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EMPIRICAL OPTIMAL TRANSPORT ON COUNTABLE
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We derive distributional limits for empirical transport distances between
probability measures supported on countable sets. Our approach is based on
sensitivity analysis of optimal values of infinite dimensional mathematical
programs and a delta method for nonlinear derivatives. A careful calibra-
tion of the norm on the space of probability measures is needed in order to
combine differentiability and weak convergence of the underlying empirical
process. Based on this, we provide a sufficient and necessary condition for
the underlying distribution on the countable metric space for such a distribu-
tional limit to hold. We give an explicit form of the limiting distribution for
tree spaces.

Finally, we apply our findings to optimal transport based inference in large
scale problems. An application to nanoscale microscopy is given.

1. Introduction. Optimal transport based distances between probability mea-
sures (see, e.g., Rachev and Riischendorf (1998) or Villani (2009) for a comprehen-
sive treatment), for example, the Wasserstein distance (Vasershtein (1969)), which
is also known as Earth Movers distance (Rubner, Tomasi and Guibas (2000)),
Kantorovich—Rubinstein distance (Kantorovi¢ and Rubinstein (1958)) or Mallows
distance (Mallows (1972)), are of fundamental interest in probability and statistics,
with respect to both theory and practice. The pth Wasserstein distance (WD) be-
tween two probability measures @ and v on a Polish metric space (X, d) is given
by

) 1/p
1) WyGuo = (inf [ dexnrdnen)

for p € [1, 00), the infimum is taken over all probability measures 7 on the product
space X x X with marginals ¢ and v.

The WD metrizes weak convergence of a sequence of probability measures
on (X, d) together with convergence of its first p moments and has become a
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standard tool in probability, for example, to study limit laws (e.g., Johnson and
Samworth (2005), Rachev and Riischendorf (1994), Shorack and Wellner (1986)),
to derive bounds for Monte Carlo computation schemes such as MCMC (e.g.,
Eberle (2014), Rudolf and Schweizer (2018)), for point process approximations
(Barbour and Brown (1992), Schuhmacher (2009)), bootstrap convergence (Bickel
and Freedman (1981)) or to quantify measures of risk (Rachev, Stoyanov and
Fabozzi (2011)). Besides of its theoretical importance, the WD is used in many
applications as an empirical measure to compare complex objects, for exam-
ple, in image retrieval (Rubner, Tomasi and Guibas (2000)), deformation analysis
(Panaretos and Zemel (2016)), meta genomics (Evans and Matsen (2012)), com-
puter vision (Ni et al. (2009)), goodness-of-fit testing (Munk and Czado (1998), del
Barrio, Cuesta-Albertos and Matrdn (2000)) and machine learning (Rolet, Cuturi
and Peyré (2016)).

In such applications, the WD has to be estimated from a finite sample of the
underlying measures. This raises the question how fast the empirical Wasserstein
distance (EWD), that is, when either w or v (or both) are estimated by the empirical
measures [i, = % > 8x; (and Dy, = % | 8y,) approaches WD. Ajtai, Koml6s
and Tusnady (1984) investigated the rate of convergence of EWD for the uniform
measure on the unit square, Talagrand (1992, 1994) extended this to higher di-
mensions. Horowitz and Karandikar (1994) then provided nonasymptotic bounds
for the average speed of convergence for the empirical 2-Wasserstein distance.
There are several refinements of these results, for example, Boissard and Le Gouic
(2014), Fournier and Guillin (2015) and Weed and Bach (2017).

As a natural extension of such results, there is a long standing interest in distri-
butional limits for EWD, in particular motivated from statistical applications. Most
of this work is restricted to the univariate case X C R. Munk and Czado (1998) de-
rived central limit theorems for a trimmed WD on the real line when it # v whereas
del Barrio, Giné and Matran (1999), del Barrio et al. (1999) consider the empir-
ical Wasserstein distance when p belongs to a parametric family of distributions
for the assessment of goodness-of-fit, for example, for a Gaussian location scale
family. In a similar spirit, del Barrio, Giné and Utzet (2005) provided asymptotics
for a weighted version of the empirical 2-Wasserstein distance in one dimension
and Freitag and Munk (2005) derive limit laws for semiparametric models, still
restricted to the univariate case. There are also several results for dependent data
in one dimension, for example, Dede (2009), Dedecker and Merlevede (2017). For
a recent survey, we refer to Bobkov and Ledoux (2014) and Mason (2016) and
references therein. A major reason of the limitation to dimension D =1 is that
only for X C R (or more generally a totally ordered space) the coupling which
solves (1) is known explicitly and can be expressed in terms of the quantile func-
tions F~! and G~! of w and v, respectively, as m = (F_1 X G_l)#E, where £
is the Lebesgue measure on [0, 1] (see Mallows (1972)). All the above mentioned
work relies essentially on this fact. For higher dimensions, only in specific settings
such a coupling can be computed explicitly and then can be used to derive limit
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laws (Rippl, Munk and Sturm (2016)). Already for D = 2, Ajtai, Komlés and Tus-
néady (1984) indicate that the scaling rate for the limiting distribution of Wy (fi,,, i)
when 1t is the uniform measure on X = [0, 1]? (if it exists) must be of complicated
nature as it is bounded from above and below by a rate of order /n log(n).

Recently, del Barrio and Loubes (2017) gave distributional limits for the
quadratic EWD in general dimension with a scaling rate 4/n. This yields a (nonde-
generate) normal limit in the case i # v, that is, when the data generating measure
is different from the measure to be compared with (extending Munk and Czado
(1998) to D > 1). Their result centers the EWD with an expected EWD (whose
value is typically unknown) instead of the true WD and requires p and v to have
a positive Lebesgue density on the interior of their convex support. Their proof
uses the uniqueness and stability of the optimal transportation potential (i.e., the
minimizer of the dual transportation problem, see Villani (2003) for a definition
and further results) and the Efron—Stein variance inequality. However, in the case
u = v, their distributional limit degenerates to a point mass at 0, underlining the
fundamental difficulty of this problem again.

An alternative approach has been advocated recently in Sommerfeld and Munk
(2018) who restrict to finite spaces X = {x1, ..., xy}. They derive limit laws for
the EWD for = v (and u # v), which requires a different scaling rate. In this
paper, we extend their work to measures ¥ = (ry)xex that are supported on count-
able metric spaces (X, d). Our approach links the asymptotic distribution of the
EWD on the one hand to the issue of weak convergence of the underlying multi-
nomial process associated with [, with respect to a weighted £!-norm (for fixed,
but arbitrary xg € X)

2) Il =D dP e, x0)lrel + Iyl

d){)() xex
and on the other hand to infinite dimensional sensitivity analysis of the underlying
linear program. Notably, we obtain a necessary and sufficient condition for such a
limit law, which sheds some light on the limitation to approximate the WD between
continuous measures for D > 2 by discrete random variables.

The outline of this paper is a follows. In Section 2, we give distributional lim-
its for the EWD of measures that are supported on a countable metric space. In
short, this limit can be characterized as the optimal value of an infinite dimen-
sional linear program applied to a Gaussian process over the set of dual solutions.
The main ingredients of the proof are the directional Hadamard differentiability
of the Wasserstein distance on countable metric spaces and the delta method for
nonlinear derivatives. We want to emphasize that the delta method for nonlinear
derivatives is not a standard tool (see Romisch (2004), Shapiro (1991)). Moreover,
for the delta method to work here weak convergence in the weighted £'-norm
(2) of the underlying empirical process /n(t, — r) is required as the directional
Hadamard differentiability is proven w.r.t. this norm. We cannot prove the direc-
tional Hadamard differentiability with our methods w.r.t. the £!-norm as the space
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of probability measures with finite pth moment is not complete with respect to the
¢!-norm; see Section 2.5 for more details. We find that

(3) Z dP (x,x0)/Tx < 00
xeX

is necessary and sufficient for weak convergence. This condition arises from Jain’s
CLT (Jain (1977)). Furthermore, we examine (3) in a more detailed way in Sec-
tion 2.3. We give examples and counterexamples for (3), derive consequences for
the moments of r from this condition and discuss whether the condition holds
in case of an approximation of continuous measures. Further, we examine under
which assumptions it follows that (3) holds for all p’ < p if it is fulfilled for p, and
put it in relation to its one-dimensional counterpart; see del Barrio, Giné and Ma-
tran (1999). We close this section by discussing simplifications for ground spaces
X with bounded diameter.

In Section 3, we specify the case where the metric structure on the ground space
is given by a rooted tree with weighted edges. In this case, we can calculate the
optimal solution of the maximum defining the limit distribution explicitly. Further-
more, we use this explicit formula to derive a distributional upper bound for the
limit distribution on general metric spaces via a spanning tree approximation of
this general metric space.

In Section 4, we combine this with a well known lower bound (Pele and Werman
(2009)) to derive a computationally efficient strategy to test for the equality of two
measures r and s on a countable metric space. Furthermore, we derive an explicit
formula of the upper bound from Section 3 in the case of the support of r being a
regular grid.

An application of our results to data from single marker switching microscopy
imaging is given in Section 5. As the number of pixels typically is of magnitude
10°-10°, this challenges the assumptions of a finite space underlying the limit law
in Sommerfeld and Munk (2018) and our work provides the theoretical justifica-
tion to perform EWD based inference in such a case. Finally, we stress that our
results can be extended to many other situations, for example, the comparison of
k samples and when the underlying data are dependent, as soon as a weak limit of
the underlying empirical process w.r.t. the weighted £'-norm (2) can be shown.

2. Distributional limits.

2.1. Wasserstein distance on countable metric spaces. Let throughout the fol-
lowing X = {x1,x2,...} be a countable metric space equipped with a metric
d: X x X - R,. The probability measures on X" are infinite dimensional vec-
tors r in

P(X) = {r:(rx)xeX:rx >0VxeXand Y ro= 1}.
xeX
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We want to emphasize that we consider the discrete topology on X and do not
embed X, for example, in R?. This implies that the support of any probability
measure r € P(X) is the union of points x € X such that r, > 0. The pth power
of the pth Wasserstein distance (p > 1) then becomes

) Wprs)= min >, d”(x.x)wi,

x,x'eX

where

(r,s) = {w EPX XX): Y wyy=ry

x'eXx

and Z Wy =5y Vx,x" € X}
xeX
is the set of all couplings between r and s. Furthermore, let

Pp(X) = {r e P(X): Z dP (x, xp)ry < oo}
xeX
be the set of probability measures on the countable metric space X’ with finite pth
moment w.r.t. d. Here, xo € X is arbitrary and we want to mention that the space
is independent of the choice of xo. We need to introduce the weighted ¢'-space
chlf (X) which is defined via the weighted ¢'-norm (2) as in this case the set of

probability measures with finite pth moment is a closed subset, and hence com-
plete itself. This will play a crucial role in the proof of the directional Hadamard
differentiability (see Appendix A.1). The weighted £'-norm (2) can be extended
in the following way to sequences on X' x X" and hence to P, (X x X):

lwligr = Y dP (o, 0)[wy v | + |wyy v

X0 x,x'eX
FY el
x,x'eX

In contrast to P, (X), the space Ecli,, (X) depends on xg € X.
X0

2.2. Main results. Before we can state the main results, we need a few
definitions. Define the empirical measure generated by i.i.d. random variables
X1, ..., X, from the measure r as

1 n
(5) f'n = (fn,x)xeX where fn,x = ; Z ]l{Xk:x}a
k=1
and §,, is defined in the same way by Y1,..., Yy, b s. In the following, we will

9
denote weak convergence by —, and furthermore, let

°(X) = {(@)rer € RY : sup lay | < oo
XeX
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and

0 ={@er e RY: X larl < ool
xeX

Finally, we also require a weighted version of the £°°-norm to characterize the set
of dual solutions:

for p > 1. The space K - (&) contains all elements which have a finite || - ||y ° -
d X0

lallss, =max(lay|, sup [d~P(x,x0)ax
dxg X#x0eX

norm. In the followmg, (r,A) =) ,.cxFchy denotes the dual paring between an

element r € ¢! ) (X) and an element A € E‘Xi »(X). Note that all continuous linear
XO
functionals on El (X ) can be represented by elements in Z 2, (X).
x()
Forr,s € P, (X ), we define the following convex sets:

S*(r.s) ={(, u)ee"op(X)xe o (X) 2 (r A+ (s, ) = W s)

(6)
hx + py <dP(x, x") Vx,x/ e X}

and

7 S*(ry={re E;‘i,,(?() thy — Ay <dP(x,x") Vx,x" € supp(r)},
X0

with supp(r) = {x € X': ry > 0}. The set S*(r, s) is the set of dual solutions to the
(infinite dimensional) minimization problem defined in (4). We refer the reader
to Bonnans and Shapiro (2000) for the general concept of duality in mathemat-
ical programming. The general definition of the set of dual solution is given via
an argmax formulation. That there is instead of the argmax an equality in our
definition of the set of dual solutions is due to the Kantorovich duality (duality
theory for the optimal transport problem) (Villani (2009)). For a further discus-
sion of S*(r, s) and S*(r), we refer the reader to Appendix A.2. For our limiting
distributions, we define the following (multinomial) covariance structure

@) S(r) = re(l—ry) ifx=x,

: /
—TxTy if x #x'.

THEOREM 2.1. Let (X, d) be a countable metric space and r,s € P,(X),
p > 1, and t, be generated by i.i.d. samples X1, ..., X, ~ r. Furthermore, let
G ~ N(0, 2(r)) be a Gaussian process with X (r) as defined in (8). Assume (3)
for some xg € X. Then

(a)

9) nZWp(rn,r)—> rrém(()(G,X) as n — oo.
e *
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(b) In the case where r # s, it holds for n — 0o

1 ~ 9
(10) n2 (Wlf(rn, s) — Wh(r, s)) — (L’L?elg(r’s)(G, A).

Before, we give the proof, we will discuss the random variable on the right-hand
side of (9) (and (10)) in more detail. In particular, we will investigate the situation
in which the limit law in the case of equal marginals (9) will degenerate, that is,
when the variance of
(11) max (G, A)

AES*(r)
is zero. Note that, (G,A) =),y GyAy is a centered Gaussian random variable
with variance

Z A)%rx - (Z Axrx)z.

xeX xeX
For A € E;?,,(X), it holds |Ay| < Kd” (x, xg) for all x # xg € X and some con-
X0

stant K . Hence, the variance of (G, 1) can be bounded by K? " .y d*”r, which
is finite if condition (3) holds (see Lemma 2.8).
Finally, it is worth to note that the stochastic process entering the max in (9)

[Gr 1= (G, M), 1 €32, (X))
X0

with G ~ N(0, X (r)) and X (r) given in (8) is a centered Gaussian process with
covariance function

KO =Y hpters — (Z xxrx) (Z /u)

xeX xeX xeX

REMARK 2.2 (The case r =s). (a) In general, if the space X" contains isolated
points the limit will be nondegenerate. In the case that r has full support, the limit
law in (9) degenerates to a point mass at 0 if S*(r) contains only constant elements,
that is, for a c € R A, = ¢ for all x € X'. Then the right-hand side in (9) becomes
zero. S*(r) contains only constant elements if and only if the space X has no
isolated point.

Specifying X to be a subset of the real line R that has no isolated point it follows
from Theorem 7.11 in Bobkov and Ledoux (2014) that scaling the EWD with /n
provides then a nondegenerate limit law. On the other hand, as soon as X C R
contains an isolated point our rate n'/2P (see Remark 2.7) coincides with the rate
given in Bobkov and Ledoux (2014).

(b) In the case of r = s, the set S*(r) will always contain more than one element
contrary to the case r # s, and hence, the limit cannot be Gaussian.
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(c) In this case, the limiting distribution can also be written as

max (G,A) = inf wh (Gt +z(r),G™ +2z(r)),
AeS*(r) Z(r)EZZ.ip (X)

where G and G~ denotes the (pathwise) decomposition of the Gaussian process
G, such that G = GT — G~ and z(r) is related to r in the sense that z, = O for that
x € X such that ry = 0. Further, we would like to emphasize that the set of dual
solutions S*(r) is independent of r, if the support of r is full, that is,

(12) S*:{Xe(;‘i,,(é\?):kx—Ax/fdp(x,x/)Vx,x/eX}.
X0

This offers a universal strategy to simulate the limiting distribution for fully sup-
ported measures on trees independent of r. For more details, see Appendix A.2.

REMARK 2.3 (Some comments for r £ s). (a) Note, that in Theorem 2.1(b)
where the measures are not the same the objective function in (10) is independent
of the second component g of the feasible set S*(r, s). This is due to the fact that
in W, (t,, s) the second component is not random.

(b) Observe that the limit in (10) is normally distributed if the set S*(r, s) is
a singleton up to a constant shift. In the case of finite X', conditions for S*(r, s)
to be a singleton up to a constant shift are known (Hung, Rom and Waren (1986),
Klee and Witzgall (1968)).

(c) Parallel to our work, del Barrio and Loubes (2017) showed asymptotic nor-
mality of the quadratic EWD in general dimensions for the case r # s. Their result
requires the measures to have moments of order 4 4 § for some § > 0 and pos-
itive density on their convex support. Their proof relies on the uniqueness and
stability of the optimal transportation potential and the Efron—Stein variance in-
equality. In the case r = s, the limiting distribution is degenerated, in contrast to
Theorem 2.1(a).

For statistical applications, it is also interesting to consider the two sample case,
extensions to k-samples, k > 2 being obvious then.

THEOREM 2.4. Under the same assumptions as in Theorem 2.1 and with S,

generated by Y1, ..., Yy, L s, independently of X1, ..., X, and H~ N (0, £(s)),
which is independent of G, and the extra assumption that s also fulfills (3) the
following holds.

(@) Let ppm = (nm/(n + m)Y2. If r = s and min(n, m) — oo such that
m/(n+m) — o €[0, 1] we have

A A 9
(13) Pn,m W,f(l’n, Sm) — ng?“)((r)(G’ A).
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(b) For r #s and n,m — 00 such that min(n, m) — oo and m/(n + m) —
o € [0, 1], we have

pn,m(WII;(fna ém) - Wé)(r, S))

14 .
(14) 2 max  Ja(G,A)+vT—a(H, ).

A, p)eS*(r,s)

REMARK 2.5. In the case of dependent data analogous results to Theorems
2.1 and 2.4 will hold, as soon as the weak convergence of the underlying empirical
process /n(F, —r) w.r.t. the || - || El -norm is valid. All other steps of the proof

remain unchanged. %o

The rest of this subsection is devoted to the proofs of Theorem 2.1 and Theo-
rem 2.4.

PROOFS OF THEOREM 2.1 AND THEOREM 2.4. To prove these two theorems,
we use the delta method Theorem A.2. Therefore, we need to verify (1) directional
Hadamard differentiability of W}f (+,-) and (2) weak convergence of /n(t, — r).
We mention that the delta method required here is not standard as the direc-
tional Hadamard derivative is not linear (see Romisch (2004), Shapiro (1991) or
Diimbgen (1993)).

1. In Appendix A.1, Theorem A.3 directional Hadamard differentiability of W{;

is shown with respect to the || - || ¢!, -norm 2).
dXO
2. The weak convergence of the empirical process w.r.t. the || - |[,1 -norm is
. . af
addressed in the following lemma. 0
LEMMA 2.6. Let X1,..., X, ~r bei.id. taking values in a countable metric

space (X, d) and let t,, be the empirical measure as defined in (5). Then

~ 9
Jn@E, —r) > G
with respect to the || - || 1 -norm, where G is a Gaussian process with mean 0 and
. df
covariance structure ~ °

re(1—ry) ifx:x/,
—ryly if x # x/,
as given in (8) if and only if condition (3) is fulfilled.

T(r) =

PROOF OF LEMMA 2.6. The weighted £!-space ¢! ar, is according to Proposi-

tion 3, Maurey (1973) of cotype 2, hence \/n(f, — r) converges weakly w.r.t. the
Z:i -norm by Corollary 1 in Jain (1977) if and only if the summability condition
X0

(3) is fulfilled. O
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The proof of Theorem 2.4 works analogously. Note that under the assumptions
of the theorem it holds (r = s):

pn,m((f'n, §m) - (r, S))

m N n R
(15) :<‘/n+—m\/ﬁ(rn_r),,/n+—m«/%(sm—s)>
2 (VaG,VT—aG')
with G’ 2 G. For further explanations, see Appendix A.2. [J

REMARK 2.7. From Theorems 2.1 and 2.4, analogous results can be derived
for the Wasserstein distance itself. For part (a) of both theorems, one needs to use
the continuous mapping theorem for f(x) = x!/7.

For part (b), one needs to apply the chain rule for directional Hadamard differ-
entiability (Proposition 3.6(i), Shapiro (1990)).

The described procedure then leads to different scaling rates under equality of
measures r = s (null-hypothesis, part (a)) and the case r # s (alternative, part (b)),
which has important statistical consequences. For r # s, we are in the regime of

1
the standard C.L.T. rate /n, but for r = s we get the rate n27, which is strictly
slower for p > 1.

2.3. Examination of the summability condition (3). According to Lemma 2.6,
condition (3) is necessary and sufficient for the weak convergence with respect to
the || - || g1, -horm defined in (2). As this condition is crucial for our main theorem

d

X0
and we are not aware of a comprehensive discussion, we will provide such in this
section.

LEMMA 2.8. If condition (3) holds for r, then r has finite moments of order
2p.

PROOF. Condition (3) implies that d” (x, x9)./rx < 1 for all x € X besides at
most a finite collection of points and denote this subset by X”. Then

Y dP(xxo)re < Y dP(x xo)re+ Y. dPP(x, xo)ry < oo

xeX xex’ xeX\X/ 0

Furthermore, the following question arises. “If the condition holds for p does it
then also hold for all p’ < p?” This is not true in general, but it is true if x¢ is not
an accumulation point.

LEMMA 2.9. Let xg € X be an isolated point with respect to the metric d. If
condition (3) holds for p, then it also holds for all 1 < p’ < p.
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PROOF. Let xg € X be an isolated point, that is, there exists & > 0 such that
d(x, xg) > ¢ for all x #xg € X. Then

d(xg, I3
D dP(xo, x)Sre=€P Y (4(]60 x)> NG
3
xeX xeX
> eP/P' ST 4P (x0, X)o7
xeX O

Exponential families. As we will see, condition (3) is fulfilled for many well-
known distributions including the Poisson distribution, geometric distribution or
negative binomial distribution with the Euclidean distance as the ground measure
don X =N.

THEOREM 2.10. Let (Py)y be an s-dimensional standard exponential family
(SEF) with natural parameter space N (see Lehmann and Casella (1998), Sec-
tion 1.5) of the form

(16) r;g:hxexp(zn,-T;' —A(n)>.

i=1
The summability condition (3) is fulfilled if (Py), satisfies:

(1) hy>1forallx e X,

(2) the natural parameter space N is closed with respect to multiplication with
1 . 2
S.thatis, Y cxry <00=>Y .y P < oo,

(3) the pth moment w.r.t. the metric d on X exists, that is, Y .y dP (x, xo)ry <

oo for some arbitrary, but fixed xo € X.

The proof of this theorem, as well as examples which show the necessity of all
three conditions, can be found in Appendix B.

2.4. Approximation of continuous distributions. In this section, we investigate
to what extent we can approximate continuous measures by its discretization such
that condition (3) remains valid. Let X = (%)kez with M € N be a discretization
of R and X a real-valued random variable with c.d.f. F which is continuous and
has a Lebesgue density f. We take d to be the Euclidean distance and xg = 0. For
k € 7., we define

) wm e r(E),
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Now, (3) can be estimated as follows:

Vr(5r)- ()
\/7\/ /k(k—&-l)/M oy d

X kP (k+1)/M
> —| VM x)dx
_k;)o‘ il V[

1 k)M
W il P/
> Mk E 7 /k/M |x|Py/ f(x)dx
=—00

:mz%mep,/f(x)dx,

where the first inequality is due to Jensen’s inequality. As the right-hand side tends
to infinity with rate VM as M — oo, condition (3) does not hold in the limit.
Hence, in general our method of proof cannot be extended in an obvious way to
continuous measures.

The one-dimensional case D = 1. For the rest of this section, we consider X
to be a subset of R and want to put condition (3) in relation to the condition (del
Barrio, Giné and Matran (1999))

(18) / F(t)(1 = F(1))dt < oo,

where F(t) denotes the cumulative distribution function, which is sufficient and
necessary for the empirical 1-Wasserstein distance on R to satisfy a limit law (see
also Corollary 1 in Jain (1977) in a more general context).

Condition (3) is under certain assumptions stronger than (18) as the following
shows. Let X be a countable subset of R such that it can be ordered indexed by Z.
Furthermore, let d(x, y) = |x — y| be the Euclidean distance on X'. For any mea-
sure r with cumulative distribution function F on X, it holds

f_o;,/F(t)(l — F(1))dt

=Y dxi.xir1) [y _rj Do)
keZ Visk ik
< Zd(xk,xkﬂ) > rj+ Z d(xk, Xpv1) D7
j>k k=—00 j<k
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<Zd(xk Xes1) T+ Z d(xk, Xe+1) Y /T

j>k k=—o00 j<k

_Zd(xo,xk)f+ Z d (x0, Xi) /7.

k=—00

Hence, if condition (3) holds, (18) is also fulfilled. However, the conditions are not
equivalent as the following example shows.

EXAMPLE 2.11. Let X =Nandd(x, y) = |x — y| the Euclidean distance and
r apower-law, that is, r, = where ¢ (s) is the Riemann zeta function. In this
case, (18) reads

11
¢(s) ns>

oo - L1oX
/ FO(-Fn)dr=—=%"|Y — > —
oo g(s) k:l\]zlj j=k+17
1 X Sl | 1 = s
- — < —
g_ )]; ]X:]:(]S ~ C(S)]; ks—l

and this is finite if and only if s > 3. On the other hand, condition (3) reads as

0 k—1) 1 i - 1 i 1
— V@) ks = V2ls) o k21

This is finite if and only if s > 4. Hence, condition (18) is fulfilled for s € (3, 4],
but not (3).

For p =2 in dimension D = 1, there is no such easy condition anymore in the
case of continuous measures; see del Barrio, Giné and Utzet (2005). Already for
the normal distribution, one needs to subtract a term that tends sufficiently fast to
infinity to get a distributional limit (which was originally proven by de Wet and
Venter (1972)). Nevertheless, for a fixed discretization of the normal distribution
via binning as in (17) condition (3) is fulfilled and Theorems 2.1 and 2.4 are valid.

2.5. Bounded diameter of X. For X with bounded diameter, further simplifi-
cations can be obtained.

First and most important, we do not need to introduce the spaces ¢! a7 (X) and

0
its dual E;‘ip (X) in this case. This is due to the fact, that as the diameter of the
X

space with respect to the metric d is bounded all moments of probability mea-
sures on this space exist. Hence, we do not need to restrict to probability measures
that have finite pth moment to guarantee that the linear program (30) defining the
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Wasserstein distance has a finite value. Thus, we can operate on P(X) which is a
subset of £ (X). This simplifies the summability condition (3) to

S <00

xeXx

as we get directional Hadamard differentiability with respect to the || - ||{-norm.
3. Limiting distribution for tree metrics.

3.1. Explicit limits. In this subsection, we give an explicit expression for the
limiting distribution in (9) and (13) in the case r = s with full support (other-
wise see Remark 3.3) when the metric is generated by a weighted tree. This ex-
tends Theorem 5 in Sommerfeld and Munk (2018) for finite spaces to countable
spaces &X'. In the following, we recall their notation.

Assume that the metric structure on the countable space X is given by a
weighted tree, that is, an undirected connected graph 7 = (X, E) with vertices
X and edges E C X x X that contains no cycles. We assume the edges to be
weighted by a function

w:E— Ry.

Without imposing any further restriction on 7, we assume it to be rooted at
root(7) € X, say. Then, for x € X and x # root(7) we may define parent(x) € X
as the immediate neighbor of x in the unique path connecting x and root(7).
We set parent(root(7)) = root(7). We also define children(x) as the set of ver-
tices x’ € X such that there exists a sequence x’ = xi,...,x, = x € X with
parent(x;) = x4 for j = 1,...,n — 1. Note that with this definition x €
children(x). Furthermore, observe that children(x) can consist of countably many
elements, but the path joining x and x’ € children(x) is still finite as explained
below.

For x,x" € X, letey, ..., e, € E be the unique path in 7 joining x and x’, then
the length of this path,

n

dr(x,x') = Z w(ej),

J=1

defines a metric d7 on X'. This metric is well defined, since the unique path joining
x and x’ is finite as we show in the following. Let Ag = {x € X’ : x =root(7)},
A1 = {x € X : parent(x) = root(7)} \ root(7) and Ay = {x € X : parent(x) €
Ap_1} for k > 2 € N. By the definition of the Ay, these sets are disjoint and it
follows (Jg2y Ax = X. Now let x,x’ € X, then there exist k; and k» such that
x € Ay, and x” € Ayg,. Then there is a sequence of kj + k2 + 1 vertices connecting
x and x’. Hence, the unique path joining x and x” has at most k| + k; edges.
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Additionally, define
(STu)y= Y, uy

x’echildren(x)

and

(19) Zr.pw) =Y _|(Su)x|dr(x, parent(x))”
xeX

for u € R* and we set w.l.0.g. xg = root(7).
The main result of this section is the following.

THEOREM 3.1. Let r € Py(X), defining a probability distribution on X that
Sulfils condition (3) and let the empirical measures t, and S, be generated by
independent random variables X1, ..., X, and Y1, ... Y, respectively, all drawn
fromr =s.

Then, with a Gaussian vector G ~ N (0, X (r)) with X(r) as defined in (8) we
have the following:

(a) (One sample) As n — oo,

(20) VAWE G, 1) D 27 ().

(b) (Two sample) Ifn Am — coandn/(n+m) — «a € [0, 1], we have

[ nm " A D
2D n—l——mW’I;(rn’ Sm) = Z1,p(G).

A rigorous proof of Theorem 3.1 is given in Appendix A.3.

The same result was derived in Sommerfeld and Munk (2018) for finite spaces.
For X countable, we require a different technique of proof. Simplifying the set
of dual solutions in the same way, the second step of rewriting the target function
with a summation and difference operator does not work in the case of measures
with countable support, since the inner product of the operators applied to the
parameters is no longer well defined. For this setting, we need to introduce a new
basis in Kig (X) and for each element pu € 63150 (X) a sequence which has only

finitely many nonzeros that converges to g in order to obtain an upper bound on
the optimal value. Then we define a feasible solution for which this upper bound
is attained.

REMARK 3.2. Analogous results to Theorem 3.1 for the Wasserstein distance
W), on trees can be derived by the techniques described in Remark 2.7.

REMARK 3.3. In case that the support is not full, we can generate a weighted
tree for the support points in the following way. If x is not in the support of



EMPIRICAL OPTIMAL TRANSPORT ON COUNTABLE METRIC SPACES 2759

root root

w1 + w2

(a) full tree (b) tree reduced to support

FI1G. 1. Schematic for the reduction of X to the support of r. Solid circles indicate support points,
hollow circles elements which are not in the support.

r, we delete x and connect parent(x) to all nodes in the set A1 (x) = {x’ €
X : parent(x’) = x} with edges that have the length of the sum of the edge joining
x and parent(x) and the edge joining x’ € A1 and x. Then we can use the same
arguments as in the case of full support to derive the explicit limit on the restricted
tree. This is an upper bound of the limiting distribution on the full tree with nonfull
support. See Figure 1 for an illustration.

3.2. Distributional bound for the limiting distribution. In this section, we use
the explicit formula on the r.h.s. of (20) for the case of tree metrics to stochastically
bound the limiting distribution on a general space X’ which is not a tree.

This is based on the following simple observation: Let 7 be a spanning tree of
X and dy the tree metric generated by 7 and the weights (x, x") — d(x, x’) as
described in Section 3.1. Then for any x, x" € X we have d(x, x") < d7(x, x’). Let
8% denote the set defined in (7) with the metric d7 instead of d. Then §* C S7,
and hence

max (v, A) < max (v, A)
rES* reSH

forall v e e(ll,, (X). It follows that
X0

22 A< Z
(22) max (v, A) = Z7,p(v)

for all v € £ ;p (&) and this proves the following main result of this subsection,
X0
which is stated for the case, when r and s are both estimated from data. The one-

sample case is analogous.

THEOREM 3.4. Letr,s € P,(X), assume that r, s fulfill condition (3) and let
T, Sy be generated by i.id. X1,..., X, ~randYy,...,Y, ~ s, respectively. Let
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further T be a spanning tree of X. Then, if r = s we have, as n and m approach
infinity such that n Am — oo and n/(n +m) — «, that

1/2p
@) timsup P () Wb = 2| < P26 2 2]

n,m—00 n—+m

where G ~ N (0, X(r)) with X(r) as defined in (8).

REMARK 3.5. While the stochastic bound of the limiting distribution Z7 , is
very fast to compute as it is explicitly given, the Wasserstein distance W, (¥, §,)
in (23) is a computational bottleneck. Classical general-purpose approaches, for
example, the simplex algorithm (Luenberger and Ye (2008)) for general lin-
ear programs or the auction algorithm for network flow problems (Bertsekas
(1992, 2009)) were found to scale rather poorly to very large problems such as
image retrieval (Rubner, Tomasi and Guibas (2000)).

Attempts to solve this problem include specialized algorithms (Gottschlich and
Schuhmacher (2014)) and approaches leveraging additional geometric structure
of the data (Ling and Okada (2007), Schmitzer (2016)). However, many practical
problems still fall outside the scope of these methods (Schrieber, Schuhmacher
and Gottschlich (2017)), prompting the development of numerous surrogate quan-
tities which mimic properties of optimal transport distances and are amenable to
efficient computation. Examples include Bonneel et al. (2015), Pele and Werman
(2009), Shirdhonkar and Jacobs (2008) and the particularly successful entropically
regularized transport distances (Cuturi (2013), Solomon et al. (2015)).

In the next section, we will discuss how to approximate the countable space X’
by a finite collection of points. Note that the distributional bound in Theorem 3.4
also holds on any finite collection of points. For a simulation study regarding this
upper bound, see Tameling and Munk (2018).

4. Computational strategies for simulating the limit laws. If we want to
simulate the limiting distributions in Theorems 2.1 and 2.4, we need to restrict to
a finite number N of points, that is, we choose a subset I of X’ such that #/ = N.
Let r € P,(X) with full support (see Remark 4.1 for the general case), satisfy-
ing (3). For G ~ N(0, (r)), we define G/ = (G'), = G, Lixery. Then an upper
bound for the difference between the exact limiting distribution and the limiting
distribution on the finite set / in the one sample case for r = s is given as (see

(22))
max(G’, 1) — max(G, k))<max|<G A)— (G, 1)

AeS* ALeS* rLeS*
< max [(G' — G, 1)|
leST
(24) = max maX(G -G, 1), max(G G/ A )}

XGST 637-
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=Y [(S7(G" = G)), |dr(x, parent(x))”
xXeX

=Y |Gxldr(x, r00t(T))".

x¢l

For the last equality, one needs to construct the tree as follows: Choose I such
that xg from condition (3) is an element of / and choose x( to be the root of the tree
and let all other elements of X" be direct children of the root, that is, children(x) =
x for all x # root(7) € X. The upper bound can be made stochastically arbitrarily
small as

(25) E[Z |Gx|d7-(x,r00t(7'))pi| < ZdT(x, root(7))Pv/re(1 —ry),

x¢l x¢l

where we used Holder’s inequality and the definition of X (r). As the root was
chosen to be xg, the sum above is finite as r fulfills condition (3) and becomes
arbitrarily small for / large enough. Hence, (25) details that the speed of approxi-
mation by G’ depends on the decay of r and suggests to choose I such that most
of the mass of r is concentrated on it.

REMARK 4.1. In case that the support of r is not full, we have to optimize
over the set S*(r) given in (7). In this case, we can derive the same upper bound
as in (24) with the only change that we sum over all x € supp(r) in the second last
line of (24) and that our set / has to be a subset of the support of r.

The computation of maxjes+(G’,A) is a linear program with N2 constraints
and N variables. General purpose network flow algorithms such as the auction
algorithm, Orlin’s algorithm or general purpose LP solvers are required for the
computation of this linear problem. These algorithms have at least cubic worst
case complexity (Bertsekas (1981), Orlin (1993)) and quadratic memory require-
ment and its average runtime is much worse than O(N?) empirically (Gottschlich
and Schuhmacher (2014)). This renders a naive Monte Carlo approach to obtain
quantiles computational infeasible for large N. In the following subsections, we
therefore discuss possibilities to make the computation of the limit more accessi-
ble.

4.1. Thresholded Wasserstein distance. Following Pele and Werman (2009),
we define for a thresholding parameter ¢ > 0 the thresholded metric
(26) d;(x, x") = min{d(x, x"), }.

Then d; is again a metric. Let Wth (r, s) be the Wasserstein distance with respect to
d;. Since d; (x, x") <d(x, x’) for all x, x’ € X, we have that WI’)(r, §) < Wy,(r,s)
forall r,s € P(X) and all r > 0.
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THEOREM 4.2. The limiting distribution from Theorem 2.1 with the thresh-
olded ground distance d; instead of d can be computed in O(N?log N) time with
O(N) memory requirement, if each point in X has O(1) neighbors with distance
smaller or equal to t. The limiting distribution can be calculated as the optimal
value of the following network flow problem:

min — > dl(x,x)wyw

1
weédfo(XxX)+ x,x'eXx
(27)
subject to Z Wi x — Z Wy = Gy,
XeX ,X#x x'eX , x'#x

where G = (Gy)ex is a Gaussian process with mean zero and covariance struc-
ture as defined in (8).

PROOF. We take a finite approximation ry of r and reduce our space X to
the support of r which should be exactly N points. If we take the thresholded
distance as the ground distance similar as in Theorem 2.1, we obtain the limiting
distribution as

max (G, L),

reSS
where now S = {A € RN : Ay — Ay <dP (x, x)}. The limiting distribution is again
a finite dimensional linear program and since there is strong duality in this case, it
is equivalent to solve (27). As the linear program (27) is a network flow problem,
we can redirect all edges with length ¢ through a virtual node without changing
the optimal value. From the assumption that each point has O(1) neighbors with
distance not equal to 7, we can deduce that the number of edges (N2 in the original
problem) is reduced to O(N). According to Pele and Werman (2009), the new
linear program with the virtual node can be solved in O(N 1o g N) time with O(N)
memory requirement. [

REMARK 4.3. (a) The resulting network-flow problem can be tackled with
existing efficient solvers (Bertsekas (1992)) or commercial solvers like CPLEX
(https://www.ibm.com/jm-en/marketplace/ibm-ilog-cplex) which exploit the net-
work structure.

(b) For the distributional bound (23), one can also use the thresholded Wasser-
stein distance WI’, instead of W), to be computational more efficient. A large thresh-
old ¢ will result in a better approximation of the true Wasserstein distance, but will
also require more computation time.

4.2. Regular grids. In this section, we are going to derive an explicit formula
for the distributional bound from Section 3.2, when the support of r is a regular
grid of L points in the unite hypercube [0, 1]7. Here, D is a positive integer and
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L a power of two. In this case, a spanning tree can be constructed from a dyadic
partition. The general case is analogous, but more cumbersome. For 0 </ < [j«
with

Imax =logy L

let P; be the natural partition of supp(r) into 22! squares of each L? /2P points.

THEOREM 4.4. Under the assumptions described above, (19) reads

lmax
(28) Zr )=y DPPaPUED N gy,
=0 Fep

This expression can be evaluated efficiently (in LP log, L operations) and used
with Theorem 3.4 to obtain a stochastic bound of the limiting distribution on reg-
ular grids.

The proof of this theorem can be found in Appendix A.4.

S. Application: Single-marker switching microscopy. Single Marker
Switching (SMS) Microscopy (Betzig et al. (2006), Rust, Bates and Zhuang
(2006), Egner et al. (2007), Heilemann et al. (2008), Folling et al. (2008)) is a
living cell fluorescence microscopy technique in which fluorescent markers which
are tagged to a protein structure in the probe are stochastically switched from a
no-signal giving (off) state into a signal-giving (on) state. A marker in the on state
emits a bunch of photons some of which are detected on a detector before it is
either switched off or bleached. From the photons registered on the detector, the
position of the marker (and hence of the protein) can be determined. The final
image is assembled from all observed individual positions recorded in a sequence
of time intervals (frames) in a position histogram, typically a pixel grid.

SMS microscopy is based on the principle that at any given time only a very
small number of markers are in the on state. As the probability of switching from
the off to the on state is small for each individual marker and they remain in the on
state only for a very short time (1-100 ms). This allows SMS microscopy to resolve
features below the diffraction barrier that limits conventional far-field microscopy
(see Hell (2007) for a survey) because with overwhelming probability at most one
marker within a diffraction limited spot is in the on state (Aspelmeier, Egner and
Munk (2015)). At the same time, this requires quite long acquisition times (1 min—
1 h) to guarantee sufficient sampling of the probe. As a consequence, if the probe
moves during the acquisition, the final image will be blurred.

Correcting for this drift, and thus improving image quality is an area of active
research (Geisler et al. (2012), Deschout et al. (2014), Hartmann et al. (2016)). In
order to investigate the validity of such a drift correction method, we introduce a
test of the Wasserstein distance between the image obtained from the first half of
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the recording time and the second half. This test is based on the distributional upper
bound of the limiting distribution which was developed in Section 3.2 in combi-
nation with a lower bound of the Wasserstein distance (Pele and Werman (2009)).
In fact, there is no standard method for problems of this kind and we argue that
the (thresholded) Wasserstein distance is particular useful in such a situation as the
specimen moves between the frames without loss of mass, hence the drift induces
a transport structure between successive frames. In the following, we compare the
distribution from the first half of frames with the distribution from the second half
scaled with the sample sizes (as in (21)). We reject the hypothesis that the distri-
butions from the first and the second half are the same, if our test statistic is larger
than the 1 — o quantile of the distributional bound of the limiting distribution in
(23). If we have statistical evidence that the thresholded Wasserstein distance is not
zero, we can also conclude that there is a significant difference in the Wasserstein
distance itself.

Statistical model. 1t is common to assume the bursts of photons registered on
the detector as independent realizations of a random variable with a density that is
proportional to the density of markers in the probe (Aspelmeier, Egner and Munk
(2015)). As it is expected that the probe drifts during the acquisition this density
will vary over time. In particular, the positions registered at the beginning of the
observation will follow a different distribution than those observed at the end.

Data and results. 'We consider an SMS image of a tubulin structure presented
in Hartmann et al. (2016) to assess their drift correction method. This image is
recorded in 40.000 single frames over a total recording time of 10 minutes (i.e.,
15 ms per frame). We compare the aggregated sample collected during the first
50% (= 20.000 frames) of the total observation time with the aggregated sample
obtained in the last 50% on a 256 x 256 grid for both the original uncorrected
values and for the values where the drift correction of Hartmann et al. (2016)
was applied. Heat maps of these four samples are shown in the left-hand side of
Figure 2 (no correction in (a) and corrected in (b)).

The question we will address is: “To what extend has the drift been properly re-
moved by the drift correction?” In addition, from the application of the thresholded
Wasserstein distance for different thresholds we expect to obtain detailed under-
standing for which scales the drift has been removed. As Hartmann et al. (2016)
have corrected with a global drift function one might expect that on small spatial
scales not all effects have been removed.

We compute the thresholded Wasserstein distance W| between the two pairs of
samples as described in Section 4.1 with different thresholds ¢ € {2, 3, ..., 14}/
256. We compare these values with a sample from the stochastic upper bound for
the limiting distribution on regular grids obtained as described in Section 4.2. This
allows us to obtain a test for the null hypothesis “no difference” based on The-
orem 3.4. To visualize the outcomes of theses tests for different thresholds ¢, we



EMPIRICAL OPTIMAL TRANSPORT ON COUNTABLE METRIC SPACES 2765

Before Drift Correction

p-value = 0.001

3.0 3.5 4.0 4.5 5.0

After Drift Correction

Fn(x)

p-value = 1

3.0 35 4.0 4.5 5.0
X

b) After drift correction

FI1G. 2. (a) Left: Aggregated samples of the first (first row) and the last (second row) 50% of the
observation time as heat maps of relative frequency without correction for the drift of the probe.
Magnifications of a small area are shown to highlight the blurring of the picture. Right: Empirical
distribution function of a sample from the upper bound (tree approximation) of the limiting distribu-
tion. The red dot (line) indicates the scaled thresholded Wasserstein distance for t = 6/256. (b) Same
setup as in (a) after drift correction. Here, the difference between the fist and the second 50% is no
longer significant.
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FI1G. 3. P-values for the null hypothesis “no difference” for different thresholds t before and after
the drift correction. The red line indicates the magnitude of the total drift.

have plotted the corresponding p-values in Figure 3. The red line indicates the mag-
nitude of the drift over the total recording time. As the magnitude is approximately
6/256, we plot in the right-hand side of Figure 2(a) and (b) the empirical distri-
bution functions of the upper bound (23) and indicate the value of the test-statistic
for t = 6/256 with a red dot without the drift correction and with the correction,
respectively.

As shown in Figure 3, the differences caused by the drift of the probe are rec-
ognized as highly statistically significant (p < 0.05) for thresholds larger than
t =4/256. After the drift correction method is applied, the difference is no longer
significant for thresholds smaller than t = 14/256. The estimated shift during the
first and the second 50% of the observations is three pixels in x-direction and
one pixel in y-direction. That shows that the significant difference that is detected
when comparing the images without drift correction for ¢ € {5, 6,7, 8,9, 10}/256
is caused in fact by the drift. The fact that there is still a significant difference for
large thresholds (¢ > 14) in the corrected pictures suggests further intrinsic and
local inhomogeneous motion of the specimen or nonpolynomial drift that is not
captured by the drift model used in Hartmann et al. (2016) and bleaching effects
of fluorescent markers.

In summary, this example demonstrates that our strategy of combining a lower
bound for the Wasserstein distance with a stochastic bound of the limiting distri-
bution is capable of detecting subtle differences in a large N setting.

APPENDIX A: PROOFS

A.1. Hadamard directional differentiability. In this section, we follow
mainly Shapiro (1991) and Romisch (2004). Let &/ and ) be normed spaces.
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DEFINITION A.1 (cf. Romisch (2004), Shapiro (1991)). (a) Hadamard di-
rectional differentiability. A mapping f: Dy CU — Y is said to be Hadamard
directionally differentiable at u € Dy if for any sequence h,, that converges to h
and any sequence f, \ 0 such that u + t,h, € D for all n the limit

fu+tyhy) — f(u)

(29) THOES Y t

exist.

(b) Hadamard directional differentiability tangentially to a set. Let K be a
subset of Dy, f is directionally differentiable tangentially to K in the sense of
Hadamard at u if the limit (29) exists for all sequences #,, that converge to % of the
form h, =t, 1k, — u) where k,, € K and 1, \{ 0. This derivative is defined on the
contingent (Bouligand) cone to K at u

TK(u):{h eU:h=lim 1, (ky — ), ky eK,tn\O].

Note that this derivative is not required to be linear in /%, but it is still positively
homogeneous. Moreover, the directional Hadamard derivative f,(-) is continuous
if u is an interior point of Dy (Romisch (2004)).

The delta method for mappings that are directionally Hadamard differentiable
tangentially to a set reads as follows.

THEOREM A.2 (Romisch (2004), Theorem 1). Let K be a subset of U,
f: K — Y a mapping and assume that the following two conditions are satis-
fied:

(i) The mapping f is Hadamard directionally differentiable at u € K tangen-
tially to K with derivative f(-): Tk (u) — Y.

(ii) For each n, X,,: Q2, — K are maps such that a, (X, — u) g X for some
sequence a, — +00 and some random element X that takes values in Tx (u).

Then we have ay (f(Xn) — f(u)) 2 f1(X).

Hadamard directional differentiability of the Wasserstein distance on countable
metric spaces. Forr,s € P,(X) the pth power of the pth Wasserstein distance
is the optimal value of an infinite dimensional linear program. We use this fact to
verify that the pth power of the Wasserstein distance (4) on the countable met-
ric spaces X is directionally Hadamard differentiable with methods of sensitivity
analysis of optimal values.
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The pth power of the Wasserstein distance on countable metric spaces is the
optimal value of the following infinite dimensional linear program:

min > dP(x, X Ywy v
weﬁsfo(XxX)XJ/GX
subject to Z Wy v =ry VYxedk,
(30) x'eX

Z Wy x/ = Sy/ Vx' e X,
xeX

Wy x>0 Vx,x e X.

THEOREM A.3. ng as a map from (Pp(X) x Pp(X), || - ”6',, YtoR, (r,s) —
af

W,f (r,s) is Hadamard directionally differentiable tangentially to P,(X) x
P, (X). The contingent cone on which the derivative is defined is given by

D(r,s) =D(r) x D(s)
with
D(r) := {d € chl” (X)) \ {0}: Z dy =0,d, €[—ry, 1 — rx]}
0 xeXx

and the directional derivative is as follows:

3D di.d)—~  sup  —((A,di)+ (p,d2)),
(A W)ES*(r,5)

where S*(r, 8) is set of optimal solutions of the dual problem which is defined in

(6).

PROOF. We start the proof with stating the considered functions and the
spaces on which they are defined. The objective function of the linear pro-
gram that determines the pth power of the pth Wasserstein distance is given as

f: E;p (X xX) = R,wr Y, exd?P(x,x")wy . The constraints are encoded
X0

by the constraint function C: £ 61150 (X x X) x ecl% (X) x %’o (X) — e;,, (X x X) x

Zflifo (X) x foo (X) with

X0

w
(32) C(w, (r,s)) = (le—r) )

2w —S§

Here, X¢, X7 E;f (X xX)—> Z;f (X) are the summation operators over the first

and the second component, that is, 1w = /ey Wy and Zow =)y Wy »/
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Furthermore, we need the closed convex set K = ¢ Llip (X x X)+ x {0} x {0} were
X0
£ ;’50 (X x X)4 are the elements in £ Llixpo (X x X) that have only nonnegative entries.

With these definitions the pth power of the pth Wasserstein distance is the optimal
value of the following abstract parametrized optimization problem:

(33) min  f(w) st C(w,(r,s))€KkK.
wee;p (XxX)
X0
We will use Theorem 4.24 from Bonnans and Shapiro (2000). To this end, we need
to check the following three conditions:

(i) Convexity and existence of optimal solution. Problem (30) is obviously
convex as it is a linear program with linear constraints. Note that the definition
of a convex problem (Definition 2.163) in Bonnans and Shapiro (2000) is slightly
different from the usual definition of a convex program as they require convexity
of the constraint function (32) with respect to —K . This condition can be shown
by easy calculations for our problem.

The set of primal optimal solutions, S(r, s), is according to Theorem 4.1 in
Villani (2009) nonempty.

(ii) Directional regularity. Set for some direction (d,d>) € D(r,s) C

E;,é’o (X) x Eifo (X)

C(w, 1) = (w, wil—r—td;, wl —s — tdy, 1).

The directional regularity condition is fulfilled at wg in a direction (dq,d7) if
Robinson’s constraint qualification is satisfied at the point (wg, 0) for the map-
ping C(w, t) with respect to the set K x R.. (Bonnans and Shapiro (2000), Defini-
tion 4.8). According to Theorem 4.9 in Bonnans and Shapiro (2000) the following
condition is necessary and sufficient for the directional regularity constraint to
hold:

0 € int{C(wo, (r, ) + DC(w, (r,9) (L (X x X), Ry.(d1,d)) = K},

where R (d1,d2) = {t(d1,d>),t > 0}. We are going to show that the directional
regularity condition in a direction (d1, d;) € D(r, s) holds for all primal optimal
solutions wg € S(r, §).

For a primal optimal solution wy, it is

C(wo, (r,s)) = (wo, 0, 0).

Since C(w, (r, s)) is linear in (w, (r, s)) and bounded with respect to the product
norm on the space chﬂ’ (X x X) x E;p (X) x Eéll,, (X)), it holds that
X0 X0 X0

DC(wo, (r, S))(Etllgo (X x X), Ry, dz)) =(w, Zyw —tdy, Tow —tdy)
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for ¢ > 0 and the directional regularity condition reads

0 € int{(wo, 0,0) + (w, Zyw — rd, Zow — rdy) — K}
This set is just e;){, (X x X) x % (X) x e(llf (X)asw e e;f (X x X) and hence
the directional reg(:ﬂarity constraint is fulﬁllegl. ’

(iii) Stability of primal optimal solution. We aim to verify that for perturbed
measures of the formr, =r +1,d| +0(t,) and s, = s +t,d> + o(t,) with 1,, \( O,
r,s € P,(X),d; € D(r) and d, € D(s) there exist a sequence of primal optimal
solutions w,, that converges to the primal optimal solution wq of the unperturbed
problem. For n large enough #, < 1, hence we can assume without loss of gen-
erality that 7, < 1 for all n. In this case, r, and s, are probability measure with
existing pth moment, that is, elements of P, (X). This yields that Theorem 5.20
in Villani (2009) is applicable. This theorem gives us the stability of the optimal
solution as P, (X) is a closed subset of £ Lli,{’o (X).

So far, we checked all the assumptions of Theorem 4.24 in Bonnans and Shapiro
(2000). The rest of this section is devoted to the derivation of formula (31) from
the result of that theorem.

The Lagrangian L of a parametrized optimization problem

mui)nf(w, u) st C(w,u)ek
is given by
L(w, A, u) = f(w,u) +(x, C(w,u)),

where f is the objective function, u the parameter and C the constraint function
and (-, -) the dual pairing (see, e.g., Section 2.5.2 in Bonnans and Shapiro (2000)).
We refer to A as Lagrange multiplier. For the transport problem, this yields with
(r, s) being the parameter and the definition of the constraint function in (32)

L(w, (v, A, p), (r,s))
= Z dP (x, X wy o 4+ (v, w) + (A, w1 —r) + (u, wl — ).
x,x'eX

Differentiating this in the Fréchet sense with respect to (r, s) and applying (d1, d>)
to this linear operator results in

Dg.s)L(w, (v, X, p), (r,$))(d1,d2) = —((A, d1) + (r, d2))

as the Lagrangian is linear and bounded in (r, s). As this derivative is independent
of w and the set of Lagrange multipliers A(r, s) equals the set of dual solutions
S*(r, s) in the case of a convex unperturbed problem (see section above Theo-
rem 4.24 in Bonnans and Shapiro (2000)), it holds that the directional Hadamard
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derivative is given by

(dy,dy)— inf sup D5 L(w, (v, X, p), (r,5))(d1,d2)
weSr.$) (A, p)eA(r,s)

= inf sup  —((A,d1) + (n,d2))
weS(r,s) (A REA(r,s)

= sup  —((A,dy) + (n, d2)). 0
A, w)eS*(r,s)

A.2. The limit distribution under equality of measures. First, observe that
for the case r = s the set of dual solutions S*(r, r) in (6) reduces to
SHr.r) = {(h ) € €52, (X) X €22, (X) 1 (r, A) + (. ) =0,
xO xO
Ay 4y <dP(x,x") Vx,x" € X}

={(A, p) e E;‘ip(X) X Z;‘i,,(?() t Ay = — Ly for x € supp(r),
X0 X0

Ay + o <dP(x,x") Vx, x" € X}.

The equality follows as for x = x’ the inequality condition gives A, + 1, <0 and
all r, in the sum are nonnegative. The conjunction of these two conditions yields
Ay +ux =0.

This set is a subset of the set given in (7), but changing S*(r, r) to S*(r) does
not change the optimal value of the linear programs in Theorems 2.1 and 2.4 as the
Gaussian process G is zero at all x ¢ supp(r).

In the case, that the support of r, that is, {x € X': r, > 0}, is the whole ground
space X, the set S*(r) is independent of r and it reduces to

S ={AelP,(X): Ay — Ay <dP(x,x") Vx,x" € X}.

PROOF OF THEOREM 2.4(a). For the two sample case, the delta method to-
gether with the continuous mapping theorem and equation (15) gives

A A 9
pn,mwg(rnasm) - max \/a()"vG> +v1 —Ol([L,G/).
A, p)eS*(r,r)
Nevertheless, for all x € X where r, > 0 it holds Ay, = —u, and for all x € X
where ry = 0 the limit element G, is degenerate. Hence, the limit distribution
above is equivalent in distribution to
max ok, G) —+1—alr, G).
ALeS*(r,r)

The independence of G and G’ yield that /a (X, G) — /1 — (X, G') equals
Ja+ (1 —a)({A, G) in distribution, and hence the limit reduces to

A, G).
xgls%)((r)< ) U
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PROOF OF DECOMPOSITION IN REMARK 2.3(c). For the alternative repre-
sentation of the distributional limit we decompose the Gaussian process G with
mean zero and covariance structure as defined in (8) into G = Gt — G~ with G,
G~ nonnegative, then the limiting distribution in (9) can be rewritten as follows:

max (G,A)=_ max (GT,A)—(G7,})
AeS*(r) AeS*(r,r)

= max
(L)€L, (X)x L%, (X)

X0 X0

(GT.A)+(G™. )
s.t. .y +u, =0 forall x € supp(r)
Ax + e <dP(x,x") Vx,x' e X.
The Lagrangian for this problem is given by

L p,w,2)=) Gire+ Y Gouy

xeX x'ex
+ Z Zx(Ax + /’Lx)]]-{rx>0} + Z wx,x’()‘x + Uy — dp(x, xl))-
xeX x,x'eX

From this, we can derive the dual via

min sup LA, p,w,z),
w>0etl! , (XxX),zell, (X)r,pel™  (X)
dxo dxo dxop

where w > 0 to be understood componentwise. It yields

inf Y dP(x, x")wy v

w>0,z

x,x'eX

s.t. Z Wy x/ = G;— + 2x L, >0)
x'eX
Z Wy x' = G;/ + 2y Lir, >0},
xeX

where the minimum over w equals the pth power of the pth Wasserstein distance.
More precisely, the linear program above is equivalent to

inf ~ WP(GT +2z2(r),G™ +z(r)),
z(r)ee;p (X)
X0
where z(r) depends on r through the support of r in the following sense: z, =0
for x € X suchthatr, =0. O
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A.3. Proof of Theorem 3.1.

Simplify the set of dual solutions S*. As a first step, we rewrite the set of dual
solutions S* given in definition (12) in our tree notation as
(34) S*'={Aell2,(X) 1Ay — Ay =d7(x, ), x,x" € X}.

0

The key observation is that in the condition A, — A,» < d7(x, x")? we do not need
to consider all pairs of vertices x,x” € X, but only those which are joined by
an edge. To see this, assume that only the latter condition holds. Let x,x’ € X
arbitrary and x = x1, ..., x, = x’ the sequence of vertices defining the unique path
joining x and x’, such that (x;,x;4+1) € E for j =1,...,n — I; that this path
contains only a finite number of edges, was proven in Section 3. Then

n—1 n—1
Ay ==Y Oy = Ao y) < ) d7(xj, xj40P <dr(x, X)),

such that (34) is satisfied for all x, x’ € X'. Noting that if two vertices are joined
by an edge then one has to be the parent of the other, we can write the set of dual
solutions as

(35) S*={re Ezcip (X) : [Ax — Aparent(x)| < d7(x, parent(x))”, x € X'}.
XO

Rewrite the target function. To rewrite the target function, we need to make
several definitions. Let

1
— ify=x,
dP(x, xo)
éy) ~)1———— if y = parent(x)
dr(x.xg) 0 ¥ ’
0 else.

Furthermore, we define for u € E;P X)),
X0

=, dP(x,xo)uy
x’echildren(x)
and
- 1
n, = Z nxe(x) =pula_, + Z mnxe(x).
xeA<,\root(7) X€EA—, X, X0
Here,

A<, ={x € X: level of x <n, x is within the first n vertices of its level},
A_, = {x € X: level of x = n, x is within the first n vertices of its level},

A-, ={x € X: level of x > n or x is not within the first n vertices of its level}
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and e(x) the sequence 1 at x and O everywhere else. For this sequence p,,, it holds

1 .
||”’_”’ || = dp(xaxo)‘”'le>n - ~777“e(x)
! K)I‘)O x%):( EGXA:E,I dP(x, xo) ! x
<lntalp +| Y nl

X0 x€A—y

As n — oo, the first part tends to zero as u € E;p (X), and
X0

Z Nx| = Z Z |[Lx/|dp(x/,X())

XEA—, x€A—, x’'echildren(x)

< Y lnald”(x,x0) == 0.

XeAzn

Hence, our target function for p € chi,, (X) and A € E;‘i »(X) can be rewritten in
X0 X0

the following way:

(w,d) = lim (p,, %)

= lim > e n)

XeASn
= nlgrolo Z Z My (Ay — )"parent(x))
(36) x€A <y, x'echildren(x)
= nlirgo Z Z x| |Ax — Aparent(x)|
x€A<p x’echildren(x)

= lim > (STl — Aparentco-

x€A<,
Observe that for A € S* it holds
37) Ay — )Mparent(x)| = d? (X, parent(x)).

By condition (3) G ~ N (0, X(r)) is an element of E;p (X). For A € §*, we get
with (36) and (37) that ’

. p
(38) (G.A) < Tim 3" [(S7G). |dr(x, parent(x))".

xX€A<,

Therefore, maxjes+(G,A) is bounded by limy—cod yea_, [(S7G)x|dT(x,
parent(x))?”. We can define the sequence v € Z;‘i »(X) by -
.xO
Vroot = 0,
(39) | ,
Vx — Vparent(x) = Sign((S7G)x)d7 (x, parent(x))”.
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From (35) and the fact that d” (x, parent(x)) < d?(x, root(7)), we see that v € S*
and by plugging v into equation (38) we can conclude that (G, v) attains the upper
bound in (38).

As the last step of our proof, we verify that the limit in (38) exists. Therefore,
we rewrite condition (3) in terms of the edges and recall that xo = root(7):

40) Z dr(x, x0)P /1y > Z Z dT(x, parent(x))p\/r_ﬂ,

xex xeX x’echildren(x)
The first moment of the limiting distribution can be bounded in the following

way:

IE[ > |(STG)«ldr(x, parent(x))p}
xeX\{root(7)}

< 3" dr(x. parent(x))?\/(S7r)x (1 — (S77)x)
xeX

<> > dr(x, parent(x))’ /ry

x€X x’echildren(x)

< 0

due to Holder’s inequality and (40). This bound shows that the limit in (38) is
almost surely finite, and hence, concludes the proof.

A4. Proof of Theorem (4.4). Define supp(r)’ by adding to supp(r) all
center-points of sets in P; for 0 </ < [nax. We identify center points of Py
with the points in supp(r). A tree with vertices supp(r)’ can now be built using
the inclusion relation of the sets {P;}o</<,,, as an ancestry relation. More pre-
cisely, the leaves of the tree are the points of supp(r) and the parent of the center
point of F' € P is the center point of the unique set in P;_; that contains F. If we
use the Euclidean metric to define the distance between neighboring vertices, we
get

VD27
2 9

dr(x, parent(x)) =

if x € P;. A measure r naturally extends to a measure on supp(r)’ if we give
zero mass to all inner vertices. We also denote this measure by r. Then, if x €
supp(r)’ is the center point of the set F € P; for some 0 <[ < lax, We have
that (S7r), = Spr where Spr =) . ry. Inserting these two formulas into (23)
yields (28).
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APPENDIX B: ADDITIONAL MATERIAL TO SECTION 2.3

PROOF OF THEOREM 2.10. For the SEF in (16), condition (3) reads

3" dP (xo, x)J exp(Z i — A(n))hx

xeX i=1
1& :
(41) Wxgdp(xo,x)exp( ;mT;)\/ﬁ
A3

M”)x;dp(xo,x)exp< an )h < 00,

where A(n) denotes the Laplace transform. The first inequality is due to the fact
that &, > 1 for all x € X’ and the second is a result of the facts that the natural
parameter space is closed with respect to multiplication with % and that the pth
moment w.r.t. d exist. [

The following examples show that all three conditions in Theorem 2.10 are
necessary.

EXAMPLE B.1. Let X be the countable metric space X = {%}keN and let r be
the measure with probability mass function

1 1
"N/k= <77

¢(n) k7
with respect to the counting measure. Here, ¢ (1) denotes the Riemann zeta func-
tion. This is a SEF with natural parameter 5, natural statistic — log(k) and natural
parameter space N = (1, 00). We choose the Euclidean distance as the distance d
on our space X and set xo = 1. It holds
1P 1 1 11

- @k_nf @k—n—1<oo VneN,

and hence all moments exist for all n in the natural parameter space. Furthermore,
hi/x = 1. However, the natural parameter space is not closed with respect to mul-

o0

>

k=1

tiplication with % and, therefore,

o0

1;1 C(n)k”/z—zpzmm—oo Vi e(1,2],

that is, condition (3) is not fulfilled.

k

l‘p 1

The next example shows that we cannot omit condition (1) in Theorem 2.10.
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EXAMPLE B.2. Consider X = N with the metric d(k,[) = 4/|k! —[!|. The
family of Poisson distributions constitute a SEF with natural parameter space
N = (=00, 00) which satisfies condition (2) in Theorem 2.10, that is, closed with
respect to multiplication with % The first moment with respect to this metric exists
and i < 1 for all £ > 2. Condition (3) for p = 1 with xg = 0 reads

00 77" 00
>V rexp(=m =3 1/ exp(—n/2) = 00
k=1 : k=1

for all n > 1, that is, the summability condition (3) is not fulfilled.

If the pth moment does not exist, it is clear that condition (3) cannot be fulfilled
as /x> x forx € [0, 1].
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