite the semi-flow property one obtains directly from (69)
and (70) that φ and ψ are unique solutions of the following difference equations:

φn(n+ 1)= F(n,u),

ψn(n+ 1, u)− u=R(n,u),

φn(m+ 1, u)= F(n,u)+ φn

(
m,u+R(m,u)

)
,

ψn(m+ 1, u)=ψn

(
m,u+R(m,u)

)
,

where the functions F and R are defined by the first two equations. With the no-
tation of Theorem 3.2, F = −γ0 and Ri = −γi . These equations and the above
proposition are the content of Proposition 4.4 in [36]. The authors obtain the result
directly from iterated conditional expectations.

EXAMPLE 6.10 (AR(1)). A (time-inhomogeneous) autoregressive time series
of order (1) is given by

X̂n = α(n)X̂n−1 + εn,

where we assume that (εn) are independent (not necessarily identically nor nor-
mally distributed). Then X̂ is affine as

E
[
euXn |F̂n−1

]=E
[
euεn

]
eα(n)Xn−1

with F̂n−1 = σ(X̂0, . . . ,Xn−1). The generalization to higher order requires
an extension of the state space. So an AR(p) series gives an affine process
(X̂n, . . . , X̂n−p)n≥p .

6.2. Asset prices with dividends. Dividends and the relationship of a firm’s
asset prices have been discussed and analyzed a long time, early contributions be-
ing, for example, [30, 31] or the approach proposed in [28], for which we propose
a dynamic generalization. Most notably, typical continuous-time models incorpo-
rate dividends via a dividend yield. While this approach does ease mathematical
modelling, it certainly does not reflect empirical facts. In this section, we show
how a time-inhomogeneous affine process can be used to model stock price with
dividends in an efficient way.

From a general viewpoint, the following example shows how to mix two dif-
ferent time scales (continuous time and discrete time) in a time-inhomogeneous
affine model. Moreover, as the discrete-time scale has a certain lag, we also show
how past-dependence can be incorporated in the same way (by extension of the
state space, of course).

Consider a d ≥ 3-dimensional affine process X. Let D :=X1 denote the cumu-
lated dividends process where we assume that dividends are paid at the time points
t = 1,2, . . . , that is, D is nondecreasing and constant on each interval [n,n+ 1),
n ≥ 1. Let X2 denote the stock price process, that is, the jump of X2 at dividend
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payment dates includes subtraction of the dividend payment, �X2
n, plus possibly

an additional jump due to new information, for example, by the height of the divi-
dend. We will follow the approach in [28] and assume that the size of the dividend
depends linearly on the current year’s profit after taxes. In this regard, let X3 de-
note the accumulated profits of the current year after taxes, that is, X3

n = 0 and
X3

n− denotes the accumulated profits of the ith year.
In Lintner’s model (see [28]), the current dividend Dn is given by

Dn = a + bX3
n− + cDn− + εn,

where εn are mean-zero stochastic error terms. According to Theorem 3.2, X may
be chosen affine only if the conditional distribution of the εn satisfies

P(εn ∈ dx|Xn−)= κ0,3(dx)+
d∑

i=1

Xi
n−κi,3(dx),

where for y ∈ R
d , κi,j (dx) = ∫

Rd−1 κ(dy1, . . . , dyj−1, dx, dyj+1, dyd). Clearly,
this includes for example independent error terms (not necessarily normally dis-
tributed). The remaining components of X may be used for modelling stochastic
volatility or further covariates.

6.3. Affine term-structure models. In this section, we study a new class of
term-structure models driven by affine processes. Motivated by our findings in
Section 3, where it turned out that the semimartingale characteristics of an affine
process X are dominated by an increasing, càdlàg function A, we study the fol-
lowing extension of the seminal Heath–Jarrow–Morton [20] framework: Consider
a family of bond prices, given by

P(t, T )= exp
(
−

∫
(t,T ]

f (t, u) dAu

)
, 0≤ t ≤ T ≤ T ∗,(71)

with some final time horizon T ∗ > 0. The rate f (t, T ) is called instantaneous for-
ward rate representing the interest rate contractible at time t ≤ T for the infinites-
imal future time interval (T , T + dAT ]; see [15] for details and related literature.
The numéraire in this market is assumed to be of the from exp(

∫ t
0 r(s) dAs).

The term-structure model proposed here is specified by assuming the following
structure of the forward rates:

f (t, T )= f (0, T )+
∫ t

0
a(s, T ) dXs, 0≤ t ≤ T ≤ T ∗,(72)

where a is a suitable, deterministic function. The first step will be the derivation
of a condition on a which renders discounted bond prices local martingales, thus
leading to a bond market satisfying a suitable no-arbitrage property like, for exam-
ple, NAFL.

Consider a filtered probability space (�,F ,F,P) satisfying the usual condi-
tions and consider for the beginning a d-dimensional, special semimartingale X
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with semimartingale characteristics (B,C, ν). As we aim at considering an affine
process X, with a view on Theorem 3.2 we additionally assume that X has the
canonical representation

X =X0 +Bt +Xc + x ∗ (μ− ν),(73)

where dBt = bt dAt , dCt = ct dAt and ν(dt, dx) = Kt(dx) dAt and A is deter-
ministic, càdlàg, increasing with A0 = 0. We define the left-continuous processes
A(·, T ), 0 < T ≤ T ∗, by

A(t, T ) :=
∫
[t,T ]

a(s, u) dAu, 0≤ t ≤ T ,

and require the following technical assumption.

(A1) Assume that a : [0, T ∗]2→R
d is measurable and satisfies(∫ T ∗

·
∣∣ai(·, u)

∣∣2 dAu

) 1
2 ∈ L

(
Xi), i = 1, . . . , d,

∫ T ∗

0

∫ T ∗

0

∣∣a(t, u)
∣∣|dBt |dAu <∞, 0≤ t ≤ T ∗,

where L(Xi) denotes the set of processes which are integrable in the semimartin-
gale integration sense with respect to the ith coordinate Xi of X, i = 1, . . . , d .

PROPOSITION 6.11. Under (A1), discounted bond prices are local martin-
gales if, and only if:

(i) rt = f (t, t) dA⊗ dP-almost surely for 0≤ t ≤ T ∗, and
(ii) the following condition holds:

A(t, T )bt = 1

2
A(t, T )ctA(t, T )�

+
∫
Rd

(
eA(t,T )x − 1−A(t, T )x

)
Kt(dx),

(74)

dA⊗ dP-almost surely for 0≤ t ≤ T ≤ T ∗.

PROOF. The proof follows the classical steps in [20], relying on a stochastic
Fubini theorem. First note, that discounted bond prices take the form

P̃ (t, T )= e−
∫
(t,T ] f (0,u) dAu

× exp
(
−

∫
(t,T ]

∫ t

0
a(s, u) dXs dAu −

∫
(0,t]

rs dAs

)
=: P(0, T ) exp

(
I (t, T )

)
.

(75)
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The dynamics of I can be obtained from the dynamics of the forward rates as∫
(t,T ]

f (t, u) dAu =
∫
(t,T ]

f (0, u) dAu +
∫
(t,T ]

∫ t

0
a(s, u) dXs dAu

=
∫
(t,T ]

f (0, u) dAu +
∫ t

0

∫
(t,T ]

a(s, u) dAu dXs

=
∫
(t,T ]

f (0, u) dAu +
∫ t

0

∫
[s,T ]

a(s, u) dAu dXs

−
∫ t

0

∫
[s,t]

a(s, u) dAu dXs

=
∫
(t,T ]

f (0, u) dAu −
∫ t

0

∫ u

0
a(s, u) dXs dAu

+
∫ t

0
A(s,T ) dXs

=
∫ T

0
f (0, u) dAu −

∫ t

0
f (u,u) dAu +

∫ t

0
A(s,T ) dXs;

interchange of the integrals is justified under (A1) by the Fubini theorem, for ex-
ample, along the lines of [35, 40]. The next step is to represent exp(I (·, T )) =
E(Ĩ (·, T )) as a stochastic exponential E on the modified process Ĩ relying on The-
orem II.8.10 in [21]. This theorem yields that

Ĩ (t, T )= Ĩ (0, T )+ I (t, T )+ 1

2

〈
I c(·, T )

〉
t +

(
ex − 1− x

) ∗μI(·,T ),

where μI(·,T ) denotes the random measure associated to the jumps of I ; see (1).
Calculating the above terms under our assumptions together with representation
(73) yields that

dĨ (t, T )=
(
−A(t, T )bt + 1

2
A(t, T )ctA(t, T )�

+
∫
Rd

(
e−A(t,T )x − 1+A(t, T )x

)
K(t, dx)

+ (
f (t, t)− rt

))
dAt + dMt, 0≤ t ≤ T

with a local martingale M . The claim follows by first considering T = t , thus
yielding (i) and thereafter (ii). For the reverse, observe that (i) and (ii) imply that
Ĩ (·, T ) is a local martingale, and the claim follows. �

Recall the notion of a good parameter set of the affine semimartingale X from
Definition 3.1. The following corollary gives a specification of an affine term-
structure model in the more classical case, that is, when γ = 0.
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COROLLARY 6.12. If (A1) holds and X is a quasiregular affine semimartin-
gale satisfying the support Condition 2.3 and with parameter set (A,0, β,α,μ),
and if

A(t, T )βi(t)= 1

2
A(t, T )αi(t)A(t, T )�

+
∫
Rd

(
eA(t,T )x − 1−A(t, T )x

)
μi(t, dx),

(76)

holds for i = 0, . . . , d , then the drift condition (74) holds.

PROOF. The application of Theorem 3.2 yields that b= β0+∑d
i=1 Xi−βi , with

similar expression for a and K . Using linearity and (76), we immediately obtain
(74). �

A reverse version of this result is easily obtained requiring additionally linear
independence of certain coefficients; see, for example, Section 9.3 in [15].

In the following, we study a variety of extensions of the Vasiček model for
incorporating jumps at predictable times. Of course, in a similar manner an exten-
sion of the Cox–Ingersoll–Ross model is possible, or one may even extend general
stochastically continuous Markov processes in a similar way.

EXAMPLE 6.13 (The Vasiček model). We begin by casting the famous
Vasiček model in the above framework. The Vasiček model is a one-factor Gaus-
sian affine model, where the short rate is the strong solution of the stochastic dif-
ferential equation

drt = (α + βrt ) dt + σ dWt(77)

with a one-dimensional standard Brownian motion W and β �= 0, σ > 0. The
bond prices are given in exponential form, such that P(t, T ) = exp(−φ(t, T ) −
ψ(t, T )rt ) with φ and ψ solving certain Riccati differential equation; see [15],
Section 5.4.1, for details. If we embed this approach in our structure given in (71),
we may choose At = t . The dynamics of f (t, T ) in this case will depend also on
Rt := ∫ t

0 rs ds, such that we utilize the affine process

Xt = (t,Rt , rt )
�, t ≥ 0

in (72). We obtain that bt = b0
t + b1

t Xt with b0
t = (1,0, α)� and b1

t = (0,1, β) as
well as ct = c0 where the matrix c0 has vanishing entries except for c0

3,3 = σ 2. The
drift condition (76) now directly implies that for A(t, T ) = (A1(t, T ),A2(t, T ),

A3(t, T ))

A2(t, T )=−βA3(t, T ),

A1(t, T )= (
A3(t, T )

)2 σ 2

2
− αA3(t, T ).

(78)
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We have the freedom to choose on component of A(t, T ) which we do to match
the volatility structure of the Vasiček model, by setting the third component of
A(t, T ) equal to

A3(t, T )= β−1(eβ(T−t) − 1
)
.

In particular, this choice gives us

a1(t, T )= σ 2

β

(
eβ(T−t) − 1

)− αeβ(T−t),

a2(t, T )=−βeβ(T−t),

a3(t, T )= eβ(T−t).

It is a straightforward exercise that this specification indeed coincides with the
Vasiček model given the explicit expressions for φ and ψ in Section 5.4.1 in [15].
In a similar manner, all affine term-structure models can be cast in the framework
considered in this section.

EXAMPLE 6.14 (A simple Gaussian term structure model). A review of the
above specification points towards the simpler Gaussian model where X is the
three-dimensional affine process as above, driven by the Vasiček spot rate, but
now we choose

A3(t, T )= (T − t),

such that the parameter a3(t, T )= 1 is constant. The drift condition now implies

a2 =−β,

A1(t, T )= (T − t)2 σ 2

2
− α(T − t),

and we obtain a linear term a1(t, T )= σ 2(T − t)−α. This Gaussian model is con-
siderably simpler than the Vasiček model, and still has a mean-reversion property
(as X has the mean reversion property), but the volatility of the forward rate does
not have the dampening factor eβ(T−t) in the volatility.

Finally, we provide two examples of stochastic discontinuous specifications.

EXAMPLE 6.15 (Example 6.14 with discontinuity). Now we incorporate a
stochastic discontinuity at t = 1 in the above example and let A(t) = t + 1{t≥1}.
The idea is to introduce a single jump at t = 1 in the third component and com-
pensate this by a predictable jump in the first coordinate. We begin by describing
precisely the model: first,

drt = (α + βrt ) dt + σ dWt + dJt ,
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where Jt = 1{t≥1}ξ with ξ ∼N (0, γ 2), γ > 0, being independent of W . Consider

Xt = (At ,Rt , rt )
�, t ≥ 0,

with R = ∫ ·
0 rs ds, as above. This construction of X implies that for t �= 1,

b0
t = (1,0, α)� and b1

t = (0,1, β)� while for t = 1, b0
1 = (1,0,0)� and b1

1 = 0.
Moreover, for t �= 1, c0

t = c0 as in the example above, c1
t = 0 and, for t = 1,

we obtain c1 = 0. The kernel K vanishes except for t = 1 and is given by
K1(dx) = δ1(dx1)φ(

x3
γ

) dx3 where δ1 is the Dirac measure at point 1 and φ is
the standard normal density. It does not depend on ω.

As in Example 6.14, we specify a3 = 1, such that A3(t, T ) = (T − t) +
1{1∈[t,T ]}. For t > 1, the process A(t, T ) is exactly as in the previous Example 6.14.
For the remaining times, we again use Corollary 6.12; on the one hand, for i = 1,
the drift condition (76) implies that A2(t, T ) = −βA3(t, T ) for all 0 ≤ t ≤ T .
On the other hand, for i = 0, the drift condition can be separated. Indeed, as
dAt = dt + δ1(dt), we obtain, using �C ≡ 0, that (for t = 1)

A(1, T )b1
0 =

∫
Rd

(
e−A(1,T )x − 1+A(1, T )x

)
K0,1(dx),(79)

and, for t �= 1,

A(t, T )b0
t =

1

2
A(t, T )c0

t A(t, T )�.(80)

Now equation (79) gives

A1(1, T )= e−A1(1,T )+ (A3(1,T )γ )2

2 − 1+A1(1, T )

⇔ A1(1, T )= (A3(1, T )γ )2

2
,(81)

such that A is specified for t ∈ [1, T ]. Finally, for 0≤ t < 1, equation (80) implies

A1(t, T )=−αA3(t, T )+ (A3(t, T )σ )2

2

and we conclude our example.

EXAMPLE 6.16 (A discontinuous Vasiček model). We extend the previous
example to the Vasiček model in a more general manner. Consider time points
t1, . . . , tn which correspond to stochastic discontinuities. Moreover, assume that

drt = (α + βrt ) dt + σ dWt + dJt ,

where

Jt =
n∑

i=1

1{ti≤t}ξi, t ≥ 0,
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with ξi being i.i.d.∼N (0, γ 2), being independent of W . Let At = t+∑n
i=1 1{ti≤t}

and consider as above X = (A,R, r). Again, for t /∈ {t1, . . . , tn}, b0
t = (1,0, α)�,

b1
t = (0,1, β)� and c0

t = c0, while for t = ti , b0
ti
= (1,0,0)�, b1

ti
= 0 and cti = 0.

Moreover,

Kt(dx)= 1{t∈{t1,...,tn}}δ1(dx1)φ

(
x3

γ

)
dx3.

We begin by specifying a3(t, T )= eβ(T−t) as in Example 6.13, such that

A3(t, T )= β−1(eβ(T−t) − 1
)+ n∑

i=1

1{ti∈[t,T ]}.

Again, we separate the drift condition in continuous and discontinuous part with
the aid of Corollary 6.12 yielding directly A2(t, T )=−βA3(t, T ) and A1(t, T )=
(A3(t, T ))2 σ 2

2 − αA3(t, T ), for t ∈ [0, T ]\{t1, . . . , tn}, compare equation (78). It
remains to compute A(ti, T ) for ti ≤ T . In this regard, we obtain as in (81) that

A(ti, T )= (A3(ti, T )γ )2

2
, i = 1, . . . , n,(82)

such that the discontinuous Vasiček model is fully specified.

APPENDIX: MEASURE DIFFERENTIAL EQUATIONS

This section recalls and extends some notions and statements about measure dif-
ferential equations (sometimes also referred to as Stieltjes differential equations)
for the special cases needed in this article.

Let A be an increasing function on R≥0 with left limits and F : R≥0 × U→ U ,
where the space U is defined in equation (2). Assume F(·, g(·)) is A-integrable
on some interval I ⊂R≥0 for all functions g : R≥0→ U of bounded variation. We
consider the equation

(83)
dg(t)

dAt

=−F
(
t, g(t)

)
, g(T )= u,

dg/dA denotes the Radon–Nikodym derivative of the measure induced by g with
respect to the measure induced by A. We now recall the definition of a solution to
a measure differential equation from [8] that we adopt in this article.

DEFINITION A.1. Let S be an open connected set in U and T ∈ I . A function
g(·) = g(·, T ,u) will be called a solution of (83) through (T ,u) on the interval
I if g is right continuous, of bounded variation, g(T ) = u and the distributional
derivative of g satisfies (83) on (τ, T ) for any τ < T in I .
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REMARK A.2. Assume F(t, g(t)) is integrable with respect to the Lebesgue–
Stieltjes measure dA for each function g of bounded variation. Equivalently to the
above definition, g is a solution of (83) through (T ,u) on I if and only if it satisfies
the integral equation

(84) g(t)= u+
∫
(t,T ]

F
(
s, g(s)

)
dAs;

see [8] for more details.

We are now going to state and prove a modification of the existence and unique-
ness result for measure differential equations in [39]. Define

�b = {
u ∈ U ||u|< b

}
.

THEOREM A.3. Suppose the following conditions hold:

(i) there exists an A-integrable function w such that

(85)
∣∣F(t, u)

∣∣≤w(t)

uniformly in u ∈�b;
(ii) F satisfies a Lipschitz condition in u, that is, there exists an A-integrable

Lipschitz constant L such that∣∣F(t, u1)− F(t, u2)
∣∣≤ L(t)|u1 − u2|

for all u ∈�b.

Then there exists a unique solution g of (83) on some interval (T − a,T ], a > 0,
satisfying the terminal condition g(T )= u.

PROOF. First, note that we have the following equation for the jumps of a
solution g to (83), for all t ∈ {t ∈R+|�At �= 0}:
(86) �g(t)=−F

(
t, g(t)

)
�At .

With �g(t) = g(t) − g(t−), this is an explicit equation for the left limit of g,
hence we can assume that A has no jump at the terminal time T , as we can simply
compute g(T−) from the terminal value and start from there instead. Even with a
time-varying Lipschitz constant, the proof of Theorem 1 in [39] is valid with small
adjustments: A is increasing and cádlág. Therefore, there exists r ∈ [0, T ] such
that ∫

(r,T ]
L(s) dAs < 1

and

(87) k := |u| +
∫
(r,T ]

w(s) dAs < b.
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Denote the space of cádlág functions f on (r, T ] with terminal value f (T )= u

and total variation ‖f ‖ ≤ k by � and consider the mapping

Kf (t)= u−
∫
(t,T ]

F
(
s, f (s)

)
dAs, t ∈ (r, T ].

It follows from condition (i) and equation (87) that K maps � into itself. From
the Lipschitz condition on F , we obtain

‖Kf1 −Kf2‖ ≤ ‖f1 − f2‖
∫
(r,T ]

L(s) dAs.

Hence, K is a contraction on �, a closed subspace of the space of càdlàg func-
tions with bounded variation.This implies the existence of a unique fixed point of
K , which is the desired local solution of (85). �

EXAMPLE A.4 (The linear equation). Let A as above and L ∈ L1(dA) with
L(t)�At ≥−1 for all t ≥ 0. Consider the linear measure equation

(88)
d

dAt

φ(t)=−L(t)φ(t), φ(T )= φT

on [0, T ]. The process Ãt := ∫
[0,t]L(s) dAs has finite variation, and thus we can

apply [21], Theorem I.4.61, and especially equation (I.4.63) to obtain that the
unique, càdlàg solution to the linear equation (88) is given by φ(t)= φT ET

t (LdA)

where

ET
t (LdA) := e

∫ T
t L(s) dAs

∏
s∈(t,T ]

(
1+L(s)�As

)
e−L(s)�As

= e
∫ T
t L(s) dAc

s

∏
s∈(t,T ]

(
1+L(s)�As

)
.

PROPOSITION A.5. Let f , g be right continuous and absolutely continuous
w.r.t. A. If the following conditions hold:

(i) f (T )≤ g(T ),
(ii) d

dAt
f (t) = −F(t, f (t)) and d

dAt
g(t) = −G(t, g(t)) on I = [0, T ], where

F , G are locally Lipschitz continuous in the second variable with A-integrable
Lipschitz constants, and

(iii) F(t, u)≤G(t,u) for all t ∈ I ,

then f (t)≤ g(t) for all t ∈ I .

PROOF. Suppose the conclusion of the proposition does not hold. Let w =
f − g. Then exists an interval I ′ = [t0, t1) such that w is positive and continuous
on I ′ and w(t1)≤ 0. Two cases can occur: �At1 = 0 or �At1 �= 0.
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Consider first the case when there is no jump at t1. From condition (ii) and (iii),
we obtain on (t0, t1] that

dw(t)

dAt

=G
(
t, g(t)

)− F
(
t, f (t)

)≥G
(
t, g(t)

)−G
(
t, f (t)

)≥−Ltw(t),

where Lt is the Lipschitz constant of G(t, ·) on the relevant domain. Consider the
function W(t) = w(t) exp(− ∫ t1

t Ls dAs) on (t0, t1]. W is absolutely continuous
w.r.t. A and continuous. Furthermore,

dW(t)

dAt

=
(

dw(t)

dAt

+Ltw(t)

)
e−

∫ t1
t Ls dAs ≥ 0, t ∈ (t0, t1].

Together with w(t1) ≤ 0, it follows that w(t) ≤ 0 for all t ∈ (t0, t1] contradicting
the assumption. Second, if we have a jump at t1, that is, �w(t1) �= 0, we immedi-
ately get �w(t1) < 0 and, therefore,

0 > �w(t1)=−(
F
(
t1, f (t1)

)−G
(
t, g(t1)

))
�At1

≥ −Lt1w(t1)�At1 .

Hence, w(t1) > 0; a contradiction. �
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[10] DUFFIE, D., FILIPOVIĆ, D. and SCHACHERMAYER, W. (2003). Affine processes and applica-

tions in finance. Ann. Appl. Probab. 13 984–1053. MR1994043
[11] DUFFIE, D. and LANDO, D. (2001). Term structures of credit spreads with incomplete ac-

counting information. Econometrica 69 633–664. MR1828538

http://www.ams.org/mathscinet-getitem?mr=2070167
http://www.ams.org/mathscinet-getitem?mr=2267655
http://www.ams.org/mathscinet-getitem?mr=2152242
http://www.ams.org/mathscinet-getitem?mr=2765698
http://www.ams.org/mathscinet-getitem?mr=2807963
http://www.ams.org/mathscinet-getitem?mr=3500404
http://www.ams.org/mathscinet-getitem?mr=1501108
http://www.ams.org/mathscinet-getitem?mr=0304815
http://www.ams.org/mathscinet-getitem?mr=1994043
http://www.ams.org/mathscinet-getitem?mr=1828538


3436 M. KELLER-RESSEL, T. SCHMIDT AND R. WARDENGA

[12] DUPIRE, B. (2017). Special techniques for special events. Available at https://fin-risks2017.
sciencesconf.org/132142.

[13] FAMA, E. F. (1970). Efficient capital markets: A review of theory and empirical work. J. Fi-
nance 25 383–417.
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[15] FILIPOVIĆ, D. (2009). Term-Structure Models: A Graduate Course. Springer Finance.
Springer, Berlin. MR2553163

[16] FONTANA, C. and SCHMIDT, T. (2018). General dynamic term structures under default risk.
Stochastic Process. Appl. 128 3353–3386. MR3849812

[17] GEHMLICH, F. and SCHMIDT, T. (2018). Dynamic defaultable term structure modeling beyond
the intensity paradigm. Math. Finance 28 211–239. MR3758922

[18] GESKE, R. and JOHNSON, H. E. (1984). The American put option valued analytically. J.
Finance 39 1511–1524.

[19] GIL’, M. I. (2007). Difference Equations in Normed Spaces: Stability and Oscillations. North-
Holland Mathematics Studies 206. Elsevier, Amsterdam. MR2536452

[20] HEATH, D., JARROW, R. A. and MORTON, A. J. (1992). Bond pricing and the term structure
of interest rates. Econometrica 60 77–105.

[21] JACOD, J. and SHIRYAEV, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences] 288. Springer, Berlin. MR1943877

[22] JANSON, S. (2004). Functional limit theorems for multitype branching processes and general-
ized Pólya urns. Stochastic Process. Appl. 110 177–245. MR2040966

[23] KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its
Applications (New York). Springer, New York. MR1876169

[24] KELLER-RESSEL, M. (2011). Moment explosions and long-term behavior of affine stochastic
volatility models. Math. Finance 21 73–98. MR2779872

[25] KELLER-RESSEL, M., PAPAPANTOLEON, A. and TEICHMANN, J. (2013). The affine LIBOR
models. Math. Finance 23 627–658. MR3094715

[26] KIM, D. H. and WRIGHT, J. H. (2014). Jumps in bond yields at known times. Technical report,
National Bureau of Economic Research, Cambridge, MA.

[27] JOHANNES, M. (2004). The statistical and economic role of jumps in continuous-time interest
rate models. J. Finance 59 227–260.

[28] LINTNER, J. (1956). Distribution of incomes of corporations among dividends, retained earn-
ings, and taxes. Am. Econ. Rev. 97–113.

[29] MERTON, R. (1974). On the pricing of corporate debt: The risk structure of interest rates.
J. Finance 29 449–470.

[30] MILLER, M. H. and MODIGLIANI, F. (1961). Dividend policy, growth, and the valuation of
shares. J. Bus. 34 411–433.

[31] MILLER, M. H. and ROCK, K. (1985). Dividend policy under asymmetric information. J. Fi-
nance 40 1031–1051.

[32] PIAZZESI, M. (2001). An econometric model of the yield curve with macroeconomic jump
effects. NBER working paper 8246.

[33] PIAZZESI, M. (2005). Bond yields and the federal reserve. J. Polit. Econ. 113 311–344.
[34] PIAZZESI, M. (2010). Affine term structure models. Handbook of Financial Econometrics 1

691–766.
[35] PROTTER, P. E. (2004). Stochastic Integration and Differential Equations, 2nd ed. Stochastic

Modelling and Applied Probability 21. Springer, Berlin. MR2020294
[36] RICHTER, A. and TEICHMANN, J. (2017). Discrete time term structure theory and consistent

recalibration models. SIAM J. Financial Math. 8 504–531. MR3679313

https://fin-risks2017.sciencesconf.org/132142
http://www.ams.org/mathscinet-getitem?mr=2128634
http://www.ams.org/mathscinet-getitem?mr=2553163
http://www.ams.org/mathscinet-getitem?mr=3849812
http://www.ams.org/mathscinet-getitem?mr=3758922
http://www.ams.org/mathscinet-getitem?mr=2536452
http://www.ams.org/mathscinet-getitem?mr=1943877
http://www.ams.org/mathscinet-getitem?mr=2040966
http://www.ams.org/mathscinet-getitem?mr=1876169
http://www.ams.org/mathscinet-getitem?mr=2779872
http://www.ams.org/mathscinet-getitem?mr=3094715
http://www.ams.org/mathscinet-getitem?mr=2020294
http://www.ams.org/mathscinet-getitem?mr=3679313
https://fin-risks2017.sciencesconf.org/132142


AFFINE PROCESSES BEYOND STOCHASTIC CONTINUITY 3437

[37] SATO, K. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in
Advanced Mathematics 68. Cambridge Univ. Press, Cambridge. MR1739520

[38] SCHNURR, A. (2017). The fourth characteristic of a semimartingale. Available at
arXiv:1709.06756.

[39] SHARMA, R. R. (1972). An abstract measure differential equation. Proc. Amer. Math. Soc. 32
503–510. MR0291600

[40] VERAAR, M. (2012). The stochastic Fubini theorem revisited. Stochastics 84 543–551.
MR2966093

M. KELLER-RESSEL

R. WARDENGA

TU DRESDEN

ZELLESCHER WEG 12-14
01069 DRESDEN

GERMANY

E-MAIL: Martin.Keller-Ressel@tu-dresden.de
Robert.Wardenga@tu-dresden.de

T. SCHMIDT

FREIBURG INSTITUTE OF ADVANCED STUDIES (FRIAS)
UNIVERSITY OF FREIBURG

FREIBURG IM BREISGAU

GERMANY

AND

UNIVERSITY OF STRASBOURG INSTITUTE

FOR ADVANCED STUDY (USIAS)
FRANCE

AND

DEPARTMENT OF MATHEMATICAL STOCHASTICS

UNIVERSITY OF FREIBURG

ERNST-ZERMELO STR.1
79104 FREIBURG

GERMANY

E-MAIL: thorsten.schmidt@stochastik.uni-freiburg.de

http://www.ams.org/mathscinet-getitem?mr=1739520
http://arxiv.org/abs/arXiv:1709.06756
http://www.ams.org/mathscinet-getitem?mr=0291600
http://www.ams.org/mathscinet-getitem?mr=2966093
mailto:Martin.Keller-Ressel@tu-dresden.de
mailto:Robert.Wardenga@tu-dresden.de
mailto:thorsten.schmidt@stochastik.uni-freiburg.de

	Introduction
	Preliminaries
	Afﬁne semimartingales
	First results on phi and psi

	The characterization of afﬁne semimartingales
	Afﬁne Markov processes and inﬁnite divisibility
	Existence of afﬁne Markov processes and afﬁne semimartingales
	Examples and applications
	Afﬁne processes in discrete time
	Asset prices with dividends
	Afﬁne term-structure models

	Appendix: Measure differential equations
	Acknowledgements
	References
	Author's Addresses

