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Abstract: Prediction of dynamical time series with additive noise using
support vector machines or kernel based regression is consistent for cer-
tain classes of discrete dynamical systems. Consistency implies that these
methods are effective at computing the expected value of a point at a future
time given the present coordinates. However, the present coordinates them-
selves are noisy, and therefore, these methods are not necessarily effective
at removing noise. In this article, we consider denoising and prediction as
separate problems for flows, as opposed to discrete time dynamical systems,
and show that the use of smooth splines is more effective at removing noise.
Combination of smooth splines and kernel based regression yields predic-
tors that are more accurate on benchmarks typically by a factor of 2 or
more. We prove that kernel based regression in combination with smooth
splines converges to the exact predictor for time series extracted from any
compact invariant set of any sufficiently smooth flow. As a consequence of
convergence, one can find examples where the combination of kernel based
regression with smooth splines is superior by even a factor of 100. The pre-
dictors that we analyze and compute operate on delay coordinate data and
not the full state vector, which is typically not observable.

Received December 2017.

1. Introduction

The problem of time series prediction is to use knowledge of a signal x(t) for
0 ≤ t ≤ T and infer its value at a future time t = T+tf , where tf is positive and
fixed. A time series is not predictable if it is entirely white noise. Any prediction
scheme has to make some assumption about how the time series is generated.
A common assumption is that the observation x(t) is a projection of the state of
a dynamical system with noise superposed [8]. Since the state of the dynamical
system can be of dimension much higher than 1, delay coordinates are used to
reconstruct the state. Thus, the state at time t may be captured as

(x(t), x(t− τ), . . . , x(t− (D − 1)τ)) (1.1)

where τ is the delay parameter and D is the embedding dimension. Delay co-
ordinates are (generically) effective in capturing the state correctly provided
D ≥ 2d+ 1, where d is the dimension of the underlying dynamics [21].
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Farmer and Sidorowich [8] used a linear framework to compute predictors
applicable to delay coordinates. It was soon realized that the nonlinear and more
general framework of support vector machines would yield better predictors
[15, 18, 19]. Detailed computations demonstrating the advantages of kernel based
predictors were given by Müller et al. [19] and are also discussed in the textbook
of Schölkopf and Smola [22]. Kernel methods still appear to be the best, or
among the best, for the prediction of stationary time series [16, 20].

A central question in the study of noisy dynamical time series is how well
that noise can be removed to recover the underlying dynamics. Lalley, and later
Nobel, [12, 14, 13] have examined hyperbolic maps of the form xn+1 = F (xn),
with F : Rd → R

d. It is assumed that observations are of the form yn = xn+ εn,
where εn is iid noise. They proved that it is impossible to recover xn from yn,
even if the available data yn is for n = 0,−1,−2, . . . and infinitely long, if the
noise is normally distributed. However, if the noise satisfies |εn| < Δ for a suit-
ably small Δ, the underlying signal xn can be recovered. The recovery algorithm
does not assume any knowledge of F . The phenomenon of unrecoverability is
related to homoclinic points. If the noise does not have compact support, with
some nonzero probability, it is impossible to distinguish between homoclinic
points.

Lalley [14] suggested that the case of flows could be different from the case
of maps. In discrete dynamical systems, there is no notion of smoothness across
iteration. In the case of flows, the underlying signal will depend smoothly on
time but the noise, which is assumed to be iid at different points in time, will
not. Lalley’s algorithm for denoising relies on dynamics and, in particular, on
recurrences. In the case of flows, we rely solely on smoothness of the underly-
ing signal for denoising. As predicted by Lalley, the case of flows is different.
Denoising based on smoothness of the underlying signal alone can handle nor-
mally distributed noise or other noise models. Thus, our algorithms are split
into two parts: first the use of smooth splines to denoise, and second the use of
kernel based regression to compute the predictor. Only the second part relies
on recurrences.

Prediction of discrete dynamics, within the framework of Lalley [12], has been
considered by Steinwart and Anghel [24] (also see [3]). Suppose xn = Fn(x0)
and x̃n = xn + εn is the noisy state vector. The risk of a function f is defined
as ∫ ∫

|F (x) + ε1 − f(x+ ε2)|2 dν(ε1) dν(ε2) dμ(x),

where ν is the distribution of the noise and μ is a probability measure invariant
under F and with compact support. Thus, the risk is a measure of how well the
noisy future state vector can be predicted given the noisy current state vector.
It is proved that kernel based regression is consistent with respect to this notion
of risk for a class of rapidly mixing dynamical systems. Although the notion
of risk does not require denoising, consistency of empirical risk minimization
is proved for additive noise εn of compact support as in [12]. In the case of
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empirical risk minimization, compactness of added noise is not a requirement
imposed by the underlying dynamics but is assumed to make it easier to apply
universality theorems.

Our results differ in the following ways. We consider flows and not discrete
time maps. In addition, we work with delay coordinate embedding [21] and do
not require the entire state vector to be observable. Finally, we prove convergence
to the exact predictor, which goes beyond consistency. The convergence theorem
we prove is not uniform over any class of dynamical systems. However, we do
not assume any type of decay in correlations or rapid mixing. Non-uniformity in
convergence is an inevitable consequence of proving a theorem that is applicable
to any compact invariant set of a generic finite dimensional dynamical system
[1, 9, 25]. This point is further discussed in Section 2, which presents the main
algorithm as well as a statement of the convergence theorem. Section 3 presents
a proof of the convergence theorem.

In Section 4, we present numerical evidence of the effectiveness of combining
spline smoothing and kernel based regression. The algorithm of Section 2 is com-
pared to computations reported in [19] and the spline smoothing step is found to
improve accuracy of the predictor considerably. The numerical examples bring
up two points that go beyond either consistency or convergence. First, we ex-
plain heuristically why it is not a good idea to iterate 1-step predictor k-times
to predict the state k steps ahead. Rather, it is a much better idea to learn the
k-step predictor directly. Second, we point out that no currently known pre-
dictor splits the distance vector between stable and unstable directions, a step
which was argued to be essential for an optimal predictor by Viswanath et al.
[28]. The heuristic explanation for why iterating a 1-step predictor k times is
not a good idea relies on the same principle.

The concluding discussion in Section 5 points out connections to related
lines of current research in parameter inference [16, 17] and optimal consistency
estimates for stationary data [11].

2. Prediction algorithm and statement of convergence theorem

Let dU
dt = F(U), where F ∈ Cr(Rd,Rd), r ≥ 2, define a flow that may be limited

to an open subset of Rd with compact closure. Let Ft(U0) be the time-t map
with initial data U0. It is assumed that U(t;U0), t ∈ R, is a trajectory of the
flow whose initial point U(0;U0) is U0 ∈ R

d. Let μ̃ be a compactly supported
invariant probability measure of the flow-map Ft for t > 0 and let X̃ be its
support. It is assumed that the initial point ω̃ is drawn from the measure μ̃. For
ω̃ ∈ X̃, the trajectory U(t; ω̃) exists for all t ∈ R and is unique. In addition, the
flow is assumed to be ergodic with respect to the measure μ̃.

Let π : Rd → R be a generic nonlinear projection. Let u(t; ω̃) = πU(t; ω̃) be
the projection of the random trajectory U(t; ω̃). By the embedding theorem of
Sauer et al. [21], we assume that the delay coordinates give a Cr diffeomorphism
into the state space implying that U(t; ω̃) can be recovered from the delay vector,
with delay τ > 0,
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(u(t; ω̃), u(t− τ ; ω̃), . . . , u(t− (D − 1)τ ; ω̃))

for D ≥ 2d+ 1. This delay vector is denoted by u(t; τ ; ω̃).
As a consequence of the Cr embedding, there is a measure μ compactly

supported in R
D that corresponds to μ̃. The measure μ is ergodic and invariant

under the flow lifted via the embedding. Denote the compact support of μ by X.
For every point ω̃ in X̃, there corresponds a unique point ω in X and vice versa.
Because the prediction algorithm is based on delay coordinates and not the state
vector, it is more convenient to work in the embedding space R

D and in terms
of ω and μ. Therefore, we will rely on the bijective correspondence between X
and X̃ and use the notation u(t; τ ;ω) instead of u(t; τ ; ω̃) and u(t;ω) instead
of u(t; ω̃). With these conventions, u(t; τ ;ω) can be thought of as the path in
R

D with u(0; τ ;ω) = ω. Similarly, u(t;ω) can be thought of as a real-valued
signal with u(0;ω) = ω1, where ω1 is the first component of ω ∈ R

D. In later
arguments, the assumption that ω is μ-distributed will be significant, and so
will be the ergodicity of the flow with respect to μ.

Given the signal u(t;ω), it is assumed that the recorded observations are
uη(jh;ω) = u(jh;ω) + εj , where εj is iid noise. Following Eggermont and LaR-
iccia [5, 6], we assume that Eεj = 0 and E |εj |κ < ∞ for some κ > 3. To
avoid inessential technicalities it is assumed that τ/h ∈ Z

+ so that the de-
lay is an integral multiple of the time step h. In particular, we set τ = nh.
Similarly, we assume tf = nfτ , nf ∈ Z

+, where tf is the look-ahead into the
future. The noisy delay coordinates uη(jh; τ ;ω) are assumed to be available for
j = 0, . . . , (N + nf )n, which implies that the observation interval of uη(t;ω) is
t ∈ [−(D − 1)τ,Nτ + tf ].

The exact predictor F : RD → R is a Cr function such that F (u(t; τ ;ω)) =
u(t + tf ;ω) for ω ∈ X. Lemma 3 proves uniqueness and existence of the exact
predictor F . The exact predictor F corresponds to a fixed tf > 0, but that
dependence is not shown in the notation. The problem as considered by Müller et
al. [19] is to recover the exact predictor F from the noisy observations uη(jh;ω).
Let |·|ε denote Vapnik’s ε-loss function. The algorithm of Müller et al. computes
fm such that the functional

1

Nn+ 1

Nn∑
j=0

|f(uη(jh; τ ;ω))− uη(jh+ τ ;ω)|ε + Λ ||f ||2Kγ
(2.1)

is minimized for f = fm in the reproducing kernel Hilbert space HKγ corre-
sponding to the kernel Kγ . The kernel Kγ is assumed to be given by Kγ(x, y) =

exp
(
−

∑D
i=1(xi−yi)

2

γ2

)
. The kernel bandwidth parameter γ and the Lagrange mul-

tiplier Λ are both determined using cross-validation. This method approximates
the exact predictor F for tf = τ . If tf = nfτ , nf ∈ Z

+, the approximation
is iterated nf times. We will compare our predictor against that of Müller et
al. using some of the same examples and the same framework as they do in
Section 4.

In our algorithm, the first step is to apply spline smoothing. In particular, we
apply cubic spline smoothing [4] to compute a function us(t;ω), t ∈ [−(D − 1)τ ,
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Nτ + tf ] such that the functional

1

(N + nf +D − 1)n+ 1

(N+nf )n∑
j=−(D−1)n

(uη(jh;ω)− ũ(jh))
2
+ λ

∫ Nτ+tf

−(D−1)τ

ũ′′(t)2 dt

(2.2)

is minimum for ũ = us(·;ω) over ũ ∈ W 2,2[−(D−1)τ,Nτ+ tf ], where W
2,2[a, b]

denotes the Sobolev space of twice-differentiable functions g : [a, b] → R with the

norm ||g||2 = ||g||22 + ||g′||22 + ||g′′||22. The parameter λ is determined using five-
fold cross-validation. The minimizer us(t;ω) depends upon the noise-free signal
u(t;ω) as well as the instantiation of the iid noise in uη(jh;ω) for −(D− 1)n ≤
j ≤ (N + nf )n. However, the dependence on the iid noise is not shown in the
notation.

The second step of our algorithm is similar to the method of Müller et al.
The predictor f1 is computed as

f1 = argmin f∈Hk

1

Nn+ 1

Nn∑
j=0

(f(us(jh; τ ;ω))− us(jh+ tf ;ω))
2
+ Λ ||f ||2Kγ

.

(2.3)

Both the parameters γ and Λ are determined using five-fold cross-validation.
Here nf and therefore tf are fixed because we seek to approximate the exact
predictor with lookahead fixed at tf . As explained in Section 4, it is significant
that the predictor directly optimizes with a lookahead of tf . Iterating a τ -step
predictor nf times gives worse predictions.

The second step (2.3) differs from the algorithm of Müller et al. in using
the spline smoothed signal us(t;ω) in place of the noisy signal uη(t;ω). Our
algorithm relies mainly on spline smoothing to eliminate noise. Yet another
difference is that we use the least squares loss function in place of the ε-loss
function. This difference is a consequence of relying on spline smoothing to
eliminate noise. As explained by Christmann and Steinwart [3], the ε-loss func-
tion, Huber’s loss, and the L1 loss function are used to handle outliers. However,
spline smoothing eliminates outliers, and we choose the L2 loss function because
of its algorithmic advantages.

We now turn to a discussion of the convergence of the predictor f1 to the
exact predictor F . The first step is to assess the accuracy of spline smoothing.
We quote the following lemma, which is a convenient restatement of a result of
Eggermont and LaRiccia [5, 6] (see pages 132 and 133 of [6]). In the lemma,
Wm,2[a, b] denotes the Sobolev space of m-times differentiable functions g :

[a, b] → R with norm ||g||2 =
∑m

j=0

∣∣∣∣g(j)∣∣∣∣2
2
.

Lemma 1. Assume 2 ≤ m ≤ r. Suppose that u(t;ω) is a signal defined for t ∈ R

with ω ∈ X. For j = −(D− 1)n, . . . , Nn+nf , let yj = u(jh;ω)+ εj, where h =
τ/n and where εj are iid random variables. It is further assumed that Eεj = 0,
Eε2j = σ2, and E |εj |κ < ∞ for some κ > 3. Let us(t) ∈ Wm,2[−(D−1)τ,Nτ+tf ]
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be the spline that minimizes the functional

1

n(N +D − 1) + nf + 1

(N+nf )n∑
j=−(D−1)n

(ũ(jh)− yj)
2 + λ

∫ Nτ+tf

−(D−1)τ

∣∣∣ũ(m)(t)
∣∣∣2 dt

over ũ ∈ Wm,2[−(D − 1)τ,Nτ ]. Assume

λ =

(
log(n(N + nf +D − 1))

n(N + nf +D − 1)

) 2m
2m+1

.

Let p = P (n,N,Δ, ω) be the probability that

||us(·;ω)− u(·;ω)||∞ > Δ > 0,

where the ∞-norm is over the interval [−(D−1)τ,Nτ + tf ]. Then limn→∞ P(n,
N,Δ, ω) = 0.

Some remarks about the connection of this lemma to the algorithm given by
(2.2) and (2.3) follow. First, the lemma assumes a fixed choice of λ (the relevant
theorem in [5, 6] in fact allows λ to lie in an interval). In our algorithm, λ is
determined using cross-validation because of its practical effectiveness [29].

Second, the probability P(n,N,Δ, ω) (which may be interpreted as the proba-
bility that spline smoothing fails to denoise effectively) depends on ω and there-
fore on the particular trajectory. If P(n,N,Δ, ω) depends on ω only though a
bound on the m-th derivative of u(t;ω), t ∈ [−(D− 1)n, nN ], the bound would
be uniform for all trajectories on the compact invariant set X. The achievability
part of Stone’s optimality result [26] gives such a bound but the algorithm in
that proof does not appear practical. Proving a similar result for smooth splines
based on the existing literature does not appear entirely straightforward. In the
L2 norm, some uniform bounds have been proved for smooth splines by Györfi
et al. [10]. A bound on the L2 norm can be combined with a bound on the
the m-th derivative using a Sobolev inequality to obtain an ∞-norm bound.
Although the rate of convergence would be slightly sub-optimal, it would suffice
for our purposes. However, the result of Györfi et al. is for expectations and not
for convergence in probability, and an argument using Chebyshev’s inequality
does not give strong bounds.

The convergence analysis of the second half of the algorithm also alters the
algorithm slightly. In particular, the use of cross-validation to choose parameters
is not a part of the analysis. To state the convergence theorem, we first fix ε > 0.
By the universality theorem of Steinwart [23], we may choose Fε ∈ HKγ such
that ||Fε − F ||∞ < ε in a compact domain that has a non-empty interior and
contains the invariant set X. The convergence theorem also makes the technical
assumption ε2/ ||Fε||2Kγ

< 1, which may always be satisfied by taking ε small
enough.

The choice of the kernel-width parameter γ is important in practice. In the
convergence proof, the choice of γ is not explicitly considered. However, γ still
plays a role because ||Fε||Kγ

depends upon γ.
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The parameter Λ in (2.3) is fixed as Λ = ε2/ ||Fε||2Kγ
for the proof. Next we

pick δ = ε1/2 and � ∈ Z
+ such that the covering of the invariant set X using

boxes of dimension 2−� ensures that the variation of Fε (as well as that of the
exact predictor F and f3, which is defined later) within each box is bounded by
δ/4.

Suppose A1, . . . , AL are boxes of dimension 2−� that cover X in the manner
hinted above. We next choose T ∗ such that the measure of the trajectories
(with respect to the ergodic measure μ) that sample each one of the boxes Aj

adequately (in a sense that will be explained) is greater than 1 − ε if the time
interval of the trajectory exceeds T ∗.

The parameter Δ is a bound on the infinite norm accuracy of the smooth
spline as in Lemma 1. Choose Δ > 0 small enough that

B1Δ
1/2

Λ
=

B1Δ
1/2 ||Fε||2K
ε2

< ε1/2,

where B1 is a constant specified later. The main purpose of increasing n is to
make spline smoothing accurate. However, the following condition requiring n
to be large enough is assumed in the proof:

B1h
1/2

Λ
=

B1τ
1/2 ||Fε||2K
ε2n1/2

< ε1/2.

Within this set-up, we have the following convergence theorem.

Theorem 2. For ε > 0, T > T ∗, N = T/τ , and Λ, Δ chosen as above, we have

μ

{
x ∈ X

∣∣∣∣|f1(x)− F (x)| > 3
√
ε

}
<

8ε

1− ε
,

when f1 is constructed (or learnt) from the signal uη(t;ω), t ∈ [−(D− 1)τ,Nτ ],
for {ω ∈ X} of μ-measure greater than 1−ε and with probability 1−P(n,N,Δ, ω)
(probability of successful denoising in the spline-smoothing step) tending to 1 in
the limit n → ∞.

Nonuniform bounds implying a form of weak consistency are considered by
Steinwart, Hush, and Scovel [25]. However, the algorithm of (2.2) and (2.3)
does not fit into the framework of [25]. The application of spline smoothing to
produce us(t;ω) means that us(t;ω) may not be stationary, and our method of
analysis does not rely on verifying a weak law of large numbers as in [25]. The
analysis summarized above and given in detail in the following section relies on
∞-norm bounds.

3. Proof of convergence

We begin the proof with a more complete account of how the embedding theorem
is applied. Let dU

dt = F(U), where F ∈ Cr(Rd,Rd), r ≥ 2, be a flow. Let

Ft(U0) be the time-t map with initial data U0. Let Ṽ ⊂ R
d be an open set
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with compact closure. If U0 ∈ Ṽ , it is assumed that Ft(U0) is well-defined for
−τD ≤ t ≤ nfτ = tf , where D is the embedding dimension.

Assumption: For embedding dimension D ≥ 2d + 1 and a suitably chosen
delay τ > 0, the map

x → (πx, πF−τx, πF−2τx, . . . , πF−(D−1)τx)

is a Cr diffeomorphism between Ṽ and its image in R
D. This assumption is

generically true [21]. This map is called the delay embedding. Denote the image
of Ṽ under the delay embedding by V .

The invariant measures μ̃ and μ as well as X̃, X, ω̃, ω, u(t;ω), and u(t; τ ;ω)
are as defined earlier. It is assumed that X̃ ⊂ Ṽ , which implies X ⊂ V .

Lemma 3. Suppose dU(t)
dt = F(U(t)) for −τD ≤ t ≤ tf , U(0) = U0 ∈ Ṽ .

Denote the delay vector(
πU0, πF−τU0, . . . , πF−(D−1)τU0

)
by U0,τ so that U0,τ ∈ V . There exists a unique and well-defined Cr function
F : V → R, called the exact predictor, such that

F (U0,τ ) = πFtf (U0)

for all U0,τ ∈ V . In particular, F (u(t; τ ;ω)) = u(t+ tf ;ω) for all t ∈ R and all
ω ∈ X.

Proof. To map U0,τ ∈ V to πFtf (U0), first invert the delay map to obtain the

point U0 in Ṽ , advance that point by tf by applying Ftf , and finally project
using π. Each of the three maps in this composition is Cr or better. The predictor
must be unique because Ftf is uniquely determined by the flow.

Remark. The embedding theory of Sauer et al. [21] may be applied to the
compact invariant set X̃ without enclosing it in the open set Ṽ . Indeed, if the
box counting dimension of X̃ is d′, the embedding dimension need only satisfy
D ∈ Z

+ and D > 2d′. That can be advantageous because we may have d′ much
smaller than d. However, there are two difficulties if X̃ is a fractal set. First,
tangent spaces cannot be defined and we cannot assert the delay map to be
a diffeomorphism although it will be one-one generically. Second, we will need
to extend F to the closure of an open neighborhood of X in R

D to apply the
universality theorem, and such an extension cannot be made from X if X is a
fractal set. Both these difficulties go away if we take Ṽ to be a submanifold that
contains X̃. If d′ is the dimension of Ṽ , we would only require D > 2d′. For
simplicity, we have assumed Ṽ to be an open set.

The following convexity lemma is an elementary result of convex analysis [7].
It is stated and proved for completeness.

Lemma 4. Let L1(f) and L2(f) be convex and continuous in f , where f ∈ H
and H is a Hilbert space. If w ∈ ∇Li(f), the subgradient at f , assume that

Li(f + g)− Li(f)− 〈w, g〉 ≥ λ 〈g, g〉 /2
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for λ > 0, all g ∈ H, and i = 1, 2. Let f1 = argminL1(f) and f2 = argminL2(f).
Suppose that

|L1(f)− L2(f)| ≤ δ

for ||f || ≤ r, and assume that ||f1|| < r and ||f2|| < r. Then,

||f1 − f2||2 ≤ 2δ

λ
.

Proof. Because f1 minimizes L1(f), we have 0 ∈ ∇L1(f1). Thus,

L1(f2)− L1(f1) ≥ λ ||f2 − f1||2 /2.

Similarly, L2(f1)−L2(f2) ≥ λ ||f2 − f1||2 /2. By adding the two inequalities, we
have

||f2 − f1||2 ≤ |L1(f2)− L1(f1) + L2(f1)− L2(f2)|
λ

≤ 2δ

λ
,

proving the lemma. This last step relies on ||Li(f1)− Li(f2)|| ≤ δ and the
assumption ||f1|| , ||f2|| < r.

If u(t;ω), t ∈ [−(D−1)τ,Nτ + tf ], is the noise-free signal, our arguments are
phrased under the assumption that |u(t;ω)− us(t;ω)| ≤ Δ. This assumption is
realized with probability 1− P(n,N,Δ, ω), which tends to 1 as n increases (by
Lemma 1). For convenience, we denote P(n,N,Δ, ω) by p. The probability that
uη(t;ω) is successfully denoised by smooth splines so that |u(t;ω)− us(t;ω)| ≤
Δ is then 1− p.

In general, a Cr function defined on an embedded submanifold can be ex-
tended to an open neighborhood of the submanifold using a partition of unity.
Because V ⊂ R

D is an embedded submanifold, X ⊂ V , and the exact predic-
tor F is defined on V , it follows that there exists M > 0 such that F can be
extended to Y , where

Y = {y| ||y − ω||∞ ≤ M for some ω ∈ X} .

We will always assume Δ < M so that the spline-smoothed signal maps to Y
under delay embedding with probability greater than 1 − p. Without loss of
generality, we assume M ≤ 1. The convergence proof will assess the approxima-
tion to F with respect to the measure μ. Therefore, the manner in which the
extension is carried out is not highly relevant. The sole purpose of the extension
is to facilitate an application of the universality theorem for Gaussian kernels.

Let
B = sup

ω∈X
||ω||∞ +M (3.1)

Thus, B is a bound on the size of the embedded invariant set with ample al-
lowance for error in spline smoothing.

Let us(t;ω) denote the spline-smoothed signal and u(t;ω) the noise-free signal
with ω ∈ X. Define

W1(f) =
1

Nn+ 1

Nn∑
j=0

(f(us(jh; τ ;ω))− us(jh+ tf ;ω))
2
+ Λ ||f ||2K ,
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where tf = nfτ , nf ∈ Z
+, and K is any smooth and positive kernel defined

over Y × Y . The kernel K will be specialized to the Gaussian kernel Kγ when
applying the universality theorem. Define

W2(f) =
1

Nn+ 1

Nn∑
j=0

(f(u(jh; τ ;ω))− u(jh+ tf ;ω))
2
+ Λ ||f ||2K

using the noise-free signal u(t;ω). Let T = Nτ and define

W3(f) =
1

T

∫ T

0

(f(u(t; τ ;ω))− u(t+ tf ;ω))
2
dt+ Λ ||f ||2K .

For Λ > 0, all three functionals are strictly convex and have a unique minimizer.
The unique minimizers of W1, W2, and W3 are denoted by f1, f2, and f3,
respectively. The functional W1 is the same as in (2.3), the second step of the
algorithm. Thus, f1 is the computed approximation to the exact predictor F .

The following lemma bounds the minimizers ofW1(f),W2(f),W3(f) in norm
by B/Λ1/2.

Lemma 5. The minimizer f1 satisfies ||f1||K ≤ B
Λ1/2 with probability greater

than 1− p. The minimizers f2 and f3 satisfy ||f2||K ≤ B
Λ1/2 and ||f3||K ≤ B

Λ1/2 .

Proof. Because f1 minimizes W1(f), we must have W1(f1) ≤ W1(0). We have

W1(0) ≤ B2 with probability greater than 1 − p. Thus, Λ ||f1||2K ≤ W1(f1) ≤
W1(0) ≤ B2 and the stated bound for ||f1||K follows. The bounds for f2 and f3
are proved similarly.

Lemma 6. Assume 0 < Λ ≤ 1 and |u(t;ω)− us(t;ω)| ≤ Δ for t ∈ [−(D − 1)τ ,

T ]. For f ∈ HK with ||f ||K ≤ B
Λ1/2 , we have |W1(f)−W2(f)| ≤ B2

1Δ
Λ . Here B1

depends only on B and the kernel K. The kernel K is assumed to be C2.

Proof. First, we note that ||f ||∞ ≤ c0 ||f ||K and ||∂f ||∞ ≤ c1 ||f ||K , where ∂ is
the directional derivative of f in any direction. By a result of Zhou (part (c) of
Theorem 1 of [30]), we may take c0 = ||K(x, y)||∞ and c1D

−1/2 = ||K(x, y)||∞+∑
||∂xiK(x, y)||∞+

∑∣∣∣∣∂xi∂xjK(x, y)
∣∣∣∣
∞, where D is the embedding dimension

and the ∞-norm is over x, y ∈ Y . If we define B′
1 using

B′
1 = max(B, c0B, c1B), (3.2)

it follows that both ||f ||∞ and ||∂f ||∞ (where ∂ is a directional derivative in
any direction) are bounded above by B′

1/Λ
1/2.

We may write

|W1(f)−W2(f)| ≤
1

Nn+ 1

Nn∑
j=0

4B′
1

Λ1/2

(
|f(us(jh; τ ;ω))− f(u(jh; τ ;ω))|

+ |us(jh; τ ;ω)− u(jh; τ ;ω)|

)
.

(3.3)
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Here
4B′

1

Λ1/2 is used an upper bound on |f(us(jh; τ))|+ |f(u(jh; τ))|+ |us(jh; τ)|+
|u(jh; τ)|. The bound of B′

1/Λ
1/2 on |f | is justified by the previous paragraph.

The same bound on |us| and |u| follows from B′
1 < B and Λ ≤ 1.

Now, |us(jh; τ ;ω)− u(jh; τ ;ω)| ≤ Δ implies that

|f(us(jh; τ ;ω))− f(u(jh; τ ;ω))| ≤ B′
1Δ/Λ1/2

by the bound on ||∂f ||∞. By replacing B′
1 with max(B′

1, 1) if necessary, we have

|us(jh; τ ;ω)− u(jh; τ ;ω)| ≤ Δ ≤ B′
1Δ/Λ1/2.

The proof is completed by utilizing these bounds in (3.3) and defining B1 as
B1 =

√
8B′

1.

Lemma 7. Assume 0 < Λ ≤ 1. With probability greater than 1−p, ||f1 − f2||K
≤ B1Δ

1/2

Λ .

Proof. Follows from Lemmas 5, 6, and 4. Lemma 4 is applied with r = B
Λ1/2 ,

δ =
B2

1Δ
Λ , and λ = 2Λ. The choice of r is justified by Lemma 5 and the choice of

δ is justified by Lemma 6. To justify the choice of λ, note that W1(f) and W2(f)

can both be written as Wi(f) = L(f) + Λ ||f ||2K with L a convex functional.
The identity 〈f + g, f + g〉K = 〈f, f〉K + 〈2f, g〉K + 〈g, g〉K shows that 2f is

the unique subgradient at f for Λ ||f ||2K . Thus, if w ∈ ∇Wi(f) (the subgradient
of Wi is unique and may be obtained explicitly), we must have Wi(f + g) −
Wi(f)− 〈w, g〉K ≥ Λ 〈g, g〉K , justifying the choice of λ.

Lemma 8. Assume 0 ≤ Λ ≤ 1. For f ∈ HK and ||f ||K ≤ B
Λ1/2 , we have

|W2(f)−W3(f)| ≤ B2
1h
Λ .

Proof. We will argue as in Lemma 6 and assume that ||f ||∞, and ||∂f ||∞ are
bounded by B′

1/Λ
1/2.

Suppose α ∈ [0, 1]. In the difference

1

h

∫ (k+1)h

kh

(f(u(t; τ ;ω))− u(t+ tf ;ω))
2
dt

− (1− α) (f(u(kh; τ ;ω))− u(kh+ tf ;ω))
2

− α (f(u((k + 1)h; τ ;ω))− u((k + 1)h+ tf ;ω))
2
,

we may apply the mean value theorem to the integral and argue as in Lemma 6
to upper bound the difference by (B′

1)
2
h/Λ. The proof is completed by summing

the differences from k = 0 to k = Nn− 1 and dividing by Nn.

Lemma 9. Assume 0 ≤ Λ < 1. Then ||f2 − f3|| ≤ B1h
1/2

Λ .

Proof. Follows from Lemmas 5, 8, and 4. Lemma 4 is applied with r = B
Λ1/2 ,

δ =
B2

1h
Λ , and λ = 2Λ. The choices of r, δ, and Λ are justified using Lemmas 5

and 8 and an additional argument as in the proof of Lemma 7.
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Choose ε > 0. At this point, we specialize K to a kernel for which the uni-
versality theorem of Steinwart applies. For example, K = Kγ . We may then
find Fε ∈ HK such that ||Fε − F ||∞ ≤ ε, where the ∞-norm is over Y . In fact,
we will need the difference |Fε(x)− F (x)| to be bounded by ε only for x ∈ X.
The larger compact space Y is needed to apply the universality theorem and
for other RKHS arguments.

Lemma 10. Let Λ = ε2/ ||Fε||2K ≤ 1. If f3 minimizes W3(f), we have

1

T

∫ T

0

(f3(u(t; τ ;ω))− u(t+ tf ;ω))
2
dt ≤ Λ ||Fε||2K + ε2 = 2ε2.

In addition, ||f3||2K ≤ 2 ||Fε||2K .

Proof. We have

1

T

∫ T

0

(f3(u(t; τ ;ω))− u(t+ tf ;ω))
2
dt ≤ W3(f3),

W3(f3) ≤ W3(Fε) because f3 is the minimizer, and

W3(Fε) ≤ ε2 + Λ ||Fε||2K .

This last inequality uses
∫
(Fε(u(t; τ ;ω))− u(t+ tf ;ω))

2 dt =
∫
(Fε(u(t; τ ;ω))−

F (u(t; τ ;ω))2 dt. The proof of the first part of the lemma is completed by com-
bining the inequalities. To prove the second part, we argue similarly after noting
||f3||2K ≤ W3(Fε)/Λ.

Consider half-open boxes in R
D of the form

Aj1,j2,...,jD =

[
j1
2�

,
j1 + 1

2�

)
× · · · ×

[
jD
2�

,
jD + 1

2�

)
,

with � ∈ Z
+ and ji ∈ Z. The whole of RD is a disjoint union of such boxes.

Because X is compact, we can assume that X ⊂ ∪L
j=1Aj , where the union is

disjoint, each Aj is a half-open box of the form above, and Aj ∩ X �= φ for
1 ≤ j ≤ L.

We will pick � to be so large, that each box has a diameter that is bounded
as follows: √

D

2�
<

δ

4
√
2D1/2 ||∂2K||1/22,∞ ||Fε||K

.

Here δ > 0 is determined later, and
∣∣∣∣∂2K

∣∣∣∣
2,∞ is the ∞-norm in the function

space C2(Y × Y ). Lemma 10 tells us that ||f3||K ≤
√
2 ||Fε||K , and therefore

(by part (c) of Theorem 1 of [30]) ||∂f3||∞ ≤
√
2D1/2

∣∣∣∣∂2K
∣∣∣∣1/2
2,∞ ||Fε||K . As a

consequence of our choice of �, x, y ∈ Aj implies that

|f3(x)− f3(y)| < δ/4, (3.4)
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bounding the variation of f3 within a single cell Aj . Because the exact predictor
F is Cr, r ≥ 2, and X is compact, we may also assert that

|F (x)− F (y)| < δ/4 (3.5)

for x, y ∈ Aj by taking � larger if necessary.
The next lemma is about taking a trajectory that is long enough that each

of the sets Aj is sampled accurately. By assumption X is the support of μ.
However, we may still have μ(Aj) = 0 for some j. In the following lemma and
later, it is assumed that all Aj with μ(Aj) = 0 are eliminated from the list of
boxes covering X.

Lemma 11. Let χAj denote the characteristic function of the set Aj. There
exist T ∗ > 0 and a Borel measurable set

Sε,T∗ ⊂ X

such that ω ∈ Sε,T∗ implies that for all T ≥ T ∗ and j = 1, . . . , L∣∣∣∣∣ 1T
∫ T

0

χAj (u(t; τ ;ω)) dt− μ(Aj)

∣∣∣∣∣ ≤ εμ(Aj).

and with μ (Sε,T∗) > 1− ε.

Proof. To begin with, consider the set A1. By the ergodic theorem,

lim
T→∞

1

T

∫ T

0

χA1 (u(t; τ ;ω)) dt = μ(A1)

for ω ∈ S ⊂ X with μ(S) = 1. Let

As,ε =

{
ω ∈ X

∣∣∣∣
∣∣∣∣∣ 1T

∫ T

0

χA1(u(t; τ ;ω)) dt− μ(A1)

∣∣∣∣∣ > εμ(A1) for some T ≥ s

}
.

The sets As,ε shrink with increasing s. Then the measure of ∩∞
s=1As,ε under μ

is zero. Therefore, there exists s1 ∈ Z
+ such that μ(As1,ε) < ε/L.

We can find s2, . . . , sL similarly by considering the sets A2, . . . , AL. The
lemma then holds with T ∗ = max(s1, . . . , sL).

Lemma 12. Suppose that ω ∈ Sε,T∗ , T ≥ T ∗, and Λ = ε2/ ||Fε||2K ≤ 1. Suppose
that f3 minimizes W3(f), which is defined using u(t;ω), T , and Λ. Then

μ
{
x ∈ X

∣∣|f3(x)− F (x)| ≥ δ
}
<

8ε2

δ2(1− ε)
.

Proof. Denote the set
{
x ∈ X

∣∣|f3(x)− F (x)| ≥ δ
}
by Sδ. Let J be the set of

all j = 1, . . . , L such that |f3(x)− F (x)| ≥ δ for some x ∈ Aj . Evidently,
Sδ ⊂ ∪j∈JAj , and it is sufficient to bound the measure of ∪j∈JAj .
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By (3.4) and (3.5), if |f3(x)− F (x)| ≥ δ for some x ∈ Aj then for any y ∈ Aj ,
we have

|f3(y)− F (y)| ≥ |f3(x)− F (x)| − |f3(x)− f3(y)| − |F (x)− F (y)|

>
δ

2
. (3.6)

For ω ∈ Sε,T∗ , we have

1

T

∫ T

0

(f3(u(t; τ ;ω)− u(t+ tf ;ω))
2 dt

=
1

T

∫ T

0

(f3(u(t; τ ;ω)− F (u(t; τ ;ω))2 dt

≥ 1

T

∫ T

0

(f3(u(t; τ ;ω)− F (u(t; τ ;ω))2
∑
j∈J

χAj (u(t; τ ;ω)) dt

=
1

T

∑
j∈J

∫ T

0

(f3(u(t; τ ;ω))− F (u(t; τ ;ω))2χAj (u(t; τ ;ω)) dt

≥ δ2

4T

∑
j∈J

∫ T

0

χAj (u(t; τ ;ω)) dt

≥ δ2

4
μ (∪j∈JAj) (1− ε),

where the first inequality holds because Aj are disjoint, the second inequality
holds because |f3(y)− F (y)| > δ/2 follows from (3.6) for y = u(t; τ ;ω) ∈ Aj

with j ∈ J , and the final inequality is a consequence of Lemma 11 and ω ∈ Sε,T∗ .
Applying Lemma 10, we get

δ2

4
μ

⎛
⎝⋃

j∈J

Aj

⎞
⎠ (1− ε) ≤ 2ε2,

completing the proof of the lemma.

Lemma 13. Suppose ω ∈ Sε,T∗ and that the signals u(t;ω) and uη(t;ω) are
used to define Wi(f), i = 1, 2, 3. Suppose that f1, f2, and f3 minimize W1(f),

W2(f), and W3(f), respectively, with T ≥ T ∗ and Λ = ε2/ ||Fε||2K ≤ 1. Then

μ

{
x ∈ X

∣∣∣∣|f1(x)− F (x)| > δ +
B1h

1/2

+B1Δ
1/2

Λ

}
<

8ε2

δ2(1− ε)

with probability greater than 1− p.

Proof. Follows from Lemmas 7, 9, and 12.

The above lemma implies Theorem 2 with the choice of δ, n, and Δ specified
above it.
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4. Numerical illustrations

We compare three methods to compute an approximate predictor f . The first
method is that of Müller et al. [19] given in (2.1). The second method is exactly
the same but with the least squares regression function. The third method is
the convergent algorithm given by (2.2) and (2.3).

When comparing the methods, we always used the same noisy data for all
three methods. There can be some fluctuation due to the instance of noise
that is added to the exact signal x̃(t) as well as the segment of signal that is
used. The effect of this fluctuation on comparison is eliminated by using the
same noisy data in each case. In addition, reported results are averages over
multiple datasets. For all three methods, the error in the approximate predictor
is estimated by applying it to a noise-free stretch of the signal as in [19], which
is standard because the object of each method is to approximate the exact
predictor.

The first signal we use is the same as in [19], except for inevitable differences
in instantiation. The Mackey-Glass equation

dx̃(t)

dt
= −0.1x̃(t) +

0.2x̃(t−D)

1 + x̃(t−D)10
,

with D = 17, is solved with time step Δt = 0.1 and transients are eliminated to
produce the exact signal x̃(t). This signal will of course have rounding errors and
discretization errors, but those are negligible compared to prediction errors. The
standard deviation of the Mackey-Glass signal is about 0.23. An independent
normally distributed quantity of mean zero is added at each point so that the
ratio of the variance of the noise to that of the signal (0.232) is equal to the
desired signal-to-noise ratio (SNR).

To confirm with [19], the Mackey-Glass signal was down-sampled so that
nh = 1 and n = 1. The spline smoothing method would fare even better if we
chose h = .1. The delay and the embedding dimension used for delay coordinates
were τ = 6 and D = 6, as in [19]. The size of the training set was N = 1000. For
cross-validation, the γ/2D parameter was varied over {0.1, 1.5, 10.0, 50.0, 100.0},
and the Λ parameter was varied over

{
10−8.5, 10−8, . . . , 10−0.5

}
for least squares

with or without spline smoothing but over
{
10−10, 10−6, 10−2, 102

}
for the more

expensive support vector regression. For support vector regression, the ε was
varied over {0.01, 0.05, 0.25}. The phenomenon we will demonstrate is far more
pronounced than the slight gains obtained using more extensive cross-validation.
For support vector regression, we were able to reproduce the relevant results
reported in [19].1

Figure 4.1 demonstrates that (2.1) produces predictors that are corrupted by
errors in the inputs or delay coordinates. The method with spline smoothing is
more accurate and deteriorates less with increasing SNR. For the Mackey-Glass

1The RMS error of 0.017 reported for tf = 1 with SNR of 22.15% in [19] appears to be a
consequence of an unusually favorable noise or signal. The typical RMS error is around 0.03.
We eliminate the effect of unusual datasets by taking averages over multiple datasets.
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Fig 4.1. Root mean square errors in the prediction of the Mackey-Glass signal with tf = 1
as a function of the signal to noise ratio. The superiority of the method using smooth splines
is evident.

Fig 4.2. Comparison of the 1-step least squares predictor (without spline smoothing) iter-
ated tf times with the tf -step predictor (without spline smoothing). The latter is seen to be
superior.

plots in Figures 4.1, 4.2, and 4.3, each point is an average over 480 independent
datasets in the case of least squares with or without spline smoothing and over
48 data sets in the case of support vector regression. In all cases, using half as
many datasets does not change the picture.

A tf = nfτ predictor can be obtained by iterating a τ -step predictor nf

times, and this strategy is sometimes used to save cost [19]. This is not a good
idea as explained in [28] and as shown in Figure 4.2. An optimal predictor
would need to roughly split the distance to the nearest training sample such
that the component of the distance along unstable directions is small and with
the component along stable directions allowed to be much larger. The balance
between the two components depends upon tf , and therefore, iterating a one-
step predictor is not a good strategy.
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Fig 4.3. The plot on the left uses SNR of 0.2 and the plot on the right uses 0.4. The method
using smooth splines does better in all instances.

In Figure 4.1, we see that spline smoothing becomes more and more advanta-
geous as noise increases. The situation in Figure 4.3 is a little different. When tf
is small, spline smoothing does help more for the noisier SNR of 0.4 compared to
0.2. However, for larger tf , even though spline smoothing helps, it does not help
more when the noise is higher. This could be because as tf increases capturing
the correct geometry of the predictor becomes more and more difficult, and this
difficulty may be constraining the accuracy of the predictor.

The MacKey-Glass example is a delay-differential equation and does not
come under the purview of our convergence theorem. The Lorenz example,
ẋ = 10(y − x), ẏ = 28x − y − xz, ż = −8z/3 + xy, is a dynamical system
with a compact invariant set and comes under the purview of the convergence
theorem. The Lorenz signal has a standard deviation of 7.9. For the Lorenz plots
of Figure 4.4, each point is an average over 160 datasets each with N = 1000.
The picture did not change even with many fewer datasets.

Figure 4.4 compares h = .01 and h = .1 for Lorenz. In both cases, the
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Fig 4.4. The advantage of spline smoothing for Lorenz is much less on the right with h = 0.1
than on the left with h = 0.01.

embedding dimension is d = 10, the delay parameter is τ = 1, and the lookahead
is tf = h. It may be seen that spline smoothing is less effective when h = 0.1 as
compared to h = 0.01. A typical Lorenz oscillation has a period of about 0.75,
and when h = 0.1 the resolution is too low causing too much discretization
error. Smooth splines are less effective in reconstructing the noise-free signal if
the grid on the time axis does not have sufficient resolution. The left half of
Figure 4.4 shows an example where prediction using spline smoothing improves
accuracy by a factor of 100 with h = 0.01.

5. Discussion

For the prediction of dynamical time series, we have shown that flows are quite
different from maps. In the case of flows, the time series can be denoised by
relying solely on the smoothness of the underlying flow. The predictor can be
derived by applying kernel-based regression to the denoised signal. The result-
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ing predictor converges to the exact predictor under conditions described by
Theorem 2.

As far as dynamical time series are concerned, the parameter estimation
problem [16, 17] is complementary to prediction. Much of the existing theory is
for maps and with the assumption of rapid mixing. For flows, smooth splines or
a similar technique may prove an effective method to denoise in the context of
parameter estimation as well.

The convergence theorem given here does not give rates and is not uniform.
Obtaining rates with uniformity over a class of flows will probably require rapid
mixing assumptions as in the case of maps [11, 24]. Rapid mixing results for
flows may be found in [2] for example.

With respect to rates and uniformity, there are two more issues that would
need to be considered. First, convergence of smooth splines in the ∞-norm
must be proved with explicit bounds that depend only on the norm of the m-
th derivative. A more significant point is that rates of convergence for a given
lookahead tf may not be the best direction. As pointed out in [28], the question
of how large tf can be given a signal of length T appears to have implications for
the prediction algorithm and not just to its analysis. There is no evidence that
existing algorithms including the one in this paper are capable of predicting as
far into the future as an optimal algorithm should.

The smooth spline idea is primarily local and so are the optimality results of
Stone [26]. Stone’s algorithm for achievability is to find a local scale and to fit a
polynomial using linear least squares within that local region. It is perhaps worth
noting that the same idea has a dynamical analog. In its dynamical version [27],
the noisy dynamical time series is embedded within Euclidean space using delay
coordinates. The embedding will be necessarily noisy. However, the embedded
manifold can be smoothed locally using linear techniques.
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[3] A. Christmann and I. Steinwart. Consistency and robustness of kernel-
based regression in convex risk minimization. Bernoulli, 3:799–819, 2007.
MR2348751

[4] C. de Boor. A Practical Guide to Splines. Springer, New York, revised
edition, 2001. MR1900298

http://www.ams.org/mathscinet-getitem?mr=1626511
http://www.ams.org/mathscinet-getitem?mr=3556513
http://www.ams.org/mathscinet-getitem?mr=2348751
http://www.ams.org/mathscinet-getitem?mr=1900298


2236 R. Navarrete and D. Viswanath

[5] P.P.B. Eggermont and V.N. LaRiccia. Uniform error bounds for smooth-
ing splines. In High Dimensional Probability, volume 51 of IMS Lecture
Notes-Monograph Series, pages 220–237. Institute of Mathematical Statis-
tics, 2006. MR2387772

[6] P.P.B. Eggermont and V.N. LaRiccia. Maximum Penalized Likelihood Esti-
mation, volume II. Springer, New York, 2009. Springer Series in Statistics.
MR2817245

[7] I. Ekeland and R. Temam. Convex Analysis and Variational Problems.
SIAM, Philadelphia, 1987. MR1727362

[8] J. Doyne Farmer and J.J. Sidorowich. Predicting chaotic time series. Phys-
ical Review Letters, 59:845–848, 1987. MR0902527
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