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Abstract: Permutation-valued features arise in a variety of applications,
either in a direct way when preferences are elicited over a collection of items,
or an indirect way when numerical ratings are converted to a ranking. To
date, there has been relatively limited study of regression, classification,
and testing problems based on permutation-valued features, as opposed to
permutation-valued responses. This paper studies the use of reproducing
kernel Hilbert space methods for learning from permutation-valued fea-
tures. These methods embed the rankings into an implicitly defined func-
tion space, and allow for efficient estimation of regression and test functions
in this richer space. We characterize both the feature spaces and spectral
properties associated with two kernels for rankings, the Kendall and Mal-
lows kernels. Using tools from representation theory, we explain the limited
expressive power of the Kendall kernel by characterizing its degenerate spec-
trum, and in sharp contrast, we prove that the Mallows kernel is universal
and characteristic. We also introduce families of polynomial kernels that
interpolate between the Kendall (degree one) and Mallows (infinite degree)
kernels. We show the practical effectiveness of our methods via applications
to Eurobarometer survey data as well as a Movielens ratings dataset.

Keywords and phrases: Mallows kernel, Kendall kernel, polynomial ker-
nel, representation theory, Fourier analysis, symmetric group.

Received September 2017.

1. Introduction

Ranked data arises naturally in any context in which preferences are expressed
over a collection of alternatives. Familiar examples include election data, ratings
of consumer items, or choice of schools. Preferences can be expressed directly via
relative comparisons of alternatives, or indirectly via scores assigned to the dif-
ferent alternatives. Preferences are also often expressed implicitly; e.g., through
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click activity on the web. In this paper, we consider datasets in which each
covariate corresponds to a complete ranking over a set of d alternatives (that
is, a permutation belonging to the symmetric group), and we study regression,
classification and testing problems with such data.

As a running example to which we return in Section 6.2, we consider the
Eurobarometer 55.2 survey conducted in several European countries in 2001,
recently published by the European Opinion Research Group [1]. Each respon-
dent was asked to indicate their preferences over sources of information about
scientific developments; their options were: TV, radio, newspapers/magazines,
scientific magazines, the internet, and school/university. Therefore, each obser-
vation in the survey contained a ranking of d = 6 objects, along with other
covariates such as the participant’s age, gender, etc; a snippet is shown in Ta-
ble 1. Many natural questions arise from this dataset. Can we predict a person’s
age/gender from their ranking? Do men and women (or old and young) have the
same distribution over sources of information? The primary goal of this paper is
to develop and analyze some principled methods for answering such questions.

Table 1

Snippet of the Eurobarometer 55.2 survey data.

Respondent Gender Age Ranking of news sources

1 F 32 TV > Radio > School/University > Newspapers/Mags. > Web > Sci. Mags.
2 F 84 TV > Radio > Newspapers/Mags. > School/University > Sci. Mags. > Web
3 F 65 TV > Newspapers/Mags. > Sci. Mags. > Radio > School/University > Web
4 M 29 Web > Radio > Newspapers/Mags. > TV > Sci. Mags. > School/University

There is a large existing literature on the use of rank statistics for testing
and inference; see, for instance, the book by Lehmann and D’Abrera [2] and
references therein. However, this body of work does not address problems in
which the ranking themselves act as covariates. Thus, inferential problems in
which the rankings are naturally viewed as covariates are generally simplified in
various ways. For example, in the original report on the Eurobarometer survey
data by the European Opinion Research Group [1], the authors measured only
the frequency with which each of the six sources of information was ranked in the
first or second position. Their analysis did not distinguish between respondents’
first and the second preferences and disregarded the information encoded in their
bottom four preferences. When covariates have been included, the analysis is
generally strongly parametric; for example, Francis et al. [3] analyze the same
dataset by extending the classical Bradley-Terry model (1952) to incorporate
covariates such as sex and age.

Our focus in the current paper is on nonparametric models in which the co-
variates are rankings. We build on work of Jiao and Vert [5], who discuss the
use of Mercer kernels for ranking data. Kernels on the symmetric group induce
an inner-product structure on permutations by implicitly embedding them into
a suitable Reproducing Kernel Hilbert Space (RKHS). This space is defined
by a bivariate kernel function, and the representer theorem [6] allows problems
of regression and testing to be reduced to the computation of the kernel val-
ues k(σ, π) for pairs of permutations (σ, π). We view kernel-based methodology
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as particularly appropriate for ranking problems: in particular, it allows us to
transition from the cumbersome setting of the non-Abelian symmetric group of
permutations to the familiar setting of Hilbert spaces. This methodology does
not require us to make generative or probabilistic assumptions, and is practically
viable as long as kernel evaluations are computationally efficient.

1.1. Kernels on the symmetric group

There is a rich theoretical understanding of kernels on Euclidean spaces, includ-
ing the linear, polynomial, Matern, Laplace and Gaussian kernels [7]. The latter
three are especially popular because they are translation-invariant—meaning
that k(x, y) = k(x+ z, y + z) for all x, y, z ∈ R

d—characteristic—meaning that
the maximum mean discrepancy over the unit ball of the RKHS defines a met-
ric on the space of distributions—and universal—meaning that the RKHS is
dense in the space of square-integrable functions. The latter property ensures
that any square-integrable decision boundary or regression function can be ap-
proximated arbitrarily well by a sequence of elements from the RKHS. While
kernels on Euclidean spaces are well understood, there is a a growing interest
in understanding properties of kernels on non-standard groups. For example,
Fukumizu et al. [8] provide necessary and sufficient conditions for kernels on
groups and semi-groups to be characteristic.

Permutations lie within the symmetric group, and various kernels for this non-
Abelian group have been proposed [5, 9, 10]. Many of these kernels, including
the Kendall and Mallows kernels considered in this paper, are right-invariant,
meaning that they are invariant to a re-indexing of the underlying objects.
This property is desirable for our applications: otherwise, the kernel similarity
between a pair of permutations would depend on how the items were indexed.
Much of the focus in the theoretical literature on kernel methods has focused
on the bi-invariant class of kernels, which are both right- and left-invariant. A
prominent example of a bi-invariant kernel is the diffusion kernel, which is quite
well understood [see, e.g., 11]. Unfortunately, such kernels are not suitable for
our applications, since for any bi-invariant kernel, the value between a pair of
rankings that rank a specific item in positions one and two respectively would
be the same as if they ranked it in positions, say, one and twenty. We thus
focus on right-invariant kernels, such as the Kendall and Mallows kernels, and
aim to bring the understanding of these kernels to the level of the bi-invariant
kernels. In particular, we analyze the feature maps and spectral properties of
the Kendall and Mallows kernels, as well as a new class of polynomial kernels.

There is also a mathematical literature on metrics on the symmetric group,
including Cayley’s metric, Ulam’s metric, and Spearman’s footrule. However,
with the important exception of nearest-neighbor methods, most statistical anal-
ysis methods are more compatible with inner-product representations (kernels,
similarities) than with metrics (distances, dissimilarities). For example, support
vector machines, logistic regression, ridge regression, PCA, and many other
methods can all be “kernelized.”
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1.2. Contributions

After a presentation of basic background on kernel methods on the symmetric
group in Section 2, we begin our development by presenting an analysis of
the Kendall and Mallows kernels from a primal point of view in Section 3. In
particular, in Proposition 1, we prove that the Gram matrix associated with the
Kendall kernel always has rank

(
d
2

)
, and we discuss the statistical implications of

this result. Then, in Proposition 2, we present a novel finite-dimensional feature
map for the Mallows kernel. At first glance, this result may seem surprising
because the Mallows kernel appears analogous to the Gaussian kernel on the
reals, which does not have a finite-dimensional feature map. This surprise is
alleviated, however, by noting that all kernels on finite domains must admit
some finite-dimensional feature map. We will show, moreover, that our feature
maps are not just finite dimensional, but also interpretable and easy to describe.

In Euclidean spaces, there exists a large body of work on the spectral proper-
ties of kernels, meaning the decay rates of their eigenvalues. This decay informs
the statistical analysis of kernel methods, providing leverage on the ability of
kernels to discriminate between distributions, or estimate decision boundaries
and regression functions. Motivated by this past work, in Section 4 we study
the spectra of the Kendall and Mallows kernels, proceeding via a non-Abelian
variant of Bochner’s theorem [8, 11]. This analysis requires a foray into represen-
tation theory [12, 13]. We provide as much background on representation theory
as is necessary to understand our theorem statements, leaving the proofs and
fuller development of representation theory for the Appendix. Theorem 3 fully
characterizes the Fourier spectrum of the Kendall kernel. In particular, we show
that it has only two nonzero irreducible representations, both of which turn out
to be rank-one matrices; this degeneracy suggests the kernel is useful only for
a limited range of problems. Theorem 5 provides a first-principles proof of the
fact that the Mallows kernel is universal and characteristic; i.e, every irreducible
representation is a strictly positive-definite matrix.

In Section 5, we propose and analyze natural families of polynomial kernels
of degree p that interpolate between the Kendall and Mallows kernels (corre-
sponding to p = 1 and p = ∞ respectively). We study their (primal) feature
maps and (dual) spectra and, in Theorem 6, we prove that p = d−1 suffices for
the kernel to be universal and characteristic.

In addition to these theoretical insights, we also present the results of various
experiments with our kernel representations. In our first set of experiments, we
apply kernel methods to a simulated data set in order to illustrate our predicted
differences in the empirical power of two-sample hypothesis tests using different
kernels for rankings, and discuss on which instances we expect the Kendall or
Mallows kernels to have higher power. We then apply these kernel-based tests to
the Eurobarometer survey data, and we also fit kernel SVM and kernel regression
models to this data in order to showcase the usefulness of kernel methods to
leverage ranking data. Our two-sample tests find that men and women do have
significantly different preferences—the classifiers have a test error of 34% for
predicting if the respondent was old or young. Moreover, the regression from
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rankings to age has a test prediction error of about 11 years. We also studied
a data set consisting of ratings for movies in which we transformed the users’
ratings across movie genres into rankings. We find significant evidence for males
and females having different preferences over movie genres, a simple illustration
of the possible utility of converting absolute ratings into relative rankings.

2. An overview of kernel methods for rankings

In order to understand the use of kernels for permutation-valued features, we
first need to introduce some standard terminology.

Symmetric group Sd. There is a natural one-to-one correspondence between
permutations and rankings. Let the set [d] : = {1, 2, . . . , d} represent labels of a
collection of d objects. Any permutation σ : [d] → [d] defines a ranking, in which
σ(i) is the rank of object i. The set of all permutations forms a group with the
standard function composition σ ◦ σ′; that is, π = σ ◦ σ′ ⇐⇒ π(i) = σ(σ′(i)).
This group is known as the symmetric group and it is denoted by Sd.

Universal RKHS. A kernel is a bivariate function, k : Sd×Sd → R, such that
for any collection of rankings the associated Gram matrix is positive semidef-
inite. We let Fk denote the reproducing kernel Hilbert space (RKHS) induced
by the kernel k; Fk is a set of functions defined by the closure of the span
of {k(σ, ·)}σ∈Sd

. The inner product between two functions f =
∑d!

j=1 ajk(σj , ·)
and g =

∑d!
j=1 bjk(σj , ·) is defined to be 〈f, g〉Fk

=
∑

k

∑
j akbjk(σk, σj). This

inner product induces the RKHS norm ‖f‖Fk
=
√
〈f, f〉Fk

. If k is a kernel
on a space X (say Sd) and � is a kernel on Y (say R

p), then m := k × � is a
kernel on the space Z = X × Y ; that is, for z = (x, y), z′ = (x′, y′), we have
m(z, z′) = k(x, x′)�(y, y′). Naturally, we can recurse this process to define ker-
nels on domains involving a variety of data types, showcasing their generality.
For compact metric spaces, a continuous kernel k is called universal if the RKHS
Fk defined by it is dense, in L∞ norm, in the space of continuous functions [14].
In our setting, a kernel k is universal if and only if any real-valued function f
on Sd can be written as a linear combination of functions k(π, ·), with π ∈ Sd;
that is, Fk contains all possible functions.

Feature maps. Mercer’s theorem [7, Proposition 2.11], when applied to a
finite domain such as Sd, guarantees that any kernel k : Sd × Sd → R admits a
finite-dimensional feature map Φ: X → R

m such that

k(σ, σ′) = 〈Φ(σ),Φ(σ′)〉Rm , for all σ, σ′ ∈ Sd.

For example, such a feature map can be defined by the columns of the square root
of the d!× d! kernel matrix. In light of this characterization, kernels correspond
to inner products in appropriate feature spaces, and can be thought of as a
measure of similarity between rankings. Feature maps are not unique, and many



2542 H. Mania et al.

different feature maps may give rise to the same kernel. Nonetheless, the feature
maps considered in this work are easy to define in closed form and offer valuable
insights into the properties of the Kendall and Mallows kernels.

Right-invariance. A function F : Sd × Sd → R is called right-invariant if
F (σ, σ′) = F (σ ◦ π, σ′ ◦ π) for all permutations σ, σ′, π ∈ Sd. By setting π =
σ−1, we see that this property holds if and only if F (σ, σ′) = f(σ′ ◦ σ−1) for
some function f : Sd → R. For kernels, we overload notation by using k to refer
to both F and f by k; usage will be clear from the context. Right-invariance of
kernels is desirable for applications involving rankings since it ensures that the
kernel values remain unchanged by a relabeling of the objects being ranked. Fur-
thermore, as we discuss later, right-invariance enables us to use Fourier analysis
to study the kernels.

The Kendall and Mallows kernels. All the kernels that we study in this
paper measure the similarity between two rankings through the number of pairs
of objects that they order in the same way or in opposite ways. More precisely,
letting nd(σ, σ

′) and nc(σ, σ
′) denote (respectively) the number of discordant

and concordant pairs between permutations σ and σ′, we have the relations

nd(σ, σ
′) : =

∑
i<j

[
1{σ(i)<σ(j)}1{σ′(i)>σ′(j)} + 1{σ(i)>σ(j)}1{σ′(i)<σ′(j)}

]
, and (1a)

nc(σ, σ
′) =

(
d

2

)
− nd(σ, σ

′), (1b)

where equality (1b) follows because any pair of indices is either concordant or
discordant. Of particular interest are the Kendall kernel, denoted by kτ , and the
Mallows kernel, denoted by kνm, where ν is a user-chosen bandwidth parameter.
They each depend only on the number of discordant/concordant pairs, and are
defined by

kτ (σ, σ
′) : =

nc(σ, σ
′)− nd(σ, σ

′)(
d
2

) , and (2a)

kνm(σ, σ′) : = exp (−ν · nd(σ, σ
′)) . (2b)

Jiao and Vert [5] show that kτ and kνm are indeed positive semidefinite and
that they can be computed in O(d log d) time. Furthermore, it is not hard to
check that the number of discordant pairs between two permutations is right-
invariant, and in fact nd(σ, σ

′) = i(σ′ ◦ σ−1), where i(π) denotes the number of
inversions of the permutation π. See Appendix C.2 for a short proof of this fact.

Therefore, kernels that depend only on the number of discordant pairs are
right-invariant, which is one of the reasons behind our particular interest in
the Kendall and Mallows kernels. Another reason is that the Kendall kernel
corresponds almost directly to the classical Kendall-τ metric on Sd, and the
Mallows kernel is reminiscent of the popular Mallows distribution over Sd. Later,
we introduce a family of polynomial kernels that interpolate between these two
kernels. While these are not the only kernels of interest, they are natural starting
points.
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Kernel regression on Sd. Consider the problem of kernel ridge regression
[6], where we fit a linear model in the feature space H, which generally induces a
nonlinear model in the original space. Given a set of n observations {(πi, yi)}ni=1,
kernel ridge regression fits a function f : Sd → R to the data by solving the
optimization problem

f∗ := arg min
f∈Fk

{
n∑

i=1

(yi − f(πi))
2 + λ‖f‖2Fk

}
, (3)

where λ ∈ R
+ is a regularization parameter. If k is universal, then the estimate

f∗ can approximate any function f : Sd → R arbitrarily well. Conversely, if Fk

is not universal, then we may suffer from an approximation error even in the
limit of infinite data.

Representer theorem. Note that kernel ridge regression is never directly
performed as written above—indeed, the representer theorem [6] implies that
f∗ lies in the span of {k(πi, ·)}ni=1, meaning that the optimum can be writ-
ten as f∗ =

∑n
i=1 w

∗
i k(σi, ·) for some vector w∗. This allows us to rewrite the

optimization problem (3) as

w∗ := arg min
w∈Rn

{
‖y −Mkw‖22 + λ‖w‖22

}
,

where Mk is the n × n Gram matrix whose entries are Mk,ij = k(νi, νj). This
quadratic program has the explicit solution w∗ = (Mk + λIn)

−1y.

Characteristic kernels. Any kernel k on a domain X induces a pseudo-
metric on the set of probability distributions on X , known as the maximum
mean discrepancy [15, 16, 17], which in our setting of X = Sd is given by

MMDk(P,Q) = sup
‖f‖Fk

≤1

[Eσ∼P [f(σ)]− Eπ∼Q[f(π)]] . (4)

Given a feature map Φ: Sd → H induced by k, we define a mean embedding of
P by μk,P = Eσ∼P [Φ(σ)]. Elementary computations [17] show that

MMDk(P,Q) = ‖μk,P − μk,Q‖H. (5)

The kernel is said to be characteristic if MMDk actually defines a metric on
the set of probability distributions—that is, if MMDk(P,Q) = 0 if and only if
P = Q.

Two-sample testing on Sd. Let P and Q be probability distributions over
Sd, and consider testing the null hypothesis H0 : P = Q against the alternative

H1 : P �= Q, using samples {αi}n1
i=1

i.i.d.∼ P and {β1}n2
i=1

i.i.d.∼ Q. One approach
to this testing problem is to estimate a pseudo-metric between P and Q, and
reject H0 if the estimate is large. For example, Gretton et al. [17] define the
statistic

Tk(α, β) =
1

n1(n1 − 1)

∑
i �=j

k(αi, αj) +
1

n2(n2 − 1)

∑
i �=j

k(βi, βj)−
2

n2

n1∑
i=1

n2∑
j=1

k(αi, βj),
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which is an unbiased estimator of MMD2
k, and consider the test Tk(α, β) > t∗

for some threshold t∗ (which can be determined, for example, by bootstrapping
or permutation testing). We use this nonparametric framework for two-sample
testing as a jumping-off point in our investigation of the statistical properties of
kernels on permutations. Specifically, we investigate the interpretability of this
class of tests. Given a kernel k, to what kind of differences between P and Q is
the test sensitive? If the null hypothesis is not rejected, does that mean the two
probability distributions are equal or that they simply have the same low-order
moments (for some appropriate notion of moment)?

One may understand the test and the pseudo-metric MMDk by studying the
kernel k. For example, since MMDk is not always a metric, this test would have
trivial power against alternatives P �= Q whenever MMDk(P,Q) = 0. Hence, it
is useful to understand when the MMDk could be equal to zero, even though
P �= Q. The results presented in the next section offer answers to these questions.
For example, Proposition 1 shows that the MMD induced by the Kendall kernel
is not a metric, and in fact it is far from being a metric. In sharp contrast,
Theorem 5 guarantees that MMD induced by the Mallows kernel is a metric;
i.e., MMDkν

m
(P,Q) = 0 only when P = Q.

3. Feature spaces of the Kendall and Mallows kernels

In this paper, we make extensive use of sets {i, j}, and as a matter of convention,
we always write any such set with the smaller element appearing first and the
larger one appearing second, meaning that implicit in the notation {i, j} is the
fact that i < j. For example, the objects 1 and 2 always appear as {1, 2} and
never {2, 1}.

Jiao and Vert [5] constructed a feature map Φτ : Sd → R(
d
2) for the Kendall

kernel defined by

Φτ (σ){i,j} =

√(
d

2

)−1

(21(σ(i) < σ(j))− 1) , (6)

which is easily seen to satisfy kτ (σ, σ
′) = Φτ (σ)

	Φτ (σ
′). Using this map we can

give an interpretation of the MMD operator of Eq. (5). We first fix an ordering
σ1, σ2, . . . , σd! of the elements of Sd. We also fix an ordering t1, t2, . . . , t(d2)

of

the sets {a, b} with a, b ∈ [d], denoting this set by T ∗. We use Mτ to denote the

R(
d
2)×d! matrix whose columns are indexed by the rankings σj , whose rows are

indexed by the tuples ti, and whose j-th column is the vector Φτ (σj). With this
notation, if we view the distributions P and Q as probability vectors in [0, 1]d!,
the MMD in Eq. (5) is equal to ‖Mτ (P −Q)‖2.

We also define the matrix Aτ ∈ {0, 1}(
d
2)×d! with columns and rows indexed

similarly, and entries

(Aτ ){a,b},σ =

{
1 if σ(a) < σ(b)
0 if σ(a) > σ(b).

With this notation in place, we can now state the following result.
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Proposition 1. The maximum mean discrepancy MMDkτ between two proba-
bility distributions P , Q on Sd is zero if and only if Aτ (P −Q) = 0. Moreover,
the matrix Aτ has rank

(
d
2

)
.

Straightforward algebra shows that 1
2

√(
d
2

)
Mτ (P −Q) = Aτ (P −Q), proving

the first part of the proposition; the second part is proved in Appendix A.1. We
remark that (AτP ){a,b} = P (σ(a) < σ(b)), and hence the MMDkτ corresponds
to the Euclidean distance between the vectors of probabilities of the events
{σ : σ(a) < σ(b)} under the distributions P and Q. As a parallel to the linear
kernel in R

m, the Kendall kernel detects a difference between two probability
distributions only if they differ in mean, where we define the mean as the vectors
of probabilities of events {σ : σ(a) < σ(b)}.

How many probability distributions have the same mean embedding as P
under the Kendall kernel? A probability distribution Q over Sd is a vector in
R

d! that is contained in the unit simplex, a subset of a hyperplane of dimension
d! − 1. Proposition 1 shows that for each P in the interior of the unit simplex
of Rd! there is a subspace V ⊂ Rd! of dimension d!−

(
d
2

)
− 1 such that for each

γ ∈ V there exists ε > 0 such that P + εγ is a probability distribution over
Sd and MMDkτ (P + εγ, P ) = 0. In other words, as d increases, the fraction
of the directions that the Kendall kernel cannot distinguish goes to one. This
observation shows that the Kendall kernel is far from being a metric on the
probability simplex in R

d!. We offer a Fourier transform perspective on this fact
in Theorem 3, showing in particular that the Kendall kernel can detect only
low-frequency differences between two probability distributions.

We next describe a finite-dimensional feature map for the Mallows kernel.

Proposition 2. Let P(T ∗) denote the power set of T ∗. Then, a feature map
of the Mallows kernel kνm is given by a map Φm : Sd → P(T ∗). In particular, if
s1, s2, . . . , sr are distinct elements of T ∗, we set

Φm(σ)∅ =

(
1 + exp(−ν)

2

) 1
2 (

d
2)

for all σ ∈ Sd, and (7a)

Φm(σ)s1s2...sr =

(
1 + exp(−ν)

2

) 1
2 (

d
2)(1− exp(−ν)

1 + exp(−ν)

) r
2

r∏
i=1

Φ(σ)si , (7b)

where Φ(σ)si = 21{σ(ai)<σ(bi)} − 1 when si = {ai, bi}.

Since the Kendall feature map Φτ has components 21(σ(a) < σ(b)) − 1, the
components of the mean embedding Eσ∼PΦτ (σ) capture the probabilities of
pairwise comparisons: 2P (σ(a) < σ(b)) − 1. However, Eq. (7) shows that the
features of the Mallows kernel are of the form

∏r
i=1(21(σ(ai) < σ(bi))− 1), up

to a scalar factor. By expanding the product, we see that the expected value of
the feature map (7) has components equal to
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Eσ∼PΦm(σ)s1s2...sr = C

r∑
j=0

(−1)j2r−j
∑

A⊂{s1,...,sr}
|A| = r−j

P (σ(a) < σ(b), ∀{a, b} ∈ A) ,

where the scale factor C depends only on dimension d, bandwidth ν, and r.
Therefore, the mean embedding with respect to the Mallows kernel captures the
probabilities that different rankings of objects, expressed as concurrent pairwise
orderings, occur. Since any ranking of d objects can be fully characterized by
d − 1 pairwise comparisons, the above feature map suggests that the Mallows
kernel is characteristic, a fact that is established later in Theorem 5.

4. Fourier analysis of the Kendall and Mallows kernels

We start by defining basic concepts that allow us to state our results about the
Fourier transforms of the Kendall and Mallows kernels. Elementary treatments
of Fourier analysis on groups are provided by Kondor [11] and Huang et al.
[18], with a concise summary given by Kondor and Barbosa [10]. In addition
to the basic concepts discussed in those treatments, our proofs will also require
some more advanced machinery, as found, for example, in Diaconis [12], Sagan
[19], or Fulton and Harris [13]. We introduce these more advanced concepts in
Appendix B.

The Fourier transform of a function f : Sd → C takes the form

f̂(ρλ) : =
∑
σ∈Sd

f(σ)ρλ(σ), (8)

where ρλ is a matrix-valued function to be defined shortly. As a contrast with
the Fourier transform for functions defined over R, instead of being indexed by
a frequency ξ, the Fourier transform is indexed by λ, which is a partition of
d—a non-increasing sequence of integers that sum to d. Furthermore, instead of
the standard exponential basis functions exp(iξx), the terms ρλ are functions
from Sd to C

dλ×dλ and are called representations.
More precisely, a representation of the symmetric group is a matrix-valued

function ρ : Sd → C
dρ×dρ such that ρ(σ) is invertible and ρ(σ ◦ σ′) = ρ(σ)ρ(σ′)

for all permutations σ, σ′ ∈ Sd. The integer dρ is called the dimension of the
representation. As an immediate consequence of the definitions, it follows that

ρ(e) = Idρ and ρ(σ)−1 = ρ(σ−1) for all σ ∈ Sd.

A representation ρ is reducible if it is equivalent to the direct sum of two rep-
resentations. Explicitly, a representation ρ is reducible if there exist two repre-
sentations ρ1 and ρ2 and an invertible matrix C ∈ Cdρ×dρ such that

ρ(σ) = C−1 [ρ1(σ)⊕ ρ2(σ)]C = C−1

(
ρ1(σ) 0
0 ρ2(σ)

)
C for all σ ∈ Sd.

A representation that is not reducible is called irreducible. For brevity, we refer to
irreducible representations as irreps. The symmetric group has a finite number
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of distinct irreps (an explanation of the meaning of “distinct” is provided in
Appendix B), which have a standard indexing by finite sequences of positive
integers λ = (λ1, λ2, . . . , λr) such that λ1 ≥ λ2 ≥ . . . ≥ λr and

∑r
i=1 λi = d.

Such sequences are called partitions of d and λ � d means that λ is a partition
of d.

Returning to Eq. (8) and using the terminology just introduced, the Fourier
transform of a function on the symmetric group can be described as a mapping
from the irreps ρλ to matrices in C

dλ×dλ . This version of the Fourier transform
shares many similar properties with its counterpart over real numbers, including
the Fourier inversion formula and the Plancherel formula. In particular, we
note that in this context Bochner’s theorem states that a right-invariant kernel
k : Sd × Sd → C is positive definite if and only if the matrix k̂(ρλ) is positive
semi-definite for all partitions λ � d [8, 11]. For a precise statement of Bochner’s
theorem and related results, we refer the reader to Appendix B.

We introduce some notation for the standard partial ordering of the partitions
of d. Given any two partitions λ = (λ1, λ2, . . . , λr) and μ = (μ1, μ2, . . . , μl), we

say that λ�μ if
∑j

i=1 λi ≥
∑j

i=1 μi for all j ≤ min{l, r}. We say λ�μ whenever
it is not true that λ � μ. The irreps of the symmetric group inherit the same
partial ordering.

Equipped with this background, we now turn to the statements of our re-
sults on the spectral properties of the Kendall and Mallows kernels, as well
as a discussion of some of their consequences. We begin with a theorem that
characterizes the spectrum of the Kendall kernel.

Theorem 3. The Kendall kernel has the following properties:

(a) When d = 2, the Fourier transform of the Kendall kernel is equal to 0 at
ρ(2) and equal to 2 at ρ(1,1).

(b) When d ≥ 3, the Fourier transform k̂τ of the Kendall kernel is zero at all
irreducible representations except for ρ(d−1,1) and ρ(d−2,1,1). Furthermore,

at both of the latter two representations, the Fourier transform k̂τ has rank
one.

While Proposition 1 implies that the Fourier spectrum of the Kendall kernel
does not have full support, Theorem 3 provides a more refined characterization
of the spectrum. Understanding the decay of eigenvalues of kernel operators has
been a key step in characterizing the statistical rates of kernel-based estimators
in other settings [20]. Theorem 3 is thus a first step towards understanding the
statistical properties of methods that use the Kendall kernel. In particular, the
MMD for a kernel k defined on the symmetric group can be expressed in the
Fourier domain as

MMD2
k(P,Q) =

1

d!

∑
λ�d

dλ tr

[(
P̂ (ρλ)− Q̂(ρλ)

)	
k̂(ρλ)

(
P̂ (ρλ)− Q̂(ρλ)

)]
. (9)

This result follows from the Fourier inversion formula, and we prove it in Ap-
pendix C.3 for completeness. From Eq. (9), it immediately follows that a kernel k
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is characteristic if and only if k̂(ρλ) is positive definite for all λ � d. The following
corollary follows immediately from Theorem 3 and Eq. (9), and it characterizes
the discriminative properties of the Kendall kernel in the frequency domain.

Corollary 4. When d ≥ 3, the MMD pseudo-metric for the Kendall kernel is
given by

MMDτ (P,Q)2 =
1

d!

∑
λ∈
{

(d−1,1),
(d−2,1,1)

} dλ tr

[(
P̂ (ρλ)− Q̂(ρλ)

)�
k̂τ (ρλ)

(
P̂ (ρλ)− Q̂(ρλ)

)]
.

(10)

This result follows by combining the Fourier-analytic characterization of The-
orem 3 with expression (9). Corollary 10 shows that most differences between

P̂ and Q̂ do not contribute to MMDk(P,Q). The only differences that con-

tribute to MMDk are the (d− 1)× (d− 1) matrix P̂ (ρ(d−1,1))− Q̂(ρ(d−1,1)) and

the
(
d−1
2

)
×
(
d−1
2

)
matrix P̂ (ρ(d−2,1,1)) − Q̂(ρ(d−2,1,1)). To be more precise, the

Kendall kernel can differentiate between P and Q if and only if their Fourier
transforms at ρ(d−1,1) or ρ(d−2,1,1) differ along a single direction aligning with

the only eigenvector with a non-zero eigenvalue of k̂τ (ρ(d−1,1)) or k̂τ (ρ(d−2,1,1)).

We now turn to Fourier analysis of the Mallows kernel (2b). Despite its su-
perficial similarity to the Kendall kernel, it has very different properties.

Theorem 5. The Fourier transform k̂νm of the Mallows kernel is strictly positive
definite at all irreducible representations ρλ.

Note that Theorem 5 corrects an assertion in the paper of Jiao and Vert [5];
the authors of that work suggested that since the Mallows kernel depends only

on the relative rankings of pairs of objects, the Fourier transform k̂νm should be
expected to be zero at all irreps λ � (d − 2, 1, 1). Theorem 5 shows that this
natural intuition does not actually hold.

Theorem 5 also has implications for the universality of the Mallows kernel.
Gretton et al. [17] show that a universal and continuous kernel on a compact
metric space is characteristic—hence, a kernel on Sd is universal if and only if it
is characteristic. As with Theorem 3, Theorem 5 has implications for the kernel
MMD induced by the Mallows kernel. In particular, it shows that the Mallows
kernel is both characteristic and universal, and hence MMDkν

m
is a metric on

probability distributions over Sd.

5. A family of polynomial-type kernels

Based on our results thus far, it is natural to suspect that there exists a family of
kernels interpolating between the relative simplicity of the Kendall kernel, which
is analogous to a linear kernel on R

d, and the richness of the Mallows kernel,
which is analogous to a Gaussian kernel on R

d. This intuition motivates us to
introduce three families of polynomial-type kernels on the symmetric group,
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defined as follows:

kp(σ, σ′) : = (1 + kτ (σ, σ
′))

p
(11a)

k
p
(σ, σ′) : =

(
1 +

kτ (σ, σ
′)

p

)p

, and (11b)

k
p,ν

(σ, σ′) : = exp

(
−ν

2

(
d

2

))(
1 + ν

(
d

2

)
kτ (σ, σ

′)

2p

)p

. (11c)

We refer to these three kernels as the polynomial kernel, the normalized polyno-
mial kernel, and the ν-normalized polynomial kernel of degree k, respectively.
Since each kernel depends only on the number of discordant pairs, they are
all right-invariant. Moreover, each kernel is positive semidefinite, since they can
each be written as a polynomial function of the Kendall kernel with non-negative
coefficients.

Theorem 6. The Fourier transforms of the three polynomial kernels kp, k
p
, k

p,ν

are zero at all irreducible representations ρλ with λ� (max{d− 2p, 1}, 1, . . . , 1).
Furthermore, when p ≥ d − 1, the Fourier transform of the three polynomial
kernels is strictly positive definite at all irreducible representations.

The first part of the theorem shows that the polynomial kernels of degree p
do not detect differences between distributions at irreps ρλ with λ not higher
in the partial ordering than the partition (max{d− 2p, 1}, 1, . . . , 1). Intuitively,
as the degree of the polynomial kernels increases they are able to detect more
differences between probability distributions. The second part of the theorem
shows that the polynomial kernels of degree at least d− 1 detect all differences
between probability distributions.

The appeal of defining the second and third kernels, k
p
and k

p,ν
, in addition

to the first one, is two-fold. On the one hand, in practice, the kernel kp becomes
difficult to evaluate when p is large because kp(σ, σ) = 2p. On the other hand,
the two normalized kernels satisfy the relations

lim
p→∞

k
p
(σ, σ′) = exp(kτ (σ, σ

′)) and lim
p→∞

k
p,ν

(σ, σ′) = exp(−νnd(σ, σ
′)).

(12)

The first limit is a constant times the Mallows kernel kνm with bandwidth

ν = 2
(
d
2

)−1
, while the second limit is precisely the Mallows kernel kνm. This

observation suggests we can infer properties about the Mallows kernel via the
ν-normalized polynomial kernel. Indeed, our proof of Theorem 5 makes use of
this fact.

5.1. Feature maps of the polynomial kernels

We now consider the feature spaces associated with the polynomial kernels. We
show here how the dimensions of the feature spaces increase as the degree of
the kernels increases, eventually leading to the feature space of the Mallows
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kernel (up to constants). We give a recursive construction of the feature maps

Φp : Sd → R(1+(
d
2))

p

that satisfy the relation kp(σ, σ′) = Φp(σ)
	Φp(σ

′). First,
we use the feature map of the Kendall kernel to construct Φ1; in particular, the

map Φ1 : Sd → R
1+(d2) is defined by

Φ1(σ)t0 : = 1 and Φ1(σ)tr : =

√(
d

2

)−1 (
21{σ(ir)<σ(jr)} − 1

)
,

where the coordinates are indexed by the unordered pair t0 = {−1, 0} and the(
d
2

)
unordered pairs tr = {ir, jr} with ir, jr ∈ [d] and ir < jr. We denote the set

of these unordered pairs by

T :=
{
t0, t1, . . . , t(d2)

}
. (13)

The feature map Φ1 clearly satisfies k1(σ, σ′) = Φ1(σ)
	Φ1(σ

′). Now we use the
map Φp−1 to construct a feature map Φp for p ≥ 1. By definition, we have

kp(σ, σ′) = (1 + kτ (σ, σ
′)) (1 + kτ (σ, σ

′))
p−1

= Φ1(σ)
	Φ1(σ

′)Φp−1(σ
′)	Φp−1(σ)

= tr
(
Φ1(σ)

	Φ1(σ
′)Φp−1(σ

′)	Φp−1(σ)
)

= tr
((

Φ1(σ)Φp−1(σ)
	)	 Φ1(σ

′)Φp−1(σ
′)	
)
.

Therefore, the polynomial kernel of degree p between σ and σ′ is equal to the
inner product of the matrices Φ1(σ)Φp−1(σ)

	 and Φ1(σ
′)Φp−1(σ

′)	. By induc-
tion, we see that Φp can be obtained from Φ1 by taking the outer product

with itself p times, meaning that the embedding Φp : Sd → R(1+(
d
2))

p

can be
expressed in terms of a sequence s1, s2, . . . , sp of elements of T as

Φp(σ)s1s2...sp =

p∏
i=1

Φ1(σ)si . (14)

It is clear that as the degree of the polynomial kernels increases, the kernels
capture more information about the probability distribution of the data. Propo-
sition 2 together with Eq. (14) show that when the degree of the polynomial
kernels is at least

(
d
2

)
, their feature sets contain all the features of the Mallows

kernel (up to constants). This offers another perspective on how the polynomial
kernels interpolate between the Kendall kernel and the Mallows kernel.

6. Empirical results

We now present an empirical exploration of our kernel-based methodology. We
present results for simulated data and for two real-world datasets—the European
Union survey Eurobarometer data and the large-scale MovieLens dataset.
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6.1. Experiments with simulated data

Setup. We evaluate the empirical power of two-sample hypothesis tests based
on the Kendall and Mallows kernel U -statistics. In order to do so, we chose pairs
of probability distributions P and Q over Sd and then sampled i.i.d. rankings
α1, α2, . . . , an from P and β1, β2, . . . , βn from Q. The size of the rankings
was fixed to d = 5. The hypothesis tests considered here reject the null when
Tk(α, β) > t∗, where the threshold t∗ is chosen by permutation testing so as to
ensure the probability of a false positive is at most 0.05.

We fixed P to be the uniform distribution over Sd and chose a distribution
Q such that ‖Aτ (P −Q)‖2 = δ for different values of δ, where Aτ is the matrix
discussed in Proposition 1. For each value of δ there are many distributions
Q that are at the prescribed distance from P . When δ > 0, we first sampled
uniformly a direction from the complement of the null space of Aτ and then
chose the distribution Q at the prescribed distance away from P in that direc-
tion. When δ = 0, we sampled uniformly a direction from the null space of Aτ

and then chose the distribution Q which is the farthest away from P in that
direction.

Once P and Q were fixed, we sampled i.i.d. sets of rankings {αi}ni=1 and
{βi}ni=1 from the distributions P and Q respectively. We varied the sample size
n from 10 to 300 in increments of 10. For each pair of sample sets {αi}ni=1

and {βi}ni=1 we used 200 permutations of these 2n data points to estimate the
rejection threshold t∗. To get estimates of the power of the kernel tests, for each
value of n, we sampled 1000 data sets from the fixed distributions P and Q and
ran the tests on them, measuring the frequency with which the tests rejected
the null hypothesis.

Discussion of results. Recall that μk,P = Eσ∼PΦ(σ) denotes the mean
embedding of the probability distribution P with respect to the feature map
Φ: Sd → Rm of the kernel k. Similarly, we define the covariance matrix of P
as Σk,P = Eσ∼PΦ(σ)Φ(σ)

	 − μk,Pμ
	
k,P . Elementary computations [21] show

that

ETk(α, β) = ‖μk,P − μk,Q‖22

VarTk(α, β) =
2

n(n− 1)
tr
(
Σ2

k,P

)
+

2

n(n− 1)
tr
(
Σ2

k,Q

)
+

4

n2
tr (Σk,PΣk,Q)

+
4

n
(μk,P − μk,Q)

	Σk,P (μk,P − μk,Q)

+
4

n
(μk,P − μk,Q)

	Σk,Q(μk,P − μk,Q).

Ramdas et al. [22] showed that for real-valued data, when d and n are suffi-
ciently large, the power of kernel U -statistic tests scales roughly like Ψ(nδ2/V )
for sufficiently small δ, where Ψ is the Gaussian CDF, and V is a term inde-
pendent of n which depends on the variance. The kernels over the symmetric
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Fig 1. The empirical power of the MMD two-sample test with the Kendall kernel is shown
in plot (a) and with the Mallows kernel in plots (b,c) as a function of the number of data
points n. Note that the power of both the Kendall and Mallows kernels increases as δ and
n increase. Moreover, the Kendall kernel has trivial power 0.05 when δ = 0 (but P �= Q),
while the Mallows kernel achieves achieves non-trivial power in this setting as long as the
bandwidth is chosen large enough. Finally, note that as the bandwidth ν of the Mallows kernel
is increased the variance of the corresponding U-statistic increases as well, as is indicated by
the jagged lines shown in plot (c).

group do not satisfy the necessary assumptions to apply the results of that work,
but we observe a similar behavior in our simulations. For instance, Figure 1a
shows the empirical power of the Kendall kernel test as function of n for dif-
ferent values of δ. As expected, the power of the test increases as δ increases.
More interestingly, observe that for certain values of n a doubling of δ translates
into roughly four times more power. Finally, note that when δ = 0 the Kendall
kernel test has trivial power 0.05. This behavior meets our expectations based
on Proposition 1 and the results of Ramdas et al. [22].

Proposition 2 shows that as the bandwidth ν decreases, the weight of the fea-
tures 1{σ : σ(a)<σ(b)} increases relative to higher order features. Therefore, when
δ > 0, we expect that the Mallows kernel with a small bandwidth will match
the performance of the Kendall kernel. Figure 1b corroborates this intuition—
it shows the power of the Mallows kernel with bandwidth ν = 0.22. In order
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to choose the bandwidth 0.22, we used a heuristic based on Proposition 2. We
chose the largest bandwidth ν such that the weight put by the Mallows kernel
on the pairwise comparison features is twice the weight put on all higher-order
features. More explicitly, based on Eq. (7), we chose ν to be the maximum value
such that (

1− exp(−ν)

1 + exp(−ν)

) 1
2

≥ 2

∞∑
r≥2

(
1− exp(−ν)

1 + exp(−ν)

) r
2

. (15)

The features constructed in Proposition 2 are interpretable and the precise
weighting derived in Eq. (7) can be used to derive heuristics like (15) for choosing
the bandwidth ν of the Mallows kernel.

When δ = 0, the low-order features do not capture the difference between P
and Q, and therefore a higher bandwidth should yield higher power. In Figure 1c
we see that the Mallows kernel has power against the null hypothesis P = Q
even when δ = 0. These results agree with the fact that the Mallows kernel is
characteristic (Theorem 5). As expected, when δ = 0 a higher bandwidth yields
more power, but at the cost of a higher variance of the statistic, as indicated by
the jagged curves shown in Figure 1c.

6.2. Survey data

Dataset and methods. In this section, we showcase the use of kernels for
hypothesis testing, classification, and regression on a real rankings dataset: the
European Union survey Eurobarometer 55.2 [1]. As part of this survey, collected
in 2001 across all countries belonging to the European Union, participants ex-
pressed their views on topics ranging from the single currency, agriculture, to
science and technology. Participants were selected via a multi-stage stratified
random sampling method, and there were 16130 respondents in total. As part
of the survey, participants were asked to rank in the order of preference six
sources of news regarding scientific developments: TV, radio, newspapers and
magazines, scientific magazines, the internet, school/university. The data set
also includes demographic information such as gender and age; a snippet of the
dataset is shown in Table 1.

We removed all respondents who did not provide a complete ranking over
the six sources of news, leaving 12216 participants. Then, we split the data set
in two distinct ways: across gender, and across age groups (40 or younger and
over 40). Out of the 12216 participants, 5915 were men, 6301 were women, 5985
were 40 or younger, 6231 were over 40.

We ran two-sample hypothesis tests across these groups with both the Kendall
and the Mallows kernels. Furthermore, we fitted a kernel SVM with the Mallows
kernel to predict the age group of participants. Finally, we fitted a kernel ridge
regression model with the Mallows kernel to predict the age of participants. For
both the classification and regression tasks, we used the Scikit-Learn Python
package [23] to fit the models. The bandwidth of the Mallows kernel and the
regularization parameter were chosen by cross-validation.
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Results and discussion. For the hypothesis tests across gender, we sub-
sampled 300 participants from each of the two groups and ran a permutation
test with 400 permutations, using the Kendall and the Mallows (ν = 1) kernel
U-statistics. We obtained p-values equal to 0.075 and 0.412 respectively. After
increasing the number of samples from each group to 600, we obtained p-values
equal to 0.002 and 0.002 respectively.

For the hypothesis tests across age groups we sub-sampled 30 participants
from each of the two group and ran a permutation test with 400 permutations,
using the Kendall and the Mallows (ν = 1) kernel U-statistics. We obtained
p-values equal to 0.007 and 0.477 respectively. After increasing the number of
samples from each group to 50, we obtained p-values equal to 0.002 and 0.005
respectively. We note that fewer samples than for the tests across gender were
required to reject the null hypothesis. For the type of rankings considered here,
we did expect a large discrepancy across age groups. In general, young partici-
pants are more likely to attend schools or universities, making them more likely
to rank highly these institutions as preferred source of information. Moreover,
in 2001, it was to be expected that younger participants were more accustomed
to the internet than older participants.

For the classification task across age groups, we fit a kernel SVM model using
the Mallows kernel. We split the 12216 participants randomly into a training
set of 10000 participants, and a test set of 2216 participants. The bandwidth for
the Mallows kernel was chosen to be 0.1 through cross-validation. We obtained
an error rate of 34%, which is better than chance.

For the regression task to predict age, we fit a kernel ridge regression model
using the Mallows kernel. We split the 12216 participants randomly into a train-
ing set of 10000 participants, and a test set of 2216 participants. The bandwidth
for the Mallows kernel was chosen to be 0.1 through cross-validation. The model
predicted the age of the respondents in the test set with an average �1-error of
11 years.

6.3. Movie ratings

Dataset and methods. Not all rankings come in the form of explicit or-
derings of alternatives. The MovieLens 1M dataset contains about one million
ratings of movies provided by 6000 users of the website movielens.org. For
each user in the dataset we are given their gender, age, and occupation, and
for each movie we are given its classifications into genres. Each movie can be-
long to multiple genres such as action, drama, thriller and comedy. The movies
contained in this dataset are split into a total of 18 genres. The ratings are
measured on a 5-star scale.

For each movie genre we counted the number of movies belonging to that
genre, and then kept only the ratings to movies belonging to at least one of the
ten most popular genres. Then, for each user we computed the average of the
ratings across the ten movie genres. Finally, we removed all users that did not
record at least one rating for each of the ten movie genres. The total number of
users remaining in the dataset after these procedures was 4428.

movielens.org
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We split this data in two distinct ways: across gender, and across age groups
(younger than 35 and 35 or older). Given this data we ran two-sample hypothesis
tests across the groups by using the standard linear kernel U -statistic for data
in R

10. Furthermore, for each user we transformed the average ratings into
rankings in the obvious way (the highest average rating takes rank one and so
on), breaking ties randomly. Given the data in this new format, we ran two-
sample hypothesis tests across the groups by using the Mallows (ν = 0.2) and
the Kendall kernel U-statistics. For all three U -statistics, we sub-sampled n
samples from each group of users and used 200 permutations to determine the
rejection threshold. For each sample size n, we ran 100 trials to estimate the
empirical power of the hypothesis tests.

Results and discussion. Our findings are summarized in Figure 2. All three
tests reject their respective null hypotheses with power going to one as the
number of data points used increases. It is interesting to note that depending
on the split of the data, either the Kendall and Mallows tests have more power
than the linear kernel, or the other way around. Of course, the linear kernel
tests the equality of the probabilities of the average ratings in R

10, whereas the
Kendall and the Mallows kernel are testing for differences in their respective
feature spaces. In particular, the linear kernel would reject the null even when
the distribution of preference over movies is the same across groups, but the
distribution of scores is not the same (e.g., when one group gives higher scores
on average than the other group). Therefore, for certain applications, it is more
natural to study the users’ distributions of preferences between movie genres by
working with rankings rather than with the scores directly.

7. Conclusions

In this paper, we provided feature map and Fourier-analytic characterizations
for various right-invariant kernels: the Kendall and Mallows kernels, and a novel
family of polynomial kernels. We showed that the Kendall kernel is nearly de-
generate in two ways: its Gram matrix has rank

(
d
2

)
, and it has only two nonzero

Fourier matrices, both of which have rank one. We constructed a 2(
d
2) feature

map for the Mallows kernel and showed that its Gram matrix has full rank d!.
This shows that the Mallows kernel is both universal and characteristic, and, in
Fourier space, this means that the Mallows kernel has a strictly positive definite
Fourier transform at all the irreducible representations. Moreover, the Mallows
kernel allows the feature map to be obtained in closed form, which informs the
choice of bandwidth, as we showed for the Mallows kernel in the two-sample
testing experiments.

We thus see that the Kendall and Mallows kernels are quite different, even
though both of them depend only on counting discordant pairs between rank-
ings. There is a natural analogy between these kernels in the space of permu-
tations to the linear and Gaussian kernels in Euclidean space. Building on this
analogy, we proposed a new class of polynomial kernels that smoothly interpo-
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Fig 2. The empirical power of the Mallows, Kendall, and linear kernel tests applied to average
scores of movie genres data. This data was obtained by averaging users’ movie scores included
in the MovieLens 1M dataset and then splitting the users in two ways: by gender, and by age.
For both settings, all tests achieve a non-trivial power. However, we emphasize that the linear
kernel, the Kendall, and Mallows kernels test different null hypotheses.

late between the Kendall and Mallows extremes, yielding a hierarchy of kernels
that are sensitive to differences between distributions at an increasingly dense
set of frequencies.

Many properties of the Fourier transform of the Mallows and polynomial
kernels are still not understood. For example, unlike the case of the Kendall
kernel, we do not have closed-form descriptions of the Fourier matrices for these
kernels. Such concise expressions would not only be of mathematical interest,
but could also be useful for computing in the spectral domain. It would also be
interesting to understand the properties of these kernels when applied to partial
rankings (top-k or random-k), which is even harder because partial rankings do
not jointly form a group. We view the current results on kernels for full rank-
ings as an important step towards developing and rigorously analyzing kernel
methods for partial rankings.

In Section 6, we studied the empirical power of kernel U -statistic two-sample
tests with the Kendall and Mallows kernels under different sets of alternatives.
The scaling of the power with the distance between the alternatives is simi-
lar to that of the linear and Gaussian kernel over real data. It would be in-
teresting to characterize the power of two-sample tests using the Kendall or
Mallows kernel as a function of the number of samples, the number of objects
and an appropriate signal-to-noise ratio. Our final set of experiments involved
data transformed from raw numerical scores (ratings of movies) into rankings,
a transformation also explored by Jiao and Vert [5]. This type of reduction to
rank statistics, while well studied in the context of classical rank-based methods
for testing [2], merits further study in the context of permutation-based covari-
ates. It offers invariance to arbitrary monotone transformations of the covari-
ates, and hence a way of protecting against model mismatch and/or covariate
biases.
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Outline of the Appendix

The appendix includes all the proofs of the results presented in the main text.
Sections A.1 and A.2 contain the proofs of the results presented in Section 3 of
the main text. In Sections A.3, A.4, and A.5 we prove our results concerning the
Fourier spectra of the Kendall, polynomial, and Mallows kernels. Section B con-
tains further background material on representation theory and Fourier analysis
on the symmetric group needed in the proofs. Finally, Section C contains some
proofs of miscellaneous claims that are used throughout.

Appendix A: Proofs of main results

A.1. Proof of Proposition 1

We prove that all the basis vectors of R(
d
2) are in the span of the matrix Aτ . To

achieve this we order the tuples ti = (ai, bi), with ai < bi, as follows. The tuples
ti and tj are ordered ti < tj if and only if ai < aj or ai = aj and bi < bj . With

total ordering fixed the i-th coordinate of R(
d
2) corresponds to the tuple ti.

Then it is enough to prove that for any 1 ≤ j ≤
(
d
2

)
the vector vj =

∑j
i=1 ei

is equal to the column (Aτ )σ for some appropriate σ ∈ Sd, where ei is the i-th

standard basis vectors of R(
d
2).

We will construct inductively the permutations πj such that (Aτ )πj = vj .
Observe that the identity permutation π(d2)

(i) = i satisfies (Aτ )π
(d2)

= v(d2)
.

Also, note that if we swap the ranks of d and d− 1 in the permutation π(d2)
, we

obtain a permutation π(d2)−1 such that (Aτ )π
(d2)−1

= v(d2)−1.

Assume we have constructed πj+1 such that (Aτ )πj+1 = vj+1. We construct
πj such that (Aτ )πj = vj . Let tj+1 = (a, b) be the tuple corresponding to the
j + 1-st coordinate. Since (Aτ )πj+1 = vj+1, we have πj+1(a) < π(r) for all
a < r ≤ b, and πj+1(a) > πj+1(r) for all r > b. Moreover πj+1(r) > πj+1(r+ 1)
for all a < r < b. Therefore, if we choose πj(r) = πj+1(r) for all r distinct from
a and b and πj(a) = πj+1(b), πj(b) = πj+1(a), we find that (Aτ )πj = vj . The
conclusion follows.

A.2. Proof of Proposition 2

We begin with the observation that the ν-normalized polynomial kernel con-
verges to the Mallows kernel as its degree increases:

k
p,ν

(σ, σ′) = e−
ν
2 (

d
2)
(
1 + ν

(
d

2

)
kτ (σ, σ

′)

2p

)p
p→∞−−−→ e−νnd(σ,σ

′) = kνm(σ, σ′).

We construct a feature map for the Mallows kernel by exploiting this observa-
tion. Specifically, we derive a feature map of the ν-normalized polynomial kernel
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and compute its limit as the degree p of the kernel goes to infinity. Similar to

Section 3, we define the feature map Φ : Sd → R(
d
2)+1:

Φ(σ)tr : = 21{σ(ar)<σ(br)} − 1,

where the coordinates are indexed by the ordered pairs tr = {ar, br} with
ar, br ∈ [d] and ar < br. Let T ∗ denote the set of

(
d
2

)
such tuples. Then, a

binomial expansion yields

k
p,ν

(σ, σ′) = e−
ν
2 (

d
2)

⎛⎜⎝1 +
ν

2p

(d2)∑
i=1

Φ(σ)tiΦ(σ′)ti

⎞⎟⎠
p

= e−
ν
2 (

d
2)

∑
c0+...+c

(d2)
=p

p!

c0!c1! . . . c(d2)
!

(
ν

2p

)p−c0 (
d
2)∏

i=1

Φ(σ)citi

(d2)∏
j=1

Φ(σ′)
cj
tj .

Note that (Φ(σ))2ti = 1 for any ti ∈ T ∗ and any σ ∈ Sd. For any A ⊂ T ∗

we denote Φ(σ)A : =
∏

ti∈A Φ(σ)ti , and Φ(σ)∅ = 1. Hence, we can simplify the
above expression to

k
p,ν

(σ, σ′) = e−
ν
2 (

d
2)
∑

A⊂T ∗

Φ(σ)AΦ(σ′)A
∑

c0+...+c
(d2)

=p

ci odd when ti∈A
ci even when ti �∈A

p!

c0!c1! . . . c(d2)
!

(
ν

2p

)p−c0

.

By symmetry the second sum on the right-hand side depends only on the
power p and the size of the set A. Therefore, if we define

δ(p, r) =
∑

c0+...+c
(d2)

=p

ci odd when 1≤i≤r
ci even when r<i

p!

c0!c1! . . . c(d2)
!

(
ν

2p

)p−c0

,

we find that

k
p,ν

(σ, σ′) = e−
ν
2 (

d
2)
∑

A⊂T ∗

Φ(σ)AΦ(σ′)Aδ(p, |A|).

We are left to compute the limit of δ(p, |A|) as p → ∞, and to this end we
construct a generating function for the sequence δ(p, r) by defining

F (z) := p!

(
ν

2p

)p

e
2p
ν z

(
ez − e−z

2

)r (
ez + e−z

2

)(d2)−r

.

By Taylor expanding each term ez individually we see that the function F (z) is
the generating function of d(p, r) for 0 ≤ r ≤

(
d
2

)
. More precisely, δ(p, r) is the
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p-th coefficient of the generating function F (z). By expanding F (z) into a linear
combination of exponentials we can compute δ(p, r) and study its asymptotic
behavior:

F (z) = p!

(
ν

2p

)p
e

2p
ν z−(d2)z

2(
d
2)

(
e2z − 1

)r (
e2z + 1

)(d2)−r

=
p!

2(
d
2)

(
ν

2p

)p

e
2p
ν z−(d2)z

r∑
i=0

(d2)−r∑
j=0

e2(i+j)z(−1)r−i

(
r

i

)((d
2

)
− r

j

)

=
p!

2(
d
2)

(
ν

2p

)p r∑
i=0

(d2)−r∑
j=0

e(
2p
ν −(d2)+2(i+j))z(−1)r−i

(
r

i

)((d
2

)
− r

j

)
.

Therefore,

δ(p, r) =
1

2(
d
2)

(
ν

2p

)p r∑
i=0

(d2)−r∑
j=0

(
2p

ν
−
(
d

2

)
+ 2(i+ j)

)p

(−1)r−i

(
r

i

)((d
2

)
− r

j

)

=
1

2(
d
2)

r∑
i=0

(d2)−r∑
j=0

⎛⎝1−
ν
2

((
d
2

)
− 2(i+ j)

)
p

⎞⎠p

(−1)r−i

(
r

i

)((d
2

)
− r

j

)

p→∞−−−→ 1

2(
d
2)

r∑
i=0

(d2)−r∑
j=0

e−
ν
2 ((

d
2)−2(i+j))(−1)r−i

(
r

i

)((d
2

)
− r

j

)

=
e−

ν
2 (

d
2)

2(
d
2)

r∑
i=0

(d2)−r∑
j=0

eνieνj(−1)r−i

(
r

i

)((d
2

)
− r

j

)

=
e−

ν
2 (

d
2)

2(
d
2)

(eν − 1)
r
(eν + 1)(

d
2)−r

.

The conclusion follows.

A.3. Proof of Theorem 3

For d = 2 and d = 3, the irreps ρλ are easy to describe in closed form [12]; in
particular, we have

k̂τ (ρ(2)) = 0, k̂τ (ρ(1,1)) = 2

k̂τ (ρ(3)) = 0, k̂τ (ρ(2,1)) =

(
2
3

2√
3

2√
3

2

)
, k̂τ (ρ(1,1,1)) =

2

3
.

Accordingly, it remains to prove Theorem 3 when d ≥ 4. Each representation
ρ : Sd → C

dρ×dρ defines a collection of d2ρ functions σ �→ ρ(σ)ij on the symmetric



2560 H. Mania et al.

group. An important result in the representation theory states that the functions
defined by the irreps ρλ form a basis for the space of functions over the symmetric
group. To exploit this fact, we express the Kendall kernel as a linear combination
of the functions defined by the overcomplete representation τ(d−2,1,1) defined in
Section B, Eq. (23).

Lemma 7. The Kendall function σ �→ kτ (σ) is a linear combination of the
functions defined by the representation τ(d−2,1,1)).

Proof. A rough sketch of the argument is as follows. The Kendall function is
a linear combination of indicator functions 1{σ(i)>σ(j)} (plus a constant). The
result follows because each of these functions is a linear combination of the
indicator functions 1{σ(i)=l,σ(j)=r}, which are exactly the functions defined by
τ(d−2,1,1).

Formally, to prove the claim it suffices to express the function kτ as a linear
combination of the functions defined by ρ(d), ρ(d−1,1), ρ(d−2,2), and ρ(d−2,1,1).
James’ submodule theorem states that

τ(d−2,1,1) ≡ ρ(d) ⊕ ρ(d−1,1) ⊕ ρ(d−1,1) ⊕ ρ(d−2,2) ⊕ ρ(d−2,1,1).

Therefore, we just have to show that the Kendall function is a linear combination
of the functions defined by τ(d−2,1,1). We have

kτ (σ) = 1− 2
i(σ)(
d
2

) = 1− 2

(
d

2

)−1∑
i<j

1{σ(i)>σ(j)}

= 1− 2

(
d

2

)−1∑
i<j

∑
l<r

1{σ(i)=r,σ(j)=l}.

The functions 1{σ(i)=r,σ(j)=l} are defined by τ(d−2,1,1) by construction, complet-
ing the proof.

Our next step in proving Theorem 3 is to compute the Fourier transform
of the Kendall transform at the representations τ(d), τ(d−1,1), τ(d−2,2), and
τ(d−2,1,1). Our next lemma summarizes the results of these computations, which
though technical are conceptually straightforward. First define

• vector u ∈ R
d with entries ui = d− 2i+ 1 for i = 1, . . . , d

• vector w ∈ R(
d
2) with entries w{i,j} = 2d− 2(i+ j) + 2 for 1 ≤ i < j ≤ d.

• vectors v1, v2, and v3 in R
d(d−1) with entries

[v1](i,j) = 1− 21{i>j},

[v2](i,j) = d− 2i+ 2− 21{i<j},

[v3](i,j) = d− 2j + 2− 21{i>j}.

With this notation, we have the following:



On kernel methods for rankings 2561

Lemma 8. The Fourier transform of the Kendall kernel satisfies the identities:

k̂τ (τ(d)) = 0, k̂τ (τ(d−1,1)) =
(d− 2)!(

d
2

) uu	, (16a)

k̂τ (τ(d−2,2)) =
(d− 3)!(

d
2

) ww	, and (16b)

k̂τ (τ(d−2,1,1)) =
(d− 2)!(

d
2

) v1v
	
1 +

(d− 3)!(
d
2

) v2v
	
2 +

(d− 3)!(
d
2

) v3v
	
3 . (16c)

Proof. Lemma 8 states in closed form the values of k̂τ evaluated at the four
representations τ(d), τ(d−1,1), τ(d−2,2), and τ(d−2,1,1). We compute these values
one at a time.

Computing k̂τ (τ(d)). We first show that k̂τ (τ(d)) = 0. Recall that τ(d) is the
trivial representation, equal to 1 at all permutations. Therefore, we need to

check that
∑

σ∈Sd
1− 2

(
d
2

)−1
i(σ) = 0. Note that we have

∑
σ∈Sd

i(σ) =
∑
σ∈Sd

∑
i<j

1{σ(i)>σ(j)} =
∑
i<j

∑
σ∈Sd

1{σ(i)>σ(j)} =
∑
i<j

d!

2
=

d!
(
d
2

)
2

,

so that the conclusion follows.

Computing k̂τ (τ(d−1,1)). In this case, we show that k̂τ (τ(d−1,1)) =
(d−2)!

(d2)
vv	,

where the vector v ∈ R
d has components vr = d−2r+1. Consider the functions

gij on Sd defined by gij(σ) = 1− 21{σ(i)>σ(j)}, for all i < j. Then

kτ (σ) =
1(
d
2

) ∑
i<j

gij(σ) and hence k̂(ρ) =
1(
d
2

) ∑
i<j

ĝij(ρ),

for any representation ρ.
We compute ĝij(τ(d−2,2)) for each tuple i < j and then sum up the results.

The rows of τ(d−1,1) are indexed by tabloids of shape (d − 1, 1). Each of these
tabloids is fully specified by the index contained in the second row. We identify
the tabloids of shape (d− 1, 1) with those indices. Let t1 and t2 be two indices
in [d]. Then

ĝij(τ(d−1,1))t1t2 =
∑
σ∈Sd

(
1− 21{σ(i)>σ(j)}

)
1{σ(t1)=t2}.

There are three cases to consider. First, suppose that t1 is distinct from both
i and j. There are (d− 1)! permutations σ that satisfy σ(t1) = t2, out of which
exactly half satisfy gij(σ) = 1 and the other half satisfy gij(σ) = −1. Therefore,
we are guaranteed that ĝij(σ)t1t2 = 0 when t1 �∈ {i, j}.

In the second case we may assume that t1 = i. Then, out of the (d − 1)!
permutations that satisfy σ(i) = t2 there are (t2 − 1)(d− 2)! permutations that
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satisfy σ(i) > σ(j) and (d − t2)(d − 2)! that satisfy the opposite inequality.
Hence, when t1 = i, we have ĝij(τ(d−1,1)) = (d− 2t2 + 1)(d− 2)!.

The remaining (third) case is when t1 = j. Then, out of the (d−1)! permuta-
tions with σ(j) = t2 there are (d−t2)(d−2)! with σ(i) > σ(j) and (t12−1)(d−2)!
with σ(i) < σ(j). Therefore ĝij(τ(d−1,1)) = −(d− 2τ2 + 1)(d− 2)! when t1 = j.
To summarize, we have

ĝij(τ(d−1,1))t1t2 =

⎧⎪⎨⎪⎩
0 if t1 �∈ {i, j}
(d− 2t2 + 1)(d− 2)! if t1 = i

(2t2 − d− 1)(d− 2)! if t1 = j.

Now we need to sum the Fourier transforms of the functions gij to obtain the
Fourier transform of kτ . We have

k̂τ (τ(d−1,1))t1t2 =

(
d

2

)−1∑
i<j

ĝij(τ(d−1,1))

=

(
d

2

)−1 ∑
t1=i<j

(d− 2t2 + 1)(d− 2)!

+

(
d

2

)−1 ∑
i<j=t1

(2t2 − d− 1)(d− 2)!

=

(
d

2

)−1

(d− t1)(d− 2t2 + 1)(d− 2)!

+

(
d

2

)−1

(t1 − 1)(2t2 − d− 1)(d− 2)!

=

(
d

2

)−1

(d− 2t1 + 1)(d− 2t2 + 1)(d− 2)!,

as claimed.

Computing k̂τ (τ(d−2,2)). Now, we show that k̂τ (τ(d−2,2)) =
(d−3)!

(d2)
ww	, where

the vector w ∈ R(
d
2) has entries w{r1,r2} = 2d− 2(r1 + r2) + 2 for all r1 and r2

such that 1 ≤ r1 < r2 ≤ d.
The entries of k̂τ (τ(d−2,2)) are indexed by tabloids of shape (d−2, 2) which can

be identified with the set of two indices contained in the second row. Therefore
we can identify the tabloids of shape (d− 2, 2) with sets of two indices. Fix two
such sets t1 = {t11, t12} and t2 = {t21, t22}. As before, gij(σ) : = 1−21{σ(i)>σ(j)}.
For these functions, we have

ĝij(τ(d−2,2))t1t2 =
∑
σ∈Sd

gij(σ)1{σ({t11,t12})={t21,t22}}

=
∑
σ∈Sd

(
1− 21{σ(i)>σ(j)}

)
1{σ(t11)=t21,σ(t12)=t22}

+
∑
σ∈Sd

(
1− 21{σ(i)>σ(j)}

)
1{σ(t11)=t22,σ(t12)=t21}.
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By breaking into four cases, similar to the proof the computation of k̂τ (τ(d−2,2)),
we obtain

ĝij(τ(d−2,2))t1t2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if {t11, t12} ∩ {i, j} = ∅
0 if {t11, t12} = {i, j}
(2d− 2(t21 + t22) + 2)(d− 3)! if {t11, t12} ∩ {i} = {i}
(2(t21 + t22)− 2d− 2)(d− 3)! if {t11, t12} ∩ {i} = {j}.

Summing the terms ĝij(τ(d−2,2)) over pairs i < j yields the result.

Computing k̂τ (τ(d−2,1,1)). We show that

k̂τ (τ(d−2,1,1)) =
(d− 2)!(

d
2

) v1v
	
1 +

(d− 3)!(
d
2

) v2v
	
2 +

(d− 3)!(
d
2

) v3v
	
3 ,

where v1, v2, and v3, are the vectors in R
d(d−1) defined by

[v1](r1,r2) = 1− 21{r1>r2},

[v2](r1,r2) = d− 2r1 + 2− 21{r1<r2},

[v3](r1,r2) = d− 2r2 + 2− 21{r1>r2}.

The same ideas used in the computation of k̂τ (τ(d−2,2)) apply here as well,
but the analysis is a bit more detailed because there are more cases to consider.
The entries of k̂τ (τ(d−2,1,1)) are indexed by tabloids of shape (d− 2, 1, 1). These
tabloids are completely specified by the entries contained in the second and
third rows. Hence, we can identify them with ordered tuples in [d]2. Fixing two
such tuples t1 = (t11, t12) and t2 = (t21, t22), with t11 �= t12 and t21 �= t22, we
then have

ĝij(τ(d−2,1,1))t1t2 =
∑
σ∈Sd

gij(σ)1{σ(t11)=t21,σ(t12)=t22}

=
∑
σ∈Sd

(
1− 21{σ(i)>σ(j)}

)
1{σ(t11)=t21,σ(t12)=t22}.

Arguments similar to the ones used in the computation of ĝij(τ(d−1,1)) enable
us to compute ĝij(τ(d−2,1,1)) as well. In order to make the result more readable,
let us split them into to cases: t21 < t22 and t21 > t22. Then we obtain

ĝij(τ(d−2,1,1))t1t2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if {t11, t12} ∩ {i, j} = ∅
(d− 2)! if t11 = i, t12 = j, t21 < t22

−(d− 2)! if t11 = j, t12 = i, t21 < t22

(d− 2t21)(d− 3)! if t11 = i, t12 �= j, t21 < t22

(d− 2t22 + 2)(d− 3)! if t11 �= j, t12 = i, t21 < t22

(2t21 − d)(d− 3)! if t11 = j, t12 �= i, t21 < t22

(2t22 − d− 2)(d− 3)! if t11 �= i, t12 = j, t21 < t22,

(17a)
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ĝij(τ(d−2,1,1))t1t2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if {t11, t12} ∩ {i, j} = ∅
−(d− 2)! if t11 = i, t12 = j, t21 > t22

(d− 2)! if t11 = j, t12 = i, t21 > t22

(d− 2t21 + 2)(d− 3)! if t11 = i, t12 �= j, t21 > t22

(d− 2t22)(d− 3)! if t11 �= j, t12 = i, t21 > t22

(2t21 − d− 2)(d− 3)! if t11 = j, t12 �= i, t21 > t22

(2t22 − d)(d− 3)! if t11 �= i, t12 = j, t21 > t22.

(17b)

The conclusion then follows by computing the sum
∑

i<j gij(τ(d−2,1,1))t1t2 in
the four possible cases obtained from the orderings of t11 and t12, and of t21
and t22.

At this point, Theorem 3 follows from Lemma 7 and Lemma 8. Lemma 7

together with decomposition (28) imply that k̂τ (ρλ) = 0 for all λ � (d− 2, 1, 1)
because the functions defined by irreps are a basis for the space of functions on

Sd. Next, observe that k̂τ (τ(d)) = 0 is equivalent to k̂τ (ρ(d)) = 0. Then, since the

matrix k̂τ (τ(d−1,1)) has rank one, the decomposition (26) of the representation

τ(d−1,1) implies that k̂τ (ρ(d−1,1)) has rank one as well. Also, since both matrices

k̂τ (τ(d−1,1)) and k̂τ (τ(d−2,2)) have rank one, from decomposition (27) of the

representation τ(d−2,2) we obtain k̂τ (ρ(d−2,2)) = 0. Finally, since the matrix

k̂τ (τ(d−2,1,1)) has rank three, from decomposition (28) of the representation

τ(d−2,1,1) we know that k̂τ (ρ(d−2,1,1)) has rank one, which completes the proof
of Theorem 3.

A.4. Proof of Theorem 6

We use an approach similar to the proof of Theorem 3.

Lemma 9. The kernels kp, k
p
, and k

p,ν
are linear combinations of the functions

defined by the representation τ(max{d−2p,1},1,...,1).

Proof. We express the function σ �→ kp(σ) as a linear combination of the func-
tions defined by the representation τ(max{d−2p,1},1,...,1). The same property can

be proved for k
p
and k

p,ν
analogously.

We first analyze the case 2p < d. By definition, we have

kp(σ) = (1 + kτ (σ))
p
=

(
2− 2(

d
2

) i(σ))p

= 2p
p∑

r=1

(−1)r
(
p

r

)
i(σ)r

= 2p
p∑

r=1

(−1)r
(
p

r

)⎛⎝∑
i<j

1{σ(i)>σ(j)}

⎞⎠r

,
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showing that the polynomial kernel kp is a linear combination of products of
functions 1{σ(i)>σ(j)}. These products contain at most p terms, which means
there are at most 2p values σ(i1), σ(i2), ..., σ(i2p) on which the products depend.
The indicator functions of events of the form {σ(i1) = j1, . . . , σ(i2p) = j2p} form
a basis for all the functions that depend only on the values σ(i1), σ(i2), . . .,
σ(i2p). The conclusion follows for the case 2p < d because these indicator func-
tions are exactly the functions defined by the representation τ(max{d−2p,1},1,...,1).

The case 2p ≥ d follows analogously once we note that any product of 2p in-
dicator functions 1{σ(i)>σ(j)} is determined by d−1 values {σ(i1), . . . , σ(id−1)}.
(To be clear, this is because given d− 1 such values, the dth value is fixed).

Then, by the James submodule theorem and the linear independence of the
functions defined by irreps, we find that the Fourier transforms of the three
polynomial kernels are zero at all irreps ρλ with λ � (max{d− 2p, 1}, 1, . . . , 1).
The first part of Theorem 6 is now proved.

To prove the second part of Theorem 6 we make use of feature maps of the
three polynomial kernels. Up to constants, the feature maps for the three kernels
kp, k

p
, and k

p,ν
are the same. For simplicity, we work with the kernel kp. All the

arguments presented here extend to the other two polynomial kernels as well.

We now give a recursive construction of the feature maps Φp : Sd → R(1+(
d
2))

p

that satisfy the relation kp(σ, σ′) = Φp(σ)
	Φp(σ

′). First, we use the feature map

of the Kendall kernel to construct Φ1; in particular, the map Φ1 : Sd → R
1+(d2)

is defined by

Φ1(σ)t0 : = 1 and Φ1(σ)tr : =

√(
d

2

)−1 (
21{σ(ir)<σ(jr)} − 1

)
,

where the coordinates are indexed by the unordered pair t0 = {−1, 0} and the(
d
2

)
unordered pairs tr = {ir, jr} with ir, jr ∈ [d] and ir < jr. We denote the set

of these unordered pairs by

T :=
{
t0, t1, . . . , t(d2)

}
. (18)

The feature map Φ1 clearly satisfies k1(σ, σ′) = Φ1(σ)
	Φ1(σ

′). Now we use the
map Φp−1 to construct a feature map Φp for p ≥ 1. By definition, we have

kp(σ, σ′) = (1 + kτ (σ, σ
′)) (1 + kτ (σ, σ

′))
p−1

= Φ1(σ)
	Φ1(σ

′)Φp−1(σ
′)	Φp−1(σ)

= tr
(
Φ1(σ)

	Φ1(σ
′)Φp−1(σ

′)	Φp−1(σ)
)

= tr
((

Φ1(σ)Φp−1(σ)
	)	 Φ1(σ

′)Φp−1(σ
′)	
)
.

Therefore, the polynomial kernel of degree p between σ and σ′ is equal to the
inner product of the matrices Φ1(σ)Φp−1(σ)

	 and Φ1(σ
′)Φp−1(σ

′)	. By induc-
tion, we see that Φp can be obtained from Φ1 by taking the outer product

with itself p times, meaning that the embedding Φp : Sd → R(1+(
d
2))

p

can be
expressed as
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Φp(σ)s1s2...sp =

p∏
i=1

Φ1(σ)si , (19)

where s1, s2, . . . , sp is a sequence of elements of T .
The following lemma is the key result that allows us to show that the three

polynomial kernels of degree greater or equal than d− 1 are characteristic.

Lemma 10. The vectors {Φd−1(σ) | σ ∈ Sd} are linearly independent.

Since it is more involved, we defer this proof to Section C.1; here we provide
some intuition for the argument. By construction, each entry of Φd−1 is equal
to a product of up to d − 1 terms 21{σ(i)<σ(j)} − 1 times a constant. The key
property that makes the result true is that the indicator functions 1{σ=σr} can
be expressed as a product of d − 1 indicator functions 1{σ(i)<σ(j)}. For exam-
ple, when d = 3, the product 1{σ(1)<σ(3)}1{σ(3)<σ(2)} is equal to the indicator
function of the permutation [1, 3, 2]. Moreover, the degree d− 1 is the smallest
with this property.

As mentioned previously, a universal kernel on Sd is also characteristic. Hence,
it suffices to show that the polynomial kernel kd−1 is universal. Therefore, it is
enough to check that the Gram matrix Mτ = [kd−1(σi, σj)] is invertible, where
σ1, σ2, . . . , σd! enumerate all the elements of Sd. The Gram matrix can be
written as

Mτ =

⎡⎢⎣Φd−1(σ1)
	

...
Φd−1(σd!)

	

⎤⎥⎦ [Φd−1(σ1) · · · Φd−1(σd!)
]

because kd−1(σi, σj) = Φ	
d−1(σi)Φd−1(σj). From Lemma 10, we know that the

vectors Φd−1 are independent, and hence the Gram matrix Mτ is full rank,
which completes the proof of Theorem 6.

A.5. Proof of Theorem 5

By Bochner’s theorem and the Fourier inversion theorem it suffices to show that
the Mallows kernel is characteristic or universal.

We first give a direct proof that the Mallows kernel is universal. Theorem 6
shows that the ν-normalized polynomial kernel k

p,ν
defined by

k
p,ν

(σ, σ′) = e−
ν
2 (

d
2)
(
1 + ν

(
d

2

)
kτ (σ, σ

′)

2p

)p

is characteristic and universal when the degree p is greater or equal than d− 1.
Moreover, we saw that as the degree p increases to infinity, the kernel k

p,ν

converges to the Mallows kernel kνm. Therefore, it is not surprising that the
Mallows kernel is universal since it is the limit of universal kernels.

Let us now make this rough argument precise. We need to show that the Gram
matrix Mm = [kνm(σi, σj)] is strictly positive definite; here the permutations σ1,
σ2, . . . , σd! enumerate the elements of Sd.
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Recall that the Hadamard product between two matrices A and B of the
same dimensions, denoted by A ◦ B, is formed by taking elementwise-product
of the entries; we use A◦p to denote the Hadamard product of the matrix A
with itself p times. By Schur’s theorem, the Hadamard product A ◦ B of any
two PSD matrices is also PSD. Let Mτ = ν

2

(
d
2

)
[kτ (σi, σj)]. Performing a Taylor

series expansion of the exponential function yields

e
ν
2 (

d
2)Mm = e

ν
2 (

d
2)[kνm(σi, σj)] = e

ν
2 (

d
2)[e−νnd(σi,σj)] =

∞∑
i=0

1

i!
M◦i

τ ,

where the series on the right-hand side is entry-wise absolutely convergent. For
some 0 ≤ αi ≤ 1, re-arranging terms yields

e
ν
2 (

d
2)Mm =

d−1∑
i=0

(
d− 1

i

)
1

(d− 1)i
M◦i

τ +

∞∑
i=0

αi
1

i!
M◦i

τ

=

(
1 +

Mτ

d− 1

)◦(d−1)

+

∞∑
i=0

αi
1

i!
M◦i

τ . (20)

The first term on the right-hand side of (20) is the Gram matrix of the ν-
normalized polynomial kernel of degree d − 1, and thus it is a strictly positive
definite matrix. The second term is a positive semi-definite matrix because of
Schur’s theorem. Hence Mm is strictly positive definite and Theorem 5 is now
proved.

For completeness, we show that the Mallows kernel is characteristic in two
other ways. First of all, because of the feature embedding of the Kendall kernel,

it can be viewed as the standard Gaussian kernel on R(
d
2) restricted to 2(

d
2).

Then, since the Gaussian kernel is characteristic, the Mallows kernel has to be
characteristic.

As yet another proof, we note that the result of Theorem 5 can be obtained
via a more abstract argument, using the results of Christmann and Steinwart
[24]. Given a compact metric space X and a separable Hilbert space H, let
Ψ: X → H a continuous and injective map. The authors show that the kernel
k on X ×X given by

k(x, y) = e−ν‖Ψ(x)−Ψ(y)‖2
H (21)

is universal. The symmetric group is a compact metric space and we can choose
Ψ = Φ, the feature map of the Kendall kernel. We can thus conclude that the
kernel defined in Eq. (21) is universal and characteristic; since it equals the
Mallows kernel up to constants, the claim of Theorem 5 follows.

Appendix B: Background in representation theory

In this section, we present further notions and results about the representation
theory for the symmetric group. Our exposition is brief and covers only the
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essential results needed in our work. For a more detailed introduction good
resources include the thesis of Kondor [11] and the appendices by Huang et al.
[18], with a concise summary also given by Kondor and Barbosa [10]. More
detailed presentations can be found in Diaconis [12], Sagan [19], or Fulton and
Harris [13], ordered according to increasing levels of abstraction.

Groups

A group (G, ·) is a set G endowed with a multiplicative operation · : G×G → G
such that

(a) there exists an element e ∈ G called the identity element such that
e · g = g · e = g for all g ∈ G.

(b) g1 · (g2 · g3) = (g1 · g2) · g3 for all g1, g2, g3 ∈ G.
(c) for any element g ∈ G, there exists g−1 ∈ G such that g · g−1 = g−1 · g = e.

It is easy to check that (R,+) or (R, ·) are examples of groups. It is also
straightforward to check that the set of permutations together with the oper-
ation of composition form a group, called the symmetric group. Notice that
we do not require g1 · g2 = g2 · g1. A group with this property is called com-
mutative or abelian. Abelian groups are easier to study than non-abelian ones.
Unfortunately, the symmetric group is not abelian.

Equivalent representations

Two representations ρ1 and ρ2 are equivalent if they have the same dimension
and if there exists an invertible matrix C such that ρ1(σ) = C−1ρ2(σ)C for
all σ ∈ Sd. In other words, two representations are equivalent if there exists a
change of basis that makes one of them equal to the other. We use ρ1 ≡ ρ2 to
denote the equivalence of the representations ρ1 and ρ2.

For any representation ρ1, there exists an equivalent representation ρ2 such

that each matrix ρ2(σ) is unitary (i.e., ρ2(σ)
∗ := ρ2(σ)

	
= ρ2(σ)

−1 = ρ2(σ
−1)).

Therefore, we can always assume that the representations we are working with
are unitary.

Furthermore, in the case of the irreps of the symmetric group, there exist
bases such that each representation ρλ is real, and hence orthogonal. The irreps
in these bases are known as Young’s orthogonal representations, and throughout
this paper we work with these forms of ρλ.

Irreps

We already said that an irreducible representation is a representation that is
not equivalent to a direct sum of representations. The symmetric group, in fact
any finite group, has a finite number of pairwise inequivalent irreps. Let us
consider a maximal set of pairwise inequivalent irreps. There can be multiple
such sets, but they are the same up to equivalence. To be more precise, between
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two maximal sets of irreps there exists a bijection such that an irrep in the first
set is mapped to an equivalent irrep in the other set.

A fundamental result in representation theory states than any representation
is equivalent to a direct sum of irreps. That is, each representation ρ can be
decomposed into the direct of sum of some irreducible representations ρ1, ρ2,
. . . , ρk with some multiplicities m1, m2, . . . , mk:

ρ ≡
k⊕

i=1

mi⊕
j=1

ρi.

Let us recall that the entries of each representation ρ : Sd → C
dρ×dρ define d2ρ

functions σ �→ ρ(σ)ij on the symmetric group. The functions defined by Young’s
orthogonal representations form a basis for the space of functions f : Sd → C.
This result is important and this work exploits it extensively.

The Fourier transform

We saw that the Fourier transform of a function f : Sd → C is a map from
representations to matrices, and it is given by

f̂(ρ) =
∑
σ∈Sd

f(σ)ρ(σ),

where ρ is a representation of the symmetric group.
This Fourier transform has properties similar to those of its counterpart over

the real numbers. First of all, there exists a Fourier inversion formula and
it takes the form

f(σ) =
1

d!

∑
λ�d

dλ tr
(
ρλ(σ

−1)f̂(ρλ)
)
.

The Fourier transform on the symmetric also satisfies the Plancherel formula:∑
σ∈Sd

f(σ−1)g(σ) =
1

d!

∑
λ�d

dλ tr
(
f̂(ρλ)ĝ(ρλ)

)
.

A third familiar property is that the Fourier transform of the convolution of
two functions is the product of the Fourier transforms of the individual functions.
The convolution of two functions f and g on Sd is defined by

f ∗ g(π) =
∑
σ∈Sd

f(πσ−1)g(σ).

Bochner’s Theorem

Bochner’s Theorem for locally compact abelian groups states that any positive
definite function on such a group can be written as the Fourier transform of
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a unique measure over the dual group. In the case of the non-abelian finite
symmetric group, such a result follows directly from the Fourier transform and
the Fourier inversion formula. The goal of Bochner’s theorem in this setting is
to offer a characterization of positive definite functions and of the functions that
lead to characteristic kernels.

Theorem 11 ([8, 11]). A right-invariant function k : Sd × Sd → R defines

positive definite kernel if and only if the Fourier transform k̂ of the associated
univariate function is positive semi-definite at all irreps (i.e., k̂(ρλ) � 0 for all

λ � d). Moreover, the kernel k is characteristic if and only if k̂(ρλ) is positive
definite for all λ � d.

Ferrer diagrams, Young tableaux, and Young tabloids

As mentioned in Section 4, it is natural to index the irreps of Sd by partitions
λ of d. The exact correspondence is not easy to describe, but it is useful to
understand how to visualize the partitions λ and the corresponding irrep ρλ.

The partitions λ � d are represented graphically in the form of Ferrer’s
diagrams. The diagram of a partition λ = (λ1, . . . , λr) is formed by boxes
placed in rows such that row i contains λi boxes. For example, the partitions of
4 are (4), (3, 1), (2, 2), (2, 1, 1), and (1, 1, 1, 1), represented as:

In this graphical representation, a wider partition is higher in the partial order-
ing, while a taller partition is lower in the partial ordering.

A Ferrer diagram with the elements of the set {1, 2, . . . , d} in its boxes is
called a Young tableau. Young tableaux in which the rows are viewed as sets
are called Young tabloids. To emphasize that the rows of a Young tabloid
are not ordered we drop the vertical lines in the graphical representation. For
example, the Young tabloids of the partition (2, 1) are

1 2

3

1 3

2

2 3

1

In what follows, we adopt the shorthand notation σ({1, 3}) : = {σ(1), σ(3)}.
When we are interested in the subset of permutations σ ∼ P that satisfy
σ({1, 3}) = {2, 5}, σ({2, 4}) = {1, 4} and σ({5}) = {3}, we express this as
the permutations that satisfy

σ

⎛⎜⎝ 1 3

2 4

5

⎞⎟⎠ =

2 5

1 4

3

(22)
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Overcomplete representations and James’ submodule theorem

In studying irreps or the Fourier transforms of functions it is often useful to
consider reducible representations that have an easy to understand interpre-
tation and contain copies of the irreps. We have seen in Section A.3 that the
representations τλ play such a role. We now define these representations for a
general partition λ.

Let {t1}, {t2}, ..., {tl} be an enumeration of all Young tabloids1 of some
partition λ � d. The representation τλ takes values in R

l×l and is defined by

[τλ(σ)]ij =

{
1 if σ({ti}) = {tj}
0 otherwise

(23)

We note that the Fourier transform of a probability measure P at the repre-
sentation τλ encodes marginal probabilities:

[P̂ (τλ)]ij =
∑
σ∈Sd

P (σ)[τλ(σ)]ij = P (σ({ti}) = {tj}).

Therefore the Fourier transform at this representation has a concrete inter-
pretation in the “time domain.” Nonetheless, because of the Fourier inversion
formula we want to understand the properties of the kernel functions at irreps.
James’ Submodule Theorem give a decomposition of τλ into irreps. We state
the form of the theorem presented by Huang et al. [18].

Theorem. [James’ Submodule Theorem] There exist orthogonal matrices
Cλ and integers Kλμ ≥ 0 so that

C	
λ τλ(σ)Cλ =

⊕
μ�λ

Kλμ⊕
l=1

ρμ(σ), for all σ ∈ Sd. (24)

Furthermore, Kλλ = 1 for all λ � d.

The integers Kλ,μ are known as Kostka’s numbers and there are methods to
compute them. For example, we have already mentioned in Section A.3 that

τ(n) ≡ ρ(n) (25)

τ(n−1,1) ≡ ρ(n) ⊕ ρ(n−1,1) (26)

τ(n−2,2) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) (27)

τ(n−2,1,1) ≡ ρ(n) ⊕ ρ(n−1,1) ⊕ ρ(n−1,1) ⊕ ρ(n−2,2) ⊕ ρ(n−2,1,1). (28)

Appendix C: Miscellaneous proofs

In this appendix, we collect the proofs of various other results.

1It is standard to use {t} to denote a Young tabloids and t to denote a Young tableaux
because the former are equivalence classes of the latter.
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C.1. Proof of Lemma 10

Recall from Eq. (18) that for ir, jr ∈ [d] with ir < jr, we use tr = {ir, jr} to
denote unordered pairs with an additional t0 = {−1, 0} for convenience, and T
to denote the set of all such

(
d
2

)
+ 1 unordered pairs. In Eq. (19), the definition

of the feature map Φd−1 : Sd → R((
d
2)+1)

d−1

implies that

∀s1, s2, . . . sd−1 ∈ T , Φd−1(σ)s1s2...sd−1
= Cs1s2...sd−1

∏
sr �=t0

(21{σ(ir)<σ(jr)} − 1)

where Cs1s2...sd−1
=
(
d
2

)|{r:sr �=t0}|/2
is a positive constant independent of σ, and

the product is only over sr �= t0 since Φ1(σ)t0 = 1. We use the convention that
an empty product evaluates to 1.

Now define a new feature map Φd−1 : Sd → R((
d
2)+1)

d−1

as

∀σ ∈ Sd, ∀s1, s2, . . . sd−1 ∈ T , Φd−1(σ)s1s2...sd−1
=
∏

sr �=t0

(21{σ(ir)<σ(jr)} − 1)

Let C represent an invertible diagonal matrix of the constants Cs1s2...sd−1
. Then

note that

∀σ ∈ Sd , Φd−1(σ) = CΦd−1(σ).

Hence, the vectors {Φd−1(σ)}σ∈Sd
are linearly independent if and only if the

vectors {Φd−1(σ)}σ∈Sd
are linearly independent. We work with {Φd−1(σ)}σ∈Sd

because its entries are always ±1.

Claim. If {α(σ)}σ∈Sd
are d! real coefficients such that∑

σ∈Sd

α(σ)Φd−1(σ) = 0 ∈ R((
d
2)+1)

d−1

, (29)

then each coefficient α(σ) is equal to zero.

In what follows, we drop repeated occurrences of t0 when indexing the co-
ordinates of Φd−1 without risking confusion. For example, Φd−1(σ)t2 means
Φd−1(σ)t2t0...t0 , where t0 is repeated d−2 times. Now observe that Φd−1(σ)t0 = 1
for all σ, implying that ∑

σ

α(σ) = 0. (30a)

By construction, we have Φd−1(σ)tr = 21{σ(ir)<σ(jr)} − 1, and hence∑
{σ(i)<σ(j)}

α(σ)−
∑

{σ(i)>σ(j)}
α(σ) = 0 for all sets s = {i, j} ∈ T . (30b)
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Eqs. (30a) and (30b) imply that∑
{σ(i)<σ(j)}

α(σ) = 0 and
∑

{σ(i)>σ(j)}
α(σ) = 0. (31)

From now on, for a given unordered pair s = {i, j} ∈ T , we introduce the
shorthand notation +s : = {σ : σ(i) < σ(j)}, with −s denoting its complement.
Moreover, we write several such signed unordered pairs next to each other we
mean the intersection of the two sets. For example +s1 − s2 means s1 ∩ sc2.

We use induction to show that each α(σ) is zero. Assume that for some fixed
integer p and for all choices of p unordered pairs s1, . . . , sp ∈ T and for all
possible binary signs ε1, . . . , εp ∈ {+1,−1} the following holds:∑

ε1s1...εpsp

α(σ) = 0.

We show that this property holds for all choices of p + 1 unordered pairs and
binary signs. The base case p = 1 has been shown in Eq. (31).

Fix a sequence of p + 1 distinct pairs s1, s2, . . . , and sp, all distinct from
t0. Then, each sequence ε1s1, ε2s2, . . . , εpsp can be encoded with a vector in
{−1,+1}p+1. For a given sign vector ε in {−1,+1}p+1 let sign(ε) be equal to
the product of the entries of ε. Therefore, sign(ε) is +1 if the vector ε contains
an even number of −1 entries, and is −1 otherwise. Then, we have∑
σ∈Sd

α(σ)Φd−1(σi)s1...sp+1 = 0 =⇒
∑

ε∈{−1,+1}p+1

sign(ε)
∑

ε1s1...εp+1sp+1

α(σ) = 0.

(32)

The signed pairs −s1 and +s1 are complements of each other. Therefore, we
have ∑

−s1ε2s2...εp+1sp+1

α(σ) +
∑

+s1ε2s2...εp+1sp+1

α(σ) =
∑

ε2s2...εp+1sp+1

α(σ).

This property holds for all pairs sj , not just for s1. Furthermore, by the induction
step we know that the right hand side of the above equation equals zero. More
generally, if ε and ξ are two sign vectors in {−1,+1}p+1 that differ only in a
coordinate, we have ∑

ε1s1ε2s2...εp+1sp+1

α(σ)

︸ ︷︷ ︸
f(ε)

+
∑

ξ1s1ξ2s2...ξp+1sp+1

α(σ)

︸ ︷︷ ︸
f(ξ)

= 0. (33)

Let G be the standard graph on the hypercube {−1,+1}p+1, i.e. the graph with
node set equal to {−1,+1}p+1 that connects to nodes by an edge only if they
differ in a single coordinate. Then, observation (33) immediately implies that
for any two sign vectors ε and ξ at distance two of each other in the graph G,
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we have f(ε) = f(ξ). In fact, it is straightforward that any pair of nodes ε and
ξ that are at an even distance apart satisfy f(ε) = f(ξ).

It is easily checked that two nodes ε and ξ are at an even distance away only
if sign(ε) = sign(ξ). Therefore, if sign(ε) = sign(ξ), then f(ε) = f(ξ). Moreover,
Eq. (32) implies that ∑

ε : sign(ε)=1

f(ε)−
∑

ε : sign(ε)=−1

f(ε) = 0.

We also know that
∑

ε∈{−1,+1}p+1 f(ε) = 0 because
∑

σ∈Sd
α(σ) = 0. Therefore,∑

sign(ε)=1 f(ε) = 0 and
∑

sign(ε)=−1 f(ε) = 0. But the terms inside each of

these sums are equal to each other, hence f(ε) = 0 for all ε ∈ {−1,+1}p+1. This
completes the induction step.

Finally, because for any permutation σ there exists a sequence of d − 1 un-
ordered pairs 1{σ(i)<σ(j)} that uniquely determine it, for each permutation σ we
can choose sets ε1s1, . . . , εd−1sd−1 such that σ is the only permutation that is
contained in all of them. Then, by what have proven so far, we find α(σ) = 0
for all σ ∈ Sd and the conclusion follows.

C.2. Proving that nd(σ, σ
′) is right-invariant

We need to check that nd(σ, σ
′) = nd(σ ◦ π, σ′ ◦ π) for all π ∈ Sd. By definition,

we have ∑
i<j

[
1{σ(i)<σ(j)}1{σ′(i)>σ′(j)} + 1{σ(i)>σ(j)}1{σ′(i)<σ′(j)}

]
=

=
∑
i<j

1{σ(π(i))<σ(π(j))}1{σ′(π(i)))>σ′(π(j))}

+
∑
i<j

1{σ(π(i))>σ(π(j))}1{σ′(π(i))<σ′(π(j))}

The permutation π just maps the sets {i, j} bijectively to the sets {ν(i), ν(j)}.
Since we are summing over all the pairs, it means that the two sums must be
equal. By choosing π = σ−1 we get that nd(σ, σ

′) = nd(e, σ
′ ◦ σ−1), where e is

the identity permutation. By definition nd(e, σ
′ ◦ σ−1) = i(σ′ ◦ σ−1).

C.3. MMDk in Fourier domain

We show that for any kernel k on Sd the maximummean discrepancy can satisfies
the identity:

MMD2
k(P,Q) =

1

d!

∑
λ�d

dλ tr

[(
P̂ (ρλ)− Q̂(ρλ)

)	
k̂(ρλ)

(
P̂ (ρλ)− Q̂(ρλ)

)]
(34)
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Let α1, α2 be two independent random permutations sampled according to
the probability distribution P . Similarly β1 and β2 are independent and sampled
according to Q. The Fourier inversion formula ensures that

k(α1, α2) = k(α1α
−1
2 ) =

1

d!

∑
λ�d

dλ tr
[
k̂(λ)ρλ(α2α

−1
1 )
]

(35)

=
1

d!

∑
λ�d

dλ tr
[
ρλ(α1)

	k̂(λ)ρλ(α2)
]
, (36)

where the last equality follows because the irrep ρλ is one of Young’s orthogonal
representations.

Taking expectation with respect to α1 and α2 yields

Ek(α1, α2) =
1

d!

∑
λ�d

dλ tr
[
P̂ (λ)	k̂(λ)P̂ (λ)

]
. (37)

In an analogous manner, we have

Ek(β1, β2) =
1

d!

∑
λ�d

dλ tr
[
Q̂(λ)	k̂(λ)Q̂(λ)

]
and

Ek(α1, β1) =
1

d!

∑
λ�d

dλ tr
[
Q̂(λ)	k̂(λ)P̂ (λ)

]
.

Given these pieces, the conclusion follows because

MMD2
k(P,Q) = Ek(α1, α2) + k(β1, β2)− k(α1, β2)− k(α2, β1).

In particular, see the paper Gretton et al. [17] for a proof of this last identity.
We note that the Fourier expansion (34) of the MMD2

k shows that the kernel

k is characteristic if and only if k̂ is strictly positive definite at all irreps.
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